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defined over a non-archimedean local field k. This turns out to characterize Lusztig’s
classification (Lusztig in Int Math Res Not 11:517-589, 1995; in Represent Theory
6:243-289, 2002) of unipotent characters of G in terms of the Plancherel measure, up
to diagram automorphisms. As an application of these results, the spectral correspon-
dences associated with such morphisms (Opdam 2016), and some results of Ciubotaru,
Kato and Kato [CKK] (also see Ciubotaru and Opdam in A uniform classification of
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gamma factors in the special case of unipotent discrete series characters of inner forms
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1 Introduction

Recall from [54] that a normalized affine Hecke algebra H is essentially determined by
a complex torus 7" and a meromorphic function p on T'. A spectral transfer morphism
(see [54]) ¢ : 'H1 ~ H> between normalized affine Hecke algebras expresses the fact
that p is equal to a residue of , along a certain coset of a subtorus of 7». This turns
out to be a convenient tool to compare formal degrees of discrete series representations
of different affine Hecke algebras.

The notion is based on the special properties of the u-function of an affine Hecke
algebra [52,53] which are intimitely related to its basic role in the derivation of
the Plancherel formula for affine Hecke algebras via residues [21,52,55,56]. This
approach to the computation of formal degrees has its origin in the theory of spherical
functions for p-adic reductive groups [47], and was further inspired by early observa-
tions of Lusztig [35,38] and Reeder [59,60] on the behaviour of formal degrees within
unipotent L-packets.

In the present paper we classify the spectral transfer morphisms (STMs in the
sequel) between the unipotent affine Hecke algebras of the various inner forms of a
given absolutely simple algebraic group G of adjoint type, defined and unramified
over a non-archimedean local field k. In particular we will show, for any unipotent
type Tt = (P, o) of an inner form of G, existence and uniqueness (up to diagram
automorphisms) of such STM of the Hecke algebra of t to the Iwahori—-Hecke algebra
H!M(G) of G. The STMs of this kind turn out to correspond exactly to the arithmetic-
geometric correspondences of Lusztig [40,43].

As an application of this classification, using the basic properties of STMs discussed
in [54], we prove the conjecture [26, Conjecture 1.4] of Hiraga, Ichino and Ikeda
expressing the formal degree of a discrete series representation in terms of the adjoint
gamma factor of its (conjectural) local Langlands parameters and an explicit rational
constant factor, for all unipotent discrete series representations of inner forms of G
(where we accept Lusztig’s parameters for the unipotent discrete series representations
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as conjectural Langlands parameters). It should be mentioned that it was already known
from Reeder’s work [59,60] (see also [26]) that this conjecture holds for the unipotent
discrete series characters of split exceptional groups of adjoint type, and for some small
rank classical groups. It should be mentioned that the stability of Lusztig’s packets of
unipotent representations was shown by Moeglin and Waldspurger for odd orthogonal
groups [49] and by Moeglin for unitary groups [48].

Throughout this paper we use the normalization of Haar measures as in [17]. Let
g = v? denote the cardinality of the residue field of k. The formal degree of a
unipotent discrete series representation then factorizes uniquely as a product of a g-
rational number (which we define as a fraction of products of g-numbers of the form
[n], = (”::v”__,n) with n > 2) and a positive rational number. Our proof of conjecture
[26, Conjecture 1.4] involves the verification of the g-rational factors, which rests
on the existence of the Plancherel measure preserving correspondences for STMs
as discussed in [54], and the verification of the rational constants. The latter uses
the knowledge of these rational constants from [60] for the case of equal parameter
exceptional Hecke algebras, and continuity principles due to [11] and [56] (also [13])
which imply roughly that we can compute these rational constant factors in the formal
degrees of discrete series of non-simply laced affine Hecke algebras at any point in
the parameter space of the affine Hecke algebra once we know these rational constants
in one regular point (in the sense of [56]) of the parameter space. In particular, for
classical affine Hecke algebras of type Cﬁ,l); it was shown in [11] that at a generic point
in the parameter space, the rational constants for all generic families of discrete series
characters are equal. The constants at special parameters follow then by a continuity
principle in the formal degree due to [56].

An alternative approach to the conjecture [26, Conjecture 1.4], restricted to the case
of formal degrees of unipotent discrete series representations, was formulated in [12].
A conjectural formula for the formal degrees of unipotent discrete series characters
is proposed in [12], which involves Lusztig’s non-abelian Fourier transform matrix
for families of unipotent representations [36,44,45] and a notion of the “elliptic fake
degree” of a unipotent discrete series character in the unramified minimal principal
series of G. In this approach the formula for the rational constant factors of the formal
degrees appears in a very natural way from the basic properties of the non-abelian
Fourier transform.

The notion of spectral transfer morphism is based on a certain heuristic idea on
the behavior of L-packets under ordinary parabolic induction (see 3.1.3 for a more
detailed discussion of this heuristic idea). The fact that this principle turns out to
hold for all unipotent representations is striking. Also striking is the fact that the
isomorphism class of the Iwahori—-Hecke algebra HIM(G) of G is the least element
in the poset of isomorphism classes of normalized affine Hecke algebras in the full
subcategory of €¢s(G) whose objects are the Hecke algebras of unipotent types (P, o)
of the inner forms of G, in the sense of [54, Paragraph 7.1.5]. Moreover, if H is such
a unipotent affine Hecke algebra of an inner form of G, then the STM ¢ : 'H ~
HIM (G) (which exists by the above) is essentially unique, and such STMs exactly
match Lusztig’s arithmetic/geometric correspondences. The proof of these statements
reduces, as explaned in this paper, to the supercuspidal case [19] in combination with
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the above principle that one can parabolically induce unipotent supercuspidal STMs
from Levi subalgebras to yield new STMs.

It is quite clear that the definition of the notion of STM could be generalized to
Bernstein components [2,23-25] in greater generality than only for the unipotent
Bernstein components. It would be interesting to investigate the above mentioned
induction principle in general. In view of our results, this could provide a clue how L-
packets are partitioned by the Bernstein center beyond Lusztig’s unipotent L-packets
for simple groups of adjoint type.

In the first section of this paper we will review the theory of unipotent representa-
tions of G with an emphasis on its harmonic analytic aspects. The results here are all
due to [40,43,50,51] and [17]. This section serves an important purpose of reviewing
the relevant facts on unipotent representations for this paper in the appropriate context
of harmonic analysis, and fixing notations. We kept the setup in this section more
general than necessary for the remainder of the paper, since this does not complicate
matters too much and this may be useful for later applications. In the second section
we will describe the structure of the STMs between the normalized unipotent Hecke
algebras of the inner forms of G, and discuss the applications of this result.!

2 Unipotent representations of quasisimple p-adic groups

The category of unipotent representations of inner forms of an unramified absolutely
quasisimple p-adic group G is Morita equivalent to the category of representations of a
finite direct sum of finitely many normalized affine Hecke algebras (called “unipotent
Hecke algebras”) in such a way that the Morita equivalence respects the tempered
spectra and the natural Plancherel measures on both sides.

Therefore it is an interesting problem to classify all the STMs as defined in [54,
Definition 5.1] between these unipotent normalized affine Hecke algebras. It will turn
out that this task to classify these STMs essentially reduces to the task of finding all
STMs from the rank O unipotent affine Hecke algebras to the Iwahori-Matsumoto
Hecke algebra 1M (G') of the quasisplit G’ such that G is an inner form of G'. In
turn this reduces to solving equation [54, equation (55)] where d° denotes the formal
degree of a unipotent supercuspidal representation. The latter part of this task, the
classification of the rank 0 unipotent STMs, will be discussed in a second paper (joint
with Yongqi Feng [19]). It should be remarked that the results of the present paper, in
which the existence of certain spectral transfer morphisms is established, plays a role
in the proof of the classification result in [19].

2.1 Unramified reductive p-adic groups

Let k be non-archimedean local field. Fix a separable algebraic closure k of k, and let
K C k be the maximal unramified extension of k in k. Let K = O/P be the residue
field of K, and let p denote its characteristic. Let I' = Gal(k/k) denote the absolute

I ltisa pleasure to thank Joseph Bernstein, Dan Ciubotaru, Maarten Solleveld, David Kazhdan and Mark
Reeder for useful discussions and comments.
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Galois group of k, and let 7 = Gal(k/K) C T be the inertia subgroup. Let Frob be the
geometric Frobenius element of Gal(K / k) = T'/T =~ Z,i.e.,the topological generator
which induces the inverse of the automorphism x — x9 of K. Here q = p” denotes
the cardinality of the residue field k := K™ of k. We denote by v the positive square
root of q.

Let G be a connected reductive algebraic group defined over &, and split over K.
We denote by GV be the neutral component of a Langlands dual group “G for G
(see [3]). The construction of “G presupposes the choice of a maximal torus S and a
Borel subgroup B of G whose Levi-subgroup is S, and the choice of an épinglage for
(G, B, S), in order to define a splitting of Aut(G). Let X*(Z(G")) be the character
group of the center Z(G") of G". The natural I"-action on this space factors through
the quotient Gal(K / k) since we are assuming that G is K -split. Observe that the action
of Frob on X*(Z(G")) is independent of the choice of a splitting of Aut(G).

We will always denote the group G(K) of K-rational points of G by the corre-
sponding non-boldface letter, i.e., G = G(K). Kottwitz [31, Section 7] has defined a
I'-equivariant functorial exact sequence

1 - G, — G5 x*(Z2(GY)) — 1. 1)

In our situation there is a continuous equivariant action of the group I'/Z on this
sequence. We denote by F the action of Frob on G| and G, and by 6 the automorphism
of X*(Z(GV)) defined by F. This sequence has the property that the associated long
exact sequence in continuous nonabelian cohomology yields an exact sequence

1> G\F > Gk) - X*(Z(GV)) - 1 )

and an isomorphism
H'(F,G) — X*(Z(G")py)- 3)

Now assume that G is semisimple. In this situation the above sequences simplify as
follows. Let S be a maximal K -split torus of G, and let X := X, (S) be its cocharacter
lattice. Let Q := X = X.(Ss) be the cocharacter lattice of the inverse image of
S in the simply connected cover Gsc — G of G (hence Q C X is the coroot lattice
of (G, S); we warn the reader that we call the roots of G¥ “roots” and the roots of
(G, S) “coroots”. We apologize for this admittedly awkward convention). Let €2 be
the finite abelian group 2 = X/Q. Then we may canonically identify X*(Z(G"))
with 2. Hence (2) becomes

1> GF - G- Q' -1 )
(see [29,30]) and (3) becomes

HY(F,G) = Q/(1 — 6p)9. (5)
We remark that Gger C G| C G, and that it can be shown that G 4. = G if and only

if p does not divide the order |2| of Q2. We will from now on always assume that G is
absolutely quasisimple and K -split, unless otherwise stated.
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2.1.1 Inner k-rational structures of G The k-rational structures of G which are
inner forms of G are parameterized by H'(k, G,q). By Steinberg’s Vanishing The-
orem it follows that all inner k-forms of G are K-split and that H Lk, Gu) =
H'(Gal(K /k), Gaq) (see [62, Section 5.8]). We will from now on reserve the notation
G for a k-quasisplit rational structure in this inner class. We let F be the automor-
phism of G4q (or G) corresponding to the action of Frob, and 6 = 6. We then denote
the nonabelian cohomology H'(Gal(K /k), Gaq) by H'(F, Gaq).

For G semisimple and not necessarily of adjoint type, Vogan conjectured a refined
Langlands parameterization of the irreducible tempered unipotent representations of
pure inner forms of G [68].

Pure inner form of G correspond by definition to cocycles z € ZY(F, G) [17,68].
Such acocycleis determined by the image u := z(Frob) € G. The corresponding inner
k-form of G is defined by the functorial image 724 e 71 (F, Gag) of z. This “pure” inner
form is defined by the twisted Frobenius action F, on G given by F, = Ad(u) o F,
and is denoted by G“. The cocycle z determines a class in [z] € H'(F, G). We say
that two pure inner forms z1 and z; of G are equivalent iff [z1] = [z2]. The k-rational
isomorphism class of the inner form G* is determined by the image [z%¢] of [z] via
the natural map H Y(F,G) - H'(F, Gaq). The reader be warned however, that view
of (5) this map is neither surjective in general (this is obvious, G = SL, provides
an example) nor injective (however, if G is k-split and semisimple, then the map is
injective). In other words, not all k-rational equivalence classes of inner forms of G
can be represented by a pure inner form, and if G is not k-split and semisimple, then
an inner form of G may be represented by several inequivalent pure inner forms.

It is in principle possible to compute with our methods the formal degrees of the
elements of L-packets according to this refined form of the Langlands parameteri-
zation, or even to check examples of the conjecture [26, Conjecture 1.4] beyond the
case of pure inner forms. For later reference we will formulate matters in this more
general setup where possible, even though we will in present paper limit ourselves in
the applications to the case where G is of adjoint type.

2.1.2 The affine Weyl group There exists a maximal K -split torus S defined over k
and maximally k-split [5, 5.1.10]. We fix such a maximal torus S of G, and denote
by S its inverse image for the covering Ggc — G. Recall that G is k-quasisplit, and
that F defines an automorphism on the lattices X and X = Q denoted by 6. The
extended affine Weyl group W of (G, S) is defined by

W = Ng(S)/So. (6)

The group W acts faithfully on the apartment .A as an extended affine Coxeter group.

We denote by Sp = O* ®X the maximal bounded subgroup of S. Then X = S/So,
and we define the associated F'-stable apartment A = A(G, S) of the building of G
by A(G,S) = R ® X. As explained in [17, Corollary 2.4.3], [6, Section 3] the
isomorphism (5) can be made explicit by a canonical bijection

Q/(1—0)Q — HY(F,G) (7
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sending [w] € /(1 — )2 to the cohomology class of the cocycle z,, which maps
Frob to F,,, where uSp = x € X and x is a representative of w € X/ Q.

Let C be an F-stable alcove in A (such alcoves exist, see [67]). Let 1 — N —
Gsc = G — 1 be the simply connected cover of G, and let Sy be the inverse image
of S.

Proposition 2.1 The image of Gsc — G is equal to the derived group G 4., of G, and
we have G/ G ger = HY(K,N)=K*® Q.

Proof Indeed, it is clear that the image is contained in Gger because Gy is its own
derived group [65]. The other inclusion follows by applying the long exact sequence
in nonabelian cohomology to the central isogeny Gsc — G and again appealing to
Steinberg’s Vanishing Theorem. It follows that the quotient of G by the image of G
is the abelian group H'(K, N), whence the result. On the other hand, we have the
obvious exact sequence

I > Hom(Q*, K*) > S¢e > S—> KX Q2 — 1 ®)

which we can compare to the long exact sequence in cohomology (with respect to
7) associated to the canonical exact sequence of diagonalizable groups 1 — N —
Ssc > S—> 1. O

We denote by W¢: the F-stable normal subgroup of W generated by the reflections in
the walls of C. This normal subgroup is independent of the choice of C and can be
canonically identified with Ng .. (S)/So N Gder = W C W, the affine Weyl group
of (G, Sse).

Returning to Kottwitz’s homomorphism we obtain the following result (compare
with [5, 5.2.11]).

Corollary 2.2 We have G| = (S0, Gder).

Proof Let B be the Iwahori subgroup of G associated with C [5, 5.2.6]. By [57,
Appendix, Proposition 3] we have B = Fix(C) N G. In particular we have Sp C G1,
so that we have Gger C G’1 = (S0, Gger) C G1 Hence by (4), the equality G/l =Gy
is equivalent to showing that G/ G = G/G| = . By the previous proposition we
have G/Gger = K™ ® Q. Since So/So N Gger = O ® Q the result follows from
K*/O* ~ 7. O

Let Q¢ be the subgroup of W which stabilizes C. This subgroup may be identified with
asubgroup of the group of special automorphisms (in the sense of [40, paragraph 1.11])
of the affine diagram associated with the choice of C. We have a semidirect product

decomposition W = W x Q, and thus a canonical isomorphism Q¢ — Qfor any
choice of C.

Corollary 2.3 We have Ng,(S)/So —> W¢ Ng,(B) = B and Ng(B)/B —> .

Proof By Corollary 2.2 it follows that Ng, (S) = Ng,., (S).So. This implies the first
assertion, since W is the affine Weyl group of (G, Ssc) and G ger is the homomorphic
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image of G. Since an Iwahori-subgroup of G is self-normalizing, we have similarly
NG, (B) = NGy, [B).So = B N Gger).So = B, proving the second assertion. For
the third assertion, observe that Q¢ = (Ng(B) N Ng(S))/Se. It is well known that
BN Ng(S) = So, hence ¢ maps injectively into Ng (B)/B. By the second assertion
this group maps injectively into G/ G| = 2. Since 2 >~ Q¢ are finite the two injective
homomorphisms are in fact isomorphisms.

Since G is unramified there exist hyperspecial points in the apartment A [67]. A
choice of a hyperspecial point ap € A, induces a semidirect product decomposition
W = Wy x X, where Wy denotes the isotropy subgroup of ag in W. The k-structure
of G defined by F is quasisplit, which implies that there exists a hyperspecial point
ap € A(G, S) which is F-fixed. In this case we denote by 6 the automorphism of
W (and of A) induced by F. We fix ag, an F-fixed hyperspecial point, and an F-
stable alcove C having ag in its closure. Observe that the subgroup €2¢ depends on the
choice of C, not of the hyperspecial point ag. Recall we have a canonical isomorphism

Qe —> Q=X /O, which we will often use to identify these two groups. Observe
that 0 stabilizes the subgroups W9, Q¢, X and Wy of W.

2.2 Unipotent representations

2.2.1 Parahoric subgroups Recall the explicit representation of pure inner forms
G*" as discussed in (7). Fix a representative u = @ € Ng(S) with w € Q¢ C W.
Then F, acts on the apartment A(G, S) by means of the finite order automorphism
0. Since F, stabilizes C the Iwahori subgroup B is F,, stable. Recall that the group
Q¢ can be canonically identified with the group Ng(B)/B. Since 2 is abelian it
is clear that the subgroup Qg“ = Q?g of F,-invariant elements is independent of
w € Qc.

Following [57, Appendix] we may define a “standard parahoric subgroup of G”
as a subgroup of the form Fix(Fp) N G| where Fp C C denotes a facet of C.
By [57, Appendix, Proposition 3] this definition coincides with the definition in
[5]. In particular, a standard parahoric subgroup of G is a connected pro-algebraic
group. A parahoric subgroup of G is a subgroup conjugate to a standard parahoric
subgroup.

It is well known (by “Lang’s theorem for connected proalgebraic groups”, see [40,
1.3]) that any F,-stable parahoric subgroup of G is G“-conjugate to a “standard”
F,-stable parahoric subgroup, i.e., an F,-stable parahoric subgroup containing B. It
follows that the GF«-conjugacy classes of F,-stable parahoric subgroups are in one-
to-one correspondence with the set of Q-orbits of w@-stable facets in the closure of
C. Similarly, a parahoric subgroup P or a double coset of a parahoric subgroup is
F,-stable iff it contains points of Gf. Let P be an F,-stable parahoric subgroup of
G. We call Pf« a parahoric subgroup of G«.

We record two important properties of Fy,-stable parahoric subgroups which follow
easily from Corollary 2.3. First of all, parahoric subgroups are self-normalizing in G,
ie.,

(N¢P)'* NG, = PFv. 9)
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Secondly, for an F,-stable standard parahoric subgroup [P corresponding to a wf-stable
facet Cp of C, we have
(NGP)fu/Pfu = Q74 (10)

where QF C Q¢ is the subgroup stabilizing C p, and Q¢ ¢ QF its fixed point group
for the action of 6 (or F,, = w6, which amounts to the same since ¢ is abelian). We
define an exact sequence

- - % - ¥ 1 (11)

where Q]f)’e is the subgroup of elements which fix the set of F,-orbits of vertices of
C not in Cp pointwise.

2.2.2 Normalization of Haar measures Let G, F, and F), be as in the previous para-
graph. Then G’ is a locally compact group. For any F,-stable parahoric subgroup P
of G we denote by PF« the reductive quotient of P¥«. This is the group of k-points of
a connected reductive group over K. In particular this is a finite group.

Following [17, Section 5.1] we normalize the Haar measure of G © uniquely, such
that for all F),-stable parahoric subgroups P of G one has

Vol(PFu) = v=4|PFu| (12)

where a € Z is equal to the dimension of P over K. It is well known that the right-hand
side is a product of powers of v and cyclotomic polynomials in v.

2.2.3 The anisotropic case 1t is useful to discuss the case where G« is anisotropic
explicitly. It is well known that an anisotropic absolutely simple group G% is iso-
morphic to PGL; (D) := D*/k*, where D is an unramified central division algebra
over k of degree m + 1, rank (m + 1)2 (see for instance [16]). We choose a uni-
formizer 7 of k. D contains an unramified extension / of degree m + 1 over k, and
we may choose a uniformizer IT of D which normalizes /, such that conjugation by
IT restricted to [ yields a generator for Gal(/ : k), and such that IT"*! = 7. The
group P := G is the only Fj,-stable parahoric subgoup in this situation, and obvi-
ously G = NP. By (4) we have Q := GF"/Gf“ ~ % ~ Gal(l : k), a cyclic group
of order m 4 1. G contains a maximal prounipotent subgroup G (denoted by V;
in [16]) and we have Gf* = C.G, where C is generated by the anisotropic torus
TFu := 1% /k>* and T1. We see that the reductive quotient P/ (PN G ) is an anisotropic
torus T of rank m over k, and that TF« can be identified with the group of roots of
unity of order prime to p in / modulo the subgroup of those roots of unity in k. Hence
Vol(GFu)y = v |QTF| = (m+1)[m+ 1], (with [m + 1], the g-integer associated
tom + 1 € N [see Definition 2.6)].

2.2.4 Unipotent representations and affine Hecke algebras Let G be a quasisimple
linear algebraic group, defined and quasisplit over k and K -split as above. Recall that
the automorphism induced by the Frobenius F on the building of G was denoted by
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0. Recall that the inner forms of G are canonically parameterized by the abelian group
Q/(1 —0)Q. Letu = @ € NB be a representative of an element @ € /(1 — 6)Q2
and let F, denote the corresponding pure inner twist of /. We denote by G* the pure
inner form of G defined by this twisted k-structure (in particular G' = G).

A representation (E, §) of a parahoric subgroup P*« of G« (where P is an F,-
stable parahoric subgroup of G) is called cuspidal unipotent if it is the lift to Pf« of a

cuspidal unipotent representation of the reductive quotient P¥» . An F,, -stable parahoric
subgroup is called cuspidal unipotent if it has cuspidal unipotent representations.

Lusztig [40] introduced the category R (G *),y; of unipotent representations of G« .
A smooth representation (V, ) of G’ is called unipotent if V is generated by a sum of
cuspidal unipotent isotypical components of restrictions of (V, ) to various parahoric
subgroups of G . As a generalization of Borel’s theorem on Iwahori-spherical rep-
resentations, R (G )i is an abelian subcategory of the category R(G*v) of smooth
G'u representations. It is central to the approach in this paper that this category is
equivalent to the module category of an explicit finite direct sum of normalized Hecke
algebras in the sense of paragraph [54, 3.1.2], in a way which is compatible with
harmonic analysis. Let us therefore describe this in detail.

