
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Containment for queries over trees with attribute value comparisons

Marx, M.; Sherkhonov, E.
DOI
10.1016/j.is.2015.11.003
Publication date
2016
Document Version
Final published version
Published in
Information systems
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Marx, M., & Sherkhonov, E. (2016). Containment for queries over trees with attribute value
comparisons. Information systems, 58, 1-13. https://doi.org/10.1016/j.is.2015.11.003

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://doi.org/10.1016/j.is.2015.11.003
https://dare.uva.nl/personal/pure/en/publications/containment-for-queries-over-trees-with-attribute-value-comparisons(fc70b32d-3ae3-4718-a9c6-504fef7713d8).html
https://doi.org/10.1016/j.is.2015.11.003

Contents lists available at ScienceDirect
Information Systems

Information Systems 58 (2016) 1–13
http://d
0306-43

☆ An
was pre
Databas

n Corr
erlands

E-m
e.sherkh
journal homepage: www.elsevier.com/locate/infosys
Containment for queries over trees with attribute
value comparisons$

Maarten Marx, Evgeny Sherkhonov n

University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands
a r t i c l e i n f o

Article history:
Received 22 January 2015
Received in revised form
23 October 2015
Accepted 26 November 2015
Available online 5 December 2015

Keywords:
Tree query languages
Conjunctive queries over trees
Positive XPath
Containment
Attribute
x.doi.org/10.1016/j.is.2015.11.003
79/& 2015 Elsevier Ltd. All rights reserved.

extended abstract announcing some of the
sented at the 16th International Worksho
es (WebDB), New York, June 23, 2013.
esponding to: POSTBUS 94323, 1090 GH, Am
. Tel.: þ31 205258627.
ail addresses: maartenmarx@uva.nl (M. Marx
onov@uva.nl (E. Sherkhonov).
a b s t r a c t

Björklund et al. [6] showed that containment for conjunctive queries (CQ) over trees and
positive XPath is respectively ΠP

2 and coNP-complete. In this article we show that the same
problem has the same complexity when we expand these languages with XPath's attri-
bute value comparisons. We show that different restrictions on the domain of attribute
values (finite, infinite, dense, discrete) have no impact on the complexity. Making attri-
butes required does have an impact: the problem becomes harder. We also show that
containment of tree patterns without the wildcard �, which is in PTIME, becomes coNP-
hard when adding equality and inequality comparisons.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In this article we study the containment problem for
positive XPath (PosXPath) and conjunctive queries (CQ)
interpreted over finite unranked ordered trees with
respect to the axes Child;NextSibling, Descendant,
NextSiblingþ and Following. PosXPath is a large fragment
of Core XPath [14] which contains all the axes and con-
structs except negation. Conjunctive queries over trees are
an analog of relational conjunctive queries, which corre-
spond to the select-from-where SQL queries in which the
where-condition uses only conjunctions of equality com-
parisons, and are the most widely used query language in
practice. A thorough study of the containment problem for
CQ over trees has been done in [6]. Their main result is
results of this paper
p on the Web and

sterdam, The Neth-

),
ΠP
2-completeness of the problem. In fact, conjunctive

queries can be reformulated as the positive fragment of
Core XPath with path intersection. Thus, the ΠP

2 hardness
result also holds for the containment problem for this
fragment. Inspection of the proof in [6] also indicates that
the containment for just PosXPath remains in CONP. This
extends the result of Miklau and Suciu [19], who showed
that containment for tree patterns is CONP-complete.

The query language considered in these previous
results ignores attributes. However, in many practical
scenarios we deal with data that come from numeric
domains, such as real or natural numbers. Thus, it is nat-
ural to consider conjunctive queries expanded with attri-
bute value comparisons and study basic static analysis
problems such as satisfiability and containment. Such an
expansion has been considered for Tree Patterns in [1],
where a ΠP

2-completeness result for the containment has
been established. However, the hardness proof relies on
the construct that allows comparisons of attributes of two
different nodes, a feature that is not expressible in Core
XPath. As a positive counterpart, a CONP upper bound for
containment was shown in the case when comparisons are
restricted to either so-called left semi-interval or right

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.11.003
http://dx.doi.org/10.1016/j.is.2015.11.003
http://dx.doi.org/10.1016/j.is.2015.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.11.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.11.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.11.003&domain=pdf
mailto:maartenmarx@uva.nl
mailto:e.sherkhonov@uva.nl
http://dx.doi.org/10.1016/j.is.2015.11.003

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–132
semi-interval attribute constraints. For an attribute a and
constant c, an attribute constraint (@aopc) is left semi-
interval if opAfo ; r ; ¼ g.

This article is an extension of [23], where it was shown
that the complexity of containment does not increase for
tree patterns expanded with both left and right semi-
intervals constraints together with inequality constraint.
Here we show that essentially the complexity does not
change in cases of positive XPath and conjunctive queries
over trees. Furthermore, the same upper bounds hold for
the cases when we make certain assumptions on the
underlying attribute domain D. That is, we show that all
the complexity results still hold for the cases when D is a
dense or discrete infinite linear order, with or without
endpoints, or a finite linear order. As another result, we
show that by requiring at least one attribute to be defined
in every node of a tree, the complexity of containment
over such trees rises to PSPACE. If, on the other hand, we
require attributes to be defined only at nodes with a cer-
tain label (which can be expressed in DTDs) the com-
plexity remains in CONP.

All the upper bound results for both PosXPath and CQ

are obtained from a suitable polynomial reduction to the
containment problem in PosXPath:

s
and UCQ:s

(PosXPath and CQ expanded with safe label negation and
union) over trees in which nodes may have multiple labels,
respectively. Safe label negation is the construct
p⧹fq1;…; qng which denotes p-labelled nodes that are not
labelled with any of thelabels q1;…; qn. Table 1 sum-
marizes our results.

The paper is organized as follows. In Section 2 we
briefly mention related work. Section 3 contains all the
necessary preliminary notions. Section 4 contains the main
results. In particular, in Section 4.1 we show that con-
tainment for UCQ:s

and PosXPath:
s
is in ΠP

2 and CONP
respectively. Next in Section 4.2 we consider containment
for CQ@ and PosXPath@ and show the same upper bounds
by reducing to the previous problem. Then in Section 4.3
we show that the upper bounds of containment do not
change in case of some natural restrictions on the attribute
domain. Section 4.4 contains lower bounds: containment
of tree patterns without wildcard rises from PTIME to CONP
when we add equality and inequality comparisons; con-
tainment of tree patterns rises from CONP to PSPACE when
we add equality and inequality comparisons and interpret
them on trees in which at least one attribute is defined at
each node (a so-called required attribute). We finish with
conclusions and future work.
Table 1
Complexity results for containment of Positive XPath and CQ with attri-
bute value comparisons.

PosXPath@ CQ@

No attributes CONP [6] ΠP
2 [6]

Optional attributes CONP (Theorem 2) ΠP
2 (Theorem 2)

Required attributes PSPACE-hard
(Theorem 3)

PSPACE-hard
(Theorem 3)
2. Related work

Containment of Conjunctive Queries (CQ) with
arithmetic comparisons. The classical result on contain-
ment of conjunctive queries over relational databases is its
NP-completeness [7]. Later, containment for conjunctive
queries expanded with arithmetics comparisons was
shown to be ΠP

2-complete [17,26]. In [2], Afrati et al. con-
sider various restrictions on type of comparison operations
on either of the two input conjunctive queries with com-
parisons, as well as on interaction between the compar-
isons, so that the containment is in NP (cf. Table 1 in [2]).
However, it was left open what the exact complexity of
containment for CQ with comparisons of type Xopc is,
where c is a constant and opAf ¼ ; a ; r ; Z ; o ; 4g, i.e.,
the type of comparisons that we consider in this paper.
Note that the ΠP

2-lower bound proof in [26] uses dis-
equation of variables, i.e., the construct XaY for variables
X and Y. Nevertheless, adding comparisons of the form
Xopc to conjunctive queries does change the complexity of
containment, which is in contrast with the result of the
current paper for PosXPath and CQ over trees. This is
argued in [13], where ΠP

2-hardness of containment for CQ
with comparisons was shown, using comparisons of the
form Xac. This proof can also be adapted to use com-
parisons of the form both Xrc and X4c [21].

Relational conjunctive queries with negated atoms
were also studied previously. It is known that containment
for CQ with negated atoms is ΠP

2-complete [25]. The
analog of safe negation that we consider here was also
considered in the context of relational CQ [27]. In this
case, negation in a conjunctive query is safe if every vari-
able appearing in a negated atom also occurs in a positive
atom of the query. Interestingly, the lower bound proof
from [13] can be adapted to show ΠP

2-hardness of CQ with
safe negation [21]. Thus, adding safe negation to relational
conjunctive queries does change the complexity of con-
tainment (from NP to ΠP

2), which is in contrast with the
result of the current paper where safe negation does not
change the complexity of containment for queries
over trees.

Containment for queries interpreted over trees. The
containment problem for various XPath fragments has
been a topic of wide interest for the past several years. A
polynomial time algorithm for tree patterns without the
wildcard based on homomorphism between queries was
given in [3]. The main result of Miklau and Suciu [19] is the
CONP-completeness of containment of tree patterns with
the wildcard. Almost a complete picture of the contain-
ment problem for the XPath fragments with disjunction, in
the presence of DTDs and variables was given in [20].
Notably, it was shown that with a finite alphabet the
containment problem rises to PSPACE. [28] gives decid-
ability results for various fragments with DTDs and a class
of integrity constraints. XPath containment in the presence
of dependency constraints was studied in [10,11]. All these
complexity results are given for forward fragments of
XPath. In this paper we consider all the backward axes
(parent and ancestor) together with the document order
axis (next sibling, following sibling, and following axes and
their inverses). Note that in [22] it was shown that every

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–13 3
XPath expression has an equivalent expression without
backward axes. However, this translation may result in an
expression of exponential size.

A closely related problem is XPath satisfiability [16,4].
[4] contains almost a complete picture of the satisfiability
problem with or without the presence of constraints for
various fragments of XPath. Query containment reduces to
XPath satisfiability in fragments with enough expressive
power (e.g., with negation and filter expressions).

Recently the containment of Boolean combinations of
tree patterns interpreted over data trees was studied in [9],
where ΠP

2-completeness was shown. Their results are
incomparable with our results since tree patterns used in
[9] output a tuple of data values of nodes, while our tree
patterns output nodes.

A closely related work is by Afrati et al. [1]. Consider the
containment problem for tree patterns with general
arithmetic comparisons. They add the ability to compare
the value of an attribute in two different nodes (note that
this is not expressible in Core XPath) and show that con-
tainment for this fragment is ΠP

2-complete. As mentioned
in the introduction, we extend their CONP result for tree
patterns with attribute value comparisons.

