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On a generic class of two-node queueing systems∗
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Abstract

This paper analyzes a generic class of two-node queueing systems. A first queue is fed by an on-off

Markov fluid source; the input of a second queue is a function of the state of the Markov fluid

source as well, but now also of the first queue being empty or not. This model covers the classical

two-node tandem queue and the two-class priority queue as special cases. Relying predominantly

on probabilistic argumentation, the steady-state buffer content of both queues is determined (in

terms of its Laplace transform). Interpreting the buffer content of the second queue in terms

of busy periods of the first queue, the (exact) tail asymptotics of the distribution of the second

queue are found. Two regimes can be distinguished: a first in which the state of the first queue

(that is, being empty or not) hardly plays a role, and a second in which it explicitly does. This

dichotomy can be understood by using large-deviations heuristics.
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1 Introduction

In a variety of operational applications, one needs to analyze the performance experienced by traffic
streams flowing through a network — one could think of production systems, logistic systems, com-
munication networks, etc. Queueing theory offers a natural framework for this. More specifically, in
queueing theory, the network nodes are modeled as queues at which traffic arrives, these queues are
served according to some discipline, and after being served the output of one node can serve as input
for a next node or leave the system. Also, nodes could operate under scheduling disciplines that
are more sophisticated than simply first-in-first-out; one could for instance prioritize certain traffic
streams.
Queueing theory aims at analyzing the performance (in terms of loss, delay, throughput, etc.) of
these nodes. However, most studies address performance issues just for single nodes, and do not
consider end-to-end metrics. In some cases, it is well understood how the probabilistic properties of
the traffic stream are affected by traversing a node (for instance in M/M/1-type of networks where the
output streams have the same statistical properties as the input stream), but in many situations just
partial results are available. The same applies to queues operating under non-standard scheduling
disciplines.

In the present paper we consider a network of two queues, that, interestingly, covers the two-node
tandem queue and the priority queue as special cases (and, in fact, a variety of combinations of these
two). The first queue is fed by an on-off Markovian fluid source, and can be analyzed by standard
techniques. The input of the second queue, however, is strongly affected by the buffer content of the
first queue: it is again a function of the state of the Markov fluid source, but now also of the first
queue being empty or not. The fact that the second queue cannot be solved in isolation from the
first queue, makes this queue considerably harder to analyze.
The main contribution of our work is that we explicitly characterize the distribution of the buffer
content of this second queue (in terms of its Laplace transform). We do so exclusively relying on
elementary probabilistic techniques; for instance no martingale methods are needed. Remarkably, we
can express the buffer content of the second queue in terms of the busy period of the first queue,
which yields appealing probabilistic interpretations. As a second contribution we also derive the tail
asymptotics of the second queue, and this we do without resorting to techniques from complex function
analysis. In addition, we provide the intuition behind these asymptotic results; a number of regimes
can be distinguished, and large-deviations argumentation can be used to develop understanding for
these.

Our results touch on those derived in several other papers. Rough (that is, logarithmic) asymptotics
for tandem networks (but the results partially generalize to the framework of the present paper) were
derived in Chang et al. [3] — albeit in a discrete-time setting — and Mandjes [14]. With Q2 being the
steady-state buffer content of the downstream queue, they identify the limit −θ of x−1 log P(Q2 > x),
implying that P(Q2 > x) = f(x) exp(−θx) for some (unknown) subexponential function f(·) (i.e.,
log f(x)/x → 0 as x → ∞). A main conclusion from these papers is that essentially two regimes
exist: one in which the first queue is ‘transparent’, in that its behavior hardly affects the overflow
asymptotics of the second queue, and one in which the impact of the buffer content of the first queue
is more explicitly visible.
Abate and Whitt [1] consider asymptotics, for compound Poisson input, of a priority system, and they
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Figure 1.1: The fluid model.

also identify the two regimes. Importantly, the asymptotics in [1] are ‘exact’, in that an (explicitly
given) function g(·) is found such that P(Q2 > x)/g(x)→ 1 as x→∞, with Q2 being the steady-state
buffer content of the low-priority queue. More precisely, in the transparent regime mentioned above,
the exact asymptotics are of the type α exp(−sx) for positive constants α, s, whereas in the other
regime they look like α′/(x

√
x) exp(−s′x) for positive constants α′, s′. Our results indicate that this

dichotomy carries over to the more general two-node network that we briefly introduced above.
Exact analyses of the buffer content distribution of the second queue, in a tandem setting, are given
by Scheinhardt and Zwart [19] and Kella [11], predominantly relying on martingale techniques; see
also [13] and [18] for related results. Dieker and Mandjes [8] consider networks in which the input
is a Markov additive process (that is, a Markov-modulated Lévy process), and in this sense more
general than just an on-off Markov fluid source; their results are, however, considerably less explicit,
and they do not consider tail asymptotics either.

The paper is organized as follows. Section 2 introduces our model. It also shows that a number of
important queueing systems are covered as special cases. In Section 3 we concentrate on the Laplace
transform of the buffer content of the second queue, and we probabilistically interpret the result. The
remainder of the paper is devoted to the analysis of the tail asymptotics of the buffer content of the
second queue. First we present (Section 4) heuristics for the logarithmic asymptotics: relying on a
large-deviations motivation, we show why one would expect two regimes to appear. These regimes are
indeed identified in Section 5: using the probabilistic interpretation mentioned above, we characterize
the exact tail asymptotics of the buffer content of the second queue. Section 6 concludes.