A cuspidal unipotent pair (I, §) consists of an F),-stable parahoric subgroup P of
G and an irreducible cuspidal unipotent representation 8 of Pf«. We say that (P, §) is
standard if P is standard. Let R(G T’ “),s) denote the subcategory of R (GFu) consist-
ing of the smooth representations (V, ) such that V is generated by the isotypical
component (V|pr, )s. According to [40], given two cuspidal unipotent pairs (IP;, §;)
(with i € {1, 2}) the subcategories R(GF “)(p;,s;) are either disjoint or equal, and this
last alternative occurs if and only if the pairs (P;, §;) are G F-conjugates (and not just
associates). It follows that a smooth representation (V, i) is unipotent iff V is gener-
ated by @ (V |pr. )5, where the direct sum is taken over a complete set of representatives
(P, 8) of the finite set of Q7-orbits of standard cuspidal unipotent pairs.

For each standard cuspidal unipotent pair s = (PP, §) we consider the algebra
Hy'® of s-spherical End(E)-valued functions on G+, equipped with a trace 7(f) :=
Try(f(e)) and x defined by f*(x) := f(x_l)*. This algebra turns out to be the
specialization at v of a finite direct sum of mutually isomorphic normalized (in the
sense of [54, paragraph 3.1.2]) affine Hecke algebras (called unipotent affine Hecke
algebras) defined over L = C[v*!], and has been explicitly determined in all cases
[40,51]. The following general result from the theory of types due to [7] (also see
[22]) is fundamental to the approach in this paper:

Theorem 2.4 The assignment (V, ) — V&8 .= Homp(s, V|pr.) establishes an
equivalence of categories from R(GT “)p,s) to the category of Hy S-modules which
respects the notion of temperedness and which is a Plancherel measure preserving on
the level of irreducible tempered representations.

2.2.5 The group of weakly unramified characters Recall that we have a canonically
identification of Q with Ng (B)/B.

By the application of Lang’s Theorem for proalgebraic groups [40, paragraph 1.8]
one sees that the F}, stable double B-cosets ® in G are precisely those which intersect
with GF«, in which case ® N GF« is a single double coset of BFu,
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Let u = w be a representative of an element w € Q/(1 — ). We see that the
double BFu-cosets of G'« are parameterized by the wf fixed group W®?, and that
Q" = Ngr, B« /Bf«. Because Q is abelian we actually have Q®¢ = Q. We have
W = wePa 5 Qf By [40] this extended affine Weyl group is the underlying affine
Weyl group of the Iwahori-Hecke algebra H*/M := 1B of the group G'v.
When [w] = 1 we denote this algebra simply by H/M | the generic Twahori-Hecke
algebra.

By (4), the Pontryagin dual (Q27)* of Qf can be viewed canonically as the group
of (weakly) unramified complex linear characters X l";n(GF «) of GT« (i.e., the complex
linear characters of G’ vanishing on Gf“). This defines a natural functorial action
of (Q29)* on the category R(GT)yni (by taking tensor products). These functors are
Plancherel measure preserving, as we will see, and play an important role.

2.3 Unramified local Langlands parameters

The based root datum of the connected component GV of the Langlands dual group
LG of G* is defined by R = (X, Ry, Y, Rg, Fp). The dual Langlands group of G* is
independent of # and defined by

LG :=GY x (0) (13)

where 6 denotes the outer automorphism of GV arising from F. Let S¥ C G be a
maximal torus of G¥ = GY(C). Let Z(G") be the center of the neutral component
GY of LG. Then Z(GY) ~ PY/Y = Q* C SV. We will denote by ©Z the central
subgroup L Z := Z(GV)? ¢ LG, so that L Z is canonically equal to (2*)? ¢ §V-0. It
follows that we can canonically identify the group /(1 — 6)2 with the Pontryagin
dual group of Z, which is the version of Kottwitz’s Theorem as explained in detail
in [17].

Let us recall the space of unramified local Langlands parameters for G« for later
reference. Let VW, denote the Weil group of k£ [66], with inertia subgroup Z C Wk,
and let Frob denote a generator of Wy /Z. An unramified local Langlands parameter
is a homomorphism

A : (Frob) x SL,(C) — LG (14)

such that A(Frob x id) = s x 6 (with s € G") semisimple and such that A is algebraic
on the SL;(C)-factor. Given an unramified Langlands parameter A we denote by [A]
its orbit for the action of GV by conjugation. We will write A for the set of orbits [A]
of unramified Langlands parameters.

If 1 is an unramified Langlands parameter, let A, := 7o (Cgv (1)) be the component
group of the centralizer of A in GY. We call A elliptic (or discrete) if Cgv (1) is finite,
and denote by A° the space of GV -orbits of unramified elliptic Langlands parameters.

Let A be an unramified elliptic Langlands parameter. Observe that“ Z = Z(G")? ¢
Z(GY) C A,. The inner forms G" of G are canonically parameterized via Kottwitz’s
Theorem by the character group of L7 ., the center of the L- groupof Gog = G/Z(G).
Given an inner form G*, we choose once and for all a character ¢, € Irr(Zy.) (with
Zs. = Z(G")se)) which restricts to the character w,, € Qa4/(1 — 0)Qaq of Lz that
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is represented by u = @ € Ng,,(B). Following [20, Section 7.2] (see also [1]) we
consider the group A;/Z(GY) C (GY)aq, and let A; C (GV)c be its full preimage
in the simply connected cover (GY)sc of (GY)ad. Thus Zs. C A;, and A, is a central
extensionof A; /Z(GY) by Zs.. We denote by Irr” (A;,) the set of irreducible characters
p of A, on which Z acts by a multiple of ¢,,.
The space of (G -orbits of) unramified discrete Langlands data for G* is defined
by
A= {0, p) | [M] € A, p € it (A4;)}/GY (15)

and denote its elements by [A, p]. For fixed A with [A] € A¢ we denote by 1~\K the
fiber of A% above [A] (with respect to the projection of A to the first factor). We will
often simply write A if we refer to the space of (orbits of) unramified local Langlands
data of the quasisplit group G = G .

The isomorphism classes of pure inner forms G* are parametrized canonically by
wy € Irr(Y Zg.). In the refined version of the local Langlands correspondence where
we restrict ourselves to pure inner forms of G, it is therefore more natural to work with
pairs (1, p) with p € Irr*(A,), the set of irreducible characters of A; which restrict
to a multiple of w, on £ Z (hence there is no need to make choices of the extensions
¢y in this case).

It is well known [3, Paragraph 6.7] that we have a canonical isomorphism

B :(GY x 6)/Int(GY) — Hom(X?, C*)/W{. (16)

Observe that the group (27)* of unramified characters on G« is exactly the “central
subgroup” of the complex torus Ty (C) := Hom(X?, C*), i.e., the subgroup of Wg -
invariant elements. Here we consider 7' as the diagonalizable group scheme with
character lattice Z x X? over the ring L = C[v*!] and we use the notation Ty to
denote its fiber over v e C*.

We have natural compatible actions of X (G¥r) = (2%)* on the sets A and A"
defined by w[A] = [wA] and w[X, p] = [wA, p] respectively, provided that we choose
the extensions ¢, in a compatible way within each orbit under Xjn(GF «) (for pure
inner forms we do not need to worry about this).

We remark that Wy\7y(C) can be identified with the maximal spectrum SVIM of
the center Z!M of the Iwahori-Hecke algebra HIY = H® D (GF) of the group of
points of the k-quasisplit group G* = G (k). By the Kazhdan—Lusztig correspondence
[28] there exists a canonical bijection between the set of central characters Wyry €
S£M supporting discrete series representations of ’HﬁM and the set of GY-orbits of
unramified elliptic local Langlands parameters (see [52, Appendix] for the split case;
this extends to the quasi-split case using [4, Proposition 6.7] and [61] on the Langlands
parameter side, and [39,40,43], and [56] on the Hecke algebra side). This bijection
[A] = Wyr, is defined by

Worsy = B (Gv O (Frob, (; V91 ))) . (17)

This map is equivariant with respect to the natural action of the group X jn(GF «) of
weakly unramified characters of G,
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2.4 Unipotent affine Hecke algebras

Accordingto [40, 1.15,1.16, 1.17, 1.20] we can decompose for each cuspidal unipotent
pair (P, §) of G the algebra H"-® of s-spherical functions on G* explicitly as a direct
sum of mutually isomorphic extended affine Hecke algebras as follows.

Let us use the shorthand notation NB for Ng(B) etc. Recall that, since Borel
subgroups of a connected reductive group are mutually conjugate and self normalizing,
the group QF = NP/P is naturally a subgroup of the finite abelian group @ = NB/B
[see (10)]. It is known that the group QP [see (10)] acts trivially on the set of
irreducible unipotent cuspidal representations of Pf«. Even more is true [40]: for
every cuspidal unipotent representation (E, §) of P¥« there exists an extension (E, §)
of (E, 8) to the normalizer NPf« := N, (Pf) of PF« in GF«. We denote the group
QPo by Q%9 to stress the invariance of the cuspidal pair s = (Pf, §). One observes
that the set of such extensions is a torsor for the group (2%%)* of irreducible characters
of Q%% = NPF«/PFu by tensoring. Hence the group X7 (Gfv) = (Q%)* of weakly
unramified characters of GF« acts transitively on the set of extensions of (E, §) to
NPFu, and the kernel of this action is equal to the subgroup (227 /Q2%¢)* of (Q)* of
weakly unramified characters of G which restrict to 1 on NP«

Lusztig showed that the s-spherical Hecke algebra H":® is of the form

HHS = Hu,%,u “ 95,9 (18)

where H"%¢ is an unextended affine Hecke algebra associated with a certain affine
Coxeter group (Ws, Ss) and a parameter function m%, all defined in terms of the pair
s = (Pf«, §). In particular, they are independent of the chosen extension & of (P, §) to
NPFu; for this reason we will often suppress the extension in the notation and write
H"*¢ instead of H"* %4,

In order to define a normalized affine Hecke algebra (in our sense) from these data
one needs to choose a distinguished set Ss 0 C Ss. Although this is not canonically
defined, different choices are related via admissible isomorphisms. Let Qf’e c Q%9 be
the subgroup which acts trivially on S [see (11)]. Then the quotient 57 = @%¢/ Q%"
acts faithfully on (W3, Ss) by special affine diagram automorphisms. Lusztig [39, 1.20]
showed that H":® is isomorphic to the tensor product of the group algebra (C[Qf ’9]
and the crossed product Jude _ ppuia g st (19)

= 2
which is an extended affine Hecke algebra. Recall from [54, Proposition 2.3] that this
information is enough to recover a pair of data (independent of the chosen exten-
sion § of 5) (R*:*, m*-®) such that we have an admissible isomorphism 7*-%-¢ N
H(R™*, m*®) of normalized affine Hecke algebras.

2.4.1 The normalization of the algebras H"-%¢ Observe that the unit element of H"*
is the function e® on G+ supported on P¥« defined by

e(g) = Vol(P") ™' x ()8 (2) (20)

where x denotes the characteristic function of P%«.
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Fix an extension 5 of s as in the previous paragraph. By (10) the unit element e®
can be decomposed as a sum of mutually orthogonal idempotents

= > e Q1)

Le(Q5:0)*
where we view A € (Q%)* as a linear character of NP« and where
e%(g) = Vol(NP ) ™!y ypri, (8)8(2). (22)

By (19) (and the text just above it) we see that the unit element of H-5e g equal to

e = Z M. (23)

re(@5)r

In particular, the group (Q%?)* acts transitively on the set of idempotents ¢®¢ obtained
by choosing different extensions § of s, and the kernel of this action is the subgroup
Q5% c ()"

The other canonical basis elements of H"*¢ are supported on other double cosets
of NPPf«_ In particular, the trace T vanishes on those other basis elements. Hence 7 is a
multiple of the standard trace of the affine Hecke algebra H"%-¢, and the normalization
factor is of the form

d"5¢ = 1(e™) = |Q77 |7 Vol (PFr) " deg(8). (24)

The rational number d* %€ is the evaluation of a Laurent polynomial in the square root
v of the cardinality q of the residue field k. When we treat v and q as an indetermi-
nate we will denote these as v and g respectively. By our normalization of the Haar
measure the factor Vol(Pf*) in the denominator is equal to, up to a power of v, the
cardinality of the group of k-points of the reductive group P with Frobenius action
F,,. Therefore all factors in d™%¢ are explicitly known rational function in v (cf. [9,
Section 2.9, Section 13.7]). The following property of d**¢ is very convenient:

Proposition 2.5 Let T = T, Ty denote a maximal F,-stable, maximally K-split torus
of P, with T, the maximal central subtorus. Let V7 (resp. Vs) denote the rational
vector space spanned by the algebraic character lattice Ly (resp. Ls) of Tz (resp.
Ty ), and let Fz (resp. Fs) be the automorphism of Lz (resp. Ls) induced by F,. Then
we have

1
d™%¢ = Q%% ey, (vidy, — v Fz)~! H(vdi — v ) TIvdeg (8) (25)

i=1

where | is the semisimple rank of P over K, d; are the primitive degrees of the Weyl
group invariants of the semisimple part of P, the €; are the eigenvalues of Fs acting
on the co-invariant ring with respect to the Weyl group action on Vs (certain roots of
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unity, see [9, Section 2.9]), and where a € Z is such that f(v) = v®deg,(8) satisfies
i(v‘l) =+ f(v). At v = 1, d"%° has a pole of order equal to the split rank rz of
Ty, and satisfies d7%¢(v) = (—1)"2d"%¢(v™1).

Proof For G containing a k-split torus of positive dimension, then this is an easy
case-by-case verification using [9, Section 2.9, Section 13.7]. The anisotropic case is
easy by the results stated in 2.2.3. O

As a consequence, with our normalization of Haar measures, the normalization con-
stant d™*¢ of a unipotent affine Hecke algebras H"*¢ satisfies the condition of [54,
3.1.2] and, at v = 1, has a pole of order equal to the rank of H*-*¢. Hence by Theorem
[54, Theorem 4.8](iii), in our normalization of Haar measures all formal degrees of
the discrete series representations of the unipotent affine Hecke algebras, and thus of
all unipotent discrete series representations, are symmetric with regards to v — v~!,
and regular and nonzero at v = 1. This is convenient, since it implies that we never
need to be concerned about the factors v or of (v — v~1)M of the formal degree
of a unipotent discrete series: With our normalizations these factors do not appear in

fdeg ().

Definition 2.6 Let K* be the field of rational fundtions in v. Recall the notion of
a normalized affine Hecke algebra [54, Definition 2.13]. Given our normalization of
the traces, we see from [54, Theorem 4.8] and Theorem 2.4 that the formal degree
fdeg(m) of a discrete series representation 7 of a unipotent Hecke algebra has a unique
representation fdeg(m) = Afdeg(m), € K* where A € Q, and fdeg(r), is a g-
rational number (by which we mean a fraction of products of g-integers [n], := VV”:VV__,n
withn € N). We call fdeg(rr), the g-rational factor of fdeg(rr).

Corollary 2.7 For each w € Q/(1 — 0)Q2 (with representative u € NBf« as before)
and each cuspidal unipotent pair s of G", the pair (H"*¢,d"%°) is a normal-
ized affine Hecke algebra in the sense of Definition [54, Definition 3.1]. The group
(Qg’g)* acts naturally on the algebra H"*-*¢ = H* %% x Qg’e by means of essen-
tially strict automorphisms (cf. [54, paragraphs 2.1.7 and 3.3.3]) (in particular, this
action induces spectral measure preserving automorphisms on the tempered spectrum
of (H*-%¢, d%%¢)). The abelian group (2%°)* acts similarly by essentially strict auto-
morphisms on H"-* s HuSa g Q80 HISC (C[Qf’g]. This action is transitive
on the set of direct summands of the form (H"-5¢ d™%¢) where § runs over the set of
extensions of s to NPF«. The subgroup (QS’Q)* C (Q%9)* is the kernel of the induced
action on the set of these direct summands.

Recall that Ngu () (BF«) /BFu = QBC by (10). In particular this group acts naturally
on the set of F,-stable standard cuspidal parahoric subgroups of G*. This action
extends naturally to an action on the set of equivalence classes of standard cuspidal
unipotent pairs s = (P,8) by w - (P, §) = (“P, “§); as was remarked before, the
isotropy group of s = (IP, §) is the same as that of its first component P. If w - 51 = s,
then conjugation by w € Q% gives rise to an isomorphism ¢, : H"* 5! — Hw=
which maps the various normalized extended affine Hecke algebra summands of the
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form (H“-S1-¢, d%%1¢) in H* 3 to corresponding normalized extended affine Hecke
algebra summands of H"+%2 by essentially strict isomorphisms.

Given an orbit O of standard cuspidal unipotent pairs s of G* for action of the
group Q7. one can form the crossed product algebra

HC = (P H") = Q. (26)
s5€0

Then H*© is Morita equivalent to the direct sum H* % x Q% If (V, 7r) is an object of
R(G"(k))uni, let V5 denote the s-isotypical component of V |pr, (where s = (P, §)),
and put V* = Homp(8, V|p). Then

viO = Dpeql/qso (T (@)V®) = 695’60‘/5/ = @5’6065/‘/%0 27)

isa repr/esentation of H*-© (seealso paragraph2.2.4). Here ¢® denotes the unit element
of H*"*.

The Pontryagin dual X{l“n(GF 0y = (Q%)* of Q"C acts in a natural way on the
algebra HO by automorphisms as follows. If y € (QQC)*, then the corresponding
automorphism «,, acts as the identity on the subalgebra @H**, while or, (w) = x (w)w.
If x € (Q%/Qﬁ’g)* (i.e., xlgse = 1), then o, is the inner automorphism obtained
by conjugation with D" e /950 X (w)e®®. In particular the subgroup (Q‘9C / Q259)* of
X (GTw) acts trivially on the set of irreducible representations of HO.

The results of this paragraph can be summarized as follows:

Theorem 2.8 Let G be a connected absolutely quasisimple K -split, k-quasisplit lin-
ear algebraic group. Consider the cartesian product R(G)yni = Hu R(GF) i,
where R(G),,i denotes the category of unipotent representations of G, and where
the product is taken over a complete set of representatives of classes of pure inner k-
forms [u] € H'(F, G) of G. Let M be the category of modules over the direct sum of
algebras H i := @u,oH“’O, where the direct sum is taken over the a complete set of
representatives of classes of inner k-forms [u] € HY(F,G) of G and X (G)-orbits O
of standard cuspidal unipotent pairs s of G". Consider the functor U : R(G)uni — M
defined by sending V to &, © yuO,

(i) The functor U is an equivalence of categories.

(ii) For each orbit O of standard cuspidal unipotent pairs of G* and each s € O,
the irreducible spectrum of H*© is in canonical Morita bijection with the irre-
ducible spectrum of H"-*. In turn this equals the disjoint union of the irreducible
spectra of the direct summands H"%¢ of H"%, where & runs over the collec-
tion of distinct extensions of s to NPF« (this collection is a (Qf’g)*-torsor). We
define the tempered spectrum and spectral measure of H*-© via these canonical
bijections.

(iii) The bijection [U] that U induces on the irreducible spectrum restricts to a home-
omorphism (U™ from the disjoint union of the tempered unipotent spectra of
the classes of pure inner forms G" of G to the disjoint union of the tempered
spectra of the various H"-©.
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(iv) The push forward of the union of the Plancherel measures of the various G«
und%r the bijection [U™P] is the union of the spectral measures of the various
H™S.

(v) For each s € O the action of X} (G) = (QQC)* on the irreducible spectrum of
H"-© is trivial on the subgroup (QQC/ Q%) The quotient (Q%%)* of(Q@C)’k acts
on the spectrum of H*© via the canonical Morita bijection of this set with the
spectrum of H**® (which is naturally a (2%9)*-set by Corollary 2.7).

(vi) The group X}, (G) = (SZGC)* acts on H"-© via spectral automorphisms. In partic-
ular, this action induces a measure preserving action on the tempered spectrum
of H"©C. Moreover; via the bijection [U™"P] this action corresponds with the
natural action of X*, (G) on R(G)yp; by taking tensor products.

un

3 The spectral transfer category of unipotent Hecke algebras
3.1 Spectral transfer morphisms

Recall the notion of a spectral transfer morphism (STM) ¢ : ‘H; ~ H, between two
normalized affine Hecke algebras as introduced in [54, Definition 5.1, Definition 5.9].
In this section we will classify the STMs between unipotent affine Hecke algebras
(which will be referred to as “unipotent STMs”).

3.1.1 Restriction of STMs Let (H, t) denote a normalized affine Hecke algebra,
and let L denote a generic residual coset L C T for H. Then there exists a unique
“parabolic subsystem” Rp C Ry such that L can be written in the form L = rT7%
with r € L N Tp. After moving L with a suitable Weyl group element w € Wy, we
may assume that Rp is standard and associated with a subset P C Fy. To this subset
we may associate a subalgebra H” (“a standard Levi subalgebra”) and its semisimple
quotient algebra H p whose associated algebraic torus is the subtorus 7p C T (cf.
[52]). In this situation {r} C Tp is a residual point for Hp.

Definition 3.1 We will normalize the affine Hecke algebra 7 by the trace 7 ¥ defined
by (1) = 7(1). We normalize H p by the trace 7p defined by the property 7p(1) =
(v — v 1 )rk(RQ)—rk(RP) T (1)

Suppose that ¢ : (H', ') ~ (H, t) is a strict STM which is represented by ¢r :
T' — L, with L = rT" a residual coset. By modifying the representing map ¢r
appropriately, we may assume that » K = ¢ (e) and such that D¢ (t') = t¥ for some
subset P C Fj,. It follows easily from Corollary [54, Corollary 5.7] and Corollary
[54, Corollary 5.8] that for any inclusion P C Q C F,,, after possibly modifying
the representing morphism ¢7 by a Weyl group element again, the inverse image
q);l (K} (LNTQ)/K}) C T'is a subgroup whose identity component is a subtorus of
T’ with as Lie algebra a subspace of t' := Lie(7") of the form t¢ for some standard
parabolic subsystem Q" C F,,. Indeed, in Corollary [54, Corollary 5.7] we saw that
D¢r induces a bijective correspondence between parabolic subsystems R of R;, and
parabolic subsystems R of R, containing R p. By modifying ¢y with an appropriate
Weyl group element w’ € W(R),), we may assume that Ro = (D¢T)_1(RQ) is
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standard, associated to a subset Q' C F,,. By Definition 3.1 and the definition of an

STM it is easy to see that in this context, ¢7 also defines an STM ¢< : H’ o HO,
and that the restriction ¢7 ¢ of ¢7 to T/, C T’ defines an STM ¢ : H o ~ Hy

(Recall that K" = Nw, (L), and so L, is also the image of o2 If Té) denotes the
identity component of T C TP, then Lo = rTQP C Tp is aresidual coset of Tp.

Thus Lp, = Lo/K; N Té’ so that Lp, C L,. Hence Ly , is the image of the
restriction of ¢g).

Definition 3.2 We call ¢ the restriction of ¢ to H’ o/, and we say that ¢ is induced
from ¢¢. In particular, ¢ is induced by the rank 0 STM ¢p : L ~ Hp.

3.1.2 Induction of unipotent STMs By the above, every STM is induced from a
rank O transfer map. The converse is clearly not true: not every rank 0 STM of the
form ¢ : H” = L — Hp is the restriction of an STM W : H' ~» H. Indeed, if
Im(yy) = r (a generic residual point of the subtorus Tp C T'), then we should have
Im(V) =L = rTP. But the spectral measure vp; on a component S(p 5), where &
is a discrete series representation of H p with central character Wpr, is given (up to
a rational constant depending on 8) by the restriction of the regularisation (5| wemp
of the p-function to S(p 5y = Wo\WoL"™™ (cf. Theorem [54, Theorem 4.13]). This
regularisation does in general not behave like a p-function of an affine Hecke algebra,
unless for every restricted root of Ry\Rp to L the appropriate cancellations occur.
However, as we will see in 3.1.3., if H = H/M(G) for a quasisplit almost simple
algebraic groups G, and H” is the normalized Hecke algebra for a maximal cuspidal
unipotent pair (P, o) of an inner form of the standard Levi subgroup of G associated
to P C Fy, then v will be the restriction of an STM W : H' ~ H.