A systematic study of conjunctive queries interpreted
over trees started in [15], where the central problem was
the evaluation problem. The authors established a PTIME

and NP dichotomy of the problem. The containment pro-
blem for this language was considered in [6], where it was
shown to be ΠP

2-complete. The ΠP
2 upper bound was shown

via the small counterexample property, similar to the one
in [19]. On the other hand, the ΠP

2 lower bound proof
heavily relies on the DAG structure of conjunctive queries.
In fact, if one disallows path intersections and allows dis-
junction, the same “small counterexample” technique will
yield a CONP algorithm. Since XPath expressions with
backward axes can be expressed in this language, this
implies the CONP upper bound for positive XPath. Con-
tainment of conjunctive queries under schema constraints
was studied in [5], where 2EXPTIME-completeness of the
problem was established.

We end with some results on tractable (PTIME) con-
tainment. As mentioned above, [3] provides a PTIME algo-
rithm for containment of tree patterns without the wild-
card. PTIME containment for acyclic conjunctive queries
implies tractability for containment of tree patterns
without descendant. Moreover, containment for tree pat-
terns without filters is in PTIME as well [19]. However
adding attribute value comparisons may raise the com-
plexity. For instance, as shown below in Proposition 5,
containment for tree patterns without the wildcard toge-
ther with equality and inequality attribute comparisons is
CONP-hard. As for conjunctive queries interpreted over
trees, very limited fragments have PTIME containment:
those that use one of Child or NextSibling relation only [6].
3. Preliminaries

We work with node-labelled ordered unranked finite
trees, where the nodes are labeled by finite subsets of the
infinite set of labels Σ. Formally, a tree over Σ is a tuple
ðN; E; o ; r; ρÞ, where N, the set of nodes of the tree, is a
prefix closed set of finite sequences of natural numbers,
E¼ fð〈n1;…;nk〉; 〈n1;…;nk;nkþ1〉Þj〈n1;…;nkþ1〉ANg is the
child relation, the sibling relation o is defined as
fð〈n1;…;nk〉; 〈n1;…;nkþ1〉Þj〈n1;…;nk〉; 〈n1;…;nkþ1〉ANg,
r¼ 〈〉 is the root of the tree, and ρ is the function assigning
to each node in N a finite subset of Σ. If for every node n of
a tree ρðnÞ is singleton, we call such a tree as a single-
labeled tree. Otherwise, it is multi-labeled. A pointed tree is
a pair T ;n, where n is a node in T.

Let A be a set of attribute names and ðD; o Þ a dense
linear order without endpoints. Then a tree with attributes
from A over Σ is a tuple ðN; E; o ; r; ρ; attÞ such that
ðN; E; o ; r; ρÞ is a tree over Σ and att:N � A-D is a partial
function.

By Eþ and o þ we denote the descendant and the fol-
lowing sibling relations which are transitive closures of the
child and sibling relations respectively. We will also use
o f for the following relation, i.e., the abbreviation for
ðE�1Þ�○o þ○E�. For x; yAN and RAfE; Eþ ; o ; o þ ; o f g, by
TFxRy we denote the fact that ðx; yÞAR.

Positive XPath with attribute value comparisons. We
define the syntax of Positive XPath (denoted as
PosXPath@) node and path formulas with attribute value
comparisons with the following grammar.

step:≔↓j↑j’j-;

φ:≔pj>j@aopcjφ4φjφ3φj〈α〉φ;
α:≔stepj?φjα; αjα [αjstepþ j-f j’p;

where pAΣ; aAA, opAfr ; Z ; o ; 4 ; ¼ ; ag, and cAD.
The semantics of PosXPath@ path formulas α and node

formulas φ is defined as follows. Let T ¼ ðN; E; o ; r; ρ; attÞ
be a tree over Σ with attribute names from A. In a mutual
induction we define the relation ½½α��T DN � N and the
satisfaction relation T ;nFφ.

� ½½↓��T ¼ E,
� ½½↑��T ¼ E�1,
� ½½-��T ¼ o ,
� ½½’��T ¼ o �1,
� ½½-f ��T ¼ o f ,� ½½’p��T ¼ ðo f Þ�1,
� ½½?φ��T ¼ fðn;nÞAN � Nj T ;nFφg,
� ½½α; β��T ¼ ½½α��T○½½β��T ,� ½½α [β��T ¼ ½½α��T [½½β��T ,� ½½αþ ��T ¼ ð½½α��T Þþ for αAf↓; ↑;-;’g,

and

� T ;nF> ,
� T ;nFp iff pAρðnÞ,
� T ;nF@aopc iff ðD; oÞFattðn; aÞ op c,
� T ;nFφ4ψ iff T ;nFφ and T ;nFψ ,
� T ;nFφ3ψ iff T ;nFφ or T ;nFψ ,
� T ;nF 〈α〉φ iff there is a node m with ðn;mÞA ½½α��T and

T ;mFφ.

The step axes select a pair of nodes that are in the child,
parent, next-sibling or previous-sibling relations in the
tree. Furthermore, the -f and ’p axes select nodes that

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–134
are in the following and the preceding relations in the tree
respectively. Note that > is the same as the wildcard axis.

Sometimes we will write TFφ to denote T ; rFφ.
Conjunctive queries with attribute value compar-

isons. Let Var be a set of variables, A a set of attribute
names and ðD; oÞ the attribute domain, which is a dense
linear order without endpoints. A conjunctive query with
attribute value comparisons (CQ@) over Σ, A and D is a
positive existential first-order formula without disjunction
in prenex normal form over a set of unary predicates p(x)
and @aðxÞopc, where pAΣ, xAVar; cAD and
opAfr ; Z ; o ; 4 ; ¼ ; ag; and the binary predicates
Child, Descendant, NextSibling, NextSiblingþ and Following.
If Q is a CQ@, by Var(Q) we denote the set of variables
occurring in Q. By FVar(Q) we denote the set of free vari-
ables in Q. If jFVarðQ Þj ¼ k40, we call Q a k-ary conjunctive
query. If jFVarðQ Þj ¼ 0, we call Q a Boolean
conjunctive query.

Let Q be a conjunctive query and T ¼ ðN; E; o ; r; ρ; attÞ a
tree over Σ and attributes from A. A valuation of Q on T is a
total function θ:VarðQ Þ-N. A valuation is a satisfaction if it
satisfies the query, that is, every atom of Q is satisfied by
the valuation. Satisfaction of an atom in T, given a valua-
tion θ, is defined as follows.

� T ; θFpðxÞ iff pAρðθðxÞÞ,
� T ; θF@aðxÞopc iff ðD; oÞFattðθðxÞ; aÞ op c,
� T ; θF Childðx; yÞ iff TFθðxÞEθðyÞ,
� T ; θFDescendantðx; yÞ iff TFθðxÞEþ θðyÞ,
� T ; θFNextSiblingðx; yÞ iff TFθðxÞoθðyÞ,
� T ; θFNextSiblingþ ðx; yÞ iff TFθðxÞo þ θðyÞ,
� T ; θFFollowingðx; yÞ iff TFθðxÞo f θðyÞ:

A tree T models Q, denoted as TFQ if there is a satis-
faction of Q on T. If ðx1;…; xkÞ is the tuple of free variables
in Q, then the answer of Q over T is the set answer
ðQ ; TÞ ¼ fðθðx1Þ;…; θðxkÞÞjθ is a satisfaction of Q on Tg. Note
that tuples can be nullary as well. Thus, for a Boolean
query Q, answerðQ ; TÞ ¼ f〈〉g (and we say Q is true on T) if
there is a satisfaction of Q on T and answerðQ ; TÞ ¼∅ (and
we say Q is false on T) otherwise.

We also consider unions of conjunctive queries with
attribute value comparisons, denoted as UCQ@. These are
formulas of the form ⋁n

i ¼ 1Qi, where QiACQ@. The
semantics of these formulas is defined in the obvious way.

PosXPath@ formulas as CQ@ formulas with disjunc-
tion. Every PosXPath@ formula can be translated into an
equivalent CQ@ formula with disjunction in linear time.
The translation is a standard translation of XPath into first-
order logic language. It is defined by induction on the
complexity of path and node formulas of PosXPath@ as
follows. Note that the translation can be easily modified to
yield a translation into the three variable fragment of first
order logic.

TRxyð↓Þ
 ¼
 Childðx; yÞ

TRxyð↑Þ
 ¼
 Childðy; xÞ

TRxyð-Þ
 ¼
 NextSiblingðx; yÞ

TRxyð’Þ
 ¼
 NextSiblingðy; xÞ

TRxyð?φÞ
 ¼
 x¼ y4TRxðφÞ

TRxyðα1; α2Þ
 ¼
 (z:ðTRxzðα1Þ4TRzyðα2ÞÞ
where z is a fresh variable.

TRxyðα1 [α2Þ
 ¼
 TRxyðα1Þ3TRxyðα2Þ
TRxyð↓þ Þ
 ¼
 Descendantðx; yÞ

TRxyð↑þ Þ
 ¼
 Descendantðy; xÞ

TRxyð-þ Þ
 ¼
 NextSiblingþ ðx; yÞ

TRxyð’þ Þ
 ¼
 NextSiblingþ ðy; xÞ

TRxyð-f Þ
 ¼
 Followingðx; yÞ

TRxyð’pÞ
 ¼
 Followingðy; xÞ

TRx(p)
 ¼
 p(x)

TRxð@aopcÞ
 ¼
 @aðxÞopc

TRxð>Þ
 ¼
 >

TRxðφ14φ2Þ
 ¼
 TRxðφ1Þ4TRxðφ2Þ

TRxðφ13φ2Þ
 ¼
 TRxðφ1Þ3TRxðφ2Þ

TRxð〈α〉φÞ
 ¼
 (y:ðTRxyðαÞ4TRyðφÞÞ,
where y is a fresh variable.
Query graphs and embeddings. It is convenient to con-
sider CQ@ and PosXPath@ without path union and dis-
junction in the node formulas as graphs [15].

By ΣA we denote the attribute labels of the form @aopc,
where aAA; cAD and opAfr ; Z ; o ; 4 ; ¼ ; ag.

Definition 1 (Graph query). Let Q be a CQ@. Then
GQ ¼ ðV ; E; Eþ ; o ; o þ ; o f ; ρ; ρattÞ, where V is the set of
nodes, RDV � V for RAfE; Eþ ; o ; o þ ; o f g, ρ:V-2Σ ,
ρatt :V-2ΣA , is a graph query of Q if the following holds.