2 Model and preliminaries

In this section we will first introduce the model and some interesting special cases. Then we present
preliminary results concerning stability of the system and the distribution of the first queue.
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Figure 2.2: Sample-path of the two-node queueing system.

Thus, consider a stochastic fluid model with two infinite capacity buffers, which have at time t

respective contents Qi(t), i = 1, 2, see Fig. 1.1. The first buffer is fed by a Markovian on-off source
{I(t) ∈ {0, 1}, t ≥ 0} with mean off-time β−1 and mean on-time α−1. Writing the steady state of
this process as I without time index t, (as we will henceforth do for all stochastic processes), we
clearly have P(I = 0) = 1− P(I = 1) = α/(α+ β).
When I(t) = 1 the first buffer increases at rate d+; otherwise it decreases at rate d−, as long as it
is not empty. The second buffer is driven by the first one and the input source in the following way:
its content increases at rate c+1 (c+0, respectively) when the first buffer is not empty and I(t) = 1
(I(t) = 0); otherwise it decreases at rate c− (of course, provided that it is not empty).

Some special cases. We now show that a number of standard models are specific cases of our generic
model.

• Model 1: Priority system. While I(t) = 0 there is no input to the first buffer and the input
rate to the second buffer is p20 > 0. While I(t) = 1 the input rates to the first and the second
buffers are p1 > 0 and p21 > 0, respectively. The first buffer receives strict priority and is served
at rate c > 0. The second buffer is served at rate c > 0 only when the first one is empty. To
avoid trivialities we assume that p1 > c, so that the first buffer is not always empty.

• Model 2: Priority/tandem system. This is a modification of the first model where type one fluid
is served at rate c1 > 0 and the output of the first buffer is input to the second. The second
buffer is again served at rate c2 > 0 only when the first one is empty. Again we assume that
p1 > c1.

• Model 3: Tandem/priority system. This is a tandem fluid model with priorities. The two fluid
buffers, with constant output rates c1 > 0 and c2 > 0, are placed in series. The first one is fed
by the on-off source: while I(t) = 1 the input rate is p1 > c1. The output of the first buffer is
the (only) input to the second. The second buffer is served only when the first is empty.
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• Model 4: Tandem system. This is a classical tandem fluid model, as was also studied in [13, 18].
It is the same as model 3 with the modification that the second buffer is always served at rate
c2 > 0, provided that it is not empty. Here we assume that p1 > c1 > c2 > 0.

The correspondence between these four models and the general model can be summarized as follows:

Model 1 Model 2 Model 3 Model 4

d+ p1 − c p1 − c1 p1 − c1 p1 − c1
d− c c1 c1 c1

c+1 p21 c1 + p21 c1 c1 − c2
c+0 p20 c1 + p20 c1 c1 − c2
c− c− p20 c2 − p20 c2 c2

Stability conditions. The stability condition of the first queue is d+P(I = 1) < d−P(I = 0), which is
equivalent to

αd− − βd+ > 0. (2.1)

Under (2.1) the stationary distribution of (I(t), Q1(t)) is known to exist and is given by (see e.g. [18])

P(I = 0, Q1 ≤ x) =
α

α+ β
− β

α+ β

d+

d−
e−(α/d+−β/d−)x,

P(I = 1, Q1 ≤ x) =
β

α+ β
− β

α+ β
e−(α/d+−β/d−)x,

where α/d+ − β/d− is positive due to (2.1). The utilization of the first buffer is defined as ρ1 :=
P(Q1 > 0) and is given by

ρ1 =
β

α+ β

d− + d+

d−
. (2.2)

Similarly, stability of the second queue is ensured if and only if the input rate is smaller than the
output rate; this means that the condition c+1P(I = 1) + c+0P(I = 0, Q1 > 0) < c−P(Q1 = 0) should
be satisfied, or equivalently

c+1
β

α+ β
+ c+0

β

α+ β

d+

d−
< c−

(
1− β

α+ β

d+ + d−
d−

)
,

which can also be written as
αd−

c+1d− + c+0d+ + c−d+
− β

c−
> 0. (2.3)

Notice that (2.1) is implied by (2.3), as can be seen by multiplying the latter with c−d+. Hence,
under (2.3), the stationary distribution of (I(t), Q1(t), Q2(t)) exists. The distribution of Q1 being
known, this paper focuses on the distribution of Q2 and its tail asymptotics.

3 Distribution of queue 2

In this section we express the distribution of Q2 in terms of other, known distributions. In particular,
we present an explicit expression for the Laplace Transform (LT) of Q2 in Theorem 3.6. The approach
is based on Kella and Whitt [10], where we condition on the state of the first buffer.
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3.1 Distribution of queue 2 when queue 1 is idle

We consider the buffer content process Q2(t) and delete the busy periods of queue 1 from the time
axis. The resulting process, which has positive jumps at the beginning of each idle period of queue
1, will be called W (t). In fact it is identical to the workload process in an M/G/1 queue, drained at
rate c−, with arrival rate β, in which the service times are distributed as the typical increase of the
second buffer content during a busy period of the first buffer.
To analyze this increase, we relate it to the length of a busy period of buffer 1, denoted by B (realize
that these busy periods are independent and identically distributed random variables). Consider
then a typical sample path during a busy period of buffer 1 with length B, and let N denote the
number of times the source turns on during this busy period (including the one that initiates the
busy period) and let Xi, Yi, i = 1, . . . , N, denote the lengths of the source’s respective on-times and
off-times during this busy period, see Fig. 2.2. (Notice that YN only includes the part of the off-time
that overlaps with the busy period of buffer 1.) Then we have the following two equations:

d+

N∑
i=1

Xi = d−

N∑
i=1

Yi, and
N∑
i=1

Xi +
N∑
i=1

Yi = B.

