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Abstract. In this paper, we introduce a general technology, called taming, for finding well-behaved 
versions of well-investigated logics. Further, we state completeness, decidability, definability and 
interpolation results for a multimodal logic, called arrow logic, with additional operators such as 
the difference operator, and graded modalities. Finally, we give a completeness proof for a strong 
version of arrow logic. 

Key words: arrow logic, modal logic, completeness, decidability, difference operator, graded modal- 
ities 

1. Taming 

In this section, we argue that it is important to find nice (complete, decidable, etc.) 
versions of logics, and introduce a technology to achieve this goal. 

1.1. WHY TAME? 

There are interesting and well-investigated logics that do not behave in a nice way in 
some respects. Examples are the undecidability of classical first-order logic, FOL,  

and the incompleteness and undecidability of several versions of  arrow logic, AL, 
cf. Definition 2.1. 

One may argue that some of these features are necessary, e.g., in FO L  we can 
build up whole of  mathematics, so FOL must have a high complexity. However, 
F O L has several other applications when decidability would be a desirable prop- 
erty. For instance, (Andrtka et al., 1995c) proposes relativized versions of FO L  as 
"modal  fragments" of classical logic. These relativized versions have nicer prop- 
erties than FOL  itself, cf. (Andrtka and Thompson, 1988) (in algebraic disguise), 
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and (Marx and Venema, 1995), (Mikul~is, 1995a) (in modal-logical disguise), and 
(N6meti, 1986; 1992). 

Our other example is arrow logic, (AL). AL as defined in (van Benthem, 1994a) is 
intended to be the core of logical systems for reasoning about dynamic aspects of the 
subject matter of our thinking, e.g., properties of processes, actions and programs. 
Thus, one of the basic intended areas for applications of AL is computer science. 
There decidability of AL is clearly a desirable property. The most interesting 
connective of AL - and certainly one that contributes to the dynamic character 
of the logic - is composition. If composition is an associative operator, AL is 
undecidable. Moreover, any non-trivial extension or strengthening of associative 
AL is undecidable, cf. (Andr6ka et al., 1994a). Thus, it is natural to consider non- 
associative versions of AL. Indeed, most of them are decidable and complete, cf. 
below. 

On the other hand, we would like the expressive power of the nice logic to 
be rather large. To achieve this, one can strengthen the logic by introducing new 
connectives while taking care not to lose the nice properties. Below we will give 
examples how to do this. 

1.2. How TO TAME MODAL LOGICS. 9 

To answer this question let us consider our two examples, FOL and AL, and try to 
understand what causes the undesirable properties of these logics. 

(1) Consider classical first-order logic as a modal logic, cf. (Venema, 1992a; 
1995). Then the frame condition corresponding to the commutativity of the quan- 
tifiers ~Vi~Vj~ ~ ~Vj~Vi~ is 

Vxyz((Tixz 8: Tjzy) :::y 3z ' (Tjxz '  & Tiz'y)), 

where x, y, z, z I are "worlds", and Tk is the accessibility relation of the "modality" 
3vk. In (N6meti, 1992), it is argued that the above condition is the reason for 
the undecidability of FOL. In (N6meti, 1992), (Marx, 1995), (Marx and Venema, 
1995) and (Mikul~is, 1995a) there are several decidable quantifier logics lacking 
this condition. 

(2) Our other example is arrow logic. If we consider the associative version of 
AL, then the frames satisfy 

Vxyzuv((Cxyz & Cyuv) ~ 3w(Cxuw a Cwvz)), 

where C is the accessibility relation interpreting the binary modality e, cf. Defini- 
tion 2.1. The above frame condition corresponds to (~ �9 r �9 X ---* ~ �9 (r �9 X). 
Associativity of composition makes arrow logic undecidable, cf. (Andr6ka, 1991 a), 
(Andr6ka et al., 1994a) and Theorem 2.2 below. 

Both of the above conditions are existential frame conditions. Thus, these exam- 
ples suggest that some existential frame conditions may be dangerous, i.e., they 
may cause undecidability and non-finite axiomatizability. The first step in taming 
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a logic is to get rid of those existential frame conditions that cause undesirable 
properties. First step. First we will get rid of all of the existential frame conditions, 
and then add back the innocent ones. 

(I) Let L(K) be a modal logic defined by a class K of Kripke frames. We can 
define a first-order language using the accessibility relations Rc of K as n + 1-ary 
predicates for every n-ary modality c of L. We take all the substructures in the 
first-order model-theoretic sense of elements of K, cf. (Chang and Keisler, 1990). 
Then we get a class SubK of frames. We call the logic L(SubK) the core of L(K). 
If we consider the universal first-order theory of K, then it coincides with that of 
SubK. Thus, in the logic L(SubK),  we got rid of the existential frame conditions 
of K. 

There are several reasons to start the taming process with L(SubK).  First, in a 
sense, L(SubK) is relatively close to L(K), since all universal frame conditions are 
preserved. Second, as we saw above, in many cases some of the existential frame 
conditions are responsible for the ugly behaviour. So there is a chance that L(SubK) 
has nicer properties than L(K). Moreover, if we consider the class AIg(L(K)) of 
algebras* corresponding to the logic L(K), cf. (Andr6ka et al., 1995a; 1995b), 
then we can get the class AIg(L(SubK)) by a well-known and well-investigated 
operation called relativization, cf. (Henkin et al., 1985). In many cases, this yields 
a class of algebras with nicer properties than the original class, reflecting the fact 
that L(SubK) has nicer properties than L(K) does. 