� V ¼ VarðQ Þ,
� pAρðxÞ iff p(x) occurs as a conjunct in Q,
� @aopcAρattðxÞ iff @aðxÞopc occurs as a conjunct in Q,
� ðx; yÞAE iff Childðx; yÞ occurs as a conjunct in Q,
� ðx; yÞAEþ iff Descendantðx; yÞ occurs as a conjunct in Q,
� ðx; yÞAo iff NextSiblingðx; yÞ occurs as a conjunct in Q,
� ðx; yÞAo þ iff NextSiblingþ ðx; yÞ occurs as a conjunct

in Q,
� ðx; yÞAo f iff Followingðx; yÞ occurs as a conjunct in Q.

By Nodes(G) we denote the set of nodes V of G. We
write GQ Fu1Ru2, to specify that ðu1;u2ÞAR for
RAfE; Eþ ; o ; o þ ; o f g. Note that for fragments without
attribute value comparisons, the value of the labeling
function ρatt is always the empty set. In these cases we
omit ρatt in query graphs. The semantics of query graphs is
given in terms of embeddings, which are essentially
valuations for conjunctive queries.

Definition 2 (Embedding). Let T ¼ ðN; E; o ; r; ρ; attÞ be a
tree over Σ with attributes from A and
G¼ ðV ; E; Eþ ; o ; o þ ; o f ; ρ; ρattÞ a graph query. A function
g:V-N is called an embedding of G into T if the following
conditions are satisfied.

� Edge preserving. For every u1;u2AV , if GFu1Ru2 then
TFgðu1ÞRgðu2Þ, for any of the edge relations
RAfE; Eþ ; o ; o þ ; o f g,� Label preserving. For every uAV , ρðuÞDρðgðuÞÞ.

� Attribute comparison preserving. For every uAV , if
@aopcAρattðuÞ, then ðD; o ÞFattðgðuÞ; aÞ op c.

Proposition 1. Let T be a tree, Q a CQ@ query, GQ its graph
query, and θ a function from NodesðGQ Þ to T. Then

T ; θFQ iff θ is an embedding of GQ into T :

Containment. Let Q and P be two k-ary conjunctive
queries. We say that P is contained in Q, denoted as PDQ ,
if for every single-labeled tree T, it holds that

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–13 5
answerðP; TÞDanswerðQ ; TÞ. We also say that P is contained
in Q over multi-labeled trees and denote it by PDMLQ if
answerðP; TÞDanswerðQ ; TÞ for every multi-labeled tree T.

In this paper, the central problem is the following
decision problem.

� Given two conjunctive queries P and Q,
� Decide: is PDQ?

As pointed out in [6], the containment of k-ary queries
can be PTIME reduced to the containment of Boolean con-
junctive queries, i.e., queries without free variables. The
same reduction works for positive XPath and for contain-
ment over multi-labeled trees. Thus, in the remainder of
this paper we concentrate on Boolean query contai
nment only.

Removing the attribute value comparisons. In our
upper bound proofs we will treat the attribute value
comparisons as ordinary labels, whose interpretation will
be restricted by adding constraints. We make that precise
using the translation ð~�Þ which maps each ~@aop c to a new
label p@aop c. This tranlation can then be homomorphically
extended to the translation ð~�Þ from formulas in
PosXPath@ and CQ@ over Σ;A and D to formulas without
attribute value comparisons in respectively PosXPath and
CQ over the alphabet Σ [fp@aop cjop Af ¼ ; a ; o ;

4 ; r ; Zg; aAA; cADg.

PosXPath and CQ with safe negation

We define an expansion of the languages PosXPath@

and CQ@ (UCQ@) with a restricted form of negation. That
is, we define formulas of PosXPath@;:s

as formulas of
PosXPath@ with the additional node formulas
p4:q14…4:qk, whenever p; q1;…; qk are labels from Σ.
We define T ;nFp4:q14…4:qk iff pAρðnÞ and
qi =2ρðnÞ;1r irk.

Similarly, formulas of CQ@;:s
(UCQ@;:s

) are formulas of
CQ@ (UCQ@) expanded with the construct pðxÞ4:
q1ðxÞ4…4:qkðxÞ, where xAVar and p; q1;…; qkAΣ with
semantics: T ; θFpðxÞ4:q1ðxÞ4:qkðxÞ iff pAρðθðxÞÞ and
qi =2ρðθðxÞÞ, for every 1r irk.

For a formula from CQ@;:s
its corresponding graph

query is defined in the same way as in Definition 1 with
the addition that nodes can have negative labels. The
notion of an embedding can also be extended for CQ@;:s

.
The additional clause that has to be added to Definition 2
requires preservation of negated labels:

� For every uAV , if :pAρðuÞ then p=2ρðgðuÞÞ.

By PosXPath:
s
, CQ:s

and UCQ:s
we denote the frag-

ments of PosXPath@;:s
, CQ@;:s

and UCQ@;:s
without

attribute value comparisons respectively.
4. Containment of PosXPath@ and CQ@

This section contains the main result of this article.
First, in Section 4.1 we show that containment for
PosXPath and CQ expanded with safe negation are in CONP
and ΠP

2 respectively. Next we show that containment for
these fragments expanded with attribute value compar-
isons remains the same by a polynomial reduction to the
corresponding fragments without attribute value com-
parisons. This result holds under the assumption that
attribute values come from a dense linear order without
endpoints. In Section 4.3 we show that imposing different
constraints on the linear domain of attribute values does
not impact the complexity. However, making attributes
required everywhere in a tree increases the complexity of
containment, as shown in Section 4.4.

4.1. Containment of Positive Xpath and CQs with safe
negation

In Section 4.2 we will reduce the containment problem
for PosXPath@ and CQ@ to that of PosXPath:

s
and UCQ:s

.
The next theorem shows that adding safe negation to
PosXPath and UCQ does not make the containment pro-
blem harder. The argument is similar to the one in [6], but
additional care needs to be taken when we deal with
negation.

Theorem 1. The containment problem over multi-labeled
trees for PosXPath:

s
and UCQ:s

is in CONP and ΠP
2

respectively.

Proof. In both cases the proof strategy is the same.
Throughout the proof we assume that we deal with multi-
labeled trees without attributes. Our goal is to show that
whenever φ⊈ψ , there is a small (polynomial in φ and ψ)
counterexample witnessing this fact. In the proof, we start
with an arbitrary counterexample T, and shrink it in two
steps: in the first step (creating Tn), we roughly restrict T to
the image of φ and intermediate nodes. This can still be too
large. In the second step we shrink long paths between
image nodes.
Let φ¼⋁iφi and ψ ¼⋁jψ j be UCQ:s

formulas. Let
T ¼ ðN; E; o ; r; ρÞ be a tree such that TFφ and Tjψ . Then
there exist i and an embedding e:NodesðGφi

Þ-T , where Gφi

is the query graph of φi. By eðGφi
Þ we denote the image of

NodesðGφi
Þ. If Gφi

Fu1o f u2, then there must exist nodes x1
and x2 such that eðu1ÞðE�1Þ�x1o þ x2E

�eðu2Þ in T. We call-
such x1 and x2 knee-nodes for G.
Our aim is to create a small tree out of T which is still a

counterexample. For the first “shrinking step”, we color
nodes that we must keep. We use three colors: fI;V ;Hg.

� Mark the root r with I,
� If xAeðGφi

Þ, mark x with I (”image” nodes),
� If Gφi

Fu1o f u2, then there must exist knee-nodes x1
and x2. Mark x1 and x2 by I too,

� If there exist two nodes x and y marked by I such that
TFxEþ y and there is no node z marked by I with
TFxEþ z4zEþ y, then mark all the nodes on the path
from x to y by V (”vertical” nodes),

� If there exist two nodes x and y marked by I or V such
that TFxo þ y and there is no node z marked by I or V
with TFxo þ z4zo þ y, then mark all the sibling
nodes between x and y by H (”horizontal” nodes),

Fig. 1. The tree T and the query graph corresponding to Q from Example 1.

1 Note that the defined T 0 is isomorphic to the “real” intended tree T 0

where the nodes are sequences of natural numbers. Here, we treat g as
the old g composed with the isomorphism.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–136
� Let T� ¼ ðN�; E�; o�; r�Þ be the substructure of T restric-
ted to the nodes marked by I, H or V.

� Let ρ�ðnÞ ¼ ρðnÞ for nA I and ρ�ðnÞ ¼∅ otherwise.

Example 1. Let T be a tree as in Fig. 1 and Q the Boolean
conjunctive query (xyzwðaðxÞ4Descendantðx; yÞ 4bðyÞ4
Childðx; zÞ4cðzÞ4NextSiblingþ ðz;wÞ4dðwÞÞ. The corre-
sponding query graph GQ is depicted in Fig. 1, where the
downward and horizontal double line arrows denote Eþ

and o þ respectively, and the single line arrow denotes E.
The embedding e is defined by the dashed arrows. The
marking of nodes of Twith the colors fI;V ;Hg is depicted in
Fig. 1.

Claim 1. T� ¼ ðN�; E�; o�; r�; ρ�Þ is a tree and T�Fφ and
T�jψ .

Proof of Claim 1. It is easy to check that adding the V and
H nodes to I is the minimum needed to ensure that Tn is a
tree. First, we argue that T�Fφi. Since we maintained the
image of Gφi

(nodes labeled by I), we have that e is a
mapping from NodesðGφi

Þ to Nn. The node labels are pre-
served under e since we did not change the labeling of I
nodes. Let 〈x; y〉 be an edge in Gφi

. If Gφi
FxEy, or Gφi

Fxoy
then e(x) and e(y) are in respectively child or next sibling
relation in Tn since both nodes are labeled with I and they
were in that relation in T. If Gφi

FxEþ y or Gφi
Fxo þ y,

then e(x) and e(y) are in the corresponding relations in Tn

since the intermediate vertical (V) and horizontal (H)
nodes were kept. In case Gφi

Fxo f y we have
T�FeðxÞo f eðyÞ since we kept the knee-nodes which wit-
ness the following relation in T. Thus, we obtain T�Fφ.
Now we show T�jψ . Suppose to the contrary that

T�Fψ . Then there exists an embedding g of Gψ j
into Tn for

some j. Because Tn is a substructure of T, g is also a map-
ping of NodesðGψ j

Þ into Nodes(T) that preserves the edge
relation. We show that g also preserves the labels. Note
that by definition of Tn, the label ρ�ðnÞ is either equal to
ρðnÞ, when nA I, or empty otherwise. Positive labels are
always preserved: ρjðuÞDρ�ðgðuÞÞDρðgðuÞÞ for every node
uANodesðGψ j

Þ, where ρj is the labeling function of Gψ j
. We

show that negative labels are preserved too. Let
uANodesðGψ j

Þ. If :pAρjðuÞ, we have that p=2ρ�ðgðuÞÞ, since g
preserves negative labels. Since negation is safe, there
must exist a label qAρjðuÞ, which implies qAρ�ðgðuÞÞ, and,
thus, ρ�ðgðuÞÞ is not empty. In this case ρ�ðgðuÞÞ ¼ ρðgðuÞÞ,
and thus p=2ρðgðuÞÞ as required. Thus, TFψ which is a
contradiction. □

Next, we prove two crucial lemmas. In particular, the
following lemma claims that if we have a tree Twith a long
enough non-branching vertical path, where each node has
the empty label, and a query Q with TFQ , then the path
can be extended even more while preserving the fact that
Q is true in the tree. We use the contrapositive of the
lemma to shrink such long paths while keeping the query ψ

false in the smaller tree. The same reasoning applies for
horizontal paths.