We thus find that
∑N
i=1Xi = d−/(d− + d+) ·B and

∑N
i=1 Yi = d+/(d− + d+) ·B, so that we have for

the total increase during B,

c+1

N∑
i=1

Xi + c+0

N∑
i=1

Yi
d=
c+1d− + c+0d+

d− + d+
·B, (3.4)

where d= denotes equality in distribution. Notice that the factor in front of B may be viewed as the
(weighted) average increase rate of the second buffer content during a busy period of queue 1. In
special cases where c+0 = c+1 = c+, as in models 3 and 4, it is immediately clear that the increase
should indeed be c+B. In the remainder we shall also use the shorthand notation c+ to denote the
weighted average of c+0 and c+1 when they are not equal.
Turning back to the process W (t), when scaling time to arrive at a standard M/G/1 queue drained
at rate 1, we have the following result for the distribution of the steady state random variable
W

d= (Q2 | Q1 = 0).

Lemma 3.1 W is distributed as the steady-state workload of an M/G/1 queue drained at unit rate,
with arrival rate β/c− and service times distributed as c+B, where B is the typical busy period of the
first buffer, and

c+ :=
c+1d− + c+0d+

d− + d+
. (3.5)

The LT of W is given by

Ee−sW =

(
1− β

c−
c+EB

)
s

β
c−

Ee−sc+B − β
c−

+ s
. (3.6)

Proof: The form of Ee−sW is immediate from the Pollaczek-Khinchine formula. ♦

To obtain the distribution of B, we consider the buffer content process Q1(t) and delete the on-periods
Xi from the time axis, in a similar way as how we constructed the process W (t) from the process
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Q2(t). The resulting process is now identical to the workload process in an M/M/1 queue drained
at rate d− with arrival rate β and mean service time d+/α. In this case we prefer to scale the buffer
space to arrive at a standard M/M/1 queue drained at rate 1; this queue then also has arrival rate β,
but mean service time d+/(αd−). The total busy period of the first queue, including the on-times,
is then (d+ + d−)/d+ times the busy period of this M/M/1 queue, which we denote as P . This leads
to the following.

Lemma 3.2 The busy period B of queue 1 is distributed as m times P , the busy period of an M/M/1
queue with arrival rate β and service rate αd−/d+, i.e., B d= mP , where

m :=
d+ + d−
d+

. (3.7)

The LT and mean of B are given by

Ee−sB =
β +

αd−
d+

+ms−

√(
β +

αd−
d+

+ms

)2

− 4β
αd−
d+

2β
, and (3.8)

EB =
d− + d+

αd− − βd+
. (3.9)

Proof: To show (3.8), note that the LT Ee−sP of the busy period of an M/M/1 queue with arrival
rate λ and service rate µ is found by solving (under the condition that it should have value 1 for
s = 0)

λ(Ee−sP )2 − (λ+ µ+ s)Ee−sP + µ = 0; (3.10)

it is therefore given by

Ee−sP =
λ+ µ+ s−

√
(λ+ µ+ s)2 − 4λµ
2λ

. (3.11)

It suffices to choose λ = β and µ = d−α/d+ in this expression, and then evaluate it at ms to find
Ee−sB . Equation (3.9) follows from the fact that EP = 1/(µ− λ). ♦

Corollary 3.3 The LT of W can be rewritten as

Ee−sW =
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)(
1 +

β/c−
sp

sp
s+ sp

− β/c−
(1 +mc+/c−)sp

sp
s+ sp

Ee−sc+B
)

(3.12)

where

sp :=
αd−

c+(d− + d+) + c−d+
− β

c −
. (3.13)

Proof: After substitution of (3.8) and (3.9) into (3.6), we find a square root in the denominator. By
multiplying numerator and denominator with a factor

β

c−

β +
αd−
d+

+mc+s+

√(
β +

αd−
d+

+mc+s

)2

− 4β
αd−
d+

2β
− β

c−
+ s, (3.14)

this square root vanishes, while the square root that arises in the numerator can be written in terms
of Ee−sB . After some rewriting the result follows. ♦
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3.2 Distribution of queue 2 when queue 1 is busy

