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Abstract. We perform the first one-point fluctuation analysis of the high-energy neutrino
sky. This method reveals itself to be especially suited to contemporary neutrino data, as
it allows to study the properties of the astrophysical components of the high-energy flux
detected by the IceCube telescope, even with low statistics and in the absence of point
source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model
of the high-energy neutrino background by assuming two main extra-galactic components:
star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and
Fermi, we predict the spectral and anisotropic probability distributions for their expected
neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse
background due to the poor angular resolution of IceCube, and we determine an upper limit
on the number of shower events that can reasonably be associated to blazars. We also
find that upper limits on the contribution of blazars to the measured flux are unfavourably
affected by the skewness of the blazar flux distribution. One-point event clustering and
likelihood analyses of the IceCube HESE data suggest that this method has the potential to
dramatically improve over more conventional model-based analyses, especially for the next
generation of neutrino telescopes.

Keywords: Neutrino astronomy, ultra high-energy photons and neutrinos, gamma-ray the-
ory, particle acceleration.
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1 Introduction

In 2013, the IceCube Collaboration reported an excess of high-energy neutrinos over the
atmospheric neutrino background [1–5]. The spatial distribution of these events, consistent
with isotropy and with no significant clustering, may suggest an extragalactic origin of the
detected neutrinos [6–9]. Besides a Galactic contribution [10, 11], various extragalactic astro-
physical sources have been suggested as factories of the IceCube neutrinos, e.g. star-forming
galaxies (SFG) [12–19], active-galactic nuclei [20–28], galaxy clusters [29, 30], sources dim or
scarcely visible in photons [31–37] as well as more exotic dark matter decays [38–41]. Recent
work employing accurate statistical analysis as well as up-to-date gamma-ray data-sets places
strong constraints on some of the proposed sources [42–45]. In this study we are interested in
the joint contribution of multiple source populations to the observed extragalactic neutrino
flux.

Given the paucity of the high-energy neutrino data, it is important to extract as much
information as we can from them. We here aim at exploiting the full probability distribution
of the currently available neutrino data-set by employing a one-point fluctuation analysis [46–
51]. We first model the high-energy neutrino sky in a simple data-driven way, by assuming
that neutrinos from SFGs and from blazars constitute the main bulk of the observed IceCube
flux, other than the atmospheric background. The IceCube HESE data are then compared
directly to our model predictions. Our one-point analyses show that the specific model of
SFGs and blazars, carefully extrapolated from Herschel and Fermi data, is insufficient to ex-
plain the IceCube astrophysical excess. Our likelihood analysis suggests that the discrepancy
can be explained by missing un-modelled components that are likely of astrophysical origin.

In addition to our analysis of the HESE data, the probability distribution of the individ-
ual neutrino counts allows us to make detection forecasts of these astrophysical populations as
point sources above diffuse backgrounds that they themselves generate. This extreme-value
analysis suggests that a detector with the IceCube angular resolution would not be likely to
detect SFGs as point sources above the background of blazars and of other SFGs. On the
other hand, blazars are sufficiently rare sources that they will not constitute a background to
themselves. Instead, the skewness of the blazar flux distribution biases results derived from
population averages by a non-negligible factor compared to the full distributional result,
which we compute.

The paper is organised as follows. In Sec. 2, we present our data-driven modelling of
the extragalactic and atmospheric neutrino flux. In Sec. 3, we predict what IceCube should
observe on Earth as a consequence of the adopted astrophysical models and characterise
the flux distributions of star-forming galaxies and blazars, arguing that they are sufficiently
skewed to bias results on unresolved source contributions to the diffuse backgrounds. In
Sec. 4 we present a few of the techniques available in one-point analyses, and in Sec. 5,
we apply these techniques and expose the results of our analyses. The systematics of this
study are discussed in Sec. 6, and our findings are summarised in Sec. 7. Further materials
complementing the methodological discussions are reported in the Appendices.

2 Distributional models of neutrino fluxes

In this Section we describe the inputs we used to model the neutrino emission from SFGs and
blazars. We also derive the flux probability distributions of single sources drawn randomly
from these populations.
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In this study we will consider the energy-differential particle fluxes F (in units of
cm−2 s−1 GeV−1) of various sources. Specifically, we will be considering the statistics of
the flux in individual pixels, and to some extent we will be treating fluxes-per-pixel as equiv-
alent to intensities I = F/Ωpix (in units of cm−2 s−1 sr−1 GeV−1).

In addition to these energy-differential quantities, the gamma-ray studies we use to
inform out models often work with fluxes Sγ (in units of cm−2 s−1) integrated over a certain
energy range [Emin, Emax]. Integrated neutrino fluxes Sν will also be relevant in Sec. 3.3.1.
For a differential flux with fixed spectral index Γ (i.e., F ∝ E−Γ), S is related to F by

S = F ×
E1−Γ

max − E1−Γ
min

(1− Γ) E−Γ
. (2.1)

Hence, when the spectral index over this energy range is known, F and S are also effectively
interchangeable, and we can extrapolate GeV gamma-ray fluxes to their TeV–PeV gamma-
ray counterparts. From here we can further extrapolate their corresponding neutrino fluxes
assuming pp or pγ interactions. Note that we will assume a single injection spectral index Γ
as representative of the whole source population for simplicity. In Sec. 6.2, we will discuss
the systematics incurred by employing such an approximation. Notational preferences for F ,
S, or I throughout the text are mainly to emphasise whether or not we are assuming a fixed
pixel size (I), a fixed energy range (S), or neither (F ).

2.1 Star-forming galaxy fluxes from the Herschel data

We now introduce our model for the neutrino emission from star-forming galaxies. The
probability distribution of their neutrino flux is also discussed.

2.1.1 Flux model

In a proton-rich astrophysical environment, the neutrino emission can be directly correlated
to the gamma-ray emission [6, 52]:

1

3

6∑
α=1

EνQν,α =
κ

2
EγQγ , (2.2)

where α runs over (anti)neutrino flavours, Q is the energy-differential emission rate per source
(in units of s−1 GeV−1) and κ = 2 for hadro-nuclear interactions. Using the direct relation
between the neutrino and the gamma-ray energies (2Eν = Eγ) and integrating over source
densities on both sides of Eq. (2.2) to get the differential fluxes (in units of cm−2 s−1 GeV−1),
we have (1/6)

∑
α Fν,α = (κ/2)Fγ . Since neutrino oscillations push the flavour ratio towards

1:1:1 for extragalactic sources, we can define the all-flavour neutrino and antineutrino flux as

Fν ≡
6∑

α=1

Fν,α = 3κFγ . (2.3)

Although we have a simple conversion between neutrino and gamma-ray fluxes for
hadronic sources, SFGs are barely resolved in gamma rays (cf. e.g. [53–56]). Consequently,
their neutrino flux distribution is derived following Ref. [16]. We adopt the Herschel infrared
(IR) luminosity function, Φ(LIR, z) = d2N/(dV (z) d log10 LIR) [57], defined for the intrin-
sic infrared luminosity LIR and redshift z. The IR luminosity function is connected to the
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gamma-ray luminosity function Φ(Lγ , z) by an empirical correlation [53]

Φγ(Lγ , z)d logLγ = ΦIR(LIR, z)d logLIR , (2.4)

Lγ(LIR) = 10β
(

LIR

1010L�

)α
erg s−1 , (2.5)

where α = 1.17 ± 6% and β = 39.28 ± 0.2% and L� is the the solar luminosity. We will
assume the best fit values of the above parameters in the following, though more rigorously
we really should be marginalising over these uncertainties. The 0.2% uncertainty on the
normalisation exponent β corresponds to an 18% systematic uncertainty on the normalisation
10β. Meanwhile the uncertainty on the slope corresponds to a . 2% uncertainty on the
normalisation for the values of LIR at the edges of the domain of Φ(LIR) [57], and is correlated
with LIR itself. The combined systematic uncertainty on the extrapolation Lγ(LIR) for a
single source (and so also on its neutrino flux Fν = 3κFγ) is then less than ∼ 20%. For a
further discussion of this systematic effect, see Sec. 6.2.

As discussed in Refs. [16, 57], the luminosity function of IR galaxies can be decom-
posed into luminosity functions for spiral (‘normal’) galaxies (NG), starburst galaxies (SB),
and star-forming galaxies hosting an obscured or low-luminosity AGN (SF-AGN). This last
subpopulation is further divided into those having an energy spectrum resembling the one
of normal galaxies (SF-AGN (NG)) and those more similar to starburst galaxies (SF-AGN
(SB)); the redshift evolutions of SF-AGNs is given in Table 2 of Ref. [16]. Moreover, SB-
like galaxies usually have a harder spectrum than NGs (ΓSB ' 2.2 vs. ΓNG ' 2.7, see
Ref. [16, 44] and references therein for more details). In the following, we will only consider
SB and SF-AGN (SB) galaxies as main contributors to the high-energy neutrino flux.

Since SF-AGNs represent the most abundant sub-class of SFGs, we also computed the
flux distribution of SF-AGN (NG) as a cross-check (ΓSF−AGN(NG) = 2.7). However, we find
this subpopulation only produces about 6% of the SFG flux between 25 TeV and 5 PeV, well
within systematic uncertainties, so this subpopulation has been neglected in what follows.

We assumed the energy-dependence of the γ-ray differential flux as an unbroken power-
law ∝ E−ΓSB above 0.6 GeV [16] and do not adopt an high-energy cutoff. We will further
discuss the effect of uncertainties on Γ in Sec. 6.2.

2.1.2 Flux distribution

For an SFG population composed of exactly N =
∫

(dV/dz)Φ(Lγ , z)d logLγdz sources, the
luminosity function is sufficient (under the assumption that these extragalactic sources are
isotropically distributed in a comoving cosmological volume element dV/dz) to obtain the
single source distribution:1

P1(Lγ , z) =
d2N/dzdLγ

N
=
dV

dz

Φγ(Lγ , z)

N ln(10)Lγ
. (2.6)

We use the Planck+WMAP cosmology in dV/dz (h = 0.673, ΩΛ = 0.685, Ωm = 0.313) [58].
For a population with a unique, fixed spectral index Γ and photons observed at energy

Eγ (i.e., emitted at various energies (1 + z)Eγ), the one-source gamma-ray differential flux

1Throughout this paper, we denote probability distributions by P (· · · ) and distinguish them using the
random variables that they describe, along with subscripts if necessary. Conditional and parameterised dis-
tributions are denoted as P (·|·). The ‘exception’ to this convention is the Poisson distribution, denoted P(·|·).
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distribution is obtained by marginalising away the uncertainties on the (Lγ , z) of the source:

P1(Fγ |Eγ ,Γ) =

∫∫
dzdL P1(Fγ , Lγ , z|(1 + z)Eγ ,Γ) =

∫
dz

∣∣∣∣Lcrit

Fγ

∣∣∣∣P1(Lcrit, z) , (2.7)

where Lcrit(Fγ , Eγ ,Γ, z) is the Lγ value obtained by the inversion of the differential flux
model Fγ(Lγ , · · · ) from Ref. [16] in which any attenuation during propagation is neglected.
Inserting Eqn. (2.6) then yields

P1(Fγ |Eγ ,Γ) =
1

|Fγ |

∫
dz
dV

dz

Φγ(Lcrit, z)

N ln(10)
, (2.8)

where uncertainties of ΓSB = 2.2 are explicitly neglected. The effect of systematic uncer-
tainties of Γ on the mean flux in such a model has already been studied in Ref. [16], and
the systematic effects of statistical uncertainties on Γ are discussed in Sec. 6.2. The SFG
normalisation N is effectively absorbed into the normalisation

∫
dP = 1 of this single-source

probability distribution, although it remains determined by the Herschel observations when
we extrapolate this gamma-ray flux to neutrinos using Eqn. (2.3).

