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a b s t r a c t

Reinforcement learning (RL) is supported by a network of striatal and frontal cortical structures that are
connected through white-matter fiber bundles. With age, the integrity of these white-matter connec-
tions declines. The role of structural frontostriatal connectivity in individual and age-related differences
in RL is unclear, although local white-matter density and diffusivity have been linked to individual
differences in RL. Here we show that frontostriatal tract counts in young human adults (aged 18e28), as
assessed noninvasively with diffusion-weighted magnetic resonance imaging and probabilistic tractog-
raphy, positively predicted individual differences in RL when learning was difficult (70% valid feedback).
In older adults (aged 63e87), in contrast, learning under both easy (90% valid feedback) and difficult
conditions was predicted by tract counts in the same frontostriatal network. Furthermore, network-level
analyses showed a double dissociation between the task-relevant networks in young and older adults,
suggesting that older adults relied on different frontostriatal networks than young adults to obtain the
same task performance. These results highlight the importance of successful information integration
across striatal and frontal regions during RL, especially with variable outcomes.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Reinforcement learning (RL) is the use of the outcomes of one’s
own actions to improve behavior and increase rewards. Successful
RL relies on a large brain network centered on the striatum
(comprising nucleus accumbens, caudate nucleus, and putamen)
and frontal cortical areas, including prefrontal areas such as orbi-
tofrontal cortex (OFC) and lateral prefrontal cortex (lPFC), and
medial frontal areas such as anterior cingulate cortex (ACC) and
(pre)motor areas (Haber and Knutson, 2010; Maia, 2009;
Rushworth et al., 2011). Dopaminergic midbrain structures
(specifically, the ventral tegmental area and substantia nigra) send
phasic input to the striatum and frontal cortex signaling the
prediction error, the subjective difference between expected and
actual outcomes (Glimcher, 2011; Schultz, 2013). Learning signals in
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the striatum and frontal cortex likely support different aspects of
RL, where in the striatum prediction, error signals mainly support
bottom-up, model-free learning and in the frontal state prediction,
errors are thought to guide goal-directed, model-based learning
(Daw et al., 2005, 2011; Frank et al., 2007; Gläscher et al., 2010).
Thus, behavioral optimization requires information transfer
between striatum and frontal cortex to integrate different types of
learning signals.

The striatum and frontal cortex are heavily connected through
white-matter fiber bundles (Di Martino et al., 2008; Haber and
Knutson, 2010). The integrity of structural brain connections
decreases with age, even in healthy aging. This decline is especially
prominent in striatal and frontal white-matter connections
(Bennett et al., 2010; Burzynska et al., 2010; Salat et al., 2009).
Meanwhile, RL behavior becomes less efficient with age, with larger
decreases for probabilistic learning (feedback is not always in line
with the given response) compared with deterministic learning
situations (see, e.g., Eppinger et al., 2008; Hämmerer et al., 2011;
Mell et al., 2005; Pietschmann et al., 2008; Schmitt-Eliassen et al.,
2007; Weiler et al., 2008). Studies of functional brain activation
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suggest that older adults use the RL network less effectively than
young adults (Chowdhury et al., 2013; Eppinger et al., 2013; Fera
et al., 2005; Samanez-Larkin et al., 2014) and in addition employ
other areas in, for example, anterior prefrontal cortex (aPFC), lPFC,
and parietal cortex (Fera et al., 2005; Mell et al., 2009; van de Vijver
et al., 2014).

The strength and efficiency of structural connectivity can predict
individual differences in cognitive capacities and behavioral char-
acteristics, in both young and older adults (Grieve et al., 2007; Kanai
and Rees, 2011; Ziegler et al., 2010). The age-related changes in
functional brain activation supporting RL therefore evoke the
question whether the pattern of structural frontostriatal connec-
tions underlying successful RL also changes with age. So far, only 2
studies have directly related white-matter characteristics to
learning behavior. In a sample of young adults only, more successful
learners demonstrated lower white-matter diffusivity compared
with less successful learners in multiple major white-matter con-
nections, including the corpus callosum and several more posterior
pathways (Koch et al., 2010). In addition, in less successful learners,
higher diffusivity in a large network comprising frontal, striatal, and
parietal areas correlated negatively with the ability to decrease
functional activation with increasing feedback predictability. With
age, more successful learning was related to higher fractional
anisotropy (FA; a measure of local white-matter density) in the
tracts connecting dorsomedial thalamus and medial prefrontal
cortex (mPFC), and mPFC and nucleus accumbens (Samanez-Larkin
et al., 2012). However, this last study focused on age-related
changes in a few preselected white-matter pathways. Whether
the general network of frontostriatal connections that supports
successful learning shifts with age remains unknown.

In the present study, we therefore investigated whether and
how age-related changes in frontostriatal white-matter connec-
tions explained RL differences in young and older adults. More
specifically, our approach complements the study by Samanez-
Larkin et al. (2012) in 2 ways: (1) we looked at differences in all
possible connections between striatum and frontal cortex instead
of investigating only predefined pathways of interest and (2) rather
than focusing on the local white-matter density per voxel, which
does not provide information on the connection that a voxel is part
of, we examined the distribution of connections specifically linking
frontal cortex and the striatum and their relation with learning
behavior. Based on the changes in functional brain activity under-
lying RL (Chowdhury et al., 2013; Eppinger et al., 2013; Fera et al.,
2005; Mell et al., 2009; Samanez-Larkin et al., 2014; van de Vijver
et al., 2014), we hypothesized that the connections that support
successful RL in young adults would become less directly related to
learning success with age, whereas learning in older adults would
additionally depend on connections between striatum and aPFC
and lPFC.

