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A. Summary of required matrix elements for the
two-component Lieb-Liniger model

Here we summarize known results1 for matrix elements
of local operators in the two-component Lieb-Liniger
model. For technical reasons, the known matrix ele-
ments of Ref. [1] are restricted to the case with a sin-
gle impurity boson (N1 = 1) and to the local operators
Ψ1(0), Ψ†1(0)Ψ1(0) and Ψ†1(0)Ψ2(0). As a consequence
of this, we are not able to ‘image’ the background gas
Ψ†2(0)Ψ2(0). Very recently2 there have been new (and
more general) results for matrix elements in the two-
component Lieb-Liniger model, but we have yet imple-
ment them.

1. Normalization conventions

We focus on N -particle eigenstates containing a single
N1 boson. For clarity and ease of comparison, here we
work with the conventions of Ref. [3] and we define the
(non-normalized) eigenstates |{q}N ;µ〉〉. The eigenstates
in the body of the text are recovered by normalization
|{q}N ;µ〉 = |{q}N ;µ〉〉/||{q}N ;µ||, where norms of the
eigenstates are given by

||{q}N ;µ||2 = 〈〈{q}N ;µ|{q}N ;µ〉〉 = c detJ2,

J2 =

(
Jqq Jqµ
Jµq Jµµ

)
.

Here J2 is the Jacobian of the nested Bethe ansatz equa-
tions [see Eqs. (2,3)] given by the matrix elements

(Jqq)jl = δjl

[
L+

N∑

m=1

ϕ1(qj − ql)− ϕ2(qm − µ)

]

−ϕ1(qj − ql),
(Jqµ)j1 = (Jµq)1j = ϕ2(kj − µ),

Jµµ =

N∑

m=1

ϕ2(km − µ),

where we define the scattering phase ϕn(u) =
2cn/(n2u2 + c2) and j, l = 1, . . . , N .

We take the one-component Lieb-Liniger eigenstates

|{p}N 〉〉 to have their conventional normalization4–7

||{p}N ||2 =
∏

j<l

[
(pj − pl)2 + c2

]
detJ1,

(J1)jl = δj,l

[
L+

N∑

m=1

ϕ1(pj − pm)

]
− ϕ1(pj − pl).

2. Matrix elements 〈〈{p}N |Ψ1(0)|{k}N ;λ〉〉

For two states with no coinciding momenta, the matrix
element of the impurity annihilation operator takes the
determinant form

〈〈{p}N−1|Ψ1(0)|{k}N ;λ〉〉

=

∏
i>j(ki − kj + ic)∏
l>m(pl − pm + ic)

−ic∏
j(λ− kj − ic/2)

detM.

Here the (N − 1)× (N − 1) matrix M has elements Mjk =
Mjk −MN,k with

Mjk = t(pk − kj)h2(λ− kj)
∏N−1
m=1 h1(pm − kj)∏N
m=1 h1(km − kj)

+t(kj − pk)h2(kj − λ)

∏N−1
m=1 h1(kj − pm)

∏N
m=1 h1(kj − km)

where we’ve defined the functions hn(u) = u+ ic/n and
t(u) = −c/[u(u+ ic)].

3. Matrix elements 〈〈{p}N ;µ|Ψ†1(0)Ψ1(0)|{k}N ;λ〉〉

For two states with no coinciding momenta, the matrix
elements of the impurity density operator are

〈〈{p}N ;µ|Ψ†1(0)Ψ1(0)|{k}N ;λ〉〉

=
−i
c

(−1)N(N+1)/2
∏

j>l

1

kj − kl − ic
∏

j>l

1

pj − pl + ic
detV

×
N∏

l,m=1

(
kl − pm + ic

) c2∏
j(λ− kj − ic/2)(µ− pj + ic/2)



2

where the (N + 1)× (N + 1) matrix V has elements

Vjl =

(
pl − λ+

ic

2

)(
pl − µ−

ic

2

)
t̃(kj − pl)

