
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Languages, Models and Megamodels
a tutorial
Bagge, A.H.; Zaytsev, V.

Publication date
2015
Document Version
Final published version
Published in
SATToSE 2014 : Seminar on Advanced Techniques and Tools for Software Evolution
License
CC0

Link to publication

Citation for published version (APA):
Bagge, A. H., & Zaytsev, V. (2015). Languages, Models and Megamodels: a tutorial. In D. Di
Ruscio, & V. Zaytsev (Eds.), SATToSE 2014 : Seminar on Advanced Techniques and Tools
for Software Evolution: post-proceedings of the Seventh Seminar on Advanced Techniques
and Tools for Software Evolution : L’Aquila, Italy, 9–11 July 2014 (pp. 132-143). (CEUR
Workshop Proceedings; Vol. 1354). CEUR-WS. http://ceur-ws.org/Vol-1354/paper-12.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/languages-models-and-megamodels(63056e83-439d-45c9-97df-95e160392b1b).html
http://ceur-ws.org/Vol-1354/paper-12.pdf


Languages, Models and Megamodels
A Tutorial

Anya Helene Bagge1 and Vadim Zaytsev2

1 BLDL, University of Bergen, Norway, anya@ii.uib.no
2 University of Amsterdam, The Netherlands, vadim@grammarware.net

Abstract. We all use software modelling in some sense, often without
using this term. We also tend to use increasingly sophisticated software
languages to express our design and implementation intentions towards
the machine and towards our peers. We also occasionally engage in meta-
modelling as a process of shaping the language of interest, and in meg-
amodelling as an activity of positioning models of various kinds with
respect to one another.
This paper is an attempt to provide an gentle introduction to modelling
the linguistic side of software evolution; some advanced users of model-
ware will find most of it rather pedestrian. Here we provide a summary
of the interactive tutorial, explain the basic terminology and provide
enough references to get one started as a software linguist and/or a meg-
amodeller.

1 Introduction

This paper is intended to serve as very introductory material into models, lan-
guages and their part in software evolution — in short, it has the same role as
the tutorial itself. However, the tutorial was interactive, yet the paper is not:
readers familiar with certain subtopics would have to go faster through certain
sections or skip them over.

In §2, we talk about languages in general and languages in software engineer-
ing. In §3, we move towards models as simplifications of software systems. The
subsections of §4 slowly explain megamodelling and different flavours of it. The
tutorial paper is concluded by §5.

2 Software Linguistics

Let us start by examining what a language is in a software context.
In Wikipedia, the concept is described3 as follows:

Language is the human ability to acquire and use complex systems of
communication, and a language is any specific example of such a system.
The scientific study of language is called linguistics.

3 http://en.wikipedia.org/wiki/Language.

mailto:anya@ii.uib.no
mailto:vadim@grammarware.net
http://en.wikipedia.org/wiki/Language


Even leaving aside the anthropocentricity of this definition, we see that lan-
guages are communication systems — spoken, written, symbol, diagrammatic.
As communication systems, languages have several properties, including struc-
ture, meaning and abstraction.

Structure, often also referred to as syntax [7], is about how sentences (pro-
grams) of a language are constructed or deconstructed, and in general what
components of sentences (programs) can be identified and how the language al-
lows us to put them together. In natural and software languages, the structure is
often recursive, allowing to create an infinite number of statements of arbitrary
complexity.

Meaning, also called semantics [12], assigns sense and value to language
constructs — for the sake of simplicity, we mostly assume they are syntacti-
cally correct before being concerned with their meaning; in some rare cases like
automated error correction we could also contemplate the meaning of incorrect
programs. There is usually a tight interplay between structure and meaning, so
that by changing the structure of a sentence, you change its meaning — the
activity commonly referred to as “programming”.