To investigate these hypotheses, 24 young (18e28 years) and 35
older adults (63e87 years) underwent diffusion-weighted mag-
netic resonance imaging (MRI) scanning (22 young and 22 older
adults were included in group-level analyses; see Section 2). In a
separate session, they completed a probabilistic RL task in which
they learned arbitrary stimulus-response mappings by trial-and-
error. Because we were interested specifically in the relation
between frontostriatal white-matter connections and RL, we
applied probabilistic tractography to estimate white-matter tracts
between the striatum and other brain areas, rather than focusing on
measures of local white-matter quality (such as FA and diffusivity).
Probabilistic tractography provides a probability distribution of the
likelihood of white-matter connections between the seedmask and
each target voxel. We refer to the probability values that result from
this procedure as the “tract count”, the proportion of tracts that end
up in a specific voxel. It is important to note that this term refers to
the virtually estimated tracts not to the number of actual white-
matter connections between the seed and the target voxel.
Relating probabilistic tractography of structural connectivity to
behavioral differences has already proven highly informative in
studies investigating age-related changes in, for example, action
control (Coxon et al., 2012; Harsay et al., 2011).

Because this is the first study investigating the relation between
tract count and RL behavior and because we were interested in the
general shift in the underlying brain network rather than in
changes within specific connections, we applied an exploratory
analysis approach: per age group, we first computed probabilistic
tractography from striatal seed regions to all other brain voxels and
correlated individual learning accuracy in the easy (90% valid
feedback, see Section 2.2) and difficult (70% valid feedback) learning
conditions separately with white-matter tract count at each voxel
(multiple comparison testing was controlled by cluster-correction).
Second, to quantify possible shifts in networks underlying learning,
we combined separate clusters into more large-scale networks and
statistically tested network-level differences between conditions
and age-groups. More specifically, we investigated per age group
whether the voxels that correlated significantly with learning
behavior differed between the easy and difficult learning condi-
tions. In addition, we examined whether the voxels that showed
positive correlations with learning behavior in the difficult condi-
tion differed between young and older adults. Based on our
hypothesis, we expected different networks of voxels to correlate
with learning behavior in the 2 age groups, where the network
related to learning in older adults would include additional
connections with lPFC and aPFC. Thus, this procedure provided us
with summary-level insights into the frontostriatal networks
engaged in both groups as a function of RL difficulty.
2. Materials and methods

2.1. Participants

Twenty-four young (18e28 years) and 35 older adults
(63e87 years) participated in this study. Although the age range
was larger for older adults, age did not correlate with task perfor-
mance in any task condition or age group (all p values greater than
0.3). Young adults were recruited from the University of Amsterdam
campus, older adults were selected from Seniorlab (a database of
older adults interested in participating in psychological research).
Participants underwent telephone and face-to-face screening
according to standard neurological and MRI exclusion criteria.
Participants started the second day of 2-day behavioral testing with
the current task (the results of the other, unrelated tasks they
performed are reported elsewhere; Cavanagh et al., 2012b; de Wit
et al., 2012). On a separate day between 8 and 143 days before
the second behavioral session (young mean 55.95 days, SD 30.66,
older mean 58.40, SD 15.87, no significant difference between age
groups: t[39] ¼ �0.318, p ¼ 0.752), participants completed
diffusion-weighted and T1 MRI scans. Participants received course
credits (2 young participants) or financial compensation (all other
participants) for participation, and an additional, performance-
dependent financial bonus. All procedures were executed in
compliance with relevant laws and institutional guidelines, and the
study was approved by the local ethics committee.

The data of 2 young and 1 older participant could not be pro-
cessed because of MRI scan artifacts. Based on an independent
neuroradiologist’s rating of anatomical MRI scans, 3 older adults
were excluded because of potential hippocampal atrophy (assessed
using Scheltens’ medial temporal lobe atrophy scores; Scheltens
et al., 1992), and 3 additional older adults were excluded because
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of severely enlarged ventricles. Finally, 6 older adults did not meet
the criteria for successful learning (see Section 2.2).

The included 22 young adults ranged in age from 18 to 28 (mean
21.0, SD 2.33 years, 13 female) and the 22 older adults from 63 to 87
(mean 72.0, SD 6.08 years, 15 female; no signs of mild cognitive
impairment or dementia on the Cognitive Screening Test; Deelman
et al., 1989). All participants were right-handed and had normal or
corrected-to-normal vision. Participants reported no diagnosed
neurological or psychiatric disorders. Young and older adults did
not differ in verbal intelligence on the Nederlandse Leesvaardigh-
eidstest voor Volwassenen (Dutch Reading test for Adults; Schmand
et al., 1991; young mean 85.43, SD 4.905, older mean 88.81, SD
9.611, t[29.757] ¼ �1.436, p ¼ 0.161) or in working memory on the
Operation span task (Turner and Engle, 1989; youngmean 61.7%, SD
17.28, older mean 58.1, SD 17.88, t[42] ¼ 0.665, p ¼ 0.510).
2.2. Task

Participants performed a probabilistic RL task in which they had
to learn arbitrary stimulus-response relations using trial-and-error
(Fig. 1A; adjusted from Haruno and Kawato, 2006). On each trial, a
stimulus was presented until the participant pressed 1 of 2
response buttons (max 2000 ms). After a delay of 500 ms, feedback
was presented for 1500 ms. An intertrial interval of 700e1200 ms
separated feedback from the next stimulus. Three blocks of 60 trials
were presented (separated by self-paced breaks), with feedback
probabilities of 90%, 80%, and 70%, respectively (i.e., in 10%, 20%, and
30% of trials, feedback valence was opposite to the participant’s
response accuracy). Block order was counterbalanced over partici-
pants. Per block, 4 new stimuli were each presented 15 times, two
to the left response button and two to the right response button.
Stimuli were fractals with clearly distinct colors and shapes, which
were randomly assigned to the 3 blocks. Feedback consisted of a red
(incorrect) or green (correct) square, and a loss or gain of 0.25
points. Participants received 15% of their earned points in euros as
financial bonus. If participants responded outside the response
window, feedback consisted of the words “too late”.