+

(
pl − λ−

ic

2

)(
pl − µ+

ic

2

)
t̃(pl − kj)

×
N∏

m=1

(pl − km + ic)(pl − pm − ic)
(pl − km − ic)(pl − pm + ic)

VN+1,j =

N∏

m=1

pm − pj + ic

km − pj + ic
, Vj,N+1 = 1,

VN+1,N+1 = 0,

with j, l = 1, . . . , N . Additionally, the diago-
nal elements of the impurity density operator fol-
low from translational invariance of the eigenstates:
〈{k}N ;λ|Ψ†1(0)Ψ1(0)|{k}N ;λ〉 = 1/L.

B. Dynamics of an indistinguishable impurity in
the one-component Lieb-Liniger model

Here we consider the initial state

|Ψ2(Q)〉 =
1

N2

L∫

0

dx eiQxe
− 1

2

(
x−x0
a0

)2

Ψ†2(x)|Ω〉, (S1)

where |Ω〉 is the ground state of N2 bosons of species
2, e.g. the analogue of Eq. (4) with an indistinguish-
able impurity. We wish to consider the time evolu-
tion of the expectation value of the density operator
Ψ†2(x)Ψ2(x) with this initial state. Our prescription
for computing the time evolution is analogous to the
two-component case: we expand the expectation value
ρ2(x, t) = 〈Ψ2(Q, t)|Ψ†2(x)Ψ2(x)|Ψ2(Q, t)〉 in terms of
known matrix elements and overlaps between the Bethe
states,3–10 to obtain an expansion similar to Eq. (5).

For the case with Q = 0, we can gain some insight
from examining the noninteracting limit c = 0. Working
on the infinite system (L→∞) with x0 = 0, we find the
density

ρ2(x, t) = ρ+
a20√

πa20 + 2πa20ρ


 e

− a2
0x2

a4
0+4t2

√
a40 + 4t2

+ ρ
√

2π
e
− a2

0
2

x2

a4
0+4t2

(a40 + 4t2)
1
4

cos

(
θt −

tx2

a40 + 4t2

)

 ,

(S2)

where ρ is the average density and with ρ and 2θt =
arctan(2t/a20). Thus we expect the wave packet to be of
Gaussian shape with oscillations superimposed on top.

We present the time evolution of the density opera-
tor on the initial state (S1) for N = 8 particles, Q = 0,
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FIG. S1. Time evolution of the density profile ρ2(x, t) for the
initial state (S1) in the one-component Lieb-Liniger model for
N = 8 particles on the circumference L = 40 ring with inter-
action parameter c = 10. We used 12619 states to saturate
the sum rule to 0.9937.

a20 = 1.125 and L = 2x0 = 40 in Fig. S1. We see that the
behavior of the density as it evolves in time is qualita-
tively consistent with the noninteracting result (S2). We
see no evidence of a stalling of the spreading of the wave
packet, which is not surprising as the mechanism which
exists in the two-component case (hole formation in the
background gas and subsequent trapping of the impurity
in the hole) is not present when there is a single species
of boson.

C. Lattice mean field description

In an attempt to explain the dynamics of the initial
state, Eq. (4) in the main text, we consider the following
lattice Hamiltonian (we consider a lattice Hamiltonian
for numerical convenience):

Hlatt = −Jd
∑

l

(
d†l dl+1 + H.c

)
+ U

∑

l

(
nbl + ndl

)2

−Jb
∑

l

(
b†l bl+1 + H.c.

)
, (S3)

where nal = a†l al is the number operator. This model
is motivated by the two-component Lieb-Liniger model:
we consider two species of bosons which have an on-site
interaction only and the kinetic terms coincide in the
continuum limit

lim
a0→0

d(x)†d(x+ a0)→ d†(x)d(x) + a0d
†(x)∂xd(x)

+
a20
2
d†(x)∂2xd(x),

∑

l

d†l dl+1 + d†l dl−1 → const.+ a0

∫
dx d†(x)∂2xd(x).