Abstraction is what allows discussion of arbitrary ideas and concepts, that
may be displaced in time and space. Abstractions allow engineers to reason about
physical systems by focusing on relevant details and ignoring extraneous ones [5].
Of course, the most interesting results are the ones that could not be obtained
from the real system — so, predictions are preferred to measurements [20]. A
crucial feature of natural languages as well as many software languages is the
ability to define and refine abstractions — for instance, in the way this intro-
duction defines English language abstractions for discussing software languages.

Early written communication (cave paintings) had symbols, but their mean-
ing (if any) remains unknown. Early writing systems used pictures with gram-
matical structure. Such picture is, in fact, a model of a concrete object: a picture
of a bull can confer the idea of doing something with it, but cannot feed you;
one does not simply smoke an image of a pipe. Once used for abstraction, the
symbols can be composed in nontrivial ways. For instance, in hieroglyphics, the
word “Pharaoh” is written as a combination of a duck and a circle, because the
Pharaoh is the son of Ra, since “son” is pronounced similarly to “duck” and Ra
is a god of sun, which is modelled by a circle for its shape [14]. In a similarly
nontrivial way, “a butcher’s” means “a look” in Cockney rhyming slang, since
“look” rhymes with “a butcher’s hook” and “butcher’s” is a shortened version
thereof [19]. Such combinations and combining ways are the main reason new
software languages are difficult to learn, if they are paradigmatically far from
the already familiar languages: the idioms of C are too different from the idioms
of English; and the idioms of Haskell are too different from the idioms of C.

Languages in software engineering as used in multiple ways. There are natural
languages, which are reused and extended (by jargon) by developers. There are
also formal languages which are also largely reused after their underlying theo-
ries being proposed and developed in fundamental research — essentially they
are the same as natural languages, but much easier for automated processing and



reasoning. Finally, there are also artificial languages which are specifically made
by humans — such as C or Esperanto. Usually all kinds of automation-enabling
languages that are used in construction and maintenance of software, are referred
to as software languages: these are programming languages, markup notations,
application programming interfaces, modelling languages, query languages, but
also ontologies, visual notations with known semantics, convention-bound sub-
sets of natural languages, etc.

For instance, any API (application programming interface) is a software lan-
guage [1], because it clearly possesses linguistic properties such as:

� API has structure (described in the documentation)
� API has meaning (defined by implementation)
� API has abstractions (contained in its architecture)

However, API does not typically allow definition of new abstractions. For
classical programming languages, we would have a similar list, but in domain-
specific languages we would have abstractions limited by a particular domain,
not by the system design (which means possibly infinite number of them, even if
the abstraction mechanism is still lacking), while general purpose programming
languages usually leave it to the programmer to define arbitrary abstractions
(though not necessarily abstract over arbitrary parts of the language).

3 Moving to models

A model is a simplification of a system built with an intended goal in mind:
a list of names is a model of a party useful for planning sitting arrangements;
“CamelCase” is a model of naming that compresses multiple words into one. Any
model should be able to answer some questions in place of the actual system [2].
Models are abstractions that can provide information about the consequences of
choosing a specific solution before investing into implementation of the actual
software system [29].

� Typically, a model represents a system.
� Some models represent real systems (programs, configurations, interfaces)
� Some models represent abstract systems (languages, technologies, mappings)
� Some models are descriptive/illustrative (used for comprehension)
� Some models are prescriptive/normative (used for conformance)

A model may be written (communicated) as a diagram or a text or some other
representation — possibly even as a piece of software that allows to simulate
behaviour. One might draw a model as an ad hoc illustration — similar to a
crude cave painting — but for clarity and ease of communication across time
and space, one may want to use a modelling language such as UML, BNF, XSD,
CMOF, Z, ASN.1, etc.

Systematically discussing, researching and dissecting software languages has
inevitably led to a special kind of models — called metamodels — that define



software languages. For example, a grammar [36] as a definition of a program-
ming language, is a metamodel, and programs written in such a language, are be-
havioural models conforming to that metamodel. Similarly, a database schema,
an protocol description or an algebraic data type definition are examples of
metamodels, since they all encapsulate knowledge about allowable (grammat-
ical) structures of a software language, each in their corresponding technical
spaces.