Participants received extensive instructions and performed 2
practice blocks with 4 nontask stimuli, one with 100% valid
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Fig. 1. Overview of the reinforcement learning (RL) task and behavioral performance. (A)
while the stimulus was presented. (B) Average response accuracy per stimulus repetitio
(C) Reaction times (RTs) per stimulus repetition averaged over responses within the respons
error of the mean. Abbreviation: ITI, inter-trial-interval.
feedback and a 6000 ms response window and another with 90%
valid feedback and a 2000 ms response window (the same window
as in the real task). The first practice block ended when participants
had made 3 consecutive correct choices for all stimuli (max 20
presentations per stimulus), and in the second practice block,
stimuli were presented 7 times. Only participants that reached an
average accuracy level of 60% in the 90% condition of the real task
were included in the analyses.
2.3. Behavioral analyses

Because feedback was probabilistic (on each trial a random
number determined feedback validity) and because participants
sometimes responded late (young: mean 0.08%, SD 0.20%, range
0%e0.56%; old: mean 0.76%, SD 0.76%, range 0%e2.22%), experi-
enced feedback probabilities did not exactly match the intended
percentages. Per participant, we therefore computed the experi-
enced probabilities (percentage of valid feedbacks in the trials the
participant responded to) and selected the blocks with the highest
and lowest probabilities for further analyses (accuracy scores in the
3 feedback validity conditions before and after condition rear-
rangement are presented in Supplementary Table 1). The experi-
enced probabilities in the central condition (80% valid feedback)
overlapped somewhat with the experienced probabilities in the
other conditions. To optimize condition comparisons, this condition
was excluded from the analyses. Because relative task difficulty
increases with decreasing feedback probability, we refer to the
remaining conditions as “easy” (90% valid feedback) and “difficult”
(70% valid feedback), respectively.

Feedback probabilities in these new conditions were on average
90.9% (SD 3.82, range 78.3e98.3) and 70.2% (SD 5.24, range
55.0e80.0), and the difference between the conditions ranged from
5% to 38.3% over individuals (no significant difference between age
groups, t(42) ¼ 0.085, p ¼ 0.932). Although the experienced feed-
back probabilities varied across participants, rank-correlations per
age group and condition demonstrated that the experienced feed-
back probabilities were only related to learning accuracy in older
adults in the difficult condition (rS ¼ 0.571, p ¼ 0.006). To further
ensure that our results were driven by individual differences in
Older
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Stimulus repetition
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Sequence of events in an example trial. Participants selected 1 of 2 response buttons
n as the percentage correct responses in the easy and difficult learning conditions.
e window in the easy and difficult learning conditions. Error bars represent 1 standard



Fig. 2. Overview of DTI tractography procedure and analysis. (A) Masks of bilateral caudate nuclei, nuclei accumbens, and putamen were extracted from the Harvard-Oxford
standard atlas. (B1) After automatically transforming all masks to participant-specific space, (B2) masks were manually adjusted using structural T1 images to improve the fit
with the intended regions. (C) For each mask, probabilistic tractography was run from all the voxels within the mask to all brain voxels, after which the results were merged over all
voxels in the mask. (D) Per mask, we computed for each brain voxel the Spearman correlation over participants between white-matter tract count and learning accuracy (including
FA values as covariate), to investigate which white-matter tracts were significantly related to RL accuracy (each simulated data point corresponds to a participant). Abbreviation: FA,
fractional anisotropy.
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behavior rather than in experienced feedback probabilities, we
recomputed the correlations between behavior and tract count (see
Section 2.6) while including the experienced probabilities as a
covariate. This did not change the pattern of results in the subse-
quent network comparisons.

To test whether participants learned the correct stimulus-
response mappings and how learning influenced their reaction
times (RTs), we compared accuracy (percentage correct responses
on all trials) and RTs in separate mixed analysis of variances with
factors age (young, older), stimulus presentation (presentations
1e5, 6e10, 11e15), and learning condition (easy, difficult). We also
investigated lose-switch and win-stay behavior, the amount of
alternated or continued responses on the next appearance of the
same stimulus after losses or wins, as percentages of the total
numbers of losses and wins. Both measures were entered into
mixed analysis of variances with factors age and learning condition.
Greenhouse-Geisser corrections were applied where appropriate
(uncorrected degrees of freedom are reported for ease of inter-
pretability). Finally, we investigated for both age groups to what
extent behavior in the easy and difficult conditions represented
distinct aspects of learning: we rank-correlated accuracy between
the conditions, and per conditionwe rank-correlated accuracy with
win-stay and lose-switch behavior.

