
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Integrating networks with Mathematica

Strijkers, R.J.; Meijer, R.J.

Publication date
2008

Published in
9th International Mathematica Symposium 2008: Electronic proceedings

Link to publication

Citation for published version (APA):
Strijkers, R. J., & Meijer, R. J. (2008). Integrating networks with Mathematica. In 9th
International Mathematica Symposium 2008: Electronic proceedings (pp. 1-10). Technische
Universiteit Eindhoven (TU/e). http://bmiaserver.bmt.tue.nl/eProceedings/WWW/IMS_2008_e-
Proceedings.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/integrating-networks-with-mathematica(6d19edff-c79f-4e55-9987-38e83a1a34f3).html
http://bmiaserver.bmt.tue.nl/eProceedings/WWW/IMS_2008_e-Proceedings.html
http://bmiaserver.bmt.tue.nl/eProceedings/WWW/IMS_2008_e-Proceedings.html

 IMS2008 June20-24th International Mathematica

Symposium - Maastricht, The Netherlands

Integrating Networks with Mathematica

Rudolf J. Strijkers

Robert J. Meijer

University of Amsterdam, Amsterdam, The Netherlands
TNO Informatie- en Communicatietechnologie, Delft, The Netherlands
strijkers@uva.nl, robert.meijer@tno.nl

We have developed a concept that considers network behavior as a collection of software objects, which can be used or
modified in computer programs. The interfaces of these software objects are exposed as web services and enable
applications to analyze and manipulate networks, e.g. to find articulation vertices or configure non-default routes. This
article describes the software that allows Mathematica to optimize networks and applications in a continuous cycle of
monitoring, analysis and adaptation. Here, the full collection of Mathematica algorithms becomes available to calculate the
next optimal configuration. These algorithms use parameters such as energy consumption, application performance or
bandwidth consumption as input. As a result, Mathematica can automatically adapt the network to maintain or provide
(sub-) optimal or ‘better-than-best-effort’ services. Furthermore, integration of networks with Mathematica allows a multi-
scale optimization approach, where local behavior is adapted to support global goals. The presented work makes extensive
use of Mathematica’s Dynamics and Combinatorica Package, but also of web services and J/Link.

Introduction

Next-generation networks open up service interfaces of individual network elements to allow distributed and networked
applications more control over network behavior. The foremost reason to allow more control is that the resource consumption
of these applications should be in balance with the resources networks can provide. Any imbalance directly impacts network
performance and perceived quality of experience (QoE). Typical examples that rely on good QoE include VoIP and video
streaming, but also communication intensive supercomputing tasks. Therefore, networks need to orchestrate traffic to achieve
'better than best-effort' services, i.e. optimize resource utilization to meet robustness or efficiency requirements.

The need to have more control over network behavior can also be found in recent developments in photonic and hybrid
networks [1]. Photonic switches connect ports to form light paths and have no knowledge of traffic flows. One of the main
issues is how to orchestrate the configuration of photonic paths according to traffic flows that enter the network. This issue
motivates research in multi-scale optimization, where technologies at different layers in the OSI reference model have to
cooperate to fully utilize the network infrastructure.

Our research focuses on the development of architectures and models that facilitate multi-scale adaptation and ‘better than
best-effort’ services. In [2], we presented User Programmable Virtualized Networks (UPVN), an architectural framework that
enables interworking between applications and networks. In this framework, application-specific network services can be
implemented in the form of component-based software objects, potentially modifying or adding behavior at different layers
of the OSI reference model. These objects are typically accessible through web service interfaces and can be included as part
of distributed and networked programs. Using these objects, such programs can orchestrate network resources to meet their
needs. Furthermore, the framework allows not only applications to orchestrate network resources, but also enables the
network to run self-adaptation programs.

Mathematica’s environment is well suited for solving the, often combinatorial, problems in networks. In cases where combina-
torial solutions are unfeasible or not possible due to the unpredictable nature of the network, trial and error algorithms can be
used. However, trial and error algorithms require middleware support to maintain front-end interactivity with the Mathemat-
ica kernel. By providing this middleware and integrating it with Mathematica and UPVNs, Mathematica programs can
continuously adapt network behavior.

