
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Breaking the Curse of Dynamics by Task Migration: Pilot Experiments in the
Polder Metacomputer

Overeinder, B.J.; Sloot, P.M.A.

Publication date
1997

Published in
Lecture Notes in Computer Science

Link to publication

Citation for published version (APA):
Overeinder, B. J., & Sloot, P. M. A. (1997). Breaking the Curse of Dynamics by Task
Migration: Pilot Experiments in the Polder Metacomputer. Lecture Notes in Computer
Science, 1332, 194-207.
http://www.science.uva.nl/research/scs/papers/archive/Overeinder97_2.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/breaking-the-curse-of-dynamics-by-task-migration-pilot-experiments-in-the-polder-metacomputer(4adbde60-1c20-4f64-8c45-4f618cc2ff6d).html
http://www.science.uva.nl/research/scs/papers/archive/Overeinder97_2.pdf


Breaking the Curse of Dynamics by Task Migration:
Pilot Experiments in the Polder Metacomputer

B. J. Overeinder and P. M. A. Sloot

University of Amsterdam, Department of Computer Science
Parallel Scientific Computing & Simulation Group

Kruislaan 403, NL–1098 SJ, Amsterdam, The Netherlands
e-mail: fbjo,peterslog@wins.uva.nl

Abstract. With the advent of high speed networks, distributed cluster computing
and metacomputing have assumed an enormous interest. However, software meth-
ods and techniques to make the full potential of these distributed environments
available, are not yet mature. In this paper, we focus on dynamic load balancing
of resources and applications as one of the crucial techniques to optimize perfor-
mance in distributed environments. Some design and implementation details are
described, and early experimental results are presented.

1 Introduction

The current developments in clusters of workstations, and on a larger scale metacom-
puting environments, indicate that resource management has become the instance that
determines the efficacy of the distributed computing environment. In distributed envi-
ronments the typical set of jobs consists of interactive and batch jobs, which in turn can
be sequential or parallel execution runs. By the diversity of the jobs offered to the dis-
tributed environment—interactive users start sequential and parallel jobs, and batch jobs
arrive with some arrival probability distribution function—the demand for and the avail-
ability of resources is highly dynamic.

Resource management in distributed environments spans a variety of activities such
as job scheduling, I/O scheduling, load balancing, etc. In order to optimize performance
of applications or the utilization of resources, the resource management system should
be able to react on changes in the distributed computing environment. As a consequence,
several provisions have to be made available to the metacomputer in order to interact
with resources and applications.

A serious problem hampering the development of metacomputing environments is
the lack of a sound theoretical basis for resource management strategies to build upon.
In order to break the impasse, we develop an experimental environment that provides
a framework for the development and evaluation of the various components making up
the metacomputer. The experimental environment is essentially a metacomputer in its
functionality and characteristics, but allows to study, for example, different policies for
resource management or test designs and implementations of scalable I/O libraries, and
the validation of theories.

In this paper we concentrate on issues concerned with dynamic load balancing of par-
allel applications in a message passing metacomputing environment. This paper is out-
lined as follows. Section 2 describes the current hardware and software trends in meta-



computing. In Section 3 the Polder metacomputer framework is introduced and Sec-
tion 4 presents the design and implementation considerations of the load balancing fa-
cility incorporated with a message passing library. Experiments and results are presented
in Section 5. The results of the experiments are discussed and summarized in Section 6.

2 Background

The current developments in high performance cluster computing and metacomputing
are moving along two axis: hardware and software. The hardware development of par-
allel supercomputing and modern networks/clusters of workstations are directing to the
same vanishing-point on the horizon. The compute nodes in the parallel supercomputer
are the same processors found in workstations, and the performance of the distinguished
proprietary interconnection networks are attained by independent available network in-
terfaces such as Fibre Channel, HIPPI, or Myrinet. Progress in wide area networking,
e.g., ATM, motivated the development of software infrastructures that smoothly inte-
grate distant distributed resources into a metacomputer that enables the coordinated im-
plementation of high performance applications.

2.1 Trends in Hardware

The development of high speed networks, both for local area and wide area networks,
has triggered a refocus on the hardware used in high performance computing, and in par-
ticular a refocus on distributed memory architectures. For example, the Massively Par-
allel Processors (MPPs) that are used to solve large computational problems, are distinct
by their proprietary message passing networks, i.e., communication backplanes specif-
ically designed for a family of MPPs. With the advent of fast network interfaces that
are generally available, like FDDI, (switched) Fast Ethernet, Fibre Channel, HIPPI, and
Myrinet, the same large computational problems can be solved effectively on clusters of
workstations connected by a local area network (LAN). In particular Myrinet is an out-
standing example of how technology used for communication and switching in MPPs
has evolved to a high speed LAN.

