UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Containment for queries over trees with attribute value comparisons

Marx, M.; Sherkhonov, E.

DOI
10.1016/j.is.2015.11.003

Publication date
2016

Document Version
Final published version

Published in
Information systems

License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Marx, M., & Sherkhonov, E. (2016). Containment for queries over trees with attribute value
comparisons. Information systems, 58, 1-13. https://doi.org/10.1016/j.is.2015.11.003

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:11 Feb 2023

https://doi.org/10.1016/j.is.2015.11.003
https://dare.uva.nl/personal/pure/en/publications/containment-for-queries-over-trees-with-attribute-value-comparisons(fc70b32d-3ae3-4718-a9c6-504fef7713d8).html
https://doi.org/10.1016/j.is.2015.11.003

Information Systems 58 (2016) 1-13

Contents lists available at ScienceDirect =
Information
Systems
Information Systems
journal homepage: www.elsevier.com/locate/infosys e
—

Containment for queries over trees with attribute

value comparisons ™

Maarten Marx, Evgeny Sherkhonov *

University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands

@ CrossMark

ARTICLE INFO

ABSTRACT

Article history:

Received 22 January 2015
Received in revised form

23 October 2015

Accepted 26 November 2015
Available online 5 December 2015

Keywords:

Tree query languages
Conjunctive queries over trees
Positive XPath

Containment

Attribute

Bjorklund et al. [6] showed that containment for conjunctive queries (CQ) over trees and
positive XPath is respectively /75 and coNP-complete. In this article we show that the same
problem has the same complexity when we expand these languages with XPath's attri-
bute value comparisons. We show that different restrictions on the domain of attribute
values (finite, infinite, dense, discrete) have no impact on the complexity. Making attri-
butes required does have an impact: the problem becomes harder. We also show that
containment of tree patterns without the wildcard %, which is in PTIME, becomes coNP-
hard when adding equality and inequality comparisons.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we study the containment problem for
positive XPath (PosXPath) and conjunctive queries (CQ)
interpreted over finite unranked ordered trees with
respect to the axes Child, NextSibling, Descendant,
NextSibling* and Following. PosXPath is a large fragment
of Core XPath [14] which contains all the axes and con-
structs except negation. Conjunctive queries over trees are
an analog of relational conjunctive queries, which corre-
spond to the select-from-where SQL queries in which the
where-condition uses only conjunctions of equality com-
parisons, and are the most widely used query language in
practice. A thorough study of the containment problem for
CQ over trees has been done in [6]. Their main result is

“ An extended abstract announcing some of the results of this paper
was presented at the 16th International Workshop on the Web and
Databases (WebDB), New York, June 23, 2013.

* Corresponding to: POSTBUS 94323, 1090 GH, Amsterdam, The Neth-
erlands. Tel.: +31 205258627.

E-mail addresses: maartenmarx@uva.nl (M. Marx),
e.sherkhonov@uva.nl (E. Sherkhonov).

http://dx.doi.org/10.1016/].is.2015.11.003
0306-4379/© 2015 Elsevier Ltd. All rights reserved.

115-completeness of the problem. In fact, conjunctive
queries can be reformulated as the positive fragment of
Core XPath with path intersection. Thus, the /75 hardness
result also holds for the containment problem for this
fragment. Inspection of the proof in [6] also indicates that
the containment for just PosXPath remains in coNP. This
extends the result of Miklau and Suciu [19], who showed
that containment for tree patterns is coNP-complete.

The query language considered in these previous
results ignores attributes. However, in many practical
scenarios we deal with data that come from numeric
domains, such as real or natural numbers. Thus, it is nat-
ural to consider conjunctive queries expanded with attri-
bute value comparisons and study basic static analysis
problems such as satisfiability and containment. Such an
expansion has been considered for Tree Patterns in [1],
where a 175-completeness result for the containment has
been established. However, the hardness proof relies on
the construct that allows comparisons of attributes of two
different nodes, a feature that is not expressible in Core
XPath. As a positive counterpart, a coNP upper bound for
containment was shown in the case when comparisons are
restricted to either so-called left semi-interval or right

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.11.003
http://dx.doi.org/10.1016/j.is.2015.11.003
http://dx.doi.org/10.1016/j.is.2015.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.11.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.11.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.11.003&domain=pdf
mailto:maartenmarx@uva.nl
mailto:e.sherkhonov@uva.nl
http://dx.doi.org/10.1016/j.is.2015.11.003

2 M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13

semi-interval attribute constraints. For an attribute a and
constant ¢, an attribute constraint (@qopc) is left semi-
interval ifope{<, <, =}.

This article is an extension of [23], where it was shown
that the complexity of containment does not increase for
tree patterns expanded with both left and right semi-
intervals constraints together with inequality constraint.
Here we show that essentially the complexity does not
change in cases of positive XPath and conjunctive queries
over trees. Furthermore, the same upper bounds hold for
the cases when we make certain assumptions on the
underlying attribute domain D. That is, we show that all
the complexity results still hold for the cases when D is a
dense or discrete infinite linear order, with or without
endpoints, or a finite linear order. As another result, we
show that by requiring at least one attribute to be defined
in every node of a tree, the complexity of containment
over such trees rises to PSpact. If, on the other hand, we
require attributes to be defined only at nodes with a cer-
tain label (which can be expressed in DTDs) the com-
plexity remains in coNP.

All the upper bound results for both PosXPath and CQ
are obtained from a suitable polynomial reduction to the
containment problem in PosXPath™ and UCQ™
(PosXPath and CQ expanded with safe label negation and
union) over trees in which nodes may have multiple labels,
respectively. Safe label negation is the construct
p\{q1, ---.q,} which denotes p-labelled nodes that are not
labelled with any of thelabels qy,...,q,. Table 1 sum-
marizes our results.

The paper is organized as follows. In Section 2 we
briefly mention related work. Section 3 contains all the
necessary preliminary notions. Section 4 contains the main
results. In particular, in Section 4.1 we show that con-
tainment for UCQ™ and PosXPath™ is in 775 and coNP
respectively. Next in Section 4.2 we consider containment
for CQ® and PosXPath® and show the same upper bounds
by reducing to the previous problem. Then in Section 4.3
we show that the upper bounds of containment do not
change in case of some natural restrictions on the attribute
domain. Section 4.4 contains lower bounds: containment
of tree patterns without wildcard rises from PTiME to coNP
when we add equality and inequality comparisons; con-
tainment of tree patterns rises from coNP to PSpace when
we add equality and inequality comparisons and interpret
them on trees in which at least one attribute is defined at
each node (a so-called required attribute). We finish with
conclusions and future work.

Table 1
Complexity results for containment of Positive XPath and CQ with attri-
bute value comparisons.

PosXPath® cQ®

No attributes
Optional attributes
Required attributes

coNP [6] 5 [6]
coNP (Theorem 2) 115 (Theorem 2)

PSpace-hard PSpace-hard
(Theorem 3) (Theorem 3)

2. Related work

Containment of Conjunctive Queries (CQ) with
arithmetic comparisons. The classical result on contain-
ment of conjunctive queries over relational databases is its
NP-completeness [7]. Later, containment for conjunctive
queries expanded with arithmetics comparisons was
shown to be I75-complete [17,26]. In [2], Afrati et al. con-
sider various restrictions on type of comparison operations
on either of the two input conjunctive queries with com-
parisons, as well as on interaction between the compar-
isons, so that the containment is in NP (cf. Table 1 in [2]).
However, it was left open what the exact complexity of
containment for CQ with comparisons of type Xopc is,
where c is a constant and ope{=, #, <, >, <, >}, ie,
the type of comparisons that we consider in this paper.
Note that the /75-lower bound proof in [26] uses dis-
equation of variables, i.e., the construct X # Y for variables
X and Y. Nevertheless, adding comparisons of the form
Xopc to conjunctive queries does change the complexity of
containment, which is in contrast with the result of the
current paper for PosXPath and CQ over trees. This is
argued in [13], where 775-hardness of containment for CQ
with comparisons was shown, using comparisons of the
form X # c. This proof can also be adapted to use com-
parisons of the form both X <c and X > c [21].

Relational conjunctive queries with negated atoms
were also studied previously. It is known that containment
for CQ with negated atoms is /75-complete [25]. The
analog of safe negation that we consider here was also
considered in the context of relational CQ [27]. In this
case, negation in a conjunctive query is safe if every vari-
able appearing in a negated atom also occurs in a positive
atom of the query. Interestingly, the lower bound proof
from [13] can be adapted to show 775-hardness of CQ with
safe negation [21]. Thus, adding safe negation to relational
conjunctive queries does change the complexity of con-
tainment (from NP to /75), which is in contrast with the
result of the current paper where safe negation does not
change the complexity of containment for queries
over trees.

Containment for queries interpreted over trees. The
containment problem for various XPath fragments has
been a topic of wide interest for the past several years. A
polynomial time algorithm for tree patterns without the
wildcard based on homomorphism between queries was
given in [3]. The main result of Miklau and Suciu [19] is the
coNP-completeness of containment of tree patterns with
the wildcard. Almost a complete picture of the contain-
ment problem for the XPath fragments with disjunction, in
the presence of DTDs and variables was given in [20].
Notably, it was shown that with a finite alphabet the
containment problem rises to PSpace. [28] gives decid-
ability results for various fragments with DTDs and a class
of integrity constraints. XPath containment in the presence
of dependency constraints was studied in [10,11]. All these
complexity results are given for forward fragments of
XPath. In this paper we consider all the backward axes
(parent and ancestor) together with the document order
axis (next sibling, following sibling, and following axes and
their inverses). Note that in [22] it was shown that every

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13 3

XPath expression has an equivalent expression without
backward axes. However, this translation may result in an
expression of exponential size.