This article is organized in three parts. The first part describes the use of web services to facilitate the integration between
network services and applications in current state-of-the-art networks and utility computing environments. It also presents the
concepts and implementation of UPVN and describes the software architecture for integration with Mathematica. The second
part demonstrates experimental results by example and the last part reflects on the results and provides directions for future
work.

This article is organized in three parts. The first part describes the use of web services to facilitate the integration between
network services and applications in current state-of-the-art networks and utility computing environments. It also presents the
concepts and implementation of UPVN and describes the software architecture for integration with Mathematica. The second
part demonstrates experimental results by example and the last part reflects on the results and provides directions for future
work.

Web Services in Telecommunications and Virtual Operating
Systems
Service Oriented Architectures (SOA) and web services as its implementation technology is becoming increasingly common
in networks [3]. The devices within the network expose their functions as web services and by combining these; new,
application-specific services can be composed. Web services enable high flexibility in network infrastructures and give the
operator the ability to adapt services when needed. The usefulness of this approach can be observed in the many web service
based deployments of large-scale hybrid networks that offer users the ability to control parts of the infrastructure [4, 5]. In
these hybrid network deployments, however, the network functions remain static. Their primary service is to facilitate
circuits between applications or computing clusters.

Web services are also becoming available in utility computing environments to orchestrate resources, the most notable
examples are Xen [6] and VMware [7]. VMware allows monitoring and control of the whole spectrum of virtual and physical
resources through web services. Consequently, the whole utility computing environment can be optimized by specialized
applications such as Mathematica.

Software Framework
The UPVN model (Figure 1) describes architectural principles for programmable network services. UPVNs enable applica-
tions to upload code to network elements (NE) in the form of software objects called application components (AC). ACs
allow implementation of not foreseen and application-specific behavior and allow computer programs to access their service
interfaces through network components (NC). NCs act as proxies that provide redirection, virtualization or composition of
multiple AC service interfaces. The manner in which NCs are exposed to applications such as Mathematica is application-
specific, and technology choices and AC to NC interfacing depend on the network’s application domain. For example, when
the network is under full control of a single owner, it is not necessary to support multi-user mechanisms or a complex
security infrastructure. NCs can offer AC services through a synchronous or asynchronous interface. With the synchronous
interface, applications interact with UPVNs by instantiating the appropriate NCs that act as remote procedure call proxies. In
the asynchronous interface, the application, network or middleware implements an event mechanism that continuously polls
ACs and fires events in case of state changes.

NE

AC

Application

NE

NC

AC

Application

NE

NC

AC

NE

AC

NE

AC AC

Figure 1. The UPVN model defines the elementary functions to get information from, use, and adapt network resources in
computer programs.

Figure 2 shows a practical implementation architecture for integrating Mathematica in UPVNs. From Version 5 on, Mathemat-
ica supports synchronous interaction with web service enabled networks. The kernel architecture, however, does not allow
simultaneous monitoring, visualization, and manipulation. Therefore, Java middleware implements an event mechanism that
supports asynchronous updates. It enables the frond-end to remain responsive while providing continuous updates to the
kernel. With this mechanism, a user can write a network visualization program with Dynamics in one notebook, for example,
to display a continuously updated graph with marked articulation vertices while calling NC functions to manipulate the
network in another.

2 IMS 2008 Integrating Networks with Mathematica - final.nb

MathKernel

NE

Java Middleware

Interactive

Network
Manipulation

Visualization Adaptation

Programs

UPVN Package

TopologyAC
-GetNeighbour

-GetLinkBandwidth
-Remote

TopologyAC
-GetNeighbour

-GetLinkBandwidth
-Remote

NC NC State

variables

Dynamic[]!

Set[]!