The availability of high speed LAN has initiated a number of research projects to
build parallel supercomputers made of Commodity Off The Shelf (COTS) components.
Although the projects described below also cover software issues, their main focus is
the implementation of a parallel supercomputer.

The Beowulf project [13] aims to develop a parallel computer architecture based
upon Pentium Pro processors and switched Fast Ethernet communication links (i.e,
switched Fast Ethernet is not used as a broadcast medium, but rather as a point-to-point
interconnection fabric giving the full 100 Mbit/s bandwidth). In addition with the avail-
ability of powerful, free operating systems (Linux, FreeBSD) and message passing in-
terfaces (MPI), the Beowulf project realized a low-cost commodity parallel computer.
With a 16 node parallel computer a sustained performance of one Gflop/s has been ob-
tained on scientific applications.

An interesting initiative that combines both high speed LAN and WAN interconnec-
tions in the implementation of a high performance computing platform is the Distributed



ASCI Supercomputer (DAS) [4]. (Note that ASCI stands for Advanced School for Com-
puting and Imaging—a Dutch research school.) The DAS is a 136-node wide-area dis-
tributed system built out of four Myrinet-based Pentium Pro clusters. The four clusters
are located at four universities: Free University Amsterdam, University of Amsterdam,
Delft University of Technology, and University of Leiden.

Each node contains a Pentium Pro, 64 MB RAM, a 2.5 GB local disk, a Myrinet
interface card, and a Fast Ethernet interface card. The nodes within a local cluster are
connected by a Myrinet SAN network (SAN stands for system area network), which is
used as a high speed interconnection, mapped in user-space. Fast Ethernet is used as the
operating system network for NFS services, etc. The four local clusters will be connected
by an ATM wide area network, so the entire system can be used as a 136-node wide-
area distributed cluster (see Fig. 1). The system runs the BSD/OS (version 3.0) operating
system from BSDI.

Myrinet switch

LAN network
(Myrinet and Fast Ethernet)

WAN network (ATM)
WAN

Fig. 1. Overview of the DAS Architecture. Four local area Myrinet clusters are connected by an
ATM wide area network.

The DAS distributed supercomputer, with its high speed local area and wide area
interconnections, can be regarded as a prototypical metacomputer architecture for the
near future. In this respect, the DAS architecture provides a unique experimental testbed
for research in metacomputer software infrastructures.

2.2 Trends in Software

New technologies in wide area networks has resulted in a new impetus to research di-
rected to provide coordinated network services. The feasibility of wide area high speed
network technology (e.g., ATM, but also HIPPI on SONET) has been demonstrated by
the implementation of network testbeds including BERKOM, CASA, and I-WAY. The
aggregation of distributed and high performance resources on high speed networks will
change the perspective on distributed computing and have an impact on the develop-
ment of scientific applications. In a similar way as parallel computing enabled scien-
tists to solve computational problems that could not be obtained efficiently by sequential
computing, aggregated distributed resources can engage larger computational power to
a single application.



Although the hardware developments in high speed networks are impressive, the ser-
vices provided to use the aggregated distributed resources in a coordinated manner are
still in their infancy. To fully exploit the potential of distributed resources on coordi-
nated networks, a software infrastructure must be developed to provide an easy to use
and transparent access to the resources. This software infrastructure, the metacomputer,
manages the complexity of the underlying physical system for the user. The key obser-
vation in metacomputing environments is that with the current conceptual model inter-
acting autonomous hosts are stretched into a regime for which it was not designed. This
has resulted in a collection of partial solutions without coherence and scalability. The
challenge is to provide an integrated foundation that hides the underlying physical in-
frastructure from users and from the majority of programmers. By smoothly integrating
the diverse computational resources, the metacomputer provides a platform that fulfills
the requirements of a new class of resource-intensive applications.

Two projects that are exemplary for the current trends in metacomputing research
are Legion and Globus. A prototype of the Legion metacomputer and preliminary ver-
sions of Globus components have been demonstrated successfully as part of the I-WAY
network experiment [6].