Lemma 1 (V-path). Let G be a query graph with labels from
Σ and T ¼ ðN; E; o ; ρ; rÞ a tree such that there is an embed-
ding of G into T. Suppose u1Eu2E…Eun is a path in T, such that

� ρðuiÞ ¼∅, for every iAf1;…;ng,
� If TFuiEx, then x¼ uiþ1 for ion,
� n4 jNodesðGÞj.

Let T̂ be the tree obtained from T by inserting a node with
the empty label in the middle of the path, i.e., by making um
the parent and umþ1 a child of the new node, where n¼ 2m
(when n is even) or n¼ 2m�1 (when n is odd). Then there
exists an embedding from G into T̂ .

Proof. Let G¼ ðV ; E; Eþ ; o ; o þ ; o f ; ρÞ be the given query
graph and g an embedding of G into T. Since the length n of
the path is strictly greater than the number of nodes in G,
there must exist an index krn such that uk =2gðVÞ;
kAf1;…;ng. Let T 0 ¼ ðN0; E0; o 0; ρ0; r0Þ be the tree defined as
follows:

� r0 ¼ r,
� N0 ¼N [fu0

kg;u0
k =2N,� E0 ¼ ðE⧹fðuk; xÞAEjxANgÞ [fðuk;u0

kÞg [fðu0
k; xÞjTFukExg,� o 0 ¼ o ,

� For every node vAN, ρ0ðvÞ ¼ ρðvÞ, and ρ0ðu0
kÞ ¼∅.

We prove that in fact the same g is an embedding of G
into T 0 1. First, from the definition of T 0 we obtain the
following properties.

Claim 2. Let T be from the statement of Lemma 1 and T 0 as
defined above. Then

(i) If TFxEþ y, then T 0FxE0þ y,
(ii) If xauk and TFxEy, then T 0FxE0y,
(iii) If TFxoy (resp. TFxo þ y and TFxo f y), then

T 0Fxo 0y (resp. T 0Fxo 0þ y and T 0Fxo 0
f y).

Proof of Claim 2. All items except (i) are immediate by
the definition of E0. For ðiÞ, let TFxEþ y. We then consider
two cases: First suppose TFukEy. Then TFxE�uk and thus
T 0FxE0�uk. Since T 0FukE

0u0
k and T 0Fu0

kE
0y, we have

T 0FxE0þ y. In the case that TjukEy, we obtain T 0FxE0þ y
by the definition of E0. □

We prove that g:V-N0 is an embedding.
Preservation of labels follows from the fact that the

image of g is in N and g is an embedding of G into T and
thus preserves labels. We show that g still preserves the
edge relations. Let xEy hold in G. Then it holds that

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–13 7
gðxÞauk as uk is not in the image of g. Since g is an
embedding of G into T, it holds TFgðxÞEgðyÞ. Then by
Claim 2(ii), it holds T 0FgðxÞE0gðyÞ.

Let GFxEþ y. Since g is an embedding of G into T, we
have TFgðxÞEþ gðyÞ. By Claim 2 (i), it follows that
T 0FgðxÞE0þ gðyÞ. Preservation of the relations o , o þ and
o f under g follows from Claim 2 (iii).

Now let T̂ be the tree defined in the statement of the
Lemma. Formally, T̂ ¼ ðN̂ ; Ê ; ô ; ρ̂; r̂Þ is defined as follows.

� r̂ ¼ r,
� N̂ ¼N [fu0

mg;u0
m =2N,

� Ê ¼ ðE⧹fðum; xÞAEjxANgÞ [fðum;u0
mÞg [fðu0

m; xÞjTFumExg,
� ô ¼ o ,
� For every node vAN, ρ̂ðvÞ ¼ ρðvÞ, and ρ̂ðu0

mÞ ¼∅.

The trees T̂ and T 0 are isomorphic. Recall the indexes m
and k from the definitions of T̂ and T 0. We define a map-
ping f :N0-N̂ as follows.

� If mrk, then

f ðvÞ ¼

v if vAN⧹fumþ1;…;ukg;
u0
m if v¼ umþ1;

ui�1 if v¼ ui;mþ1o irk;

uk if v¼ u0
k:

8>>>><
>>>>:

� If m4k, then

f ðvÞ ¼

v if vAN⧹fukþ1;…;umg;
ukþ1 if v¼ u0

k;

uiþ1 if v¼ ui; kþ1r iom;

u0
m if v¼ umþ1:

8>>>><
>>>>:

The function f is onto and 1–1. We show that the V-paths
in T 0 and T̂ are isomorphic. We consider the case mrk, the
other case is similar. Let T 0FuE0v for u; vAfu1;…;

uk;u0
k;ukþ1;ukþ2;…;ung. We need to show that T 0FuE0v iff

T̂F f ðuÞÊf ðvÞ. There are the following possible cases.

� u¼ ui and v¼ uiþ1 with 1r iom or ko ion. In this
case f ðujÞ ¼ uj; jAfi; iþ1g. By definition of T 0 and T̂ it
holds that T 0FuiE

0uiþ1 and T̂FuiÊuiþ1. Thus, T
0FuE0v

iff T̂F f ðuÞÊf ðvÞ.
� u¼ um and v¼ umþ1. In this case f ðumÞ ¼ um and

f ðumþ1Þ ¼ u0
m. By definition, it holds that T 0FumE

0umþ1

and T̂FumÊu0
m. Thus, T

0FuE0v iff T̂F f ðuÞÊf ðvÞ.
� u¼ umþ1 and v¼ umþ2. In this case f ðumþ1Þ ¼ u0

m and
f ðumþ2Þ ¼ umþ1. By definition, it holds that
T 0Fumþ1E

0umþ2 and T̂Fu0
mÊumþ1. Thus, T

0FuE0v iff
T̂F f ðuÞÊf ðvÞ.

� u¼ ui and v¼ uiþ1 with mþ1o iok. In this case,
f ðuiÞ ¼ ui�1 and f ðuiþ1Þ ¼ ui. By definition, it holds that
T 0FuiE

0uiþ1 and T̂Fui�1Êui. Thus, T 0FuE0v iff
T̂F f ðuÞÊf ðvÞ.

� u¼ uk and v¼ u0
k. In this case, f ðukÞ ¼ uk�1 and

f ðu0
kÞ ¼ uk. By definition, it holds that T 0FukE

0u0
k and

T̂Fuk�1Êuk. Thus, T
0FuE0v iff T̂F f ðuÞÊ f ðvÞ.
� u¼ u0
k and v¼ ukþ1. In this case, f ðu0

kÞ ¼ uk and
f ðukþ1Þ ¼ ukþ1. By definition, it holds that T 0Fu0

kE
0ukþ1

and T̂FukÊukþ1. Thus, T
0FuE0v iff T̂F f ðuÞÊf ðvÞ.

Since f ðvÞ ¼ v for every vAN⧹fu1;…;un;u0
k;u

0
mg and

ρðvÞ ¼∅ for every vAfu1;…;un;u0
k;u

0
mg, the labels are pre-

served as well.
Thus, the mapping f○g is an embedding of G into T̂ . □
Analogous to the above lemma for V-paths, we for-

malize one for H-paths. The crucial properties of H-paths
are that their labels are empty and that all nodes in the
path are leafs. We omit the proof.

Lemma 2 (H-path). Let G be a query graph with labels from
Σ and T ¼ ðN; E; o ; ρ; rÞ an ordered tree such that there is an
embedding of G into T. Suppose T has a horizontal path
v1ov2o…ovn and v is their parent in T, where

� ρðviÞ ¼∅ for every iAf1;…;ng,
� Vi ¼ fujTFviEug ¼∅ for every iAf1;…;ng,
� n4 jNodesðGÞj.

Let T̂ be the tree obtained from T by inserting a node with
the empty label in the middle of the horizontal path, i.e., by
making vm the predecessor and vmþ1 the successor of the
new node, where n¼ 2m (when n is even) or n¼ 2m-1
(when n is odd). Then there exists an embedding from G
into T̂ .

The proof of Theorem 1 relies on the small tree prop-
erty which follows from the two lemmas above. We first
show how, using Lemma 1, we can reduce the number of
V-nodes. Let Gψ j

be the query graph of maximal number of
nodes among all Gψ i

. Let u1Eu2…Eun be a V-path in Tn of
length greater than jNodesðGψ j

Þjþ1. Then we remove the
node um, where n¼ 2m (i.e., if n is even) or n¼ 2 mþ1
(i.e., if n is odd), from Tn, and make umþ1 to be the child of
um�1. Let T

�� be the resulting tree. We claim that T��Fφ

and T��jψ . The former follows from the fact that we did
not change I-nodes in T��. For the latter, suppose T��Fψ .
Then there exists an embedding g:Gψ i

-T�� for some i.
Since n�14 jNodesðGψ j

ÞjZ jNodesðGψ i
Þj, we can apply

Lemma 1 to show that there is an embedding of Gψ i
to Tn,

which contradicts to the fact T�jψ .
Thus, we can iteratively apply the same argument to

make long V-paths shorter and while preserving the fact
that T�jψ and T�Fφ. Similar for H-paths, if they are
longer than jNodesðGψ j

Þjþ1, we can apply Lemma 2 to
shorten them.

Let us find out how the size of the small tree is boun-
ded. The number of I nodes in Tn is bounded by
jNodesðGφi

Þj. Each I node has at most one V path above it,
one H path to its right, and one H path through its chil-
dren. The number of nodes in all these paths is, by the
argument above, maximally jNodesðGψ j

Þjþ1. Thus after
repeated application of the Lemmas to Tn the resulting size
is bounded by Oðjφj � jψ jÞ.