Formally speaking, a metamodel models a modelling language [25], in which
models are written, and such models are told to conform to this metamodel: an
XML file conforms to an XML Schema definition; a Haskell program conforms
to the metamodel of Haskell; a program depending on a library uses function
calls according to its API.

4 Megamodels explain relations between models

A model of a system of models is called a megamodel. For example, the last
paragraph of the previous section is a megamodel (in a natural language), since
it models the relations between software artefacts (model, metamodel, language).
Megamodels are crucial for big-picture understanding of complex systems [4]. In
literature they can be called megamodels [4,16,17], macromodels [28], linguistic
architecture models [15,34] or technology models [22]. Megamodels can be partial
in the sense of not being complete deterministic specifications of underlying
systems [13], and they can also be presented in a way that gradually exposes the
system in an increasingly detailed way [34,23,35].

A cave painting of a bison may be useful to understand the concept of hunting
by abstracting from the personalities of the hunters and the measurements of
the animal. However, to surface and understand its implications such as the
near extinction and recovery of the species, one must also have models of bison
populations, ecology, human society, USA politics, Native American politics,
and so on — and be able to see how they relate to each other. In the same way,
megamodels can aid in understanding software technologies, comparing them
and assessing the implications of design choices in software construction.

4.1 Informal megamodelling

A cave-painting approach to megamodelling could be as minimalistic as follows:

� draw a diagram with models as nodes
� add relations between them
� describe relations in a natural language

The focus of this approach is on understanding and communication [30,4]. For
example, many papers, books and specifications in MDE contain an explanation
of the stack of M1, M2 and M3 models (models, metamodels and metameta-
models correspondingly) which positions them with respect to one another by



postulating that models conform to a metamodel and both M2 and M3 conform
to a metametamodel. Such an explanation, as well as its visual representation,
is a megamodel. We have to draw your attention here to the fact that such a
megamodel leaves many questions open and on a certain level of understanding
it is incorrect: many models conform to one metamodel, and many metamodels
can conform to one metametamodel, and the fact that the metametamodel con-
forms to itself, is no more than an implementation detail from MDA. That is the
reason for various more formal attempts to exist to express the same situation
in UML or another universal notation.

There is a big subset of informal megamodelling techniques referred to as
“natural” [30] — it happens all the time in unstructured environments, whenever
we use conveniently available salt and pepper dispensers as proxies for entities
at a conference banquet discussion, or in general whenever we use throwaway
abstractions to get to the point in a quick and dirty (volatile) way.

4.2 Ad hoc megamodelling

A slightly more detailed and yet still concrete approach is to explain relations
between models and languages by showing mappings between them, without
trying to generalise them to relations. Such mappings are easier to define and
formalise and may be enough to understand the system. Thus, instead of saying
“this model belongs to this language”, we show that there is a tool which processes
that model and that this tool is a software language processor. Usually such
models mix architectural and implementational elements and when it comes to
comprehension, almost impenetrable without extensive study of the system at
hand. Here is an example [32]:

After some frustration we are free to observe here how S(N), whatever it is4,
becomes GBGF (N) after a process called “grammar extraction” [33], and that

4 In fact, S(N) is a specification of a syntactic notation such as “an Extended Backus-
Naur Form dialect that uses dots to separate production rules, same level indentation
to list alternatives, ...” [31].



GBGF (N) is linked either bijectively or bidirectionally to G′
BGF (N), and all

these boxes titled with symbols, subscripts, dashes and parentheses, are linked
to their counterparts from a similarly looking chain of transformations that seem
to be related to N ′ rather than to N .

Even with a fair share of guesswork, this megamodel does not immediately be-
stow its observer with any piece of freshly granted knowledge. This megamodel
basically encapsulates everything one could learn from the corresponding pa-
per [32], condensing 17 pages into one diagram. It is more of a visualisation
tactic than a comprehension strategy.

