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ABSTRACT: 

 

Active landslides have three major effects on a landscape: 1. land cover change, 2. topographical change, and 3. above ground 

biomass change. Data derived from multi-temporal Light Detection and Ranging technology (LiDAR) is used in combination with 

multi-temporal orthophotos to quantify changes between 2006 and 2012, caused by a landslide near Doren in Austria. Data synergy 

is used to optimize accuracies of land cover change, and to improve results of topographical change analysis and aboveground 

biomass estimations. Topographical change is calculated using differencing of digital terrain models. The above ground biomass is 

quantified by applying a local-maximum algorithm for tree top detection, in combination with allometric equations. The land cover 

change classification accuracies were improved from 65% (using only LiDAR) and 76% (using only orthophotos) to 90% (using 

synergy) for 2006. A similar increase from respectively 64% and 75% to 91% was established for 2012. The results of the improved 

land cover classifications were used to optimize the topographical and above ground biomass change calculations. Fine-scale 

improvements of the classifications included forest edges and shadows, small open spots in the vegetation, and confusion between 

land cover classes. The enhanced accuracies of the land cover change analysis demonstrate the effectiveness and advantages of using 

synergy of LiDAR and orthophotos using OBIA. The method has great potential to be transferred to larger areas for use in 

monitoring, although data size calls for workflows to operate on cloud-based infrastructures that provide sufficient computational 

power. 

 

 

1. INTRODUCTION 

The synergy of very high resolution (VHR) imagery such as 

orthophotos and data derived from Light Detection and Ranging 

(LiDAR) technology to detect land cover change (LCC), 

topographical and above ground biomass (AGB) changes 

through object-based image analysis (OBIA) in an area affected 

by an active landslides is analyzed. Landslides are common 

processes that may cause continuous or sudden changes in the 

topography and the overlying vegetation cover. The growing 

availability of multi-temporal LiDAR-based elevation data 

facilitates the combined analysis of fine-scale 3D topographical 

and forest structure changes occurring in landslide areas.  

OBIA has been successfully applied in the segmentation and 

classification of VHR imagery for mapping LCC change 

(Machala & Zejdova, 2014; Zhou et al, 2008) and in many 

landslide detection studies (Lahousse et al. 2011, Li et al. 

2015). In such cases, OBIA generally outperforms pixel-based 

approaches in LCC studies (Machala & Zejdova, 2014), 

although hybrid approaches (Aguirre-Gutierrez et al. 2012, 

Wang, 2004) may sometimes lead to better accuracies. The 

synergy between VHR imagery and LiDAR information has 

been used to analyze 3D-forest structure (Machala & Zejdova, 

2014), to monitor forest canopy height (Wulder & Seemann, 

2003) and to classify land cover (Mücher et al., 2015; Parent et 

al., 2015). These studies mention LCC classification accuracies 

of more than eighty percent and emphasize the mutual benefits 

of the combination of VHR imagery and LiDAR. In addition, 

embedding elevation data into LCC change detection is also 

thought to improve the accuracy of segmentation and 

classification (Desclee et al., 2006). The forest cover in a 

landslide area can not only be expressed in areal loss, but can 

also be characterized by changes in AGB, by using tree specific 

allometric relations derived from multi-temporal LiDAR-based 

canopy height models (Muukkonen et al., 2005).  

LiDAR-based DTM differencing (James et al. 2012) may reveal 

detailed changes in topography of forested and non-forested 

parts of the landslide and may aid interpretation of landslide 

development and its relation to event-based loss of trees. These 

trends show that the combination of VHR imagery, LiDAR-

based elevation models and OBIA may result in higher 

accuracies in change analyses studies. To integrate the various 

analysis techniques, we present a combined approach using a 

modular workflow in the commercial eCognition 9.2 software 

package that automatically analyzes LCC change, and, for the 

same time frame, quantifies the topographical and the AGB 

changes of an active landslide near the village of Doren in 

Vorarlberg, western Austria. 