3.1.3 Induction and cuspidality of unipotent STMs This brings us to an informal dis-
cussion of the heuristic ideas and surprising facts behind the notion of STMs between
unipotent affine Hecke algebras (with their canonical normalizations as in 2.4.1). We
refer to such STMSs as “unipotent STMs”. Let G be an absolutely quasisimple unram-
ified group over k, and let G* denote a k-group in the same inner class. We fix a
maximal K-split torus S C G defined over k. Let the automorphism induced by the
action of the Frobenius F of G on the character lattice of S be denoted by 6. We will
assume that u = @ € NB is a representative of an element @ € Q/(1 — 0)2 (as in
paragraph 2.2.4). We choose a minimal F-stable parabolic subgroup Ag C G.

These data give rise to the “local index” of G, a (possibly twisted) affine Dynkin
diagram which contains a hyperspecial node, whose underlying finite root system is
the restricted root system of G with respect to the k-split center of Ag (again, we
apologize for denoting the restricted roots of G (k) as “coroots’). We can now “untwist”
the affine diagram by doubling some of the restricted roots of G(k); the resulting
root system is denoted by R;. We have thus associated a based root datum R :=
(Ro, X, Ry, Y, Fy) such that the “untwisted” local index of G (k) equals (Rg)(l),
and u acts on this affine diagram via the action of @ as a special affine diagram
automorphism. Notice that u acts naturally on the root system Ry by an element
wy € Wo(Ro). The local index comes equipped with integers m s (a;) attached to the
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nodes a;, which we transfer unaltered to the nodes of the untwisted diagram. This
is the arithmetic diagram %, (R, m) of [54, Subsection 2.3] associated to H/* . The
associated spectral diagram X (R, m) is an untwisted affine Dynkin diagram for the
affine root system R = R,(n1 ) Let T be the complex algebraic torus with character
lattice X.

The first remarkable fact is that for a cuspidal unipotent representation o, of G*,
its formal degree equals (up to a rational constant) the formal degree of an Iwahori-
spherical unipotent discrete series representation § of G, and the central character Wyr
of the corresponding discrete series representation §, of the Iwahori—-Hecke algebra
HIM .= HIM(G,B) of G is uniquely determined by this formal degree, up to the
action of X (G). Here r is a generic residual point. (This is the rank O case of
Theorem 3.4 that we already mentioned above). Let us agree to call a residual point
r of H'™ cuspidal if the g-rational factor of the residue /™Y (r) equals the g-
rational factor of the formal degree of a cuspidal unipotent representation ¢ for an
inner form G* of G as above.

We claim that this is also true if we replace G* by a proper Levi subgroup M* =
Cgu (S0 of G* (with % C G" the k-split part of the connected center of M*) which
carries a cuspidal unipotent representation o, in the following sense. We may assume
that S* C S, the subtorus of S defined by the vanishing of the K-roots of M. Then
S* C S also gives rise to a k-Levi subgroup M = Cg(5*)° of G with connected
center S*. Observe that M is k-quasisplit itself, and that M* is an inner form of M
(since w € M).

Let R/\(,, C R(Y denote the set of (restricted) K -roots of M". Since o* is unipotent,
it factors through a cuspidal unipotent representation o, of the quotient MY, =
M*"/S". (This quotient consists of an almost product of a semisimple group and a
central anisotropic torus.) Then oy, first of all uniquely determines an orbit of cuspidal
residual points Wyryy C Ty of HIM up to the action of the finite subgroup of
W-invariant characters Q3, of Xy /ZRy of Ty (which contains the group Ky :=
Ty NTH ). This should still be true if the rank O case of Theorem 3.4 holds, even
though M, := M/S" is not absolutely quasisimple in general. Namely, all but at
most one of the absolutely quasisimple almost factors of M, are of type A, and
these type A factors admit just one (up to twisting by weakly unramified characters)
residual point. The residual point 7y is thus the image of the representing map ¢ for
a unique cuspidal unipotent STM ¢y : L ~» H!M (M), where H'M (Mj,,) denotes
the Iwahori-Matsumoto Hecke algebra of M, with respect to the Iwahori subgroup
M NB/(S* NB) of M, up to the action of Q7.

In particular Wy ry gives rise to a maximal finite type subdiagram Jy ,, C
Ys(Ry, myr) (the spectral diagram of Mgy,, defined similarly as we did for G in
the text above). Namely, Jy ,, is determined by choosing ry; appropriately inside
the orbit Wysry, then ryy = sycpyr € Ty Ty With sy defining a vertex of every
component of X;(Rys, my). To obtain Jy -,,, one needs to strike out these nodes
from X;(Ryr, mpyr). In all cases, a subset of such type Jy fits in a unique way as
an excellent (cf. [40]) subset of X3(R,m). Since TM < T is a maximal subtorus
on which the dual affine roots in Jj; are constant, we see that the pair (rys, TY) is
uniquely determined from just the type of M, and the g-rational factor of the unipo-
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tent degree of oy, up to the action of W(R) and the group 7},. In particular it is
determined by the inertial class of the cuspidal pair (M*, o).

The cuspidal pair (M",oy,) is associated to a unique “extended type” s :=
(NPF«_§) in the sense of [51] (also see paragraph 2.2.4), where P C G is an F,-
stable parahoric subgroup such that P« N M ¥« is a maximal parahoric of M*«, and
such that the set of affine roots associated to the parahoric subgroup P has a basis
given by a proper w-invariant subset X, (R, m). The Plancherel measure on the set of
tempered representations which belong to the unipotent Bernstein component whose
cuspidal support is the inertial equivalence class of the cuspidal pair (M"¥, o) is given
by the Plancherel measure of the normalized unipotent affine Hecke algebra Hu-5e
(cf. e.g., [8,21,50,51,60]).

Let us now move M to its standard position, so that Ry, is replaced by a standard
parabolic subsystem R(V) of roots associated to a subset O C Fy. This corresponds to

a standard Levi subgroup G2 = C;(S*) of G which is conjugate to M. Suppose that
o € is an Iwahori spherical representation of G¢ which is tempered and L? modulo
the center of G€. The corresponding tempered representation 7 < of HIQM is then the
form 7¢ = (mg); for some Iwahori spherical discrete series representation 7y of
HIM and some ¢ € TMQ. Assume now that the central character of ¢ is a cuspidal
residual point of Tp. This means by definition that there also exists a cuspidal unipotent
representation o ; of some Levi subgroup M{ of some inner form G* as above, whose
formal degree has the same g-rational factor as that of ) (or equivalently of 7). The
second important heuristic ingredient we now apply is the general expectation that the
g-rational factor of the formal degree of the members of a discrete series unipotent
L-packet should be the equal for all members of the packet [60]. It then follows from
the above uniqueness assertions that og and a twist aé of oy (ie., aé is obtained
from oy, by a pull-back via a k-isomorphism between G’fQ and M*") must belong to
the same L-packet of Gg.

Recall from paragraph [54, 4.2.5] how the Plancherel measure vp;|g , ,, on the
component &(p ) of the tempered spectrum of H'™ associated to a discrete series
representation o of HM with central character Woro is expressed in terms of the
residue /M- (1) where L = rQTQ (see paragraph [54, 4.2.5]). This implies that if
discrete series representations o1, o of H p are associated to the same central character
Wpr € Wp\Tp, then the components Sp o,y (i = 1, 2) are related to each other by
a Plancherel measure preserving (up to a rational constant) correspondence as in
Theorem [54, Theorem 6.1].

The third heuristic idea is that such a correspondence should exist for Plancherel
measures on the tempered components determined by any two discrete series induction
data (G, 00) and (G, o)) whenever 6o and o, belong 1o the same L-packet. But
for the latter cuspidal unipotent pair, this Plancherel measure is computed as the most
continuous part of the tempered spectrum of the normalized unipotent affine Hecke
algebra H*-%¢. On the other hand, for the first pair it was already discussed above
that the Plancherel measure can be computed essentially as the residue measure of
the p-function of H!M with respect to the tempered residual coset L™ = r, TMQ.
Thus these ideas suggest the existence of a unique STM H*-%¢ ~» H!M represented
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by a morphism ¢7 with image L = rQTQ (or more precisely, the finite quotient
L, = L/Kj} of L, where K} C K¢ := TN Ty is the subgroup of elements whose
action on L can be represented by an element of W(Rp) [see [54, Paragraph 5.1.1])]
associated to the cuspidal pair (M*, §*) (or equivalently, to the extended type 5).

Recall from Proposition [54, Proposition 5.6] that any STM H’ ~+ H represented
by an affine morphism ¢ : T/ — T with image L = rT 2, the subtorus 7¢ ¢ T
is Wo-conjugacte to a subtorus 77/ C T which is defined as above by an excellent
subset J of the spectral diagram of H. Therefore it is clear that if there exists a
unipotent STM ¢ : H™%¢ ~» H!M a5 expected by the above discussion, then its
image must be uniquely determined by the type of M, in combination with the g-
rational factor of the formal degree of o), up to the action of X (G). By Proposition
[54, Proposition 7.13] we see that ¢ itself is therefore determined up to the action of
Autg(H“5€)P x X* (G).

Any unipotent STM & : H*5¢ ~» H!M s induced from a cuspidal unipotent STM
¢ L~ HIQM which is uniquely determined modulo the action of K¢ /K] (with
K} C K as above, hence the image of a representing morphism ¢7 for ® is L/K7}),
this is obvious. But by our discussion above we expect that: Conversely, any cuspidal
unipotent STM ¢ : (L, o) =: Ho ~ HIQM for the quotient G g = G2/7,(G2)°
(where Z;(G2)0 is the connected k-split center) of a standard Levi subgroup G4 can
be induced to yield a unique spectral transfer morphism ® : H*%¢ ~» H!M Up to
the action of Autg(H"“%€)°P x X *(G), ® is completely determined by the type of
G o and the q-rational factor of the degree to(1) of Hp.

In the above arguments two important aspects of cuspidal residual points played a
role. The first is that they can be defined by the property that the associated residue
degree ;/M-(rD (1) has the same g-rational factor as that of the formal degree of a
cuspidal unipotent representation of some inner form of G. The second is that a cuspidal
residual point rg of a semisimple quotient Hecke algebra H g of H!M (where cuspidal
means now that there exists a Levi subgroup M* of an inner form G* of G which
carries a cuspidal unipotent representation ¢ and which is isomorphic to an inner
form of G ¢, such that the g-rational factor of the formal degree of o* is equal to that
of the residue of [LIQM at r) is always the restriction of an STM HSe ~s HIM for
any inclusion of (R, m ) as a standard parabolic subsystem of the based root datum
(R, m) (with parameter funtion) of H/M(G) = H(R, m).

A priori the second property seems much more restrictive (except for the “final”
exceptional groups Eg, F4 and G»), but miraculously these properties lead to the same
notion of cuspidality. The essential uniqueness part of Theorem 3.4 reduces to the rank
0 (or cuspidal) case in this way. The cuspidal case is done by direct inspection for the
exceptional groups (most of the required results are in [21,59,60]). For the classical
groups, the cuspidal case is treated in [19].

Of course the arguments above are only heuristic, but they tell us precisely where
we should expect STMs, how these should be defined by induction from cuspidal ones,
and what is necessary to check in order to prove that these maps really are STMs (thus
providing a Proof of Theorem 3.4). In the remainder of this paper we will prove that
indeed, any unipotent cuspidal pair (P*, o) of an inner form G" gives rise in this way
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to an essentially unique STM H"*¢ ~» H'M  thereby proving Theorem 3.4 in full
generality.

For exceptional groups the required verifications that induction of cuspidal STMs
from Levi subgroups always give rise to STMs is based on the notion of a “transfer
map diagram”. This notion is defined and discussed in paragraph 3.1.4. One can also
study more generally the STMs between two unipotent affine Hecke algebras, not just
the ones with H/M as a target. This is interesting in itself, since in several cases the
“unipotent spectral transfer category” is generated by very simple building blocks of
this kind. Indeed, this is how we show the existence of STMs induced from cuspidal
ones in the classical cases.

3.1.4 The transfer map diagram of a unipotent STM  Such an expected unipotent STM
® : H"¢ ~s HIM is determined (up to the action of Autg(H™%¢)P) by the image
ro = sgcg of ¢r o, a cuspidal generic residual point for the Iwahori-Matsumoto
Hecke algebra HIQM of the quasisplit Levi subgroup G of G. We can choose the

unitary part sg = s(eg) € Tg., such that it corresponds to a vertex eg € C2V, the
fundamental alcove for dual affine Weyl group (Wy),, o associated to (R, mg). Let
v be the set of corresponding nodes of the spectral diagram X;(R o, mg), and put
Jo for the finite type Dynkin diagram that is the complement of vg of X;(Rg, mg).
Let R’ denote the root datum underlying H™5¢ with multiplicity function m’.

A node v; of the complement Jg is weighted with the weight w; := Da,’(cg) of
the gradient Da,’ of the corresponding dual affine root a;” (this value is a power of ¢).
We may put ¢ in a dominant position with respect to the roots Da;” where i runs over
the nodes of Jg. This is essentially the weighted Dynkin diagram of a linear generic
residual point (in the sense of [56], but obviously restricted in our context of the fixed
line in the parameter space defined by m ) for the finite type root system defined by
Jo with the parameters mé s, (in a multiplicative notation).

As was remarked above, if the rank of @ is positive, a finite type Dynkin diagram of
type Jo fits uniquely as an excellent subdiagram J of the spectral diagram X (R, m)
associated to G (this can be checked case-by-case), up to the action of X (G). Now
we also assign weights to the nodes of K = I\ J as follows. By modifying ¢r (within
its equivalence class) by an element of the Weyl group W' = W (R()) we may assume
that via D¢r the affine simple reflections of (R;n)(l) (relative to the base (F')" of
(R))™) correspond bijectively to the elements of K.

This allows us to use k € K also to parameterize the elements of the base of (R;,l)(l ),
Let ko € K be the vertex of the unique (dual) affine simple root which is not in F),.
From (T2), Proposition [54, Proposition 5.6](4) and Corollary [54, Corollary 5.8]
(applied to the case Q' = ) we see that this is the unique element ko € K for which
the corresponding vertex D@7 (0) = wy, € C" has the shortest length. We interpret
the gradient Da" of a (dual) affine root a“ € R,g} ) as a character on T (and similarly
for dual affine roots of (R;n)(l) on T"). By construction, the character lattice of L,
is mapped injectively to a sublattice of X ,% and injectively to a sublattice of X/,.
From (T3), [54, equation (8)] and considering the numerator of the p-function (see
Definition ([54, Definition 3.2]) it is easy to see that D¢>§(Da}¥ ) must be a rational
multiple D¢ (Da)) = fiDby of a root by € (F,)M. This sets up a bijection
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between the set of simple affine roots of (F,’,,)(l) and the set K = I\ J, and using this
we will parameterize the elements of (F,;)m also by the set K. By Proposition [54,
Proposition 5.6](3) this bijection defines an isomorphism of affine reflection groups.
By Proposition [54, Proposition 5.6](4) it is then clear that b]ZO has to be the extending
affine root of the spectral diagram of H(R,,, m’).

And we can say more precisely, by considering the formula of the u function of
the Hecke algebra and (T3), that f,~ le N, and that we can thus interpret the fraction
Db/ as the character f,_ ! D¢%.(Day)) of T2. Now L itselfis a coset of 7€ with origin
ro = sgcg, and using the above remarks, it follows that for all k € K, Da}g lifts to
a constant multiple of a character of a suitable covering of T’ (namely the fibered
product of L and T’ over L,). We call this lift of Da,/, expressed as a radical of b,
the weight wy of k € K. In view of (T3) and [54, equation (8)], and using Proposition
[54, Proposition 5.6] we see that: wy := {kvck(Db}Z)fk, where ¢ = 1if k # ko, i,
isa fk_ol—th primitive root of 1, and cx € Z (which can be computed by evaluating
Da,/ on cg). All this gives rise to the following notion:

Definition 3.3 Given a unipotent STM & : H*%¢ ~» H!M the spectral diagram
35 (R, m) of G with the vertices of the excellent subdiagram J marked with the
constant weights w, and the remaining vertices of K labelled with their weights wy
as above, is called the transfer map diagram of .

Observe that [];.; w;" = 1, where 1 = >, _; n;a;” is the decomposition of the
constant function 1 as a linear combination of (dual) affine simple roots of R" in terms
of the base of simple roots F,,(11). In particular, there exists a constant C such that for
all k € K, nx fx = Cny, where ZkeK ﬁkbi = 1 is the decompostion of the constant
function 1 in terms of the (dual) affine simple roots (F,;)(l) = (F)" of (R")™. Clearly
the value of Da}\{/0 on s = wy, is a primitive ny,-th root of 1. Therefore we see that
C =1, and fk_1 = ny/nx (this integer is called zx by Lusztig [40, Section 2]); by
Proposition [54, Proposition 5.6], we are in the setting of [40, Section 2] and we may
therefore use the results of [40, Paragraph 2.11 to 2.14]. For example, by carefully
analyzing the Cartan matrices it follows that if b, b,f/ are connected by a single edge,
then f,~ I = S ! Moreover, S !'is a divisor of fk_o1 for all k € K, except possibly
if k, kg € K°, when we may have fkfk_ol e {1, (1/2)*1}. ‘We also note that, from the
tables in [40, Section 7] and [44, Section 11], for all k € K: ny/ny, € Z. By the above
it is clear that ® is completely determined by its transfer map diagram.

The finite abelian group K} C TLW L can be recovered from the transfer map diagram
as the product over all k € K\{ko} of cyclic groups Cx of order z3x = f,_ ! (for those
k € R\{ko} for which n,,(bx) = 1) or of order zx/2 (for k € K\{ko} such that
1, (bx) = 2 and zx is even). For classical groups K Z is always trivial.

3.2 Main theorem

We finally have everything in place to formulate the two main theorem of this paper. Let
G be a connected absolutely quasisimple K -split, k-quasisplit linear algebraic group.
For simplicity we will assume that G is of adjoint type. Recall that H'M denotes
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the Iwahori—-Matsumoto Hecke algebra of G = G(K), i.e., the generic affine Hecke
algebra HIM = 1M (G) such that HiM is the Iwahori—-Matsumoto Hecke algebra of
G(k) = GF with respect to the standard cuspidal unipotent pair s¢ := (B, 1) where B
denotes the Twahori subgroup. Since s is fixed for the action of NBY /Bf = QGC, the

orbit Oy of sy equals Oy = {sp}. We have Q%00 = QSO’G. Its trace /™ is normalized
as in (25), i.e.,
M (M) = dety (vidy — v 'w,0) ! (28)

where V = RY, 0 denotes the action on Y of the outer automorphism of GV cor-
responding to F, and w, € Wy is the image of u € Q¢ C W under the canonical
projection W — Wy. Observe that (H/*, t/M) is a direct summand of Hyni(G),
namely the unique summand of maximal rank. It corresponds to the Borel component
of G, the Bernstein component corresponding to the cuspidal unipotent representa-
tion 1 of a minimal F-Levi subgroup M of G.

From Theorem 2.8 the group X}, (G) acts by (spectral) transfer automorphisms
on (Huni(G), 7). In particular X (G) acts by spectral automorphisms on HIM too,
(see Proposition [54, Proposition 3.5]) since H/M is the unique summand of Hy; of
maximal rank.

3.2.1 Notational conventions for Hecke algebras Recall Definition [54, Defini-
tion 2.11] and recall that the spectral diagram can be expressed completely in terms of
Ro and of the Wy-invariant functions m 4 () on R defined by [54, Equation (4)]. In
the proof of the theorem below, we will denote the unipotent normalized affine Hecke
algebra of irreducible type H(R™, m), with X, the weight lattice of the irreducible
reduced root system R, as follows. If R, is simply laced and the parameters m  (ax)
are equal to b, we denote this unipotent Hecke algebra by R, [¢"]. If R, is not simply
laced and not of type Cg, then we will denote this algebraby R, (m 4 («1), m4(a2))[g b]
where «; € Fj, is long and «; is short, and ¢ b is the base for the Hecke parameters
(equivalently, we could write R, (bmy(a1), bmy(a2))[g]). If both parameters are
equal to b, we may also simply write R,,[¢"], this will not create confusion. For
Ry, = Cq, we will write Cy(m—_, my)[q b] to denote the unipotent normalized affine
Hecke algebra with R, = C4 with m4 (@) = b for @ a type D4 root of R,,, and for a
short root B of By, we have m_(8) = bm_ and m(B) = bmy. lf m_(B) = 0 and
m4+(B) = m4(a) = b, then we may also denote this case Cy [qb].

Theorem 3.4 Let G be a connected, absolutely simple, quasisplit linear algebraic
group of adjoint type, defined and unramified over a non-archimedean local field
k. Let €,,i(G) be the full subcategory of the spectral transfer category &5 (with
essentially strict STMs as morphisms) whose set of objects is the set of normalized
unipotent affine Hecke algebras H"-*¢ associated with the various inner forms G*
of G (where u € Z'(F, G) runs over a complete set of representatives of the classes
[u] € H! (F, G)). Let Hyp; denote the direct sum of all the objects of €uni(G). Recall
that there is a natural action of X}, (G) on Hy,; such that direct summands are
mapped to direct summands, preserving the rank. In particular X}, (G) acts on the

unique summand H'™ (G) of H,i of largest rank.
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There exists a X}, (G)-equivariant STM
® : (Huni(G). 1) ~ (H'M(G). «'M) (29)

which is essentially unique in the sense that if ®' is another such equivariant STM, then
there exits a spectral transfer automorphism o of (Hyni(G), T) such that ® = ®oo.

The transfer map diagrams corresponding to the restrictions of ® to the various
direct summands H"> € of Hyni(G) are equal to the corresponding geometric diagrams

of [40].

Corollary 3.5 Recall that the spectral isogeny class of an object of €,,,i(G) is equal
to its isomorphism class [54, Proposition 8.3], and that these classes admit a canonical
partial ordering < as defined in [54, Definition 8.2]. Then (H'™(G), t'M) < (H, 1)
for any object (H, T) of €yni(G).

Theorem 3.4 is a consequence of the combined results of the following subsections.

3.2.2 The case of G = PGLy4+1 In this case, the only cuspidal unipotent representa-
tion comes from the anisotropic inner form G* = D> /k* (where D is an unramified
division algebra over k of rank (n + 1)2) and has a formal degree with g-rational factor
given by fdeg := [n + 1];1 (cf. 2.2.3). It is obvious that there exists a unique cuspidal

STM (L, fdeg) := Ao[q"‘H] ~ Anlq], since A, [¢q] has only one orbit of residual
points (up to the action of X}, (G)) and this has indeed the desired residue degree.

Based on this it is easy to construct the general STM for the unipotent types for
this G, and prove that these are unique. Suppose we have a factorization n + 1 =
(d + 1)(m + 1). Consider an inner form G* of G such that u has order m + 1. A
maximal k-split torus § ~ (kx)d of G" defines a Levi group M* = Cgu(S) such
that MY, = M"/S is of type (D* /k*)¥*! where D is an unramified division algebra
over k of rank (m + 1)2. Then J is of type Agfl, which fits in a unique sense (up to
diagram automorphisms as usual) as an essential subdiagram of the spectral diagram
of H!M_ The Hecke algebra H"-%" is of type Ag[¢"']. For the unique strict STM
we make sure that J does not contain a; . The weights for the vertices of J are equal
to ¢, and for those of k € I\J equal to ¢~ Dbx. It is an easy check that this indeed
defines a strict STM Ag[¢" ']~ A,[q].