Many methods of ad hoc megamodelling are transformational: they use a
newly introduced notation, different for each of them, to demonstrate how some
software artefacts get turned into other artefacts. Unlike natural megamodelling,
some ad hoc megamodelling approaches have very clearly defined semantics for
their components instead of a natural language description. Unlike formal meg-
amodelling that we will introduce below, they are typically fairly idiosyncratic
and are not expressive enough to unambiguously model a situation sufficiently
different from the study showcasing their application.

4.3 Instrumental megamodelling

One of the alternative approaches is to rely on some instrumental support: a tool
or a language, perhaps both, that can do what a megamodel should — express
relations between models, model transformations and languages. Hence, by us-
ing such a tool we can focus on providing such descriptions for a given system,
perfecting them, reflecting on their evolution, etc. Committing to a framework
means sacrificing at least some of the flexibility that natural and ad hoc meg-
amodelling provide, in exchange of a much more precise understanding and def-
inition of each component. An instrumental megamodel is not a cave painting
anymore — it is a Latin text. Latin is a language everyone kinda understands,
thus enabling its dissemination to a broader public. It might not be the best
language to deliver you particular ideas, but once you get a hold on its cases,
declensions and conjugations, you can use it again and again for many other
tasks.

Here is an example megamodel by Favre, Lämmel and Varanovich [15]:



For a software engineer using such a megamodel “in Latin” means that each
of these components is clickable and resolvable to a (fragment of a) real soft-
ware artefact. In this particular case, the megamodelling language is MegaL5,
it supports entities such as “language”, “function”, “technology”, “program”, etc,
and relations such as “subsetOf”, “dependsOn”, “conformsTo”, “definitionOf” and
many others. There are other megamodelling languages: AMMA6, MEGAF7,
SPEM8, MCAST9, etc, some people use categorical diagrams, which are closer
to the next kind of megamodelling.

The process of navigating a megamodel and assigning a story to it, is called
renarration [34]. This technique is needed quite often, since detailed megamodels
can get bulky and rather intimidating — yet the same megamodels are supposed
to be used to simplify the process of understanding a software system or commu-
nicating such an understanding, not to obfuscate it. Indeed, when a megamodel is
drawn step by step with increasing level of detail (or vice verse, in increasing level
of abstraction), it lets the user treat and comprehend one element at a time while
slowly uncovering the intentions behind them. For MegaL, renarration operators
include addition/removal of declarations, type restriction/generalisation, zoom-
ing in/out, instantiation/parametrisation, connection/disconnection and back-
tracking [23].

4.4 Formal megamodelling

Relying on tool support can be nice, but it is even better to be backed up by a
theory that allows you to prove certain properties and verify your megamodels
through solid analysis. Such approaches have rich mathematical foundations and
vary greatly in form and taste. The choice is wide, but let us consider two
different examples a little closer.

5 MegaL: Megamodelling Language [15].
6 AMMA: Atlas Model Management Architecture [3].
7 MEGAF: Megamodelling Framework [18].
8 SPEM: Software & Systems Process Engineering Metamodel [27].
9 MCAST: Macromodel Creation and Solving Tool [28].



example (τµτ).

The sequence of greek letters used here above are ambiguous, in particular
because there is no formal rule for the ordering of letters. This is because the
concepts described above corresponds to graph patterns, not simply sequences.
We have identified a lot of interesting patterns that corresponds to known
concepts. Some examples are provided in the next figure.