A closely related problem is XPath satisfiability [16,4].
[4] contains almost a complete picture of the satisfiability
problem with or without the presence of constraints for
various fragments of XPath. Query containment reduces to
XPath satisfiability in fragments with enough expressive
power (e.g., with negation and filter expressions).

Recently the containment of Boolean combinations of
tree patterns interpreted over data trees was studied in [9],
where [75-completeness was shown. Their results are
incomparable with our results since tree patterns used in
[9] output a tuple of data values of nodes, while our tree
patterns output nodes.

A closely related work is by Afrati et al. [1]. Consider the
containment problem for tree patterns with general
arithmetic comparisons. They add the ability to compare
the value of an attribute in two different nodes (note that
this is not expressible in Core XPath) and show that con-
tainment for this fragment is /75-complete. As mentioned
in the introduction, we extend their coNP result for tree
patterns with attribute value comparisons.

A systematic study of conjunctive queries interpreted
over trees started in [15], where the central problem was
the evaluation problem. The authors established a PTivE
and NP dichotomy of the problem. The containment pro-
blem for this language was considered in [6], where it was
shown to be 175-complete. The 775 upper bound was shown
via the small counterexample property, similar to the one
in [19]. On the other hand, the 775 lower bound proof
heavily relies on the DAG structure of conjunctive queries.
In fact, if one disallows path intersections and allows dis-
junction, the same “small counterexample” technique will
yield a coNP algorithm. Since XPath expressions with
backward axes can be expressed in this language, this
implies the coNP upper bound for positive XPath. Con-
tainment of conjunctive queries under schema constraints
was studied in [5], where 2ExpTime-completeness of the
problem was established.

We end with some results on tractable (PTivE) con-
tainment. As mentioned above, [3] provides a PTimE algo-
rithm for containment of tree patterns without the wild-
card. PTive containment for acyclic conjunctive queries
implies tractability for containment of tree patterns
without descendant. Moreover, containment for tree pat-
terns without filters is in PTime as well [19]. However
adding attribute value comparisons may raise the com-
plexity. For instance, as shown below in Proposition 5,
containment for tree patterns without the wildcard toge-
ther with equality and inequality attribute comparisons is
coNP-hard. As for conjunctive queries interpreted over
trees, very limited fragments have PTiME containment:
those that use one of Child or NextSibling relation only [6].

3. Preliminaries
We work with node-labelled ordered unranked finite

trees, where the nodes are labeled by finite subsets of the
infinite set of labels X. Formally, a tree over X is a tuple

(N,E, <,1,p), where N, the set of nodes of the tree, is a
prefix closed set of finite sequences of natural numbers,
E= {1, ...,), (M1, ooy M, M 1)K, -, My 1) € NY iS the
child relation, the sibling relation < is defined as
{(na, ., (i, o, M+ 1) N, e,), (N, -, M+ 1) € N,

r =) is the root of the tree, and p is the function assigning
to each node in N a finite subset of X. If for every node n of
a tree p(n) is singleton, we call such a tree as a single-
labeled tree. Otherwise, it is multi-labeled. A pointed tree is
a pair T,n, where n is a node in T.

Let A be a set of attribute names and (D, <) a dense
linear order without endpoints. Then a tree with attributes
from A over X is a tuple (N,E, <,r,p,att) such that
(N,E, <,r,p) is a tree over X and att:N x A— D is a partial
function.

By E* and < * we denote the descendant and the fol-
lowing sibling relations which are transitive closures of the
child and sibling relations respectively. We will also use
<y for the following relation, i.e., the abbreviation for
(E""yo<*oE".Forx,yeNandRe(E.E", <, <", <f},by
T = xRy we denote the fact that (x,y) eR.

Positive XPath with attribute value comparisons. We
define the syntax of Positive XPath (denoted as
PosXPath®) node and path formulas with attribute value
comparisons with the following grammar.

step:=][1| < |-,
@::=p| T |@aopClp A @le v pKa)p,
a::=step|?p|a; ala U alstep™ | -] —p,

where peX,acA ope{<,>,<,>,=,#},and ceD.

The semantics of PosXPath® path formulas « and node
formulas ¢ is defined as follows. Let T=(N,E, <, 1, p, att)
be a tree over X with attribute names from A. In a mutual
induction we define the relation [[a]]; <N x N and the
satisfaction relation T,n = ¢.

[

[rr

[l

[l

[- f]]T =<y,

[epllr=(<p~!

o]y = {(n,n) €N x NI T,nk= ¢},

[le; Allr = el oAy

[[e U BlIr =[]l Y [[B]7,

et Tlr =(lallp)* for ae{l, 1, -, <},

and

T,n=T,

T,nE=p iff p e p(n),

T,n = @qopc iff (D, <) = att(n,a) op c,
T.n=payiff T,n=g and T,nE=y,
T.n=pvyiff T, n=gpor T,nk=y,

T,n = {a)p iff there is a node m with (n,m) e [[a]]; and
T,mkEg.

The step axes select a pair of nodes that are in the child,
parent, next-sibling or previous-sibling relations in the
tree. Furthermore, the —; and «, axes select nodes that

4 M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13

are in the following and the preceding relations in the tree
respectively. Note that T is the same as the wildcard axis.

Sometimes we will write T = ¢ to denote T,r = ¢.

Conjunctive queries with attribute value compar-
isons. Let Var be a set of variables, A a set of attribute
names and (D, <) the attribute domain, which is a dense
linear order without endpoints. A conjunctive query with
attribute value comparisons (CQ®) over =, A and D is a
positive existential first-order formula without disjunction
in prenex normal form over a set of unary predicates p(x)
and @q(X)opc, where peX, xeVar,ceD and
ope{<,>,<,>,=,+#); and the binary predicates
Child, Descendant, NextSibling, NextSibling* and Following.
If Q is a CQ%, by Var(Q) we denote the set of variables
occurring in Q. By FVar(Q) we denote the set of free vari-
ables in Q. If [FVar(Q)| = k > 0, we call Q a k-ary conjunctive
query. If |FVar(Q)]=0, we <cal Q a Boolean
conjunctive query.

Let Q be a conjunctive query and T = (N, E, <,r,p,att) a
tree over X and attributes from A. A valuation of Qon Tis a
total function : Var(Q)— N. A valuation is a satisfaction if it
satisfies the query, that is, every atom of Q is satisfied by
the valuation. Satisfaction of an atom in T, given a valua-
tion 6, is defined as follows.

T,0 = p(x) iff p € p(0(x)),

T, 0 = @q(x)opc iff (D, <) = att(é(x),a) op c,
T,0= Child(x,y) iff T = 6(x)E6(y),

T, 6 = Descendant(x, y) iff T = 0(X)E™ a(y),

T, 0 = NextSibling(x,y) iff T = 0(x) < 6(y),

T, 6 = NextSibling ™ (x,y) iff T = 6(x) < + 0(),
T, 0= Following(x, y) iff T = 6(x) < ;0(y).

A tree T models Q, denoted as T = Q if there is a satis-
faction of Q on T. If (x4, ..., X,) is the tuple of free variables
in Q, then the answer of Q over T is the set answer
(Q,T)={(0(X1), ..., 0(xx))|0 is a satisfaction of Q on T}. Note
that tuples can be nullary as well. Thus, for a Boolean
query Q, answer(Q,T) = {{)} (and we say Q is true on T) if
there is a satisfaction of Q on T and answer(Q,T) = @ (and
we say Q is false on T) otherwise.

We also consider unions of conjunctive queries with
attribute value comparisons, denoted as UCQ®. These are
formulas of the form \/!_,Q; where Q;e CQ®. The
semantics of these formulas is defined in the obvious way.

PosXPath® formulas as CQ® formulas with disjunc-
tion. Every PosXPath® formula can be translated into an
equivalent CQ® formula with disjunction in linear time.
The translation is a standard translation of XPath into first-
order logic language. It is defined by induction on the
complexity of path and node formulas of PosXPath® as
follows. Note that the translation can be easily modified to
yield a translation into the three variable fragment of first
order logic.

TRyy (1) = Child(x,y)

TRy (1) = Child(y, x)
TRyy(—) = NextSibling(x, y)
TRy (<) = NextSibling(y, x)
TRy (?p) = x=Yy A TRx(p)

TRyy(a1: a2) 3Z.(TRxz(a1) A TRzy(2))
where z is a fresh variable.

Tny(Dll) v TRXy(“Z)

TRy (a1 U a)

TRy (1) = Descendant(x, y)
TRy (1) = Descendant(y, x)
TRy (—) NextSibling™ (x,y)
TRy(< ™) = NextSibling ™ (y, x)
TRy (=) = Following(x, y)
TRy (<p) = Following(y. x)
TR(p) = p(x)

TRy (@qopC) = @q(X)opC

TRx(T) = T

TRx(¢1 A @2) = TRx(¢1) A TRx(92)
TRx(¢1 Vv @2) = TRx(p1) v TRx(¢2)
TRx(@)g) = 3y.(TRy (@) A TRy(¢)),

where y is a fresh variable.

Query graphs and embeddings. It is convenient to con-
sider CQ® and PosXPath® without path union and dis-
junction in the node formulas as graphs [15].