1

2
5

4

6

3

Figure 2. Notebooks (1) allow users to visualize, write and prototype programs for network manipulation or analysis in an
interactive manner. The programs interact with the network through a UPVN Package (2), which implements the basic
functions, such as data and type conversion to interact with Mathematica. The UPVN Package communicates through web
services (3) with ACs, such as a topology AC (4). Through the same interface (2), asynchronous interaction is handled. Java
middleware takes care of the updates in the MathKernel (5) through MathLink (6). Notebooks can update or programs can
adapt the network in a continuous cycle with Dynamics.

We have built a test bed to conduct experiments and to validate the UPVN model [2] on a real network. In the test bed, ACs
act and operate on physical resources. Because an application interact with the network through NCs, simulated or real
network behavior is transparent to it. Therefore, simulating a network, which would otherwise be difficult to setup or build
physically, can be useful in prototyping adaptation algorithms for example. However, as in any simulation environment care
should be taken when making assumptions.

Network Modelling
For any visualization, analysis or adaptation problem there is an underlying model that transforms the measured properties
into a useful representation. It is not necessary to model all the intricate details and the full scope of the network for the
representation to be useful and the scope of what control is limited by what can be successfully managed. For example, a
large collection of NEs can be load-balanced to macroscopic network properties such as throughput. However, when adapt-
ing NEs to service requirements of many applications at once the amount of NEs under control of one application will be
relatively small.

In many adaptation problems, knowing the current topology is a primary requirement. This information can be static and
provided as input, discovered or a combination of both, and the UPVN may facilitate different methods of retrieval. A basic
discovery strategy consists of three parts, which may be combined to improve efficiency.

1. Discover connected NEs
2. Query NEs for neighbors
3. Construct Mathematica representation

IMS 2008 Integrating Networks with Mathematica - final.nb 3

1. Discover connected NEs
2. Query NEs for neighbors
3. Construct Mathematica representation

Reachable NEs can be found by a breadth-first search. To support the breadth-first search, every NE in the UPVN test bed
provides a topology AC, which implements neighbor discovery with Nmap [8]. By scanning the UPVN web services port, it
also detects if a NE offers AC functions. Another topology AC function takes the discovered NEs as input and queries their
IP links. When needed, a conversion routine translates the IP addresses to id’s and back. With these functions, the full IP
topology can be discovered and used in Mathematica. The code snippet below shows the breadth-first search code and
illustrates how the network calls are embedded.

BFSDiscover@start_D := Module@
8q = 8<, u = start, result = 8start<, vall<,
q = Append@q, uD;
While@Length@qD > 0,
u = q@@1DD;
q = Delete@q, 1D;
vall = Remote@u, "DiscoverNetworkElements", "", authD;
vall = ToExpression@StringReplace@vall, 8"@" Ø "8", "D" Ø "<"<DD;
Do@
If@Not@MemberQ@result, vall@@iDDDD,
result = Append@result, vall@@iDD
D;
q = Append@q, vall@@iDDD;D,

8i, 1, Length@vallD<D;
D;
result

D;
DiscoverNetworkElements finds the neighbor UPVN NEs of the calling NE. Remote is a special function in the topology
AC. It calls a remote web service from the host it executes on. This way, the AC supports a recursive search from a single
NE. Note that disconnected elements will not be found. The web service calls return strings and need to be converted to the
correct Mathematica data types. Type conversion can be abstracted away from the programmer in the NCs.

Once the network topology is acquired and a representation is constructed, the full range of Mathematica’s environment
becomes available for network visualization, analysis and adaptation. We consider two common categories for network
related problem solving. The first category uses combinatorial methods. Mathematica’s Combinatorica Package provides
many combinatorial algorithms that can be applied without modification. The second category uses a trial and error approach.
It uses historical data to converge to an (sub-) optimum and requires a continuous cycle of monitoring, analysis and adapta-
tion. In addition, visualization of information flows and network configurations can aid in problem solving.

ü Network Manipulation

These packages are required:

Needs@"Combinatorica`"D
Needs@"GraphUtilities`"D

4 IMS 2008 Integrating Networks with Mathematica - final.nb

101.95.9

94.5
95.8

96
95.6

100

100

99.9
99.