ττ

µ τµ τ
τ

µ
τ

ττ
µ

τ
µµ

ττ
χ

τ

τ
χχ

ττ

ττ

εε
µµ

µµχχ
µ ε

χχ
Metamodel/

conformantModel

Reflexive

metamodel

Reverse

engineering
transformation

Forward

engineering
transformation

Model

/ System
co-evolution

Metamodel

/ Model
co-evolution

System-driven
evolution

µ τ µ

Model-driven
evolution

τ
ττ

µ τ

χ τ

Metamodel
inference

µ τ

Metamodel
engineering

Metamodel
reverse

engineering

χχ
µ τ

χχ

Round-trip evolution

µ τ
ττ

ττ
µ τ

Fig. 8. MegaModel: Examples of interesting mega-patterns (τ )

5 Conclusion

In this paper we introduced a megamodel to describe MDE concepts and their
relationships. This megamodel is summarized in Figure 9. The view presented
here corresponds has been simplified for the purpose of this paper. A more
complete view making explicit the relationships between the megamodel, the
set theory and the language theory can be found in [8].

In fact, by using the megamodel we discovered that it was much more pow-
erful than expected. It really helped us to connect concepts and technologies
that were apparently disconnected. Surprisingly we discovered that a lot of
known issues could be model as graph patterns. And we are still discovering

J.-M. Favre, T. NGuyen / Electronic Notes in Theoretical Computer Science 127 (2005) 59–74 71

Suppose that instead of trying to come up with all kinds of relations that
system fragments can have among themselves, we limit the relations to the most
essential ones. Such relations can be well-understood and defined with relative
ease for any particular technological space. We can refer to Jean-Marie Favre’s
relations [16,14]: µ — representationOf, ε — elementOf, δ — decomposedIn, χ
— conformsTo, τ transformedTo. Then, we can on one hand afford to define each
of them for our particular domain (e.g., grammarware, XML, Cobol, EMF); and
on the other hand see megapatterns in them [16]:

For instance, in the top left corner we see an entity (say, X) that models
another entity (say, Y ), while X is also being transformed to Y . This is classi-
cal forward engineering, as opposed to reverse engineering where X models Y
while the system Y is being transformed into the model X [6]. By now you can
recognise the diagram of the original taxonomy by Chikofsky and Cross as an
ad hoc megamodel, which also contains much more details than such a pattern,
which is why the text of the paper is an important renarration of it. A similar
pattern is displayed in the right bottom corner where X is being transformed
into Y while also conforming to it — this could be grammatical inference, or
constructing and XML schema from a selection of documents, or deriving a par-
tial metamodel from a modelbase, or anything of that kind. All megapatterns
are simplifications of real scenarios and as such, they are in some sense “wrong”
— as are all models.

As another example of formal megamodelling, here is Diskin’s definition of
complex heterogeneous model mappings [9]:

D.3 Complex heterogeneous model mappings

Simple heterogeneous model mappings defined above give rise to a functor
µ : Modmap!MModmap. The goal of this section is to outline, semi-formally,
how this description can be extended for complex mappings involving derived
elements.

Let QL be a query language, that is, a signature of diagram operations over
graphs. It defines a graph MModmapQL of metamodels and their complex
mappings described in Sect. C. Similarly, we have graph ModmapQL of models
and their complex mappings like, e.g., pairs mappings (f,vvv) and (g,www) shown
in Fig. 41(b). (Recall that we actually deal with commutative square diagrams:
f ; tA = tm;vvv and g; tB = tM ;www.)

AAA (======
vvv

OOO ======
www
) BBB

A:AAA
:µQL

•
6

h⌘⌘⌘⌘
f :vvv

M :OOO
:µQL

•
6

⌘⌘⌘⌘
g:www
i B:BBB

:µQL

•
6

Fig. 43: Encapsulation of complex
heterogeneous mappings

By encapsulating typing mappings in-
side nodes, and metamodel mappings inside
arrows, we may rewrite the upper half of
diagram Fig. 42(a) as shown in Fig. 43.

A warning about arrow notation is in
order. Graph mappings in Fig. 38(c) are
denoted by double arrows to distinguish
them from links (single-line arrows), and di-
agrams of graph mappings are triple arrows.
Complex mappings add one more dimension
of encapsulation — derived elements, and hence mappings vvv, www should be de-
noted by triple arrows while mappings-diagrams f :vvv, g:www by quadruple arrows.
To avoid this monstrous notation, we sacrifice consistency. It is partially restored
by using bullet-end arrows for links: the latter may be thought of as arrows with
“zero-line” bodies.