For the high-flux tail, with contributions only from the nearby sources, the volume
probed is very small and we expect an Euclidean scaling F−2.5. The resulting P1(Fν) is then a
broken power-law, up to corrections due to the redshift evolution of the SFG populations [57],
as visible in Figure 1.

-29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17
log(F / cm²·sec·GeV)

-17.5

-15.0

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

lo
g

(F
 P

(F
))

b = - 2 . 5

a = - 1 SB            

SF-AGN(SB)        

Figure 1: Probability distribution P1(Fν) of the differential neutrino flux from a single star-
forming galaxy at 100 TeV. The flux distributions of two SFG subpopulations are shown: SB
(blue) and SF-AGN (red) [16]. Constant log-slopes corresponding to the limiting 1/|F | and
the Euclidean behaviours (a and b respectively) are offset and quantified for convenience.

2.2 Blazar fluxes from the Fermi 2FHL catalogue

The second class of extragalactic neutrino sources in our model are blazars. In what follows we
introduce our model to estimate their neutrino emission the basis of based on their observed
γ-rays spectra. The probability distribution of their flux is briefly introduced.
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2.2.1 Gamma-ray flux model

To construct our data-driven model of blazars, we rely on the source count distribution
dN/dSγ of the Second Catalog of Hard Fermi -LAT Sources (2FHL) [59, 60]. The 2FHL
sources are mostly blazars, specifically BL Lacs. One may justify this claim by extrapolating
the observed contributions from different blazar populations at high energy (∼54% BL Lac
and ∼16% other blazar sub-populations [59]) to the unassociated and unresolved sources.
However, before extrapolating this gamma-ray flux into a neutrino flux, we must extrapolate
it up to the IceCube energy range.

The 2FHL catalogue has substantially different properties from 2LAC, a 2FGL-based
catalogue more commonly used in blazar-neutrino studies [61, 62]. 2LAC is of a higher purity
than 2FHL (97% of sources are blazars of various subclassifications); however these sources
are observed using gama-rays at energies 100 MeV − 100 GeV, while the 2FHL is based on
data between 50 GeV − 2 TeV [59, 61]. Consequently, extrapolating the gamma-ray flux of
2LAC sources to their neutrino flux above 10 TeV is more dangerous than extrapolating the
γ-flux of 2FHL sources.

This is relevant because the spectrum of these sources is very different in the two
catalogues. BL-Lacs in the 2LAC have Γ < 2.2, but appear much softer in the higher energy
range of 2FHL. For example, Fig. 10 of Ref. [59] shows the distribution of Γ in a sample
of BL Lacs shared between 2FHL and lower energy catalogues, with the clear trend that
these sources’ indices get softer at increasing energy, with median Γ > 3 in the 2FHL. This
softening is observed despite the larger fraction of HSP (‘hard’) to LISP (‘soft’) blazars in
2FHL than in catalogues at lower energies [59], which suggests the unresolved sources we
want to model are even softer. This spectral behavior is consistent with the observation that
the spectral energy distributions (SEDs) of individual blazars are concave functions. The
gamma-ray spectrum approaching PeV energies might be expected to be even softer than
those of the 2FHL.

Despite this evidence that the blazar index is Γ > 3 at higher energies, we nevertheless
assume a non-concave SED at high energies, using Eqn. (2.1) with Γ2FHL = 2.5. We make this
simplifying assumption not only since we expect the flux from a population with uncertain Γ
to be dominated by the hardest sources (cf. Sec. 6.2) and for ease of comparison with existing
studies (e.g. Refs. [62, 63]), but also because this harder-than-expected extrapolation will
result in an optimistic estimate of the contribution from blazars in the 2FHL (and hence in
overconservative significances in our one-point fluctuation analyses in Sec. 5). We will further
discuss the effect of uncertainties on Γ in Sec. 6.2.

2.2.2 Neutrino flux model

Now that we can extrapolate the gamma-ray flux between 50 GeV−2 TeV to higher energies,
we want to turn it into a neutrino flux. In this case, Eqn. (2.2) does not apply. We adopt
instead the following relation from Ref. [25, 64, 65] for the (all-flavors) neutrino flux:

E2
νFν(Eν) =

[∫ ∞
10 GeV

EγFγdEγ

]
Y

0.9

(
Eν

Eν,peak

)1−s
exp

(
− Eν
Eν,peak

)
(2.9)

where Eν,peak ≈ 10 PeV for typical 2FHL sources (z = 0.4, νS = 1016Hz [59]), and where
s = −0.35 is used to obtain the denominator factor of 0.9 in the normalisation [25]. Y is a
parameter absorbing the details of the particle physics interactions in BL Lacs: the observed
gamma-ray flux is mostly leptonic when Y < 1, and mostly due to synchrotron emission from
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pπ when Y ∼ 3. The value Y = 0.8 was chosen for ease of comparison with Ref. [25], though
their discussions suggests smaller values of Y may be more consistent with IceCube upper
limits at the highest energies. This choice of a large Y may therefore slightly overestimate the
neutrino flux due to 2FHL sources, which will again result in overconservative significances
for the discrepancies between our model and the HESE data we will dicsuss in Sec. 5.

We can convert the integrated energy flux above 10 GeV in Eqn. (2.9) to the integrated
particle flux in the 2FHL energy range, Sγ , using Eqn. (2.1). The term in square brakets above
becomes

[∫∞
10 GeV EγFγdEγ

]
= Sγ(1−Γ)/(2−Γ)[−(10 GeV)2−Γ]/[(2 TeV)1−Γ−(50 GeV)1−Γ].

Thus we have
Fν ∝ SγE−(1+s)

ν exp(Eν/Eν,peak) , (2.10)

with a predetermined proportionality constant that depends on the best-fit gamma-ray slope
Γ2FHL = 2.5 from Ref. [60]. The log-derivative ∂ lnFν/∂ lnEν gives an energy-dependent

neutrino spectrum Fν ∝ E
−(1+s(Eν))
ν which softens as the energy increases, s(Eν) = s +

Eν/(10 PeV). Note that the neutrino spectrum s is different from the gamma-ray spectrum
Γ in our phenomenological model. A more accurate modeling of the microphysics may lead
to more accurate predictions for s, but this goes beyond the demonstrative scope of our work.

2.2.3 Flux distribution

These extrapolations S2FHL
γ → Fν are only the first step in determining the probability

distribution P1(Fν |Eν) of the flux of any single source in the 2FHL. In terms of the number
distribution dN/dSγ of sources resolved by Fermi in a flux range [Sγ , Sγ + dSγ ], the single-
source flux probability density is

P1(Sγ) =
1

N

dN

dSγ
. (2.11)

A Monte-Carlo incorporating the Fermi detection efficiency was used in Ref. [60] to obtain
the intrinsic dN/dSγ of the 2FHL (i.e., the dN/dS extrapolated below the detection thresh-
old). In this extrapolation the nomalisation N is implicitly determined by the faintest-source
flux cutoff Sγ,min = 10−13 deg−2 cm s, chosen to self-consitently reproduce the best-fit diffuse
flux observed by Fermi [60]. This flux distribution, taking the form of a broken power-law,
is a data-driven model of these Fermi sources, without any attempt at discriminating sub-
populations in the catalog and without consideration of the physics which gives rise to these
gamma rays. To compute P1(Fν |Eν) from P1(Sγ), notice that the flux conversion Eqn. (2.10)
is effectively just a linear rescaling of the flux by a known term that depends on energies, on
the spectral indices Γ2FHL, s(Eν), and on the fixed quantities Y,Eν,peak, s(10 PeV).

2.3 Atmospheric (cosmic ray) foregrounds

Before continuing our discussion of the flux distributions of extragalactic astrophysical sources,
we introduce the atmospheric foregrounds from which these astrophysical contributions must
be extricated [2]. Atmospheric neutrinos produce an almost isotropic foreground with a soft
spectrum. Our models of the conventional and prompt contributions are based on Ref. [66]
and Ref. [67], respectively. We set the probability densities P atm(Iν |Eν) of atmospheric
all-flavour differential neutrino intensities Iν = Fν/Ω to Gaussians.2 The finesse of these

2This can be justified, in the spirit of Sec. 3.2.1, by noting that this flux is the result of a very large number
of cosmic ray interactions in the atmosphere, such that the central limit theorem may safely be assumed to
hold for P atm(Iν |Eν).
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distributions is chosen as µ/σ = 10 (i.e., a 10% intrinsic variability in the atmospheric in-
tensity), the 2σ contours of which are respresented as the vertical width around the mean
differential intensities in Figure 2.

The means of these distributions are determined as follows. For the conventional con-
tribution, the mean intensity is parameterised as

〈Iν(E)〉 = 2× 10−14

(
Eν

10 TeV

)−Γν

cm−2 s−1 sr−1 GeV−1 , (2.12)

where the normalisation is set by the νµ flux at 10 TeV in Ref. [66] and the extra factor of
two accounts for the roughly equal flux of muon anti-neutrinos. For the sake of simplicity, we
neglect the anisotropic contributions to the atmospheric flux. For the conventional contribu-
tion due to νµ, this is mainly a zenith dependence at the South Pole (cf. Fig. 7 in Ref. [66]).
The spectrum Γν is softer than the cosmic ray primaries by ∆Γ = 1. The cosmic ray knee is
shifted down to about 1 PeV for neutrinos, such that

Γν(Eν) =

{
3.7 when Eν < 1 PeV

3.9 when Eν > 1 PeV
. (2.13)

In addition to this neutrino intensity, muon events passing the quality veto of the HESE
data (cf. Sec. 3.1 and [2]) were modelled by rescaling the conventional flux by a factor of
4/3, in accordance with the benchmark event rates from the two-year study which claimed
∼4.5 and 6 events in νµ and µ± respectively [2].

As for the prompt atmospheric contribution, we interpolate the average νµ + ν̄µ flux
from Ref. [67] as a function of the energy, and add a rescaling factor of two to account for the
roughly equal muon and electron (anti)neutrino fluxes. The enhanced prompt contribution
from the proton intrinsic charm [68, 69] is neglected given the opposite shifts in flux from
other updated QCD predictions (cf. e.g. [70]), and given the upper limits set in Refs. [5, 63].

The count distribution is then obtained by marginalising the flux distribution into the
detector response, with each pixel, energy bin, and event topology treated independently, as
will be described in the next section. Convolving all of these independent distributions gives
the predicted distribution of the total number of detected atmospheric neutrinos (and veto-
passing muons). The average number of atmospheric counts between 25 TeV and 5 PeV in
this model is 27.9. This can be further decomposed into 5.3, 9.7 and 12.9 events from prompt
neutrinos, conventional neutrinos, and veto-passing muons, respectively, in rough agreement
with an extrapolation of the two-year benchmark rates from Ref. [2] to a four-year lifetime.
Poisson shot noise is the dominant source of uncertainty on these event counts, but since we
study the fluctuations themselves (statistically), we are in principle sensitive to the assumed
P (Iν) rather than just the mean 〈Iν〉.