Our next concern is to find the distribution of Q2 during busy periods of the first buffer. To do so, let
us consider an arbitrary point in time t during a busy period of buffer 1 (i.e., buffer 1 is non-empty),
and define A as the amount of fluid that flowed into buffer 2 since the start of the current busy period.
Since the amount of fluid in buffer 2 at the beginning of a busy period of queue 1 is the waiting time
in the corresponding M/G/1 queue, we have by PASTA that it has the same distribution as W .
Hence we have (Q2 | Q1 > 0) d= W + A, with W and A independent, and all we need to do is find
the distribution of A.
Before proceeding, recall that, if we consider the buffer content process Q1(·) and delete the on-periods
Xi from the time axis, then it is identical to the workload process in the M/M/1 queue drained at
rate d− with arrival rate β and mean service time d+/α. This relation with the M/M/1 is crucial for
what follows.
The fraction of time the source is off (on) during a busy period is equal to d+/(d− + d+) (resp.
d−/(d− + d+)) due to the discussion above (3.4). Hence, with probability d+/(d− + d+), the source
is off at time t. In that case let YN denote the length of the (whole) off-period at time t, the
random variable N ≥ 1 being the number of on-periods before the current off-period. Then we have,
sample-path-wise,

A = c+1

N∑
i=1

Xi + c+0

(
N−1∑
i=1

Yi +AY

)
, (3.15)

where AY denotes the age of YN at time t; an empty sum is interpreted as 0. Note that, with V

denoting the content of buffer 1 at time t, then

d+

N∑
i=1

Xi = d−

(
N−1∑
i=1

Yi +AY

)
+ V,

since the left-hand side is the total increase in buffer 1 during on-times from the start of the busy
period up to time t, and the right-hand side is the total decrease in buffer 1 during off-times up to
time t plus what is left in the buffer at time t. Substitution into (3.15) and then using (3.7) and (3.5)
yields

A = c+1
V

d+
+
(
c+0 + c+1

d−
d+

)(N−1∑
i=1

Yi +AY

)

= c+1
V

d+
+mc+

(
N−1∑
i=1

Yi +AY

)
.

Note that the random variables in the right-hand side are dependent, but as we will see below,
conditionally they are independent.
We proceed by conditioning on the number of jobs in the corresponding M/M/1 queue at the arbitrary
point in time t during the busy period. The probability pn that there are n jobs in the system at
time t is

pn = (1− ρ)ρn−1, n = 1, 2, . . . ,

where

ρ :=
βd+

αd−
. (3.16)
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Given that there are n jobs in the system at time t, it follows from the memoryless property that

V
d= d+

n∑
i=1

Xi,

and V and
∑N−1
i=1 Yi + AY are (conditionally) independent. Further, the age of the busy period∑N−1

i=1 Yi + AY is the same as the remaining busy period of the time-reversed M/M/1 queue, and
since the M/M/1 is reversible, the remaining busy period is the sum of n busy periods of an M/M/1
(with the same parameters as the original M/M/1). Hence, given that there are n jobs in the system
at time t,

N−1∑
i=1

Yi +AY
d=

n∑
i=1

Pi,

where Pi is a busy period in an M/M/1 with arrival rate β and mean service time d+/(d−α). Putting
all ingredients together, we find that with probability pn · d+/(d− + d+),

A
d= c+1

n∑
i=1

Xi +mc+

n∑
i=1

Pi.

Now assume that at the arbitrary point in time t the source is on. Then we have

A = c+1

(
N∑
i=1

Xi +AX

)
+ c+0

N∑
i=1

Yi, (3.17)

where N ≥ 0 is the number of on-periods before the current on-period (possibly taking the value 0)
and AX denotes the age of XN+1 at time t. Further,

d+

N∑
i=1

Xi = d−

N∑
i=1

Yi + V, (3.18)

where V now denotes the amount of fluid in the first buffer at the beginning of XN+1, or in the
M/M/1 queue, it denotes the amount of work in the system just prior to the (N + 1)-st arrival in the
busy period. Substitution of (3.18) into (3.17) and again using (3.7) and (3.5) yields

A = c+1
V

d+
+ c+1AX +mc+

N∑
i=1

Yi.

Note that the (N + 1)-st arrival in the busy period of the M/M/1 queue is (statistically) the same
as an arbitrarily chosen one, so the probability that there are n jobs in the system just prior to the
arrival is equal to

qn = (1− ρ)ρn, n = 0, 1, . . . .

Conditioning on the number of jobs in the M/M/1 system being n, we have

V
d= d+

n∑
i=1

Xi,

while AX has the same distribution as any of the Xi, and the random variables V , AX and
∑N
i=1 Yi

are (conditionally) independent. Also, we have again (by using time-reversibility)

N∑
i=1

Yi
d=

n∑
i=1

Pi.

9



So, summarizing, with probability qn · d−/(d− + d+),

A
d= c+1

n+1∑
i=1

Xi +mc+

n∑
i=1

Pi.

Finally, putting the results during off and on periods together, and using the fact that mP d= B, we
obtain the following result.

Lemma 3.4 The distribution of A is given by

A
d=


c+1

n+1∑
i=1

Xi + c+

n+1∑
i=1

Bi w.p. (1− ρ)ρnd+/(d− + d+), n = 0, 1, . . . ,

c+1

n+1∑
i=1

Xi + c+

n∑
i=1

Bi w.p. (1− ρ)ρnd−/(d− + d+), n = 0, 1, . . . ,

where the Xi are distributed as the on-times and the Bi are distributed as the busy periods of queue 1.
The Xi and Bi are independent.

The LT of A is found as

Ee−sA =
d+Ee−sc+B + d−

d− + d+

∞∑
n=0

(1− ρ)ρn
(

α

α+ c+1s

)n+1 (
Ee−sc+B

)n
(3.19)

=
(1− ρ)αm−1

(
d−/d+ + Ee−sc+B

)
α+ c+1s− ραEe−sc+B

. (3.20)

A more insightful form is presented next.