Thus, similarly to simple heterogeneous model mappings, complex ones con-
tain complex metamodel mappings and hence there is a graph morphism

µQL : ModmapQL !MModmapQL

(vertical links in Fig. 43 are its instances). We want to turn the two graphs above
into categories (and µQL into a functor), i.e., we need to define composition of
complex mappings.

Composition of complex metamodel mappings is easy and amounts to term
substitution. As mentioned above in Sect. C.2, with an accurate definition of a
query langauge’s syntax, compositionality of metamodel mappings is a routine
exercise in categorical algebra (with the so called Kleisli triples [69]). It turns
graph MModmapQL into a category (the Kleisli category of the monad defined
by the query language).

Defining composition of complex model mappings is much harder because
we need to compose query executions, i.e., application instances of operations
rather than terms (definitions of operations). It can be done relatively easily
for monotonic queries defined above on p.69 (details will appear elsewhere).
Thus, if all queries are monotonic, graph ModmapQL can also be turned into a
category, whose arrows are square diagrams similar to those shown in Fig. 39.

74

Single-line arrows are links, double arrows are graph mappings, triple arrows
are diagrams of graph mappings that encapsulate type mappings inside nodes



and metamodel mappings inside arrows. Even this extremely condensed tile di-
agram is a simplification — since v and w are complex mappings, they should
be drawn as triple arrows, while f : v and g : w become quadruple arrows.
Still, the diagram itself remains structurally simple while still being unshakably
formal. If we provide an accurate definition of our language’s syntax, composi-
tionality of metamodel mappings (a routine categorical process of defining Kleisli
triples [24]), this graph turns into a (Kleisli) category. By going through some
trouble or by limiting ourselves to monotonic queries, we can do the same for
model mappings (not just metamodel mappings) [9].

Within this approach, each megapattern — divergence, convergence, revi-
sion of match, revision of update, improvement of match, conflict resolution
— forms a tile of four involved software artefacts and labelled arrows between
some of them. Then, tile algebra provides uniform rules to compose such tiles
together [10].

4.5 Space megamodelling

Recall that a metamodel is a model of a language. (The previous sentence is a
megamodel). Then, a megamodel is a model of a technology, since it shows how all
involved fragments fit together to facilitate the process. In the previous section
we have also made acquaintance with megapatterns —models of processes within
a technology. Just one more step brings us to a abstract megamodel of an entire
technological space [21]. For example [38]:

Str
(string)

Tok
(tokens)

TTk
(typed tokens)

Lex
(lexical model)

For
(parse forest)

Ptr
(parse tree)

Cst
(concrete syntax tree)

Ast
(abstract syntax tree)

Pic
(rasterised picture)

Dra
(vector drawing)

Gra
(graph model)

Dia
(diagram)

to
ke

n
is
e

co
n
ca

t

st
ri
p

fo
rm

at

parse

unparse

parse

unparse

st
ri
p

fo
rm

at

im
p
lo

d
e

ex
p
lo

d
e

d
is
am

b
ig

u
at

e

re
co

g
n
is
e

re
n
d
er

st
ri
p

fo
rm

at

ex
tr

ac
t

fl
at

te
n

scannerless parse

unparse

visualise

serialise

m
2
m

text editing

structural editing

m
2m

transform
ation

re
fa

ct
or

in
g

co
d
e

tr
an

sf
or

m
at

io
n

fi
lt
er

in
g

d
ra

w
in

g
vi

su
al

ed
it
in

g

R
aw

L
ay

ou
t

L
ay

ou
tl

es
s

A
bs

tr
ac

t

Textual Structured Graphical

Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:

• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5

This megamodel models everything that can possibly happen when you are
doing parsing, unparsing, pretty-printing, formatting, templating, stropping, etc.