The uniqueness of such strict STM up to Aute(H"*¢) is clear as before: Any strict
STM ¢ : Ad[q’"+1] ~» Aylq] is obtained by induction of a cuspidal one for M,
which determines J and the underlying geometric diagram of ¢ as before. There
assignment of weights to the vertices of K is dictated by the basic properties of an
STM as explained above. Hence ¢ must be equal to the STM constructed above, up to
a diagram automorphism of A,4. By Theorem 2.8 the direct summands of H**® form
a torsor for (Q7“)* = Q*/(27°)* ~ Cyu41, and hence there is a unique way to write
down a Q*-equivariant STM H™*% ~» H'™ up to the action of Autes(H"%). This
completely finishes the proof for the case of PGL,, .

3.2.3 Existence and uniqueness of rank 0 STMs for exceptional groups This is a case
check (with some help of Maple, to simplify the product formulas for the g-factor
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of the formal degree as given in [56]), almost all of which has already been done in
the existing literature. Let G be an k-quasisplit adjoint group over with k£ which is
split over K, of type 3Dy, Eg, 2E6, E7, Eg, F4, G>. One uses the classification of the
residual points and the product formula for the g-rational factor of the formal degree
from [56] to compute, for each orbit Wyr of generic residual points (in the sense
of the present paper), the g-rational factor of the residue degree /™) (r) for the
Iwahori-Matsumoto Hecke algebra 1M of G. (Many of these results are already in
the literature; For Eg this list was given in [21] using essentially the same method. For
all split exceptional groups this list can be found in [60].

Note that the computations in [60] can be simplified a lot using the classifications
and the product formula from [56], to just “clearing g-fractions”, since our formal
degree formula is already given in “product form” (as opposed to an alternating sum
of rational functions as in [60]). Also note that we are for this list only interested
in the Iwahori spherical case.) We note that these lists reveal that these residues of
w!™ at distinct orbits Wor # Wor’ are distinct for all exceptional cases. Hence in the
exceptional cases the uniqueness (up to diagram automorphisms) of rank O spectral
transfer maps for irreducible unipotent Hecke algebras is guaranteed by this.

The existence of the desired cuspidal unipotent STMs is now an easy task; one
considers the list of all cuspidal unipotent representations of all inner forms of G. This
means that we need to make a list of all maximal F},-stable parahoric subgroups of the
inner forms G", consider their reductive quotients over k, and for those quotients which
admit a cuspidal unipotent character, compute the normalization of the associated
Hecke algebra H"-*¢ := (L, t%¢) according to (25). Of course the main part of this
formula is the degree of the unipotent cuspidal characters of the simple finite groups of
Lie type, which is due to Lusztig [32-34] and conveniently tabulated in [9]. Finally we
need to see if the g-rational parts of these expressions show up in our list of residues
of the u-function. This indeed leads to cuspidal transfer map diagrams with the same
underlying sets J as listed by Lusztig in [40] and [43], and for each of those diagrams,
there exists one generic linear residual point for J (in the form of the collection of
weights assigned to the vertices of J) producing the correct residue of p and thus an
STM.

Let us give the results for the two non-split quasisplit cases which were not yet
treated in the existing literature. The unipotent Hecke algebra G, (3, 1)[¢] (for 3Dy),
and F4(2, 1)[¢q] (for 2E¢). The first case G (3, 1)[¢g] has 4 residual points. The spectral
diagram [54] of this Hecke algebra is the untwisted version of the Kac diagram [61,
Subsection 4.4], with the equal parameters 3k attached to the nodes (a similar remark
applies to all simple quasisplit unramified cases).

Let us use the maximal subdiagrams of this Kac diagram to name the various orbits
of residual points. There are two orbits of residual points G, and G>(a) with positive
central character. The corresponding groups A, [where A denotes the corresponding
discrete unramified Langlands parameters via equation (17)] are 1 and S3 respectively.
There are two nonreal orbits A (with A; = 1) and A x A (with A, = C3). Looking
at the g-rational factor of the residue of the p function at these points, we find that
the cuspidal (orbits of) residual points are Ga(a;) (matching the degree of 3D4[1])
and A| x A (matching the degree of *D4[—1]). Together with the Iwahori spherical
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unipotent discrete series these cases make up for the set of 7 unipotent discrete series
(5 of which are Iwahori spherical, while the others are cuspidal).

A similar discussion for F4(2, 1)[¢g] shows the following. Again we use the Kac
diagram [61, Subsection 4.5], this time with the constant parameters 2k attached to
each node to indicate the various orbits of residual points. We have 9 orbits of residual
points (in the notation of [56]). There are 4 orbits with positive real central character,
corresponding to WV (D; (2k, k)) = D;(2k,2k) with D;(x,x) (fori = 1,...,4) as
listed in [56, Table 3] (or equivalently, the D; (x, x) are the weighted Dynkin diagrams
F4, F4(01), F4(02), F4(03) (in this order) of the distinguished nilpotent orbits of F4 as
denoted by [9])). The corresponding groups A, are of the form 1, S, S», S3 respec-
tively. In addition there is 1 orbit corresponding to A} x B3 with A, = C», 1 orbit
for Ay x Ay with A, = C3, 1 orbit for Az x Aj with A, = C3, and finally 2 orbits
corresponding to C4 with A, = 1 (the regular orbit) and A, = C; (the subregular
orbit) respectively. The cuspidal orbits of residual points are in this case the ones cor-
responding to F4(03) (matching the degree of 2E6[l]) and the one of type Ay x Aj
(matching the degree of 2E4[6] and of 2E¢[62]). Hence we expect in total 18 unipotent
discrete series in this case (corresponding to the irreducible representations of the
various A, ). Using the classification of [56, Theorem 8.7] we can identify 13 Iwahori
spherical cases (corresponding to the discrete spectrum of F4(2, 1)[¢]), and there are
3 cuspidal ones. (The two missing ones are of intermediate type, corresponding to a
rank 1 STM. See paragraph 3.2.5.) This agrees with the tables in [40] and [43].

3.2.4 Existence of STMs for the exceptional cases Let us now consider the existence
of the positive rank STMs in the exceptional cases. Let S* be a k-spit torus. As
always, we assume that S* C S, with § C G a fixed maximal k-split torus. Consider
M = Cg (S0, M* = Cg(S*)?, and assume that MY, = M"/S* admits a cuspidal
unipotent character o'*. Recall that HIM (M) ~ HIQM for some proper subset Q C
Fy,. In particular, at most one of the irreducible components of Q will not be of type
A, and possible irreducible factors of type A have to be in the anisotropic kernel of
G*". By the results for type A and for rank 0 STMs for irreducible exceptional types,
there exists a unique rank 0 STM ¢ : L ~ H/M (M) for the cuspidal unipotent
representation o', Our task will be to see that this S7 M map can be induced to H'™ .

As in 3.1.2, consider L = ry T’ where ryy = sycy € T is the image of ¢,
J C Z3(R, m) is the excellent subset of type Jj; associated to the STM diagram of
¢. Here ¢y is in dominant position with respect to J, so that the weight of a root a;

in J is given Daiv(cM), and sy is a vertex of CV in F,,(11)\J. By what was said in the
previous paragraph it follows that these diagrams are exactly the exceptional geometric
diagrams of Lusztig, with weights attached to the vertices of the boxed set of vertices
J. We remark that for all exceptional cases, the geometric diagrams with J such that
|K| > 1 (i.e., of positive rank), the components of J are all of type A (this simplicity is
in remarkable contrast with the classical cases). Therefore the weights w; with j € J
are simply equal to qu @) 1f there would indeed exist a corresponding transfer map,
then its transfer map diagram should be obtained by assigning in addition weights to
the vertices in K = F,g,l)\J , as described in Definition 3.3. These weights turn out
to be uniquely determined by the basic property Proposition [54, Proposition 5.2] of
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spectral transfer maps (applied to the case of residual points), and this also enables us
to find these weights w; easily (using the known classification of residual points of
[22] and [56]). Our task is then to prove that these eligible diagrams thus obtained are
indeed transfer map diagrams.

In order to do so, we need to first find k. This has to be the unique vertex k € K of
the geometric diagram such that the corresponding vertex wy, € C" has the shortest
length. It is easy to check in all exceptional geometric diagrams that this condition
defines a unique vertex ko € K. The cuspidal unipotent representation o, of My,
lifts to a cuspidal unipotent representation ¢, of M, and the cuspidal pair (M, 6,)
is obtained by compact induction from a cuspidal unipotent type s := (P, §). The
affine Hecke algebra H"%¢ of the cuspidal unipotent type is given, and let R/ , be the
corresponding based root datum with multiplicity function m’'.

Next we need to determine the bijection between the affine simple roots b, of
the spectral diagram of H**¢ and of K. This was done by Lusztig: According to the
main result of [40], there exists a matching such that k¢ corresponds to by, and such
that the underlying affine Coxeter diagram of the spectral diagram of H*'*¢ matches
the Coxeter relations of the reflections in the quotient roots oy = Da]Z |L (cf. [40,
2.11(c)]). (Here we identify L with T7/ < T, the maximal subtorus on which the
gradients of the roots from J are constant, by choosing ry; € L as its origin (given by
the weights of j € J and so corresponding to wy,)). Since this matching is only based
on the underlying affine Weyl groups, and by Proposition [54, Proposition 5.6], it is
clear that a possible spectral map diagram has to provide the same matching. It is easy
to check case-by-case that such a matching is unique up to diagram automorphisms
preserving the parameters mlve, of the spectral diagram of H":*¢. Thus we fix such a
matching, and use this to also parameterize the (dual) affine simple roots of the spectral
diagram of H**° by k € K .

Following notations as in 3.1.4, we need to assign an integer cx to eachnode k € K,
in order to define the weights wy for all k € K. We define cx by the formula

cx = mpy(ay) — fmp (by) (30)

where a,/ denotes the (dual) affine root of R™ associated with k, and b,/ the corre-
sponding (dual) affine root of the spectral diagram of H*%¢.

The diagram thus obtained defines a map ¢ from 7" to a suitable quotientof L C T .
For each maximal proper subdiagram D of a spectral diagram of a semi-standard affine
Hecke algebra H (R, m) there exists a generic residual point rg such that Da}\(/ (rg ) =
2 R@ for all k e D, and for k € K\ D, such that b}Z (r,? |v = 1) is a primitive root of
1 of order nyx. The above assignment means that we require the alleged spectral transfer
map ¢ to satisfy the property that ¢ (r I?,) =r 1? Y/ We can check easily case-by-case
that this map then also sends all other residual points of 7"-*¢ to residual points of
H!M and that these weights are the only possible weights defining a map with such
properties.

Remark 3.6 Thus, the image under ¢z of the central character of the one-dimensional
discrete series representation of "¢ which is the deformation of the sign character
of its underlying affine Weyl group is equal to the central character of H/™ (G) of the
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analogous one dimensional character. If H"-*¢ is the Iwahori-Hecke algebra of an
inner twist G* of G, then this is true in general, since we know that the formal degree
of the Steinberg character is unchanged by inner twists. For exceptional groups it is
true for all unipotent STMs of positive rank, which seems related to the fact that for
these STMs, the subset J C F,fll) consists of type A components only. In classical
cases STMs do not have this property in general.

Finally we need to check that the map ¢ we have thus defined indeed defines an STM.
This amounts to applying ¢* to (u/™)(X) making the substitutions ¢*(c;) = w; for
all i € 1\{0}, and checking that this equals the p-function ;%€ of (H*5¢, d7%¢)
up to a rational constant. Now this is already clear for the constant factor of d%*¢
because of our choice of the weights of the j € J and the fact that we started out
from a cuspidal STM for o for MY, ,. Hence we only need to consider, for all k € K,
the cancellations in ¢*((u!™)L)) for the factors in the numerator and denominator
which are of the form (1 — ¢v4 (Db]Z)F) (with A, F rational, F nonzero, and ¢ a root
of unity).

This is a tedious but simple task: We need to compile the table of all posi-
tive roots @ € Ry, 4, consider those o such that @ = «|r is a nonzero multiple
of @k (upon ignoring the coefficients of « at the j € J, and using the relation
(ZkEK nkn}zol Da}f )L = {kovl (with &y, a primitive root of 1 of order ny, and [ € Z)
which follows from ), ., ix Dby = 1 and the discussion in paragraph 3.1.4). Then
we compute for each of those roots the value ¢*(«). This produces a list of integral
multiples of kab}Z , and for each member of that list, a list of values of the form ¢; vl
with ¢; a root of 1 (of order divisible by zi,), and v’ an integral power of v. From
these lists we can easily see the cancellations of these type of factors in ¢* (u/M)()),
and check that a rational function of the form

(1-p»?
(1 + v2m-B)B)(1 4 v2m-B) B)(1 — v=2m+B) B) (1 — v2m+(B)B)

€1y

(with B = Db)/) remains, as desired. In this way we verify that all the diagrams so
obtained are spectral map diagrams of spectral transfer maps, in all cases.

As a (rather complicated) example, let us look at Eg /A3A3A;. This diagram arises
by induction from the cuspidal pair (E7, o*), whose spectral map diagram is given
by E7 /A3A3A1 (see the geometric diagram of [40, 7.14]). The spectral diagram of
H"-%¢ is of type C1(7/2, 4)[q]. The vertex ky is labelled by 1 in [40, 7.8]. We write
the simple roots of C;(7/2, 4)[¢] in the form b = 1 —2p, and by’ = 2. The weights
of the roots a; := ag and azv = a3 are wy = J—_lv_G(—ﬂ/2) and wy = v_7ﬂ/2.
When « runs over the positive roots of Eg such that ¢*(«) is a nonzero multiple of §/2,
the following lists of factors in front of 8/2 appear: For ¢ := 4+/—1, the following
powers of v: vE0, 2 times v**, 3 times v¥2, and 4 times 1, and for ¢ = &I, the
following powers of v: v™>, 2 times v*3, 3 times v*!. In addition the restricted root
appears, with factor 1. One easily checks that this indeed produces the p function of
C1(7/2,4)[q]. The group K7} is isomorphic to C> (caused by taking the square root

of B). Note that this is equal to the central subgroup TLW L with Ty C T the subtorus
whose cocharacter lattice is the coroot lattice of E; C Eg.
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As an example of a somewhat different kind, let us look at the unramified nontriv-
ial inner form 2E7 of type E7 (cf. [40, 7.18]). This case is induced from the trivial
representation o of the anisotropic kernel MY, , of the group of type 2E;, which is
an anisotropic reductive group of rank 3. The spectral diagram of H*%-¢ is of type
F4(1, 2)[g]. Since F, has order 2, it follows that [see 2.2.3, 2.2.2, and (24)] the g-

rational factor of the formal degree of o* is [2];3. This corresponds to the residue

degree of the u-function of a Hecke algebra of type A;[¢]° at its unique residue point.
Hence we need to take J of type AjAjAj. This subdiagram fits in a unique way as an
excellent subset in the spectral diagram of type E7, up to the diagram autmorphism
of E;. However, we need to choose the unique such embedding of J such that the
root ag does not belong to J (i.e., J C Fy, o here; it is easy to check that the other
possibility does not lead to a strict STM (although it does lead to an essentially strict
but non-strict STM, obtained by composing the strict STM we are about to construct
by the nontrivial diagram automorphism of the spectral diagram of type E7, cf [54,
Remark 6.2])). Since we know that a transfer map diagram which is induced from
this cuspidal pair must have the property that J appears as an excellent subset of the
diagram of, it is clear that Lusztig’s geometric diagram for [40, 7.18] indeed should be
the underlying geometric diagram of a spectral transfer map (if it exists), and kg is the
vertex numbered by 5 in [40, 7.18]. The fx are all equal to 1, and (in the numbering
of [40, 7.18]) we have w; = q)‘f Dbl.v with A; = —1fori =1,2and 0 fori =3,4,5.
It is easy to check that this gives a spectral transfer map ®. All other examples are
done similarly by executing this algorithm. We remark that z; < 3 in all cases, except
possibly when Db,/ is a divisible root of R, when zx = 4 may occur (as in the
above example). We leave it to the reader to check the remaining exceptional cases by
him/herself.

3.2.5 The exceptional non-split quasisplit cases For convenience we explicitly list
the unipotent STMs for the non-split quasisplit cases *Dy4 and “Eg. Both groups do
not have nontrivial inner forms. The rank 0 STMs were all described in paragraph
3.2.3. For the case *Dy, up to G¥-conjugacy, the only F-stable cuspidal unipotent
pairs (P, o) are those with [P, an F-stable Iwahori subgroup, and o = 1, or with P
maximal hyperspecial. Thus, the only nontrivial unipotent STMs are the rank O ones
which were already described in paragraph 3.2.3

For 2 E¢, besides the rank 0 cases already described in paragraph 3.2.3, we have the
rank 1 STM which arises from the cuspidal unipotent pair (P, o) where Pis of type 2As
(and o its unique cuspidal unipotent representation). This gives rise to aunipotent affine
Hecke algebra of type C1(4, 5)[¢]. The unique STM @ : C1(4, 5)[¢] ~ F4(2, 1)[q]
maps the two central characters of the two discrete series of C1(4, 5)[¢] in a unique
way to two orbits of residual points of F4(2, 1)[¢]. Namely, ¢°> maps to A; x B3,
while —g* maps to A3 x Aj. More precisely, ® can be represented by a morphism
¢ : Ty — L, of torsors of the algebraic tori. Here we consider the algebraic tori
T; associated to the two relevant affine Hecke algebras (with 7; of rank i, and with
coordinates given by the simple roots 81 for 77 and «, . . ., aq for Ty, with a3, a4 the
short simple roots). Further L C T4 is a rank 1 residual coset given by the equations
(a1 4+2a3) = —q_s, oy = q2, a4 = g, while L, isaquotient L — L, of L, adouble
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cover. The morphism ¢ can be chosen as follows. Let F,,; = {80, B1}. We check that
ko = 1 and kj = 3, and that the additional weights of the transfer diagram map of ¢
are given by w; = —v_4,85/ % and w3 = v ﬂll /. Together with the information in
paragraph 3.2.3, this completes the descriptions of the relevant STMs H** ~» H!M
for the cases 3Dy and 2Eg.

Remark 3.7 In these two cases Dy and 2E6 we see that a parameterization of the
unipotent discrete series representations is completely determined by the matching
condition that the g-rational factor of the formal degree needs to equal the residue
w!™M-4rD () together with the requirement that we assign the generic representation
to the trivial representation of A, (where A is the unramified Langlands parameter
which corresponds to Wyr according to (17)). (To be precise, in the case 2E, this fixes
the parameterization except for the interchangeability of >E¢[6] and 2Eg[62].)

3.2.6 Unipotent affine Hecke algebras of type Cq(m_, m4.) For an absolutely simple,
quasisplit classical group G of adjoint type other than PGL,, 41, the proof of the essen-
tial uniqueness of an STM ¢ : H*%¢ ~» H!M (G) for an affine Hecke "¢ of any
unipotent type s for any inner form G* follows the same pattern as in the exceptional
case, by reducing the statement to the essential uniqueness for cuspidal STMs. The
proof of the existence of an STM ¢ as above is treated quite differently however, for
most cases by generating ¢ as a composition of a small number of basic STMs which
generate the spectral transfer category whose objects consist of all unipotent affine
Hecke algebras of the form H*%¢ for all groups in certain classical families (con-
taining G). It turns out that in essence there are only 2 types of basic building blocks
generating almost all STMs between the unipotent affine Hecke algebras associated to
the unitary, orthogonal and symplectic groups. Apart from the STMs built from these
basic generators, there is one additional, very important type of basic STMs of the
form ¢ : H"“%¢ ~» H!M(G) for the orthogonal and symplectic cases which we call
extraspecial.

As mentioned above, we will now first define some basic building blocks of STMs
between classical affine Hecke algebras which are associated to the unitary, orthogonal
and symplectic groups. We define a category €.jass Whose objects are normalized affine
Hecke algebras of type (Cy(m_, m+)[qb], Tm_,m,) Whered € Zxo, (m_,my) e V,
the set of ordered pairs (m_, m.) of elements my € Z/4 satisfyingmy —m_ € Z/2,
and b = 1 if both my —m_ € Z and my + m_ € Z, otherwise we put b = 2.
Hence the objects of C¢j,5s are in bijection with the set V of triples (d; (im—, m4.)) as
described above.

The trace T = 7j,_ ., is normalized as follows. First, we decompose V in six
disjoint subsets VX with X € {I, II, I, IV, V, VI}, which are defined as follows. If
my € 1+ 4—1“ write |[m4| = k+ + (Zej—_l) with ex € {0, 1} and k+ € Z>¢. Define
8+ € {0, 1} by k+ € 84+ + 27Z. Then we define:

d;(m_,my) eVl iff myeZ/2andm_ —m, ¢ Z,
(d; (m_,m;)) e vl iffmieZ+%andm_—m+eZ,
d; (m_,my)) € VI iff my € Zand m_ — my ¢ 27,
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d;m_,my) e VYV iff myeZandm_ —m, €27,
d;(m_,my)eVY iffmyeZ+Lands_ -5, £0, (32)
(d; m—,my) e V¥ iff my € Z4 7 and §_ — 84 = 0.

Observe that the type X of (d; (m—, my)) only depends on (m_, m); we will often
simply write (m_, m) € VX instead of (d; (m_, my)) € VX. We now normalize the
traces T,,_ ., asfollows. These traces are of the form 7, = (vb — v_b)_”zr,gﬂm+ s
where Trg,,m+ is independent of the rank d (and d is suppressed in the notation).

Explicitly we define 7,;_ ., by

2 2
di " @rdp T g) i moima) € V!

d;*E(q)d;’]’:(q) if m_,my) e V!
e by bylg (1) = dy (q)dbr’ (q) if m_,m,)e vt
m_my = s (=0 42D () dl P (g) if m_,my) e vV

2A .
di " @yt it nomy) e VY

A7A , :
&M diP @) it mo,my) e VYL
(33)

2

Here d; 4 A}(q) is the g-rational part of the formal degree of a cuspidal unipotent
character for the adjoint group G of type 2A; which is compactly induced from the
unique cuspidal unipotent character of a maximal parahoric subgroup whose reductive
quotient is of type 2A; (qz), with/ = %(s2 +s5)—1(withs € Z>) (see Proposition 2.5;

itis convenient to extend thistos = 0 by setting dg LA 1); similarly dy B (g) denotes
the g-rational part of the formal degree of a cuspidal unipotent representation of G of
type B; induced in this sense from B;(g) with [ = s2 45 (with s € Z>o) (this degree
covers the cuspidal character of the odd orthogonal and the symplectic groups); dy D (q)
denotes the g-rational part of the formal degree of a cuspidal unipotent representation
of G of type D; induced from D;(q), with [ = s2 (with s € Z>p) (this degree covers
the cuspidal character of the even split orthogonal groups (s even) and of the even
quasisplit orthogonal groups (s odd)). (Using [9, Section 13.7] and (25) it is easy to
give explicit formulas for these formal degrees.) where the set {a, b} witha, b € Z>¢
is determined by the following equalities of sets:

(F+a. s +by={lmy —m_|,Imy +m_[}  if (m_,my) € V!

(2a,142b} = {lmy —m_|, |my +m_|} if m_,m;) eVl
(142a,142b)={imy —m_|,|my+m_|} if (m_,my)e vVl

(2a,2b} = {{my —m_|, |m4 +m_|} if m_,my)evlV (34
{%+a,1+2b}={|m+—m,|,|m++m,|} if m_,my)evy
{3+a,2b}={Imy—m_|,|my+m_|} if m_,my)e V'L

This determines a and b in case II, V, VI, and it determines a and b up-to-order in the
other cases, so that the normalization (33) is always well defined.