2.4. MRI data recording

MRI data were acquired on a Philips 3T scanner with an
8-channel array head coil. Diffusion-weighted data were obtained
using spin-echo echo planar imaging (60 slices of 112 � 112 voxels,
voxel size 2 � 2 � 2 mm, 50 noncollinear gradient directions,
repetition time (TR) ¼ 9.11 seconds, echo time (TE) ¼ 65 ms). To
increase sensitivity, 3 consecutive scans were obtained for each
participant. A fourth scan was added if enough time was available.
An anatomical T1-weighted image (182 slices of 256 � 256 voxels,
voxel size 1.2 � 0.883 � 0.883 mm, TR ¼ 9.58 seconds, TE ¼
4.6 seconds) was also obtained.
2.5. MRI data processing

2.5.1. Preprocessing
All MRI data analyses were performed using the FSLMRI analysis

program (Jenkinson et al., 2012; Smith et al., 2004) and custom-
written Matlab scripts (The MathWorks, Natick, MA, USA). Per
participant, diffusion tensor imaging (DTI) data of all runs were
merged and eddy corrected. Brain shapes were automatically
extracted from DTI and T1 images with the FSL program “Bet-
crawler”. Extracted brains were visually inspected by 2 experi-
menters and adjusted and re-extracted when necessary. Finally,
diffusion tensors were fit at each voxel using the FSL program
“dtifit” to obtain FA values, and transformation matrices between
DTI space, T1 space, and standard 2mmMNI (Montreal Neurological
Institute) space were obtained.

2.5.2. Probabilistic tractography
The diffusion parameters per voxel were sampled in DTI space

with the FSL program “bedpostX”. Masks of bilateral nuclei
accumbens, caudate nuclei, and putamen were acquired from the
Harvard-Oxford subcortical atlas in FSL (Fig. 2A). All masks were
automatically registered to participant-specific DTI space, thresh-
olded at 0.8 to minimalize normalization-related spatial smoothing
and corrected for overlap between masks (Fig. 2B1). The masks
were visually comparedwith participant-specific high-resolutionT1
scans (registered to DTI space) by 2 experimenters and manually
adjusted when necessary (Fig. 2B2).

Probabilities of white-matter connections were separately esti-
mated from each mask to all brain voxels with the FSL program
“probtrackX”. Per seed mask, 5000 paths were drawn from each
mask voxel, following the most likely white matter tract direction
given the principal fiber directions. This analysis yields a map in
which the value at each voxel reflects the statistical likelihood of a
connection between this voxel and the mask. The resulting prob-
ability maps per seed-mask voxel were automatically combined in
FSL (Fig. 2C and D), divided by the number of paths drawn and by
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the number of voxels in the mask to correct for differences in mask
sizes, and transformed to MNI space. Thus, the final spatial
resolution was 2 � 2 � 2 mm. Normalized probability maps were
smoothed per participant with a 3D 6 mm Gaussian kernel. Results
in the cerebellum and brainstem are not reported because these
regions were not completely in the MRI field of view for all
participants. It is important to note that although we performed
tractography from striatal masks to other voxels, the results do not
provide information about the direction of tracts.

2.6. Relations between white-matter tract count and behavior

2.6.1. Age-related changes in frontostriatal white-matter
connections

We first investigated general age-related changes in the distri-
bution of white-matter tracts: for each seed mask, we used t-tests
to compare tract count values per voxel between age groups. To
correct for multiple comparisons, only voxels with p-value < 0.005
were considered significant, and only clusters of at least 50
contiguously significant voxels (400 mm3) are reported.

2.6.2. Correlations between white-matter tract count and behavior
To investigate the relation between learning and white-matter

tract count, we computed Spearman correlations between the
individual tract count in each voxel and RL accuracy for each seed
mask, age group, and condition (Fig. 2D). Again, only correlations
with p-value < 0.005 were considered significant (in line with de
Wit et al., 2012; van den Brink et al., 2014), and only clusters of at
least 50 voxels are reported. Note, however, that although tract
count correlated with behavior in these clusters these findings do
not necessarily indicate the terminal points of any tract. Rather, it
remains possible that these findings indicate differences within
tracts that traverse these areas. FAvalues were included as covariate
in all correlations to ensure that correlations were not biased by
local white-matter density. Because of a lack of systematic differ-
ences, the final results are pooled over all 6 striatal seed regions.

2.6.3. Post hoc analyses of age and condition differences in brain-
behavior correlations

To examine whether patterns of correlations differed signifi-
cantly between learning conditions and between age groups, we
combined the correlations into composite measures and statisti-
cally tested network-level differences. These analyses were con-
jectured post hoc, after having observed the outcomes of the
preceding analyses, to test more detailed hypotheses emanating
from the data patterns. Specifically, we investigated (1) whether in
the young adults, the network of clusters correlating negatively
with learning behavior in the easy condition was significantly
different from the network correlating positively with learning
behavior in the difficult condition, (2) whether the networks in
older adults that correlated positively with learning in the 2
learning conditions were significantly different, and (3) whether
the networks in young and older adults that correlated positively
with learning in the difficult condition were significantly different.