3 Flux and count distributions of single pixels

In order to turn the above astrophysical models into predictions about the data observed
by IceCube, we must fold in some detector characteristics (angular resolution, effective area,
etc.), which will be described in this section. We also derive the total observed flux and count
distributions.
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Figure 2: Intensity E2
νIν(Eν) of the conventional (blue) and prompt (red) atmospheric

contributions, as a function of energy. The 2σ bands shown here correspond to the intrinsic
atmospheric variability P (Iν |Eν) assumed in this analysis. These contributions are contrasted
to the best-fit flux to the IceCube data from Ref. [71] (green). In addition to these neutrino
foregrounds, we also consider the veto-passing muon background (cf. main text).

3.1 Size of a single pixel

In our analysis, we try to predict (from the data-driven models discussed above) both IceCube
tracks and showers (cascades), with pixel exposures constructed from a flavour, energy, and
declination dependent effective area tuned to the HESE dataset [2–4]. This dataset consists
of 54 events in the energy range [25 TeV, 5 PeV], with interaction vertices contained within
the detector: 39 showers, 14 tracks, and one coincident event not used in this study. Despite
the stringent quality cuts, this neutrino dataset remains contaminated by veto-passing muons
(cf. Sec. 2.3), which contribute mostly but not exclusively to tracks (cf. Appendix A.3 and
Ref. [72]).

Since we are predicting probability distributions per pixel, we will make the simplifying
assumption that pixel sizes are constant as a function of the energy: roughly 30 degrees for
showers and 1 degree for tracks. These correspond to rough estimates of the median angular
resolution of showers [2] and contained tracks [5] at the energies considered in this study (25–
5000 TeV). These pixel sizes are used to bin the HESE events into 48 shower pixels and 49152
track pixels, generated using HealPix [73]; these per-pixel counts will be directly compared to
the predicted per-pixel count distributions (which include the flavour, energy, and declination-
dependent HESE effective area) in Sec. 5. Our study of probability distributions in pixels
∆Ω rather than true one-point functions, although conceptually simpler, effectively ties us
to this binned representation of the data. For a further discussion of binning and Healpix,
see Sec. 6.1 and Appendix Sec. A.2.

We emphasise that it is not in principle required to assume an energy-independent
angular resolution to compute or study single-pixel fluctuation probabilities. Furthermore,
there is no methodological requirement to make pixels of the same scale as the angular
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resolution. This choice is mostly for ease of comparison with point source search studies in
the literature [4, 5, 43, 52] and our forecasts thereof in Sec. 5.1. Note that pixels must be at
least as large as the angular resolution in order to treat their fluxes as independent.

3.2 Obtaining the total (multi-source) flux distribution

So far, we have been considering the flux distribution of a single source drawn at random from
its population. However, in observations of abundant sources such as SFGs, there will be
many sources in each of IceCube’s pixels. The single-source quantity P1(F ) therefore needs
to be promoted to a single-pixel quantity P (F ). Here we discuss how to derive the latter
from the former, and discuss some features of the blazar and SFG populations’ per-pixel flux
distributions.

3.2.1 Formalism

The flux incident on a pixel is the sum of the fluxes of all the sources in that pixel. Given
the distribution P1(F ) of the spectral flux per source and the distribution of the number
of sources N ′ in a single given pixel, characterised by the mean 〈N ′〉 = (Ωpix/4π)N , it
is straightforward to express the distribution P (F ) of the flux in a pixel in terms of the
distribution P (F |N ′) of the sum of the fluxes of N ′ sources:

P (F ) =

∫
P (F |N ′)P (N ′|〈N ′〉)dN ′. (3.1)

By independence of the sources and the algebra of random variables, the distribution of the
sum of their fluxes is given by the auto-convolution

P (F |N ′) = P1(F ) ? P1(F ) ? · · · ? P1(F )︸ ︷︷ ︸
N ′ times

, (3.2)

where f ? g denotes the convolution of the two probability distributions f, g.
The marginalised auto-convolution is as difficult to calculate as it is straightforward

to express, since the Fourier space techniques usually applied to such compound Poisson
distributions [74] develop numerical instabilities for power-law-like P1(F ) spanning many
orders of magnitude. We adopt instead the following Monte-Carlo strategy [46]:

• When the average number of sources per pixel 〈N ′〉 is too large to sample from P1(Fν)
tails efficiently, we use the Central Limit Theorem to lump the faint sources into a
diffuse Gaussian background and consider only the few brightest sources in that pixel.

• When the average number of (bright) sources per pixel is small, we can repeatedly (i)
realise this number N ′ from a Poisson distribution with the mean 〈N ′〉, (ii) draw that
many samples from the single-source flux distribution, and (iii) add them all up. The
histogram of the sums of fluxes approximates P (F ).

In addition, the highest fluxes of P (F ) are known to converge to P1(F ) [46], which can be
used to supplement the Monte-Carlo-derived P (F ) with an analytical “bright point-source”
tail. Realising N ′ from a Poisson distribution without marginalising over any uncertainties
in 〈N ′〉 effectively suppresses the variance of the statistically isotropic flux (cf. Sec. 6.1), to
which one-point methods are sensitive as a signal rather than a background [75, 76].
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3.2.2 Discussion

By applying Eqn. (3.2) to the SFG single-source flux distribution, we plot in the top panel
of Fig. 3 the probability distribution P (Iν) of the SFGs at 100 TeV for tracks and showers.
Note that the distributions have the form of a Gaussian with a power-law tail. These features
correspond to the diffuse glow of a large number of unresolved point sources, and to the few
point sources with intensities high enough to potentially be resolved individually [46]. We
postpone discussion of point-source-detectability prospects for these populations until Sec. 5.
Here we focus on the physical interpretation and consequences of the features of P (Fν).

Although the single-source flux distribution is independent of the normalisation of the
SFG luminosity function, the total flux distribution is sensitive to this normalisation via the
average number 〈N ′〉 of sources per pixel. The uncertainties on the normalisations of the
SB and SF-AGN (SB) luminosity functions are not formally considered as distributions to
be marginalised away in this study. However, we discuss these uncertainties below and in
Sec. 6.2.

The mean and variance of P (Fν) are nothing other than a linear rescaling of the mean
and variance of P1(Fν) by a factor of 〈N ′〉. For example, the relative locations of the SFG
subpopulations in Fig. 3 are determined by the combination of two effects: firstly, there
are roughly (25 ± 15)% more members of the SF-AGN (SB) subpopulation than of the
SB subpopulation in each pixel (according to the normalisations of the Herschel luminosity
functions used in Sec. 2.1.1); secondly, and more importantly, the mean flux of an individual
SF-AGN (SB) is larger than the mean flux of an SB (consider Fig. 1 between 10−25 and
10−20 cm−2 s−1 GeV−1). These two effects push the typical flux per pixel from SF-AGN
(SB) sources slightly above that of SB sources in our model.

Moreover, we expect that the peak finesse increases with 〈N ′〉, as a consequence of the√
〈N ′〉 scaling of the finesse in the central limit theorem that gives a Gaussian shape to the

diffuse peak [46]. This can be corroborated by looking, in Fig. 3 or in Table 1, at the same
populations in tracks and in showers: tracks have a better angular resolution and therefore
wider diffuse peaks because 〈N ′〉 drops from O(106) to O(103) in both SB and SF-AGN (SB).
A linear regression of the finesse of diffuse peaks from the four P (F ) distributions of Fig. 3
on their respective

√
〈N ′〉 yields a Pearson R2 = 0.999.

The locations of the peaks of these distributions are also slightly offset among each
other, the peak in showers is at slightly higher flux than the peak in tracks (again, as visible
in Fig. 3 or in Table 1). This is also a consequence of convergence in the central limit theorem.
Indeed, the single-source distribution is power-law like and hence very skewed, but the more
sources we have in our pixel, the less we are dominated by the individual source properties
and the closer we get to the population mean intensity—which is a quantity dependent on
the luminosity function, but independent on the angular resolution. Since showers contain
more unresolved sources than tracks, the diffuse peak in showers is closer to the mean of
these distributions than the diffuse peak in tracks.

The flux distribution for 2FHL sources in showers (bottom panel of Fig. 3) is quali-
tatively similar to the flux distributions of SFGs (top panel of the same figure), though its
power-law tail is much more prevalent; there are few enough sources per pixel (〈N ′〉 = 429)
that even the diffuse peak is distinctly skewed. This non-Gaussianity can, in principle, be
exploited to characterise diffuse backgrounds from unresolved sources, even though source
number density and source luminosity are degenerate at the level of averages [43]. The small
number of sources per pixel also means that the 2FHL peak is much wider than the SFG
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Figure 3: Top: Probability distribution P (Iν) of the SFG intensities as observable at
100 TeV. These distributions take the form of a Gaussian peak with a power-law tail. Star-
bursts are shown in blue (showers) and cyan (tracks), while SF-AGN (SB) are shown in red
(showers) and pink (tracks). In each subpopulation, these peaks are much thinner in showers
than in tracks as a consequence of the increased number of sources in larger pixels (cf. main
text). Bottom: Probability distribution P (Iν) of 2FHL source intensities at 100 TeV, in
showers (dark green) and tracks (light green). These distributions are shown conditioned on
there actually being a blazar in the pixel, so the absolute and relative normalisations are not
visible in this figure. The cusp in tracks occurs at twice the minimum flux, it is the transition
from one to two sources per pixel. Above this cusp, multiple sources contribute jointly to
the flux, and a smooth bump begins to form.

peaks, by a factor exceeding an order of magnitude (cf. Table 1). This further corroborates
the theoretically expected

√
〈N ′〉 scaling of the finesse.3

The 2FHL distribution in tracks is informed by the tiny number of sources per pixel
(〈N ′〉 = 0.42) and the sharp cutoff imposed at lower fluxes in the single-source distribution

3Although this scaling is a useful tool within a single population of unresolved sources, across multiple
source populations other population-specific factors come into play and the explained variance R2 decreases.
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in Sec. 2.2.3. The cusp in the bottom panel of Fig. 3, located at twice the minimum flux,
corresponds to the discrete transition from one to two sources per pixel, and below this cusp
the distribution is accordingly a pure power law (corresponding to a single source). Above
this cusp, multiple sources contribute jointly to the flux, and a smooth bump begins to form;
this bump becomes the diffuse peak when the pixel size increases. The power-law tail sets
in at higher flux when one of the blazars dominates the flux of the others. As in the case of
SFGs, the most likely flux for tracks is still at smaller flux than for showers.

3.3 Obtaining the observed count distribution

The neutrino fluxes produce discrete event counts in our detector. Having a detector model
built into our pipeline means that we can compare the distributional predictions of our
astrophysical models directly to the raw event count data in terms of count distributions
P (C).

3.3.1 Formalism

At the bare minimum, a detector model consists of a pixel’s exposure and solid angle. Hav-
ing already accounted for the latter, the exposure can be constructed by multiplying the
IceCube livetime (roughly four years with a 95% duty cycle) by its effective area A, which is
flavour, energy, and declination dependent [2–4]. We postpone discussion of the flavour and
declination dependence to the Appendices, and focus here on our distributional treatment of
the energy dependence.

Using Eqn. (2.1) to convert from differential neutrino fluxes Fν into integrated neutrino
fluxes Sν , the distribution P (Sν) (integrated over an energy bin [Eν,min, Eν,max]) can be made
into a number of counts per pixel and per energy bin, by marginalising the flux distribution
into the detector response, as

P (C) =

∫
dµP(C|µ)P (µ), P (µ) =

∫
δ(µ− SνAt)P (Sν)dSν =

P (Sν)

At

∣∣∣∣
Sν=µ/At

. (3.3)

In this prescription, we first compute the distribution P (µ) of the mean number of counts,
and assume these counts are the result of a Poisson process (completely uncorrelated) to
obtain P (C).