 

2. STUDY AREA  

The landslide near Doren is located in the north of Vorarlberg 

along the river Weißach and is known to be active since 1847 

(Fig 1.). Major events occurred in the early 1927, 1935 and 

1988, during which 2-3x106 m3 was mobilized as rock- and soil 

slides, and debris flows (Jaritz and Marte, 2008). The geology is 

formed by a tilted sedimentary sequence of alternating Molasse 

marls, sandstone and conglomerates (Friebe, 2007), that, in 

combination with a highly fractured rock mass, promotes 

groundwater flow to potential failure planes, thus reactivating 

the landslide. The rock underlain area was glacially eroded and 

covered by 5-10 m of subglacial till, which was dissected again 

by the approximately 80 deep valley of the Weißach River. 

Norway spruce is the dominant tree species on the valley slopes 

with understory of shrubs and many small, open spots, while 

meadows (grass), shrubs and some infrastructure are present in 

the upper, intact low-angle slopes. 

 



 

 
 

Figure 1. Location of the Doren landslide (coordinates: 

47°29'31.9"N 9°52'55.6"E) in Vorarlberg, western Austria.  

 

3. METHODS 

3.1 Data 

In table 1 metadata of the true colour orthophotos (TCO) and 

LiDAR data for 2006 and 2012 are presented. 

 

 Table 1. Metadata of the various datasets 

 

3.2 Workflow  

Figure 2 shows the workflow used to determine LCC change, 

topographical change and AGB change. The workflow consists 

of main procedures (1 – 4) which have been broken down into 

several steps (A – D). To compare the added value of using data 

synergy instead of an individual dataset, three scenarios were 

calculated, indicated by coloured arrows. The ‘synergy’ 

scenario is indicated by a green arrow, while the ‘orthophotos 

only’ and the ‘LiDAR data only’ scenarios are indicated by blue 

and red arrows respectively. 

 

3.2.1 Data Pre-processing 

 

The LAStools extension for ArcGIS was used to interpolate the 

2012 point-cloud LiDAR data (Rapidlasso GmbH). In 

eCognition the maximum first return and minimum last return 

were used to filter out the DTM and DSM respectively.  

3.2.2 Land Cover Change detection 

 

The following land-cover classes that have been recognized and 

used in the LCC are: bare soil, grass and shrub land, forest, 

water, road and buildings. Three scenarios have been processed: 

one using segmentation and classification synergy of the 

orthophotos and LiDAR datasets and two scenarios using only 

the orthophotos and only the LiDAR data. The general 

procedures and steps of segmentation, classification, accuracy 

assessment and image differencing is described in four sub-

sections (see also Figure 2). 

 

 
 

Figure 2. Workflow, in which he ‘synergy’ scenario is indicated 

by a green arrow, the ‘orthophotos only’ and the ‘LiDAR data 

only’ scenarios are indicated by blue and red arrows. 

 

Step A. Following successful applications of multiresolution 

segmentation (MRS) in mountainous environments (Aguirre-

Gutierrez et al., 2012; Anders et al, 2013; Eisank et al., 2014) 

an iterative algorithm was developed producing 125 parameter 

combinations, similarly to the work of Clinton et al. (2010). The 

parameter settings used for scale parameter are 10, 20, 30, 40 

and 50, for the shape parameter 0.1, 0.3, 0.5, 0.7, 0.9 and for 

compactness 0.1, 0.3, 0.5, 0.7 and 0.9. The accuracy of the 

segmentation results was determined by comparing the 

generated objects with the orthophotos based on over-and under 

segmentation (Esch et al., 2008). Based on the accuracy 

assessment a MRS using a scale parameter of 50, a shape 

parameter of 0.3 and compactness of 0.5, and the spectral 

information from the orthophotos in combination with the 

LiDAR-derived canopy height model (CHM) was used.  