To answer these questions, we combined clusters of correlating
voxels into networks based on the correlation results: we created
an easy-negative network in young adults (consisting of clusters
correlating negatively with behavior in the easy condition in young
adults), a difficult-positive network in young adults, and an easy-
positive network and a difficult-positive network in older adults.
Because difficult learning correlated with clusters in prefrontal
cortex (PFC) in both age groups whereas only in older adults
additional clusters were found in medial frontal cortex (MFC),
only clusters in PFC were selected for the difficult-positive network
in older adults.
For each of the 3 questions, we first calculated the amount of
overlapping voxels between the 2 relevant networks, as a quanti-
tative description of the similarity between networks. However, the
presence of a significant correlation in only 1 condition or group
does not necessarily imply that the correlations differ significantly
between conditions or groups. Therefore, per network, age group,
and condition, we calculated the Fisher’s Z-transform of the
correlation coefficients per voxel:

Zsep ¼ 0:5ln
�
1þ r
1� r

�

These values were averaged per cluster, and, subsequently, over
all clusters in a network. This provided us with 4 Zsep values for each
network: for young and older adults, in the easy and difficult
learning conditions. Note that for each network, the Zsep value is
always significantly different from 0 in the condition and age group
that were used to define a network because all voxels that were
included to create the network showed a significant effect (e.g., in
the easy-negative network in young adults, the Zsep value of young
adults in the easy condition is necessarily significant below 0).

Next, to examine the effects of learning condition and age, we
calculated the normalized distance between the Z-transformed
correlation values:

Zdiff ¼ ZsepðaÞ � ZsepðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

na�3 þ 1
nb�3

q

where Zsep(a) and Zsep(b) are the Zsep values and na and nb are the n
values of the 2 learning conditions or the 2 age groups, respectively.
More specifically, to compare learning conditions, the difference
(Zdiff) between easy and difficult conditions was computed sepa-
rately for young and older adults, and to compare age groups, the
difference (Zdiff) between young and older adults in the difficult
condition was computed. Because Zdiff is normally distributed with
mean 0 and variance of 1, it can be interpreted as a regular z-value.

However, because we defined our networks as consisting of
voxels that demonstrated a significant correlation with behavior in
1 condition and age group, a statistical comparison of the correla-
tions in these voxels between conditions or age groups is neces-
sarily biased toward finding a significant difference (Kriegeskorte
et al., 2009; Vul et al., 2009; but see also Lieberman et al., 2009).
Therefore, for all 3 questions, we investigated the differences in 2
networks, defined separately in both conditions or age groups.
When there is a double dissociation between networks and
conditions or groups (e.g., correlations in the easy-positive network
are significantly stronger in the easy than the difficult condition,
and correlations in the difficult-positive network are significantly
stronger in the difficult than the easy condition in the same age
group), the networks supporting learning in the 2 conditions
cannot show a significant amount of overlap, and the effects cannot
be explained (solely) by a statistical bias.
3. Results

3.1. Influence of learning difficulty on behavioral performance

Increasing accuracy scores over stimulus presentations
confirmed that participants learned the correct stimulus-response
mappings (Fig. 1B; F[2,41] ¼ 50.599, p < 0.001). Accuracy was
higher in the easy than that in the difficult condition (F[1,42] ¼
27.900, p < 0.001), especially on later stimulus repetitions (F
[2,41] ¼ 4.454, p ¼ 0.015). Young and older adults did not differ in
accuracy (F[1,42] ¼ 1.201, p ¼ 0.279) nor did age interact with
condition difficulty (F[1,42] ¼ 0.048, p ¼ 0.827), although a
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marginally significant interaction of age and stimulus presentation
indicated that learning reached asymptote earlier in young than in
older adults (F[2,41] ¼ 3.064, p ¼ 0.052). The interaction of age,
condition difficulty, and stimulus presentation was also not signif-
icant (F[2,41]¼ 2.181, p¼ 0.119). Although lose-switch andwin-stay
behaviors were lower in the difficult compared with the easy
condition (F[1,42] ¼ 11.463, p ¼ 0.002 and F[1,42] ¼ 12.340,
p ¼ 0.001) there were no effects of age or interaction effects of
age and learning difficulty on lose-switch or win-stay behavior (all
p values greater than 0.2).

In young adults, accuracy did not correlate between the easy and
difficult conditions (rS ¼ 0.135, p ¼ 0.551), whereas in older adults,
this correlation was marginally significant (rS ¼ 0.418, p ¼ 0.053).
However, these correlations did not differ significantly between age
groups (normalized distance between the Fisher’s Z-transforms of
both correlations: Z ¼ �1.05, p ¼ 0.294). In both young and older
adults and in both difficulty conditions, accuracy correlated posi-
tively with win-stay behavior (all r’s > 0.7, and p’s < 0.001) and
negatively with lose-switch behavior (all r’s < �0.4 and p’s < 0.05).

Older adults responded more slowly than young adults
(F[1,42] ¼ 23.866, p < 0.001; see Fig. 1C). RTs decreased over trials
(F[2,41] ¼ 68.024, p < 0.001), especially in older adults (F[2,41] ¼
3.826, p ¼ 0.035). The decrease in RTs over trials was larger in the
easy than that in the difficult condition (F[2,41]¼ 5.639, p¼ 0.007),
and this effect was again larger in older than that in young adults
(F[2,41] ¼ 4.566, p ¼ 0.017).