Corollary 3.5 The LT of A is given by

E(e−sA) = R(sc+)
c+
c+1

(
1 +

c+1 − c+0

mc+

(
α/c+1

γ

γ

γ + s
+
β/c+0

γ

γ

γ + s
Ee−sc+B

))
, (3.21)

where γ := α/c+1 + β/c+0 and

R(s) :=
(
αd−
d+
− β

)
1− Ee−sB

ms
.

Proof: We first replace s by s/mc+ in (3.20) since we prefer to work with Ee−sP = Ee−(s/m)B .
Multiplying numerator and denominator by 1 − Ee−sP , and using that Ee−sP satisfies (3.10) with
λ = β and µ = d−α/d+ (see the proof of Lemma 3.2), we can rewrite the above expression as

E exp
(
− s

mc+
A

)
= R̂(s)

c+
c+1

1 + (d+/d−) · Ee−sP

1 + (d+/d−)(c+0/c+1) · Ee−sP
,

where R̂(s) is the LT of the residual busy period in an M/M/1 queue with arrival rate β and mean
service time d+/(d−α), that is,

R̂(s) =
(
αd−
d+
− β

)
1− Ee−sP

s
.

The last term in the above expression can be rewritten as

1 + (d+/d−) · Ee−sP

1 + (d+/d−)(c+0/c+1) · Ee−sP

= 1 +
(

1− c+0

c+1

)
d+

d−

Ee−sP

1 + (d+/d−)(c+0/c+1) · Ee−sP

= 1 +
(

1− c+0

c+1

)
d+

d−

(
µ

γ̂ + s
+
d−
d+

c+1

c+0

λ

γ̂ + s
Ee−sP

)
,
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where in the last step we removed the square root from the denominator by exploiting the explicit
form for Ee−sP , see (3.11). The constant γ̂ is given by

γ̂ := λ

(
1 +

d−
d+

c+1

c+0

)
+ µ

(
1 +

d+

d−

c+0

c+1

)
.

Summarizing, and substituting λ and µ, we find

E exp
(
− s

mc+
A

)
= R̂(s)

c+
c+1

(
1 +

(
1− c+0

c+1

)(
α

γ̂ + s
+
c+1

c+0

β

γ̂ + s
B(s)

))
.

Finally, replacing s by smc+ and, in addition, letting γ = γ̂/(mc+) and R(s) = R̂(sm) yields the
desired result. ♦

Remark: From the proof and the fact that B d= mP , it can be understood that R(s) is the LT of
B∗, the residual busy period of buffer 1. In fact, when c+0 = c+1 = c+, we find that Ee−sA = R(c+s)
and hence A d= c+B

∗, as should be the case.

3.3 Result

We are now ready to present the main result of this section.

Theorem 3.6 The stationary content of buffer 2 can be decomposed as, with ρ1 given through (2.2),

Q2
d=

{
W w.p. 1− ρ1,

W +A w.p. ρ1.

Here, W is distributed as the workload of an M/G/1 queue with arrival rate β/c− and service times
distributed as c+B, and A is distributed as the geometric sum involving on-times and busy periods as
in Lemma 3.4. Finally all random variables involved are independent.
Hence, the LT of the stationary content of buffer 2 is given, with ρ1 given through (2.2), by

Ee−sQ2 =
(
1− ρ1 + ρ1Ee−sA

)
Ee−sW , (3.22)

where Ee−sW and Ee−sA are given in Corollaries 3.3 and 3.5 respectively.

Proof: Immediate from the preceding. ♦

3.4 Properties of the Laplace transform of Q2

As an introduction to the next sections, this subsection concentrates on the singularities of the LT
of Q2. We do so, as it is expected that the largest negative singularity (that is, closest to 0) is the
exponential rate at which the probability P(Q2 > x) decays as x→∞, i.e.,

lim
x→∞

1
x

log P(Q2 > x).

We do not give a formal proof of this at this stage, as it will follow from the exact asymptotics in
Section 5.
There may be two types of singularities for the LT in (3.22), as presented in the following lemmas,
viz. poles and branching points.
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Lemma 3.7 Ee−sQ2 has a branching point at s = −sb, where

sb =
(
√
βd+ −

√
αd−)2

c+1d− + c+0d+
> 0, (3.23)

for all parameter values that satisfy the stability condition (2.3).

Proof: The LT of the busy period of an M/M/1 has branching points at s = −(
√
λ±√µ)2, see the

proof of Lemma 3.2. Therefore the branching points of Ee−sc+B (and by (3.22) also those of Ee−sQ2)
are given by the solutions to

mc+s = −

(√
β ±

√
αd−
d+

)2

,

so that the largest of these is −sb as given in (3.23). ♦

Lemma 3.8 Ee−sQ2 has a pole at s = −sp, where

sp =
αd−

c+1d− + c+0d+ + c−d+
− β

c−
> 0, (3.24)

for all parameter values that satisfy (2.3) and the following criterion,

αc2−d−d+ ≤ β(c+1d− + c+0d+ + c−d+)2. (3.25)

If (3.25) is not fulfilled, Ee−sQ2 has no negative pole.