 

Step B. The classification consists of two routines: (1) a 

stratified membership classification based on feature space 

optimization (FSO) and (2) fuzzy-logic improvements based on 

context, geometry, spectral and elevation characteristics.  

1. For the FSO 200 samples per land-cover class were 

manually classified based on orthophoto recognition. FSO 

was then applied to twelve distinct features derived from 

both the orthophotos and LiDAR.  

2. Fuzzy-logic rulesets are used to improve the classification 

accuracy after membership-based classification. This step is 

necessary since the overlap of the orthophotos and LiDAR 

introduces some fine-scale errors, for instance shadowing 

effects, small open spots in the forest and mismatches 

between bare soil and the LiDAR model. Fuzzy-logic 

rulesets that use the spectral characteristics (RGB), 

elevation information (LiDAR) and contextual information 

derived from expert knowledge can deal with such errors. 

These detailed rulesets are specifically used to improve fine-

scale features, optimize classification borders and shadows 

and minimize errors as a result of dataset overlap.  

 

Step C. Classification accuracy assessment was performed by 

random selection of 250 objects. A standard confusion error 

matrix was derived including user and producer accuracies 

according to the method described by Congalton (1991). 

 

Step D. After image classification post-classification change 

detection is applied using simple image differencing (Gutierrez 



 

et al., 2012; Zhou et al., 2008).  

 

3.2.3 Topographical change 

 

The topographical change procedure was calculated in two steps 

(Figure 2). 

Step A. The topographical volumetric change was calculated 

for each land cover class using DTM differencing and 

multiplying with pixel size.  

 

Step B. Following Wheaton et al. (2009) the propagation error 

in the DTM differencing process caused uncertainties of 0.29 

meters. This represents 0.0066 m3 per pixel volumetric change. 

Therefore, volumetric changes <0.01 m3 are disregarded and 

considered as ‘no change areas’ to reduce apparent change as a 

result of data errors (Latypov, 2002).   

 

3.2.4 Above Ground Biomass change 

The AGB change procedure was calculated in three steps 

(Figure 2). 

Step A. The eCognition local-maxima algorithm was used on 

the CHM to derive canopy top locations. The local maximum 

algorithm was applied to areas which were classified as forest 

with the synergy approach for LCC.  

 

Step B. Accuracy assessment of the canopy tops is performed 

by manual inspection and comparison of the generated canopy 

tops with the CHM and orthophotos.  

 

Step C. According to Maier et al. (2006) the Norway Spruce, is 

the dominant tree species in Vorarlberg. Therefore, the 

allometric equations for biomass calculation as used by 

Muukkonen et al. (2005) for Norway Spruce were used: 

 

                          DBH = e((0.1687+1.2413* ln([H]))                                          (1) 

 

where            DBH = diameter at breast height 

            H = tree height 

 

          B = e(-4.63873+(2.75352* ln ([DBH])-0.08578* ln ([H])))      (2)

  

where            B = biomass 

    

 

The allometric equations are used to first calculate the diameter 

at breast height [R2 = 0,880]and subsequently the biomass 

using the height of the canopy tops [R2 = 0,946]. 

 

4. RESULTS 

4.1 Land Cover Change 

Although the segmentation results using the synergy between 

the datasets could not be quantified, manual inspection reveals 

that segmentation results improved. Segmentation based solely 

on the orthophotos shows under segmentation of spectrally 

similar adjacent land-cover classes, while segmentation based 

solely on LiDAR-derived data does not distinguish between 

spectrally different land-cover classes with similar elevation 

characteristics.  

Classification results were substantially improved using the 

synergy between the datasets. The highest overall accuracy of 

the classification based on orthophotos only was 76% (kappa: 

0.64), for classification based only on LiDAR-derived data 65% 

(kappa: 0.46) and for the synergy based classification 91% 

(kappa: 0.93). Table 2 shows the confusion matrix for 

classification based on orthophotos and LiDAR in 2012.  