Legion is a metacomputer project designed to provide users with a transparent inter-
face to the available resources, both at the programming interface level as well as at the
user level [8]. Legion uses an object-oriented framework that enables a coherent solution
to problems like support access, location, fault transparency, inter-operability, security,
etc. The objects, written in either an object-oriented language or other languages such as
C, will interact with other objects via well-defined interfaces. The use of objects allows
for substantial flexibility in the semantics of user applications; a user is able to select
both the kind and level of functionality, and make their own trade-offs between function
and cost (e.g., the level of security in authentication).

The Globus [7] project addresses the metacomputing challenge by a vertically in-
tegrated treatment of application, middleware, and network. In the Globus perspective,
metacomputing can build on distributed and parallel software technologies, but also re-
quires significant advances in mechanisms, techniques, and tools. The metacomputing
software problem is approached from the bottom up, by developing basic mechanisms
such as communication, authentication, network information and data access. These
low-level components define a metacomputing abstract machine on which can be con-
structed a range of alternative infrastructures, higher-level services, and applications.

The long term goal of the Globus project is to construct an integrated set of higher-
level services that enable applications to adapt to heterogeneous and dynamically chang-
ing metacomputer environments. The adaptive applications are able to configure them-
selves to fit the execution environment and optimize the performance.

Essential to the success of metacomputing is careful scheduling. Generally, there are
two performance optimization objectives in wide-area systems: high performance com-
puting (reducing turnaround time of jobs) and high throughput computing (e.g., maxi-
mize the aggregate amount of work per time period). Given one of these two goals, the
scheduling process must decide where a job and its constituent tasks will run. The objec-
tives and issues that must be addressed by a wide-area scheduling system are more com-
plex than in local cluster scheduling systems [14]. For example, the wide-area scheduler
should make use of the heterogeneity in the metacomputer by efficiently exploiting re-



mote resources. However, in a metacomputing setting, resources are often managed by
separate local schedulers (e.g., Condor, Codine, LSF) which are not coordinated. Con-
sequently, the wide-area scheduler must make decisions in concert with the local site
schedulers.

The delicate interplay of the wide-area scheduler with the local site schedulers is one
of the research interests in the Polder metacomputer project, which is presented in the
next section.

3 The Polder Metacomputer Experimental Framework

The Polder metacomputer initiative [11] is an ambitions project that aims to provide an
experimental framework for metacomputer design tradeoffs and gradually build a meta-
computer environment that organizes heterogeneous distributed resources into one sin-
gle computing environment with a unified access. By its distributed nature, the resources
are administered by local authorizing resource managers. Therefore, the Polder meta-
computer must incorporate existing management software concerning resource control,
access control, accounting and monitoring while supporting the multitude of hardware
platforms present within the distributed system.

In the Polder metacomputer experiment different ways of use of metacomputing are
addressed: high performance computing, high throughput computing, multi-site com-
puting and automatic task balancing for dynamic resources. Each of these different us-
ages of the metacomputing environment has its own requirements with respect to the
services provided by the metacomputer. The underlying mechanisms should be flexible
and generic in order to efficiently support these different requirements in services. To
tackle these problems, a number of subprojects have been initiated to deal with issues
like metacomputer access and job submission, wide-area and local scheduling, load bal-
ancing, and scalable I/O. These subprojects are performed by the different participants
in the Polder initiative, among which the University of Amsterdam, NIKHEF (Amster-
dam), Delft University of Technology, University of Wisconsin–Madison, and Pader-
born Center for Parallel Computing.

Some of the issues concerning metacomputer access and job submission, scheduling,
and load balancing are discussed in the next sections. Within the MOL partner project,
the PLUS lightweight communication interface [2] addresses inter-operability between
heterogeneous platforms and different message passing layers. PLUS encapsulates mes-
sage passing specific communication primitives (e.g., MPI Send, pvm send) and en-
ables inter-operability between MPI and PVM applications.

3.1 Resource Management in the Polder Metacomputer

The global resource management structure of the Polder metacomputer model is de-
picted in Fig. 2. The structure determines how the heterogeneous distributed resources
are presented to the metacomputer user or application. On the base-level there are re-
sources (e.g., workstations, MPPs, or I/O devices) administered by a local resource man-
ager (e.g., Condor, Codine, or LSF). The aggregated local resources (i.e., at the base-
level the resources administered by the local resource manager) are represented by self-
describing active agents. These agents (in Fig. 2 the entities in the shaded area) describe



the type of resources, amount of memory, disk space, connectivity, etc.—the agent is es-
sentially not limited in its descriptive plurality. The agents can be aggregated into a new
agent, and hence represent a larger set of distributed resources. The aggregation of agents
and the information advertised by the agents can reflect local authorization decisions.
Although the organization of the agents is hierarchical, the perspective to resources is
one-dimensional; that is, a unified view to the heterogeneous distributed resources on a
coordinated network.