Each element here is not resolvable to a concrete artefact, but rather to a sub-
space with its own stack of models and metamodels. For example, a concrete
syntax tree (Cst) element found near the centre of the megamodel, represents
concrete syntax trees, their definition as a concrete grammar, and all the tech-
niques and tools that create, transform and validate them. A vector drawing
(Dra, think SVG or GraphML), on the other hand, implies having a metamodel
defining graphical elements, their coordinates and other attributes, as well as
transformations such as a change of colour or realignment.

When renarrated, such a megamodel commits to becoming a representation
of one particular technology, hence removing some of the elements that do not
exist there and detailing the others so that they become resolvable [35]. We can
also use the megamodel as a classificatory tool to look at existing techniques and
positioning them with respect to others [37]. For example, what is “model-to-
text transformation” commonly used in modelware frameworks and papers and
deliberately omitted from being explicitly mentioned on the megamodel? In fact,
it is a very particular path through this megamodel starting at Ast or Dia and
going to Lex (commonly referred to as a “template” in this particular scenario)
and then dropping straight to Str.

One can reasonably claim that such megamodels are in fact ontologies [8].

5 Conclusion

The tutorial was highly interactive and its biggest contribution to SATToSE
was the discussion. This paper is a humble attempt to summarise (some of the)
issues raised during both lecturing10 and the hands-on parts, and provide bibli-
ographical pointers for the most interested participants. There are many issues
in megamodelling that we did not sufficiently cover — in particular, modelling
the very nature of modelling [25,26] and taking both ontological and linguistical
aspects into account [20,11,8].

Language is an important instrument of structured and meaningful com-
munication, whether we use natural languages to convey information or create
artificial ones tailored to the domain. We model languages with metamodels,
since they are models of how software models can be put together. In practice,
metamodels take many different forms such as programming language grammars,
UML domain models, XML schemata and document types, library API defini-
tions. Megamodels are used to model software technologies as systems of models,
aimed first and foremost at understanding software systems, languages, tools and
relations between them. Megamodelling makes relations explicit, identifies roles
that software artefacts play and thus helps to understand technologies, compare
them, validate, debug and deploy in a broad sense.

10 Slides: http://grammarware.github.io/sattose/slides/Bagge.pdf.

http://grammarware.github.io/sattose/slides/Bagge.pdf


References

1. T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm. Study of an
API Migration for Two XML APIs. In SLE, volume 5969 of LNCS, pages 42–61.
Springer, 2010.

2. J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA Frame-
work. In ASE, page 273. IEEE CS, 2001.

3. J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and
Modeling in the Small. In MDAFA, volume 3599 of LNCS, pages 33–46. Springer,
2004.

4. J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. OOPSLA
& GPCE, Workshop on best MDSD practices, 2004.

5. A. W. Brown. Model Driven Architecture: Principles and Practice. SoSyM,
3(3):314–327, 2004.

6. E. J. Chikofsky and J. H. C. II. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 7(1):13–17, 1990.

7. N. Chomsky. Syntactic Structures. Mouton, 1957.
8. C. Coral, R. Francisco, and P. Mario. Ontologies for Software Engineering and

Software Technology. Springer, 2006.
9. Z. Diskin. Model Synchronization: Mappings, Tiles and Categories. In GTTSE,

volume 6491 of LNCS. Springer, 2011.
10. Z. Diskin, K. Czarnecki, and M. Antkiewicz. Model-versioning-in-the-large: Alge-

braic Foundations and the Tile Notation. In ICSE CVSM, pages 7–12. IEEE CS,
2009.

11. D. Djurić, D. Gašević, and V. Devedžić. The Tao of Modeling Spaces. JOT,
5(8):125–147, 2006.

12. M. Erwig and E. Walkingshaw. Semantics First! In SLE’11, pages 243–262.
Springer, 2012.

13. M. Famelis, R. Salay, and M. Chechik. Partial Models: Towards Modeling and
Reasoning with Uncertainty. In ICSE, pages 573–583. IEEE, 2012.