97.6
101

100

99.7

99.9
100

101
101

100

100

98.9

100
99.6

100

99.7
101

100

100

99.8
100

100

100

99.9
100

192.168.0.1 139.63.145.94192.168.0.2

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

192.168.1.2

192.168.2.2

192.168.1.1

192.168.1.3

192.168.1.4

192.168.2.1

192.168.2.3

192.168.2.4

Figure 3. The right edge of the UPVN test bed connects to the Internet, and allows network discovery from any UPVN NE
that knows the address of this gateway. The edge weights were obtained by performing a bandwidth probe on the
discovered IP links. The topology AC uses Iperf [10] for performance measurements.

Consider the network given by Figure 3. It shows the discovered IP topology of the UPVN test bed together with results of
bandwidth measurements. Now, with the aid of the Combinatorica Package it is possible to route traffic in exotic ways. For
example, to broadcast a stream to all nodes in a network the minimum spanning tree can be used. The result of the calculation
can be configured in the network in various ways. In the test bed, it was done by tagging application traffic and adding
forwarding rules for the tags. The following code shows some examples and how forwarding rules are generated and fed to
the appropriate NCs.

H*Convert between NE address and Mathematica representation *L
NEtable = Apply@Union, Ò@@1DD & êü networkD;
NE2Index@nes_D := Position@NEtable, ÒD@@1DD@@1DD & êü nes
IndexToNE@is_D := HNEtable@@ÒDDL & êü is

In the network of Figure 4. it is trivial to find articulation vertices.

H* Quick conversion from NE addresses to Combinatorica graph *L
myg = Ò@@1DD & êü network;
myg2i = NE2Index@ÒD & êü myg;
g = EmptyGraph@Length@NEtableDD;
Do@g = AddEdge@g, myg2i@@iDDD, 8i, 1, Length@myg2iD<D;
IndexToNE@ArticulationVertices@gDD
8192.168.0.1<

Now generate the minimum spanning tree and show the NC calls to configure the network.

IMS 2008 Integrating Networks with Mathematica - final.nb 5

mst = IndexToNE@ÒD & êü Edges@MinimumSpanningTree@gDD;
Remote@Ò@@1DD, "AddForwardingRule", "green:" <> Ò@@2DD D & êü mst

8Remote@139.63.145.94, AddForwardingRule, green:192.168.0.1D,
Remote@192.168.0.1, AddForwardingRule, green:192.168.0.2D,
Remote@192.168.0.1, AddForwardingRule, green:192.168.0.3D,
Remote@192.168.0.1, AddForwardingRule, green:192.168.0.4D,
Remote@192.168.0.1, AddForwardingRule, green:192.168.0.5D,
Remote@192.168.0.1, AddForwardingRule, green:192.168.0.6D,
Remote@192.168.0.2, AddForwardingRule, green:192.168.1.2D,
Remote@192.168.0.2, AddForwardingRule, green:192.168.2.2D,
Remote@192.168.1.1, AddForwardingRule, green:192.168.1.2D,
Remote@192.168.1.2, AddForwardingRule, green:192.168.1.3D,
Remote@192.168.1.2, AddForwardingRule, green:192.168.1.4D,
Remote@192.168.2.1, AddForwardingRule, green:192.168.2.2D,
Remote@192.168.2.2, AddForwardingRule, green:192.168.2.3D,
Remote@192.168.2.2, AddForwardingRule, green:192.168.2.4D<

When special joined paths are required, for video streaming for example, we can define a domain specific language (DSL) to
specify the required paths and then join these paths if there is overlap.