Now we define the building blocks of the STMs between these affine Hecke alge-
bras. First, the group Dg of essentially strict spectral isomorphisms as described in
Remark [54, Remark 7.7] acts on the collection of objects of € j,ss. This corresponds
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to the action of Dg on the set V by preserving d, and on a pair (m_, m.), the action is
generated by the interchanging m_ and m and by sign changes of the m .. Observe
that these operations preserve the type X.

Then there exist additional basic STMs in €j,ss of the types indicated below. (In
these formulas we have used the notation € (x) = x/|x| € {£1} to denote the signature
of a nonzero rational number x.) In the first 5 cases one of the parameters m_ or m
is translated by a step of size 1 (if the translated parameter is half integral) or 2 (if the
translated parameter is integral) in a direction such that its absolute value decreases. In
these first 5 cases both parameters can be translated in this way, as long as the absolute
value of this parameter is larger than % (in the half integral case) or 1 (in the integral
case). A formula corresponds to an STM provided that this condition on the absolute
value of the parameter which will be translated is satisfied.

Cylm—,my)lg*1~C, 1 (m— —e(m_), my)[qg?] if m_,my)eVimg ¢Z

+lm—|—
Cq(m—, m+)[q2] ~ Cd+2(|m+| Hm—,my — 26(m+))[q if (m—,mq) € vl my €7
Catm—m)lg)~ Cy | 1m— = elmo). m4)lq] if (m_,my)e vl
Ca(m—.m)g] ~ Capa(my|—1y(m—.my —2e(m gl if m_,my) e vl
Ca(m—.my)gl ~ Cqio(my|—1y(m—.my —2e(my)gl  if m—,my) e vV
Can—,m)a®1~ Coy 1ty b1 0= 04)1d] if n—,my) e vV

Cam—m)a®1~ Coy 1y nyap—s, O 814 if (n—,my) & VVI.

We denote the first 5 cases of these STMs by (b(m m+) or <I>(m s +)_ where the sign &
in the subscript indicates which of the parameters m or m4 w111 be translated. Notice
that if we combine the basic STMs of the first 5 cases with the group Dg of spectral
isomorphisms of €jag, then we are allowed for all objects X € {I, II, III, IV} either
one of m_ and m (by a step of size 1 or 2 depending on the residue modulo Z of the
parameter to be translated) as long as the absolute value of this parameter can still be
reduced by such steps. Observe that these steps preserve the type X.

Finally we are of course allowed to compose these basic STMs thus obtained with
each other and with the group Dsg of spectral isomorphisms. The basic translation steps
as above commute with each other and have the obvious commutation relations with
the group Dg of spectral isomorphisms (this also follows easily from the essential
uniqueness of STMs discussed below, see Proposition 4.1). Observe that while the
parameters are strictly decreasing with these basic translation steps, the rank is strictly
increasing.

Among the objects of Qicla“ of the types X e {I, II, III, IV}, the minimal spectral
isogeny classes of objects (in the sense of [54, Definition 8.1]) are of the form:

[C1(0 21)[612] Jand [C;(1, )[qz]] if X =1,
[Cz( Il if X =11,
[Cz(O 1)[q]] it X =111,

[Ci(0, 0)[¢]] and [C; (1, DIg]] if X =1V.

Note that for all objects in (’Sclass, the spectral isogeny class of an object is just its
isomorphism class [54, Proposition 8.3]. By abuse of language we will sometimes call
the objects in a minimal (least) spectral isogeny class in this sense also “minimal”



2176 E. Opdam

(respectively “least”). Note that some of these minimal objects admit a group of order
2 of spectral automorphisms (the cases X = Il or IV).

The cases X € {V, VI} are of a different nature. There are no STMs between the
different objects of these cases, as we will see below. But from each object of Qigass,
there is an essentially unique (i.e., unique up to spectral automorphisms) STM to the
least object in 65258 and from each object of @X , there is an essentially unique STM
to one of the two types of minimal objects in €, .. We call these STMs extraspecial.

It is easy to give a representing morphism ¢ = ¢>((Z;)m +) defining the basic STMs
of this kind. The first 4 cases, the building blocks of elementary translations in the
parameters m_ and m 4, do in general not correspond to geometric diagrams as given
in [40] and [43], since the image of the spectral transfer map is in general not a least
object. However, as we will see below, these building blocks are quite simple and their
existence can be established easily by a direct computation. The extraspecial cases
correspond to the geometric diagrams [40, 7.51, 7.52] and to [43, 11.5] (in a way that
will be made precise below).

The formula defining this morphim ¢ for the first 5 cases (thus a minimal translation
step in one of the parameters of an object of type X € {I, II, III, IV}) only depends on
the value modulo Z of the parameter to be translated. Using the group Dg of spectral
isomorphisms it is enough to write down the formula for a basic translation in m 4
where m+ > 0.

Let (d; (m—,m4)) € V. First, assume that m4 € Z>o + % For d > 0 consider
the torus Ty (L) := G}, (L) over L. We write its character lattice as X*(7y) := X4 (or
X4 = 7%). The standard basis of X*(Ty) is denoted by (1, ..., 7). We consider X
as the root lattice of the root system of type B,. The Weyl group Wy acts by signed
permutations on X,. Form € Z+ 1/2 we define a homomorphism ¢((Z1,;’)"f; )Ty
Ty 4m. —1/2 of algebraic tori over L by

¢((21n,1’;f1;)(t1, o tg) =t 1, 00,030 2P0y

(m—,my)

Next, if m4 € Z-¢, we define a morphism b1 - Ta = Tavame -1 of algebraic
tori over L by

b L) = 101,00, 45, g%0, g%, P B gy
Finally, for the extraspecial cases X € {V, VI}, we define, for m4+ > 0, a morphism
Syt Ta — To with L i=2d + Ya(a + 1) + 26(b + 1) (if X = V)or L :=
2d+ %a(a+ 1)+2b2 —84 (if X = VI) as follows. Observe that L = 2d+|L_ |+ | L+ ]
where Ly 1= x4+ 2kt + 2€4 — 1)/2. We first define, form € Z £ 4—11, residual points
r.(m) recursively by putting, form > 1,

re(m) = (0,(m); re(m — 1))

with, form > 1,

_3
oe(m) = (¢°, ¢*, ... g*""2),
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and re(%) = re(f—‘) := (). We define the representing morphism of the extraspecial
STM by

S0 ta) = (mremo) v v v g vtg re(my)). (35)
The proof of the fact that these formulas indeed define an STM is a straightforward
computation in the cases X € {I, II, III, IV}.

In the extraspecial case one notices first that this map for general d > 0 is induced
from the cuspidal map of this kind with d = 0. It is easy to verify that this map is an
STM, by considering the set of positive roots of the root system Rg of type Bogy1_ 41,
which restrict to a given simple root «; of By (this process is similar to what we did
in the exceptional cases), provided that the inducing rank O map is indeed a cuspidal
STM. The latter can be proved by induction on m 4, using the recursive definition of
r.(m) and the formula (easily obtained from (33) applied to the two cases {V, VI}):

Um—=mell a(m_—my)—iyi  Um—tmell o om_my|—j)j

T —
Gnemy = 11:[1 (1 4 g2Um——myl=0)i ]1;[1 (1 + g2(m—+mil=)i~ (36)

3.2.7 Existence of enough STMs for the classical cases After having established the

existence of these STMs between affine Hecke algebras of type C,(ql), it is an easy
task to prove the existence of an STM of the form ¢ : H*“%¢ ~» H!M(G) for all
absolutely simple, quasisplit adjoint groups of classical type G and unipotent affine
Hecke algebras H"-*¢ of a unipotent type of an inner form of G (other than PGL,,41),
using covering STMs.

For G = PUjy,, we have a 2 : | semi-standard spectral covering map (see [54,
7.1.3]) of the form H/M(G) = B, (2, 1)[g] ~ C,(0, })[¢*] corresponding to an
embedding of the right-hand side as an index two subalgebra of the left-hand side.
Here the right-hand side is normalized as object in Qilass. The representing morphism
¢7 has kernel @ € T'M| the unique nontrivial W(B,,)-invariant element. We can
identify w with the nontrivial element of X (G) = (QQC)*, which equals C; in this
case. It acts as a diagram automorphism on the geometric diagram via the simple affine
reflection o = 512y, of the afine Weyl group of type C,(f) (in the standard coordinates
for t).

For G = PUy,, 41 we have an isomorphism H/M (G) ~» Cn(%, 1)[¢?]. These target
affine Hecke algebras are the minimal objects of ¢! All direct summands H of

clags®

Huni(G) either are objects of Eilass or, in the case G = “Ajy,,_1, otherwise there exists

a semi-standard 2 : 1 covering STM H ~» H’ arising from an index two embedding
‘H' C 'H of an object H’ of QLMSS for which one of the parameters m _ or m . equals 0.
In the latter case, it is easy to see from the definitions that any composition ¢r of basic

translation STMs in Cilass which yields an STM ‘H' ~ C,,(0, %)[qz] in (’ji]ass factors
through an STM H ~ H!M(G). Let L = rT* be the image of ¢7. The inverse image
of L under the covering map is connected if L has positive rank, this follows from
the spectral map diagram and the fact that linear residual points in a positive Weyl

chamber are invariant for diagram automorphisms [53]. This implies that we have a
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unique factorization of ¢7 as desired in all cases. Remark that Qf’g = 1 exceptif s is
a supercuspidal unipotent type of G* of type >A»,_ or its non-quasisplit inner form,
which is also Qec-invariant. In this case Qf’e = (2, and the supercuspidal STM ¢ as
above has image L (a residual point) which lifts to two residual points which are not
conjugate under W (B,,). Hence in this case we obtain two STMs defined by the lifts of
¢r, corresponding to the two summands of H**. If Q?‘e = 1but Q%¢ = QQC = C,,
then X7 (G) acts nontrivially on the connected inverse image of L. This is precisely
the case where one parameter of H' is 0, and the rank is positive. In other cases H is
itself already an object of ¢!, whose STM has a unique lift to H/¥ (G).

class

For G = SO,,+1 we have HIM(G) = C, (%, %)[q], and all unipotent affine Hecke

algebras are objects of @f}lass; hence this case is straightforward by the above.

For G = PCSp,,, we have a semi-standard STM HIM(G) ~ C,(0, 1)[q] arising
from an embedding of the right-hand side as an index two subalgebra of the left-hand
side. Here the right-hand side is normalized as object in nglass. All direct summands of
Huni(G) either are objects of (’Z(I:Illass or Q:Xass, or there exists a semi-standard covering
STM H ~» H/ arising from an index two embedding H' C H of an object H of €Il
for which one of the parameters m_ or m4 equals 0. Similar remarks as in the case
PUy,.1 apply on how to obtain STMs of direct summands H of Hyni(G) to H!M(G)
in terms of those of H' to C, (0, 1)[¢].

For G = P(COSn), we have a non-semistandard STM H!M(G) ~» C,(0, 0)[q]
which is represented by a degree 2 covering of tori (essentially the “same” covering of
tori as for the case PU», 1, but this time equipped with the action of W (D,,) instead of
W (B,)) (see [54, 7.1.4]). Here the right-hand side is normalized as an object in Cg;ss.
All other direct summends H of H i (G) either are objects of Qg;ss with both m_ and
m even, or of Qgss with §_ = §4 = 0, or there exists a semi-standard covering STM
H ~» H' arising from an index two embedding H' C H of an object H' of €L} for
which one of the parameters m_ or m4 equals 0. If both of m+ # 0, then Q%" = 1,
and any composition of basic STMs or the extraspecial STM ¢ : H ~ C,(0, 0)[g]
admits a unique lift to an STM ¢ : H ~ H/M(G) as before. If one of m+ equals
zero, then Q%9 = C»>. As before, in the positive rank case we have Q0 = 1, and
X (G) acts non-trivially by spectral isomorphisms, via its quotient (Qﬁ*é)* = (Cp,0n
the connected inverse image of the residual coset L which is the image of ¢. Finally
if one of m4+ = 0 and the rank of ¢ is 0, then Q%0 = Qf’g = (>, and L has two
lifts under the 2 : 1 covering which are not in the same W (D,,)-orbit but which are
exchanged by the action of X (G). In this case, H** decomposes as a direct sum of
two copies of L, and we have still an essentially unique STM H*% ~» H!M (G).

For G = P((CO3,,,)"). We have H'(G) = C,(1, 1)[g]. This case is similar
to the previous case, except that this time the relevant objects from Qig;ss are those
with m_ and m both odd, and those of Q:X;Ilss’ the objects with §_ = § = 1. Hence
this case is easier, since the direct summands of H of Hyy;(G) are themselves already

objects of QL}QSS and of @X;SS, and no dicussion of lifting of STMs is required.

3.2.8 Proof of Theorem 3.4 Suppose G is as in Theorem 3.4. In the previous para-
graphs we established the existence of at least one STMs ¢, 5. : H**°(G) —
H!M(G) for every unipotent type s of any inner form G* of G. Such an STM ¢,, 5.,
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determines a unique subset Q C Fp such that ¢, s . is represented by a morphism ¢r
whose image is of the form L, := L/K} with L = rQTQ and r a residue point of
the semisimple subquotient HIQM of H'M(G). This ro is determined up to the action
of Kg.

As was explained in 3.1.3., ¢ is in this situation induced from a cuspidal STM
¢o : (L, 10) :== Ho ~ H’QM = H(Myy,). Suppose that we know that the essential
uniqueness for the cuspidal case of Theorem 3.4 holds. Then Wgr is determined
by Ho up to the action of Auteg (H’QM ) (see the argument in 3.1.3.), and since we are

clearly in the standard case, this is anti-isomorphic to Q}}Q X Qg ¢ by Proposition [54,
Proposition 3.4]. But we know (see [53], [52, Theorem A.14(3)]) that Wor ¢ is fixed for

the action of Qg ¢, so that we need to consider only the orbit of Wgr for the action of
Qy, = (Xo/ZRo)*.Inthecaseathand X ¢ := X/XNRE = P(Ry)/P(Ry)NR}5 =
P(Rg),sothat(Qx,)* = (P(Rg)/ZRp)*. Butthisis exactly equal to K ¢, hence any
STM which is induced from a cuspidal STM ¢ : (L, 79) := Ho ~ HIQM has as its
image L,. By the rigidity property Proposition [54, Proposition 7.13] we see that any
two such STMs are equal up to the action of Autg(H). But as was explained in 3.1.3.,
the subset Q C Fy is itself completely determined by just the root system of Mj,,, and
this is determined by s. It follows that any other STM ¢’ : H*%¢(G) — H'M (G) can
be represented by a ¢, whose image is L;,, with L" a residual coset in the X} (G)-orbit
of L.

As to the possibility to define an equivariant STM for the action of X} (G) =
(Qgc)*, that is an application of Theorem 2.8. Recall that X (G) acts on H"-* via its
quotient (2%%)*; we need to check in all cases that the subgroup (Q;’e)* C (QE0)*
is the stabilizer of Wy (L). For the classical cases this was discussed in the previous
sections, and for the exceptional cases this is an easy verification. It follows that the
direct sum H*® of all summands of Hypi(G) in the X (G)-orbit of H**¢ can be
mapped X (G)-equivariantly by an STM to H/M(G), and that such an equivariant
STM is essentially unique up to the spectral automorphism group of Hypi(G). Taking
the direct sum over all orbits X7 (G)-orbits of unipotent types, we obtain the desired
result.

Hence Theorem 3.4 is now reduced to the cuspidal case. For the exceptional cases we
have already shown the essential uniqueness for cuspidal STMs, and for G = PGL,,4|
this was obvious. Hence the Proof of Theorem 3.4 is completed by the following result,
whose proof will appear in [19]:

Proposition 3.8 [19] The essential uniqueness of Theorem 3.4 holds true for the cus-
pidal part (or rank 0 part) Huni,cusp(G) of Huni(G) for G of type PUy, SO2u41,
PCSp,,, P(COgn), and P((CO;n)O). Here we denote by Huni,cusp(G) the direct sum
of all the cuspidal (or rank 0) normalized generic unipotent affine Hecke algebras
associated to G and its inner forms. In other words, there do not exist other rank 0
STMs than the ones constructed above, and this yields a X}, (G)-equivariant STM
Deusp : Huni,cusp(G), T) ~ (H!™M | tIMY which is essentially unique in the sense of
Theorem 3.4.

The proof of this proposition reduces to the analogous statement for the spectral
categories ¢X _For X = I, II this is rather easy. When X = III, IV, V, VI the

class”
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essential uniqueness proof for cuspidal STMs is based on the existence of the cuspidal
extraspecial STMs of L’:Xass and Qgss- Itis easy to see that every generic residual point
of Cgass for X = III, IV isinthe image of a unique extraspecial cuspidal STM, and this
sets l\,}p a bijection between the set of generic residual points of the combined objects
of chz}s\;l and those of Q?IESISV. If we impose the necessary condition for cuspidality,
namely that the formal degree (in our normalization) has no odd cyclotomic factors,
then one can show that the corresponding generic residual point of Q:X;l:gl is given
by a pair (§_, &4) of partitions whose Young tableaux are of rectangular shape, and
almost a square. After applying the extraspecial STM, the solutions correspond to a
pair (u—, uy) of unipotent orbits of Gy C G, a semisimple subgroup of maximal rank,
whose elementary divisors are both of the form (1, 3,5,...) or (2,4,6,...), or are
both of the form (1,5,9,...) or (3,7, 11, ...). These solutions thus correspond to

the cuspidal local systems for the endoscopic groups Gy C G (cf. [34,37]).

4 Applications
4.1 Classification of unipotent spectral transfer morphisms

4.1.1 The classical case

e e : 1 1 1y IVUVI /101
Proposition 4.1 Berween the objects of &, ., € ., €~ and & ;- (where & -

is shorthand for Qﬁglz o Y Q:(‘:/l ass €f¢.) all STMs are generated by the basic translation
STMs we defined in 3.2.7, the extraspecial STMs, and the dihedral group Dg (cf. [54,
Remark 7.5]) of spectral isomorphisms. The basic translation STMs commute with
each other, and the commutation rules of the basic translation STMs and extra special
STMs with the Dg are the obvious ones, where Dg acts on the set of parameter pairs
(m_,my) (i.e., Dg acts as a group of endofunctors on each of these categories).
Proof For any object H in @é’lass (Y as in the Theorem) there exists an STM ¢ :
H ~» H™" where H™" denotes a minimal object, and where ¢ is a translation STM
or an extraspecial STM. By the essential uniqueness of Theorem 3.4 it follows that
any STM ¢ : H ~» H™" is of the form ¥/ = B o ¢ o & with & € Autes(H) and
with B € Autes(H™™). In ijlass, the group Autes(H) is trivial (if the parameters m
and m4 are unequal) or C; (if the parameters are equal). If there exists a nontrivial
ap € Auteg(H), then m_— = my and it follows easily from the definitions that there
also exists a nontrivial By € Autes(Hmi“), and that ¢ is equivariant in the sense
¢ oap = Py o ¢. Hence, if ¥ is also a composition of basic translation STMs or if
Y is an extra special STM, we see that ¢ = ¢. From the injectivity (obvious from
the definitions) of the basic generating STMs it now follows that the basic translation
STMs commute.

We also conclude from the injectivity of the basic generating STMs that, up to
spectral isomorphisms, there can exist at most one STM between any two objects of
nglass. For X € {I, II, III, IV} it follows from a consideration of the spectral transfer
map diagrams (Definition 3.3) of the (essentially unique, injective) STMs ¢ : H; ~
H™ and ¢, : Hy ~» H™™ that a possible factorizing STM ¢ : H| ~» Ha (uniquely
determined if it exists) must be itself composed of basic translation STMs and spectral
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isomorphism itself. It is also easy to see in this way that there can not exist STMs
between objects of (’:X;JSZI and non-minimal objects of E‘Zﬁass with X € {I, II, IIL, IV}.

Between objects of Q:gass for X € {V, VI} there are no STMs. This again follows
from the injectivity of the extra special STMs, in view of the fact that the images of two
extraspecial STMs of the form ¢ : H; ~ HMM and ¢y : Hy ~» H™MIN map to disjoint
subsets of the spectrum of the center of H™", unless 7 and H, are isomorphic (this

follows from the “extra special bijection” proved in [19]). O

As a consequence we obtain a general description of all spectral transfer maps between
all unipotent affine Hecke algebras in the classical cases:

Corollary 4.2 Let G be connected, absolutely simple, defined and quasisplit over k,
split over K, and such that its restricted root system is of classical type. There are
no other STMs between the unipotent affine Hecke algebras of the form H"-¢ which
appear as summands of Hyni(G) than the ones obtained by lifting STMs via spectral
covering maps of direct summands of H i (G) to one of Qﬁl s’ QZ ass? Qﬁglla'“;sv and Qﬁélllagsv

(lifting in a sense similar to the discussion in 3.2.7).

It is not difficult to describe all STMs between the unipotent affine Hecke algebras for
exceptional types as well, but we will not do this here.

4.2 Partitioning of unramified square integrable L-packets according to
Bernstein components

Let G be connected, absolutely simple, defined and quasisplit over k, split over K, and
of adjoint type. Let 7’ be a unipotent affine Hecke algebra associated to a unipotent
type of an inner form of G (hence, a summand of Hypi(G)). By our Theorem 3.4 we
know that there exists an essentially unique X G-equivariant STM ¢ : Hyni(G) ~
H!M(G), and we know that such a map is compatible with the arithmetic/geometric
correspondence of diagrams of Lusztig [40,43]. By [54, Theorem 6.1], this STM ¢
givesrise to a correspondence between components of the tempered irreducible spectra
of H' and H'M(G) which preserves, up to rational constant factors, the Plancherel
densities on these components, and which is compatible with the map ¢z on the
level of central characters of representations. In particular for unipotent discrete series
representations, given an orbit of residual points Wory, € Wo\T (L) for HIM(G)
(these carry the discrete series representations, by [52]), we collect the irreducible
discrete series characters of the various direct summands H' = H**%¢ of Huni(G)
whose central character Wry satisfies ¢z (Wyry) = WorL.

Definition 4.3 Given an orbit Wor, of L-residual points of 7™ (G) we form a packet
My, consisting of the unipotent discrete series characters of inner forms of G for
which the corresponding discrete series representation of ' (the corresponding sum-
mand of Hyyi(G)) has a central character Wyry which satisfies ¢z (Wyry) = WorL,
(with ¢z as above).

Corollary 4.4 By Theorem [54, Theorem 6.1], the q-rational part of the formal degree
of all the irreducible characters in Ily,,, is the same.
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There exists a natural bijection (cf. [52, Corollary B.5], and paragraph 2.3) A¢ >
[A] = Wor; 1 between orbits of discrete unramified Langlands parameters and orbits
of residual points Wory, for H/M. Theorem 3.4 implies that the packets [Ty, , defined
by STMs, admit a classification in terms of local systems on the G -orbits of discrete
unramified Langlands parameters:

Corollary 4.5 ([40-43, Theorem 5.21]) The packet Tlw,, ; can be parameterized

by the disjoint union of the fibres ]\ﬁf (cf. paragraph 2.3 for this notation), where
u € Ng(B) corresponds to the various inner forms of G via Kottwitz’s Theorem (here
we identify Ng (B) with the character group /(1 — 0)2) of the center L Z of L G (cf.
Sect. 2.3).

In [13,56] the discrete series characters of arbitrary affine Hecke algebra ‘H are para-
meterized differently. This point of view will be quite fruitful for the applications we
have in mind, especially for unequal parameter Hecke algebras, and this is what we
will discuss next.