We choose the d bosons to play the role of the background
gas (species 2 in the main body of the manuscript) and
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we consider U � Jd to reflect the strong coupling regime
of the main text.

The Heisenberg equations of motion for the boson bi-
linears take the form

d

dt
b†i bj = −iJb

(
b†i−1bj + b†i+1bj − b†i bj+1 − b†i bj−1

)
+ iU

[
b†i bj(n

b
i − nbj) + (nbi − nbj)b†i bj + 2(ndi − ndj )b†i bj

]
,

and similarly for d†idj with d ↔ b. We take the expectation value of this expression and perform a time-dependent
mean-field decoupling which preserves the U(1) symmetry for each of the species (cf. Eq. (7))

〈(ndi − ndj )b†i bj〉 →
(
〈ndi (t)〉 − 〈ndj (t)〉

)
〈b†i (t)bj(t)〉, 〈nbi (t)b†i (t)bj(t)〉 → 〈nbi (t)〉〈b†i (t)bj(t)〉+ 〈b†i bj(t)〉〈bi b†i (t)〉,

to arrive at the approximate equations of motion for the boson bilinears:

d

dt
〈b†i bj(t)〉 = −iJb

[
〈b†i−1bj(t)〉 − 〈b†i bj+1(t)〉+ 〈b†i+1bj(t)〉 − 〈b†i bj−1(t)〉

]

+2iU
[
〈ndi (t)〉 − 〈ndj (t)〉+ 2〈nbi (t)〉 − 2〈nbj(t)〉

]
〈b†i bj(t)〉, (S4)

with similar for the d bosons. Our initial conditions are
fixed by the initial state |Ψ(Q)〉; for the purposes of con-
venience, we consider the ground state |Ω〉 to be the c = 0
ground state (this is an approximation, alternatively one
can view this situation as a combination of injecting the
impurity and performing a quantum quench of the inter-
action parameter), in which only the zero-mode is popu-
lated. The initial conditions for the bilinears are:

〈b†i bj〉0 =
1

|N |2 e
− 1

2

(
i−i0
a0

)2

e
− 1

2

(
j−i0
a0

)2

eiQ(i−j),

〈d†idj〉0 = ρ,

(S5)

where ρ = N/L is the density of the background gas and
|N |2 =

∑
x exp[−(x− x0)2/a20] is a normalization factor.

We present results for the expectation values of the
density operators in Figs. S2 and S3 for U = 14.5 and
Jd = Jb = 1 with ρ = 0.2 and a0 = 2 on the circumfer-
ence L = 40 ring. Parameters were chosen in an attempt
to qualitatively reproduce the Q = 0 continuum behav-
ior: arrested expansion followed by eventual spreading
of the impurity (cf. Fig. S4). In Fig. S2 we see approx-
imately the required behavior for Q = 0: the impurity
initially spreads, but for times t ∼ tF − 9tF expansion is
arrested (the nature of the amplitude and fluctuations is
clearly very different in the mean field lattice case com-
pared to the continuum) before subsequently spreading.
In the background gas, Fig. S2(b), we see that a region
of depleted density (a ‘hole’) appears below the impurity,
which remains despite multiple collisions with propagat-
ing wave packets (the red peaks crisscrossing the figure).

In Fig. S3 we present similar data for the case with
Q = 13 × (2π/L) (we move away from Q = π as this is
a special point in the lattice case). Surprisingly we see
that the addition of finite center of mass momentum for
the impurity has lead to a strengthening of the dynamical
arrest in the mean field approximation, with a deep and
more robust hole forming in the background gas. Clearly

we see no evidence of the ‘snaking’ behavior observed
in the continuum, despite multiple collisions with excita-
tions in the background gas. This strongly suggests that
the behavior observed in the continuum for Q 6= 0 is be-
yond mean field theory (and may differ dramatically to
that observed on the lattice).