MakeTuples@l_ListD := Thread@8Part@l, 1 ;; -2D, Rest@lD<D
H* This function joins paths given as a list of route statements. A
real DSL can implement a range of algebraic path functions. *L
JoinPhts@g_, prog_, col_D := Remote @IndexToNE@8Ò@@1DD<D@@1DD,

"AddForwardingRule", "blue: " <> IndexToNE@8Ò@@2DD<D@@1DDD & êü
HFlatten@MakeTuples@ÒD & êü HMethod@g, NE2Index@8Ò@@1DD<D@@1DD,

NE2Index@8Ò@@2DD<D@@1DDD ê. Ò@@3DD & êü progL, 1D êê UnionL
The program defines a list of routes and the method of path finding. All the paths will be collected and double edges
removed. The resulting edges can be configured in the network with the same tagging facility as above.

JoinPhts@g, 8
Route@"192.168.0.2", "192.168.2.3", Method Ø ShortestPathD,
Route@"192.168.0.2", "192.168.2.4", Method Ø ShortestPathD

<, "blue"D
8Remote@192.168.0.2, AddForwardingRule, blue: 192.168.2.2D,
Remote@192.168.2.2, AddForwardingRule, blue: 192.168.2.3D,
Remote@192.168.2.2, AddForwardingRule, blue: 192.168.2.4D<

The next program shows a straightforward way to find edge disjoint shortest paths [10]. The calculated paths can be config-
ured in the same manner to provide backup paths or aggregate traffic for example.

RemovePath@g_, p_D := Module@8tuples = MakeTuples@pD<,
Do@g = DeleteEdge@g, tuples@@iDDD, 8i, 1, Length@tuplesD<D; gD

AllSP@f_, s_, t_, v_: 8<D := Module@8p<, If@Length@p = ShortestPath@f, s, tDD > 1,
AllSP@RemovePath@f, pD, s, t, Append@v, pDD, Return@vDDD

EdgeDisjointSP@g_, src_, dst_D := Module@
8flow, flowg<,
flow = HÒ@@1DDL & êü NetworkFlow@g, src, dst, EdgeD;
flowg = MakeGraph@VertexList@gD,

HMemberQ@flow, 8Ò1, Ò2<D »» MemberQ@flow, 8Ò2, Ò1<DL &, Type Ø UndirectedD;
AllSP@flowg, src, dstDD

IndexToNE@ÒD & êü
EdgeDisjointSP@g, NE2Index@8"192.168.2.3"<D@@1DD, NE2Index@8"192.168.0.1"<D@@1DDD

88192.168.2.3, 192.168.2.1, 192.168.0.5, 192.168.0.1<,
8192.168.2.3, 192.168.2.2, 192.168.0.2, 192.168.0.1<,
8192.168.2.3, 192.168.2.4, 192.168.1.4, 192.168.1.1, 192.168.0.3, 192.168.0.1<<

6 IMS 2008 Integrating Networks with Mathematica - final.nb

ü Real-time Adaptation

The previous examples calculated the precise network configuration. In the trial and error approach the adaptations ultimately
converge to a better state. This approach can be divided in three stages and correspond with an elementary feedback loop
well known in control theory (Figure 4). The first stage builds a representation of the problem space by retrieving the
necessary information from the network. The second stage applies a decision process to find a next better state and the third
stage reflects its results by adapting the network.
This example illustrates the stages with a trial and error approach to load-balance traffic in a routed network. It introduces the
idea of attractors and repulsors, which indirectly modify forwarding rules. A decision model decides where to place specific
attractors or repulsors based on throughput measurements. This is an approach to load-balancing inspired by physics [11].

Process

Network Element
NE

Decision

Control

Functions

Monitoring

Functions

configuration

Figure 4. The trial and error approach corresponds with an elementary feedback loop. Monitoring functions and
configuration options provide input to form a state representation. The result of a decision process based on the state is
actuated with control functions. Monitoring and control functions can be part of different ACs.

In the Java middleware, one thread polls the network and another updates variables in Mathematica using Set[]. The follow-
ing code simulates network throughput by generating two shortest paths and at each NE summing the crossing paths. The
generated list is normally updated by Java.