Let L be a the ring of complex Laurent polynomials over the natural maximal
algebraic torus of (possibly unequal) Hecke parameters associated to the underlying
root datum of H (this ring was denoted by A in [56]). Explicitly, L is the ring of Laurent
polynomials in invertible indeterminates vy + (With & € Rp) subject to the conditions
Vg, + = Uy(a)+ foralle € Rpand w € Wy, and vy~ = 1iff 1 —a¥ € Wa™). We
give L the structure of a [L-algebra by putting vy + = v"+(@ Then we have a generic
affine Hecke algebra Hy, defined over L, and H = L ®r, H..

Let V be the space of points of the maximal spectrum of L. such that for all v =
(Vg,+) € V, we have vy + := V(vy,) € Ry forall @ € Ry. Let V be the space of
points v € R+ of the maximal spectrum of L. Thus we have an embedding V < V,
and vy 4+ = vnE@)

It was shown in [56, Theorem 3.4, Theorem 3.5] that an irreducible discrete series
character § of H is the specialization § = 5y atLofa generic family of irreducible
discrete series characters 8 of My, which is well defined in an open neighborhood
of (v"+(@)_ Each discrete series character of H can thus be locally deformed in the
parameters m4 (o). We will write such deformation as mé («) = m4 (o) + €+ (),
where €4 () vary in a sufficiently small open interval (—e, €) C R. The irreducible
discrete series representations of affine Hecke algebras with arbitrary positive para-
meters (v’"éi("‘)), so in particular of all affine Hecke algebras of the form H' = H"-¢,
have been classified in [56] from the point of view of deformations over the ring
L.

In the case of nonsimply laced irreducible root systems Rg %€ the classification
of [56] is in terms of the generic central character map gcc which associates to any
irreducible discrete series character a Wy := W(R(L)’ €Y -_orbit Wor of generic residual
points. A generic residual point r € T'(LL) is an L-valued point where p has maximal
pole order. The set of such points is finite and invariant for the action of Wj.

We can choose the generic residual point » always of the form (see [56, Theo-
rem 8.7]) r = s(e) exp(§) € T (IL), where e runs over s complete set of representatives
ofthe' :=Y/ Q(R}/)—orbits of vertices of the spectral diagram X (R™), and s(e) is
the corresponding vertex of the dual fundamental alcove C¥ C R® Y. This gives rise
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to a semisimple subroot system Ry, 1 C Rj, with the parameter function mie ()
obtained by restriction of the parameters m¢ () to the subdiagram of the geometric
diagram X;(R™) obtained by omitting the vertex e, and replacing the group of dia-
gram automorphisms I" by the isotropy subgroup I, C I'. Finally, £ denotes a linear
residual point (see [56, Section 6]) for the generic graded affine Hecke algebra defined
by Rs(e),l and mie (Ol)

Thus & depends linearly on parameters m< ¢ («) of the graded affine Hecke algebra.
The specialization Wyrg of the orbit Wyr at e+ = 0 is a confluence of finitely many
orbits of generic residual points Wyr;, with i € Iw,,, (some finite set which one
can explicitly determine, see [56, Section 6]) from the explicit classification of linear
residual points). For each irreducible discrete series character § with central character
Woro, its unique continuous deformation g, locally in the Hecke parameters, has a
central character of § equal to one of the orbits Wor; of generic residual points which
specialize at e+ = 0 to Wyry.

This defines [56] a unique “generic central character” map gcc” from the set of
irreducible discrete series at central character Wyrq to the set Iy,,, turns out to be
bijective with the single exception of the orbit of generic residual points denoted f3
of F4 (which is one of the three generic residual points which come together at the
weighted Dynkin diagram of the minimal unipotent orbit of Fy). In this case, there
are two generic discrete series associated to fg. The map gcc also works well for the
affine Hecke algebras of type D,,, by relating this case with affine Hecke algebras of
type C,, (0, 0)[¢g]. We refer to [56] for details. The cases of type E,, have to be treated
in a different way (classically as in [28], or see [13]).

We would like to match up these two ways of parameterizing the discrete series
characters in the packet IT, (with [A] € A®). This will be important for the purpose
of proving Theorem 4.11. Indeed, recall that the formal degree of § was shown to
be continuous in terms of (ex(a)) [56, Theorem 2.60, Theorem 5.12], and that it
was given explicitly by the product formula [56, Theorem 5.12]. In addition it is
known [13] that the formal degree of a generic family of discrete series characters is
a product of an explicitly known rational constant and an explicit rational function of
the parameters vy, +. This enables us to compute the rational constants in the formal
degree of any discrete series character § of any normalized unipotent affine Hecke
algebra H' = H"“%¢ by a limit argument, using the generic family § and its formal
degree. Motivated by this, let us consider in more detail our parameterization with this
comparison in mind.

4.3 Parameterization for classical types

For PGL,, this was discussed in paragraph 3.2.2.

For classical groups (other than type A) everything is governed by Hecke algebras
of the form C,(m_, m4)[¢®), via the spectral correspondences of certain spectral
covering morphisms. These correspondences can be made explicit by restriction and
induction operations with respect to subalgebras of equal rank, and this will be dis-
cussed in detail when treating the various cases of classical type. In this paragraph we
will concentrate on the principles for Hecke algebras of type C,, (m_, m4)[¢°].
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The corresponding graded affine Hecke algebras have a root system of type Ry (c),0
of type B, x B,, where n_ + n; = n, and graded Hecke algebra parameters
(m_, my). A Wy o-orbit of generic linear residual points is given by the W0 =
Wo(B,_) x Wo(By, )-orbit of an ordered pair (§, &), where &+ is a vector of affine
linear functions of €+ such that £, (e+) is the vector of contents of the boxes of the

mig—tableau” of a partition 4 of ny with the property that at 1. = 0, the extremities
[63] of the resulting m 4 -tableau are all distinct.

At the “special” parameter value m+ (integral or half-integral), the Wy (B,,_)-orbit
of the vector £4(0) is an orbit of linear residual points at parameter m+. By a result
of Slooten [63] (also see [56]), the set of such orbits of linear residual points is in
bijection with the set of “unipotent partitions” u+ = ug, of length I+ > m4 — % of
Nt = 2nq4 + (mg — %)(mi + %), consisting of distinct even parts (if my is half
integral), or a partition u4 of length [+ > my of Ny = 2ny + mi, having distinct
odd parts (if m+ is integral). Let us call such a pair u = (u_, uy) of partitions a
distinguished unipotent partition of type m = (m_, m4.). This set of partitions 74
(and thus the set of Wy (B, )-orbits of generic residual points Wy (B, )&+ which are
confluent at e+ = 0 to the same orbit Wy (B, )£+ (0)) was parameterized by Slooten
in terms of the so-called m-symbols o4. These symbols are certain Lusztig—Shoji
symbols with defect Dy := [m+] (see [63], [56, Definition 6.9]). Slooten’s symbols
[56, Definition 6.11] attached to orbits Wy (B, )&+ (0) all have the same parts, but they
are distinguished from each other by the selection of the parts which appear in the top
row.

Remark 4.6 In particular, there exists (2lfd) such symbols, except when u+ contains

0 as a part (which may happen if m 4 is half integral), in which case there are (ZHId_l)

such symbols (since O must appear in the top row in such case).

Let us call these Slooten’s symbols associated to u4 at parameter ratio m4 the
u4-symbols of type m+. The point of view in [63] is that of the deformation picture
sketched above: The symbols are “confluence data”, and each such symbol represents
an orbit of generic residual points which evaluates to Wy (B,,, )&+ (0) at the parameter
ratio m. It is convenient to formulate the results of this “abstract” classification in
terms of abstract packets of representations associated to central characters of the

. . . . I 1 UV IVUVI.
discrete series of the minimal objects of €, ., € .co» Copase and €=

Proposition 4.7 Let H' = C,(m_, m+)[qb] be an affine Hecke algebra which
appears as an object of Q:flass for X = LILII or IV. Let u = (u_,uy) be an
ordered pair of distinguished unipotent partitions corresponding to a central charac-
ter Wor’ of a discrete series character of H', with ux of type my. Let ¢ : H' ~ 'H
be the translation STM to a minimal object H of Cﬁass. Let 7 (Wor') = Wyr. Then
the ordered pair of distinguished unipotent partitions corresponding to Woyr is equal
to u as well! The set of irreducible discrete series characters of H' in Ily,, is para-
meterized by ordered pairs (o, 01), where o+ is a ur-symbol of type m . Let H{V()r
be the disjoint union of all sets of irreducible discrete series characters of the objects
onZles, withY = I 11, IV V or IV U VI, which are assigned to Wyr in this way via
the translation STMs. The extraspecial STM’s contribute 1, 2 or 4 elements to Hﬁ,or
(see Proposition 4.8), for each discrete series central character Wyr of H.



Spectral transfer morphisms 2185

In the context of an unramified classical group of adjoint type G, the Hecke algebras
of the form H"-® are direct sums of normalized extended affine Hecke algebras "¢
which are spectral coverings of objects of €jy. In particular, an unramified discrete
Langlands parameter A for G determines (via the comparison of the Kazhdan—Lusztig
classification and the classification of discrete series representations as in [56]) an orbit
of residual points Wor for H!™ (G). In turn, via the morphism [54, Corollary 5.5] asso-
ciated to this spectral covering map, this determines a pair (u_, u4) of distinguished
unipotent partitions in the sense of Proposition 4.7, for an appropriate pair of parame-
ters (m—, m) of the form (m—_, m4) = (0, 3), (1, $). (3, 3). (0,0), (0, Dor (1, 1)
(see paragraph 3.2.6). Working this out amounts to determining the multiplicities and
types of the normalized extended affine Hecke algebras "¢, and the branching
rules for the algebra inclusions associated to the spectral covering maps to the rele-
vant objects of €.jass. This is not difficult, and we can check that in all classical cases
the STM @ of Theorem 3.4 gives rise to packets Iy, of discrete series characters
whose members are parameterized by pairs of Slooten’s symbols or come from an
extraspecial STM (see paragraphs 4.6.1, 4.6.2, 4.6.3 for more details).

Slooten’s symbols are known to correspond with Lusztig’s symbols [37] if one
uses Lusztig’s arithmetic/geometric correspondences for the “geometric” graded affine
Hecke algebras in the following sense. Let the central character Worg of a discrete
series character 7 of C,(m_, m)[¢®] be given by the pair of unipotent partitions
(u—,us) (where uyt has at least [m4 | parts). The set of discrete series characters
with central character Wyrq is parameterized by the set of generic central characters
Wor (see [56]) which evaluate to Wyro, via the map gcc. In turn, these generic central
characters are parameterized by pairs o_, o) of the Slooten symbols (with defects
Dy = [m4]) covering (u_, uy). By the results of [10,42], [27, Section 4], the top
graded part with respect to Slooten’s functions a,,, [63] of the corresponding graded
Hecke algebra module is the irreducible W(C,_) x W(C,, )-module corresponding
to (o0_, 04), via the generalized Springer correspondence of [46]. Via Proposition 4.7,
the spectral correspondences of the standard STMs to H/M (G) together exhaust the
set of pairs of Slooten symbols (o_, o).

The same is known to be true for the additional contributions to packet HYWor
coming from the extraspecial STMs (see [10], [27, Section 4]). These remarkable
facts should be considered as an aspect of Langlands duality. Slooten’s symbols are
defined entirely in terms of affine Hecke algebras (describing the set of orbits of generic
residual points specializing to the central character of a discrete series representation),
whereas Lusztig’s symbols describe cuspidal local systems on an associated nilpotent
orbit of “G. Comparing this with Theorem 3.4 and Proposition 4.7 we see that our
parametrization of ITy,, matches with Lusztig’s assignment [40,43] of unramified
Langlands parameters to the members of Iy, .

We see that the defect (D_, D4) of an unordered pair (o_, o) of u-symbols
for a member of ITy,, (corresponding to a pair of distinguished unipotent partitions
(u—, uy)) determines the parameters of the affine Hecke algebra from which it orig-
inates under the STM &. This determines the Bernstein component to which the
corresponding discrete series character belongs (up to the action of X (G)).

The final statement of Proposition 4.7 will be proved in [19]. The additional con-
tributions from the extraspecial STMs to the packets of unipotent discrete series of
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PCSp,,,, P(CO(Z)”) and P((CO;H)O) correspond to the fact that one takes the centralizers
of the discrete Langlands parameter in the Spin group. This gives rise to a nontrivial
central extension by C; of the centralizer in SO, (or SO, 4+ respectively). These can
be be described in detail in terms of central products of groups of type Dg (the dihedral
group with 8 elements), QOs, C% or C4 (see [37]) and among those groups we typically
find extraspecial 2-groups. The precise type of the groups that arise is complicated,
but we are merely interested the the number of their irreducible representations and
their dimensions which is less difficult, following the description in [37] (and also
using [61] for the twisted cases) one obtains:

Proposition 4.8 Let A be an unramified Langlands parameter for the discrete series
for PCSp,, (withn > 2), P(COgn) (with n > 4), and P((CO;n)O) (with n > 4).
Then A determines an ordered pair (u—, uy) of distinguished unipotent partitions
for the parameters m = (m_,my) = (0, 1) (if G = PCSp,,), for m = (0,0) (if
G = P(COY)) or form = (1,1) (if G = P(CO3)")). Let I = (I_, 1), with
Ly the number of parts of uy. Thus uy is a partition with distinct odd parts, and
lu| := lu_| + |lus| = 2n with Il both even if G = P(COgn); lul =2n + 1 with [
even and I odd if G = PCSp,,,; and |u| = 2n with I+ both odd if G = P((CO;n)O).
Let us write 2%9% for a 2-group of size 2210 which has 2%t~ one-dimensional
irreducible representations, and 2°~" irreducibles of dimension 2°.

Ifu_ is the zero partition, then Ay, (as defined in paragraph 2.3) is of type 2+~ D1
ifly is odd, and of type 2U+=2+2 if [ is even. Ifuy and u_ are both nonzero, then Ay,
is of type 2=T=DF3if 1 are both even, A;, is of type 2U-F+=I12 if 1. are unequal
modulo 2, and Ay is of type 2=+ if 1 are both odd.

4.4 Parameterization for split exceptional groups

For split exceptional groups, the major work to match up the irreducible discrete series
characters of affine Hecke algebra summands of Hypi (G) with Lusztig’s parameters
has been done by Reeder in [60] by computing the W-types explicitly. With this
parameterization, the main Theorem of [60] is known to be a special case of the
conjecture [26, Conjecture 1.4] (as discussed loc. cit.), which takes a lot of work out
of our hands.

For the types E¢ and E; we need in addition to discuss the contribution of the
nontrivial inner forms, which we take up in the next two paragraphs.

4.4.1 Inner forms of the split adjoint group G of type E¢ The inner forms of G are
parameterized by u € Q ~ C3. We have X (G) = Q*. For u = 1 we have the
following X}, (G) orbits of unipotent types: 5(]/], 5]])4, 5]156[9], 5}]36 02" Foru # 1 we have

the following orbits of unipotent types: s, The orbit of s is a torsor

u u
23p,11)” BD4[-11°
for (©27)* (a quotient of X} (G)). By inspection we check:

Remark 4.9 1In all the cases above, we have Q] = () := Q, C Q.

We choose an equivariant bijection « — s, between €2 and the orbit of s. Then
Huni (G) is isomorphic to the direct sum of the extended affine Hecke algebras 7":%-¢
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Table 1 The packets I} for

% u
type Eg and the contributing » Q)“ A STMs for Hk
STMs 1,1
u=1:y," (Ep)
Eg 1 C3 u.1
u#1l:dy (g1)
1,1
u=1:9; (Egar))
Eg(a1) 1 (&) 21
u#1:dy (g2)
. 1 o nc u=1: <I>;)’](E6(a3))
6(a3 2 X3 il L il
u#l:dp (g3); ®3D4[1J
11 a1
u=1:0; (AjAs): @, (A2)
A1As 1 Cy x C3 1 CDM’I A2 _q)u,l
u#l:dy (A 3D40-1]
1,1 1,1 1,1
u=1:®, ;o5 ,; d
A 3 C3xC3 b Felol TEelen)

u#1: 0% (A2) (@ € Q)

where u € €, s runs over the orbits of unipotent types, and & € Q. By Theorem 3.4
there exists an essentially unique Q*-equivariant collection of STMs ®4'% : H* %€ ~
H!M _ Assume that we have chosen such a collection of STMs.

The extended affine Hecke algebras " %¢ of positive rank which appear as sum-
mand of Huni(G) are: Eg[g] (for s}), Aalg*] (for sf, ), Ga(1, 3)[q] (for sij with u # 1).
It turns out that for each u € 2, G* has 21 unipotent discrete series representations.

Table 1 displays for each X;;,(G) = Q*-orbit of discrete unramified Langlands
parameters: A representative 1, its isotropy group €2}, the group Aj;, and for each
u € Q, the STMs ®“ which contribute to the corresponding packet IT} of unipotent
discrete series of G*. The argument of the STM indicates the corresponding central
character of H"%¢ expressed in terms of central characters of graded Hecke algebras
via [56, Theorem 8.7], using standard notations referring to distinguished nilpotent
orbits for equal parameter cases, and notations for a corresponding generic linear
central character as in [56, Section 6] otherwise.

We choose the packets I} := H';Vorx,L compatibly with respect to the X (G)-
action, but the precise composition of the 1} depends on the choices of the STMs @ .
Recall from Sect. 2.3 that their parameterization by the elements of Irr* (A} ) is chosen
in a X35 (G)-invariant way. By this requirement it suffices to fix the parameterization
of the IT{ for a set of representatives A of the X7 (G)-orbits of discrete unramified
Langlands parameters. With the choices made above, the parameterization of the
packets 1'[1 is determined if we also agree that the generic member of ITj, corresponds
to the trivial representation of A,. Foru # 1 and . = AjAs or A%, more information
is needed to determine the exact parameterization of the sets I1} (of size 2 and 3
respectively) by a local system as in [40]. Since A, is abelian here, Theorem 4.11 is
independent of such choices. Therefore, we ignore this issue here.

4.4.2 The parameterization for inner forms of the split adjoint group G of type E7
We use the same setup and notations as for the case of E¢. The inner forms of G are
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parameterized by u € Q =~ C,. We have X5 (G) = Q*. For u = 1 we have the
following Xjn(G) orbits of unipotent types: 5%, 5]1)4, 5]156[9], 5]156 [02)° 5]157 €] 5]137[7'5]. For
u = —1 we have the following orbits of unipotent types: sy, 55 A5’ 55E6[1]’ 5ZE6[9]’
5§E6[92]. The orbit of s is a torsor for (Q27)* (a quotient of X (G)). By inspection we
check that the analog of Remark 4.9 again holds.

The extended affine Hecke algebras H"-%«¢ of positive rank which appear a as
summand of Huni (G) are for u = 1: E7[q] (for ), B3(4, Dlg] (for s, ), C1(9, 9)l¢]

(for 5]136[9,-]), and moreover for u = —1: F4(1, 2)[¢q] (for 551), and C1(9, 7)[¢q] (for

5, As)'

For each u € ©, G* has 44 unipotent discrete series representations. See Table 2.
In order to understand the u = —1 cases of A = ADg, A;Dg[93], A1 Dg[75], the
following remark is important:

Remark 4.10 The STMs dD(;l’il : F4(1, 2)[¢q] ~ E7[gq] were constructed at the end of

paragraph 3.2.4. Let us write ® := @ L1 and let W denote the nontrivial essentially

strict spectral automorphism of E7[g]. Then @ has the following remarkable property
(which is easy to check knowing the spectral map diagram): Let A (3], A[111], A[21] be
the three orbits of residual points of type A; x Cs, and let w4, 1(31], [22] be the
three orbits of residual points of type B4. Enumerate these as A; and u; (i = 1,2, 3)
in this order. Then ®z(A;) = (Wz o ®z)(u;) for all i.

The precise constituents of the packets IT{ depend on the choices of the STMs LY.
Again the exact parameterization of the packets by Irr” (A} ) is not uniquely determined
forall A and u. If A, is abelian, this does not affect the statement of Theorem 4.11, and
we ignore this problem here (but: see [13]). But for A = E;(as5) and u = —1 we need
to be more careful. This packet corresponds to the generic central character fg (nota-
tion as in [56, Section 7]) of F4(1, 2)[¢]. As was explained in [60], [56, Section 7],
[13, paragraph 3.5.2], there are rwo algebraic generic parameter families 8g and &g of
irreducible discrete series characters of F4(m1, m2)[g] which stay as irreducible dis-
crete series for all m, my > 0 (and in particular the corresponding Wy (F4)-types are
independent of the parameters). One of these (6g say) is 10-dimensional, and special-
izes at equal parameters for Fy4 to the discrete series [60] with Langlands parameters
(F4(a3), [4]). The other, 8{3/ restricts to the discrete series with Langlands parame-
ters (F4(a3), [22]). Comparing with the tables in [64], we see that 8{3 corresponds
with (E7(as), —[3]), while &3 corresponds to (E7(as), —[21]). On the other hand,
by [56] and [13] we conclude that fdeg(85) = 2fdeg(dg), and this is also equal to
2fdeg(2E6[1]). In view of the above Langlands parameters, this is in accordance with
the conjecture [26, Conjecture 1.4].

4.5 Parameterization for non-split quasisplit exceptional groups

The parameterization and the STMs for the remaining twisted exceptional cases were
discussed in 3.2.5. By Corollary 4.4, Corollary 4.5 and Remark 3.7 it then follows that
Lusztig’s parameterization of Iy, is uniquely determined by this, so this gives rise
to a canonical matching of Lusztig’s parameterization and our parameterization.
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Table 2 The packets I'IK for type E7 and the contributing STMs

i o A;, STMs for IT§

1,1
u=1:d, (E7)

E; 1 (&) (/)u 1
u=-—1: (byf (fl)

_q.alL1
u=1:05 (E7(a))

E7(a1) 1 G2 w1
u=-1:9y (f2)

1,1
u=1:9, (E7(az))

E7(ap) 1 (&) Q)u 1
u=-—1: CID(/)’ (f3)
w=1:0y" E(a3)

E7(a3) 1 Sy x Ca 1
u=—1:05 (fs)

1,1
u=1:d; (E7(aq))

E7(a4) 1 S2 x Ca ! u,1
u=-—1: CID(/)’ (f6)

_q.aL1
. 1 ‘e u=1:05" (Ey(as))
7(as 3 xC2 _ Lo, Lol
u=-—1: CI)@ (fg)v CDZEGU]
u=1:oy"(ADe): <I>,1541(B3)

ADg 1 Cr x Cy wl w—1
u=—1:05 (A1C3); Dy~ (By)
u=1: )" (A1Dgl93): ®f;! (B3[111))

A1Dg[93] 1 Cy x Oy wl w1
u=—1:0, (A1C3[111]); @y~ (B4[31])
w=1: 0" (A Dg[75)); op5! (B3[21])

A1Dg[75] 1 Gy xCy u.l u,—1
u=—1:d5 (AjC3[21]); @~ (B4[22])

LAl ol
u=1: q)@ (A2As); q)EG[gi]

A2As 1 C3xCy 1: o (A Ay); o]
u=-—1: % ( 2 2)s 2E6[9il

1.1 1,1 1,1
u=1:o; (A3AD): @, (AD): O,
, 4 7[£]
A3A1 G Cq x C u,+1 u, %1
u=—1: 0" (A3AD: @y (A))
5
1,1 11
w=1: ;" (AJAD; P, (A3)
A7 Gy Cq

u,+1
u=—1: <1>2A5 (A])

4.6 Formal degree of unipotent discrete series representations

The application in this section is independent of the uniqueness result based on [19].
A general conjecture has been put forward by [26] expressing the formal degree of
a discrete series character in terms of the adjoint gamma factor (also see [20]). Recall
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that our standing assumption is that G is a connected, absolutely simple algebraic
group of adjoint type, defined and quasisplit over k, and split over K.