By =4 we denote the attribute labels of the form @gopc,
whereaeA,ceDand ope{<,>,<,>,=, #}.

Definition 1 (Graph query). Let Q be a CQ®. Then
Go=(V,EE", <, <", <f,p,pax). Where V is the set of
nodes, RcVxV for Re(EE", <, <™, <y}, p:V-27,
pa: V=2, is a graph query of Q if the following holds.

V =Var(Q),

p € p(x) iff p(x) occurs as a conjunct in Q,
@q0DC € pg(X) iff @q(x)opc occurs as a conjunct in Q,
(x,y) e E iff Child(x,y) occurs as a conjunct in Q,

(x,y) € ET iff Descendant(x,y) occurs as a conjunct in Q,
(x,y) e < iff NextSibling(x,y) occurs as a conjunct in Q,
(x,y)e < * iff NextSibling™ (x,y) occurs as a conjunct
in Q,

® (x,y) e < iff Following(x,y) occurs as a conjunct in Q.

By Nodes(G) we denote the set of nodes V of G. We
write Gq =EujRuz, to specify that (uq,uz)eR for
Re(E,E*, <, <™, <y}. Note that for fragments without
attribute value comparisons, the value of the labeling
function pg, is always the empty set. In these cases we
omit pg,, in query graphs. The semantics of query graphs is
given in terms of embeddings, which are essentially
valuations for conjunctive queries.

Definition 2 (Embedding). Let T=(N,E, <,r,p,att) be a
tree over X with attributes from A and
G=(V,E,E*, <, <™, <y,p,par) a graph query. A function
g:V—N is called an embedding of G into T if the following
conditions are satisfied.

e Edge preserving. For every uy,u, €V, if G=uRu, then
T=g(uq)Rg(uy), for any of the edge relations
Re{EE*, <, <™, <g},

® Label preserving. For every u eV, p(u) < p(g(u)).

e Attribute comparison preserving. For every ueV, if
@aopC € pa (1), then (D, <) &= att(g(u), a) op C.

Proposition 1. Let T be a tree, Q a CQ® query, Gq its graph
query, and 6 a function from Nodes(Gq) to T. Then
T,0= Q iff 0is an embedding of Gq into T.

Containment. Let Q and P be two k-ary conjunctive
queries. We say that P is contained in Q, denoted as P = Q,
if for every single-labeled tree T, it holds that

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13 5

answer(P, T) = answer(Q, T). We also say that P is contained
in Q over multi-labeled trees and denote it by P =y Q if
answer(P, T) < answer(Q, T) for every multi-labeled tree T.

In this paper, the central problem is the following
decision problem.

® Given two conjunctive queries P and Q,
® Decide: is P=Q?

As pointed out in [6], the containment of k-ary queries
can be PTive reduced to the containment of Boolean con-
junctive queries, i.e., queries without free variables. The
same reduction works for positive XPath and for contain-
ment over multi-labeled trees. Thus, in the remainder of
this paper we concentrate on Boolean query contai
nment only.

Removing the attribute value comparisons. In our
upper bound proofs we will treat the attribute value
comparisons as ordinary labels, whose interpretation will
be restricted by adding constraints. We make that precise
using the translation (*) which maps each @,op ¢ to a new
label pg, o, ¢~ This tranlation can then be homomorphically
extended to the translation () from formulas in
PosXPath® and CQ® over %,A and D to formulas without
attribute value comparisons in respectively PosXPath and
CQ over the alphabet XU {P@eop clop €{=, #, <,

>, <,>},aeA ceD)}.

PosXPath and CQ with safe negation

We define an expansion of the languages PosXPath®
and CQ® (UCQ®) with a restricted form of negation. That
is, we define formulas of PosXPath®™ as formulas of
PosXPath® with the additional node formulas
P A—q; A ... A —qy, Whenever p,qy, ..., q, are labels from X.
We define T,n=pa—qya..Ar—q, iff pepn) and
qi¢p(n), 1 <i<k.

Similarly, formulas of CQ® ™ (UCQ®™") are formulas of
CQ% (UCQ®) expanded with the construct p(x)a —
q1(X) A ... A —qy(x), where x e Var and p,qq,...,q; € £ with
semantics: T,0 = p(x) A —=q1(X) A =q,(x) iff pep(@x)) and
q;¢p(0(x)), for every 1 <i<k.

For a formula from CQ®~ its corresponding graph
query is defined in the same way as in Definition 1 with
the addition that nodes can have negative labels. The
notion of an embedding can also be extended for CQ®™.
The additional clause that has to be added to Definition 2
requires preservation of negated labels:

® For every ueV, if —p e p(u) then p¢ p(g(u)).

By PosXPath™, CQ™ and UCQ™ we denote the frag-
ments of PosXPath®™, CQ®™ and UCQ®™ without
attribute value comparisons respectively.

4. Containment of PosXPath® and CQ®

This section contains the main result of this article.
First, in Section 4.1 we show that containment for

PosXPath and CQ expanded with safe negation are in coNP
and 175 respectively. Next we show that containment for
these fragments expanded with attribute value compar-
isons remains the same by a polynomial reduction to the
corresponding fragments without attribute value com-
parisons. This result holds under the assumption that
attribute values come from a dense linear order without
endpoints. In Section 4.3 we show that imposing different
constraints on the linear domain of attribute values does
not impact the complexity. However, making attributes
required everywhere in a tree increases the complexity of
containment, as shown in Section 4.4,

4.1. Containment of Positive Xpath and CQs with safe
negation

In Section 4.2 we will reduce the containment problem
for PosXPath® and CQ® to that of PosXPath™ and UCQ™.
The next theorem shows that adding safe negation to
PosXPath and UCQ does not make the containment pro-
blem harder. The argument is similar to the one in [6], but
additional care needs to be taken when we deal with
negation.

Theorem 1. The containment problem over multi-labeled
trees for PosXPath™ and UCQ™ is in coNP and IT}
respectively.

Proof. In both cases the proof strategy is the same.
Throughout the proof we assume that we deal with multi-
labeled trees without attributes. Our goal is to show that
whenever ¢¢y, there is a small (polynomial in ¢ and y)
counterexample witnessing this fact. In the proof, we start
with an arbitrary counterexample T, and shrink it in two
steps: in the first step (creating T*), we roughly restrict T to
the image of ¢ and intermediate nodes. This can still be too
large. In the second step we shrink long paths between
image nodes.

Let ¢=\/ip; and y=\/y; be UCQ™ formulas. Let
T=(N,E, <,r,p) be a tree such that T = ¢ and T ¥ . Then
there exist i and an embedding e: Nodes(G,,) - T, where G,,
is the query graph of ¢;. By e(G,,) we denote the image of
Nodes(G,,). If G, = uy < fuy, then there must exist nodes x;
and x such that e(u;)E~1)*x; < *x;E*e(u,) in T. We call-
such x; and x, knee-nodes for G.

Our aim is to create a small tree out of T which is still a
counterexample. For the first “shrinking step”, we color
nodes that we must keep. We use three colors: {I,V, H}.

® Mark the root r with I,

® If x € e(G,,), mark x with I ("image” nodes),

® If G, =u; <sup, then there must exist knee-nodes x;
and x,. Mark x; and x; by I too,

o [f there exist two nodes x and y marked by I such that
T=xEty and there is no node z marked by I with
T=xEtz AzETy, then mark all the nodes on the path
from x to y by V ("vertical” nodes),

o [f there exist two nodes x and y marked by I or V such
that T = x < *y and there is no node z marked by I or V
with T=Ex< *zAaz<*y, then mark all the sibling
nodes between x and y by H ("horizontal” nodes),

6 M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13

Fig. 1. The tree T and the query graph corresponding to Q from Example 1.

® Let T* =(N*,E*, <*,r*) be the substructure of T restric-
ted to the nodes marked by I, H or V.
® Let p*(n)=p(n) for nel and p*(n) = @ otherwise.

Example 1. Let T be a tree as in Fig. 1 and Q the Boolean
conjunctive query 3Ixyzw(a(x) A Descendant(x,y) A b(y) A
Child(x, z) A c(z) A NextSibling™* (z,w) A d(w)). The corre-
sponding query graph Gq is depicted in Fig. 1, where the
downward and horizontal double line arrows denote E*
and < * respectively, and the single line arrow denotes E.
The embedding e is defined by the dashed arrows. The
marking of nodes of T with the colors {I, V, H} is depicted in
Fig. 1.

Claim 1. T" =(N*,E*, <*,r*,p*) is a tree and T* = ¢ and
T Ey.

Proof of Claim 1. It is easy to check that adding the V and
H nodes to I is the minimum needed to ensure that T* is a
tree. First, we argue that T* = ¢;. Since we maintained the
image of G, (nodes labeled by I), we have that e is a
mapping from Nodes(G,,) to N*. The node labels are pre-
served under e since we did not change the labeling of I
nodes. Let (x,y) be an edge in G,,. If G,, = XEy, or G, =X <y
then e(x) and e(y) are in respectively child or next sibling
relation in T* since both nodes are labeled with I and they
were in that relation in T. If G,, =xE*y or G, =x<*y,
then e(x) and e(y) are in the corresponding relations in T*
since the intermediate vertical (V) and horizontal (H)
nodes were Kkept. In case G,Fx<;y we have
T* = e(x) < re(y) since we kept the knee-nodes which wit-
ness the following relation in T. Thus, we obtain T* = ¢.