(II) Although this procedure may yield nicer logics, it is a very drastic step. The 
situation is like taming a lion by pulling out all of its teeth. Since we got rid of all 
of the existential conditions and not just the dangerous ones, usually L(SubK) is 
remarkably weaker than L(K). 

Thus, it is natural to try to find a class K ~ of frames such that K C K ~ c S u b K  
and L(K ~) still has nice properties. In this way, we may get back some of the power 
of L(K). 

An example is pair arrow logic, cf. below. In pair arrow logic, SubK consists of 
all frames whose universes are arbitrary binary relations. If we make the require- 
ment that the universes must be symmetric and reflexive relations (these properties 
are expressible by existential frame conditions, cf. below), then the logic of these 
frames still has the same nice properties, cf. Theorem 2.2. 

Second step. Although we may strengthen the logics in the above way, the expres- 
sive power of these logics is usually strictly smaller than that of the original logic. 
For instance, there may be connectives that are not definable any more. The larg- 
er expressive power has obvious advantages. Beside that, the stronger logic may 
have nicer properties as well. For instance, the existence of the universal modality 
ensures that the logic has a deduction term, i.e., the deduction theorem holds. See 
(Simon, 1992) for more detail and motivation for strengthening. 

* In case of a modal logic L(K), this class can be defined as the class of subalgebras of products 
of complex algebras of members of K. 
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Thus, we will try to introduce new connectives to the logic without losing the 
nice properties. Examples are the universal modality ~ ,  the difference operator D, 
and the graded modalities (n) that can be added to the nice versions of arrow logic 
without losing decidability, cf. Theorem 2.5 below. 

The coordinate-wise versions (n)i for i < n and transitive closure can be added, 
too, with similarly positive results (to mention a few more examples). 

2. Arrow logic 

We illustrate our two-step strategy of taming logics using arrow logic. First we give 
the definitions of several versions of arrow logic. We will concentrate on its pair 
version and tame it. For more on arrow logic see (van Benthem, 1994a), (Marx, 
1992; 1995), (Marx et al., 1992), (Venema, 1992b), and (Andr6ka et al., 1994a), 
(Mikul~is et al., 1995), (Mikultis, 1992; 1995b), (Simon, 1992). For a logic with 
the same connectives as arrow logic see the algebraic logic of binary relations s 
in (Tarski and Givant, 1987) p. 47. 

DEFINITION 2.1. Arrow logic, AL, is defined as follows. Its connectives are 
the Booleans, the identity constant id, a unary connective | called converse, and a 
binary connective �9 called composition. The set of formulas is built up in the usual 
way using a denumerable set of propositional variables. 

A structure (W, C, F, I) is called an arrow frame if W is a non-empty set, I is 
a unary, F is a binary, and C is a ternary relation on W. An arrow model  is an 
arrow flame together with a valuation v of the propositional variables. Truth of a 
formula ~ at a world w in a model (W, C, F, I, v), in symbols wl[-v~, is defined as 
follows: 

_ w l ~ _ p  ,def,  W E v(p) for every propositional variable p, 
,def, 

- wlt--.-~o -, ,- not wl~-~qo, 

- w l k ~  �9 r ,d~t, (~w',w" e w)cww'w"  & w ' l k ~  & w" ~ ~/, 
�9 " I V Y '  

- Wlkv| ,,a~e, (3w' ~ W)Fww' & w ' l k ~ ,  

Pair arrow logic is defined as follows. Its syntax is the same as that of AL. An 
arrow flame (W, Cw, Fw, Iw) is a pair f rame if the following holds. The universe 
W is a binary relation W _c U x U for some set U, called the base of the flame, 
and the accessibility relations Cw, Fw, and I w are relation composition, relation 
converse, and identity restricted to W. That is, for all (z, x~), ( y , f ) ,  (z, z') E 
W, 

fief, Xl z / y/ - C w ( x ,  x ' ) ( y ,  y ' ) ( z ,  z ' )  -~ ,- x = y ~ = e~  = z ,  

- F w ( x , x ' ) ( y , y ' )  ~ x = y' ~ ' =  y, 

- I w ( x , x ' )  ~ x = x'. 
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The class of all pair frames will be denoted by PF. We define subclasses of PF as 
follows. 

Let s, r, t abbreviate 'symmetry' ,  'reflexivity' and 'transitivity', respectively, 
and let H _ {r, s, t}. PFH denotes that subclass of PF where each element of 
PF n satisfies the properties in H.  Thus, e.g., PFr,s consists of all pair frames with 
reflexive and symmetric universes. Let PFsQ be the class of square pair frames, 
i.e., those with universe of the form U x U. 

Now we define several versions of pair arrow logic corresponding to the above 
classes of frames. The logic PALH is defined as the arrow logic of the class P FE of 
frames: PALE = L(PFH).  That is, the universe of a frame for PALE is any binary 
relation satisfying the conditions in H.  We will call these logics the relativized 
versions of (pair) arrow logic. PAL 0, that is, when H = 0, is called the completely 
relativized version of pair arrow logic. PALso denotes the square version of pair 
arrow logic: PALsQ = L(PFsQ). 

Validity of a formula ha a model, (W, C, F, I, v) ~ ~ is defined ha the usual way: 

(W, C, F, I, v) ~ ~ ~ (Vw E W) lHv . 
Given a class K of frames, the (global) semantical consequence relation, F ~K ~' 
is defined as follows. F ~ K  ~ iff for every model (.T, v) such that .T C K, if 
P is valid in (.T, v), then so is ~.* Thus, e.g., ~PFsQ denotes the semantical 
consequence relation in PALsQ. 