A ΠP
2 algorithm for deciding the UCQ:s

containment
then works as follows. It first guesses a tree T of size Oðjφj �
jψ jÞ and then checks in NP if TFφ and in CONP if Tjψ . The
CONP algorithm for PosXPath:

s
works similarly. It also

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–138
guesses a tree T of polynomial size and checks if TFφ and
Tjψ which can be done in PTIME [14]. □

Note that the safeness condition for negation turns out
to be crucial. Indeed, in [12] it was shown that contain-
ment for tree patterns with unrestricted label negation is
already PSPACE-complete.

4.2. Adding attributes

Now we are ready to provide upper bounds for our
fragments with attribute value comparisons.

Theorem 2. The containment problem over trees with
attributes is

� in CONP for PosXPath@;:s
,

� in ΠP
2 for UCQ@;:s

.

Given the containment problem φDψ for
φ;ψAPosXPath@;:s

(UCQ@;:s
), we reduce it to the con-

tainment problem φ0DMLψ 0 in PosXPath:
s
(UCQ:s

), which
is known to be in CONP (ΠP

2) by Theorem 1. Thus Theorem 2
is a consequence of the following lemma.

Lemma 3. Let φ and ψ be PosXPath@;:s
(UCQ@;:s

) formulas.
Then there exist PTIME computable PosXPath:

s
(UCQ:s

)
formulas φ0 and ψ 0 such that

φDψ iff φ0DMLψ
0:

This holds for both single-labeled and multi-labeled trees.

Proof. The idea behind the proof is as follows. We abstract
away from arithmetic comparisons by replacing each of
them with a new label. These labels have to obey certain
constraints, like comparisons do. To this purpose, we
define a list of axioms that faithfully encode these
constraints.

For every pi; pjAΣp, piapj:

〈↓�〉ðpi4pjÞ; ðLabelÞ

For every aAΣa; c; c1; c2AΣc, c1ac2

〈↓�〉ðp@a ¼ c1 4p@a ¼ c2 Þ; ðSNameÞ

〈↓�〉ðp@a ¼ c4p@a a cÞ; ðEqÞ

For every aAΣa; cAΣc and R; S in fo ; ¼ ; 4g with RaS,

〈↓�〉ðp@aRc4p@aScÞ; ðMExclÞ

For every aAΣa; c; c1AΣc and RAfa ; r ; Z ; o ; 4g,
〈↓�〉ðp@aRc1 4:p@a ¼ c4:p@a 4 c4:p@a o cÞ; ðDNegÞ

〈↓�〉ðp@a r c4:p@a ¼ c4:p@a o cÞ; ðLEQ1Þ

〈↓�〉ðp@a Z c4:p@a ¼ c4:p@a 4 cÞ; ðGEQ1Þ

〈↓�〉ðp@a ¼ c4:p@a r cÞ; ðLEQ2Þ

〈↓�〉ðp@a ¼ c4:p@a Z cÞ; ðGEQ2Þ

〈↓�〉ðp@a o c4:p@a r cÞ; ðLEQ3Þ
〈↓�〉ðp@a 4 c4:p@a Z cÞ; ðGEQ3Þ

〈↓�〉ðp@a o c4:p@a a cÞ; ðLNEQ Þ

〈↓�〉ðp@a 4 c4:p@a a cÞ; ðGNEQ Þ

〈↓�〉ðp@a a c4:p@a o c4:p@a 4 cÞ; ðTRIÞ

〈↓�〉ðp@a Z c4p@a r c4:p@a ¼ cÞ; ðLEQGEQ Þ

For every c1oc2; c1; c2AΣc, add the disjuncts,

〈↓�〉ðp@a o c1 4:p@a o c2 Þ; ðOrder1Þ

〈↓�〉ðp@a 4 c2 4:p@a 4 c1 Þ; ðOrder2Þ

〈↓�〉ðp@a ¼ c1 4:p@a o c2 Þ; ðOrder3Þ

〈↓�〉ðp@a ¼ c2 4:p@a 4 c1 Þ: ðOrder4Þ

In case of PosXPath@;:s
we define φ0≔ ~φ and ψ 0≔ ~ψ 3Ax,

where ~ð�Þ replaces comparisons with labels (definition is in
Section 3) and Ax is the disjunction of the formulas men-
tioned above. In the definition of Ax, Σp, Σa and Σc are
respectively the sets of labels, attributes and constants
appearing in φ or ψ. We use the abbreviation
〈↓�〉θ¼ θ3 〈↓þ 〉θ. Note that the formula Ax is in
PosXPath:

s
. In case of UCQ@;:s

the translation ð�Þ0 is
defined essentially the same. The only difference is that we
take (x:TRxðAxÞ instead of Ax. Notice that the resulting
formulas φ0 and ψ 0 are in UCQ:s

.
We first argue that the size of Ax is Oððjφjþjψ jÞ3Þ. Since

the sets Σp, Σa and Σc are respectively the sets of labels,
attributes and constants appearing in φ or ψ, their sizes are
bounded by the combined size jφjþjψ j. The axioms in Ax
are in fact axiom schemas. Each schema has at most
3 parameters from Σp, Σa and Σc and 1 parameter from the
set of possible operators from f ¼ ; a ; o ; 4 ; r ; Zg. Thus
each schema stands for at most 6 � ðjφjþjψ jÞ3 disjuncts. The
number of axioms and their size does not depend on φ and
ψ. Whence the size of Ax is bounded by Oððjφjþjψ jÞ3Þ.

We give some intuition behind Ax. In order to prove
this lemma, we need to show that there is a counter-
example for φDψ iff there is a counterexample for
φ0DMLψ 0. Note that every counterexample tree T for
φ0DMLψ 0 must refute every disjunct (axiom) in Ax. Intui-
tively, the axioms enforce the following properties of T:

� (Label): each node has at most one label from Σp,
� (SName): each attribute of a node can take only at most

one value,
� (MExcl), (Eq): there is no inconsistent comparison,
� (DNeg): if a node contains a comparison with a con-

stant, then it must contain a comparison with all other
constants from Σc,

� (LEQ1)–(LEQGEQ): the natural interaction between the
comparisons with a constant,

� (Order1)–(Order4): the order is preserved.

The following claim is crucial for constructing a coun-
terexample tree for φDψ from a counterexample for
φ0DMLψ 0.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–13 9
Claim 3. Let T ¼ ðN; E; o ; r; ρÞ be a multi-labeled tree over Σ0

such that T ; rjAx. Then for every aAΣa; cAΣc, node nAN,
exactly one of the following holds.

(i) there is no p@aopcAρðnÞ for every opAf ¼ ; a ;

Z ; r ; o ; 4g,
(ii) there is exactly one p@a ¼ cAρðnÞ and for every c1AΣc it

holds that p@aopc1 AρðnÞ iff DFcopc1,
(iii) there is no p@aopcAρðnÞ and there exists c0AD⧹Σc such

that for every c1AΣc it holds that p@aopc1 AρðnÞ iff
DFc0 opc1.

Proof of Claim. Let T be as stated in the Claim, aAΣa an
attribute name, cAΣc a constant, nAN a node in T. Assume
that there exists p@aopc in ρðnÞ. Otherwise, item (i) holds.
Assume that op is in fact ”¼”. Because T ; rjAx, the for-
mula (SName) is false and thus there cannot be another
p@a ¼ c1 in ρðnÞ.
We show, for every c1AΣc and opAf ¼ ; a ; 4 ;

o ; Z ; rg, that p@aopc1 AρðnÞ iff DFcopc1.

(1) op is ¼ . Assume p@a ¼ c1 AρðnÞ, then we have c¼ c1 by
(SName). The converse implication holds since
p@a ¼ cAρðnÞ by the assumption.

(2) op is a . Assume p@a a c1 AρðnÞ. By (Eq), it follows that
c1ac. Thus, DFcac1. Conversely, assume DFcac1.
It means that either c4c1 or coc1. First assume that
c4c1. Since p@a ¼ cAρðnÞ and c4c1, by (Order4) we
obtain p@a 4 c1 AρðnÞ. Then, by (GNEQ), it follows that
p@a a c1 AρðnÞ, as desired. Similarly for the case coc1,
using (Order3) and (LNEQ), we can show p@a a c1 AρðnÞ.

(3) op is 4 . Assume p@a 4 c1 AρðnÞ. We show that
DFc4c1. Suppose the opposite, i.e., either c¼ c1 or
c14c. In the first case, it would mean that both p@a ¼ c

and p@a 4 c occur in ρðnÞ, which is a contradiction with
(MExcl). In the second case, by (Order3), both p@a o c1
and p@a4 c1

are in ρðnÞ, which is again a contradiction
with (MExcl). Now suppose DFc4c1. Then by
(Order4), it follows that p@a 4 c1 AρðnÞ, as needed.

(4) op is o . Similar to the previous case.
(5) op is Z . Assume p@a Z c1 AρðnÞ. If c1 ¼ c, then we

immediately obtain DFcZc1. Now suppose cac1
and we show that DFcZc1. Suppose the opposite,
i.e., DFcoc1. Then by (Order3), we have
p@a o c1 AρðnÞ. By (LEQ3), it implies that p@a r c1 AρðnÞ,
which in turn by (LEQGEQ) implies that p@a ¼ c1 AρðnÞ.
The latter is a contradiction with (SName).
Now assume DFcZc1. This means that either c¼ c1
or c4c1 in D. In the first case, we have p@a ¼ cAρðnÞ by
the assumption. Thus by (GEQ2), we have that
p@a Z cAρðnÞ. In the second case, similarly to the case
when op is 4 , we can show that p@a 4 c1 AρðnÞ. Then
by (GEQ3), we have p@a Z c1 AρðnÞ, as needed.

(6) op is r . Similar to the previous case.

Thus we have proved item (ii).
Let us consider (iii). Now there is no p@a ¼ cAρðnÞ for any

cAD. We define c1 ¼maxfcjp@a 4 cAρðnÞg and c2 ¼
minfcjp@a o cAρðnÞg. If the former set is empty, we let
c1 ¼ �1, and if the latter set is empty, we let c2 ¼ þ1.
We claim that at least one of c1 and c2 is finite. Indeed,
there must be p@aRc in ρðnÞ for some RAfa ; o ; 4 ; r ; Zg
since otherwise item ðiÞ would hold. By DNeg it follows
that either p@a o c or p@a 4 c is in ρðnÞ, which means that c1
or c2 is finite.
We also claim that c1oc2. It is trivially true if one of c1

and c2 is infinity, thus assume both are finite. If c1 ¼ c2,
then both p@a 4 c1 and p@a o c1 appear in ρðnÞ at the same
time, which is forbidden due to (MExcl). If c14c2, then by
(Order1), both p@a 4 c1 and p@a o c1 are in ρðnÞ, which is
again forbidden by (MExcl).
Now, since c1oc2 and the assumption that D is a dense

order, there exists c0AD such that c1oc0oc2.
We claim that c0 =2Σc. Suppose the opposite. Then since

p@a ¼ c0 =2ρðnÞ by the assumption and the fact that
p@aRc″AρðnÞ for some R and c″ (otherwise we would be in
case (i)), we obtain either p@a o c0 AρðnÞ or p@a 4 c0 AρðnÞ, by
(DNeg). If p@a o c0 AρðnÞ, then DFc0Zc2 which contradicts
to the fact that DFc0oc2. Similarly, if p@a 4c0 AρðnÞ, then
DFc0rc1 which contradicts with DFc04c1.
We now show that for every cAΣc and

opAf ¼ ; a ; 4 ; o ; Z ; rg, p@aopcAρðnÞ iff DFc0op c.