3.2. Age-related changes in frontostriatal connections

Tracts originating from the different striatal seed regionswere in
line with known connections and previous tractography findings in
both age groups (Haber and Knutson, 2010; Harsay et al., 2011; Leh
et al., 2007; Supplementary Figs. 1 and 2). Patterns of age-related
differences in the distribution of tracts originating from the stria-
tum showed high similarity for the different seed masks
(Supplementary Fig. 3). Focusing on frontostriatal tracts, young
adults demonstrated higher tract counts than older adults between
the striatum and medial and lateral OFC, inferior frontal gyrus, and
pre-, supplementary and central motor cortex. Older adults
demonstrated higher tract counts than young adults between the
striatum and anterior frontal cortex, thewhite matter in medial and
anterior frontal cortex, and frontal corpus callosum. Note that as
tract count is a relative measure (if 1 connection severely declines
with age, more drawn tracts necessarily end up following other,
relatively intact connections), this comparison does not directly
reflect changes in white-matter integrity with age. Indeed, whole-
brain comparisons between age groups of FA values and axial and
radial diffusivity (AD and RD) were in line with previous studies
(Bennett et al., 2010; Burzynska et al., 2010; Salat et al., 2009): FA
showed a general decrease, and mean diffusivity (MD) and RD
showed a general increase with age (Supplementary Fig. 4). The
lower FA values in older adults were also present in the connections
where they showed relatively higher tract counts.

3.3. Structural pathways predicting learning performance

Tract count in multiple connections between striatum and
prefrontal cortex predicted learning (see Supplementary Table 2 for
all easy-condition results and Supplementary Table 3 for all
difficult-condition results). Here, we first describe the location of
relevant clusters of tracts in a qualitative manner.

In both age groups, easy-condition learning correlated nega-
tively with tracts between striatum and anterior lateral OFC (lOFC;
Fig. 3A and E), whereas in young adults, difficult-condition learning
was positively predicted by tracts between striatum and ventral
lOFC (Fig. 3C). Easy-condition learning was also negatively
predicted in young adults by tracts between striatum and clusters
on the border of aPFC and lPFC (Fig. 3B). However, in both young
and older adults difficult-condition learning correlated positively
with tracts between striatum and dorsal lPFC (Fig. 3D and G). Tracts
between striatum and anterior and lateral aPFC were positively
predictive of learning in older adults in both learning conditions
(Fig. 3F and G), and mPFC tracts also positively predicted difficult-
condition learning in this age group (Fig. 3G).

A similar pattern is seen in the connections between striatum
and MFC. In young adults, learning in the easy condition was also
positively predicted by tracts between striatum and MFC (Fig. 4A),
whereas easy-condition learning was negatively predicted by tracts
between striatum and MFC in older adults (Fig. 4B). In older adults,
difficult-condition learning was positively predicted by tracts
between striatum and right MFC but negatively by tracts between
striatum and left MFC (Fig. 4C).

3.4. Network shifts with increasing learning difficulty

Next, we combined the prefrontal clusters from the correlation
analyses per age group and condition and examined the amount of
overlapping significant voxels between conditions per age group.
None of the 752 (unique) voxels in the easy-negative network in
young adults overlapped with any of the 357 voxels in the difficult-
positive network in this age group. Of the 408 voxels in the easy-
positive network in older adults, 19 voxels were also part of the
1435 voxels in the difficult-positive network in this age group. This
suggests that distinct networks were involved in the 2 learning
conditions in both age groups.

Therefore, we tested within each network whether the corre-
lations between tract count and behavior indeed differed signifi-
cantly between learning conditions. More specifically, in this step,
we directly compared correlations in the same clusters of voxels
between conditions. In the easy-negative network defined in young
adults, correlations between learning and tract count were indeed
significantly stronger in the easy than those in the difficult learning
conditions (p ¼ 0.012; Fig. 5A). In the difficult-positive network
defined in the same age group, correlations were stronger in the
difficult than those in the easy condition (p ¼ 0.008; Fig. 5A). Thus,
although both easy-negative and difficult-positive networks
contained connections between striatum and lOFC, lPFC, and aPFC,
the specific structural networks related to behavior were signifi-
cantly different between the easy and difficult learning conditions.
In older adults, correlationswith easy compared to difficult learning
did not differ in the easy-positive (p ¼ 0.222) or the difficult-
positive network (p ¼ 0.173; Fig. 5B). Thus, in contrast to young
adults, in older adults, the structural frontostriatal networks related
to learning performance were the same regardless of learning
difficulty.

3.5. Age differences in learning-related network connectivity

Finally, we used the same aggregate networks to compare
network correlations between age groups. Of the 357 voxels in the
difficult-positive network in young adults, no voxels were also part
of the 1435 voxels in the difficult-positive network in older adults.
Relatedly, we observed a double dissociation between the fron-
tostriatal networks that predicted RL performance in young
compared with older adults (Fig. 5C), such that network connec-
tivity that predicted performance in young adults did not predict
performance in older adults, and vice-versa: correlations with
difficult-condition learning differed significantly between age
groups in both the difficult-positive network defined in young
adults (p ¼ 0.037) and the difficult-positive network defined in
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older adults (p ¼ 0.006). These results suggest that the structural
networks positively related to learning performance differed
between young and older adults: different parts of lPFC and aPFC
correlated with difficult learning in the 2 age groups, and the
learning network that correlated with difficult learning in older
adults comprised additional parts of aPFC and mPFC that did not
correlate with difficult learning in young adults.

4. Discussion

Our findings demonstrate that successful RL behavior is related
to the availability of frontostriatal white-matter connections.
Previous studies have demonstrated (1) the relevance of both brain
areas for learning success (for reviews see, e.g., Maia, 2009;
Rushworth et al., 2011), (2) widespread structural and functional
connections between those areas (Di Martino et al., 2008; Haber
and Knutson, 2010), and (3) the relation between learning success
and local white-matter density and diffusivity (Koch et al., 2010;
Samanez-Larkin et al., 2012). Here, we combined these lines of
evidence by directly linking learning success to the likelihood of
white-matter tracts specifically connecting striatum and frontal
cortex. Our results suggest that the extent to which separate parts
of the learning network together produce successful behavior
depends on their specific pattern of connectivity.