The Polder metacomputer access interface is distributed and WWW-based to allow
for a scalable, flexible and generic interface that interacts with the resource agents. The
wide-area resource management actually takes place at the metacomputer access inter-
face. Upon job submission via the access interface—with the job requirements being
specified—the agents start with bidding on the job. According the wide-area schedul-
ing policy, one of the agents offers the best fit on the job requirements. The job and its
constituent tasks are allocated to the resources in coordination with the local resource
manager. In this top-down approach, the wide-area scheduler determines the resources
assigned to a job, and direct the local resource managers to actually allocate these re-
sources.

Resources (workstations, MPPs, SMPs)

Local RM (Condor, Codine, LSF, ...)

Software Infrastructure (Metacomputer)

Metacomputer Access Interface

Fig. 2. The Polder metacomputer global resource management model. The software infrastructure
(active agents) organizes the distributed resources to a metacomputer.

Wide-area scheduling is a complex problem and subject of various research projects.
Within the Polder metacomputer project a simulation model of the resource management
infrastructure has been developed to allow for rapid prototyping and evaluation of sched-
uling strategies. Experiments with scheduling strategies under strict conditions can be
instrumented on top of the resource management simulation model, which is essential
for validation with theoretical models. After a scheduling algorithm has been thoroughly
evaluated, it can be integrated within the metacomputing environment.

3.2 The Curse of Dynamics

In general the resources in the metacomputing environment are not exclusively allocated
to one user or application, that is, resources are often shared among users and applica-



tions. Consequently, changes in the distributed system such as variation in demand of
processor power, variation in number of available resources, or dynamic changes in the
run-time behaviour of the application, hamper the efficient use of the metacomputing
environment.

Consider, for example, an application that after a straightforward domain decom-
position, can be mapped onto the processors of a parallel architecture. If the hardware
system is homogeneous and allocated to only one application program, then the exe-
cution will run balanced until completion: we have mapped a static resource problem
to a static resource system. However, if the underlying hardware system is a cluster of
multi-user workstations we run into problems because the available processing capac-
ity per node may change: in this case the static resource problem is mapped to a system
with dynamic resources, resulting in a potentially unbalanced execution. Things can get
even more complicated if we consider the execution of an application with a dynamic
run-time behaviour on a metacomputer environment, i.e., the mapping of a dynamic re-
source problem onto a dynamic resource machine. The notion of redundant decompo-
sition has been posed by de Ronde et al. [5] to introduce sufficient richness in parallel
tasks to make a balanced workload in such a dynamic resource machine possible.

One way to deal with this dynamic changing resource requirement would be dynam-
ically rebalance a job and its (parallel) constituents by migration of processes from over-
loaded to under-loaded resources at run-time. If the dynamic load balancing occurs lo-
cally, the wide-area scheduler does not participate. However, the local resource manager
might request the wide-area scheduler that a job be re-scheduled elsewhere. The next
section describes the design and implementation of these functionalities that are needed
with dynamic load balancing, i.e., process migration of running (parallel) jobs.

4 Process Migration in Message Passing Environments

Process migration support can be incorporated at two operation levels: operating sys-
tem level and user level. In operating system level implementations the resource man-
agement facilities are supported by the OS kernel. Examples of such systems are Mach,
Sprite, and MOSIX [1]. User level designs and implementations of adaptive systems in-
clude dynamic resource management facilities by providing their own dynamic load bal-
ancing run-time support. Examples of user level designs are Condor [9] for sequential,
and MPVM [3] for parallel application systems.

In the Polder project we have the following design constraints for the process mi-
gration facility:

– since we assume that the major computational resource is a scalable cluster envi-
ronment, the application programming model must be based on message passing;

– it is essential we support a generic operating system, therefore the machine platform
operating system should be Unix;

– by hiding the complexity in libraries, the dynamic load balance run-time support
system must be incorporated at user level.

These design constraints has motivated the development of DynamicPVM [10] and
DynamicMPI. Both message passing environments are generally available on many dif-



ferent platforms and allows for the extension of process migration into their libraries. Al-
though the design considerations are equal for DynamicPVM and DynamicMPI, there
are some differences in the implementation. PVM (as basis for DynamicPVM) is a mes-
sage passing environment that also includes process creation and termination and other
resource management functionalities such as primitives for the allocation and dealloca-
tion of resources. The MPI 1.1 definition however, does not include any hooks to re-
source management functionalities required with process migration. This has to be in-
cluded in the MPI run-time support system, but must be transparently to the application
programmer.