Assuming independence between multiple energy bins, we can merge bins by convolving
the distributions in each bin. Indeed, the total integrated flux Sν over a collection of bins is
equal to the sum of the integrated fluxes in each bin. This extensive property of integrated
fluxes/counts is useful to account for the fact that the effective area A is energy-dependent:
we can generate P (C) in some large number of narrow energy sub-bins, where the effective
area varies across sub-bins but remains constant inside each one, and then we can convolve the
P (C)’s to merge the sub-bins into a single bin. We refer the interested reader to Appendix A
for further discussion of this construction.

As a tradeoff between wanting to exploit the spectrum and hoping to circumvent the
low statistics inherent in this endeavour, we generate P (C) in three final energy bins, with
edges at [25, 100, 1000, 5000] TeV. In the real data, there are 34 events in the 20-100 TeV
bin, with a relative Poisson noise of

√
34/34 ∼ 17% only marginally larger than that of the

full dataset (
√

53/53 ∼ 15%). Of the remaining 19 events, only 3 events lie in the 1-5 PeV
bin [4].

Since we are working with relatively wide energy bins, we assume for simplicity that the
deposited energy and the neutrino energy are equal, even though this is a poor approximation
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for tracks. We also neglect uncertainties due to the energy resolution (cf. Sec. 6.1). These
are ∼5% and ∼15% systematic and statistical effects, respectively [77]. Our treatment of the
anisotropy of the exposure and its dependence on the incident flavour ratio are discussed in
Appendices A.2 and A.3.

3.3.2 Discussion

The count distributions P (C) for our extragalactic sources are, in first approximation, Poisson
distributions with means determined by the “diffuse peak” of P (F ), and the energy/declination-
dependent effective area in that pixel. Given the significant tail of P (F ), the distribution
has a skew, such that the location of the peak and the location of the mean do not coincide.
When we observe the sky, our observation of event counts is biased by this skewness, as
we are more likely to observe the most probable number of counts than the mean number.
As discussed above, this bias is increasingly prominent as the pixel size decreases or as the
unresolved sources become rarer.

The skewness-induced reduction in the anticipated number of counts is automatically
accounted for by using the full P (C) of Eqn. (3.3) rather than the average 〈C〉 of source
populations. However, amongst other things, this weakens upper limits determined from the
population-average contributions of these sources to the diffuse flux. Such a weakening of
upper limits derived using averages has already been discussed in the context of dark matter
constraints from the diffuse gamma-ray background [46].

Because SFGs are so abundant, this bias is at the percent level for these sources: the
average-derived limits on SFG contributions of, e.g., Ref. [44] are only a few percent weaker
than the limits one would derive using the full distribution — but the fact that such studies
of SFGs do not suffer from this bias could not have been known without using their P (F ).

For 2FHL sources, on the other hand, the mean and mode of P (F ) differ by factors of 0.4
in showers and 6.7 in tracks, significantly reducing their anticipated count yield despite not
affecting their mean count yield. Knowledge of the total distribution P (F ) is, however, not
necessary to get a good approximation when sources are sufficiently rare that P (F ) ≈ P1(F ).
For example, Ref. [62] uses the blazar source count distribution dN/dF ∝ P1(F ) to derive
its limits which (as a consequence of 〈N ′〉 = 0.42) is a good approximation to the full P (F )
in tracks: the 20% upper limit on the blazar contribution derived therein is not affected by
this skewness. Note however that the stacking procedure in Ref. [62] increases the effective
〈N ′〉 in the stacked pixel and thereby deteriorates the quality of this approximation, see also
our discussion in Sec. 5.1.2.

Correcting for the skewness-induced bias just discussed using Eqn. (3.3), the average
number of counts 〈C〉 =

∑
C CP (C), cumulative over all energies and declinations, in both

tracks and showers, is then 2.2 events for SFGs and 3.3 events for 2FHL sources. Notice, in
the hard-spectrum blazar case, that this is approximately equal to the number of events for
1–5 PeV in the HESE data [4]. Even after subtracting the 28 atmospheric events predicted by
our atmospheric model from the 53 actually observed, one expects roughly 20 of these events
to remain unexplained by our fiducial model. Hence, the expected contributions from SFG
and from 2FHL models are each about 10–15% of the astrophysical flux, well below known
upper limits [26, 44, 62]. The statistical significance with which we can say our data-driven
model is incomplete (amongst other things we can learn from one-point functions) will be
investigated in the next sections.
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4 Analysis (I): Methodology

To show that our systematic conceptual approach is very general, we present in this study
three different one-point analyses: a point source detection analysis, a probable clustering
analysis, and a likelihood analysis based on the count distributions of individual pixels.

4.1 Resolvability of point sources

Let us consider the ideal limit of a telescope with fixed angular resolution but infinite ex-
posure. The Poisson noise in such an instrument would be negligible, it would effectively
be sensitive to P (F ) directly rather than P (C). Even in this idealised situation, the finite
angular size of a pixel means that not all sources can be individually resolved: the diffuse
peak due to unresolved sources of a given population is an intrinsic background to point
sources of the same population. In what follows, we argue that even an ideal detector with
the IceCube angular resolution would be extremely unlikely to detect SFGs as point sources.

A point source is basically just a localised flux observed in excess of a predetermined
threshold value F pt. The probability that such a localised excess can be found in any single
pixel is given by the exceedance (complementary cumulative) distribution of P (F ), and the
typical number of excesses we expect to see in Npix pixels is

Npt(F
pt) = Npix

∫ +∞

Fpt

P (F )dF ≈ Npix
N(F > F pt)

NMC
, (4.1)

where the latter has been obtained by estimating the exceedance probability by Monte-Carlo
sampling from P (F ). We recall that Npix = 48 for showers and Npix ∼ 5 × 104 for tracks.
The fluctuations around the expected number of sources are assumed to be Poissonian.

An analytic approximation to the exceedance probability, valid in the high flux power-
law tail where a single source dominates the flux in the pixel, was derived in Ref. [46]. When
this approximation matches the Monte-Carlo estimation above, we can be relatively confident
that the localised excesses correspond to single astrophysical objects. However, there is a
region between the diffuse peak and the power-law tail where multiple bright sources jointly
contribute to the flux and might be confused for a single point source. Because of this possible
confusion, the number of localised excesses is always greater than the number of astrophysical
point sources. The upper limits for the detection of astrophysical sources we will determine
using localised excesses are therefore conservative. Also note that stacked searches [43, 62]
are intrinsically looking for localised statistical excesses rather than individual point sources.

In order to study excesses above the diffuse background, we must characterise the Gaus-
sian peak of P (F ). To do this, we take the samples drawn from P (F ), and censor the values
above the peak of the distribution where non-Gaussianities due to the power-law nature of
the single-source distributions might arise. We then fit the samples below the peak to a
doubly truncated normal distribution using the maximum likelihood estimators derived in
Ref. [78].4 The estimated mean µ̂ and standard deviation σ̂ of the diffuse peak of each pop-
ulation (reported in Table 1) can then be used to define flux thresholds of localised excesses
above the diffuse peak with various signal-to-noise ratios, F pt(SNR) = µ̂+ (SNR)σ̂.

4Our truncation points are (i) the flux at which the distribution peaks, and (ii) a flux of F = 0. We still
determine µ̂ from the Monte Carlo samples for the sake of self-consistency, in case the truncation point (derived
from an interpolation of the samples) is not exactly at the distribution peak. See Sec. 6 for a discussion of
effects that contribute to producing a non-Gaussian diffuse peak.
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Using the complementary cumulative distribution of P (F ), these thresholds can be
converted into the exceedance probabilities associated to any given signal-to-noise ratio SNR.
These are larger than for a pure Gaussian because P (F ) is skewed. Indeed the rarer a given
population of sources, the more skewed its P (F ) is (cf. Sec. 3.2) and therefore the more
probable its exceedances are to have high signal-to-noise ratio.

In order to see such a source from a rare population, however, it must also be brighter
than the diffuse backgrounds of all other source populations combined. Treating these P (F )
peaks as Gaussians comes with the benefit that the diffuse backgrounds due to multiple
populations can easily be convolved into a single diffuse and isotropic extragalactic neutrino
background with mean intensity

∑
i µ̂i and width

√∑
i(σ̂i)

2. Similar thresholds Fpt(SNR)
may be defined for this total background, and the exceedances of individual populations
above this total background may be forecasted (cf. Sec. 5.1).

Heuristically, the skewness of P (F ) is due to barely-resolvable point sources in this
infinite-exposure idealisation. Notice that decreasing the pixel size increases the skewness of
P (F ) (cf. Fig. 3), and so increases the typical signal-to-noise of excesses: barely-resolvable
sources (e.g. the “hot spots” of flux maps [5, 79]) may become resolvable to future instru-
ments. By extension, the excess skewness of P (C), over the skewness of a Poisson distri-
bution in IceCube, is related to the possible improvement in discovery potential of future
point-source searches in an instrument with improved angular resolution, such as KM3NeT
(ARCA) [80] or IceCube-Gen2 [81].

4.2 A “Pointless” clustering analysis

The IceCube collaboration has found no evidence for clustering by looking for hot spots
consistent with point sources [4, 5]. But resolving point sources is not the only way we might
see clusters of events: in a detector with realistic exposure we can also exploit the statistical
properties of localised event clusters due to multiple bright but unresolved sources or even
shot noise fluctuations.

Given a fixed pixel size, the one-point function is the most straightforward tool to
study neutrino clustering. Indeed, we can directly consider the “average number of clustered
neutrinos per pixel” or the “rarity of a cluster of N ≥ 2 or more events,”

〈C ≥ 2〉 =

∞∑
C=2

CP (C), C(N) =

∞∑
C=N

P (C) . (4.2)

In the ideal case that the data reproduce exactly a Poisson distribution with a mean µ, it
is easy to show, e.g., that 〈C ≥ 2〉 = µ(1 − e−µ). However, not only the näıve analysis
above would not account for the different angular resolution of tracks and showers and the
anisotropic exposure, it would also eschew distributional information by using a single µ value
rather than the full P (µ) from Eqn. (3.3). One should expect two effects to emerge from
the power-law tails of astrophysical contributions: on the one hand, this tail increases the
number of clustered events; on the other hand, this tail contributes a skewness that pushes
the most likely values of the distribution to lower flux, as part of a distribution with a fixed
mean, resulting (after marginalisation) in less event clustering overall [46].

To go beyond the mean values, let us consider the following per-pixel (p) clustering
statistic with a model-dependence M on the flux distributions and the detector response
from Sec. 3:

C(p) =

{∑∞
C=d(p) P (C|M) if d(p) ≥ 2

1 otherwise
. (4.3)
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The total amount of clustering associated to a dataset {∀p, d(p)} is then quantified by C =∏
p C

(p), and data sets with more clustering (given the same P (C|M)) will have a larger
− lnC. Since we care only about directional information in this test statistic, we need to
treat coincident neutrinos of different energies as members of the same cluster. To do so, we
follow the prescription of Sec. 3.3.1 and Appendix A and convolve the count distributions of
different energy bins to produce the P (C) of Eqn. (4.3). The same logic applies to coincident
tracks and showers: accurate track pixels were first coarse-grained into shower-sized pixels
(cf. Appendix A.2), and then convolved with the shower pixel covering the same patch of
sky.