Proof: Since Ee−sc+B has no poles, Ee−sQ2 as given in (3.22) only may have poles at the value(s)
of s for which either βEe−c+sB − β + c−s = 0 or α + c+1s − ραEe−c+sB = 0, see (3.6) and (3.20)
respectively. The latter equation leads to√

(β +
αd−
d+

+mc+s)2 − 4β
αd−
d+

= β − αd−
d+

+ (mc+ + 2c+1β/α)s,

which cannot hold for negative s due to (2.1). The other equation leads to√
(β +

αd−
d+

+mc+s)2 − 4β
αd−
d+

= −β +
αd−
d+

+ (mc+ + 2c−)s. (3.26)

After squaring both sides, and dividing by 4s we obtain s = −sp as in (3.24), but only if the right-
hand side of (3.26) is positive, which is equivalent to (3.25). The fact that sp > 0 follows from the
stability condition (2.3). ♦

Remark: In the proof of Lemma 3.8 we used the LT of W in (3.6). The alternative form in (3.12)
seems to suggest that Ee−sW always has a pole at s = −sp, but this is not the case. The reason is
that in the proof of Corollary 3.3 we multiplied with the factor (3.14), which equals zero for s = −sp
if (3.25) does not hold.

Lemma 3.9 For the quantities in (3.23) and (3.24) we have

sp ≤ sb,

where equality holds if and only if (3.25) holds with equality. Therefore, if the pole −sp exists, it is
larger than or equal to the branching point −sb.

12



Proof: Using the expressions for sp and sb, and using (3.5) to alleviate the notational burden
somewhat, we have

−sp + sb =
β

c−
− αd−
c+(d− + d+) + c−d+

+
(
√
βd+ −

√
αd−)2

c+(d− + d+)

=
βd+

c−d+
− αd−
c+(d− + d+) + c−d+

+
βd+ + αd−
c+(d− + d+)

−
2
√
αβd+d−

c+(d− + d+)

=

(√
αd−(c−d+)−

√
βd+ (c+(d− + d+) + c−d+)

)2
c−d+(c+(d− + d+)) (c+(d− + d+) + c−d+)

≥ 0.

Obviously, the numerator of this expression is always positive, being zero only when (3.25) holds with
equality. ♦

Thus we can distinguish between the following cases:

1. (3.25) holds with strict inequality; hence the pole −sp exists and since it is larger than −sb, we
conjecture it determines the logarithmic asymptotics (dominating the branching point);

2. (3.25) does not hold; hence a pole does not exist, so the branching point −sb supposedly
determines the logarithmic asymptotics.

In Section 5 we will prove these claims. In fact, we even provide exact asymptotics (that is, we
identify a function f(·) such that P(Q2 > x)/f(x) → 1 as x → ∞); the form of this function will
obviously depend on the case involved. It turns out there is a third case, namely the situation in which
(3.25) holds with equality; then pole and branching point coincide, and determine the logarithmic
asymptotics. For the latter (boundary) case similar techniques can be used, leading to yet another
form for the function f(·).

4 Intuition behind overflow behavior

In this section we use the theory of large deviations to further substantiate our educated guess about
the type of asymptotic behavior for the second queue content. Indeed we find that the singularities
found in the previous section determine the decay, again depending on whether or not the criterion in
(3.25) holds. Moreover, the current approach yields insight in the interpretation of the two different
outcomes.
Let y ∈ [0, 1] denote the fraction of time the source is on. Then one could define some sort of ‘cost’
(per unit of time) of generating traffic at rate y by [12]

I(y) :=
(√

αy −
√
β(1− y)

)2

.

Indeed, when inserting y := β/(α+ β) — which corresponds with the source’s ‘average mode’ — one
obtains cost 0. As we will see below, this cost heuristic is rather helpful when generating guesses for
decay rates.

First queue. To demonstrate how the approach works, let us first consider the decay rate of the first
queue. Supposing that the source is on a fraction y of the time (y ∈ [0, 1]), the first queue grows
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roughly at a rate d+y − d−(1 − y) =: r(y). In order to let the buffer build up, y needs to be larger
than δ1 := d−/(d+ + d−). As argued in, among several other references, [12], it holds that

lim
x→∞

1
x

log P(Q1 > x) = − inf
y≥δ1

I(y)
r(y)

.

The interpretation is the following: if the source is on a fraction y of time, then it takes x/r(y) time
to exceed level x. The y that minimizes I(y)/r(y) is the most likely fraction of time the source is on
during the trajectory to overflow. This approach extends to a large class of inputs; notably, these
need to be short-range dependent [9].

Tandem. A similar approach can be followed in case of a tandem queue, i.e., Model 4 in Section 2. If
the source is on (that is, generating traffic at rate p1) a fraction y of the time, the first queue grows at
rate p1y − c1 if y > c1/p1, and otherwise it remains empty. This implies that the rate of the growth
of the second queue is c1 − c2 if y > c1/p1 (as traffic leaves the first queue at a rate c1), and p1y− c2
if c2/p1 < y < c1/p1 (as traffic leaves the first queue at rate p1y). We thus (heuristically) obtain

lim
x→∞

1
x

log P(Q2 > x) = − inf
δ
(`)
2 ≤y≤δ

(u)
2

I(y)
r(y)

,

where δ(`)2 := c2/p1 and δ
(u)
2 := c1/p1, and r(y) := min{p1y, c1} − c2.