In order to formulate the conjecture in our setting, we first should note that the
Haar measures in [26] are equal to those we have used (following [17]) times p~dim(G)
Hence the formal degrees in [26] are v4™(©) times the formal degree in our setting. Let
G" be an inner form of G. Given a discrete unramified local Langlands parameter X for
G, we defined A;, (see 2.3). Suppose that for an irreducible representation p € Irr(AY)
we have a corresponding unipotent (or unramified) discrete series representation 7y, )
of GFu, satisfying the expected character identities as asserted in the local Langlands
conjecture.

Then [26, Conjecture 1.4] (also see [20, Conjecture 7.1]) is equivalent to (with our
normalization of Haar measures):

dim(p) |

A; ] v

fdeg(m(.,p)) = =

where y denotes the adjoint gamma factor of the discrete local Langlands parameter
A. Following [26, Lemma 3.4], it is easy to show that (using the notations of 2.3)

y (1) = £03m@ (, 1My (D (38)

where we should remind the reader that the normalization of the p-function /™ of
H!M(G) is given by the trace /M such that t/M (1) = Vol(BF)~!. It was verified
in [26] that Reeder’s results [60] for Iwahori spherical discrete series representations
of adjoint, split exceptional groups over a non-archimedean field are compatible with
the conjecture. We are now able to extend this result to arbitrary adjoint absolutely
simple groups over a non-archimedean local field which split over an unramified field
extension.

Theorem 4.11 Conjecture [26, Conjecture 1.4] [equivalent to equation (37)] holds
Sor all unipotent discrete series representations of inner forms G* of an unramified
connected absolutely simple group G of adjoint, type defined over a non-archimedean
local field k, where we use Lusztig’s parametrization of unipotent discrete series
representations as Langlands parameters.

Proof We need to consider the classical groups, the nontrivial inner forms of split
exceptional groups, and the non-split quasisplit exceptional groups. The way in which
we assign unramified discrete Langlands parameters to the members of the packets
[T, ;, of discrete series characters of Definition 4.3 for these cases was explained
in Sects. 4.3, 4.4 and 4.5.

We know that 7, ,y corresponds via Lusztig’s arithmetic-geometric correspon-
dences to an irreducible discrete series representation 8y, of an extended affine Hecke
algebra of type H"-*¢ for some cuspidal type s of G*. By our main Theorem 3.4, there
exists an STM ¢ : H*%¢ ~» HIM(G) such that ¢ (cc(8y,p)) = Wor, and we have

fdeg(m(.p)) = fdegppuse (8¢ p)) = o py (! M)WD, (39)
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for some rational constant c(; ) € Q. Combining (37) and (38) we see that what is
necessary to verify in order to prove the conjecture in these cases is that

dim(p)

Cop) =+ (40)
In [20, Section 5.1] it was shown that
y) = 1Cf g™y (W) 1)

with y (1) a g-rational number, N, € N (which is in fact always 0 with our definition
of g-rational numbers, but this is not important here), and C /\F C Aj anormal subgroup
such that

A/ CL =~ ()", (42)

is the group of F-fixed points in the component group of the centralizer M), of Alst,
in GV. (The group Cf is the group of F-fixed points in the identity component M,
of M, (atorus).) With this notation we are reduced to proving that

dim(p)

0 43
oMy ))F| ! 43

fdegpgus.e (Sr,p) ~ £

(where ~ refers to asymptotic behavior if ¢ tends to 0) for some N; € N. Let us write
Aad for the composition of A with the canonical homomorphism of GV to Gavd. In the
twisted cases it is helpful to note that A; /X Z is the centralizer of Auq] SL,(C) in the
identity component C, GY, (Xad(F))o, and realizing that A,g(F') is a semisimple element
of Gy, x (9) of the form (s, 0), where s is a vertex of the alcove of the restricted root
system Rg consisting of roots of Ry restricted to t’, extended to an affine reflection
group by the lattice of translations obtained from projecting the coweight lattice P (R} )
onto t? (see [61]). The semisimple centralizers C GY, (Xad(F)) are described by Reeder
in [61].

This amounts to a long list of case-by-case verifications. The case of PGL,, 1 is
easy. For u of order (m + 1)|(n + 1) we have Qf’e = (u) =~ C;+1. Hence HIM(G") is
isomorphic to a direct sum of m + 1 copies of A4 [q’”‘“] (withn+1 = (d+1)(m+1)),
normalized by (1) = (m + D~ m+ 1];1 (cf. 2.2.3 and Proposition 2.5). This yields
n+ 1 unipotent discrete series characters, each with formal degree (n+ 1)~ [n+ 1];1 .
In total we thus obtain n + 1 packets of unipotent discrete series characters, each with
n + 1 members (one element for each inner form).

The case of G = PUy, or G = PUjy,41 is easy too, since all unipotent affine
Hecke algebras are in a generic parameter situation here, in the sense of [11]. It is
shown in [11] that the rational constant in the formal degree is then independent of the
particular discrete series we consider (of a given Hecke algebra of this type). Looking
at the Steinberg character [52, Equation (6.26)] we easily check therefore that the
rational constants for all unipotent discrete series are equal to |~ Z|~! (so % if n is odd,
and 1 otherwise).
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In the remaining classical cases, one also uses the results of [11], where it was
shown that the rational constant factor of the formal degree of a generic discrete series
representation of a generic multi parameter type C, affine Hecke algebra specialized
at non-special parameters is equal for all generic discrete series. All rational constants
for the discrete series representations of affine Hecke algebras with special parameters
can subsequently be computed by this result by a limit procedure, since [56] shows
that any discrete serie representation is the limit of a generic continuous family of
discrete series representations in a small open set in the parameter space, and that the
formal degree is locally continuous in the parameters. We will use Propositions 4.7
and 4.8 to build the packets from the various unipotent Hecke algebras, and compute
the expected rational constants according to [26, Proposition 1.4]. On the spectral side,
one again relies on the results of [11] and [56] to compute the rational constants.

For exceptional cases, the results of [60] prove the statement for the unipotent
discrete series of all split adjoint groups G. For the non-split cases, and the nontrivial
inner forms of E¢ and E7 more work needs to be done, but this follows the same
scheme as discussed above, with the help of [61], the tables in Sects. 4.4 and 4.5, and
the results of [13,56]. That is, we need to compute the rational constants for the formal
degrees of discrete series representations of the multi parameter affine Hecke algebras
arising from these non-split cases. The classical Hecke algebras are treated as before,
so that leaves the exceptional unequal parameter Hecke algebras which appear in this
way.

We find that we need to compute the formal degrees of G(3, 1) (for type 3Dy),
G (1, 3) (for type 3Eg), F4(2, 1) (for type 2Eg), and F4(1,2) (for type 2E7). The
first main observation in this kind of computations is the fact [56] that any discrete
series character § defines a generic central character gcc(§) = Wyr (an orbit of
generic residual points) and extends uniquely to a continuous family of discrete series
characters on a connected component C of the open subset of the space of positive
parameters of the Hecke algebra on which Wyr is still residual. Moreover fdeg(§)
depends continuously on the parameters in such a continuous family of discrete series.

But there is a deeper fact which is very useful. The formal degree of a generic
family of discrete series representations (in the sense of [56]) depends algebraically
on the parameters, and this expression only depends on the elliptic class of the limit
q — 1 of the discrete series representation (a representation of W). This result follows
essentially from [14] and the Euler—Poincaré formula in [56], using the argument of
[12, Proposition 5.6] in the unequal parameter setting. This implies (see [13] for
details) that the formal degree of generic families associated with the same generic
central character Wyr but defined on different connected components C and C’ of the
open subset of the positive parameter space where Wyr is residual is given by the same
algebraic expression (provided the families define the same elliptic representation of
W), except possibly for a sign change. (This result generalizes the result of [11] to
arbitrary Hecke algebras). This algebraic expression for the formal degree is a product
formula (see [56]) of terms (1 £ M)*! where M is a monomial in the parameters,
multiplied by a rational constant d (which only depends on an elliptic representation
of W), a monomial in the parameters, and a sign.

The upshot is that in order to compute fdeg(§) it is sufficient to compute fdeg(8”) for
any discrete series 8’ with gcc(8") = Wor at any positive parameter ¢’ where Wor(q')
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is residual, provided § and 8’ define the same elliptic representation of W. Using the
results of [60], we can find a 8" and ¢’ where the constants are known for every generic
family. Hence the generic rational constants d can be determined, and from this we
can determine the formal degree at any singular parameter line in the parameter space
by continuity.

See Example 4.6.3 for more details in the case 3Dy. For F4(2, 1) we have a similar
situation, here we need to cross the singular lines % = g, %, %, % in the parameter
space. For this we need to know the confluence relations of the generic discrete series
at these singular lines. This can be deduced from [56, Table 3]. The considerations are

similar as in Example 4.6.3. Similarly for 3E¢ and 2E7. O

4.6.1 Unipotent representations of inner forms of PCSp,,,, P(COgn), P((CO;nH)O)
In these cases, a unipotent affine Hecke algebra is always isomorphic to a direct sum
of finitely many copies of a normalized affine Hecke algebra which is related to an
object of Cg&:sv or QSQSJSV I'through a (finite) sequence of spectral covering maps.

Let us first compute the rational factors appearing in the formal degrees of discrete
series representations of a normalized affine Hecke algebra H of type Cy(m_, m4)[q]
with m4 € Z, normalized by 7(1) = 1. Using the group Dy of spectral isomorphisms
(see [54, Remark 7.7]) we may, without loss of generality, assume that0 < m_ < m.

As described in Sect. 4.2, the discrete series of H are parameterized by ordered
pairs (o_, 04) of symbols associated to an ordered pair (#_, uy) of distinguished
unipotent partitions for the pair of parameters m = (m_, m4) (so u4 is a partition
of mzi + 2d.+). By Slooten’s “joining procedure” [63, Theorem 5.27] (see also the
explanation in Sect. 4.2), the set of symbols o4 corresponds bijectively to the set of
partitions 7+ of d+ whose m4-tableaux have distinct extremities in the sense of [63]
and such that the corresponding orbit of linear residual points corresponds to u+. Then
the vector consisting of the contents of the boxes of this m¢. := my + e4-tableau of
4 defines, for all ey sufficiently small, a linear residual point &4 (m+ + €1) whose
W, -orbit generically supports a unique discrete series character. We will denote the
discrete series character by §¢;_ ., )(€—, €1).

Theorem 4.12 Let m = (m_,my) € 72 be such that 0 < m_ < m4. Consider
Tu_ui),(o_,op) = 8_,ny)(0,0) as a discrete series of the normalized affine Hecke
algebra (H, t) of type Cy(m_, my)[q]l, normalized by t(1) = 1. Let (u—_,uy) be
the pair of unipotent partitions of type m = (m_,my) associated with the pair
(Tyn_ (), Ty (1)) of m-tableaux, and let (§_(m_ + €_), &y (my + €4)) be the
corresponding pair of linear residual points. Let fdegq(T(w_u).(o_.0.)) denote the
rational factor of fdeg (7 (u_ u.),(o_,0.))- Let u_Uu be the partition which one obtains
by concatenating u_ and uy and rearranging the parts as a partition (our convention
will be to arrange the parts in a nondecreasing order). Let #(u) denote the number of
distinct parts of a partition u. Then we have

fdegq(Tu_ ) (o .opy) = 27 HU-S T (44)

Proof Let the central character of 6(;_ ,)(e—, €4) be denoted by Wyr, where r :=
For_ iy (€=, €4) = (=r—(e-), r4(e4)) with re(ex) := exp(+(m+ + €+)). We have
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fdeg(8(x_,n,)(e—, €4)) = cmw, by [56, Theorem 4.6], with ¢ € Q*, and with
the rational function myy,,, defined by [56, (39)]. The constant |c| is known [11,
Theorem C] and turns out to be equal to 1, independent of the parameters and of
(mr_, m_) (there is a harmless but unfortunate mistake in [11, Definition 4.3] (the factor
% on the right-hand side should not be there, see the update on arXiv) which resulted in
the erroneous extra factor % in [11, Theorem C]). We have the basic regularity result
[56, Corollary 4.4]. Hence fdeg(m(y_ u.) (o_,0,)) €quals the limit for (e, ey) —
(0, 0) of my,,.

For an arbitrary root datum R with parameter function m& (o) = m4 (o) + €+ (@),
and a generic residual point  which specializes to a residual point at €1 = 0, we can
rewrite myy,, in the following form (cf. [54, (13)])) (here N = N (¢) is an affine linear
function of the deformation parameters €):

ngr ==
N (I +a(r)*(1 —a(r)?
v H me () —m€ (a) ) @
aeRoL (I+¢q a(r)(1+gq a@)(1 —g"+Pa@r))(1 —qg "+ % a(r))

where a factor of the numerator or of the denominator has to be omitted if it is identi-
cally equal to O as a function of € in a neighborhood of 0.

In our present case, Ry, = {e; e; |1 <i < j<d}U{e |1 <i <d}.

For a positive root « of type D, we have m€ («) = 0 and m€ () = 1; for positive
root B of type AY, we have m€ (8) = m_ + e_ and mS(B) = my + ey. In the
limit € = (e_, €4+) — 0, some of the factors which are generically nonzero tend to
0, but the number of those factors in the numerator and denominator is equal by [56,
Corollary 4.4] (or [53]). This potentially produces rational factors in the limit, but
actually all such factors (for type D roots as well as for type A‘f roots) are of the form
(1 —g*%), (1 — g*2>+), or (1 — g€ ~+)). For each of these three types, the total
number of these factors in the numerator and denominator has to be equal by the above
regularity result. Hence altogether these factors yield at most a sign in the limit, and that
does not contribute to fdegQ (Tu_,us),(0_,0.))- In addition we have factors (1 + ql(é)),
with /(€) linear in €, in the denominator and numerator. Each such factor yields a factor
2, regardless of the precise form of /(¢). Let the total number of factors 2 thus obtained
be denoted by M. In order to count M, let us write hﬁf (x) for the number coordinates
of &4 (m4) which are equal to x (for x € Zx¢) (cf. [22], or [56, Proposition 6.6]). We
also define Hy.,"(x) = Iy (x) for x > 0, and H,\*(0) = 2h,; (0). Finally, if h is a
function on Z, we define 6 (h)(x) := h(x) — h(x + 1). It is straightforward to deduce
from the above formula for m,, that

M =" S(H" ) ()S(H ) (x) = Hyi'™ (my) — Hy\F (m )

+
x>0

= Z8(H”i‘)(x)5(H,;n++)(x)+5(H"1:)(O)5(HZ+)(O) — Hy'"(my) — Hy\F(m_)
x>1

= > SH )8 (H ) @) + (L (0) + 80 — D (0) + 80 — 1)

x>1
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— Hy'"(my) — Hy'" (m_)

where J)'(0) = 1if 1 is a part of u (equivalently, if O is a jump of £), and J]"(0) =0
otherwise (this value depends only on u (is independent of m)). Recall that ([63], or
[56, Proposition 6.6]) the number of jumps of the vector of contents &(m) of T, ()
equals #(u), and that this is also equal to m 4+ H,*(0). In the second equality above
we used that §(H,")(0) = 2A7(0) — h} (1) = J)'(0) 4+ 60 — 1.

Now let 8+ € {0, 1} be such that §; = miymod(2). There exist partitions 7/,
such that set of jumps of the vector &, of contents of the §4-tableau 7, (7/,) of
7). equals the set of jumps of &1 (cf. [56, Proposition 6.6]). By Proposition 4.7, the
central character W(/)r’ of C,(6—, §4)[¢ql (with 2n = |u_| + |uy| — 6— — 84) which
corresponds to Wor under the translation STM Cy(m_, my)[q] ~ C,(6—, d+)[ql,
is of the form r’ = (—exp(&"), exp(£))). Let hﬁi (x) denote the multiplicity of x
in the vector &/, and let H;,Si (x) be defined, similar to H,/," (x). We define AT* :=
H,fi (x) — H,'*(x). Then it follows from the definition of the jump vector at m
and at 84 that for x > 1, Aﬁ*(x) = max(0,m — x). Thus for x > 1, we have
S(A;'Zi)(x) = X[1,ms—1](x), where x[1 ,,—1] denotes the indicator function of the
interval [1, m4+ — 1]. Let #(u— Nu4) denote the number of parts that #_ and u 4 have
in common. Then we get

M =" §(Hy")(@)8(Hy D) (x) — Ho~ (1) + Hy~ (my) — Hy'™ (my)
x>1
— Hyt () + Hyt(mo) — HY (mo) 4+ (J2~(0) 4+ 8,0 — Dt (0) + 8y 0 — 1)
— Sy 0T (0) = 82) = Sm_0(Jat (0) — 84) + max(0, m_ — 1)
=#u_ Nuy) — H- (1) — HY (1) + A™ (my) + A™ (m_) — J2~(0) — J37(0)
+ 8m_,08my,0 +8m_,000+ —1) + 8, 06— — 1) + 1 +max(0,m_ — 1)
=#_ Nuy) — Hy(0) — Hyt (0) — 8- — 5+ A" (m)
+ 8m_,08my,0 +8m_,000+ — 1) + 8 06— — 1) + 1 +max(0,m_ — 1)
= —#W_Uuy) +8n_oATT(O0) + (1 =8 o)A (m_)
+ 8m7,08m+,0 +8m_ 0064 — 1) + 8y, 00— —1)+1+max(0,m_ —1)
=—#u-_Yuy)+8p_omy —84) + (1 —6pn_0))(my —m-_)
+ 8m_,08my,0 +8m_,000+ — 1) + 3 06— — 1+ 1+ max(0,m_ —1)
=—#w_Uuy)+my+8n_08m, 0+ 8m 06— —1)
= —#u_UYuy)+my

finishing the proof. In the above computation we used at several steps that 0 < m_ <
m4, and that H"(0) = #(u) — m.

[m|

A similar but easier computation shows a similar result for Hecke algebras of unipotent
representations of SOy, 1 (cf. 4.6.2).

Theorem 4.13 Letm = (im_,m4) € (%—G—Z)2 be such that0 < m_ < m.. Consider
Tu_us),(o_,04) ‘= 0¢r_,ny)(0,0) as a discrete series of the normalized affine Hecke
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algebra (H, t) of type Cq(m_, m4)[q], normalized by t(1) = 1. Let (u—_, uy.) be the
pair of distinguished unipotent partitions of type m = (m_, my) associated with pair
(Tin_ (), T, (1)) of m-tableaux (i.e., ux is a partition of 2n+ with distinct, even
parts of length at least my+ — %, such thatn_ +ny = n). Then

_1_
fAeg (Tw_ ) (oo .opy) = 2" 27 HU-), (45)

The proof of the next result (of [19]) is similar in spirit as the above results.

Theorem 4.14 [19]Letd = d_+dy € Z>o,andletm4 = d4. Let0O < m_ < m with
my € £5+7Z Letmy = ki + 3Q2ex — D withky € Z=gand ey € {0, 1}. Let 81 €
{0, 1} be defined by 6+ = K+ (mod 2). Consider 7w(z_ 7.y extra = 8(x_,z,)(0,0) asa
discrete series of the normalized affine Hecke algebra (H, T) of type Ca(m_, m4)[q*],
normalized by t(1) = 1. Let (u—, uy) be the pair of unipotent partitions of type
(86—, 84) associated with the pair (T, _(7_), T, (7r4.)) of m-tableaux via the extraspe-
cial STM [cf. (35), and [19]] H ~ C,(6—, 6+)[q]. Then we have

- =h-(D=he (1) fe 4,

2#(u,mu+)—h,(i)—h+(£)—l@ ife_ = (46)

fde‘g(@(ﬂ(n,,mr),extra) = [
€4.

Let us now look at the Proof of Theorem 4.11 for these cases:

Lemma 4.15 Theorem 4.11 holds for G = PCSp,, (withn > 2), P(COgn) (with
n > 4) or P((CO3 )°) (withn > 4).

Proof Assume that we have fixed a Borel subgroup B C G, a maximal torus T C B
and a pinning for the reductive groups G considered below.

For G = PCSp,,,, we have Q = {¢, n} & C3, hence we need to consider two inner
forms G€ and G". We first deal with the split form G¢. We have H/M (G€) of type
B, (1, 1)[g] (also denoted by ’H(Rf ,mP) in [54, 7.1.4]). The conjugacy classes of
parahoric subgroups of G€¢ which carry a (unique) cuspidal unipotent representation
correspond to unordered pairs (a, b) with a,b € Zso such that d := n — a? —
b* —a — b > 0. The corresponding type S4.q,b corresponds to a subdiagram of type
B2, U B2, of the affine diagram Cﬁll) of a set of affine simple roots of G€ (k).
Consider the corresponding associated normalized (extended) affine Hecke algebra
HES¢. Putm_ :=|a —b|,and my := 1 +a + b. Then

HEBe ~ Ca(m_,my)lq] ifa#b
~ | Bu(1,m4)lg]  otherwise

and

S
Qf ~

1 ifa#bord >0
C, otherwise.
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Thus by Proposition 2.5 and [9, Section 13.7] the rational factor T€%¢ (I)q of the trace
T9%¢ of H®%¢ is such that (since H*® >~ H**¢ ® C[Q]], cf. Corollary 2.7):

274 b ifag#bord >0

TE,S,C‘ 1 —
(Do [2_1_“_b otherwise.

As was discussed in paragraph 3.2.7 (also see [54, 7.1.4]), there exists an STM
HESE ~s HEGP corresponding to a strict algebra inclusion H4 %P ¢ HE¢, where

HEab = Cy(m_, m4)[q] is an object of Qggss. This inclusion satisfies

HE®b = HESC ifa £bord =0
Hd-ab — HESe  has index two, otherwise.

We define the trace 74%? of H?% %P by restriction of the trace T9%¢(1)q of HESe, 50
we have

dab [ﬂﬁw ifa#bord >0
Mo =1 ._ .
27"+ otherwise.
Now we want to compute the rational factor of the formal degree of a unipotent discrete
series representation 7 in a block corresponding to the type s := s4 4.5. According to
Lusztig’s parameterization [40] we attach to 7 an unramified Langlands parameter A,
and an irreducible representation « of the component group A, such that the center
L7 < A; acts trivially in this representation (since u = 1 here). This is equivalent
to « being a one-dimensional representation, and we can parameterize such « by a
pair of Lusztig—Shoji symbols (o_, o) for a pair (u—_, uy) of distinguished unipo-
tent partitions for the parameter (m_, m,), such that |u_| + |uy| = 2n + 1. We
denote by 7[5 (_01) the corresponding irreducible discrete series representation of

H¢5¢ (depending on the chosen isomorphism H¢® ~ HE ¢ @ CI[Q7]). According
to [8], the formal degree of 7 is equal to the formal degree of nf (0_01)" As before,
let fdegQ(nf (U_’U+)) denote the rational factor of fdeg(n)? (U_,J+)). The irreducible

discrete series representations of %*? with the central character corresponding to
(u—, uy) are parameterized [56] by pairs of Slooten symbols (o_, o) associated
to (u_, u) at parameter (m_, m). The discrete series of H%*? corresponding to
(u—,uy), (0—,o0y) was denoted by 7w(,,_ 4. (o_,0.)- By Remark 4.6 we easily check

I+l [+ly — Al_+lp-2 :
tha.t we have a toFal of. ((l,+l+—1)/2) +_((l,+l+—5)/2) +-- = 2 +. such discrete
series representations, in accordance with the number of one-dimensional representa-
tions of A, (with is of type 2¢~+4+~3+2 ‘according to Proposition 4.8). By the above,

combined with Theorem 4.12 we see that

217#(M7UM+) ifa ;é bord >0

fdegQ (- o-.00) = {2_#(““” otherwise.
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According to [56, Paragraph 6.4] (also see [18, Proposition 6.6]), and using the fact
that (see [10]) the Slooten symbols and the Lusztig—Shoji symbols match, we see that
upon restriction to H4-%? there are the following possibilities:

T(u_up),(0—,04) ifa#bord=0
T ooy rdas = Tu_ ) o0 ifa=b,d>0andu_ =0
Tu_uy),(o—0p) O Tw_up), 0 oq) Ha=b, d>0andu_ #0.