Let us consider the strongest pair arrow logic PALsQ, and try to apply the taming 
strategy described ha the previous section. In the above definition of PALsQ, we 
required that the universes of the frames are Cartesian spaces. Transitivity of 
the universe ensures that composition is associative, i.e., the following is a valid 
formula: 

Associativity causes both Hilbert-style incompleteness and undecidability of pair 
arrow logic, cf. (Andr6ka, 1991a) and (Andr6ka et al., 1994a). Thus, to find nicer 
versions of pair arrow logic we should apply the "non-square approach", i.e., allow 
frames with non-square universes. 

First step. (I) The core of PALsQ is the completely relativized pair arrow log- 
ic PALe. We got rid of the existential conditions by relativization, i.e., by defin- 
hag the meanings of the formulas relative to an arbitrary binary relation. That is 
why associativity does not hold in PALe. To see more clearly why associativity 
does not hold ha (many of) the relativized versions of arrow logic, we introduce 

the following notation: let [~1 def {w E W : wl~-v~ }, and for X, Y C W, 

* Note that the semantical consequence relation can be defined locally as well, i.e., using truth at 
a world instead of validity in a model. 
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x ow z e w : 
model for PALH with universe W C_ U x U, 

E X & (w", w') E Y)}. Then, in a 

�9 r  = N ow [r = ( H  ov•  [r n w .  

That is, to get the meaning of composition in relativized models, we have to 
intersect the standard (or unrelativized) meaning with the universe of the model. 
There are non-transitive relations W such that (w, w') E W, and for some x, 
(w, x) E Iq~ o W I~;] and (x, w') E IXI, while Ir ~ IX] = 0. That is, I (~ �9 r �9 

The completely relativized version PAL o behaves much nicer than the square 
version PALso., cf. Theorem 2.2. 

(II) The logic PAL 0 is much weaker than PALsQ. For instance, ~ �9 id ~ ~o 
is not valid in PAL o, while it is valid in PALso ,. The reason for this is that we 
allowed frames with irrefiexive universes, i.e., the existential frame condition 
Vx3y(Iz A Cxxz) does not hold in PF. Another example is the formula |174 ~ ~, 
and the corresponding frame condition is Yx3!y (Fxy A Fyx) implying symmetry of 
the universe of the pair frame. We may consider pair frames with reflexive and/or 
symmetric universes getting back some of the existential frame conditions of P F sQ, 
and strengthening the logic this way. Then we get the logics PALH (H C {r, s}). 
These logics still have the nice properties, cf. Theorem 2.2 below. 

We recall that by a Hilbert-style calculus we mean an inference system given 
by a finite set of axiom schemata and inference rules such that the rules do not 
contain any side conditions.* For the definitions of the other metalogical notions 
we refer to (Andr6ka et al., 1995a; 1995b), (Chang and Keisler, 1990) and (Marx, 
1995). 

The various parts of the following theorem have been proved by H. Andr6ka, 
R. Kramer, R. Maddux, M. Marx and I. N6meti. For precise reference we refer to 
(Marx, 1995). 

THEOREM 2.2. Let H C_ {r, s, t} be arbitrary. Then 
1. PALH has a strongly sound and strongly complete Hilbert-style calculus iff 

2. PALH is decidable iff t • H; 
3. PALH has the Craig interpolation property iff t r H; 
4. PALH has the Beth definability property iff t r H. 

We mention that the above negative results hold for PALsQ, since the theories of 
PFsQ and PFr,s,t are the same. (Because every PFr,s,t-frame consists of a disjoint 
union of square frames.) 

* For instance, the calculi containing the irreflexivity rule for the difference operator, cf. (Gabbay, 
1981) and (Venema, 1992a), are not Hilbert-style calculi. 
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Second step. In PALsQ there are connectives that are not definable in PALH 
(H C_ {r, s}). Consider the universal modality ~ interpreted as: 

In PALsQ, <> ~ can be defined as T �9 ~ �9 T while in PALH it is not definable, cf. 
(Andr6ka, 1991b). The ~ is really useful from a theoretical point of view, since a 
deduction term is definable using O, of. (Simon, 1992). 

To strengthen our relativized logics, we may re-introduce connectives which 
were definable in the square logic, or we may even add new connectives. We will 
add the difference operator D to PALH, obtaining PAL D. The interpretation of D 
is: 

Note that D~ is definable in PALsQ by (7- �9 ~ �9 ~id) V (~id �9 ~ �9 7-), cf. (Venema, 
1992b), and that ~ ~ is definable by D: D~ V ~p. For more on the difference operator 
see (Gargov et al., 1987), (Koymans, 1989), (de Rijke, 1993) and (Sain, 1988). 

We will prove that adding D to PALr,s does not ruin completeness. We prove the 
following theorem in the next section. An algebraic proof can be found in (Marx 
etal., 1994)and (Mikul~is, 1995b). 

THEOREM 2.3. For H = {r, s}, PAL D has a strongly sound and strongly complete 
Hilbert-style calculus. 

We conjecture that the above theorem remains true for any H C {r, s}. For 
the case t E H,  (Andr6ka, 1991 a) gives a negative answer. 

For decidability, a similar result holds (for the decidability proof, cf. (Andr6ka 
etaL, 1994b)or (Mikul~ts, 1995b)). 

THEOREM 2.4. The difference logic PAL D is decidable iff t ~ H. 

We can also add the so-called graded modalities (n) for n E • \ 1: 

def ~ W if I[[~]1 > n 
= ~ 0 otherwise. 