In the following discussion we briefly outline aspects of the DynamicPVM system
and its use in the Polder metacomputer. A more complete description of the design and
implementation of DynamicPVM is presented in [10].

4.1 Design Aspects of Process Migration in DynamicPVM

Process migration (operating system level and user level) is realized by the movement
of an active process from one machine to another in a parallel or distributed computing
system. The process is suspended and detached from its environment, its state and data
(the checkpoint) transfered to the destination host, where it is restarted and attached to
the destination environment. The major requirement for providing a migration facility is
transparency: the execution of a process should proceed as if the migration never took
place. In parallel application systems like PVM applications, this transparency should
hold also for the migrated process’s communication partners. The application programs
then do not to have take account for possible complications of checkpointing and mi-
gration.

From the requirements defined above, it follows that DynamicPVM must incorpo-
rate a checkpoint/migration facility and location independent task identifiers, in order
to support transparent process migration. The checkpoint/migration functionality in Dy-
namicPVM is based on the ideas of the facility provided by the Condor system. Dynam-
icPVM extended the checkpoint protocol to safely checkpoint communicating parallel
tasks without loss of messages. The location independent task identifiers, or virtual task
identifiers, guarantees a unique name space for tasks independent of their location. Thus
the same task can be addressed with the same task identifier after migration. Compare
the virtual task identifiers with virtual memory addresses: the virtual memory address
can be mapped to different physical addresses during the execution of a program.

4.2 Implementation Aspects of DynamicPVM

The Scheduler. Although the scheduler is not considered as an integral part of Dynam-
icPVM, its role and interface is mentioned here. In line with the top-down perspective
of the wide-area and local site scheduler, resides the DynamicPVM scheduler beneath
the local site scheduler. The local site resource manager is the authority that allocates
the resources for the DynamicPVM cluster. The DynamicPVM scheduler acts as a re-
source manager within this DynamicPVM cluster, that is, it decides when to migrate a
task and to which host it is moved. However, the DynamicPVM scheduler can request or
relinquish resources in interaction with the the local resource manager. For example, the



Condor system defined an application interface, which is called CARMI [12], to support
this interaction with the local resources manager.

In this scenario, the DynamicPVM scheduler largely determines the efficacy of the
DynamicPVM system in its aim for load balancing. The development of good algorithms
or heuristics for load balancing is a study on itself and is beyond the scope of this arti-
cle. The current scheduler decides on (re-)allocation of processors for tasks, based on
gathered load information of the workstation pool.

The scheduler is implemented as a normal PVM task. A consequence of implement-
ing the scheduler as a PVM task, is that an additional interface must be provided to en-
able the scheduler to interact with the DynamicPVM system. To this end, the PVM li-
brary is extended with an interface routine, pvm move(tid, host), that initiates the
migration of task tid to the specified host.

Consistent Checkpointing Through Critical Sections. To implement dynamic load
balancing by task migration, the run-time support system must be able to create an im-
age of the running process, the so-called checkpoint. A checkpoint of an active process
consists of the state and data of the process, together with some additional information
to recreate the process.

A complication with checkpointing communicating PVM tasks, is that the state of
the process also includes the communication status of the socket connections. Thus, to
save the state of the process, the interprocess communication must also be in a well-
defined state. Since suspension of the related communicating task is not desirable, the
task should not be communicating with another task at the moment a checkpoint is cre-
ated. To prohibit the creation of process checkpoints during communication, we apply
the notion of critical sections and embed all interprocess communication operations
in such sections. Checkpointing can only take place outside a critical section. When a
checkpoint signal arrives during the execution of a critical section, the checkpointing
is deferred. We have implemented the checkpoint facility with two different strategies
for storing the process’s state and data: direct checkpointing via TCP/IP and indirect
checkpointing via NFS. The flexibility in checkpoint strategies allows for experiments
with different checkpoint/migration protocols in the metacomputer.

Virtual Task Identifiers. In message passing environments, the process identifier or
task identifier, task id for short, is a unique identifier which serves as the task’s address
and therefore may be distributed to other PVM tasks for communication purposes. For
this reason the task id must remain unchanged during the lifetime of a task, even when
the task is migrated.