D. Addition plots: Q = 0 long time and Q = 0, π
constant-time cuts

Here we present additional data for the time-evolution
of the initial state with Q = 0 and Q = π. In Fig. S4(a)
we present the time-evolution for up to time t ∼ 20tF .
As we saw in the main text, for times 2tF . t . 7tF
the impurity undergoes arrested expansion: it is approx-
imately stationary, with only small amplitude breathing
oscillations. Following the arrested expansion, there is
a period of rapid expansion, followed by a shorter qua-
sistationary period and then subsequent expansion. In
Fig. S4(b) we present constant time cuts for short times
t ≤ 9 (t . 3.5tF ) , which show the initial period of rapid
expansion and subsequent arrested expansion. Figure S5
presents similar time cuts for the initial state with Q = π
for c = 5, 10, 20.

E. Quantum Newton’s cradle on the ring

1. Motion of the center of mass

Here we provide support for our assertion that the mo-
tion of the center of mass coordinate can be explained
in terms of a “quantum Newton’s cradle” on the ring.
The motion of the center of mass coordinate is presented
in Fig. 3 of the manuscript, where we observe periods
of rapid motion separated by approximately stationary



4

(a)

Tim
e
t/t

F

0

5

10

15

20 Lattice
site i

0
5

10
15

20
25

30
35

40

n
b(

i,
t)

0.00

0.05

0.10

0.15

0.20

0.25

(b)

Tim
e
t/t

F

0

5

10

15

20 Lattice
site i

0
5

10
15

20
25

30
35

40

n
d
(i

, t
)

0.00

0.05

0.10

0.15

0.20

0.25

FIG. S2. Time depedence of the (a) nb; (b) nd boson number
operator expectation values from the mean-field equations of
motion (S4) with U = 14.5 and Jd = Jb = 1. Initial condi-
tions (S5) with a0 = 2, Q = 0 and ρ = 0.2 for L = 40 sites
were used.

plateaux (see also Figs. S5). We have the following ex-
planation for the observed behavior: as the impurity
moves through the background gas, it collides and excites
the background gas, with the excitations predominantly
moving in the same direction as the impurity. The impu-
rity continues to collide with the background gas until it
has imparted all (or most) of its center of mass momen-
tum, and subsequently the center of mass coordinate is
(approximately) stationary. The excitations in the back-
ground gas propagate around the ring, until they once
again reach the impurity and collide with it, imparting
momentum and causing the center of mass of the impu-
rity to once more move. This process then repeats. In
support of this picture, in Fig. S6(a) we present the cen-
ter of mass motion in three systems with different sizes
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FIG. S3. Time depedence of the (a) nb; (b) nd boson number
operator expectation values from the mean-field equations of
motion (S4) with U = 14.5 and Jd = Jb = 1. Initial condi-
tions (S5) with a0 = 2, Q = 13×2π/L and ρ = 0.2 for L = 40
sites were used. .

and fixed particle density (this means the speed of sound
in the system should be similar, up to small finite size
effects), and we see that the time for which the center
of mass is stationary is linearly dependent on the system
size L. In Fig. S6(b) we present the center of mass mo-
tion for four different initial momenta Q, and we see the
length of the plateau is inversely proportional to Q at
large Q (the velocity of an excitation with momentum Q
is v = Q/m). Both of these results are consistent with
the presented picture, where the deviation from the sta-
tionary plateau is driven by finite momentum excitations
propagating around the ring.
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FIG. S4. Time evolution of the impurity density of the initial state |Ψ(Q)〉 [defined in Eq.(4)] with Q = 0, x0 = L/2 and
a20 = 1.125 on the L = 40 ring for a system of N = 8 particles with interaction parameter c = 10. The Hilbert space is truncated
to 25150 states, leading to the sum rule [Eq. (6)] = 0.9858. (a) The full time-evolution, showing the initial rapid expansion,
followed by a period of arrested expansion and subsequent spreading/quasi-stationary periods. Inset is the time-evolution of the
density at the midpoint. (b) Constant-time cuts at short times, showing in detail the rapid initial expansion and the period of
arrested expansion. At intermediate times 5 . t . 18 (2tF . t . 7tF ) the impurity is approximately stationary and Gaussian
in shape.