We denote this new logic by PAL/~ ad. Note that (n) is definable in PALsQ if 
n E {1,2}, el. (Marx, 1995), and that D and (1>, (2) are definable in terms of each 
other. For motivation concerning graded modalities, their application in computer 
science, epistemic and probability logic we refer to (van der Hoek, 1992). We can 
add all the (n) to PALH (t ~ H) without losing decidability. The next theorem is 
due to H. Andr6ka, Sz. Mikultis and I. N6meti, its proof can be found in (Andr6ka 
et al., 1994b) and (Mikul~is, 1995b). 
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DA l grad THEOREM 2.5. The graded logic , ,  ~ H  is decidable iff t ~ H. 

Unfortunately, the Craig interpolation and Beth definability properties are not 
preserved after strengthening. M. Marx, I. N6meti and I. Sain showed that PALBH 
and PAL~ ad do not have these two properties for any H c_ {r, s, t}, see (Marx, 
1995). 

Let us conclude this section with some remarks. As we mentioned above, 
there are relativized versions of FOL that behave nicely. We will not deal with 
this problem here. However, FOL~, the 3 variable fragment of FOL with binary 
predicates is equivalent to PALsQ, cf. (Henkin et al., 1985) and (Tarski and Givant, 
1987). Thus, whenever we obtain results about PALsQ, these results apply to FOL 2 
as well. For more information on taming FOL, we refer to (Andr6ka et al., 1995c) 
and (Mikul~is, 1995a). 

Note that, for n > 1, (n) is not a modality in the following sense: it does not 
distribute over disjunction, i.e., the following is not a valid formula: 

v r v 

However, we can add modalities On to PALH such that the two logics become 
equivalent. That is, the connectives (with their intended meanings) of one logic can 
be defined in terms of the connectives of the other logic, cf. (Andr6ka and N6meti, 
1994). The interpretation of On is: 

W i f (3wo, . . . ,wn_l  E W)(Vi E n) 
~<>n(cPo,..., qon-1)] def wi E Iqoi] & (Vj r i)wi ~ wj 

0 otherwise. 

It is easy to see that ~ n  distributes over disjunction in each of its arguments. 

3. Proof of Theorem 2.3 

This section is devoted to the proof of the completeness Theorem 2.3: we provide 
an explicit derivation system for the logic PAL~,. We start with an outline of the 
proof. Define the following class of pair frames: 

PFDr,8 dej { 5  = (V, Cv, Fv, Iv, ~)"  <V, CV, FV, Iv> E PF,.,~}. 

Here r denotes inequality, and is the accessibility relation of the D-operator. By 
definition, PAL~8 is the logic of the class PFDr,8. Below we define a class of 

arrow frames K D by means of Sahlqvist formulas such that for every set of PALDs- 
formulas F U {qa}, we have F ~KD qo if and only if P ~PFD~,, qo. Sahlqvist's 
theorem gives us a completeness result with respect to the "abstract" class KD. But 
then we also have a completeness result with respect to the class of pair frames 
PFDr,s. 
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In our proof strategy we follow the two-step taming process described above. 
First we define by means of Sahlqvist formulas a class K of arrow frames such that 
K equals the closure under zigzagmorphic images (to be defined below) of the class 
of pair frames PFr,s. This will give us an explicit Hilbert-style derivation system 
for PALr,s. We use some correspondence theory to get a clear first-order description 
of K. In this part we just state results which are known and well documented in the 
literature. 

In the second part, we use the results about the classes K and PF~,s. We define the 
class KD of "abstract" frames and show that KD equals the closure under disjoint 
unions and zigzagmorphic images of the class of pair frames PFD~,s. In this part, 
where we are mainly concerned with the difference operator, we use "copying 
techniques" which are applied in various places in the literature concerning the 
D-operator (cf., e.g., (Koymans, 1989), (Gargov et al., 1987), (de Rijke, 1993), 
(Sain, 1988)). This finishes the outline of the proof. 

We will frequently use the generalization of Sahlqvist's theorem (cf., (Sahlqvist, 
1975)) to arbitrary modal logics as described in (de Rijke and Venema, 1991). 
Sahlqvist's theorem specifies a large set of modal formulas, so-called Sahlqvist 
formulas, with the following two properties: 

- every Sahlqvist formula ~ corresponds to an effectively obtainable first-order 
formula ~p* in the first-order language of the frames of the logic such that, for 
every frame .?': 

- for every set F of Sahlqvist formulas, the derivation system consisting of 
the K-axioms,* F, and the rules modus ponens, universal generalization and 
substitution, is strongly sound and complete for ~K,  where K = {5 r : .T" 
r}. 

3.1. FIRST TAMING STEP: AXIOMATIZING PALr,s 

Define the following set of arrow-logical formulas: 

(AI) T . ( T  | T,( idA~p) 
(A2) ~ * id ~ 
(As) |174 ~ qo 
(A4) | �9 ~) e-+ |  �9 |  
(As) |  �9 ~(~ �9 r  A r ---* _L. 

Let K denote the class of all arrow frames satisfying the axioms A1, . .  �9 As. Note 
that all of A1 ,. �9 �9 A5 are in Sahlqvist form. The conditions which correspond to 
these axioms are the following: 

* This set of axioms includes enough propositional tautologies, and the formulas ensuring that the 
modalities distribute over disjunction. 
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(C1) Vxyzv((Cxyz A Czzv A Iv) --+ Cxxv) 
( c2 )  V z 3 y ( I z  A C z z z )  
(62,) W y z ( C : v z  A ,z --, �9 = y) 
(C3) Vx3!y(Fxy A Fyx) 
(C4) Vxyz(3w(Fxw A Cwyz) ~ 3y'z'(Fy'y A Fz'z A Cxz'y')) 
(C5) Vxyzv((Cxyz&Fyv) ~ Czvx). 