 

 
Table 2. Classification accuracies for 2012 

 

Compared to classifications solely based on membership 

functions, the fuzzy-logic based stratified classifications 

improved the accuracy results with 26% (for 2006) and 18% 

(for 2012). 

Classification based solely on orthophotos may result in 

confusion between forest and grassland and classification based 

solely on LiDAR may cause confusion between grassland and 

bare soil. Orthophoto-based classification does however 

separate grassland with bare soil, while LiDAR-based 

classification separates forests from grassland and bare soil. The 

spectral and elevation synergy between the datasets therefore 

results in accurate classification of all land-use classes. Two 

examples of classification improvements are presented in figure 

3.  

 
 

Figure 3. Two examples of classification improvements using 

data synergy. The left column shows the orthophoto fragments, 

the central the LiDAR hillshade and indicated error in red. The 

right column displays the improved classification result. 
 

In the left column the orthophoto is presented, in the central 

column the LiDAR dataset and errors indicated in red and in the 

right column the improved classification result. LiDAR-based 

errors refer to areas with a CHM higher >2 meters, but without 

vegetation on the orthophotos. These were correctly classified 

as bare soil using spectral information. The shadow areas in 

were correctly classified as grassland using LiDAR derived 

elevation information. 

 



 

In table 3 the LCC changes for each land-cover class from 2006 

to 2012 are summarized. 

 

 
 

Table 3. Quantification of relative LCC per land-cover class. 

 

Table 4 summarizes the ‘from-to’ changes between 2006 and 

2012. A map of these changes in presented in Figure 4, upper 

left panel, in relation to the landslide area and surroundings. 

 

 
 

Table 4. Quantification of ‘from-to’ land-cover change. G = 

grassland, B = bare soil, T = Trees, R = Road. E.g.: GtB = 

Grassland to Bare soil  

 

4.2 Topographical change 

Topographical change is visualized in figure 4, upper right 

panel. Volumetric changes (in m3) are represented in three 

classes, 1. Removal of material (in red), no change (in yellow) 

and deposition of material (in green). The resulting patterns 

reflect the landslide dynamics: red colours dominate in the 

upper scarp section, and alternate with distinct zones of 

deposition and no change, which suggests slide-like movement, 

which is in accordance with observations by Jaritz and Marte 

(2008). Deposition predominates in the toe area of the slide, 

without interruptions of vast removal and no change areas, 

suggesting flow-type accumulations to prevail in the lower 

section of the landslide. Part of the landslide in the lower 

eastern edge of Figure seems to be re-activated, probably related 

to undercutting action of the local Weissach river. 

 

4.3 Above Ground Biomass change  

 
The AGB is plotted in kg for individual tree tops in figure 4, 

upper right panel. Striking is that small trees (biomass<250kg) 

predominantly occur on or close to the lower depositional toe of 

the landslide, along the edges of forest stands and at canopy 

openings, probably due to regrowth between 2006 and 2012.  

Trees with biomass > 1000 kg occur mainly in the middle of 

forest stands and are not affected by the landslide. 

 

4.4 Combined effects of landslides 

The combined results of the LCC, topographical and biomass 

change show patterns that align well with the behaviour of large 

landslides. DEM differencing (figure 4, panel B and C) 

illustrate that that the landslide is dominated by removal, caused 

by ‘slide-type’ movements in the upper scar section, in contrast 

to the lower section, which indicates ‘flow-type’ depositional 

processes. This pattern is reflected in the LCC analysis, because 

deposition into forested area occurs in the lower toe area, 

without causing total removal of trees. In total, the forest area 

slightly increased by 0.86% compared to 2006, while biomass 

decreased -8.3%. Figure 4, panel A (top-left) illustrates the 

details and dynamic LCC on the landslide body, in contrast to 

the relatively stable forested LCC outside the landslide. 

 

Figure 4. A, upper left panel: ‘from-to’ classification results of 

LCC. B, upper right panel: topographical change and AGB for 

individual tree tops. C, lower panel: topographical cross-section 

visualizing DTM differences. 