2. Behavior with variation of the interaction strength c

How the behavior of the ladder motion of the cen-
ter of mass changes with the interaction strength reveals
the competition between interactions in the system and
spreading of the impurity. An intuitive picture to have
in mind is that of a liquid, which becomes ‘stiffer’ with
increasing interaction strength. At first blush, such a
picture may seem to be inconsistent with the presented
center of mass motion (see Fig. 3 of the main text), which
appears to sharpen with weakened interactions. The
observed behavior can be explained as follows. When
the interaction strength c is weak, the impurity spreads
quickly and has almost completely delocalized by the sec-
ond plateau. As a consequence, the second plateau is rel-
atively flat and the transient region between the plateaux
is broad. With strengthening interactions, the spreading
of the impurity is hindered and the spreading has yet to
finish by the time the second plateau is reached. The sec-
ond plateau appears less stable for strong interactions as
the impurity continues to slowly spread whilst approx-
imately stationary, shifting the center of mass slightly.
We give evidence for this picture in the remainder of this
section.

The behavior of the center of mass motion can be seen
in Fig. 3 of the main text for c = 5, 10, 20 (see also Fig. S6
for c = 10). We will first address the behavior of the

transient regions and then the stability of the plateaux
upon varying the interaction strength, showing that it is
consistent with the intuitive picture of interactions creat-
ing a stiffer background gas. In the first transient region
t . tF /2 the momentum of the impurity is imparted to
the fluid: this happens more quickly for stiffer (c larger)
fluids. In the second transient region, the impurity is
accelerated by collisions with the excitations of the back-
ground gas. The impurity immersed in the stiffer fluid is
accelerated over a shorter period of time, and imparts its
momentum back to the gas quicker, consistent with the
intuitive picture. As a consequence, the transient region
reduces in temporal extent with increasing interaction
strength.

Next, we consider the behavior of the second plateaux.
It is useful to consider Fig. S5; we see that the spreading
of the impurity is suppressed with increasing interaction
strength (this is particularly apparent in the second and
fourth rows). We also see that the impurity has almost
completely delocalized around the ring when c = 5. This
is important, as the local fluctuations in the density are
proportional to the local derivative of the density, and
hence fluctuations are suppressed with increasing delo-
calization of the impurity, which improves the stability
of the plateaux. Increasing the momentum of the impu-
rity also increases the rate at which the impurity delo-
calizes, and the plateaux are flatter, see Fig. S7 [see also
Fig. S6(b)]. Furthermore, Fig. S5 also shows that the
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FIG. S5. Real time slices of the time-evolution of the impurity density for the three values of the interaction parameter
c = 5, 10, 20 from the initial state with a20 = 1.125 and Q = π.

slow drifting of the second c = 10, 20 plateau corresponds
to small changes in the shape of the impurity, correspond-
ing to a transfer of weight leftwards, see Fig. S8. This
transfer of weight, due to the slight asymmetric spreading
of the impurity, causes the drifting of the second plateau.

Delocalization of the impurity does not only increase
the stability of the plateaux, it also leads to a smear-
ing of the transient region, see Fig. 3 of the main text
and Fig. S7(a). This is also consistent with our intuitive
picture: excitations in the background gas now scatter
on a increasingly extended object. Some excitations pass
through the impurity, some scatter on the right or left
of the impurity; the transient motion becomes more un-
clear and the transition between plateaux broadens [e.g.,
the peak velocity of the COM is reduced, see the inset of
Fig. 3 of the main text and Fig. S7(a)].