(1) op is ¼ . The equivalence holds since for every cAΣc,
there is no p@a ¼ c in ρðnÞ and Djc0 ¼ c since c0 =2Σc.

(2) op is a . Assume p@a a cAρðnÞ. Then we have that
DFc0ac because c0 is not in Σc. Conversely, assume
DFc0ac. By (DNeg), since there is no p@a ¼ c in ρðnÞ
for every cAΣc and there is p@aRc1 for some c1, it
follows that either p@a o cAρðnÞ or p@a 4 cAρðnÞ. Apply-
ing (LNEQ) or (GNEQ) respectively, we obtain
p@a a cAρðnÞ, as desired.

(3) op is 4 . Assume p@a 4 cAρðnÞ. Then DFc04c by
definition of c0. Conversely, assume DFc04c. We
show that p@a 4 cAρðnÞ. Since there is no p@a ¼ cAρðnÞ
and there exists p@aRc1 AρðnÞ, we obtain either p@a o c

or p@a 4 c in ρðnÞ, by (DNeg). The first case is impossible
since it would imply c0oc which contradicts the
assumption. Thus we have p@a 4cAρðnÞ, as desired.

(4) op is o . Similar to the previous case.
(5) op is Z . If p@a Z cAρðnÞ, then by (GEQ1) either

p@a ¼ cAρðnÞ or p@a 4 cAρðnÞ. The first case is impos-
sible by the assumption. In the second case, we obtain
that DFc04c by definition of c0. Thus, DFc0Zc.
Now assume DFc0Zc. This means that either c0 ¼ c or
c04c in D. The first case is impossible, since c0 =2Σc. In
the second case, as with the case op¼ ”4”, we can
show that p@a 4 cAρðnÞ. Then by (GEQ3), it holds that
p@a Z cAρðnÞ.

(6) op is r . Similar to the previous case.

This concludes the proof of the claim. □

We now prove that φDψ iff φ0DMLψ 0,
()) Let T ¼ ðN; E; o ; r; ρÞ be a multi-labeled tree such

that T ; rFφ0 and T ; rjψ 0. Note that then T ; rjAx. Then we
define a single-labeled tree T 0≔ðN; E; o ; r; ρ0; attÞ, where att
is a partial function assigning a value in D to a given node
and an attribute name, as follows:

� For pAΣp, ρ0ðnÞ ¼ p iff pAρðnÞ. If there is no pAΣp such
that pAρðnÞ, we set ρ0ðnÞ ¼ z for a fresh symbol z.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–1310
� attðn; aÞ ¼
undefined if there is no p@aopc1 in ρðnÞ;
c if p@a ¼ cAρðnÞ;
c0 from Claim3; ðiiiÞ;otherwise:

8><
>:

We claim that T 0 is well defined. Indeed, (Label) ensures
that every node is labeled by exactly one label from Σp or
by z. Morever, the function att is well defined since exactly
one of the conditions in the definition of att is fulfilled,
according to Claim 3. By induction, using Claim 3, we can
show that for every θ, T ;nF ~θ iff T 0;nFθ. Thus, it follows
T 0; rFφ and T 0; rjψ which was desired.
(() Let T ¼ ðN; E; o ; r; ρ; attÞ be a single-labeled tree such
that TFφ and Tjψ . We define the tree T 0≔ðN; E; o ; r; ρ0Þ,
where ρ0 is defined as follows:

� For pAΣp, pAρ0ðnÞ iff ρðnÞ ¼ p,
� p@a ¼ cAρ0ðnÞ iff attðn; aÞ ¼ c,
� p@aopcAρ0ðnÞ iff DFattðn; aÞopc for opAfa ; r ; Z ; o ;

4g, cAΣc.

It is straightforward to check that T 0 does not satisfy any of
the disjuncts in Ax. Thus, we obtain T 0Fφ0 and T 0jψ 0.□

The same argument goes through for multi-labeled
trees, except that we must not include formulas (Label)
juncts of Ax.

4.3. Restricting the attribute domain

We now show the same complexity results for various
restrictions on the domain of attribute values. A linear
order D has a smallest (largest) element if there exists
c0AD such that c0rc (cZc0) for every cAD. We say D has
an endpoint if there exists a smallest or a largest element
in D. D is discrete if any point which has a successor also
has an immediate successor. D is dense linear order if for
every xoy in D there exists zAD such that xozoy.

Proposition 2. Let D be one of the following linear orders:

(i) finite,
(ii) discrete,
(iii) dense or discrete with one or two endpoints.

Then the containment problem for PosXPath@;:s
and

UCQ@;:s
over single-labeled trees with the domain of attri-

bute values D is in CONP and ΠP
2 respectively.

Proof. Let φ and ψ be PosXPath@;:s
(UCQ@;:s

) formulas
over D and ΣcDD, Σa and Σp the sets of constants, attribute
names and labels in Σ appearing in φ or ψ. We then con-
struct in PTIME formulas φ0 and ψ 0 over Σ0 ¼ Σp [
fp@aopcjaAΣa;cAΣc;opAf ¼ ; a ; o ; 4 ; r ; Zgg such that

φDψ if and only if φ0DMLψ
0: ð1Þ

Namely, we take φ0≔ ~φ and ψ 0≔ ~ψ 3Ax3Axk, where ~ð�Þ is
defined in Section 3, Ax is from the proof of Lemma 3 and
Axk; kAfðFinÞ; ðDiscrÞ; ðEndÞg is constructed according to the
cases (i), (ii) and (iii) of the Proposition. Note that the
formulas φ0 and ψ 0 in all the cases are in fact PosXPath:

s

formulas. In case of UCQ@;:s
, the translation ð�Þ0 is defined

essentially the same. The difference is that we use
(x:TRxðAxÞ and (y:TRyðAxkÞ instead. Note that the result of
ð�Þ0 is a union of CQ:s

formulas. The upper bounds then
follow from Theorem 1.

Now we construct the formulas Axk; kAfðFinÞ;
ðDiscrÞ; ðEndÞg.

(i). Assume D¼ fc1oc2o…ockg is a finite linear order.
We then write down the formulas of AxðFinÞ. It is the dis-
junction of the following formulas. For every aAΣa, cAΣc

and opAf ¼ ; a ; o ; 4 ; r ; Zg:
〈↓�〉ðp@aopc4:p@a ¼ c1 4…4:p@a ¼ ck Þ: ðFinÞ

This axiom enforces that whenever an attribute is
defined, its value equals one of ci;1r irk. The following
claim, which is easy to verify using (Fin), is crucial.

Claim 4. Let T ¼ ðN; E; o ; r; ρÞ be a multi-labeled tree over Σ0

such that T ; rjAx3AxðFinÞ. Then for every aAΣa; cAΣc, node
nAN and opAf ¼ ; a ; Z ; r ; o ; 4g, exactly one of the
following holds:

(i) there is no p@a ¼ cAρðnÞ,
(ii) there is exactly one p@a ¼ cAρðnÞ and for every c1AΣc it

holds that p@aopc1 AρðnÞ iff DFcopc1.

Now we prove the equivalence (1). For the direction
from left to right, given a multi-labeled tree T over Σ0 such
that TFφ0 and Tjψ 0, we construct a single-labeled tree
with attributes T 0 as it was done in Lemma 3. The only
difference is in the definition of the attribute function att.
In our case we take

attðn; aÞ ¼
undefined if there is no p@aopc in ρ nð Þ;

opA ¼ ; a ; o ; 4 ; Z ; rf g;cAΣc

c if p@a ¼ cAρðnÞ:

8><
>:

Using Claim 4 we can show that for every nAT , θ over Σ;A
and D, T ;nF ~θ iff T 0;nFθ.

The direction from right to left of (1) can be proved
exactly as in Lemma 3.

(ii). D is a discrete linear order. We assume that D is
infinite, as the finite case is covered by the case (i). We
take AxðDiscrÞ as the disjunction of the following formulas.
For every aAΣ; c1; c2AΣc such that c1oc2 in D and there is
no c0 in D with c1oc0oc2,

〈↓�〉ðp@a 4 c1 4p@a o c2 Þ: ðDiscrÞ
This axiom enforces the requirement that a value for a-
attribute cannot be between an element in D and its
immediate successor.

Similarly to Lemma 3 we can show that the reduction is
correct. To this purpose we need the claim which is the
exact reformulation of Claim 3 where instead of Axwe take
Ax3AxðDiscrÞ and D is the discrete linear order.

We highlight the difference with the proof of Claim 3.
The only nontrivial difference is item (iii). Assume the
conditions (i) and (ii) of Claim 3 do not hold for aAA and
nAT . We define c1 ¼maxfcjp@a 4 cAρðnÞg and
c2 ¼minfcjp@a o cAρðnÞg. As in Claim 3 we can show that
DFc1oc2. Having that, there exists c0 such that
c1oc0oc2. Indeed, suppose the opposite. Then both

2 The purpose of the inequalities @ai a2 is to guarantee that the
attribute ai is defined in the b-node of a model of φ. We could express the
same with the comparison @ai r1 or @ai Z0.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–13 11
p@a 4 c1 and p@a o c2 are in ρðnÞ and c2 is the immediate
successor of c1 in D, which is a contradiction with (Discr). It
follows from (DNeg) that c0 =2Σc. Moreover, for every c″AΣc,
p@aopc″ AρðnÞ iff DFc0opc″. This can be verified as it was
done in Claim 3. Thus we have proved the claim. Having
this claim at hand, we can prove the equivalence (1) in the
same way as in Lemma 3.

(iii). D is dense or discrete linear order with one or two
endpoints. If D is dense, take AxðEndÞ as the disjunction
ofthe following formulas:

If D has the least endpoint cl, for every aAΣa:

〈↓�〉p@a o c1 : ðLEndÞ

If D has the greatest endpoint cg, for every aAΣa:

〈↓�〉p@a 4 cg : ðREndÞ

In case D is discrete linear order, AxðEndÞ additionally has
(Discr) as a disjunct.