Now we show T* #y. Suppose to the contrary that
T* = y. Then there exists an embedding g of G, into T* for
some j. Because T* is a substructure of T, g is also a map-
ping of Nodes(G,,) into Nodes(T) that preserves the edge
relation. We show that g also preserves the labels. Note
that by definition of T* the label p*(n) is either equal to
p(n), when nel, or empty otherwise. Positive labels are
always preserved: p;(u) = p*(g(u)) = p(g(w)) for every node
u e Nodes(G,,), where p; is the labeling function of G,,. We
show that negative labels are preserved too. Let
u € Nodes(Gy,). If =p € p;(u), we have that p¢p*(g(u)), since g
preserves negative labels. Since negation is safe, there
must exist a label g € p;(u), which implies g € p*(g(u)), and,
thus, p*(g(u)) is not empty. In this case p*(g(u)) = p(g(u)),
and thus p¢p(g(u)) as required. Thus, Ty which is a
contradiction. o

Next, we prove two crucial lemmas. In particular, the
following lemma claims that if we have a tree T with a long
enough non-branching vertical path, where each node has

the empty label, and a query Q with T = Q, then the path
can be extended even more while preserving the fact that
Q is true in the tree. We use the contrapositive of the
lemma to shrink such long paths while keeping the query y
false in the smaller tree. The same reasoning applies for
horizontal paths.

Lemma 1 (V-path). Let G be a query graph with labels from
> and T=(N,E, <,p,r) a tree such that there is an embed-
ding of G into T. Suppose u, Eu,E...Eu, is a path in T, such that

® p(u) =g, foreveryie{l,...,n},
® If T=u;Ex, then x=u;, ¢ fori<n,
® 1 > |Nodes(G)|.

Let T be the tree obtained from T by inserting a node with
the empty label in the middle of the path, i.e., by making u,,
the parent and u,, .1 a child of the new node, where n=2 m
(when n is even) or n=2 m—1 (when n is odd). Then there
exists an embedding from G into T.

Proof. Let G=(V,E.E*, <, <*, <,p) be the given query
graph and g an embedding of G into T. Since the length n of
the path is strictly greater than the number of nodes in G,
there must exist an index k<n such that u,¢g(V),
ke(l,...,n}.Let T'=(N',E, <',p’,1") be the tree defined as
follows:

r=r,

N' =N U {u,},uj¢N,

E'= (E\{(U.X) € EIx € N}) U {(u, up)} U {(} X)IT b= B},
<'=<,

For every node ve N, p'(v) =p(v), and p'(u}) = @.

We prove that in fact the same g is an embedding of G
into T' !. First, from the definition of T we obtain the
following properties.

Claim 2. Let T be from the statement of Lemma 1 and T' as
defined above. Then

(i) f T=XE*ty, then T =xE "y,

(ii) If x # uy and T = XEy, then T =XxE'y,

(iii) If T=x<y (resp. T=Ex<'y and TEx<;y), then
T E=x<'y (resp. T’I:x<’+yandT’|:x<}y).

Proof of Claim 2. All items except (i) are immediate by
the definition of E'. For (i), let T =xE™*y. We then consider
two cases: First suppose T = uyEy. Then T = XE*u,, and thus
T'=xE*u. Since T'=uE'u), and T =ujE’y, we have
T =xE'*y. In the case that T ¥ uiEy, we obtain T' =xE'*y
by the definition of E'. o

We prove that g: V— N’ is an embedding.

Preservation of labels follows from the fact that the
image of g is in N and g is an embedding of G into T and
thus preserves labels. We show that g still preserves the
edge relations. Let XEy hold in G. Then it holds that

! Note that the defined T’ is isomorphic to the “real” intended tree T’
where the nodes are sequences of natural numbers. Here, we treat g as
the old g composed with the isomorphism.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13 7

g(X)#u, as uy is not in the image of g. Since g is an
embedding of G into T, it holds T~ g(x)Eg(y). Then by
Claim 2(ii), it holds T' = g(x)E'g(y).

Let G=xE'y. Since g is an embedding of G into T, we
have TE=gXEtgy). By Claim 2 (i), it follows that
T = g(X)E'" g(y). Preservation of the relations <, < * and
< under g follows from Claim 2 (iii).

Now let T be the tree defined in the statement of the
Lemma. Formally, T = (NLE, <, p,7) is defined as follows.

T,

=NuU {uy,},u,¢N,

= (E\{(um,x) € Elx e N}) U {(Um,)} U {(uf, X)IT = umEx},
< =<,

For every node ve N, p(v) =p(v), and p(u},) = @

=

The trees T and T’ are isomorphic. Recall the indexes m
and k from the definitions of T and T'. We define a map-
ping f:N'— N as follows.

e If m<k, then

v if ve N\{tms1,.... W),
u, ifv=upia,

u_q ifv=uy,m+1<i<k,
[if v=u.

fw)=

e If m>k, then

v if ve N\{ug;1,...,Um},
Ugq if v=uy,

U, ifv=u,k+1<i<m,
- if v=up,q.

fv=

The function fis onto and 1-1. We show that the V-paths
in T’ and T are isomorphic. We consider the case m < k, the
other case is similar. Let T'=uEv for u,vef{us,...,
Ug, Uy, Ug 41, Uk 12, - -, Un}. We need to show that T' = uE'v iff
T = f(w)Ef(v). There are the following possible cases.

® u=u; and v=u;,q with 1<i<m or k<i<n. In this
case f(u;)=u;,je{i,i+1}. By definition of T" and T it
holds that T' &= u;E'u; ¢ and T = w;Eu;, 1. Thus, T' = uE'v
iff T = fwEf(v).

® u=u, and v=1uy,q. In this case f(un)=un and
f(Um 1) =uj,. By definition, it holds that T' = umE'up 1
and T = umlz'u,’ﬂ. Thus, T' = uE'v iff T = fw)Ef(v).

® U=1Up,1 and v=1uy. In this case f(un,.1)=1u), and
fWmy2)=un,1. By definition, it holds that
T |=um+1Eum+2 and T=u Eumﬂ Thus, T' = uE'v iff
T =fWEf ().

® u=u; and v=u;,; with m+1<i<k In this case,
fwy) =u;_1 and f(u;, 1) = u;. By definition, it holds that
7:’ = uiE’yiH and T=u;_qEu. Thus, T =uEv iff
T =f(WEf(v).

® u=u, and v=uj. In this case, f(u)=ux_; and
f(uk)_uk By definition, it holds that T’I:ukE’u, and
T =u,_1Euy. Thus, T = uE'v iff T = fW)Ef(v).

® u=u, and v=u,;. In this case, f(u)=u, and
f(uk“) =U 1. By definition, it holds that T' = uj E'uy 4
and T = ukEukH Thus, T' = uE'v iff T = fw)Ef(v).

Since f(v)=v for every veN\{uy,...,up,u,,uy,} and
p(v) =@ for every v e {uy, ..., Uy, u, uy,}, the labels are pre-
served as well.

Thus, the mapping fog is an embedding of G into T. o

Analogous to the above lemma for V-paths, we for-
malize one for H-paths. The crucial properties of H-paths
are that their labels are empty and that all nodes in the
path are leafs. We omit the proof.

Lemma 2 (H-path). Let G be a query graph with labels from
>and T=(N,E, <,p,r) an ordered tree such that there is an
embedding of G into T. Suppose T has a horizontal path
Vi <Vy <...<Vyand v is their parent in T, where

® s(vy)=g for everyie({l,...,n},
® V,={u|T=v;Eu} =@ for every ie{1,...,n},
® n > |Nodes(G)|.

Let T be the tree obtained from T by inserting a node with
the empty label in the middle of the horizontal path, i.e., by
making v,, the predecessor and v, the successor of the
new node, where n=2m (when n is even) or n=2m-1
(when n is odd). Then there exists an embedding from G
into T.

The proof of Theorem 1 relies on the small tree prop-
erty which follows from the two lemmas above. We first
show how, using Lemma 1, we can reduce the number of
V-nodes. Let G,, be the query graph of maximal number of
nodes among all G,,. Let uyEu,...Eu, be a V-path in T* of
length greater than |N0des(Gl,,J)|+1. Then we remove the
node u,, where n=2m (i.e, if n is even) or n=2m+1
(i.e., if n is odd), from T*, and make u, ; to be the child of
Umn_1. Let T be the resulting tree. We claim that T = ¢
and T** ¥ y. The former follows from the fact that we did
not change I-nodes in T**. For the latter, suppose T** = y.
Then there exists an embedding g:G,, »T** for some i.
Since n—1> |Nodes(G,,)| = |Nodes(G,,)l, we can apply
Lemma 1 to show that there is an embedding of G,, to T¥,
which contradicts to the fact T* ¥ y.

Thus, we can iteratively apply the same argument to
make long V-paths shorter and while preserving the fact
that T* ¥y and T* k= ¢. Similar for H-paths, if they are
longer than |Nodes(G,,)|+1, we can apply Lemma 2 to
shorten them.

Let us find out how the size of the small tree is boun-
ded. The number of I nodes in T* is bounded by
INodes(G,,)|. Each I node has at most one V path above it,
one H path to its right, and one H path through its chil-
dren. The number of nodes in all these paths is, by the
argument above, maximally |Nodes(G,)I+1. Thus after
repeated application of the Lemmas to T* the resulting size
is bounded by O(|¢| - |w|).