F. The diagonal ensemble

1. The impurity density in the diagonal ensemble

To ascertain whether the impurity density becomes
translationally invariant at long times after the impurity
is injected, we compute the density profile in the diagonal
ensemble

ρ1(x)DE =
∑

{k};µ

∑

{p};λ

δEk,Ep
ei(Kp−Kk)x〈Ψ(Q)|{p};λ〉

×〈{p};λ|Ψ†1(0)Ψ1(0)|{k};µ〉〈{k};µ|Ψ(Q)〉,
(S6)

which follows from a stationary phase argument in the
long time limit. Herein we assume the diagonal ensem-
ble coincides with the long time limit. Representative
results for N = 8 particles on the length L = 40 ring
with interaction parameter c = 10 are shown in Fig. S9.
There, we see that the diagonal ensemble result for the
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FIG. S6. Motion of the centre of mass coordinate X(t) [as defined in Eq. (8)] for the initial state |Ψ(Q)〉 [defined in Eq. (4)]
with x0 = L/2 and Q = π for (a) a number of system sizes L with fixed total particle density N/L and interaction strength
c = 10; (b) a number of different initial center of mass momenta Q for L = 30, N = 6 and c = 10.

(a)

0

5

10

15

20

0 1 2 3 4 5

P
os

it
io

n
of

ce
n
te

r
of

m
as

s
X

(t
)

Time t/tF

Q = ⇡
Q = 3⇡/2

(b)

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40

⇢
1
(x

,t
)

Position x

t/tF = 0.63
t/tF = 0.79
t/tF = 0.99
t/tF = 1.18
t/tF = 1.38
t/tF = 1.58

(c)

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40

⇢
1
(x

,t
)

Position x

t/tF = 2.57
t/tF = 2.76
t/tF = 2.96
t/tF = 3.16
t/tF = 3.36

FIG. S7. (a) Motion of the center of mass of an impurity with a20 = 1.125 and Q = π, 3π/2 for N = 8 particles on the length
L = 40 ring with c = 10. (b) The impurity density on the (b) first and (c) second plateau for Q = 3π/2 (cf . the second column
of Fig. S5 for Q = π).

density with initial Q = 0 is not translationally invari-
ant, whilst for Q = π the density profile appears much
closer to constant. This provides strong evidence that
for sufficiently large Q the impurity is almost completely
delocalized around the ring in the long-time limit.

One important question raised by Fig. S9 is whether
there is a sharp transition or a smooth reduction in the
extent to which translational symmetry is broken with
increasing Q. In Fig. S10(a) we present the impurity
density in the diagonal ensemble for a number of ini-
tial momenta Q and N = 4 particles, and we show that
the severity of the translational symmetry breaking is
smoothly reduced as a Gaussian in the momentum of the
initial state in Fig. S10(b). Formally, this means that
translational invariance is only recovered in the Q → ∞
limit. However, in a practical sense, translational symme-
try is restored for sufficiently large Q for a finite precision

measurement.
The origin of this Gaussian scaling can easily

be explained by a degeneracy in our system: for
each Bethe state |{k1, k2, . . . , kN};µ〉 there exists a
state with the same energy and opposite momentum
|{−k1,−k2, . . . ,−kN};−µ〉. The diagonal ensemble (S6)
now contains two types of terms: diagonal matrix ele-
ments which sum to 1/L and off-diagonal terms δρ1(x)DE
which break translational invariance:

δρ1(x)DE =
∑

{k};µ

〈Ψ(Q)|{k};µ〉〈{−k};−µ|Ψ(Q)〉e2iKkx

×〈{k};µ|Ψ†1(0)Ψ1(0)|{−k};−µ〉+ . . . (S7)