InitWeights@g_, val_D := SetEdgeWeights@g, Table@val, 8Length@Edges@gDD<DD
g = ToCombinatoricaGraph@H8Ò@@1DD Ø Ò@@2DD, Ò@@2DD Ø Ò@@1DD<L & êü

HHÒ@@1DD Ø Ò@@2DDL & êü ToUnorderedPairs@GridGraph@3, 3DDL êê FlattenD;
g = InitWeights@g, 0.1D;
paths = 884, 5<, 81, 8<<;
sp = HShortestPath@g, Ò@@1DD, Ò@@2DDDL & êü paths;
vt = Table@0, 8V@gD<D; Hvt@@ÒDD = vt@@ÒDD + 1L & êü Hsp êê FlattenL;
vt

81, 1, 0, 1, 2, 0, 0, 1, 0<

The decision model is straightforward. It finds the NE with the maximum throughput that will be repulsed.

pos = Position@vt, Max@vtDD êê Flatten

85<

The following code puts it all together and the result is visualized in Figure 5. The first part of the code is responsible for the
simulated input. After each edge weight update in the network, the new paths are calculated. This is analogue to changing
edge weights in an OSPF routed network. Next there needs to be a stopping criteria to decide if the update had a positive
effect. The most straightforward manner is to update the network a fixed number of times and pick the best result, which in
the case of load-balancing is when the difference in throughput is minimal. Finally, the edge weights are manipulated by
placing the repulsor and the state needs to be updated again.

IMS 2008 Integrating Networks with Mathematica - final.nb 7

g2 = g;
vl = 8<;
For@i = 0, i < 10, i++,
sp = HShortestPath@g2, Ò@@1DD, Ò@@2DDDL & êü paths;
vt = Table@0, 8V@g2D<D; Hvt@@ÒDD = vt@@ÒDD + 1L & êü Hsp êê FlattenL;
pos = Position@vt, Max@vtDD êê Flatten;

H*Calculate variance. This is the measure for a good
solution. Small differences in NE throughputs give a small variance.*L
vl = Append@vl, Variance@vtDD;
x = 8<;
If@Max@vtD >= Round@Mean@vtDD*2,
HIf@Length@Position@pos, Ò@@1DDDD > 0, x = Append@x, ÒDDL & êü Edges@g2D;
g2 = SetEdgeWeights@g2, x, HÒ + 0.1L & êü GetEdgeWeights@g2, xDD;

D;
D;

:

0.10.10.10.1

0.10.10.10.1

0.10.10.10.1

0.10.1
0.10.10.10.1

0.10.10.10.1
0.10.1

1
23

456

78
9

,

0.10.10.10.1

0.40.40.40.1

0.10.10.10.1

0.10.4
0.10.40.10.1

0.40.10.40.1
0.10.1

1
23

456

78
9

>

Figure 5. The first picture shows the ititial state, and the second picture shows the state after ten iterations. The area
around NE four and five have become unattractive enough to change the path of (1,8).

8 IMS 2008 Integrating Networks with Mathematica - final.nb

Figure 5. The first picture shows the ititial state, and the second picture shows the state after ten iterations. The area
around NE four and five have become unattractive enough to change the path of (1,8).

It is out of the scope of this paper to provide a full analysis of this approach. However, it does demonstrate that network
modelling can almost entirely be done in Mathematica and use ACs for monitoring and control only.

Discussion and Future Work
When networks support the elementary functions of the UPVN framework, users can develop programs to change and
optimize network behavior. Network services are implemented as software objects that expose their interfaces as web
services, which can be consumed to develop new or modify existing network behavior. In this article, the emphasis was on
the communication between the network and Mathematica.

In our experiments, we have found three limiting factors in centralized network adaptation. The first limitations are the scope
and time-scale of adaptations. In the UPVN test bed, a single Mathematica instance controls network behavior. Since in
practice communication between ACs and Mathematica was in the range of seconds, it puts a bound to what can be moni-
tored and adapted simultaneously. Third, to support real-time interactions with Mathematica, the J/Link interface provided a
work-around by offloading complex real-time network communication from the kernel. It remains to be seen if this approach
allows large and frequent updates and how this affects the front-end responsiveness. Tests upon now were successful in
update cycles of seconds, which is already good enough to address many problems.