Here o’ is the symbol obtained from o_ by interchanging the top and the bottom rows.
In the second case d > 0 and u_ = 0, there are two irreducible discrete series repre-
sentations of H!™ (G€) which restrict to the same irreducible Tu_,up),(o_,04) (Whose
central characters form one X (G¢)-orbit). Restriction of the spectral decomposition
of 76%¢ to H®%? shows fdegQ(nf(aﬂu)) = %fdeg(@(ﬂ(u,,ug,(m,mr)) in this case,
while fdegg (nf(g_ymr)) = fdeg(T(u_,uy).(o_.0y)) in the other two cases. Hence we
have, foralld > 0,

27 Hu-bu) ify =0
G —
fdegQ(nA,(a,,GJr)) - [21—#(u_Uu+) ifu_ #0.

Hence, using Proposition 4.8, (42) and (43) we see that Theorem 4.11 follows for
this case G = PCSp,,, and u = e, if we show that |Cf€| = 2#-Nui) Recall that
MS o~ (C¥)#-Nus) (cf, [9, Section 13.1]), on which F. acts by Ad(sg). Clearly
ad(sg) must act by —1 on my, = Lie(Mg), and so F¢ acts by F.(m) = m~! on M)?.
The desired result follows for u = €.

Next, we need to check Theorem 4.11 for the contributions coming from the
nontrivial inner form G in this case. Now the cuspidal unipotent parahoric subgroups

IE”Z, are given by n-invariant subdiagrams of type B2 UBp2 (U A La24n)-1 such

thatd + 1 := %(n —2(s* +5) — %(z2 +t) + 2) € Z~y. This corresponds to a type
5= 52’ 5., for G which is completely determined by a pair of nonnegative integers
(s, t) satisfying the above inequality. The corresponding affine Hecke algebra H"%¢
is of type Cq(m_, my)[q?], with my = (3 +2¢ +4s) and m_ = 1|1 — 21 + 4s].
We have Qf = (3 (always), and hence using Proposition 2.5 and [9, Section 13.7],
the rational factor t-%¢(1)q of T7*(1) equals

2—%(m++m_+1) ife_ #e,
2-20ms—m ) pe ¢

-[’7,5,6(1)@ — 2—S—l — {
+.

. . . . . +
Using Theorem 4.14, we obtain two discrete series representations T xy)extra

with fdegQ(n(ﬂ;_’m),extm) — 23 (- H—D—#u-Uuy) (in all cases). In view of Propo-
sition 4.8, this is indeed the rational factor of the formal degree of the two elements
of the Lusztig packet attached to the Langlands parameter A on which £ Z C A; acts
by n times the identity, as predicted by (43).
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For G = P(CO(Z)”) (with n > 4) we do a similar analysis. In this case, Q2 is iso-
morphic to C4 if n is odd, and isomorphic to C, x C; if n is even. Let 6 denote a
diagram automorphism of order two of the finite type D, subdiagram. Let us write

= {e,n, p, np}, where n is f-invariant, and [p, 0] = [pn, 8] = n. Let us first
consider the split case G¢. In this case H'M (G) is of type D, [¢], which was denoted
by H(Rad, mP) in [54, (54)]. Let us denote H(RZH, mP) (notation as in [54, Para-

graph 7.1.4]) by D, [¢]. Its spectral diagram consists of the Dynkin diagram for D( )
with the action of the automorphism 7 as in [18, Figure 1] (we have, in the sense
of [54, Definition 2.11], that Qy = () =~ C2). As was discussed in [54, Para-
graph 7.1.4], we have spectral coverings D, [¢] ~ ﬁn [¢] and ﬁn [¢q] ~ C,(0,0)[q],
corresponding to strict algebra embeddings ]5,1 [¢] € Dylg] andﬁ [q] € C,(0,0)[q],
both of index 2. We normalize the trace of D, [¢] by restriction from D, [g], and of
C,,(0, 0)[¢] such that its restriction to D [¢] equals the trace we just defined on D [q].
The conjugacy classes of parahoric subgroups of G which support a (unique) cuspidal
unipotent representation correspond to unordered pairs (a, b) with a, b € 2Zx such
that d = n — a®> — b> > 0. The pair (a, b) corresponds to a subdiagram of type
D,> U D, of the type D,(,l) diagram of a set of simple affine roots of G (k). We put
_ =|a—>bl,and my = |a + b|. We have

Cym_,m4)[q] ifa#bord=0
HO®¢ ~ 1By(1,my)q] ifa=b>0andd >0

D,lq] ifa=b=0
and
C) ifa>0,b>0anda #bord >0
QF ~ CyxCy ifa=b,d=0, andn € 2Z
N Ko ifa=5b,d=0, andn €27 + 1
1 otherwise.

As before we denote by H4%? the type €LY - object H4*? ~ Cy(m_, m4)[q] which

class™

is covered by H¢%¢. For m_ = m,. = 0 we also introduce H"*® ~ D, [¢]. Then we
have

HA-ab = Hese ifa#bord=0

Hbab c pese has index two ifa = b > Oand d > 0

H™O.0 5 Fgn0.0 - yese  if g = p = 0 (both inclusions have index two).

We have, by definition of our normalizations, and using Proposition 2.5 and [9, Sec-
tion 13.7],

27Mm+  fa=bandd =0, orifa=b=0

,L.e,ﬁ,e 1 — .L.d,a,b 1 —
(Dg (Do [21_’"+ otherwise
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where as before, 7¢%? denotes the trace of the type Cy (m _, m.)[g]-algebra (an object
of €IY ) which is spectrally covered by H Se,

The irreducible discrete series representations of H%*? with central character
corresponding to (u_, 1) are parameterized by pairs of Slooten symbols (o_, o),
denoted by 7(_ u,),(o_,0,)- By the above, combined with Theorem 4.12 we see that

2—#u-Uuy)  ifg=pbandd =0, orifa=b=0

fdegQ(Twu-up).(o-on) = [21#(”—U”+) otherwise.

As in the previous case G = PCSp,,, Proposition 4.8, (42) and (43) imply that
Theorem 4.11 is true in this case iff (here A denotes a discrete unramified Langlands
parameter for G which gives rise to the pair (¢_, u) as in Proposition 4.8):

2—#(u,Uu+) ifu_ =0
G —
fdeg(@(nk,(a,,mr)) - [21—#(NUL¢+) ifu_ # 0. (47)

In the case d = 0 we have fdegQ(nA (-4 )) = fdegQ(n(u u4),(o_,04))» and since
a = b is equivalent to u_ = 0 in this case, we are done if d = 0. Similarly, if
a # b (hence u_ # 0) there is no branching, and we are done. So from now on,
we may and will assume d > 0 and a = b. The case a = b > 0 is completely
analogous to what we did in the case G = PCSp,,,. This leaves the case a = b = 0.
We combine results of [58, Appendix], [18, Lemma 6.10] and [56, Section 8] to
derive the branching behavior of the discrete series. If u_ = 0, then there exist two
distinct discrete series representations nf (0.00) and nf (O.04) of HE%¢ = HIM(G€)

whose central characters are distinct (but lie in the same X n(GF )-orbit), and which
restrict to the same irreducible discrete series representation 71A ©0.04) of H™%0. On
the other hand, there also exist two irreducible discrete series characters 7(o,,),(0,0.)
n,0,0 : . ~G :

and 7, .0,0%) of 'H which both restrict to 7,’ 0.04)" It follows easily that
fdeg(@(”g,(o,g+)) = fdegq ((0,u4).0.04)) = 2 #W4) g desired.

Ifu_ # 0, and A is an unramified discrete Langlands parameter for G correspond-
. G . . ~ G ~ G
ing to (#_, u4), then T ooy restricts to a direct sum T (6 op 41 ® T 0oy —1)

of irreducible discrete series representations of ™00, Indeed, by [58, A.13] the
restriction is either irreducible or a direct sum of two irreducibles, which are more-
over themselves discrete series by [18, Lemma 6.3]. Moreover it follows from [58,
A.13] that if there exists a ng (_.01) with o_ # 0 and o4 # O which restricts
to an irreducible in this way, then the number of irreducible discrete series repre-
sentations of ™% with u_ and u4+ not equal to 0 is strictly less than twice the
number of irreducible discrete series of the kind described above of H! (G€). But
this contradicts the classification of the discrete series as in [56, Section 8] (this
counting argument is similar to the proof of [18, Lemma 6.10]). There are four irre-
ducible discrete series characters 7 _u,),(o_.010)s T(u_,us), (0 ,04) T uy)(o-.0))
and 7,y (o, o) of H™%-0 anditis easy to see that all of these restrict to irreducible

discrete series characters of H™%9: Two of them will restrict to ﬁf (0 .0r.41) and the

other two will restrict to fcf (o —1)" Altogether it follows that fdegg (”?i (. J+)) =
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2fdegq (Tw_uy).(0-.04)) = 21=#u-Uut) ip these cases, as desired. Using Remark 4.6
again, we see that the total number of this kind of unipotent discrete series represen-
tations equals 2/~++=3 if [_ = 0, and 2/+ 2 otherwise. This should correspond to the
subset of the Lusztig packet associated to A which is parameterized by the set Irre (Ay)
of irreducible characters of A, on which £LZ = Q* acts trivially. Indeed, this is half
the number of one-dimensional irreducibles of A).

Next, let us take the inner form G* with u = . The analysis is exactly the same as
foru = €, except that now a and b are both odd. We again obtain 2/~ =3 (if | # 0)or
21+=2 (otherwise) unipotent discrete series representations in the Lusztig packet for A,
this times the ones parameterized by the set of irreducible characters Irr, (A;) of A, on
which £Z = Q* acts as a multiple of 5. The collection Irr. (Aj) U Irr, (A)) coincides
with the collection of 2/~t4=2 (if [_ # 0) (or 2%~ if [_ = 0) one-dimensional
irreducible representations of A;.

Finally consider the inner forms with u = p or u = pn. These two inner forms are
equivalent as rational forms, via the outer automorphism corresponding to 6, hence it
suffices to consider the case u = p only. This time the cuspidal unipotent parahoric
subgroups IP’f, , are given by p-invariant subdiagrams of type

PP~ D UDp U ZA%(tZ-H)—l if n even
Y PPe UPDR URA oy, ifnodd

such that d + 1 := %(n — 252 — %(t2 +t) +2) € Z-¢. This corresponds to a
type 5 = 55“” for G” which is completely determined by a pair of nonnegative
integers (s, t) satisfying the above inequality, and the congruences: s = n(mod 2),
t =0,3(mod4) (if n even), and t = 1, 2(mod 4) (if n odd). The corresponding affine
Hecke algebra 7% is of always type Cy(m—, m)[g>], with m,. = (1 + 2t +4s)
andm_ = %Il + 2t — 4s|. We have

Q ifs >0ord=0
Q= . (48)
(p) ~Cr ifs=0andd > 0.

Using 2.5 and [9, Section 13.7], the rational factor tp*ﬁ’e(l)@ of 7#-%¢(1) equals

2—%(m++m7+2) ife_ # e,

p.5,e _n—s—1 _
i lg=27= [2é<m+m+2> ife

= €4.
Using Theorem 4.14, we obtain discrete series representations ngh) T)extra with
. 1 oy
rational parts of formal degrees equals fdegQ(nf‘n_’m)’mM) = 22+l =2)—#@-_Uuy)

(in all cases), where « denotes an irreducible character of Qf .In view of Proposition 4.8
and (47), this is indeed the rational factor of the formal degree of the two elements
of the Lusztig packet attached to the Langlands parameter A on which ©Z C A; acts
by p times the identity, as predicted by (43). As to the numerology of counting the
number of such irreducible representations in a Lusztig packet attached to a unipotent
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discrete Langlands parameter A for G: Let us write (u—, uy) for the (ordered) pair
of unipotent partitions attached to A (these are partitions with odd, distinct parts such
that |u_| + |uy| =2n). Ifu_ # 0 and u_ # u4, then we have two such packets (for
the pairs (#_, uy) and (u4, u_) which contain a discrete series representation with
the same g-rational factor. According to Proposition 4.8 both these packets contain
2 irreducibles on which ©'Z acts as a multiple of p (and also two where ©Z acts
as multiple of pn) (together these are the four irreducibles in each of these packets
which are not one-dimensional). This matches the “Hecke side”, since we have (by
(48)) that H*-# is either a direct sum of four copies of H” 5¢ each contributing one
irreducible discrete series with the desired g-rational factor in the formal degree (if
s # 0, or equivalently m_ # m.) or of two such copies (if s = 0, or equivalently

m_ = m). But in the latter case, each of these copies of H”-%¢ contributes two
such irreducible discrete series (whose central characters are mapped by the STM to
(u—,uy) and (uy, u_) respectively). If u_ = u, then necessarily m_ = m, and

the two copies of H”-*¢ contribute each one discrete series to the packet associated to
A, corresponding to the two irreducibles of A; on which © Z acts as p. Finally we have
the case u_ = 0. In this case there are four distinct discrete Langlands parameters
A1 = A, A2, A3, g which share the same g-rational factor in the formal degree, and
each of the four corresponding Lusztig packets should have one member associated
to the single irreducible of Aj, on which - Z acts by p (according to Proposition 4.8).
Hence in all cases the Hecke algebra side and the L-packet side indeed match. This
finishes the case G = P(CO(Z)”).

The last case to consider is the non-split quasisplit orthogonal group P( (CO*)gn 12)-
Now we have u € Q/(1 — 0)Q = Q/(n) ~ (p) ~ C,. We have H'M(G) =
C,(1, )[g]. The conjugacy classes of parahoric subgroups P4 %% which support a
(unique) cuspidal unipotent representation are parametrized by ordered pairs (a, b)
with a, b € Z>o, with a even and b odd, and such thatd =n + 1 — a?> —b% > 0. The
parahoric P%%? is of type D,> U >D,>. The corresponding cuspidal unipotent type is
denoted by 5 = s4%? We have H%¢ = Cy(m_, m,)[q], with m = a + b and
m_ = |a — b|. Furthermore, Qi’g’g =Cy(ifa>0o0rd =0)or=1(ifa = 0 and
d > 0), implying that 7*¢(1)g = 21=m+ (in all cases).

Let A be a discrete unramified Langlands parameter for G. According to [61], in
the notation of (14), we have Cgv (A(Frob x id)) is the connected cover in Spiny,, »
of SO2;,_ 41 X SOz, 41 (Withn_ +n4 = n), and the GV -orbits of such A correspond
bijectively to ordered pairs (u_, u4) where u4 is a distinguished unipotent class in
SOy, +1. Note that this means that u+ F 2n+ + 1 has odd, distinct parts.

Let (o0_, o) be a Slooten symbol for the parameters (m_, m ) corresponding to the
pair (A, Ay),and let w(,_ u,),(o_,0,) be the correspond discrete series representation
of H¢%¢. Then, Theorem 4.12 implies that fdegq (Tw_uy).(o_.0y)) = 21—#-Uuy)
It easily follows that this agrees with (43). The number of such irreducible discrete
series equals 2/-1+=2  as expected by Proposition 4.8.
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Let us now consider u = p. Now the cuspidal unipotent parahoric subgroups PE;
are given by p-invariant subdiagrams of type

2 .
P~ [sz UD, U A%(tz—ﬁ—t)—l if n even
s,

2 2 2 .
D> U“Dp U A%(tz—ﬁ—t)—l if n odd

such that d + 1 := %(n — 252 — %(z‘2 +t) + 3) € Z-¢. This corresponds to a
type s = 55“” for G” which is completely determined by a pair of nonnegative
integers (s, t) satisfying the above inequality, and the congruences: s = n(mod 2),
t =1,2(mod4) (if n even), and t = 0, 3(mod 4) (if n odd). The corresponding affine
Hecke algebra HP-5¢ is of always type Cy(m_, m4)[q?], withm, = %(1 + 2t 4 4s)
andm_ = %Il + 2t — 4s5|. We have

Q%0 _ () ~Cy, ifs>0o0rd=0
' h ifs=0andd > 0

and we get
1
2720me A M) f e £ e
Tp’s’e(l)@ — 2—S — l 75 +

2720memm) f e =€,
Hence, using Theorem 4.14, the extra special STM H”%¢ ~» H/M(G) yields
one additional discrete series representation 7(x_ r.).exrra added to the Lusztig
packet associated to A, whose formal degree satisfies fdegqg(7(x_,x,)extra) =

1 . . . ..
23 U—Hp)=#Wu-Uus) " aq desired in view of Proposition 4.8. O

4.6.2 Unipotent representations for inner forms of SO2,4+1 In these cases, a unipotent
affine Hecke algebra is always spectrally isomorphic to a direct sum of finitely many
copies of objects of @gass. The treatment of these cases is analogous to the symplectic
and even orthogonal cases discussed in the previous paragraph, but in all aspects much
simpler (no branching phenomena, no extraspecial STM’s). We will content ourselves
to give the results only.

We have Q = {e, n} ~ C», and H/M (G€) is of type Cn(%, %)[q]. The conjugacy
classes of parahoric subgroups P%®? of G supporting a (unique) cuspidal unipotent
representation are parametrized by ordered pairs (a, b) with a, b € Z>¢, with a even,
and such thatd = n —a® — (b> +b) > 0. The parahoric P44 is a type D 2 U Bpayp.
The corresponding cuspidal unipotent type is denoted by s = s¢%?. We have H*%¢ =
Ca(m_,my)[ql,withmy = %—}—a—i—b andm_ = | %—a—i—bl. Furthermore, Qi’s’e =C

(ifa>0o0rd =0)or=1(ifa = 0andd > 0), implying that *¢(1)g = 25-m
(in all cases). For the nontrivial inner form G" of G, the formulas are the same except
that now a is odd, and P%%? has type >D 2 U B2,

Now an orbit of discrete unipotent Langlands parameters A for G corresponds to an
ordered pair (u_, u4) of unipotent partitions with u4 - 2ny such thatn_ +ny =n,
where u consists of distinct, even parts.
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The discrete series representations of HESe = Cy(m-_, m4)[gq] are parameter-
ized by a pair of Slooten symbols (o_, o) for such pairs (u_, u.), at the parameter
pair (m_, m4). The ordered pair (o_, 04) corresponds to an ordered pair of parti-
tions (w_, my) with w4 F ni. Let us denote this discrete series representation of
Ca(m_,my)[ql by 8(z_ z,). By Theorem 4.13 we arrive at

fdeg (T _up) 0 .01) = 2 Hu-tus), (49)
It is easy to check that this matches (43) (see e.g. [15, Corollary 6.1.6]).

4.6.3 The example of type 3Dy Let G be the group of type 3Dy defined over a
non-archimedean local field k. The group G is quasisplit, and the dual L-group is
isomorphic to “G := (8) x G where GV = Spin(8) and where @ is an outer auto-
morphism of order 3. Hence L7 =1, and G has no nontrivial inner forms. There are
two cuspidal unipotents called 3D4[1] and 3D4[—1] (cf. [9], section 13.7).

The image ¢ (F') = s6 of the Frobenius element under a discrete unramified Lang-
lands parameter ¢ is an isolated semisimple automorphism. Via the action of Int(G")
itis conjugate to a semisimple element of the form s; with s; a vertex of Cy (cf. [20]).
In the case at hand, we label the nodes of the twisted affine root diagram according to
[20, Section 4.4], and we have to consider 6sq, 051 and s>.

We have H'™ (G) = G2(3, 1)[g], normalized by (1) := [3], ' (v—v~") "% accord-
ing to (25). The Wy-orbit space of the character torus T of the root lattice X of type G2
can be identified [3] with the space of Int(G")-orbits of semisimple classes of LG of
the form Og, viathe map T > ¢+ — 0¢. In this way we will identify, as usual, the space
of central characters of affine Hecke algebra H/™(G) = G, (3, 1)[¢] and the space
of semisimple Int(G")-orbits of this form of ©“G. The Hecke algebra H/M(G) has
two orbits of real residual points Worg, .o and Woro sup, and two nonreal ones Wory
and Wyr, (using the same numbering of the nodes of the diagram as before). At each
residual point of G, (m;, m)[q] at the parameter value (m;, ms) = (3, 1), the number
of irreducible discrete series characters supported at this point is equal to the number
of generic residual points which specialize at (3, 1) to the given residual point. This
number is always 1, except for Woro sub, Where it is equal to two [56].

We can and will baptise these orbits of generic residual points Wyr, using
Kazhdan-Lusztig parameters for the discrete series of G (1, 1)[¢], by an irreducible
representation of A;, where A is the Langlands parameter of the split group of type
G». The subregular unipotent orbit of G, gives rise to a unipotent discrete Langlands
parameter & = Agyp, of 3Dy with A5 = S3. Its “wei ghted Dynkin diagram™ is ro sub. The
two orbits of generic residual points of the generic Hecke algebra of type G, which are
confluent at (1, 1) are also confluent at (3, 1). By the above, we call these two orbits
of generic residual points Worsyp uiv and Worgyp o, Where o is the two dimensional
irreducible character of S3. The orbit of generic points Woyrgub,iriv represents a generic
discrete series character of degree 3, which has generic formal degree with rational
constant factor % The other orbit of generic residual points Worep,» has degree 1,
and generic rational constant 1.

At the confluence of these two generic residual points at parameter (1, 1), we get
in the limit an additional constant factor % for Worsub.wiv leading to the well known



Spectral transfer morphisms 2205

equal parameter case of Theorem 4.11 at the subregular unipotent orbit for split G,
(cf. [59]). At the confluence point for the parameters (3, 1) the rational constants do
not change, however. Thus together with the cuspidal character D4[1] we get a packet
[T, for A = Agyp consisting of three representations, naturally parameterized by the
characters of A; = S3, whose formal degrees have rational constant % (for the cuspidal
3Dy4[1] corresponding to the “missing representation” sign of A, = S3, and for the
generic discrete series character associated to Worgub,wiv €valuated at the parameter
value (3, 1)), and rational constant 1 (for the generic discrete series Worgyp, o evaluated
at (3, 1)).

For the regular parameter of Ges , we get two discrete series characters, namely

the cuspidal one 3D4[—1] and the Twahori spherical one. Both have % as a rational
constant factor.

Finally, at the regular parameter of ng, we have one Iwahori spherical discrete
series representation, with rational constant 1.

These constants are clearly compatible with Theorem 4.11. Namely, consider (43).

For a discrete Langlands parameters A with 8s; = A(F) and such that u := X ((1) }) is

regular within the connected reductive group Gv this follows because CF = 1lin
such a case (this is obvious fori = Oandi = 2 s1nce then A; = 1,andfori = 1 we see
that u is the distinguished element [5, 3] in Spin(8) by the table of [9, p. 397], whence
M)? = 1), and hence A, ~ (mo(M;))F is isomorphic to Z(G )/Z(LG) = Z(G )
(by [59, Section 6]). This yields the result for all cases except Asub. For this case we
remark that the image of the subregular unipotent of G> in Spin(8) is a unipotent
class of Spin(8) with elementary divisors [1, 1, 3, 3]. Hence Mg is a two-dimensional
torus, on which F acts as a rotation of order 3. Thus C f is cyclic of order 3, and
(mo(M;))F &~ C;. This indeed yields the constants we just computed.
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