PROPOSITION 3.1. Let .T = (W, C, F, I) be an arrow flame, then 

.FEK -', ',- , r  ~ C1, .  . . , Cs. 

Proof By the correspondence part of Sahlvist's theorem using, e.g., the Sahlqvist 
algorithm described in (de Rijke and Venema, 1991). [] 

Now we will take a closer look at arrow flames satisfying these conditions, because 
that will be useful later on. 

If an arrow frame satisfies conditions (C1) - (C5) then there are three total 
functions living in this frame (cf. Proposition 3.2 below). They are defined as 
follows. 

fx = y ,.clef.,. Fxy 

Xl = Y ,.clef.,. Cxyx A ly 

x ~ = y  ,gel> CxxyAly 

So, fx gives us the converse arrow of x, and the functions (')t and (')r (l for left 
and r for right) give us the left and the right "endpoints" of an arrow. 

It is convenient to have explicit symbols in our language corresponding to 
the two defined functions. We use the following convention: s~ qo abbreviates 
(id A~) �9 -F, and s o q~ stands for T �9 (id Aqo). We also define abbreviations for their 
conjugates* dora and ran as follows: doraqa stands for (id A(qo �9 T)),  and ran~ for 
(id A(T �9 T)). Their meanings are given by the following equations. This is easy 
to see by writing out the definitions. 

I d d  = {~: x~ �9 N }  

~sO ~] = {~.  x~ �9 M }  1 

PROPOSITION 3.2. Every arrow frame which satisfies the conditions (C1)-(C5) 
also satisfies conditions (To)-(Ts) below. 

* Two unary modalities are conjugates ff the truth definition of the one uses the inverse of the 
accessibility relation of the other. An example is the pair {F, P} from tense logic. Note that | is its 
own conjugate. 
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(To) f, (.)t and (.)~ are total functions, and f is idempotent 
(T1)  V x ( I x  x = = = 

(T2) Vx(xl = (fx)~/~ x~ = (fx)t) 
(T3) Vxyz (C xyz  ~ xl = Yl /~ Yr = Zt A Zr = Xr) 
(T4) Vxyzv (Cxyz  A Fzv ~ Cyxv) 
(TS) Vxyz (Cxyz  A Ix --~ Fzy) 

Proof  Cf. (Marx, 1995). 

Since in the frames from K, the relation F will be a total function, we will denote 
it from now on by the function symbol f. 

Before we go to the D-operator, we need to state one more result. For that we 
need the notion of a zigzagmorphism (this notion is also known under the names 
p-morphism or bounded morphism, cf. (Bull and Segerberg, 1984)). 

DEFINITION 3.3. Let ~ =  (V, CT, f ~-, I ~') and G -- (W, Cg,f  a, I a) be two arrow 
frames. A function h : V ~ W is called a zigzagmorphism if it satisfies the 
following conditions: 

| ]dFx  .,. ,. Idah(x)  
| h(f~-x) = fan(x)  
| C T xyz  ~ Cah(x)h(y)h(z)  
| Cgh(x)yz  ~ (3y ' , z '  e V) (h(y  ~) = y & h(z') = z & C~:xy'z'). 

If h is a surjective function, then ~ is called a zigzagmorphic image of 9 t'. 
For K a class of frames, we use ZigK to denote the class of all zigzagmorphic 

images of members of K. 
Let M = (~,  v) and N = (~, v t) be two arrow-logical models. Then h is a 

zigzagmorphism from M to N, if in addition to the above conditions, it satisfies: 

�9 x E v(p) ~ h(x) E v'(p), for every propositional variable p. 

We recall from (Bull and Segerberg, 1984) the standard modal-logical result that 
(local) truth is preserved under zigzagmorphisms between models. 

The next proposition relates the two classes K and PFr,~ of frames. 

PROPOSITION 3.4. K = ZigPFT,~. 
Proof  An explicit proof can be found in (Marx and Venema, 1995). The propo- 

sition originates, in algebraic disguise, with (Maddux, 1982). [] 

Now we can state a Hilbert-style completeness result for PALT,s. Let ~Kl denote 
the derivation system for arrow logic consisting of the K-axioms, the axioms 
A 1 , . . . ,  As, and the rules modus ponens, universal generalization and substitution. 
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THEOREM 3.5 (Soundness and Completeness for PALr,s). Let P U {qo} be any set 
of AL-formulas. Then, 

F I-K1 ~ -: ,'- F ~PF,.,, ~" 

Proof. By the completeness part of Sahlqvist's theorem, I-K~ is strongly sound 
and complete with respect to the class K. It is easy to check soundness of ~-K1 
with respect to the class PFr,8. For completeness, assume P ~/K1 ~. We have to 
prove I' ~PF,, ,  ~" By the Sahlqvist completeness result, there is a frame F E K, a 
valuation v and a world w such that <~, v) ~ 1" and w]}--~--,~. By Proposition 3.4, 
~" is a zigzagmorphic image of a pair frame ~ E PF~,~. Let this zigzagmorphism 
be denoted by h. Let the valuation v I on G be defined as: 

v' (p) = {w' : h(w') e v(p)}, for every propositional variable p. 