The next step is to embed Mathematica in NEs and explore distributed adaptation algorithms. It allows Mathematica to
orchestrate the network at different levels and scopes and allow the development of adaptation hierarchies each with their
own adaptation algorithm. The question here is: what if network adaptation programs are distributed over the network?

The presented concepts and software framework are currently being applied in two applications. The first application
integrates Mathematica with StarPlane's middleware for light path visualization and control. Using our software framework,
Mathematica can proactively switch light paths based on traffic measurements at the edges of a computing cluster. Shortest
edge disjoint paths calculated from Mathematica will be used to switch and aggregate additional paths when clusters over-
load one path. The second application uses Mathematica to visualize, analyze and automatically adapt a VMware infrastruc-
ture. In a continuous loop, a linear program will calculate the optimal placement of VMwares considering their power
consumption and adapt the VMware infrastructure to reflect the new optimal state.

Conclusion
Mathematica’s powerful symbolic programming language, large collection of algorithms and its ability to interface with Java
and web services makes it a suitable research tool for the development of ‘better-than-best-effort’ network services. By
utilizing UPVNs, Mathematica programs can move applications, reprioritize traffic or reroute connections to achieve optimal
network performance in a single integrated environment. This aspect enables interaction between different adaptation
programs and opens the way to multi-scale network optimization.

References
[1] C. Riziotis and A. V. Vasilakos, "Computational intelligence in photonics technology and optical networks: A
survey and future perspectives", Information Sciences, vol. 177, pp. 5292-5315, 2007.

[2] R. J. Meijer, R. J. Strijkers, L. Gommans, and C. de Laat, "User Programmable Virtualized Networks", in
Proceedings of the Second IEEE International Conference on e-Science and Grid Computing: IEEE Computer Society,
2006.

[3] D. Griffin and D. Pesch, "A survey on web services in telecommunications", IEEE Communications Magazine, vol.
45, pp. 28-+, Jul 2007.

[4] E. Grasa, G. Junyent, S. Figuerola, A. Lopez, and M. Savoie, "UCLPv2: A network virtualization framework built
on web services", IEEE Communications Magazine, vol. 46, pp. 126-134, Mar 2008.

[5] P. Grosso, L. Xu, J. P. Velders, and C. de Laat, "StarPlane - a national dynamic photonic network controlled by grid
applications", Internet Research: Electronic Networking Applications and Policy, vol. 17, pp. 546-553, 2007.

[6] Xen Hypervisor, http://xen.org (accessed at 20 April 2008)

IMS 2008 Integrating Networks with Mathematica - final.nb 9

[6] Xen Hypervisor, http://xen.org (accessed at 20 April 2008)

[7] VMWare, http://www.vmware.com (accessed at 2 August 2007)

[8] Network Mapper, http://nmap.org (accessed at 7 April 2008)

[9] Iperf, http://dast.nlanr.net/Projects/Iperf/ (accessed at 20 April 2008)

[10] J. W. Suurballe, "Disjoint paths in a network", Networks, vol. 4, pp. 125-145, 1974.

[11] S. Toumpis, "Mother nature knows best: A survey of recent results on
wireless networks based on analogies with physics", Computer Networks, vol. 52, pp. 360-383, 2008.

Rudolf J. Strijkers (1981) received a BSc and MSc degree in computer science from the University of Amsterdam. He
currently pursues a PhD degree at the same university and works for the Dutch institute for applied scientific research TNO.
His scientific interests are in adaptive, programmable and intelligent networks. He uses Mathematica to implement and test
new concepts and ideas.

Robert J. Meijer (1959) received a PhD degree in experimental nuclear physics of the University of Utrecht. He switched to
ICT research at TNO in 1991 and became professor at the University of Amsterdam in 2002. His scientific interests are next
generation networks and computer technologies with application-specific dynamic adaptation capabilities.

10 IMS 2008 Integrating Networks with Mathematica - final.nb