A clustering analysis using C is in a sense a generalisation of the multiplet method
applied to the IceCube data in Ref. [43]. In their analysis, the average number of sources
producing C ≥ 2 tracks was computed from populations of “effective standard candles,” i.e.,
populations with a luminosity density Leff

νµ fixed to an effective value (as a proxy for the full
luminosity function). In our distributional study, the average number of sources producing
C ≥ k track or shower events could easily be computed by convolving the detector response
(cf. Sec. 3.3.1) over the single-source distributions of Sec. 2; but this quantity would not fully
exploit the clustering statistics when multiple sources are present in the same pixel, which
are automatically included in the test statistic C.5

4.3 Single-pixel Likelihood Analysis

The quantity that we have computed to be compared to the data is the anisotropic and
spectral probability distribution of event counts. Since there are very few events in our
dataset, a χ2 analysis of count histograms would be untrustworthy. Here, we opt to work
directly with the likelihood of the data. The likelihood per pixel (Lp) is a function of the
number of counts in a given pixel p and in a given energy range ∆Eν [50]. Therefore, the
total (binned and marginalised) likelihood of a one-point analysis is:

L =

signal∏
s

energy bin∏
∆Eν

pixel∏
p

P (C = d(s,∆Eν ,p)|M) , (4.4)

under the assumption that all the count data d(s,∆νE,p) in each of the pixels, energy bins,
and signal types/topologies are mutually independent. If detectors other than IceCube were
considered in this analysis, an additional product over independent instruments could also
be considered (cf. Appendix B). In order to justify the assumption that signal topologies are
indepedent, we explicitly do not consider the “coincident” event (#32) in this analysis.

The likelihood Eqn. (4.4) allows us to assess the predictive power of a model. Indeed, we
can draw from P (C|M) to generate mock data and the exact distribution of the test statistic
TS = −2 ln(L) under the null M, from which a poorness-of-fit for the likelihood of the real
data may be computed as a p-value (cf. Sec. 4.4). All the isotropic components in this study
(atmospheric foregrounds, SB and SF-AGN (SB), and 2FHL) contribute to M. One feature
of this likelihood is that empty pixels (non-observations) also carry information, and that this
information is statistically exploited as we will discuss in the next paragraphs. In addition to
tracks and showers, IceCube is in principle sensitive to a number of ντ -specific topologies [82].
Events in these signal channels would almost certainly be of astrophysical origin, and the

5The number of sources contributing k events is the quantity estimated in one-point fitting studies, which
use probability-generating functions to disentangle numbers of clusters into numbers of sources.
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nondetection of these topologies can set strong upper limits on the astrophysical ντ flux [83].
However, these unobserved topologies were not considered in our model of the IceCube flavour
response (cf. Appendix A.3) and do not contribute to L.

By using P (C|M) in the likelihood rather than just a Poisson at the mean of P (F ),
we automatically account for the skewness-induced difference between the peak and mean
values of the flux discussed in Sec. 3.2.2. However, this skewness drives our prediction to
lower counts, and an interesting effect occurs when both of the following occur:

1. M produces a count distribution per pixel of the form

P (C) : {P (0) ≈ 1− ε ; P (1) ≈ ε ; rest ≈ 0} , (4.5)

2. M is mis-specified, and produces a larger total number of counts than in the real data.

The effect of this convergence of features is that the real data can (counterintuitively) give
a smaller −2 lnL than any of the mock data generated from M itself. This effect can then
be used as a diagnostic for models that overpredict the number of counts. In the context of
a one-point fluctuation analysis, this could mean either overpredicting the peak number of
counts or overpredicting the amount of clustering (e.g., due to an excess of unresolved point
sources in the model).

4.4 Digression on p-values

We conclude our methodological overview with a few cautionary words about statistical
significances [84]: the distributions of the test statistics employed are non-parametric, and
we find empirically that they are asymmetric. Therefore we follow the prescription in Ref. [85]
and report the one-sided p-value along with the direction it deviates from the bulk of the
distribution of the test statistic. Although we do so at times out of convenience to the reader,
we recommend against converting these directed-p-values into Gaussian σ’s. In fact ignoring
the p-value from the other tail would artificially inflate this significance and estimating it is
error-prone [85]. This is particularly true for the lower “tail” of our clustering statistic C (cf.
Fig. 5), for which no such p-value exists.

After generating mock datasets for each model, we partition the mock datasets into five
subsets to generate the sample mean and standard errors of the p statistic subject to the
limited number. Any p-values that are too small to resolve within reasonable computational
time are then quoted as upper limits. Since the uncertainties on p are due to finite number
of mock datasets rather than to interesting physics, they are not systematically reported.

In order to extract as much information as possible, our analyses of the HESE data will
typically focus on subsets of these data. The global signficance of independent p-values can
be computed by correcting for the look-elsewhere effect with trial factors. Alternatively, these
p-values may be combined with meta-analysis techniques. Because the difference between,
e.g., 2.7σ and 2.8σ is somewhat irrelevant to our mock-data-limited and systematics-prone
discussions (see above and Sec. 6), we consider it is sufficient to correct our p-values with
Bonferroni trial factors (i.e., we multiply significances by the number of trials to estimate the
post-trial significance), and we combine p-values testing the same hypothesis on different data
subsets with Fisher’s method −2

∑k
i ln(pi) ∼ χ2

2k. Since the test statistics in this study are
built from the marginal likelihood P (C|M), they have no explicit dependences on unknown
parameters and there is essentially no distinction between Fisherian (‘classical’) and Bayesian
(‘predictive’) p-values.
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5 Analysis (II): Results

In this section, we apply the statistical tools introduced in the previous sections. We discuss
upper limits on the resolvability of blazars and SFGs in IceCube, and we perform various
model-based one-point probability distribution analyses.

We have seen in Sec. 3.3.2 that our astrophysical+atmospheric models produce O(20)
neutrinos less than the HESE data. Given the limited neutrino dataset to which we’re
comparing the model, and all the caveats to be specified in Sec. 6, we invite the reader to
think of the following exploratory analyses first and foremost as proofs of concept for the
methods.

5.1 Detectability of star-forming galaxies and blazars as point sources

The diffuse backgrounds of unresolved sources are an intrinsic and inescapable feature of any
abundant astrophysical population observed with low angular resolution, but population self-
backgrounds are not the end of the story. Indeed, sources visible over the total astrophysical
diffuse flux need to be far brighter and, because flux distribution tails are power-law-like,
such bright sources are typically rather rare.

Since the angular resolution is the determining factor in this self-background effect, the
number of sources we expect to resolve depends on this angular resolution. Our discussion
of each source class’ resolvability prospects needs to address tracks and showers separately.
In this forecast we focus on spectral intensities at Eν = 100 TeV, in order to evade the
atmospheric backgrounds more prominent at lower energies, while maintaining a reasonable
SFG contribution (spectrum of Γ = 2.2) relative to the blazar contribution (spectrum of
1− s ≈ 0.65). The diffuse contributions of the components are summarized in Table 1.

Table 1: Parameters of the diffuse astrophysical neutrino flux peaks at 100 TeV, in showers
and in tracks and in units of 10−20 cm−2 s−1 sr−1 GeV−1. Note that the mean contribution
µ̂ in each population is slightly larger for showers than tracks, while the standard deviation
σ̂ in tracks is wider than showers, as discussed in Sec. 3. The 3σ and 5σ self-background
exceedance probabilities per pixel for each subpopulation are also reported.

100 TeV Showers (θ ∼ 30◦, Npix = 48)

Population µ̂ σ̂ > 3σ > 5σ

2FHL 2.60 0.206 43% 32%

SF-AGN (SB) 10.61 0.024 10% 1.5%

SB 6.40 0.016 6.7% 1.1%

(All) 19.6 0.25

100 TeV Tracks (θ ∼ 1◦, Npix ∼ 5× 104)

Population µ̂ σ̂ > 3σ > 5σ

SF-AGN (SB) 10.33 0.84 2.5% 0.25%

SB 6.15 0.48 4% 0.4%

(All) 16.48 0.97
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5.1.1 Star-forming galaxies

The expected number of SFG localised excesses resolvable above the diffuse background at
100 TeV, by a detector with an infinite exposure and with the IceCube angular resolution
for tracks are illustrated in Fig 4. In the real data these point sources must also be extracted
from the background of other (unmodeled) extragalactic contributions, and the atmospheric
foregrounds, which in our model shine an order of magnitude brighter than all SFGs combined
at 100 TeV. The number of such localised excesses is Npt = 17.8± 4.2 for SF-AGN (SB) and
Npt = 4.9 ± 2.2 for SB for a 3σ threshold. The fact that we forecast resolving more SF-
AGN (SB) than SB is related to the locations of the P (F ) distributions (cf. Sec. 3.2.2), or
more precisely, the locations of the tails of these distributions. In Fig. 3 we see that, above
intensities of about −18.75 dex cm−2 s−1 sr−1 GeV−1, the SF-AGN (SB) tail dominates over
the SB tail, and so if there are any such bright sources at all, they are more likely to be from
the SF-SGN (SB) subpopulation.

In showers, the expected number of SFG excesses over the SFG+2FHL background is
essentially negligible given the order-of-magnitude difference between the estimated standard
deviations of the diffuse backgrounds in Table 1. A Monte-Carlo estimate suggests that we
might see Npt ∼ 10−2 excesses with a negligible significance of 10−4σ due to SF-AGN (SB);
and no excesses due to SB, which have both a smaller µ̂ and a smaller σ̂. We conclude that
SFGs are an intrinsically diffuse background with 30◦ pixels, even with an infinite exposure.

These non-detectability claims are energy and model dependent, but finite detector
exposures and discrete neutrino events would further deteriorate the point-source detection
prospects. The number of plausible associations with SFGs [86, 87] is bounded from above:
we should not expect any corroboration of claimed associations with future data. The SFG
non-detectability in IceCube should be expected also from similar studies in gamma-rays: A
one-point-fluctuation study of Monte-Carlo simulations of unresolved blazars and SFGs in
Fermi (which has an angular resolution comparable to that of IceCube tracks) finds that
blazars are fitted by a diffuse unresolved point source template, while SFGs are absorbed
into a diffuse isotropic template [51].

In short, our model makes two predictions for SFGs due to self-backgrounds effects:
firstly, SFGs constitute a diffuse background in showers; secondly, the detectability for SFGs
in tracks is still very poor. We might see Npt ∼ O(25) out of the Ntot ∼ O(108) sources
predicted from Herschel SB and SF-AGN (SB) luminosity functions, and this prediction needs
to be further tempered by unaccounted-for extraterrestrial and atmospheric backgrounds and
the finite IceCube exposure, especially at energies different from 100 TeV.

In the light of these results, we draw attention to the SFG cross-correlation programme
pursued in the literature [17, 86, 88]. We have quantitatively shown that SFGs are most prob-
ably incapable of acting as localised excesses in IceCube, even if access to far more data than
currently available were possible. A cross-correlation of IceCube data with SFG catalogues,
which relies on such excesses, is essentially guaranteed to produce a null result (except when a
significant correlation is spuriously driven by fluctuations or non-SFG contaminations). This
is consistent with the null [5, 17, 52] or statistically insignificant (p ∼ 0.3–0.5 post-trials [88])
results obtained when attempting to correlate these high-energy events with SFGs.