Then the model (F, v) is a zigzagmorphic image of the model (~, v/>. Thus, for 
every world w' of ~ and formula ~b, wll[--v,~# iff h(wl)l[-v%b. This means that 
(~, v ~ > # 1". On the other hand, let w ~ be the pre-image of w, i.e., h (w ~) = w. Then 
w~l[-~,-,qo by w l ~ - ~  ~. That is, we found a pair model witnessing P ~PF,, ,  qo. [] 

With Theorem 3.5 we finished our first step in the taming process. No w we apply 
the second step, and add the difference operator to the just tamed logic. 

3.2. SECOND TAMING STEP: AXIOMATIZING PALDr, s 

We now give a characterization of the class PFDr,s in the same spirit as above for 

PFr,,. Define the following PALDs formulas: 

(A6) ~ A DO ~ D(O A D~) 
(AT) DD~p ~ (qo V D(p) 
(A8) - - ,  

(A9) cp ,p '0 ---'+ O ~  A � 9  
(Alo)  l(dom(  �9 dome,))  �9 V 
( . a . )  ,--, Ddom  V s o 

Again all these formulas are in Sahlqvist form, as is easy to verify. Let FK2 be the 
extension of the derivation system FK1 with the axioms (A6),. �9 ,(All ) and distri- 
bution and universal generalization for the D-operator. We are ready to formulate 
an explicit version of Theorem 2.3. 

THEOREM 3.6 (Soundness and Completeness for PALDs). Let 1" U {~} be any set 

of PAL D-formulas. Then, 

F FK2 ~# ~ 1 ~ ~PFD,.,, ~. 
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Proof. By Proposition 3.9 below, using the same argument as in the proof of the 
completeness Theorem 3.5. [] 

The rest of this section is devoted to a proof of Proposition 3.9 below. We proceed in 
the same way as in the case ofPALr,s, so we start by stating the frame correspondents 
of the axioms. 

Expand the first-order language of arrow frames with a binary relation R, which 
denotes the accessibility relation of the D-operator (R is not necessarily 5).  That 
is, in a model with valuation v, 

xll-vD~ ~ (3y)Rxy & UlFv~P. 

The conditions corresponding to the axioms (A6), �9 �9 �9 (All) are the following: 

(66) Vxy(Rxy  ---* Ryx) 
(67) Vxuz((Rxu A Ryz) + (x = z V Rxz)) 
(68) Vx(x  = fx V Rxfx) 
(69) Vxyz (Cxvz  ~ ((x = Y V Rxu) A (x = z V Rxz))) 
(61o) Vxyz((xl  = Yt A Yr = zt) ~ (Cxyz V Rxrzr)) 
(Cll) Yxy (Rxy  ~ (Rxtyl V Rx~yr)). 

PROPOSITION 3.7. Let 9 v-- (W, C, f, I, R) be an expanded arrow frame satisfying 
the conditions 6 1 , . . . ,  65. Then, for 6 < i < 11, we have 

~ (Ai) .~ ; . . ~ ( C i ) .  

Proof. By the correspondence part of Sahlqvist's theorem. We show the "hard 
side" of (Cn)  as an example. Assume .7- ~ (All). We want to show that 

~ (611), so assume Rxy, for some x, y in the domain of.7". Let M = {9 r,  v) be a 
model with v(p) = {y}. Then xlF-vDp, whence xIF- v s I Ddomqo v s o Drank. Sup- 
pose xlt- v s~ DdomqD. Unraveling the truth-definition, we obtain that there exists 
a z such that Rxlz and zlt--vdomp. But then, by our chosen valuation and the fact 
that .7" satisfies C1,. �9 �9 65, z must be Yl, so we have Rxtyt, as desired. The other 
side is proved similarly. [] 

Define the following class of arrow frames expanded with a binary relation R: 

KD def {.7"-- {W, C,f, I, R} : 9 t" ~ (C1) - (Cll)}. 

Later we need the following facts about this class. 

PROPOSITION 3.8. The following theorems follow from conditions (61)--(610): 

(D1) Vxyz((~Rxly l  A Yr = zl A Zr = xr) ---+ Cxyz) 
(D2) Vzyz((zz  = Yl A ~Ryrzz A zr = x~) ~ Cxyz) 
( 0 3 )  vxu((x  = A  Rz, u,) x = 

(04) gxy( (~Rxty t  A x~ = y,)  ~ x = y). 
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Conditions (D1) and (D~) are just variants of (C10). (D3) and (D4) express the 
fact that if xt = yt, xr = Yr and one of the two pairs is R-irreflexive, then x equals 
y. 

Proof. Use (6'10), (C5), (T4) and (T2) to show (D1) and (D2). Assume the 
antecedent of (D3). Use (T1) and (T2) to derive that (xt)t = xl A ~Rx~(fy)t A 
(fy)~ = (xt)~.. Then (D2) implies that Cxtxfy and (Ts) that fly = x. But then, 
idempotence of f implies x = y. (D4) follows easily from (D3). [] 

We are almost ready to formulate the core lemma of the completeness proof. A 
zigzagmorphism between arrow frames expanded with the relation R is a zigzag- 
morphism for the arrow frames with the extra condition that (in the terminology of 
Definition 3.3): 

�9 R:rxy :=> R6h(z)h(y) 
�9 3 y ' ( h ( y ' )  = y 

Let (AU) denote the frame condition Vxy(x r y ~ Rxy). 

PROPOSITION 3.9. (i) Each .T E KD consists of a disjoint union of frames 
satisfying ( AU). 

(ii) Each 5 r E KD which satisfies (AU) is a zigzagmorphic image of some 
G e PFDr,s. 