The axioms (LEnd) and (REnd) enforce the requirement
that attributes cannot take their values outside of the
bounds in D. As in the previous case, we can prove the
variant of Claim 3, where we consider AxðEndÞ and D a dense
or discrete linear order with one or two endpoints. We do
not spell out the proof, but the crucial difference is that in
item (iii) axioms (LEnd) and (REnd) ensure the fact that c0

is chosen within the interval ½cl; cg �.
Having this claim, we can prove the equivalence (1) in

the same way as in Lemma 3.
Clearly, the constructed φ0 and ψ 0 are PTIME computable

from φ and ψ.

4.4. Lower bounds

In this section we show a number of lower bounds on
containment for CQ@ and PosXPath@. The following lower
bound was shown in [6].

Proposition 3 ([6]). Containment is ΠP
2-hard for

CQðChild;DescendantÞ, i.e., conjunctive queries that use only
the predicates Child and Descendant.

For PosXPath@, the CONP lower bound for containment
follows from hardness of containment for tree patterns
[19], which is a fragment of PosXPath@. In order to com-
pare our results to those in [19], we follow their notation.
Let XPf½ �;�;==g denote the fragment of PosXPath without
union and disjunction, only the ↓ step, and no occurence of
the following and preceding axes. These are called tree
patterns in the literature. Let XPf½ �;==g denote XPf½ �;�;==g in
which no wildcard (denoted by > in PosXPath) occurs.

Containment of XPf½ �;==g and XPf½ �;�;==g patterns is in
PTIME and CONP-complete, respectively. Let XP

f½ �;�;==g
¼ ;a and

XP
f½ �;==g
¼ ;a denote the expansions of XPf½ �;�;==g and XPf½ �;==g

with equality and inequality attribute value comparisons,
respectively. We show that containment of XP

f½ �;==g
¼ ;a pat-

terns becomes CONP hard. Containment of XP
f½ �;�;==g
¼ ;a pat-

terns becomes PSPACE hard when interpreted over trees
with at least one required attribute.

The following property is used in our lower bound
arguments. The proof can be found in [19, Lemma 3].
Proposition 4. Let L be XP
f½�;�;==g
¼ ;a or XP

f½ �;==g
¼ ;a . Let φ be an L

formula and Δ a finite set of L formulas. Then there are PTIME

computable L formulas φ0 and ψ 0 such that

φD⋁Δ iff φ0Dψ 0:

The same holds for the case of multi-labeled trees.

Proposition 5. The containment problem for XP
f½ �;==g
¼ ;a is

CONP-hard.

Proof. We reduce the 3SAT problem to the non-
containment problem in XP

f½ �;==g
¼ ;a .

Firstly, we can use disjunction of tree patterns on the
right side of the containment problem, due to Proposition 4.

Let Q be the conjunction of clauses Ci ¼ ðXi
13

Xi
23Xi

3Þ;1r irk over the variables fx1;…; xng, where Xi
j

are literals. From Q, we construct in PTIME two formulas
over the signature Σ ¼ fr; bg, attribute names
A¼ fa1;…; ang and an attribute domain D containing
values f0;1;2g as follows.

We define φ≔r4〈↓〉ðb4@a1 a24…4@an a2Þ2 and
ψ≔⋁k

i ¼ 1〈↓〉ðb4Bi
14Bi

24Bi
3Þ, where Bi

j ¼ ð@al ¼ 0Þ iff Xi
j ¼ xl

in Ci and Bi
j ¼ ð@al a0Þ iff Xi

j ¼:xl in Ci.
We claim that Q is satisfiable if and only if φ⊈ψ . First

assume that Q is satisfiable, i.e., there is a variable
assignment V : fx1;…; xng-f0;1g such that VFQ . We then
define the following tree T ¼ ðfv1; v2g; fðv1; v2Þg; v1; ρ; attÞ ,
where the labeling ρ is defined as ρðv1Þ ¼ frg, ρðv2Þ ¼ fbg
and attðv2; alÞ ¼ 1 iff VðxlÞ ¼ 1 and attðv2; alÞ ¼ 0 iff VðxlÞ ¼ 0
for every l;1r lrn. Clearly, T satisfies φ. Suppose T ; v1Fψ .
This means there exists an index i such that
T ; v1F 〈↓〉ðb4Bi

14Bi
24Bi

3Þ, which implies T ; v2FBi
j; j¼

1;2;3. Hence, by the definition of the attribute function we
obtain that if Bi

j ¼ ð@al ¼ 0Þ, then VðXi
jÞ ¼ VðxlÞ ¼ 0 and,

similarly, if Bi
j ¼ ð@al a0Þ, then VðXi

jÞ ¼ Vð:xlÞ ¼ 0. Thus, we
obtain VjCi, which is a contradiction. Thus, Tjψ .

We now prove the converse. Assume there is a tree T
with TFφ and Tjψ . The former implies that there exists
a child of the root of T, v such that T ; vFb and the attri-
butes a1;…; an are defined at v. Moreover since Tjψ , for
every i;1r irn it holds that T ; vjb4Bi

14Bi
24Bi

3. We
define the variable assignment V : fx1;…; xng-f0;1g as
follows: VðxlÞ≔0 iff attðv; alÞ ¼ 0 and VðxlÞ≔1 iff
attðv; alÞa0. We claim that VFQ . Assume the opposite,
i.e., there exists a clause Cj which is mapped to 0 under V.
By definition of V, it follows that T ; vFBj

14Bj
24Bj

3 and
therefore, T ; vFb4Bj

14Bj
24Bj

3 which is a contradiction.

4.4.1. Required attributes
In Section 4.2 we dealt with the case when attributes

are optional. We now consider the case when some attri-
butes are required. We say that an attribute aAA is
required in a tree T with domain N if the function att:N �
fag-D is total. We show that when at least one attribute is
required, containment of tree patterns with equality and
inequality comparisons rises to PSPACE.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–1312
Theorem 3. The containment problem for XP
f½ �;�;==g
¼ ;a inter-

preted over trees with at least one required attribute is
PSPACE-complete.

Proof. We show the upper bound for XP
f½ �;�;==g
¼ ;a expanded

with the other equality operators (i.e., o ; 4 ; r and Z).
For that, we reduce the containment problem in this
fragment to containment for unions of XPf½�;�;==;:g (tree
pattern formulas with unrestricted label negation) similar
to Lemma 3. The additional axiom in Ax is
〈↓�〉ð:p@a ¼ c

4:p@aa c
Þ for every required aAA, where c is a

constant (note that this axiom contains unsafe negation).
This axiom enforces that the attribute a is defined every-
where in the tree. In [12] it is shown that containment for
unions of XPf½�;�;==;:g is solvable in PSPACE.

For proving the lower bound we encode the corridor
tiling problem, which is known to be hard for PSPACE [8].
Our lower bound proof uses the construction from the
PSPACE-hardness proof for the containment problem in tree
patterns with disjunction over a finite alphabet in [20].

The corridor tiling problem is formalized as follows. Let
Til¼ ðD;H;V ; b; t ;nÞ be a tiling system, where
D¼ fd1;…;dmg is a finite set of tiles, H;VDD2 are hor-
izontal and vertical constraints, n is a natural number in
unary notation, b and t are tuples over D of length n. Given
such a tiling system, the goal is to construct a tiling of the
corridor of width n using the tiles from D so that the
constraints H and V are satisfied. Moreover, the bottom
and the top row must be tiled by b and t respectively.

Let aAA be a required attribute. Now we construct two
XP

f½�;�;==g
¼ ;a expressions φ and ψ such that φ⊈ψ over trees with

a required attribute a iff there exists a tiling for Til. To this
purpose, we use a string representation of a tiling. Each
row of the considered tiling is represented by the tiles it
consists of. If the tiling of a corridor of width n has k rows,
it is represented by its rows separated by the special
symbol ♯. Thus, a tiling is a word of the form u1♯u2♯⋯♯uk$,
where each ui is the word of length n corresponding to the
i-th row in the tiling, and $ denotes the end of tiling. Note
u1 ¼ b and uk ¼ t .

For the sake of readability, for expression r, we use the
abbreviation ri to denote the path formula ?r; ↓; ?r;…; ↓; ?r
with i occurrences of r.

We then define the formulas over attributes fag and
attribute domain containing D [f♯g.

Define φ0 as

〈?ð@a ¼ b1Þ; ↓; ?ð@a ¼ b2Þ;…; ↓; ?ð@a ¼ bnÞ; ↓; ?ð@a ¼ ♯Þ; ↓þ :

?ð@a ¼ t1Þ; ↓;…↓; ?ð@a ¼ tnÞ; ↓〉$:

Intuitively, this expression enforces a tiling to start with
a path starting with b and finishing with t . Now the for-
mula ψ 0 defines all incorrect tilings and additional con-
straints. It is the disjunction of the following XP

f½�;�;==g
¼ ;a

formulas.

(1) Incorrect length of a row.
(1a) ⋁n�1

i ¼ 0〈↓
þ ; ?ð@a ¼ ♯Þ; ↓; > i; ↓〉ð@a ¼ ♯Þ, a row is

too short,
(1b) 〈↓þ ; ð@aa♯Þnþ1〉> , a row is too long.
(2) 〈↓þ ; ?ð@aad14…4@aadm4@aa♯Þ; ↓þ 〉$, neither
the delimiter or a tile on a position,

(3) Horizontal or vertical constraints are violated.
(3a) ⋁ðd1 ;d2Þ=2H〈↓

þ ; ?ð@a ¼ d1Þ; ↓; ?ð@a ¼ d2Þ〉> , a hor-
izontal constraint is violated,

(3b) ⋁ðd1 ;d2Þ=2V 〈↓
þ ; ?ð@a ¼ d1Þ; ↓; >n; ↓; ?ð@a ¼ d2Þ〉> ,

a vertical constraint is violated.

We show that there exists a tree with a required attribute
a such that TFφ0 and Tjψ 0 iff there exists a tiling for Til.

ð(Þ. Assume that there exists a tiling of the corridor. Let
s be the string representation of it. Then, s¼ u1♯u2♯:::♯uk$,
where juij ¼ n;uiADn;u1 ¼ b , and uk ¼ t . Moreover, on the
one hand if x � y, is an infix of some ui , then ðx; yÞAH, and
on the other hand for every infix x � u0 � y of length nþ1 of
ui♯ � uiþ1, it holds that ðx; yÞAV . Let Ts be the correspond-
ing tree, i.e., a single path of jsj nodes fv1;…; vjsjgwhere the
label of each node vi; io jsj is z , the label of vjsj is $ and
attribute function is defined according to s, i.e.,
attðvi; aÞ ¼ si. Clearly, Ts is a model of φ0 and not of ψ 0.