To provide transparent and correct message routing with migrating tasks, the task ids
must be made location independent, thus by virtualizing the task ids. An important de-
sign constraint is that the routing facility must be highly efficient and should not impose
additional limitations on the scalability. This is accomplished by maintaining additional
routing information tables contained by all pvmds. These routing tables are consulted
for all inter-task communication. Upon migration of a task, first the routing table of the
master pvmd is updated to reflect the change in location of the migrated task. Next, the



master pvmd broadcasts the routing table change to all other pvmds, such that each rout-
ing table reflects the actual location of all migrated tasks in the system.

5 Experiments with Dynamic Load Balancing in the
Metacomputing Environment

5.1 Measuring DynamicPVM Overhead

By the design of DynamicPVM, two overhead factors are introduced: virtual task iden-
tifiers and task migration. Virtual task identifiers influence the communication perfor-
mance, as the indirect addressing of tasks requires some extra administration. The task
migration overhead is of importance for the scheduler, as the decision to migrate a task
can depend on the (expected) migration time.

A well-known method to measure the basic communication properties of a message-
passing systems is the ping-pong experiment. The measured time covers the transmis-
sion and the receipt of the message in user space. In this sense, the ping-pong experi-
ment is a suitable benchmark to determine the overhead introduced by the DynamicPVM
implementation. The ping-pong experiment was performed for both the public domain
PVM implementation as well as the DynamicPVM implementation. The experiments
were executed on a lightly loaded system of SPARCstation 4 workstations connected by
a 10Mb/s Ethernet. The results of the ping-pong experiments are shown in Fig. 3. The
gathered results are the mean of 30 independent experiments, in which for each mes-
sage size 1000 messages are exchanged. The variance in the measurements is smaller
than 1% of the mean.

0 200 400 600 800 1000

message size (Kbytes)

500

1000

1500

tim
e 

(m
se

c)

PVM
DynamicPVM

Size PVM DPVM
(bytes) (msec) (msec)

4 7.2 7.6
16 7.2 7.6
64 7.2 7.7

256 7.7 8.1
1 K 8.5 9.0
4 K 14.9 15.9

16 K 37.0 38.4
64 K 120.8 126.2

256 K 453.8 475.3
1 M 1785.1 1854.3

Fig. 3. PVM and DynamicPVM ping-pong results for low network load. The larger slope of the
DynamicPVM curve shows a linear increasing overhead.

Figure 3 shows that the message send time in DynamicPVM increase faster than in
PVM (the induced overhead is �5% of the send time). The dependency of overhead on
the message size is due to the routing table lookup for each packet sent between two
pvmds in DynamicPVM. As the number of bytes increases, the number of packets sent
also increases (see Section 4.2).



Figure 4 shows some results obtained by migrating a 75 Kbyte process with data
segments of various sizes in both TCP and NFS checkpointing mode. The time mea-
surements include the checkpoint of the active process, the migration, and the restart of
the process. The results in Fig. 4 are the mean of 30 experiments, where the variance of
the NFS mean is less than 5% and the variance of the TCP/IP mean is less than 1%.

10 20 30

checkpoint size (Mbytes)

20

40

60

80
tim

e 
(s

ec
)

NFS checkpoint
TCP/IP checkpoint

Fig. 4. Migration times for indirect NFS and direct TCP/IP checkpointing. The migration times
increase linear with checkpoint size.

As can be seen in the figure, the time needed for the migration is linear to the size
of the program. The tangent of the slope for NFS is �3, while the slope of TCP/IP is�1. This difference can be explained by the number of accesses to the checkpoint file
in both strategies. The NFS checkpoint requires one write of the checkpoint to the file
system, and a read and write for the creation of the new executable. With TCP/IP check-
pointing, the new executable is created with a single state transfer over a socket connec-
tion. Nonetheless, both migration modes are efficiently implemented given the underly-
ing protocol. For direct checkpointing, the measured throughput is almost 1 MB/s, while
the bandwidth of Ethernet is 1 MB/s. With indirect checkpointing a throughput of about
400 KB/s is measured.

5.2 Adaptive Behaviour of DynamicPVM

DynamicPVM differs from PVM in its ability to adapt to changes in the workload of the
available resources in cluster environments. The changes in workload can be induced
by the irregular behaviour of the application or by activities of other user applications.
Depending on the scheduler policy, the adaptive behaviour should be expressed in im-
proved turn-around time of the parallel application, system utilization, etc. In this exper-
iment we determine the turn-around time of PVM and DynamicPVM applications in a
cluster environment with dynamically changing background workload.