In this study, a higher likelihood of frontostriatal connectivity
coincidedwith better learningwhen feedback validity was low. This
suggests that with reduced connectivity, frontal structures are less
efficient at directing learning under these circumstances. Frontal
areas are involved in high-level aspects of RL, such as favoring long-
term over short-term decision consequences (McClure et al., 2004;
Tanaka et al., 2004) and exploring alternative courses of action
(Boorman et al., 2009; Cavanagh et al., 2012; Daw et al., 2006).
The current correlations between accuracy and lose-switch and
win-stay behaviors suggest that worse-performing participants
were indeed less able to integrate outcomes over time.
In young adults, separate brain networks predicted learning
with different feedback probabilities, consistent with the nonsig-
nificant correlation between accuracy in the 2 conditions. Tracts
between striatum and lateral frontal areas correlated negatively
with easy-condition learning but positively with difficult-condition
learning. Successful learners are better able to increase frontal
activation with decreasing feedback predictability (Koch et al.,
2010). Thus, we speculate that the negative correlation between
easy learning and frontostriatal tracts reflects the necessity of a
dissociated frontal system in this condition. Conversely, in the
difficult condition, a well-connected frontostriatal network
supports successful long-term integration. These differences
suggest that the capacity of young adults to adapt their behavior to
different feedback circumstances depends on the availability of
specific frontostriatal connections.

Age-related connectivity differences were more widespread,
although behavioral accuracy did not differ between groups. In line
with our hypotheses, different tracts correlated with learning
success in the 2 age groups. In older adults, these tracts indeed
included additional connections between the striatum and aPFC
and lPFC. Relatedly, direct comparisons of frontostriatal tract count
between age groups indicated that the relative probability of tracts
between striatum and aPFC and mPFC (compared to other fron-
tostriatal tracts) was higher in older compared with young adults.
Together these results suggest that when the central RL network
declines, older adults recruit relatively preserved white-matter
connections, perhaps as a compensatory strategy.

Interestingly, in a recent electroencephalographic study, we
found age-related decreases in learning-related theta-band oscil-
lations (4e8 Hz) over MFC, whereas the same oscillations over aPFC
remained intact (van de Vijver et al., 2014). Posterror MFC theta-
band oscillations have also been related to white-matter tract
count between MFC and the striatum (Cohen, 2011a, b). This sug-
gests that the respective changes in learning-related MFC and aPFC
theta oscillations with age may depend on changes inwhite-matter
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connections between the striatum and these 2 areas. Thus, a study
including both DTI and electroencephalographic could greatly
advance our understanding of how age-related changes in struc-
tural connectivity relate to changes in learning-related functional
connectivity.

The additional learning-related frontostriatal connections in
older adults are also in line with functional activation studies
demonstrating the recruitment of additional cortical areas (Fera
et al., 2005; Mell et al., 2009; van de Vijver et al., 2014). They
seem to provide support for the compensation-related utilization
of neural circuits hypothesis, which states that “processing
inefficiencies cause the aging brain to recruit more neural resources
to achieve computational output equivalent to that of a younger
brain” (Reuter-Lorenz and Cappell, 2008). Interestingly, prefrontal
white matter declines relatively early with age (Grieve et al., 2007;
Salat et al., 2005, 2009). The current results therefore suggest that
the ability to compensate depends on the relative intactness of
frontostriatal connectivity.

Relatedly, we only included healthy older adults. Inclusion
criteria comprised the participant’s medical history and qualifica-
tion for MRI but also their task performance and a lack of identifi-
ably brain atrophy. These strict criteria may have resulted in the
inclusion of only high-functioning older adults. Indeed, our groups
of young and older participants did not differ in working memory
performance, whereas most studies show age-related working
memory decreases (see, e.g., Hedden and Gabrieli, 2004; Mattay
et al., 2006). However, comparisons of the current working mem-
ory scores with comparable studies (de Wit et al., 2014; van de
Vijver et al., 2015) suggest that the absence of age differences is
due not only to high-scoring older adults but also to low-scoring
young adults.

Young and older adults also showed comparable learning
success. Although most previous studies suggest that learning
decreases with age, especially when feedback is probabilistic (see,
e.g., Eppinger et al., 2008; Hämmerer et al., 2011; Mell et al., 2005;
Pietschmann et al., 2008), some studies have also found equivalent
performance in young and older adults (Kolev et al., 2005; López-
Crespo et al., 2009; Samanez-Larkin et al., 2014; Worthy et al.,
2011). Indeed, our finding that learning reached asymptote earlier
in young than that in older adults is consistent with a recent study
showing that older adults can achieve the same learning perfor-
mance as young adults after enough trial repetitions (Samanez-
Larkin et al., 2014).

The comparable choice performance of young and older adults
likely resulted from the exclusion of poorly performing participants
and from task characteristics such as the relatively small number of
stimuli per block and the long presentation times of stimuli and
feedback, which made learning easier. Importantly, the comparable
performance of young and older adults in the present study
ensured that differences in the relation between behavior
and structural connectivity could not have been attributable to
performance differences and can be more safely attributed to the
difference in age.

Still, our strict inclusion criteria limit the generalizability of our
results: although the current set of older adults reached the same
performance level as young adults, this achievement is less likely in
older adults with increased brain deficits or cognitive decline.
Indeed, compensation may fail when the burden gets too high
(Cappell et al., 2010; Mattay et al., 2006). Thus, the extent to which
older adults with increasing brain changes or cognitive decline rely
on the same frontostriatal connections remains to be determined.