Proof. (i) Let .T'= (W, C, f, I, R) E KD. Define a binary relation ,-~ on W as 
follows 

x ~ y  d ~ x = y V R x y .  

Conditions (C6) and (C7) imply that ,,~ is an equivalence relation. We denote the 

equivalence class of x by ~ d=ef {y E W : x ,-~ y}. Define for each equivalence 

class, a frame 9v~ ~=f (:~, C I, fl, 11, W) such that the relations are the restrictions to ~. 
We claim that each ~'~ ~ (AU) and U is a disjoint union of the system of frames 
{Sr~ : x E F},  by which we prove part (i) of the lemma. The first part of the claim 
is immediate, for the second it suffices to show that each 9r~ is a subframe of 9 r 
generated by ~, which is precisely the point of conditions (C8) and (C9). This 
finishes part (i) of the lemma. 

(ii) Let ~ '~  (W, C, f, I, R) E KD satisfy (AU)I The proof of part (ii) consists of 
two steps. First we show that ~ is a zigzagmorphic image of a pair frame expanded 
with a relation R which satisfies (AU). In the second step we make the R relation 
irreflexive, thereby turning it into the inequality relation. These two steps are given 
in the schema below. 
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STEP A 
l 

full language .T E KD ~ - -  ~ E KD 
~ (AU) 

: 

D-flee reduct .T* E K ~ - -  E PFr,s 

STEP B 
P +___._ E PFDr,~ 

By Proposition 3.4 we may assume that the R-flee reduct .T* of  .T is a zigzagmor- 
phic image, say by function l*, of  a pair f lame G* = (V*, Cv . ,  fv*, Iv. ) for some 
reflexive and symmetric relation V* with base U*. 

STEPA. The problem with the representation ~* is that it may contain two different 
pairs which get mapped to the same point in .T which is not R reflexive. This will 
prevent extending the zigzagmorphism l* to one for R as well. We will create a 
new pair f lame ~ in which this problem is eliminated. 

Define an equivalence relation = on the base U* as follows: 

(Vu, v E U*) �9 u -- v ~aef, u = v or -~Rl*(u,u)l*(v,v). 

CLAIM 1. (i) = is an equivalence relation. 
(ii) u =- v ~ l*(u,u) = l*(v,v). 
Proof of Claim. Immediate because .T ~ ( AU). [] 

Define 

U U*/- 
v dof e u • u :  e v * }  

Define a function 1 �9 V , W as l (u/=,  v/--)  de___f l*(u', v I) for some u'  E u / -  
and v ~ E v/=--. Note that, by the definition of  V, for every pair ( u / - ,  v~ -=) E V, 
there exists a pair (u ~, v ~) E V* such that u = u ~ and v = v ~. Hence 1 is defined for 
every element in V. The next claim states that this is a real definition. 

CLAIM 2. l is well defined, i.e., for every (u, v), (u ~, v') E V*, if u = u' and 
v = v' then l*(u, v) = l*(u', v'). 

Proof of  Claim. Suppose (u, v), (u', v') E V* and u = u ' and v - v'. We have 
four cases, according to whether u = u ~ and v = v ~. If  u = u ~ and v = v ~ the 
statement is trivial. So assume otherwise. 

Case 2: [u r u' & v r v']. Then, by the definition of  - ,  -~Rl*(u, u)l*(u', u ~) 
and --,Rl*(v, v)l*(v ~, v~). Since l* is a zigzagmorphism for the relational operators, 
this means that we have -,R(/*(u, v))l(l*(u', v'))t and --,R(I* (u, v))r(l*(u', v'))r. 
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Then condition ( C l l )  implies that -~R/* (u, v)l* (u', v'), so by (AU) ,  l* (u, v) = 
l* (u', v'). 

�9 Cases 3 and 4: [u = u I & ~Rl*(v,  v)l*(v',  v')] and [--R/*(u, u)l*(u',  u') & v = 
v~]. These cases are solved in a similar way, but now using (D3) and (D4) from 
Proposition 3.8. [] 

To finish the first step of the proof, define the pair flame 9 = (V, Cv, fv, Iv, Rv) 

where we set R v x y  ~ Rl(x) l (y) ,  and Cv, fv and Iv are relational composition, 
converse and identity restricted to V, respectively. The next claim states that we 
have accomplished our first goal. 

CLAIM 3. (i) V is a reflexive and symmetric relation. 
(ii) G ~ x ~ y ~ R v x y .  
(iii) The function I is a zigzagmorphism from G onto the flame iT. 
Proof  o f  Claim. (i) is immediate by the definition of V. 
(ii) We will denote u / - -  by ~. Suppose that --,Rv(~, ~)(u ~, v ~) for some (fi, ~) 

and (u ~, v I) E V. We have to show that ~2 = u ~ and ~ = v ~. We compute: 

"~Rv(~,~)(u',v') 
-~Rl*(u,v) l*(u' ,v  1) 
-RI* (u, u)l* (u', u') 

8,_-RZ* (v, v)Z* (v', v') 
= u t and ~ = v t. 

,', ',- (using well-definedness of I) 

(,clt,) (since l* is a zigzagmorphism) . " 2 

===k (by the definition of ---) 

(iii) All steps in this proof, except homomorphism of Cv, are straightforward, 
since equivalent pairs are mapped to the same place, cf. Claim 2. We show that t is a 
homomorphism for Cv. Suppose (~, 3), (~, ~) ,  (z~, 3) E V. We have to show that 
C/(~, ~)/(~, z~)l(W, 3) holds. By definition of V, we have u, u', v, v', w, w I E U*, 
{(u, v), (u l, w), (w ~, v~)} _C V* and u - u ~, w - w ~ and v =_ v t. By the definition 
of 1 it is sufficient to show that El* (u, v)l* (u ~, w)l* (w ~, v ~) holds. 