A 115 algorithm for deciding the UCQ™ containment
then works as follows. It first guesses a tree T of size O(|¢| -
lw]) and then checks in NP if T = ¢ and in coNP if T ¥ y. The
coNP algorithm for PosXPath™ works similarly. It also

8 M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13

guesses a tree T of polynomial size and checks if T = ¢ and
T ¥ yw which can be done in PTimE [14]. O

Note that the safeness condition for negation turns out
to be crucial. Indeed, in [12] it was shown that contain-
ment for tree patterns with unrestricted label negation is
already PSrace-complete.

4.2. Adding attributes

Now we are ready to provide upper bounds for our
fragments with attribute value comparisons.

Theorem 2. The containment problem over trees with
attributes is

® in coNP for PosXPath® ™,
e in 175 for UCQ® ™.

Given the containment problem ¢cyw for
@,y € PosXPath®™ (UCQ®™"), we reduce it to the con-
tainment problem ¢’ = yLy’ in PosXPath™ (UCQ™), which
is known to be in coNP (775) by Theorem 1. Thus Theorem 2
is a consequence of the following lemma.

Lemma 3. Let ¢ and y be PosXPath®™ (UCQ® ™) formulas.
Then there exist PTiMe computable PosXPath™ (UCQ™)
formulas ¢' and y' such that

oy iff o smy’
This holds for both single-labeled and multi-labeled trees.

Proof. The idea behind the proofis as follows. We abstract
away from arithmetic comparisons by replacing each of
them with a new label. These labels have to obey certain
constraints, like comparisons do. To this purpose, we
define a list of axioms that faithfully encode these
constraints.

For every p;,p; € 2y, p; # pj:

Npi A P, (Label)
For every ae X,,c,c1,C € X¢, €1 # Co

(V)(p@a —c; ANPa, =) (SName)
<l*>(p@a =cA p@u # L‘)’ (ECI)
Foreveryae X;,ce 2. and R,Sin { <, =, >} with R#S,
I HP@gre A Pausc)s (MExcl)
Foreveryae X,,c,cieX2cand Re{#, <, >, <, >},
<l*>(p@aRcl AP, =c N Pay,>c N Pa, < o (DNeg)
(V)(p@u <cNPa,=c N Pa, < o (LEQ1)
<l*>(p@a >c N Pa,=c N Pa, > c)’ (GEQ1)
<l*>(p@a =cN _'p@ﬂ < c)> (LEQZ)
(l*)(p@a —c N Pa, > o (GEQ2)
<l*>(p@a <cNPa, < c)> (LEQ3)

AMNP@, > ¢ A ~P@, = o) (GEQ3)
AP, <c A ~Pa, » - (LNEQ)
ADPa, > A ~Pag # o) (GNEQ)
)P, ¢ A "Pa, <c A "Pay >) (TRI)
U@, > c APag<c A ~Pa, = o) (LEQGEQ)
For every c¢; < ¢3,¢1,¢3 € X, add the disjuncts,

AHP@, <c; A ~Pa, <) (Order1)
UP@e > e, A P>) (Order2)
ADP@, =, A Pa, <) (Order3)
IMP@y =, A Py > ;) (Order4)

In case of PosXPath®™ we define ¢':=¢ and y/:= v AXx,
where () replaces comparisons with labels (definition is in
Section 3) and Ax is the disjunction of the formulas men-
tioned above. In the definition of Ax, %, X, and X, are
respectively the sets of labels, attributes and constants
appearing in ¢ or w We use the abbreviation
A*0=6v (). Note that the formula Ax is in
PosXPath™. In case of UCQ®™ the translation (-) is
defined essentially the same. The only difference is that we
take 3x.TR((Ax) instead of Ax. Notice that the resulting
formulas ¢’ and y’ are in UCQ™".

We first argue that the size of Ax is O((|g|+ lw|)?). Since
the sets %, %, and X are respectively the sets of labels,
attributes and constants appearing in ¢ or y, their sizes are
bounded by the combined size |¢|+ |y|. The axioms in Ax
are in fact axiom schemas. Each schema has at most
3 parameters from X, X, and 2 and 1 parameter from the
set of possible operators from {=, #, <, >, <, >}. Thus
each schema stands for at most 6 - (|¢|+ |w|)* disjuncts. The
number of axioms and their size does not depend on ¢ and
w. Whence the size of Ax is bounded by O((j¢|+ |w|)?).

We give some intuition behind Ax. In order to prove
this lemma, we need to show that there is a counter-
example for g cy iff there is a counterexample for
¢ =wmy’. Note that every counterexample tree T for
¢ =wmy’ must refute every disjunct (axiom) in Ax. Intui-
tively, the axioms enforce the following properties of T:

(Label): each node has at most one label from %,

(SName): each attribute of a node can take only at most

one value,

® (MExcl), (Eq): there is no inconsistent comparison,

® (DNeg): if a node contains a comparison with a con-
stant, then it must contain a comparison with all other
constants from X,

® (LEQ1)-(LEQGEQ): the natural interaction between the

comparisons with a constant,

(Order1)-(Order4): the order is preserved.

The following claim is crucial for constructing a coun-
terexample tree for ¢ =y from a counterexample for
¢ Swy'.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13 9

Claim 3. Let T =(N,E, <,r,p) be a multi-labeled tree over >’
such that T,r ¥ Ax. Then for every ae X,,ce X, node neN,
exactly one of the following holds.

(i) there is no Pgopc €p(N) for every opef{=, #,
>, <, <, >,

(ii) there is exactly one pg, _ . € p(n) and for every ¢ € X it
holds that pg,.pc, € p(n) iff D = copcy,

(iii) there is N0 pg,opc € p(1) and there exists ¢’ e D\ X such
that for every c;e X it holds that pg,.pc, € p(M) iff
D= ¢ opcy.

Proof of Claim. Let T be as stated in the Claim, ae X, an
attribute name, c € . a constant, n € N a node in T. Assume
that there exists pg, .. in p(n). Otherwise, item (i) holds.
Assume that op is in fact "=". Because T, ¥ Ax, the for-
mula (SName) is false and thus there cannot be another
P@, = ¢, 1N p(1).

We show, for every cieX. and ope{=, #, >,
<, =, <}, that pg,opc, € p(0) iff D= copcy.

(1) op is =. Assume pg, _, € p(n), then we have c=c; by
(SName). The converse implication holds since
Pa, = c € p(n) by the assumption.

(2) opis #.Assume pg, ., €p(1). By (Eq), it follows that
c1 # ¢. Thus, D = ¢ # ¢;. Conversely, assume D = ¢ # ¢y.
It means that either ¢ > ¢; or ¢ < ¢;. First assume that
¢>cy. Since pg, _€p(n) and ¢ > cq, by (Orderd) we
obtain pg, - ¢, €p(1). Then, by (GNEQ), it follows that
Pa, ¢, €p(0), as desired. Similarly for the case c<c,
using (Order3) and (LNEQ), we can show pg, ., € p(n).

(3) op is >. Assume pg . €p(m. We show that
D= c > cy. Suppose the opposite, i.e., either c=c; or
¢; > ¢. In the first case, it would mean that both Pa. =c
and pg, - . occur in p(n), which is a contradiction with
(MExcl). In the second case, by (Order3), both pg, -,
and pg, , are in p(n), which is again a contradiction
with (MExcl). Now suppose Dikc>c;. Then by
(Order4), it follows that pg, - ., € p(n), as needed.

(4) op is <. Similar to the previous case.

(5) op is =. Assume pg, . €p(). If c;=c, then we

immediately obtain D= c>c;. Now suppose c#C;
and we show that D= c>cy. Suppose the opposite,
iie, DEc<c;. Then by (Order3), we have
Pa, <, €p(M). By (LEQ3), it implies that pg, ., € p(n),
which in turn by (LEQGEQ) implies that pg _, € p(1).
The latter is a contradiction with (SName).
Now assume D = ¢ > c¢;. This means that either c=c;
or ¢ > ¢; in D. In the first case, we have pg, _ . € p(n) by
the assumption. Thus by (GEQ2), we have that
D@, = c € (). In the second case, similarly to the case
when op is >, we can show that pg, . ¢, € p(n). Then
by (GEQ3), we have pg, - , € p(n), as needed.

(6) op is <. Similar to the previous case.

Thus we have proved item (ii).

Let us consider (iii). Now there is no pg, _ . € p(n) for any
ceD. We define ¢ =max{c|py,..cp(M} and c;=
min{c|pg, - € p(n)}. If the former set is empty, we let
€1 = —oo, and if the latter set is empty, we let c; = +oo.
We claim that at least one of ¢; and c; is finite. Indeed,

there must be P@are in p(n) for some Re {#, <, >, <, >}
since otherwise item (i) would hold. By DNeg it follows
that either pg, .. OF pg, - ¢ is in p(11), which means that ¢,
or ¢, is finite.

We also claim that ¢; < ¢y. It is trivially true if one of ¢;
and c; is infinity, thus assume both are finite. If ¢; =y,
then both pg, .., and pg, .., appear in p(n) at the same
time, which is forbidden due to (MExcl). If ¢; > ¢, then by
(Order1), both pg, .. and pg, .., are in p(n), which is
again forbidden by (MExcl).

Now, since ¢; < ¢; and the assumption that D is a dense
order, there exists ¢ € D such that ¢; < ¢ < c;.