14. J.-M. Favre. Megamodelling and Etymology. A story of Words: from MED to MDE
via MODEL in five millenniums. In GTTSE, number 05161 in Dagstuhl, 2006.

15. J.-M. Favre, R. Lämmel, and A. Varanovich. Modeling the Linguistic Architecture
of Software Products. In R. B. France, J. Kazmeier, R. Breu, and C. Atkinson,
editors, MoDELS, LNCS, pages 151–167, 2012.

16. J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evolution
through Transformations. ENTCS, 127(3), 2004.

17. R. Hebig, A. Seibel, and H. Giese. On the Unification of Megamodels. EC-EASST,
42, 2011.

18. R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. Realizing Architecture
Frameworks through Megamodelling Techniques. In ASE, pages 305–308, 2010.

19. J. Jones. Rhyming Cockney Slang. Abson Books, 1971.
20. T. Kühne. Matters of (Meta-)Modeling. Software and Systems Modeling, 5(4):369–

385, 2006.
21. I. Kurtev, J. Bézivin, and M. Akşit. Technological Spaces: an Initial Appraisal. In

CoopIS, DOA, 2002.
22. R. Lämmel. Programming Techniques and Technologies. http://softlang.

wikidot.com/course:ptt13, 2013.
23. R. Lämmel and V. Zaytsev. Language Support for Megamodel Renarration. In

XM, volume 1089 of CEUR, pages 36–45. CEUR-WS.org, Oct. 2013.

http://softlang.wikidot.com/course:ptt13
http://softlang.wikidot.com/course:ptt13


24. E. Manes. Algebraic Theories. Graduate Text in Mathematics. Springer, 1976.
25. P.-A. Muller, F. Fondement, and B. Baudry. Modeling Modeling. In MoDELS,

LNCS, pages 2–16, 2009.
26. P.-A. Muller, F. Fondement, B. Baudry, and B. Combemale. Modeling Modeling

Modeling. Software and Systems Modeling, 11(3):347–359, 2012.
27. Object Management Group. Software & Systems Process Engineering Metamodel

(SPEM). Language Specification, OMG, 2007.
28. R. Salay, J. Mylopoulos, and S. Easterbrook. Using Macromodels to Manage Col-

lections of Related Models. In CAiSE, pages 141–155. Springer, 2009.
29. B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–

25, 2003.
30. Z. Zarwin, J.-S. Sottet, and J.-M. Favre. Natural Modeling: Retrospective and

Perspectives an Anthropological Point of View. In XM’12, pages 3–8. ACM, 2012.
31. V. Zaytsev. BNF WAS HERE: What Have We Done About the Unnecessary

Diversity of Notation for Syntactic Definitions. In SAC PL, pages 1910–1915.
ACM, Mar. 2012.

32. V. Zaytsev. Language Evolution, Metasyntactically. EC-EASST; Bidirectional
Transformations, 49, 2012.

33. V. Zaytsev. Notation-Parametric Grammar Recovery. In LDTA. ACM DL, June
2012.

34. V. Zaytsev. Renarrating Linguistic Architecture: A Case Study. In MPM, pages
61–66. ACM DL, Nov. 2012.

35. V. Zaytsev. Understanding Metalanguage Integration by Renarrating a Techni-
cal Space Megamodel. In GEMOC, volume 1236 of CEUR, pages 69–77. CEUR-
WS.org, Sept. 2014.

36. V. Zaytsev. Grammar Zoo: A Corpus of Experimental Grammarware. Fifth Special
issue on Experimental Software and Toolkits of Science of Computer Programming
(SCP EST5), 98:28–51, Feb. 2015.

37. V. Zaytsev and A. H. Bagge. Modelling Parsing and Unparsing. In Second Work-
shop on Parsing at SLE 2014, Aug. 2014. Extended Abstract.

38. V. Zaytsev and A. H. Bagge. Parsing in a Broad Sense. In MoDELS, volume 8767
of LNCS, pages 50–67. Springer, Oct. 2014.