Put differently: the most likely fraction of time the source is on, is, during the path to overflow,
not larger than c1/p1. A fraction larger than c1/p1 leads to queue 1 building up, but does not help
building up queue 2 (compared to a fraction of exactly c1/p1). This heuristic was made rigorous in
[14]; see also [3].
Performing the minimization, one obtains the decay rate as the minimal cost value, which equals

sp =
α

p1 − c2
− β

c2
, if c1 ≥ c∗1 :=

αc22p1

αc22 + β(p1 − c2)2
,

and

sb =
(
√
β(p1 − c1)−√αc1)2

(c1 − c2)p1

else. These results can be understood as follows. If c1 is relatively large, then the first queue is
essentially ‘transparent’, in that it does not ‘shape’ the traffic that flows into the second queue —
the decay rate is the same as if the traffic streams feeds immediately in the second queue (and does
not depend on the particular value of c1). If c1 is relatively small, the buildup of the second queue is
hampered by the fact that traffic can leave the first queue at a rate of at most c1; as a result, traffic
is most likely generated at a rate of exactly c1, leading to overflow (over level x) in the second queue
around time x/(c1−c2) — here c1 plays a crucial role. This dichotomy has been observed for Markov
fluid sources in [14], but also for other input processes; see [5, 15].

Our two-node model. We can follow the same recipe for our two-node queueing system. It is readily
verified that

r(y) = c+1y + c+0 · y ·
d+

d−
− c−

(
1− y(d+ + d−)

d−

)
,

as c+1y + c+0yd+/d− is the input rate of the second queue (when the fraction of time the source is
on is y) while c−P(Q1 = 0) = c− (1− y(d+ + d−)/d−) is its service rate, see (2.2). With

δ
(`)
3 :=

c−
c+1 + (c+0 + c−) · d+/d− + c−

, δ
(u)
3 :=

d−
d− + d+

,
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the above line of reasoning gives

lim
x→∞

1
x

log P(Q2 > x) = − inf
δ
(`)
3 ≤y≤δ

(u)
3

I(y)
r(y)

. (4.27)

With y∗ the optimizer in the right-hand side of the above variational problem, we distinguish two
cases: y∗ = δ

(u)
3 and y∗ ∈ [δ(`)3 , δ

(u)
3 ). We first solve the ‘unconstrained’ problem

inf
y≥δ(`)3

I(y)
r(y)

.

Tedious computations yield that the minimum is attained at

y =
αc2−d

2
−

αc2−d
2
− + β(c+1d− + c+0d+ + c−d+)2

. (4.28)

If this value is smaller than δ
(u)
3 , i.e.,

αc2−d
2
−

αc2−d
2
− + β(c+1d− + c+0d+ + c−d+)2

<
d−

d− + d+
, (4.29)

we obviously have that y∗ equals (4.28). But now, remarkably, observe that criterion (4.29) is
equivalent to (3.25)! Then it is readily verified that in this situation the decay rate in (4.27) equals
the pole sp, as given in (3.24). In the other case, i.e., y∗ = d−/(d− + d+), the decay rate in (4.27)
equals the branching point sb, as given in (3.23). Thus, in both cases we find the same decay rate
as through the explicit derivation above, and also the criterion that determines which of the two
dominates is the same. Heuristics regarding the path to overflow are similar to those presented for
the tandem.

5 Exact asymptotics

In this section we will prove the exact asymptotics of the density fQ2(x) of the second queue content
as x→∞. The proof will be based on Theorem 3.6, for which we will derive the exact asymptotics
of fW (x) and fA(x). We then combine this knowledge to find the asymptotics of Q2. We first focus
on the cases in which pole and branching point do not coincide, leaving the boundary case for the
last subsection.
We start off by by stating a number of useful results. The first, dealing with the M/M/1 busy-period
distribution, can be found in, e.g., [4].

Lemma 5.1 For the density of the busy period P of an M/M/1 queue with arrival rate λ and service
rate µ, we have

fP (t) =
1

t
√
λ/µ

e−(λ+µ)tI1(2t
√
λµ) ∼ KP t

−3/2e−(
√
µ−
√
λ)2t, t→∞,

where

KP :=
1

2
√
πλ

1
(λ/µ)1/4

.

For the density of the residual busy period R we have

fR(t) =
P(P > t)

EP
∼ 1

(
√
µ−
√
λ)2EP

fP (t) =
√
µ+
√
λ

√
µ−
√
λ
fP (t)
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and thus

fR(t) ∼ KRt
−3/2e−(

√
µ−
√
λ)2t, t→∞,

where

KR :=
√
µ+
√
λ

√
µ−
√
λ
KP .

The other useful lemma follows below. Although most, if not all, of this lemma is known, see e.g.
[1, 16], we include it, since it plays an important role in what follows. We also provide a proof in
the appendix, which elegantly shows how large values of X + Y are typically attained; e.g., in case
(ii) this typically happens due to a large value of X or Y , but not by both taking large values (even
though X and Y are not heavy-tailed).

Lemma 5.2 Let X and Y be independent random variables with densities satisfying

fX(x) ∼ KXx
−pe−σx, fY (x) ∼ KY x

−qe−τx,

as x→∞, for some constants p, q ≥ 0 and σ, τ,KX ,KY > 0.