We claim that c’¢ X.. Suppose the opposite. Then since
P, —c¢p() by the assumption and the fact that
Pagre € p() for some R and ¢’ (otherwise we would be in
case (i)), we obtain either pg, - € p(n) Or pg, - o € p(11), by
(DNeg). If pg, < - € p(n), then D= ¢’ > ¢; which contradicts
to the fact that D= ¢’ < ¢,. Similarly, if pg, - - € p(n), then
D = ¢’ < c¢; which contradicts with D= ¢ > ¢;.

We now show that for every ceX, and
opef{=,#,>,<,2, <} Pgyopc € P(N) iff D= c'op .

(1) op is =. The equivalence holds since for every ce =,
there is n0 pg, — in p(n) and D ¥ ¢’ =c since ¢'¢ Z.

(2) op is #. Assume pg, ..€p(n). Then we have that
D= #c because ¢ is not in .. Conversely, assume
D= #c. By (DNeg), since there is no pg, _ . in p(n)
for every ceX. and there is pg, g, for some cy, it
follows that either pg, _ . € p(n) or pg, - - € p(n). Apply-
ing (LNEQ) or (GNEQ) respectively, we obtain
Pa@, »c € p(), as desired.

(3) op is >. Assume pg, .. €p(n). Then Di=c >c by
definition of ¢’. Conversely, assume D&=c >c. We
show that pg, - . € p(n). Since there is no pg, _ . € p(n)
and there exists pg, ., € p(11), we obtain either pg,
O Pg, > c in p(n), by (DNeg). The first case is impossible
since it would imply ¢ <c which contradicts the
assumption. Thus we have pg, - . € p(n), as desired.

(4) opis <. Similar to the previous case.

(5) op is =. If pg,-.ep(m), then by (GEQI1) either
P@, = c € p(N) OT pg_ . € p(n). The first case is impos-
sible by the assumption. In the second case, we obtain
that D = ¢’ > ¢ by definition of ¢'. Thus, D=c >c.
Now assume D = ¢’ > ¢. This means that either ¢’ = c or
¢ >c in D. The first case is impossible, since ¢'¢ =.. In
the second case, as with the case op= " >", we can
show that pg, - . € p(n). Then by (GEQ3), it holds that
P@, = c €P().

(6) op is <. Similar to the previous case.

This concludes the proof of the claim. o

We now prove that ¢ <y iff ¢/ < wy/,

(=) Let T=(N,E, <,r,p) be a multi-labeled tree such
that T,r = ¢’ and T, r ¥ y/. Note that then T, r # Ax. Then we
define a single-labeled tree T':=(N, E, <, 1,0/, att), where att
is a partial function assigning a value in D to a given node
and an attribute name, as follows:

® For pe Xy, p'(n)=p iff p e p(n). If there is no p € X, such
that p e p(n), we set p'(n) =z for a fresh symbol z.

10 M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13

undefined if there is no pg, .., in p(1),
o att(n,a)y=4{ € if pg, — c € p(n),
c from Claim3, (iii), otherwise.

We claim that T’ is well defined. Indeed, (Label) ensures
that every node is labeled by exactly one label from X, or
by z. Morever, the function att is well defined since exactly
one of the conditions in the definition of att is fulfilled,
according to Claim 3. By induction, using Claim 3, we can
show that for every 6, T,n= 0 iff T',n = 6. Thus, it follows
T, r=¢ and T',r ¥y which was desired.

(«<)Let T=(N,E, <,r,p,att) be a single-labeled tree such
that T = ¢ and T ¥ w. We define the tree T':=(N,E, <,r,p),
where p’ is defined as follows:

® For pe Xy, pep/(n) iff p(n)=p,

® Da, = c €/ () iff att(n,a) =c,

® Da.opc €0/ (M) iff D= att(n,a)opc for ope{#, <, =, <,
>}, ceX.

It is straightforward to check that T' does not satisfy any of
the disjuncts in Ax. Thus, we obtain T' = ¢’ and T’ ¥ y/.0

The same argument goes through for multi-labeled
trees, except that we must not include formulas (Label)
juncts of Ax.

4.3. Restricting the attribute domain

We now show the same complexity results for various
restrictions on the domain of attribute values. A linear
order D has a smallest (largest) element if there exists
¢ e D such that ¢ <c (c> ¢') for every c e D. We say D has
an endpoint if there exists a smallest or a largest element
in D. D is discrete if any point which has a successor also
has an immediate successor. D is dense linear order if for
every x <y in D there exists ze D such that x <z < y.

Proposition 2. Let D be one of the following linear orders:

(i) finite,
(ii) discrete,
(iii) dense or discrete with one or two endpoints.

Then the containment problem for PosXPath®™ and
UCQ@™ over single-labeled trees with the domain of attri-
bute values D is in coNP and 115 respectively.

Proof. Let ¢ and y be PosXPath®™ (UCQ®™) formulas
over D and X. = D, 3, and %, the sets of constants, attribute
names and labels in X appearing in ¢ or w. We then con-
struct in PTiMe formulas ¢ and y' over ¥ =3, U
{Payopcld € Za,c € Zc,ope{=, #, <, >, <, >}} such that

@ <y if and only if ¢ < wLy'. 1

Namely, we take ¢':=¢ and y':=j v Ax v Ax;, where (°) is
defined in Section 3, Ax is from the proof of Lemma 3 and
Axy, k € {(Fin), (Discr), (End)} is constructed according to the
cases (i), (ii) and (iii) of the Proposition. Note that the
formulas ¢’ and y’ in all the cases are in fact PosXPath™

formulas. In case of UCQ®™, the translation (-) is defined
essentially the same. The difference is that we use
3x.TRx(Ax) and 3y.TRy(Ax,) instead. Note that the result of
(-y is a union of CQ™ formulas. The upper bounds then
follow from Theorem 1.

Now we construct the formulas Axy,k e {(Fin),
(Discr), (End)}.

(i). Assume D = {c; <3 < ... <} is a finite linear order.
We then write down the formulas of Axp,. It is the dis-
junction of the following formulas. For every a e =, ce =
andope{=, #,<,>,<, >}

(l*)(P@uopc A" Pa,=c; N+ AN Pa, = Ck)' (Fin)

This axiom enforces that whenever an attribute is
defined, its value equals one of ¢;,1 <i < k. The following
claim, which is easy to verify using (Fin), is crucial.

Claim4. Let T=(N,E, <,r,p) be a multi-labeled tree over =’
such that T, r ¥ Ax v AXin). Then for every a e %, c € =, node
neN and opef{=, #,>, <, <, >}, exactly one of the
following holds:

(i) there is no pg, - € p(n),
(ii) there is exactly one pg, _ . € p(n) and for every ¢, € X it
holds that pg, .y, € p(n) iff D = cope;.

Now we prove the equivalence (1). For the direction
from left to right, given a multi-labeled tree T over X’ such
that T=¢' and T ¥ y’, we construct a single-labeled tree
with attributes T’ as it was done in Lemma 3. The only
difference is in the definition of the attribute function att.
In our case we take

undefined if there is no pg, .,c in p(n),
att(n,a) = ope{=,#,<,>,>,<},ceX
c if pg, = c € p(N).

Using Claim 4 we can show that for every neT, 6 over X,A
and D, T,n=0 iff T,n=0.

The direction from right to left of (1) can be proved
exactly as in Lemma 3.

(ii). D is a discrete linear order. We assume that D is
infinite, as the finite case is covered by the case (i). We
take Axpisery as the disjunction of the following formulas.
Foreveryae X, cq,c; € X such that ¢; < ¢; in D and there is
no ¢ in D with ¢; <c < ¢y,

<l*>(p@a > N p@a <C)

This axiom enforces the requirement that a value for a-
attribute cannot be between an element in D and its
immediate successor.

Similarly to Lemma 3 we can show that the reduction is
correct. To this purpose we need the claim which is the
exact reformulation of Claim 3 where instead of Ax we take
AX v AXpiscry and D is the discrete linear order.

We highlight the difference with the proof of Claim 3.
The only nontrivial difference is item (iii). Assume the
conditions (i) and (ii) of Claim 3 do not hold for ae A and
neT. We define ¢; =max{clpg, - c € (M)} and
€2 =Mmin{c|pg, - € p(M)}. As in Claim 3 we can show that
DEcy <c,. Having that, there exists ¢ such that
c1 < <cy. Indeed, suppose the opposite. Then both

(Discr)

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13 11

Pa,>c, and pg, -, are in p(n) and c, is the immediate
successor of ¢; in D, which is a contradiction with (Discr). It
follows from (DNeg) that ¢’'¢ =.. Moreover, for every ¢’ € =,
P@gonc € p(M) iff D= c'opc’. This can be verified as it was
done in Claim 3. Thus we have proved the claim. Having
this claim at hand, we can prove the equivalence (1) in the
same way as in Lemma 3.

(iii). D is dense or discrete linear order with one or two
endpoints. If D is dense, take Axgng as the disjunction
ofthe following formulas:

If D has the least endpoint c;, for every a e =;:

A WPa, <ci- (LEnd)
If D has the greatest endpoint cg, for every a e X,:
U Pay> ¢ (REnd)

In case D is discrete linear order, AXgnq, additionally has
(Discr) as a disjunct.

The axioms (LEnd) and (REnd) enforce the requirement
that attributes cannot take their values outside of the
bounds in D. As in the previous case, we can prove the
variant of Claim 3, where we consider Axgpq, and D a dense
or discrete linear order with one or two endpoints. We do
not spell out the proof, but the crucial difference is that in
item (iii) axioms (LEnd) and (REnd) ensure the fact that ¢
is chosen within the interval [c, ¢;].