Although networks significantly differed between age groups, in
older adults, networks did not differ depending on feedback
validity. This is in line with behavioral evidence indicating that
older adults are less able than young adults to adapt their decision
strategy to the environment (Lemaire, 2010; Mata et al., 2010). This
deficit becomes most prominent during difficult tasks, when the
limited processing resources of older adults force them to rely on
simpler strategies. Importantly, however, the current absence of
age-related behavioral differences indicates that despite possible
changes in strategy adjustment older adults still managed to reach
the same performance as young adults.

One limitation of the present study is the nonindependence of
the definition of task-relevant networks and their subsequent
comparison between conditions and age groups: voxels were
selected based on their correlation values, which were also used as
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input in the network comparisons. This nonindependence may
have somewhat increased condition- and age-related differences
between different networks (Kriegeskorte et al., 2009; Vul et al.,
2009; but see also Lieberman et al., 2009). Unfortunately, struc-
tural imaging data does not allow assessing brain-behavior corre-
lations within participants, or using separate parts of the data of
each participant for selecting task-relevant areas and for testing
differences within these areas. As such, this aspect of our study
must be considered exploratory, and the results should be validated
in independent samples of participants.

Yet, we believe the nonindependence in our methods does not
invalidate our main conclusions: (1) the nonindependence is
unrelated to the correlations between individual pathways and
learning, it only applies to the subsequent network selection
procedure. (2) Because the nonindependence of network selections
and comparisons may increase rather than decrease condition
differences, it cannot explain the absence of condition differences in
older adults. (3) In young adults, the networks defined in the 2
learning conditions showed a double dissociation, as did the
networks that were defined in the separate age groups in the
difficult condition. Even if correlations were inflated, such double
dissociations would have been impossible with substantial overlap
between the involved networks.

We only related white-matter tract count to behavioral perfor-
mance. Although this allowed us to assess stable differences in
structural connectivity, future studies should assess the relation
between the same frontostriatal functional connections and
learning performance (Bennett and Rypma, 2013; Messé et al.,
2014). To estimate structural connectivity, we applied probabi-
listic tractography to diffusion-weighted MRI scans. The exact
neural underpinnings of this type of statistical fiber tracking are
unknown, and the results can be influenced by multiple biological
factors (Beaulieu, 2002; Johansen-Berg et al., 2005; Roebroeck et al.,
2008). However, they are consistent with invasive histological
white-matter tracing (Dauguet et al., 2007; Dyrby et al., 2007;
Leergaard et al., 2010; Seehaus et al., 2013), and tract counts in
specific white-matter pathways are related to individual differences
in various stable behavioral traits (Cohen, 2011a, b; de Wit et al.,
2012; Harsay et al., 2011; van den Brink et al., 2014).

No systematic differences were found between the separate
striatal seed regions in behavior-related connectivity patterns.
Previous studies have indicated that ventral striatal subregions are
important for acquiring new stimulus-response associations based
on prediction errors, whereas dorsal subregions support the
application of already-learned associations (Atallah et al., 2007;
Haruno and Kawato, 2006; O’Doherty et al., 2004). Because we
averaged behavioral accuracy over all trials, a mixture of both
processes may have been reflected in this measure and, thus, in the
related white-matter tracts.

Motivated by these findings, future studies could use specifically
designed tasks amenable to computational modeling to identify the
relationship between subprocesses of learning and specific fron-
tostriatal white-matter connections. At least 2 lines of models can
provide important additional insights. First, RL models (Rescorla
and Wagner, 1972; Sutton and Barto, 1998) quantify the expected
value of each decision option on each trial, and the subsequent
prediction error. They can estimate, for example, the learning rate
(the number of previous outcomes taken into account in the current
decision) and the forgetting rate (the decay of information). Indeed,
RL models can add to the investigation of age-related changes in
learning: 2 recent studies showed that decreased reward-based
learning in older adults coincides with decreased functional acti-
vation in the ventral striatum for reward prediction errors
(Eppinger et al., 2013) and that individual differences in prediction
errors were tightly coupled with the integrity of white-matter
tracts between the striatum and the midbrain dopaminergic
nuclei (Chowdhury et al., 2013).

In addition, models examining how behavior reflects the
uncertainty in the environment may provide information on the
influence of the learning circumstances (Nassar et al., 2010, 2012;
O’Reilly, 2013). A lower feedback validity provides a more variable
environment. Condition differences may depend on how well an
individual adapts to such an environment, or the willingness to
adjust the learning rate. The anterior cingulate cortex has been
related to learning-rate adjustments with changing circumstances
(Behrens et al., 2007), and aPFC is involved in the arbitration
between exploration and exploitation (Boorman et al., 2009, 2011;
Raja Beharelle et al., 2015). Thus, age-related changes in learning
rates, their flexible adjustment, and their relation to brain con-
nectivity provide interesting avenues for future research.

To conclude, the present study shows that in young adults,
frontostriatal white-matter connectivity shapes the flexibility to
adjust decision-making to changing circumstances. We speculate
that in older adults, the condition of structural connectivity in a
widespread frontostriatal network determines the capacity to
compensate and maintain the same performance level as young
adults. Together these findings illustrate how the age-related
quantitative decline in white-matter connectivity induces qualita-
tive differences, and how frontostriatal networks support success-
ful RL behavior.
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