To evaluate the qualities of DynamicPVM compared with PVM, the influence of the
following four parameters should carefully be quantified:

– the dynamics of the temporal behaviour of the application (changes in workload);



– the spatial granularity of the application (problem size);
– the temporal granularity of the application (ratio communication/computation);
– the scheduler (different scheduling strategies).

The experiments must be designed to explore the parameter space such that trends can
be detected and interrelations between the parameters appear.

A general problem with experiments in clusters of workstations is the lack of con-
trol of factors influencing the experiment. For consistent evaluation of the PVM and Dy-
namicPVM systems, we need a controlled dynamic environment such that both systems
endure the same amount of background workload during an experiment. The problem of
the controlled dynamic environment is solved by creating a well-defined workload on a
cluster of idle workstations.

Two independent clusters are configured for PVM and DynamicPVM, both clusters
large enough to assign the tasks to different workstations. DynamicPVM needs also re-
dundant workstations to balance workload—at any instant only one task is running per
workstation. Although DynamicPVM uses a changing set of workstations to solve the
application problem, per instant the number of workstations assigned to the problem
is equal to PVM. During the experiment, each workstation endures the same amount
of background workload, that is the total quantity is equal but the individual quantums
are scheduled independently. The background jobs arrive with exponential interarrival
times. The individual jobs take a fixed amount of work to complete, and are processor
bound.

The PVM and DynamicPVM applications are executed in these controlled dynamic
environments. During the execution in both environments, the PVM and DynamicPVM
applications will endure the same intensity of background load.

In the pilot experiment we select two applications that reside at either end of the par-
allel application spectrum: EP and SSA. The EP benchmark falls in the category “embar-
rassingly parallel,” requiring little communication between processors. The SSA (Sys-
tolic Simulated Annealing) application solves the crystalization of particles on a sphere,
and puts a dynamic demand on the computational and the communication resources.

The EP experiments are pursued with two scheduling strategies. The workload is
defined as the Unix system load average. Scheduling policy sched 1 is based on work-
load difference in the DynamicPVM cluster: the workstation with the largest increase
(decrease) in workload, is indicated as the most heavily (lightly) loaded host in the clus-
ter. Based on these observations, the scheduler moves the tasks from the heavily loaded
host to the lightly loaded host. Scheduling policy sched 2 makes decisions based on the
absolute workload. As the Unix system load average lags behind the actual workload
distribution, the decision to migrate a task is delayed until the load average has draw
level with the current situation—this gives a hurry after behaviour.

The influence of the background load on the EP benchmark resulted in an increase of
the PVM execution time with 75% (increase from 0:52:34 to 1:33:48). The adaptive Dy-
namicPVM system with scheduling policy sched 1 brings the increased execution time
back to 46%, with 58 task migrations. With scheduling policy sched 2, DynamicPVM
is less successful to exploit the available resources. By its conservative behaviour (31
migrations), the tasks remain for a longer period on heavily loaded hosts before they are
migrated. The DynamicPVM system succeeds in improving the performance of the EP



benchmark, even with the 58 migrations in just over an hour.
Experiments with the SSA application are pursued with the conservative scheduler

that uses a high threshold before a task is migrated (higher than with the EP benchmark).
Several experiments with different problem sizes (number of particles on the sphere)
were performed. The gain of DynamicPVM over PVM is around 10% for the different
problem sizes, e.g., PVM runtime of 7:49:28 versus DynamicPVM runtime of 7:02:03
(with 4 migrations) for small problem instances, and PVM runtime of 17:31:46 ver-
sus DynamicPVM runtime of 16:12:44 (with 8 migrations) for large problem instances.
These results show that large jobs with a conservative scheduler can take advantage of
the DynamicPVM system with a limited number of migrations.

More experiments exploring the parameter space of the dynamics in workload, spa-
tial and temporal granularity, and scheduling strategies will be showed in the presenta-
tion at the workshop.

6 Discussion and Conclusions

The presented research in adaptive systems and experiments with DynamicPVM shows
that dynamic load balancing is a viable approach to the curse of dynamics in clusters of
workstations. The communication and checkpoint overhead experiments in Section 5.1
indicate that the DynamicPVM system provides efficient task migration support. The
experiments in a controlled highly dynamic cluster environment (Section 5.2) exposes
the ability of DynamicPVM to react on changes in the cluster environment and reduce
the turnaround time of the applications. The eventual success of DynamicPVM depends
on the scheduling strategy.