Having this claim, we can prove the equivalence (1) in
the same way as in Lemma 3.

Clearly, the constructed ¢’ and y’ are PTiME computable
from ¢ and y.

4.4. Lower bounds

In this section we show a number of lower bounds on
containment for CQ® and PosXPath®. The following lower
bound was shown in [6].

Proposition 3 ([6]). Containment is IT5-hard for
CQ(Child, Descendant), i.e., conjunctive queries that use only
the predicates Child and Descendant.

For PosXPath®, the coNP lower bound for containment
follows from hardness of containment for tree patterns
[19], which is a fragment of PosXPath®. In order to com-
pare our results to those in [19], we follow their notation.
Let XP1*//} denote the fragment of PosXPath without
union and disjunction, only the | step, and no occurence of
the following and preceding axes. These are called tree
patterns in the literature. Let XP'}//} denote XPU}*//} in
which no wildcard (denoted by Tin PosXPath) occurs.

Containment of XP}/} and XP}*// patterns is in
PTive and coNP-complete, respectively. Let XP'L"//' and
xP'W/) denote the expansions of XP*//I and XP‘ Wi
with equallty and inequality attribute value comparisons,
respectively. We show that containment of XP'L*// pat-
terns becomes coNP hard. Containment of XP'U* / g pat-
terns becomes PSpace hard when interpreted over trees
with at least one required attribute.

The following property is used in our lower bound
arguments. The proof can be found in [19, Lemma 3].

Proposition 4. Let L be XP"*//) or XP'U/). Let ¢ be an L
formula and A a finite set of L formulas Then there are PTIME
computable L formulas ¢’ and v’ such that

pcVAIf o<y
The same holds for the case of multi-labeled trees.

Proposition 5. The containment problem for XPU// is
coNP-hard.

Proof. We reduce the 3SAT problem to the non-
containment problem in XPU}/).

Firstly, we can use disjunction of tree patterns on the
right side of the containment problem, due to Proposition 4.

Let Q be the conjunction of clauses C;j= (X'l1 v
X2 v Xt 3), 1 <i<k over the variables {xy,...,x;}, where XJ’
are literals. From Q, we construct in PTimMe two formulas
over the signature X=/{r b}, attribute names
A=/{ay,...,ay} and an attribute domain D containing
values {0, 1,2} as follows.

We define g=r A{I)bA@aq, #2 A ... A@q, # 2)°
w=\/¥_ ()b A B A B, A B3) where B' = (@a, =0) 1ffX‘ —x,
in G; and B; = (@q, # 0) 1ffX‘ =—x; in C

We clalm that Q is satlsﬁable if and only if ¢¢w. First
assume that Q is satisfiable, i.e., there is a variable
assignment V: {xq, ..., X} — {0, 1} such that V = Q. We then
define the following tree T = ({v1,V2}, {(V1,V2)}, V1, p,att) ,
where the labeling p is defined as p(vq) = {r}, p(v2) = {b}
and att(v,, a)) = 1 iff V(x)) =1 and att(v,, a;) =0 iff V(x)) =0
for every I, 1 <1< n. Clearly, T satisfies ¢. Suppose T, vy = .
This means there exists an index i such that
T,vi ={Xb A BQ A B; A Bé), which implies T,v; = B]':,jz
1,2, 3. Hence, by the definition of the attribute function we
obtain that if Bl =(@q =0), then V(X') =V(x)=0 and,
similarly, 1fB' = (@a, # 0), then V(X)= V(ﬁx,) =0. Thus, we
obtain V ¥ C,, which is a COl‘ltl‘adlCthl‘l Thus, T ¥ .

We now prove the converse. Assume there is a tree T
with T= ¢ and T ¥ y. The former implies that there exists
a child of the root of T, v such that T,vE= b and the attri-
butes ay, ..., a, are defined at v. Moreover since T ¥ y, for
every i,1<i<n it holds that T,v¥b A B} A B, A B;. We
define the variable assignment V:{xi,...,x;}—{0,1} as
follows: V(x)-=0 iff att(v,q)=0 and V(x):=1 iff
att(v,a;) # 0. We claim that V = Q. Assume the opposite,
i.e., there exists a clause C; which is mapped to 0 under V.
By definition of V, it follows that T, v|=Bj /\BJ /\Bj and
therefore, T,vE=b A Bi A B’ A B’ which is a contradlctlon

4.4.1. Required attributes

In Section 4.2 we dealt with the case when attributes
are optional. We now consider the case when some attri-
butes are required. We say that an attribute aeA is
required in a tree T with domain N if the function att: N x
{a}— D is total. We show that when at least one attribute is
required, containment of tree patterns with equality and
inequality comparisons rises to PSpAct.

2 The purpose of the inequalities @g, # 2 is to guarantee that the
attribute q; is defined in the b-node of a model of ¢. We could express the
same with the comparison @g <1 or @, > 0.

12 M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13

Theorem 3. The containment problem for XP'U*//} inter-
preted over trees with at least one required attribute is
PSpace-complete.

Proof. We show the upper bound for XP"*//) expanded
with the other equality operators (i.e., <, >, < and >).
For that, we reduce the containment problem in this
fragment to containment for unions of XP{+//7} (tree
pattern formulas with unrestricted label negation) similar
to Lemma 3. The additional axiom in Ax is
*N—Pa,_. » ~Pa,..) for every required a e A, where cis a
constant (note that this axiom contains unsafe negation).
This axiom enforces that the attribute a is defined every-
where in the tree. In [12] it is shown that containment for
unions of XP0*//7} is solvable in PSpack.

For proving the lower bound we encode the corridor
tiling problem, which is known to be hard for PSpace [8].
Our lower bound proof uses the construction from the
PSpace-hardness proof for the containment problem in tree
patterns with disjunction over a finite alphabet in [20].

The corridor tiling problem is formalized as follows. Let
Til=(D,H,V,b,t,n) be a tiling system, where
D={dq,....,dm} is a finite set of tiles, H,V = D? are hor-
izontal and vertical constraints, n is a natural number in
unary notation, b and f are tuples over D of length n. Given
such a tiling system, the goal is to construct a tiling of the
corridor of width n using the tiles from D so that the
constraints H and V are satisfied. Moreover, the bottom
and the top row must be tiled by b and respectively.

Let a € A be a required attribute. Now we construct two
XP‘E"T’Q ! expressions ¢ and y such that ¢y over trees with
a required attribute a iff there exists a tiling for Til. To this
purpose, we use a string representation of a tiling. Each
row of the considered tiling is represented by the tiles it
consists of. If the tiling of a corridor of width n has k rows,
it is represented by its rows separated by the special
symbol #. Thus, a tiling is a word of the form u;#uy#---#u,$,
where each u; is the word of length n corresponding to the
i-th row in the tiling, and $ denotes the end of tiling. Note
uy=b and u, =t.

For the sake of readability, for expression r, we use the
abbreviation r' to denote the path formula ?r; |; ?r;...; |; ?r
with i occurrences of r.

We then define the formulas over attributes {a} and
attribute domain containing D U {#}.

Define ¢ as

N@a=D1); 1;2(@a=b2);...;1; 2@a=bn): L; 2(@a =#); L "
A@a =t1),1;...4; 2(@q = tn); 1)S.

Intuitively, this expression enforces a tiling to start with
a path starting with b and finishing with f. Now the for-
mula y’' defines all incorrect tilings and additional con-
straints. It is the disjunction of the following xpP'%*//’
formulas.

(1) Incorrect length of a row. 4
(1) VIZ3U+52A@a=#): b T I@a=#), a row is
too short,
(1b) (1 ¥;(@q # #™*)T, a row is too long.

2) AT 2@a#dy A oo A@q # dim A @q #8); 11)$, neither
the delimiter or a tile on a position,
(3) Horizontal or vertical constraints are violated.
(33) Vi dnenll T 2@a =d1); 1;2(@a=d2))T, a hor-
izontal constraint is violated,
(3b) Vi doyevid T3 2@a=d1); 1: T L 2(@a =da)) T,
a vertical constraint is violated.

We show that there exists a tree with a required attribute
a such that T= ¢’ and T ¥/ iff there exists a tiling for Til.

(«). Assume that there exists a tiling of the corridor. Let
s be the string representation of it. Then, s = ujtu,#.. 41, $,
where |u;|=n,u; e D",u; =b , and u,, = . Moreover, on the
one hand if x - y, is an infix of some u; , then (x,y) e H, and
on the other hand for every infix x - u’ - y of length n+1 of
u;# - u;, 1, it holds that (x,y) e V. Let T, be the correspond-
ing tree, i.e., a single path of |s| nodes {vi, ..., v5} where the
label of each node v;,i<|s| is z , the label of v is $ and
attribute function is defined according to s, i.e,
att(v;, a) = s;. Clearly, Ts is a model of ¢’ and not of .

(=). Let T be a tree such that T,r=¢/, T,r ¥y’ and
att(n,a) is defined for every n e Nodes(T). Since T,r = ¢/,
there must exist a path r=vq,...,vy in T such that
att(vi,a)=b;,1<i<n and att(Vyp_pa)=t,1<j<n.
Moreover, either # or a symbol from D is in the attribute of
every node v;, 1 <i<m, according to (2).

We define a tiling function g:{0,...n—1} x N—>D
assigning a tile to every position in the corridor as follows:
&(1,J) = att(Ve 4 1)xj+i+1- @), 1 < i< n. Indeed, this function is
well defined, as (1) ensures the correct counting.