Since our prediction of a null result is a function of the number of SFGs per pixel,
the only way around such negative predictions is to wait for large quantities of data from a
neutrino telescope with an angular resolution significantly better than the ∼1◦ achieved in
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Figure 4: Top: Point-source detection prospects (Npt vs SNR) for SB (blue) and SF-AGN
(SB) (red) in 100 TeV tracks assuming infinite exposure, IceCube angular resolution, and
no backgrounds other than the self-background from SFGs themselves. Poisson (1σ) error
bands on Npt are given. These detection prospects are thus intrinsic and conservative upper
limits. Bottom: Detection prospect upper limit for 2FHL in 100 TeV showers, assuming
backgrounds from 2FHL and SFG.
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IceCube tracks.6 Sub-degree angular resolutions for tracks, as expected, e.g., for IceCube-
Gen2 [81] and KM3NeT (ARCA) [80], may allow the nearest SFG point sources to be de-
tected [87]. However, the Galactic foregrounds for such a detection in ARCA will be signifi-
cant. Note also that stacking the pixels of prospective SFG sources (as discussed in Ref. [43])
increases the effective pixel size, exacerbating this self-background effect (as discussed for
blazars above).

5.1.2 Blazars

As discussed in Sec. 3, essentially none of the 2FHL sources contribute to their own diffuse
background in tracks: all of the modeled 2FHL sources are resolvable as localised excesses in
our infinite-exposure, high-resolution detector. This does not, however, mean that they can
all be resolved as individual objects given the backgrounds and shot noise in IceCube. Also,
this does not even guarantee a statistical detection of these sources. Indeed, when stacking
the 1◦ × 1◦ muon tracks of ∼ 900 potential blazar sources in the 2LAC catalogue [62], the
effective pixel size is similar to that of a 30◦ × 30◦ shower, and so the effective P (F ) of the
stack resembles that of a single shower pixel, the self-background effect becoming relevant
again.

In showers, the blazar self-background effect does matter: at 100 TeV, only 32% of
the 2FHL sources can be resolved at 5σ, even before accounting for other backgrounds. In
our model of the astrophysical diffuse flux due to the combination of diffuse fluxes from SB,
SF-AGN (SB), and 2FHL sources, we only expect on average Npt ∼ 1.8± 1.3 excesses above
the total diffuse extragalactic background at 100 TeV (Fig. 4 suggests this upper limit on
Npt is relatively independent on the detection significance).

Although this model does not necessarily rule out associations between single high-
energy showers and individual blazars [20, 28, 65, 89], it does place a strong (albeit model-
dependent) upper limit on the number of blazar associations we should expect to corroborate
by accumulating more shower data in a finite instrument such as IceCube. This upper limit
could be further strengthened by accounting for other subpopulations not considered in our
model. At energies below or above 100 TeV, this upper limit in IceCube would be dominated
by the atmospheric backgrounds or shot noise respectively.

5.2 Clustering analysis

Applying Eqn. (4.3) to the 53 observed high energy events,7 we find − lnC = 47.4 over the
full sky. Applying C to mock data generated from P (C|M) then generates the distribution
of this test statistic under the null hypothesis, shown in Fig. 5. We easily see that the model
produces far less neutrino clustering than observed (typically − lnC . 30).

This is not a detection of significant clustering in the data, fully consistent with the null
results in anisotropy searches [7–9]. This is due to the fact that our model underpredicts the
data by about 20 counts (cf. Sec. 3.3.2), and with less counts per pixel overall one should
also expect less random clustering of these counts to occur. Although we are presumably
recovering a discrepancy we already knew about, notice that we are indeed exploiting the
clustering properties of the Poisson shot noise of isotropic components to see it.

6Note that the point-source detection prospects forecasted in [87], in which psf-smoothed samples of
P1(C) ∼ δ(C − Leff(z)ns × constant exposure) for a single population of sources describing all cosmic ray
accelerators were used to approximate samples of P (C), illustrate (qualitatively) how self-backgrounds de-
crease with the angular resolution also in detectors with finite exposure.

7The coincident event (#32) has no directional information and was not used in this analysis.
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Figure 5: Null distribution for − lnC applied to full-sky mock datasets drawn from our
model (including atmospheric foregrounds, unresolved SFG and 2FHL point sources, and
anisotropic energy-dependent exposure). The regular, discrete peaks (most prominent at
“low clustering”) are due to the finite combinatorics behind producing small amounts of
clustering in a finite number of 30◦ pixels. The value observed in the IceCube data is
− lnC = 47.4.

Since C =
∏
p C

(p) is separable, this clustering analysis can be performed on small
patches of the sky. We study the southern and northern hemispheres (δ . −20◦, and sym-
metrically in the north), plus an equatorial band (−20◦ . δ . 20◦), where IceCube effective
area is maximised, to study whether the observed clustering is consistent with that predicted
by our model. We then have − lnC(N,E,S) = (13.7, 2.0, 31.6), with three trials to account for
in our look-elsewhere corrections. In the north, we find that the typical − lnC is smaller in
the mock data than in the real data, i.e., less clustering in the mock than in the real data,
but with a small one-sided p = 0.12 (∼ 0.7σ pretrials). At the equator, we find more clus-
tering in the mock data than in the real ones, but again with a negligible one-sided p = 0.24
(pretrials).8

There is more clustering in the southern hemisphere of the real IceCube data than our
model could predict: our knowledge of the significance is in this case limited by the number
of Monte-Carlo realisations to the upper bound p < 3 × 10−7 (one-sided, post-trials). This
is roughly equivalent to a 4.9σ lower limit on the significance. This discrepancy between the
discrepancies in the north and in the south is not an observation of astrophysical anisotropy,
fully consistent with null results of anisotropy searches [7–9]. Indeed, IceCube has a higher
exposure in the northern hemisphere, so we expect a larger number of counts there than
in the south. We also expect that with the larger Poisson errors associated to this larger

8The limited number of distinct mock datasets we can generate with eight pixels in the equatorial declina-
tion band discretises the support for the distribution of C(E). This in turn generates the bin-height alternation
in the full-sky distribution of Fig. 5, particularly prominent in the left-hand tail.
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number of counts, the north is more tolerant of model mis-specifications than the south (even
though all the contributions to this flux are isotropic). This interpretation is consistent with
the even less significant p-value in the equatorial band, where the exposure is maximised and
Poisson errors are largest.

The combined significance of these three discrepancies (according to Fisher’s Method) is
equivalent to 4.9σ: our data-driven model of the IceCube flux (containing only atmospherics,
SFGs, and blazars) is rejected for having less clustering than the HESE data, which is known
to be consistent with isotropy. In order to accurately predict the data, one must either fine-
tune the model to fit the data (by revising our extrapolations from the Herschel and Fermi
data) or add additional components to the model. Since the model is still missing sources one
would expect to contribute to the flux (e.g., cf. Refs. [10, 27, 30]), we believe it is premature
to attempt the former (see also Sec. 6.3). Updates to the model are left to future work.

5.3 One-point fluctuation analysis

From Sec. 3.3.2 and the clustering analysis above, we know that the model does not produce
enough neutrino event counts (∼ 33) to explain the data (= 53). But since the global like-
lihood (Eqn. (4.4)) is a product of independent single-datum-likelihoods, we can decompose
the contributions of subsets of the data to our −2 ln(L), to further diagnose our model.

5.3.1 Results

We will study three energy bins wth edges at [25, 100, 1000, 5000] TeV (cf. Sec. 3.3.1), sepa-
rately in the north and south hemispheres to fully exploit the anisotropy of the exposure. We
signal-optimise away the data in the equatorial band which, as we have seen above, is least
sensitive to model mis-specification. We will also decompose the likelihoods into the sepa-
rate contributions from tracks and showers; however there are not enough shower data in the
northern hemisphere above 100 TeV to perform this analysis. Counting these subdivisions
of the data shows there are ten trials to account for when computing global significances.

The track prediction is dominated by conventional atmospheric neutrinos and veto-
passing muons, and is surprisingly satisfactory given how crudely we modelled the atmo-
spheric neutrino contribution. In the south we obtain one-sided p-values greater than 0.3
pretrials, suggesting no discrepancy between the model and the data. In the north, the
model remains mostly consistent with the data, with a p = 0.08 deficit below 100 TeV, a
p = 0.32 excess at intermediate energies, and a p = 0.15 deficit above 1 PeV (all pre-trials).
The combined significance of these six p-values is 1σ according to Fisher’s method. This sug-
gests that our un-fine-tuned model can predict the track data fairly well, though improving
the atmospheric foreground models in an attempt to extract astrophysical information out
of tracks is beyond the scope of this preliminary analysis. In what follows, only the shower
data are studied to extract astrophysical information, but tracks remain useful to the extent
that they corroborate that the detector modeling and atmospheric models are correct.

The results of a likelihood analysis of shower-data are summarised in Table 2. The
direction of the discrepancies encoded by these p-values confirm that we are (significantly)
underpredicting the counts. At low energies, as discussed in Sec. 5.2, the apparent anisotropy
in the p-values is consistent with the difference in exposure between the north and the south,
our method being most sensitive to mismodelling in the south. This discrepancy in southern
showers below 100 TeV has a significance ∼ 3σ when accounting for the 10 trials.

At higher energies, the discrepancy between the model and the data is less severe. In
the 100–1000 TeV range, the discrepancy is of a similar magnitude, 2.7σ (post-trials). At the
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highest energies, the hard 2FHL component is the main contribution: it underpredicts the
PeV data, but only with a marginal significance of ∼ 1.1σ (post-trials). Note that our SFG
model does not have a spectral break at high energies [16]: fixing this model shortcoming
would decrease the anticipated counts from the model, and increase the significance of the
discrepancy. At high energies in the north, there are not enough events to perform the
analysis.

5.3.2 Discussion

The one-point analysis can also be used to “characterise” the discrepancy (to a first ap-
proximation). Assuming that the analysis of tracks above has validated the detector and
the atmospheric models, this discrepancy is deduced to be astrophysical. A further study of
the energy-dependence of this discrepancy in the southern hemishepere (where our method
is most sensitive to model mis-specifications) suggests that the unmodelled contribution is
missing for 25–1000 TeV, but not above (cf. Table 2). It has a soft spectrum and/or a
cutoff at high energies. We can even estimate the significance with which we need such an
astrophysical component by combining the relevant p-values.

Combining the four p-values in Table 2 with Fisher’s method (i.e., neglecting the six
trials in tracks, which we know to be atmospherics-dominated) yields a global significance
equivalent to ∼ 4.8σ. This is only marginally better than the evidence that our model’s
expected number of showers (〈C〉 ≈ 19) is underpredicting the data (C = 39 showers) simply
using a χ2 test, (39 − 19)2/19 → 4.5σ. The one-point analysis may not seem to add much
over a standard model-based analysis, but there are a few subtleties worth mentioning here:

1. Our computation of 〈C〉 automatically accounts for the skewness-induced bias discussed
in Sec. 3.2.2. However, this is not the case in analyses based on 〈Iν〉, where the one-
point skewness is ignored. Now notice that, e.g., (39 − 20)2/20 → 4.1σ. All other
things equal, one-point methods based on P (Iν) are therefore statistically stronger
than analyses based on 〈Iν〉, because they intrinsically correct for this bias.

2. Even though we are fully exploiting P (Iν) behind the Poisson shot noise, there is simply
not much more information to exploit given the number of events in the HESE data. As
more data becomes available, we will increasingly be able to probe the higher moments
of P (Iν), and the added statistical power of this methodology should become more
apparent.