ð)Þ. Let T be a tree such that T ; rFφ0, T ; rjψ 0 and
attðn; aÞ is defined for every nANodesðTÞ. Since T ; rFφ0,
there must exist a path r¼ v1;…; vm in T such that
attðvi; aÞ ¼ bi;1r irn and attðvm�nþ i; aÞ ¼ tj;1r jrn.
Moreover, either ♯ or a symbol from D is in the attribute of
every node vi;1r iom, according to (2).

We define a tiling function g: f0;…;n�1g �N-D
assigning a tile to every position in the corridor as follows:
gði; jÞ ¼ attðvðnþ1Þ�jþ iþ1; aÞ;1r irn. Indeed, this function is
well defined, as (1) ensures the correct counting.

By formulas (3a) and (3b) the tiling defined by g
satisfies the horizontal and vertical constraints.

We then apply Proposition 4 to remove the outermost
disjunction in ψ 0 to obtain the equivalent containment
problem φDψ in XP

f½ �;�;==g
¼ ;a □.

Theorem 3 provides a lower bound for the containment
problem for PosXPath@;:s

and UCQ@;:s
over trees with

required attributes. Only for tree patterns we know that
the problem is PSPACE-complete. Using the same reduction
as in the proof of the upper bound in Theorem 3, and the
results on containment for XPath [18] and XPath with path
intersection [24], we obtain EXPTIME and 2EXPTIME upper
bounds for containment for PosXPath@;:s

and UCQ@;:s

over trees with required attributes, respectively.
However, if we restrict attributes to be required at nodes

labeled with a certain symbol, then the containment is still in
CONP and ΠP

2. Let pAΣ be a label and aAA an attribute name.
We say that a is required at label element p if attðn; aÞ is
defined whenever pAρðnÞ for every tree T and node
nANodesðTÞ.

Proposition 6. The containment problem for PosXPath@;:s

and UCQ@;:s
with required attributes at certain labeled

nodes is in CONP and ΠP
2 respectively.

Proof. As before, we can prove a variant of Lemma 3. Let c
be a constant name. Whenever attribute a is required at
nodes labelled by p we add the axiom 〈↓�〉ðp4:
p@a ¼ c4:p@a a cÞ to the set Ax. Note that the negation is
safe. This axiom is obviously sound, and it enforces that
whenever p holds, at least one p@aopc label holds as well.

M. Marx, E. Sherkhonov / Information Systems 58 (2016) 1–13 13
This ensures that in the construction of the tree with
attribues a is defined at each p node. □

4.5. Tractable cases

In this sectionwe consider fragments of PosXPath@ where
the containment problem remains in PTIME. It is known that
containment in XPf½�;==g and XPf½�;�g is decidable in PTIME, [3,19].

Proposition 7. Let XPX be any fragment whose containment
problem over multiple-labeled trees is in PTIME. Then the
containment problem in XP@;X

¼ over multi-labeled trees with
attributes is also in PTIME.

Proof. Let φ and ψ be formulas in XP@;X
¼ .

Our algorithm first checks (in PTIME) if φ is consistent, i.e., if
it contains both @a ¼ c and @a ¼ d in the label of a node in φ
for some aAA; c;dAD. If φ is inconsistent, we output φDψ .
Otherwise, we proceed as in the proof of Lemma 3 by
reduction to a containment of attribute-free formulas using
the translation ~ð�Þ and the formula (Label) only.□
5. Conclusion

We considered the containment problem for positive
XPath and conjunctive queries over trees expanded with
attribute value comparisons. We showed that in general
attribute value comparisons do not increase the com-
plexity of containment. The main idea behind the upper
bound was to extend the small counterexample technique
to positive XPath and conjunctive queries expanded with a
restricted form of negation. Then by axiomatizing the
needed constraints in the corresponding expanded frag-
ment, we could abstract away the attribute value
comparisons.

The complexity, however, does increase from PTIME to CONP
for the fragment XPf==;½ �g of XPath which uses child, descen-
dant and filter expressions when we add equality and
inequality comparisons. Another parameter which affects the
complexity is optionality of attributes. If we restrict our trees
to have at least one required attribute in every node, then the
complexity rises to PSPACE. If, however, attributes are required
at elements with specific labels only, the complexity of con-
tainment remains the same: CONP for positive XPath and ΠP

2
for conjunctive queries.

We end with listing some open problems. Proposition 7
shows that adding equality comparison only does not
affect the PTIME complexity of containment for fragments
XPf==;½ �g and XPf½ �;�g . We do not know what happens when
only inequality comparison is added.

For conjunctive queries over trees, it is known that the
fragments CQðChildÞ and CQðNextSiblingÞ have PTIME con-
tainment. It is open whether the complexity increases if
we add attribute value comparisons.
Acknowledgements

We thank the anonymous referees for their helpful
comments.
This research was supported by the Netherlands Orga-
nization for Scientific Research (NWO) under project
number 612.001.012 (DEX).
References

[1] F.N. Afrati, S. Cohen, G.M. Kuper, On the complexity of tree pattern
containment with arithmetic comparisons, Inf. Process. Lett. 111 (15)
(2011) 754–760.

[2] F.N. Afrati, C. Li, P. Mitra, On containment of conjunctive queries with
arithmetic comparisons, in: Proceedings of the 9th International
Conference on Extending Database Technology Advances in Data-
base Technology - EDBT 2004, Heraklion, Crete, Greece, March 14-
18, 2004, pp. 459–476.

[3] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava, Tree pattern
query minimization, VLDB J. 11 (2002) 315–331.

[4] M. Benedikt, W. Fan, F. Geerts, XPath satisfiability in the presence of
DTDs, J. ACM, 55(2), 2008.

[5] H. Björklund, W. Martens, T. Schwentick, Optimizing conjunctive
queries over trees using schema information, MFCS (2008) 132–143.

[6] H. Björklund, W. Martens, T. Schwentick, Conjunctive query con-
tainment over trees, J. Comput. Syst. Sci. 77 (3) (2011) 450–472.

[7] A.K. Chandra and P.M. Merlin, Optimal implementation of con-
junctive queries in relational data bases, in: Proceedings of the 9th
Annual ACM Symposium on Theory of Computing, May 4-6, 1977,
Boulder, Colorado, USA, 1977; pp. 77–90.

[8] B.S. Chlebus, Domino-tiling games, J. Comput. Syst. Sci. 32 (3) (1986)
374–392.

[9] C. David, A. Gheerbrant, L. Libkin, W. Martens, Containment of
pattern-based queries over data trees, ICDT, 2013.

[10] A. Deutsch, V. Tannen, Containment and integrity constraints for
XPath, in: M. Lenzerini, D. Nardi, W. Nutt, D. Suciu (Eds.), Proceed-
ings of CEUR Workshop, KRDB, vol. 45, 2001, 〈CEUR-WS.org〉.

[11] A. Deutsch, V. Tannen, XML queries and constraints, containment
and reformulation, Theor. Comput. Sci. 336 (1) (2005) 57–87.

[12] A. Facchini, Y. Hirai, M. Marx, E. Sherkhonov, Containment for condi-
tional tree patterns, Logical Methods in Computer Science 11 (2) 2015.

[13] C. Farré, W. Nutt, E. Teniente, T. Urpí, Containment of conjunctive
queries over databases with null values, in: Proceedings of the 11th
International Conference, Database Theory - ICDT 2007, Barcelona,
Spain, January 10-12, 2007, pp. 389–403.

[14] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing
XPath queries, ACM Trans. Database Syst. 30 (2) (2005) 444–491.

[15] G. Gottlob, C. Koch, K.U. Schulz, Conjunctive queries over trees, J.
ACM, 53 , 2006, (2):238–272.

[16] J. Hidders, Satisfiability of XPath expressions, in: G. Lausen, D. Suciu
(Eds.), DBPL, of Lecture Notes in Computer Science, vol. 2921,
Springer, 2003, pp. 21–36.

[17] A.C. Klug, On conjunctive queries containing inequalities, J. ACM, 35,
1988, (1):146–160.

[18] M. Marx, Conditional Xpath, ACM Trans. Database Syst. 30 (4) (2005)
929–959.

[19] G. Miklau, D. Suciu, Containment and equivalence for a fragment of
Xpath, J. ACM, 51 , 2004, (1):2–45.

[20] F. Neven, T. Schwentick, On the complexity of Xpath containment in
the presence of disjunction, DTDs, and variables, Log. Methods
Comput. Sci. 2 (3) 2006.

[21] W. Nutt, Ontology and database systems: foundations of database
systems, 2013. Teaching material. 〈http://www.inf.unibz.it/�nutt/
Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf〉.

[22] D. Olteanu, H. Meuss, T. Furche, F. Bry, Xpath:looking forward, EDBT,
2002, pp. 109–127.

[23] E. Sherkhonov M. Marx, Containment for tree patterns with attri-
bute value comparisons, WebDB, 2013.

[24] B. ten Cate, C. Lutz, The complexity of query containment in
expressive fragments of XPath 2.0, J. ACM, 56(6), 2009.

[25] J.D. Ullman, Information integration using logical views, Theor.
Comput. Sci. 239 (2) (2000) 189–210.

[26] R. van der Meyden, The complexity of querying indefinite data about
linearly ordered domains, J. Comput. Syst. Sci. 54 (1) (1997) 113–135.

[27] F. Wei, G. Lausen, Containment of conjunctive queries with safe
negation, ICDT 2003, 2003, pages 343–357.

[28] P.T. Wood, Containment for XPath fragments under DTD constraints,
in: ICDT, 2003, pp. 297–311.

http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref1
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref3
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref3
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref3
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref5
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref5
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref5
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref6
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref6
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref6
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref8
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref8
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref8
http://www.CEUR-WS.org
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref11
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref11
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref11
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref12
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref12
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref14
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref14
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref14
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref18
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref18
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref18
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref20
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://www.inf.unibz.it/~nutt/Teaching/ODBS1314/ODBSSlides/3-conjQueries.pdf
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref25
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref25
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref25
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref26
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref26
http://refhub.elsevier.com/S0306-4379(15)00209-4/sbref26

	Containment for queries over trees with attribute value comparisons
	Introduction
	Related work
	Preliminaries
	PosXPath and CQ with safe negation

	Containment of PosXPath@ and CQ@
	Containment of Positive Xpath and CQs with safe negation
	Adding attributes
	Restricting the attribute domain
	Lower bounds
	Required attributes

	Tractable cases

	Conclusion
	Acknowledgements
	References