By formulas (3a) and (3b) the tiling defined by g
satisfies the horizontal and vertical constraints.

We then apply Proposition 4 to remove the outermost
disjunction in y’ to obtain the equivalent containment
problem ¢ <y in XP‘Ef“J” o,

Theorem 3 provides a lower bound for the containment
problem for PosXPath®™ and UCQ®™ over trees with
required attributes. Only for tree patterns we know that
the problem is PSpace-complete. Using the same reduction
as in the proof of the upper bound in Theorem 3, and the
results on containment for XPath [18] and XPath with path
intersection [24], we obtain ExpTiME and 2ExpTIME upper
bounds for containment for PosXPath®™ and UCQ%™
over trees with required attributes, respectively.

However, if we restrict attributes to be required at nodes
labeled with a certain symbol, then the containment is still in
coNP and 775. Let p € = be a label and a € A an attribute name.
We say that a is required at label element p if att(n,a) is
defined whenever pep(n) for every tree T and node
n e Nodes(T).

Proposition 6. The containment problem for PosXPath®@™
and UCQ®@™ with required attributes at certain labeled
nodes is in coNP and 15 respectively.

Proof. As before, we can prove a variant of Lemma 3. Let ¢
be a constant name. Whenever attribute a is required at
nodes labelled by p we add the axiom {|*}pa—
P@, = c A ~Pa, =) to the set Ax. Note that the negation is
safe. This axiom is obviously sound, and it enforces that
whenever p holds, at least one pg, ., label holds as well.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1-13 13

This ensures that in the construction of the tree with
attribues a is defined at each p node. ©

4.5. Tractable cases

In this section we consider fragments of PosXPath® where
the containment problem remains in PTive. It is known that
containment in XP%//} and XP'0*! is decidable in PTime, [3,19].

Proposition 7. Let XPX be any fragment whose containment
problem over multiple-labeled trees is in PTive. Then the
containment problem in XP%X over multi-labeled trees with
attributes is also in PTiME.

Proof. Let ¢ and y be formulas in XP@X,

Our algorithm first checks (in PTive) if ¢ is consistent, i.e,, if
it contains both @, = c and @, = d in the label of a node in ¢
for some aeA,c,deD. If ¢ is inconsistent, we output ¢ < y.
Otherwise, we proceed as in the proof of Lemma 3 by
reduction to a containment of attribute-free formulas using
the translation (*) and the formula (Label) only.o

5. Conclusion

We considered the containment problem for positive
XPath and conjunctive queries over trees expanded with
attribute value comparisons. We showed that in general
attribute value comparisons do not increase the com-
plexity of containment. The main idea behind the upper
bound was to extend the small counterexample technique
to positive XPath and conjunctive queries expanded with a
restricted form of negation. Then by axiomatizing the
needed constraints in the corresponding expanded frag-
ment, we could abstract away the attribute value
comparisons.

The complexity, however, does increase from PTivME to coNP
for the fragment XPV/11 of XPath which uses child, descen-
dant and filter expressions when we add equality and
inequality comparisons. Another parameter which affects the
complexity is optionality of attributes. If we restrict our trees
to have at least one required attribute in every node, then the
complexity rises to PSpace. If, however, attributes are required
at elements with specific labels only, the complexity of con-
tainment remains the same: coNP for positive XPath and 775
for conjunctive queries.

We end with listing some open problems. Proposition 7
shows that adding equality comparison only does not
affect the PTiME complexity of containment for fragments
XPV/L1 and XP1* We do not know what happens when
only inequality comparison is added.

For conjunctive queries over trees, it is known that the
fragments CQ(Child) and CQ(NextSibling) have PTiME con-
tainment. It is open whether the complexity increases if
we add attribute value comparisons.

Acknowledgements

We thank the anonymous referees for their helpful
comments.

This research was supported by the Netherlands Orga-
nization for Scientific Research (NWO) under project
number 612.001.012 (DEX).

References

[1] EN. Afrati, S. Cohen, G.M. Kuper, On the complexity of tree pattern
containment with arithmetic comparisons, Inf. Process. Lett. 111 (15)
(2011) 754-760.

[2] EN. Afrati, C. Li, P. Mitra, On containment of conjunctive queries with
arithmetic comparisons, in: Proceedings of the 9th International
Conference on Extending Database Technology Advances in Data-
base Technology - EDBT 2004, Heraklion, Crete, Greece, March 14-
18, 2004, pp. 459-476.

[3] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava, Tree pattern
query minimization, VLDB J. 11 (2002) 315-331.

[4] M. Benedikt, W. Fan, F. Geerts, XPath satisfiability in the presence of
DTDs, J. ACM, 55(2), 2008.

[5] H. Bjorklund, W. Martens, T. Schwentick, Optimizing conjunctive
queries over trees using schema information, MFCS (2008) 132-143.

[6] H. Bjorklund, W. Martens, T. Schwentick, Conjunctive query con-
tainment over trees,]. Comput. Syst. Sci. 77 (3) (2011) 450-472.

[7] AK. Chandra and P.M. Merlin, Optimal implementation of con-
junctive queries in relational data bases, in: Proceedings of the 9th
Annual ACM Symposium on Theory of Computing, May 4-6, 1977,
Boulder, Colorado, USA, 1977; pp. 77-90.

[8] B.S. Chlebus, Domino-tiling games, J. Comput. Syst. Sci. 32 (3) (1986)
374-392.

[9] C. David, A. Gheerbrant, L. Libkin, W. Martens, Containment of
pattern-based queries over data trees, ICDT, 2013.

[10] A. Deutsch, V. Tannen, Containment and integrity constraints for
XPath, in: M. Lenzerini, D. Nardi, W. Nutt, D. Suciu (Eds.), Proceed-
ings of CEUR Workshop, KRDB, vol. 45, 2001, (CEUR-WS.org).

[11] A. Deutsch, V. Tannen, XML queries and constraints, containment
and reformulation, Theor. Comput. Sci. 336 (1) (2005) 57-87.

[12] A. Facchini, Y. Hirai, M. Marx, E. Sherkhonov, Containment for condi-
tional tree patterns, Logical Methods in Computer Science 11 (2) 2015.

[13] C. Farré, W. Nutt, E. Teniente, T. Urpi, Containment of conjunctive
queries over databases with null values, in: Proceedings of the 11th
International Conference, Database Theory - ICDT 2007, Barcelona,
Spain, January 10-12, 2007, pp. 389-403.

[14] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing
XPath queries, ACM Trans. Database Syst. 30 (2) (2005) 444-491.

[15] G. Gottlob, C. Koch, K.U. Schulz, Conjunctive queries over trees,].
ACM, 53, 2006, (2):238-272.

[16] J. Hidders, Satisfiability of XPath expressions, in: G. Lausen, D. Suciu
(Eds.), DBPL, of Lecture Notes in Computer Science, vol. 2921,
Springer, 2003, pp. 21-36.

[17] A.C. Klug, On conjunctive queries containing inequalities, J. ACM, 35,
1988, (1):146-160.

[18] M. Marx, Conditional Xpath, ACM Trans. Database Syst. 30 (4) (2005)
929-959.

[19] G. Miklau, D. Suciu, Containment and equivalence for a fragment of
Xpath, J. ACM, 51, 2004, (1):2-45.

[20] F. Neven, T. Schwentick, On the complexity of Xpath containment in
the presence of disjunction, DTDs, and variables, Log. Methods
Comput. Sci. 2 (3) 2006.

[21] W. Nutt, Ontology and database systems: foundations of database
systems, 2013. Teaching material. ¢http://www.inf.unibz.it/~nutt/
Teaching/ODBS1314/0DBSSlides/3-conjQueries.pdf).

[22] D. Olteanu, H. Meuss, T. Furche, F. Bry, Xpath:looking forward, EDBT,
2002, pp. 109-127.

[23] E. Sherkhonov M. Marx, Containment for tree patterns with attri-
bute value comparisons, WebDB, 2013.

[24] B. ten Cate, C. Lutz, The complexity of query containment in
expressive fragments of XPath 2.0, J. ACM, 56(6), 2009.

[25] J.D. Ullman, Information integration using logical views, Theor.
Comput. Sci. 239 (2) (2000) 189-210.

[26] R.van der Meyden, The complexity of querying indefinite data about
linearly ordered domains, . Comput. Syst. Sci. 54 (1) (1997) 113-135.

[27] F. Wei, G. Lausen, Containment of conjunctive queries with safe
negation, ICDT 2003, 2003, pages 343-357.

[28] P.T. Wood, Containment for XPath fragments under DTD constraints,
in: ICDT, 2003, pp. 297-311.

http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref3
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref3
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref3
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref5
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref5
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref5
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref6
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref6
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref6
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref8
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref8
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref8
http://www.CEUR-WS.org
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref11
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref11
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref11
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref12
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref12
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref14
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref14
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref14
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref18
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref18
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref18
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref25
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref25
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref25
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref26
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref26
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref26

	Containment for queries over trees with attribute value comparisons
	Introduction
	Related work
	Preliminaries
	PosXPath and CQ with safe negation

	Containment of PosXPath@ and CQ@
	Containment of Positive Xpath and CQs with safe negation
	Adding attributes
	Restricting the attribute domain
	Lower bounds
	Required attributes

	Tractable cases

	Conclusion
	Acknowledgements
	References