3. A likelihood approach allows us to study low-count subsets of the data where the χ2

would be unreliable. But even then, there are currently not enough showers above

Table 2: Real/mock shower-data upper p-values (pre-trials) in the northern and south-
ern skies and in various energy bands. The model includes atmospheric, SFG, and 2FHL
contributions. The discrepancy between the mock and real data has a combined ∼ 4.8σ
significance.

Energy (TeV) north south

25 – 100 0.218± 0.004 (7.4± 0.7)× 10−5

100 – 1000 N/A (1.85± 0.3)× 10−4

1000 – 5000 N/A 0.146± 0.007
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100 TeV in the northern hemisphere to sensibly perform this analysis. This signal
region is where one anticipates the conventional atmospheric background to contribute
the least, so this analysis’ potential sensitivity to a mismodelling of prompt atmospheric
or astrophysical components is not fully represented in the 4.8σ combined significance.

For a contrast of our model-based approach to other one-point fluctuation techniques, see
Appendix B.

In summary, our likelihood analysis reveals a ∼ 4.8σ discrepancy between the model
prediction for IceCube showers and the HESE data, that is especially pronounced below PeV
energies. This discrepancy is insignificant (combined 1σ) in tracks, suggesting it is of astro-
physical (rather than atmospheric) origin in our model. The anisotropy of the discrepancy
appears to be consistent with the statistical method’s sensitivity to the anisotropy of the
instrumental exposure.

6 Analysis (III): Discussion of systematics

The results presented above are subject to a number of caveats and uncertainties, which we
discuss in this section. These fall into two categories: methodological caveats, which might
introduce systematic effects; and astrophysical uncertainties, which translate into systematic
uncertainties in our models.

6.1 Methodological systematics

Inadequacies in methodology are particularly vicious, since the biases they produce cannot
be rigorously quantified using the tools that produce them. In this section, we discuss the
two main blind spots in the single-pixel analyses above.

Firstly, the effects of extended sources that could potentially affect our “single pixel”
results [46] were not studied. The instrumental point-spread function is also a relevant
quantity to consider [50], as it is the energy resolution or the difference between deposited
and real energy [77], amongst others. Ideally, a one-point analysis would account for these
reconstruction uncertainties at the level of the detector model, however this is far beyond the
scope of this first analysis. All of these potential systematic effects are related to our binning
of the data into energy bins ∆E and pixels ∆Ω, and need to be addressed by (ongoing) efforts
to unbin the one-pixel functions we have been discussing into true one-point functions. This
unbinning would also avoid pixelising the data with Healpix (cf. Sec. 3.1) when performing
our clustering and likelihood analyses, freeing these analyses from pixelisation artefacts.9

Secondly, although pixel exposure is treated anisotropically, the incident flux distribu-
tion was assumed isotropic. This approximation may be sufficient for studies of unresolved
extragalactic sources, but morphological, spectral, and distributional templates will be nec-
essary in the future to consistently account for atmospheric and Galactic contributions. Even
for unresolved extragalactic sources, the assumption of isotropy may be too strong, as these
sources are only statistically isotropic. The statistical clustering of unresolved sources is in-
deed known to affect the flux distributions, and in this study failing to account for this effect
underestimates the non-Gaussianity of the flux distribution [75, 76].

9To check that this did not influence our results, we resampled the HESE showers within their angular
uncertainties 1000 times and recomputed the clustering test statistic C of Sec. 4.2 and the log-likelihood
−2 lnL of Sec. 4.3. These fluctuations do not significantly weaken these results.

– 26 –



6.2 Marginalisation systematics

In addition to the methodological systematics discussed above, we rely (for simplicity’s sake)
on the best-fit values of a number of uncertain parameters. This results in a likelihood that
is partially profiled and partially marginalised, and this may introduce systematics. The flux
models we have adopted for the SFG and the blazars depend on data-driven parameters that
remain somewhat uncertain, and using only their best-fit values is clearly dangerous when
extrapolating power laws. For example, one might naively expect the ∼20% systematic
uncertainty in the conversion Lγ(LIR) (cf. Sec. 2.1.1) to shift the entire SFG distribution
P (Fν) in Fig. 3, but if this uncertainty were marginalised away the distribution would also
broaden while it shifts. A similar line of reasoning holds for the uncertainties of the luminosity
function itself. There is a ∼15% uncertainty on the normalisation of the infrared LF for the
SB subpopulation [57], which does not affect the single-source P1(Fν) but does affect the
multi-source P (C). Even then, such ∼20% effects on ≈2.2 events from SFG in IceCube (cf.
Sec. 3.3.2) cannot close the ∼20 event gap between the SFG model (driven by Herschel and
Fermi data) and the HESE events, which would be inconsistent with upper limits on the
SFG contribution anyway [44].

Another very relevant example of the mixture between statistical and systematic un-
certainties in one-point methods is that the gamma-ray fluxes (and their distributions) were
extrapolated to high energies using a single value of the spectral slope Γ per population,
rather than extrapolated with a marginalisation over the intrinsic scatter in Γ observed in
each population. The uncertainties on the gamma-ray spectrum Γ are expected to affect the
analysis systematically: consider the spectral flux Fγ = Fγ,0(Eγ/Eγ,0)−Γ, with P (Fγ,0|Eγ,0)
and P (Γ) independent and each approximately Gaussian. It can then be shown that F
is normal-log-normally distributed [90]. Thus, marginalisation over Γ generates additional
skewness in P (Fγ), which might be used in future studies as a tool for studying unresolved
source distributions that would otherwise be treated as Gaussians (cf. Sec. 4.1). However,
in this study, keeping Γ as a fixed parameter represents a systematic overestimate of the
gamma-ray fluxes. It is easiest when estimating this systematic effect to ignore distributions
and look only at averages. The mean flux of P (Fγ |Eγ), assuming Γ ∼ G(〈Γ〉, σ2

Γ), is

〈Fγ〉 = 〈Fγ,0〉 ×
(
Eγ,0
Eγ

)〈Γ〉+σ2
Γ/2

, (6.1)

in terms of the mean 〈Fγ,0〉 of an arbitrary P (Fγ,0|Eγ,0). The spectrum in our unmarginalised
analysis is therefore systematically harder than the average spectrum of the flux by a term
of order ∆Γ ∼ σ2

Γ. As a consequence, the predicted contributions of our extragalactic com-
ponents (extrapolated from GeV to the TeV–PeV energies) may be slightly overestimated.
This may be particularly relevant for our phenomenological model of 2FHL sources, where
the mixture of source populations yields an instrinsic spread σΓ of Γ that compounds our
choice of a harder-than-anticipated average spectrum of 〈Γ〉 = 2.5 in Sec. 2.2. Note that the
observed spectral index uncertainty of 2FHL increases with the index itself, from Γ = 2±0.5
to Γ = 5±2 (partly because of the lower statistics) [59]. One might then roughly estimate the
intrinsic σ2

Γ � 0.5. Accounting for this effect, or not choosing a harder-than-anticipated 〈Γ〉,
would decrease the blazar neutrino flux of the model from Sec. 2.2. This would presumably
increase the significance of the discrepancies encountered in the fluctuation and clustering
analyses, and improve (hinder) point-source detection prospects for SFGs (blazars). How-
ever, since the Γ-marginalisation would also broaden P (Fγ/ν) the net effect would come from
more than just systematic shifts to the mean flux 〈Fγ/ν〉.
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6.3 Astrophysical model systematics

Our model adopts a simplified picture of the atmospheric foregrounds, and includes only
two extragalactic source families. Both of these extragalactic models rely on extrapolations
subject to astrophysical uncertainties (i.e., extrapolation of the neutrino spectra from the
gamma-ray ones, the LIR-Lγ correlation adopted for the modeling of star-forming galax-
ies, etc.), which is inherently dangerous. Furthermore, we have illustrated in Sec. 6 how
astrophysical uncertainties that manifest themselves as systematic shifts in averages-based
methods typically also affect the shape of the one-point function when marginalised away
in our distributional framework. Arguably one cannot address any astrophysical systematic
self-consistently and distributionally, without incorporating the uncertainty directly into the
model.

In the context of this study, we should not expect the statistical intricacies of one-
point analyses to matter more than simply by changing the model to address the ∼5σ, ∼20
event mismatch between the model and the data (cf. Secs. 3.3.2 and 5.3). The existence of
independent upper limits on the contributions of blazars and SFGs to the flux [26, 44, 62],
that our models already saturate, suggest that it is premature to discuss upon the systematics
of these subdominant contributions [16, 25, 53, 57, 59, 60]. Since we only aimed at proving
the viability of our method through a simple modeling of the high-energy neutrino sky,
other guaranteed sources of astrophysical neutrinos that can be well characterised using
multimessenger data remain absent from the model.

In order to take into account the missing components of the neutrino flux predicted from
our model, one could also consider nearby sources. While Galactic sources are a guaranteed
contribution to the neutrino flux, they are not thought to be able to produce PeV neutrinos.
However, the likelihood analysis above suggests that may not be necessary, and they can
certainly generate neutrinos up to energies of a few hundred TeV (see, e.g., Ref. [11] for a
summary of upper limits on Galactic contributions). Amongst other contributions, a phe-
nomenological cosmic-ray model designed to reconcile Fermi, Milagro, and local cosmic-ray
data, naturally predicts at least 10–20% of the IceCube flux [10], of the order of our count
discrepancy. Whether the addition of this cosmic-ray contribution to the model is sufficient
to explain the data, and a more systematic study of the model sensitivity to the various
systematic uncertainties, is left to future work.

7 Conclusions

In this paper, for the first time, we explore the power of one-point statistical analyses in
the context of neutrino astronomy. Such an analysis does not require point sources to be
resolved in order to study properties of their population statistically, and, in this sense, it
is intrinsically powerful when applied to contemporary high-energy neutrino data from the
IceCube telescope.

We relied on data-driven models of only two extragalactic components (star-forming
galaxies and blazars), besides the atmospheric neutrino flux, and compared our predictions
with the IceCube detected flux [4]. The extragalactic neutrino backgrounds have been mod-
eled by extrapolating multi-wavelength data from Herschel for the star-forming galaxy com-
ponent [57] and from the Fermi 2FHL source catalogue for blazars [59, 60]. This study has
yielded three main results.

Firstly, we quantified to what extent unresolved star-forming galaxies and blazars con-
stitute their own background in dedicated IceCube point source searches. We showed that
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if the neutrino flux of star-forming galaxies is well predicted from the Herschel data, then
star-forming galaxies are likely to remain a diffuse, isotropic and featureless background for
IceCube: only the diffuse peak of P (F ) can be probed. Note that our conclusions would be
even more drastic if relying on more conservative estimates of the SFG neutrino contribu-
tion [42, 44]. This model-dependent claim is unequivocally demonstrated in showers, though
in tracks we only place a conservative upper limit on the number NSFG . 25 of resolvable
sources at 100 TeV (a number to be revised in future studies due to other backgrounds and
limited exposures). Our results are in agreement with the null results of dedicated point-
source searches and cross-correlation studies [5, 17, 52, 86, 88]. The opposite is predicted for
blazars: if the neutrino flux of this source population is well described by the 2FHL source
catalogue, then these sources are rare enough that self-background effects are not relevant
in tracks (see also the discussion in Ref. [20]). For both source populations, these model-
dependent results are consistent with one-point fluctuation analyses in gamma-rays [51].