 

5. DISCUSSION 

Although the quality of the LiDAR data and orthophotos is 

high, the differences in point densities and the applied filtering 

and interpolation techniques may cause error propagation in the 

synergy approach and thus in the resulting LCC. However, 

elevation differences measured from 50 fixed objects has shown 

that elevation differences remain below 30cm. In an active large 

landslide this is not seen as a major problem.  

The synergy of elevation and spectral information to improve 

segmentation and classification has resulted 18-25% higher 

classification accuracies than results based on the single 

datasets alone. Three distinct errors were detected, related to 

shadows and LiDAR-based confusion between LC classes. 

Although synergy solved most of the errors, it remains unsure in 

a dynamic landslide area, what the effect of time differences 

between the orthophotos and LiDAR information is. 

The orthophotos allow detailed validation of LCC, however, 

field validation could improve the accuracy assessment of 

especially AGB; understory, alignment of tree tops on sloping 

areas and other tree growth specific conditions may hamper 

exact AGB biomass estimates. In addition, full understanding of 

the mechanism of landslide dynamics and its combined effects 

to the landscape, requires some level of field inspection. 

The transferability of the workflow to larger areas has great 

potential, however, VHR datasets require efficient computing 



 

power, which implies that cloud computing facilities seems a 

logical future step. 

 

6. CONCLUSION 

The synergy of orthophotos and LiDAR-based information 

improved the object-based segmentation and classification 

results of LCC. Three types of classification errors (shadow 

effects, small open spots in the forest and LiDAR-based errors) 

were removed, by using spectral, DTM and CHM information, 

which increased LCC accuracies by 18% (for 2016) and 26% 

(for 2012). Detailed patterns of stable areas and areas with 

removal and deposition of material were detected on the 

landslide, which likely correlate to slide-type and flow-type 

processes. LCC are most dynamic within the landslide area; 

major changes occurred from grassland to trees, from bare soil 

to grassland and from trees to grassland, while the surrounding 

forested areas remained unchanged. 

 

ACKNOWLEDGEMENTS 

Funding was awarded by the Computational Geo-Ecosystem 

group of the Institute for Biodiversity and Ecosystem Dynamics 

(IBED) of the University of Amsterdam. The Land Vorarlberg 

(www.Voralberg.at) has kindly allowed us to use geographical 

datasets, orthophotos and LiDAR data, available from the 

VOGIS repository. The GIS-studio (www.GIS-studio.nl) of the 

University of Amsterdam is thanked for computational support. 

 

REFERENCES 

Aguirre-Gutiérrez, J., Seijmonsbergen, A. C., & 

Duivenvoorden, J. F., 2012. Optimizing land cover 

classification accuracy for change detection, a combined pixel-

based and object-based approach in a mountainous area in 

Mexico. Applied Geography, 34, 29-37. 

 

Anders, N., Seijmonsbergen, A., and Bouten, W., 2013. 

Geomorphological change detection using object-based feature 

extraction from multi-temporal lidar data. Geoscience and 

Remote Sensing Letters, IEEE, 10(6):1587-1591. 

 

Congalton, R. G., 1991. A review of assessing the accuracy of 

classifications of remotely sensed data. Remote Sensing of 

Environment, 37(1):35-46. 

 

Desclee, B., Bogaert, P., and Defourny, P., 2006. Forest change 

detection by statistical object-based method. Remote Sensing of 

Environment, 102(1):1-11. 

 

Eisank, C., Smith, M., and Hillier, J., 2014. Assessment of 

multiresolution segmentation for delimiting drumlins in digital 

elevation models. Geomorphology, 214:452-464. 

 

Esch, T., Thiel, M., Bock, M., Roth, A., & Dech, S., 2008. 

Improvement of image segmentation accuracy based on 

multiscale optimization procedure. IEEE Geoscience and 

Remote Sensing Letters, 5(3), 463-467.  