The next step in our research is the integration of DynamicPVM into the Polder
metacomputer. The key issue in the integration is the interplay of the DynamicPVM
scheduler with the local resource manager. The design and implementation of more ad-
vanced scheduling strategies will be directed by experimental validation of the strategies
in the resource management simulation model, which is developed within the Polder
metacomputer framework.

The DAS distributed supercomputer provides an excellent experimental hardware
platform to implement and validate different the designs of components in the Polder
metacomputer. The DAS architecture with high speed local area and wide area network,
grasps the characteristics of the prototypical metacomputer of the near future. In this
respect, the various issues in wide-area scheduling and local site scheduling have to be
included in the DAS resource management.

Open issues in the development of the Polder metacomputer are security and true
heterogeneous distributed computing. Security determines the acceptance of metacom-
puting; if the resources of different organizational instances are gathered into a meta-
computer, the integrity of the individual resources must be guaranteed. True heteroge-
neous distributed computing requires the support for process migration between differ-
ent architectures. This heterogeneous process migration is difficult to solve at operat-
ing system level. At user level, we can take an object-oriented approach, and implement
process/object migration into a library. The research in security and heterogeneous dis-
tributed computing aspects will be significant efforts in the future Polder metacomputer
developments.



Acknowledgments

We express our thanks to Miron Livny (University of Wisconsin–Madison), Berry van Halderen
(University of Amsterdam) and Judhi Santoso (University of Amsterdam/Institute of Technology
Bandung) for the valuable discussions and the exchange of ideas with us. This research is sup-
ported in part by the Royal Netherlands Academy of Arts and Sciences under grant 95-BTM-15,
and the Netherlands Organization for Scientific Research under grant 95MPR01/1.

References

1. A. Barak and O. La’adan. Performance of the MOSIX parallel system for a cluster of
PC’s. In High Performance Computing and Networking (HPCN Europe ’97), volume 1225
of LNCS, pages 624–635. Springer-Verlag, May 1997.

2. M. Brune, J. Gehring, and A. Reinefeld. A lightweight communication interface for paral-
lel programming environments. In High-Performance Computing and Networking (HPCN
Europe ’97), volume 1225 of LNCS, pages 503–513. Springer-Verlag, May 1997.

3. J. Casas, D. L. Clark, P. S. Galbiati, R. Konuru, S. W. Otto, R. M. Prouty, and J. Walpole.
MIST: PVM with transparent migration and checkpointing. In Third Annual PVM Users’
Group Meeting, Pittsburgh, PA, May 1995.

4. The distributed ASCI supercomputer (DAS). http://www.asci.tudelft.nl/das/
das.shtml.

5. J. F. de Ronde, A. Schoneveld, P. M. A. Sloot, N. Floros, and J. Reeve. Load balancing by
redundant decomposition and mapping. In High Performance Computing and Networking
(HPCN Europe ’96), volume 1067 of LNCS, pages 555–561. Springer-Verlag, Apr. 1996.

6. T. A. DeFanti, I. Foster, M. E. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-WAY:
Wide area visual supercomputing. International Journal of Supercomputer Applications and
High Performance Computing, 10(2/3):123–130, 1996.

7. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications and High Performance Computing, 11(2):115–128,
1997.

8. A. S. Grimshaw and W. A. Wulf. Legion—A view from 50,000 feet. In Proceedings of
the Fifth IEEE International Symposium on High Performance Distributed Computing, pages
89–99, Syracuse, NY, Aug. 1996.

9. M. Litzkow, M. Livny, and M. W. Mutka. Condor—A hunter of idle workstations. In 8th
IEEE International Conference on Distributed Computing Systems, pages 104–111, 1988.

10. B. J. Overeinder, P. M. A. Sloot, R. N. Heederik, and L. O. Hertzberger. A dynamic load
balancing system for parallel cluster computing. Future Generation Computer Systems,
12(1):101–115, May 1996.

11. The Polder metacomputing initiative. http://www.wins.uva.nl/projects/
polder/.

12. J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cycles of workstation
clusters. Future Generation Computer Systems, 12(1):67–85, May 1996.

13. M. S. Warren, M. P. Goda, D. J. Becker, J. K. Salmon, and T. Sterling. Parallel supercom-
puting with commodity components. In Proceedings of the International Conference on Par-
allel and Distributed Processing Techniques and Applications (PDPTA’97), Las Vegas, NV,
June 1997.

14. J. B. Weissman and A. S. Grimshaw. A federated model for scheduling in wide-area systems.
In Proceedings of the Fifth IEEE International Symposium on High Performance Distributed
Computing, pages 542–550, Syracuse, NY, Aug. 1996.