There are several cases, depending on why the points are equivalent. One easy 
case is this: if u = u ~, w = w t and v = v ~, then, since l* is a homomorphism, 
we have Cl*(u, v)l*(u, w)l*(w,  v). In all other cases, for at least one of the three 
pairs of equivalent points, the reflexive pairs at those points are mapped to an R 
irreflexive arrow. The next claim will help us out. 

CLAIM 4. If 5 r E KD and iT ~ (AU)  then 

.T ~ [zl = Yt A Yr = zt A Zr = xr A (~Rxzyt  V ~Ryrz t  V -~Rzrxr)] ~ Cxyz .  

In words: if xt = Yl & yr = zl & Zr = x~. and at least one of the pairs 
(xz, y~ ), (Yr zt ), (zr, Xr ) is R irreflexive, then x can be decomposed into y and z. 

Proof  o f  Claim. We have shown already two cases: (D1) and (D2). Use (AU)  
to prove all other possibilities from (C10), (D1) and (D2). [] 



TAMING LOGIC 223 

We show with an example how this claim helps us. Suppose -,RI* (u, u)l* (u', u') 
and w = w ~ and v = v ~. Because l* is a zigzagmorphism, we have l*(u, u) = 
(l* (u, v))z, and similarly for the others. This implies that 

-~R(/* (u, v>)l(l* (u', w>)t A (l* (u', w))r 
= ( r<~ ' ,  ~'>)t A ( r<~ ' ,  v'>)~ = (z*<,,, v>)~. 

So by the above claim, C/*<u, v>I*<u ~, w>l*<w', v'>. Hence also C/(~, ~>/(~, ~> 
/(z~, ~), which is what we had to prove. [] 

STEP B. Since the flame G constructed in the previous step is a pair frame, we only 
have to make sure that Rv becomes the inequality. Since 9 ~ (AU), it suffices to 
make the Rv relation irreflexive. Define the following two sets: 

BAD doj {u e u :  Rv<-, ~,> <~, u>} 
COPIES de=f { ( u ' , u ' )  " u E BAD}U 

{<~, ~,'>, <~', ~> : <~,~> e v,~, e BAD a~ ~ # ~} 

Without loss of generality we may assume that COPIES is disjoint from V. Let 

-- (H, CH, fH, [H, 7 ~) be given by the set H,  defined as H ae__f V U COPIES. It is 
easily verified that H is a reflexive and symmetric relation, so 7-[ E PFD,,s. 

Define a function p �9 H ----. V as the unique function such that 

o p restricted to V is the identity function 

�9 p((Ut, Ul>) def (U,U> i f u  EBAD 

�9 p(<u',v>) de__f <u,v>andp((v,u'>) aef ( v , u ) i f u # v a n d u ~ B A D .  

The next claim states that for Rv we did enough, that is, we only copied Rv reflex- 
ive arrows. 

CLAIM 5. (i) (Vx E V) : (Rvxx -'. ~'-. there exists a copy o f x  in COPIES). 
(ii) (Vx, y E H) : ((x ~ y & p(x) = p(y)) ~ Rvp(x)p(y)). 
Proof of Claim. (i) Suppose Rv(u, v)<u, v> for some <u, v> E V. I f u  = v then 

the claim holds by definition. So, suppose u 7~ v. Then: 

Rv(u, v>(u, v) (c,~,__~) 
RV<U,U>(U,U) o rRv (v , v> (v , v>  
u E BAD or v E BAD -', ',- 
(u', v> E COPIES or <u, v') E COPIES. 

(ii) follows from (i), since two pairs of  H can only be mapped to the same pair 
in V if they are copies of each other. [] 

CLAIM 6. p is a zigzagmorphism from 7-[ onto ~. 
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Proof of  Claim. Clearly p is surjective. That p is a zigzagmorphism for Rv is 
immediate by Claim 5. For I and f this is straightforward to check. For C observe 
that, if {(u,~;), (~,w), (w,v)}  C_ H,  then either they all are in V, or one pair is 
in V and the other two are in COPIES. With these two steps we have finished the 
proof of Proposition 3.9, because our original frame .~" will be a zigzagmorphic 
image of the frame 7-/by the function given by the composition of I and p. [] 

4. Concluding remarks 

In this section, we summarize our taming strategy, and mention some related 
results. 

The taming strategy consists of two steps. First we try to get rid of those 
properties (frame conditions) which cause the ugly behavior of the logic. Second 
we try to strengthen the logic, e.g., by (re-)introducing connectives. 

In this paper we showed how this strategy works for arrow logic. The same 
strategy can be applied to first-order logic as well. For instance, it is possible 
to generalize the notions of reflexivity and symmetry to relations of higher rank 
than two. In (N6meti, 1992) it is shown that the completely relativized and the 
"reflexive" and/or "symmetric" versions of first-order logic are  decidable. The 
"symmetric" and "reflexive" version of first-order logic has a strongly sound and 
strongly complete Hilbert-style calculus as well, cf. (Andr6ka and Thompson, 1988) 
and (Marx and Venema, 1995). Moreover, the above decidability results hold after 
strengthening by adding more connectives (e.g., substitutions, graded modalities, 
etc.) to these weakened versions of first-order logic, cf. (Marx and Venema, 1995) 
and (Mikul~is, 1995a). 
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