Friebe, J. (2007). Geologie der Osterreichischen bundeslander 

vorarlberg. Geologische Bundesanstalt, Wien, page 154. 

 

James, L. A., Hodgson, M. E., Ghoshal, S., and Latiolais, M. 

M., 2012. Geomorphic change detection using historic maps 

and DEM differencing: The temporal dimension of geospatial 

analysis. Geomorphology, 137(1):181-198. 

 

Jaritz,W., Marte, R., 2008. 75 Jahre Sanierung 

Großhangbewegung Doren (Vorarlberg) – Ungleiches Ringen 

zwischen Natur und Technik? Moser/Jaritz Ziviltechniker 

GmbH. http://mediatum.ub.tum.de/doc/1138083/1138083.pdf 

 

Lahousse, T., Chang, K. T., & Lin, Y. H., 2011. Landslide 

mapping with multi-scale object-based image analysis–a case 

study in the Baichi watershed, Taiwan. Natural Hazards and 

Earth System Sciences, 11(10), 2715-2726. 

 

Latypov, D., 2002. Estimating relative lidar accuracy 

information from overlapping flight lines. ISPRS Journal of 

Photogrammetry and Remote Sensing, 56(4):236-245.  

 

Li, X., Cheng, X., Chen, W., Chen, G., & Liu, S., 2015. 

Identification of forested landslides using LiDar data, object-

based image analysis, and machine learning algorithms. Remote 

Sensing, 7(8), 9705-9726. 

 

Machala, M. and Zejdova, L., 2014. Forest mapping through 

object-based image analysis of multispectral and lidar aerial 

data. Eur.J.Remote Sens, 47:117-131. 

 

Maier, B., Tiede, D., & Dorren, L.K.A., 2006. Assessing 

mountain forest structure using airborne laser scanning and 

landscape metrics. Salzburg: Int Archives Photogrammetry 

Remote sensing Spatial Information Science XXXVI-4/C42. 

 

Mucher, C., Roupioz, L., Kramer, H., Bogers, M., Jongman, R., 

Lucas, R., Kosmidou, V., Petrou, Z., Manakos, I., and Padoa-

Schioppa, E., 2015. Synergy of airborne lidar and worldview-2 

satellite imagery for land cover and habitat mapping. 

International Journal of Applied Earth Observation and 

Geoinformation, 37:48-55. 

 

Muukkonen, P., & Heiskanen, J., 2005. Estimating biomass for 

boreal forests using ASTER satellite data combined with 

standwise forest inventory data. Remote Sensing of 

Environment, 99(4), 434-447. 

 

Parent, J. R., Volin, J. C., and Civco, D. L., 2015. A fully-

automated approach to land cover mapping with airborne lidar 

and high resolution multispectral imagery in a forested 

suburban landscape. ISPRS Journal of Photogrammetry and 

Remote Sensing, 104:18-29. 

 

Wang, L., Sousa, W. P., & Gong, P., 2004. Integration of 

object-based and pixel-based classification for mapping 

mangroves with IKONOS imagery. International Journal of 

Remote Sensing, 25(24), 5655-5668. 

 

Wheaton, J. M., Brasington, J., Darby, S. E., and Sear, D. A., 

2010. Accounting for uncertainty in dems from repeat 

topographic surveys: improved sediment budgets. Earth Surface 

Processes and Landforms, 35(2):136-156.  

 

Wulder, M. A. and Seemann, D., 2003. Forest inventory height 

update through the integration of lidar data with segmented 

landsat imagery. Canadian Journal of Remote Sensing, 

29(5):536-543. 

 

Zhou, W., Troy, A., and Grove, M., 2008. Object-based land 

cover classification and change analysis in the Baltimore 

metropolitan area using multi-temporal high resolution remote 

sensing data. Sensors, 8(3):1613-1636. 

http://www.voralberg.at/
http://www.gis-studio.nl/