Secondly, the astrophysical distributions are found to be non-Gaussian with power-law
tails. They are highly skewed, implying that IceCube observations are biased away from the
mean. For rare sources, the most likely and mean values are predicted to be significantly
different, by relative factors between 0.4 (showers) and 6.7 (tracks) in our blazar model.
This weakens any upper limits on blazars based on the expected (mean) contributions of
these populations to the isotropic flux in tracks, potentially by half an order of magnitude.
The skewness of the star-forming galaxy distributions is much smaller, due to their larger
abundance, therefore this effect is only percent-level.

Finally, we have applied one-point fluctuation and clustering analyses to neutrino data.
Although these analyses are model-dependent, the models we have chosen are informed by
(and otherwise consistent with) multimessenger data. We conclude in both analyses and with
a high significance that this particular model cannot explain entirety of the IceCube neutrino
events. This is not surprising, since we find (when correctly accounting for the skewness-
induced bias) that blazars, star-forming galaxies and atmospheric foregrounds—all modeled
as statistically isotropic components—contribute in total to less than two thirds of the HESE
events. The likelihood analysis suggests that the discrepancy comes from either systematic
uncertainties on the astrophysical components or new source populations whose spectra do
not likely extend beyond 100 TeV. Given this result and the manifest power of these one-point
methods, an extended study which takes into account more astrophysical uncertainties and
more astrophysical source populations is desirable, as it will allow convergence (even without
the need of more neutrino data) towards a multi-wavelength, data-driven, predictive model
of the high-energy neutrino sky.

Acknowledgments

We thank Daniele Gaggero, Franca Hoffman, Felicia Krauss, Jakob van Santen, and Hannes
Zechlin for useful discussions. This work was supported by the Netherlands Organisation
for Scientific Research through Vidi grant. IT also acknowledges support from the Knud
Højgaard Foundation, the Villum Foundation (Project No. 13164) and the Danish National
Research Foundation (DNRF91).

A Modeling of the IceCube effective area

We want to compute (distributionally) the counts registered in a pixel due to a neutrino
intensity Iν = Fν/Ωpix incident on the detector. Given the distribution P (Iν |Eν) of the
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energy-differential intensity Iν(Eν), and an energy-dependent effective area A(Eν), we want
to find the distribution P (µν) of the mean number of counts per pixel,

µν,per pix =

∫ Eν,max

Eν,min

Iν(Eν) Ωpix A(Eν) t dEν . (A.1)

In what follows, subscripts ν are suppressed for notational intelligibility.

A.1 Convolutive integration and neutrino fluxes

We can write the integral above as a Riemann sum, i.e.

µ = lim
N→∞

N−1∑
i=0

I(E + i∆E)A(E + i∆E)tΩ ∆E , (A.2)

where ∆E = (Emax − Emin)/N . We see that µ is a normalised sum µ = (X0 + X1 + · · · +
XN−1)/N of an infinite number of random variables X ∼ IAΩt, for which we might expect
the central limit theorem (CLT) to hold. These Xi are not identically distributed (so the
“classical” CLT does not work) but they are independent, so we might be able to use the
Lyapunov CLT [91]. However it is easy to show that this extended CLT does not apply either
(the Lyapunov Condition is violated for our power-law tailed distributions P (I|E)), i.e. that
P (µ) need not to be Gaussian. Heuristically, if our Riemann sum is µ ∼ (X0+X1+· · ·+XN−1)
then the distribution of this infinite sum is the infinite convolution

P (µ) ∼ lim
N→∞

N−1
F
i=0

P (Xi) , (A.3)

where we recall that P (· · · ) denotes a probability density function. See Figure 6 for a
schematic of this convolution with N = 4.

Less informally, let µ =
∫

(X|E)dE denote an integrated conditional random variable
(the “primitive function” or “antiderivative” of the conditional variable X|E ∈ R+ with
respect to the random variable E). For our purposes, the probability distribution function
of E need not be specified beyond the fact that two fixed limits of integration Emin and Emax

live within the support of P (E). We can then express the distribution function P (µ) as

P (µ|Emin ≤ E < Emax) = lim
N→∞

N−1
F
i=0

δ
µ− N−1∑

j=0

Xj

P (Xi | E = Emin + i∆E)

 , (A.4)

where ∆E = (Emax − Emin)/N and where δ(µ −
∑
X) enforces the Riemann sum on the

independent summands Xi. This expression of course follows from the marginalisation of

P (µ,X0, · · · , XN−1) = P (µ|X0, · · · , XN−1)P (X0) · · ·P (XN−1), (A.5)

with P (µ|X’s) = δ(µ−
∑
X) and N →∞. A formal definition and study of this operation

(presumably in terms of the Itô-Stratonovic stochastic integral [92]) is left to future work, in
what follows we adopt physically motivated assumptions in order to compute it. Also, it will
be clearer to condense this limit of many convolutions into the notation

P (µ|Emin ≤ E < Emax) ≡
Emax

F
∫
Emin

P (X|E)dE . (A.6)
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Figure 6: Schematic of the integration of a conditional random variable. Specifically, this
illustrates the computation of the mean-count distribution P (µ), where µ =

∫
FνATdEν with

T constant and Fν = IνΩ. Since integrals look like sums, the probability distribution of an
integrated quantity is the convolution of the distributions of the integrand as a function of
the variable of integration.

Although this quantity is mathematically interesting, in practice we can not compute a
number N →∞ of convolutions. Since convolution is associative, convolutive integration is
composable in its boundaries:

c

F
∫
a

P (F |E)dE =

 b

F
∫
a

P (F |E)dE

F

 c

F
∫
b

P (F |E)dE

 . (A.7)

Using this property and working with integrated fluxes S =
∫
FdE, we can approximate the

convolutive integral of differential fluxes as the convolution of integrated fluxes:

F
∫
∆E

P (F |E)dE ≈
N−1
F
i=0

P (S|δEi) . (A.8)

This distributionally reproduces the insight (conveyed in the main text) that the flux S is an
extensive quantity (with respect to E), so that the flux over a sum of bins is the sum of the
fluxes in each bin S(∆E) =

∑
i S(δEi). With this understanding, we can finally compute

P (µ|∆E) ≈
N−1
F
i=0

P (Si ×Ai × t | δEi) , (A.9)

where the number of convolutions is chosen large enough that A(E) can be treated as a
constant Ai in each subbin δEi.
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A.2 Declination dependence

In addition to this energy-dependence, note that the effective area is also declination depen-
dent. In our analysis we simply use the central declination of each pixel to compute A(E).
For showers, HealPix [73] generates pixels at seven different latitudes, calling for seven com-
putations of P (C) for each source class, for each of the two event topologies, and for each
of the three energy bins. For tracks, HealPix generates 255 different latitudes. To facilitate
comparisons we compute P (C) at the same seven latitudes as for showers and use whichever
declination is closest. This is particularly relevant for our discussion of clustering in Sec. 4.2,
where the distributions in tracks were coarse-grained to the scale of showers by autoconvolu-
tion. This shortcut can only be exploited if we restrict ourselves to components with at most
iso-latitudinal variations such as (to a good approximation) the atmospheric component [66].
A dedicated analysis of truly anisotropic components, such as the neutrino contribution of
the Galactic plane [10], is left to future work.

A.3 Flavour dependence

IceCube provides a separate estimation of the effective area for each of the three flavours,
which we interpolate in declination and energy in order to use the formalism above. However,

the effective area for tracks and showers depends on the probability p
e/µ/τ
T/S that a neutrino

of a given flavour (sampled randomly from the total neutrino flux) produces a charged or a
neutral current interaction in the ice. We use the approximation [72]

{pµT = 0.8, pµS = 0.2, p
e/τ
S = 1, p

e/τ
T = 0} (A.10)

to write
AT/S = 2

∑
f∈{e,µ,τ}

pfT/S ×A
f × ηf , (A.11)

where Af is the flavour-energy-and-declination dependent quantity given by IceCube [2] and
ηf is the fraction of neutrinos of a given flavour (η = 1/3 for a 1 : 1 : 1 flavour ratio).
We multiply the effective area by 2 since the sum does not run over antineutrinos, effectively
setting equal neutrino and antineutrino fluxes. We employ a 1 : 1 : 1 ratio for all extragalactic
components, a 0 : 1 : 0 flavour ratio for the conventional atmospheric flux, and a 1 : 1 : 0 ratio
for the prompt atmospheric flux [67]. Percent-level atmospheric contributions from νe and ντ
fluxes (respectively) [66, 67] are neglected, as are the neutrino-antineutrino ratios, although
the fully detailed (even energy-dependent) flavour ratios can manifestly be accounted for in
this type of analysis.

B Methodological contrast to one-point fitting

One-point methods, pioneered and refined by P (D) analysis [74–76], are currently experienc-
ing a rebirth in contemporary astrophysics [46–51, 93–99]. The objective of such methods
is typically to fit the resolved and unresolved point source distribution dN/dF to the data
in terms of a phenomenological model, to be interpreted after the conclusion of the analy-
sis proper. In gamma-rays, for example, the generating function approach in Ref. [47] was
for this purpose considerably enhanced, with careful studies of the dN/dF prior-dependence
[50, 94] and systematics [51] of the fitting procedure. Both the generating-function-fitting
method and the distribution-modelling method in the present study essentially require (i) an
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ansatz on the source count distribution,10 (ii) a model of the response of the instrument to
incident flux, and (iii) a way to transition from one to the other.

The two approaches are most obviously distinguished by this third point, particularly by
the direction of this transition (from model to prediction / from data to fit) and by its nature
(a probabilistic hierarchical network / use of a specific statistical estimator). A perhaps more
subtle distinction between the two methods is that one can model the flux distribution of
many source populations in many detectors, while the specific estimator adopted in the fitting
method is (at least in its current form) one-to-one. The main text illustrates the multiplicity
of source populations, with different abundances, spectral indices and redshift evolutions; but
besides IceCube, all instruments sensitive to high-energy neutrinos currently produce non-
measurements [100–102]. And although in this study we restrict our attention to neutrino
data at the highest energies, a one-point analysis can in principle be both multi-wavelength
and multi-messenger, if the model M of astrophysics and of instrument responses that gives
rise to the P (C|M) count distributions is sufficiently elaborate.

In gamma-rays, there is enough data that the choice between the two methods is to a
large extent a matter of taste. However, a generating-function analysis would be ill-suited to
the low statistics of contemporary high-energy IceCube data: such an analysis is blind to fea-
tures below the single-event sensitivity [50]. One should expect that the experimental event
count distribution is too poorly sampled to drive significant fits of the source count distribu-
tion. Even if it were not, it would by design be incapable of disentangling the subdominant
source population contributions from its unique dN/dF : any post-hoc interpretation of such
a poorly-fit dN/dF would live in a limbo of untested conjectures in wait of more data.

By contrast, in the modelling approach, various hypothetical combinations of flux dis-
tributions can be tested against the neutrino data, e.g. in terms of a likelihood ratio / Bayes
factor. When they fail to be rejected by the data, or when preferences between multiple
models fail to emerge significantly from the data, this occurs formally and quantifiably. On
the other hand, when a model is rejected by the data, and hypotheses for this failure are put
forward (in our case, the hypothesis that there is a contribution missing), these are guaran-
teed to be testable with contemporary data (by improvement of the model and re-analysis).
These model improvements and tests are not a methodological shortcoming, but indeed an
opportunity to be explored in future work.
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