Here the ellipses denote other terms arising from other
(possible) degeneracies. The overlap between the initial
state and the Bethe states 〈Ψ(Q)|{k};µ〉 is weighted by
a Gaussian factor ∝ exp(−Q2). This Gaussian term will
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FIG. S8. The difference ∆ρ1(x, t1, t2) = ρ1(x, t1) − ρ1(x, t2)
in the density at times t/tF = 4.34 and t/tF = 3.75 for c =
20, see Fig. S5. We normalize to the maximum value of the
density at time t/tF = 4.34. A clear transfer of weight, from
the right hand side of the impurity wave packet to the left
with increasing time is seen, resulting in the drifting of the
center of mass plateau shown in Fig. 3 of the main text.
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FIG. S9. Results for the impurity density in the diagonal
ensemble (S6) for the initial state |Ψ(Q)〉 [defined in Eq. (4)]
with momentum Q = 0, π and a20 = 1.125 for N = 8 particles
on the length L = 40 ring with interaction parameter c = 10.
The largest sum rule saturation requires 69532 states in each
sum of Eq. (S6). Positions of the peaks are at x0 and x0+L/2.

be present in any terms which break translational invari-
ance, and hence the extent to which translational sym-
metry is broken is smoothly suppressed with increasing
Q, as observed in Fig. S10(b).

When considering the center of mass coordinate mo-
tion, we do not see a qualitative difference for cases in
which the diagonal ensemble result is (almost) transla-
tionally invariant and those in which the translational
invariance is more strongly broken, see Fig. S6(b).
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FIG. S10. (a) Deviation of expectation value of the impu-
rity density operator in the diagonal ensemble (S6) from the
translational invariant case for the initial state with momen-
tum Q and x0 = L/4. Results are for N = 4 particles on the
ring of length L = 40 with interaction parameter c = 10; sum
rules are saturated to at least 0.997 and we see now change in
the extent of translational symmetry breaking with increas-
ing saturation of the sum rule. (b) Maximum value of the
deviation at x = x0 as a function of Q with a Gaussian fit.
Note that the peaks in (a) are shifted compared to Fig. S9
solely due the change in x0.

2. The momentum of the impurity in the diagonal ensemble

Having computed the diagonal ensemble result for the
density of the impurity, we now turn our attention to
computation of the momentum of the impurity. We de-
fine the momentum of the impurity as

K(t) =
∑

p

p 〈Ψ(Q)|eiHtΨ†1,pΨ1,pe
−iHt|Ψ(Q)〉, (S8)

where Ψ1,p = 1
L

∫
dxe−ipxΨ†1(x) is the momentum space

annihilation operator for a boson of species 1. In the
t → ∞ limit we assume that this is given by the diago-
nal ensemble and as Ψ†1,pΨ1,p conserves momentum, the
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diagonal ensemble result is

KDE =
∑

{k};µ

∑

p

p 〈Ψ(Q)|{k};µ〉〈{k};µ|Ψ(Q)〉

×〈{k};µ|Ψ†1,pΨ1,p|{k};µ〉. (S9)

Fourier transforming to real space operators, and insert-
ing the resolution of identity over one-component Lieb-
Liniger eigenstates, we find

KDE =
∑

{k};µ

∑

{q}

(
Kk −Kq

)

×
∣∣∣〈Ψ(Q)|{k};µ〉〈{k};µ|Ψ†(0)|{q}〉

∣∣∣
2

, (S10)

which is expressed in terms of known matrix elements.
Using the previously discussed symmetry of the Bethe

states (and a similar property for the one-component
states) and the properties of the matrix elements of the
creation operators, we can write the momentum of the
impurity in the diagonal ensemble as

KDE ∝
∑

{k};µ

∑

{q}

(
Kk −Kq

)(
e−a

2
0(Q+Kk)

2 − e−a20(Q−Kk)
2
)

×
∣∣∣〈Ω|Ψ(0)|{k};µ〉〈{k};µ|Ψ†(0)|{q}〉

∣∣∣
2

(S11)

for the one-component ground state |Ω〉 containing an
odd number of particles. We immediately see that for
Q = 0 the momentum of the impurity remains at zero at
all times (consistent with the Q = 0 time-evolution).
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