(i) If either σ < τ holds, or it holds that σ = τ and p < q and q > 1, then we have as x→∞,

fX+Y (x) ∼ EeσY fX(x) ∼ EeσYKXx
−pe−σx.

(ii) If both σ = τ and p = q > 1 hold, then we have as x→∞,

fX+Y (x) ∼ EeσY fX(x) + EeτXfY (x) ∼
(
KXEeσY +KY EeσX

)
x−pe−σx.

5.1 Exact asymptotics of the density of W

Our starting point is the LT of W in (3.12), from which we immediately obtain the density as

fW (x) =
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)
β

c−

(
e−spx − 1

1 +mc+/c−

∫ x

0

fc+B(u)e−sp(x−u)du

)
=

(
1− β

c−

c+(d+ + d−)
αd− − βd+

)
β

c−

(
1− 1

1 +mc+/c−

∫ x

0

fc+B(u)espudu
)
e−spx

=
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)
β

c−

(
1− Eespc+B

1 +mc+/c−
+

1
1 +mc+/c−

∫ ∞
x

fc+B(u)espudu
)
e−spx,

where fc+B(u) denotes the density of c+B. Since c+B
d= c+mP , where P is the busy period of an

M/M/1 with arrival rate β and service rate αd−/d+, it holds by Lemma 5.1 that

fc+B(u) =
1

c+m
fP

(
u

c+m

)
=

1
u

√
βd+

αd−
e
−αd−+βd+

d++d−
u
c+ I1

(
2
u

c+

√
αd−βd+

d+ + d−

)
and as u→∞,

fc+B(u) ∼ KP

mc+

(
u

mc+

)−3/2

exp

−(√αd−
d+
−
√
β

)2

u

mc+

 = Kc+B u
−3/2e−sbu,

with Kc+B :=
1
2

√
mc+
πβ

(
αd−
βd+

)1/4

.
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The above implies that as x → ∞ (note that sp − sb < 0 by Lemma 3.9 and the assumption that
sp 6= sb),∫ ∞

x

fc+B(u)espudu ∼
Kc+B

sp − sb
x−3/2e(sp−sb)x. (5.30)

Furthermore, using (3.8) we can write

1− Eespc+B

1 +mc+/c−
= 1− 1

c−+mc+
c−

β + αd−
d+
−mc+sp −

√
(β + αd−

d+
−mc+sp)2 − 4β αd−d+

2β

=
2β c−+mc+

c−
− β − αd−

d+
+mc+sp +

√
(β + αd−

d+
−mc+sp)2 − 4β αd−d+

2β c−+mc+
c−

.

Since

β +
αd−
d+
−mc+sp = β

c− +mc+
c−

+
αd−
d+

c−
c− +mc+

,

the above simplifies to

1− Eespc+B

1 +mc+/c−
=

β c−+mc+
c−

− αd−
d+

c−
c−+mc+

+

√(
β c−+mc+

c−
− αd−

d+

c−
c−+mc+

)2

2β c−+mc+
c−

=
β c−+mc+

c−
− αd−

d+

c−
c−+mc+

+
∣∣∣β c−+mc+

c−
− αd−

d+

c−
c−+mc+

∣∣∣
2β c−+mc+

c−

.

Hence,

1− Eespc+B

1 +mc+/c−
=

{
1− αd−

βd+

c2−
(c−+mc+)2 if β c−+mc+

c−
≥ αd−

d+

c−
c−+mc+

,

0 otherwise.

Since the condition

β
c− +mc+

c−
≥ αd−

d+

c−
c− +mc+

is equivalent with condition (3.25), the density of W can be written as

fW (x) =
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)
β

c−

×
(

1− αd−
βd+

c2−
(c− +mc+)2

+
c−

c− +mc+

∫ ∞
x

fc+B(u)espudu
)
e−spx,

if (3.25) holds, or otherwise as

fW (x) =
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)(
β

c− +mc+

∫ ∞
x

fc+B(u)espudu
)
e−spx.

We can now state the following.

Lemma 5.3 The asymptotic behavior of fW (x) as x→∞ is given by either of the following.
When condition (3.25) holds with strict inequality, fW (x) ∼ KW,p e

−spx, with

KW,p :=
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)
β

c−

(
1− αd−

βd+

c2−
(c− +mc+)2

)
. (5.31)
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When condition (3.25) does not hold, fW (x) ∼ KW,b x
−3/2e−sbx, with

KW,b :=
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)
β/2

c− +mc+

√
c+m

πβ

(
αd−
βd+

)1/4 1
sp − sb

. (5.32)

Proof: Immediate from the above. ♦

Remark: By explicitly inverting the LT, we above found the density of W , as well as its asymptotics.
We could also have used the fact that W is the waiting time in an M/G/1 queue (see Lemma 3.1). If
the so-called Lundberg equation Eesc+B = 1+s/(β/c−) has a positive solution sp, which is equivalent
to (3.25) — see Lemma 3.8 and its proof — the Cramér-Lundberg approximation leads to the purely
exponential form displayed in Lemma 5.3. When the Lundberg equation fails to have a positive
solution, the asymptotics could be found by applying the random walk results of, e.g., Section 5.2 of
Dieker [7], specialized to the M/G/1 case (with i.i.d. increments distributed as c+B− c−Y ); then we
obtain the mixed polynomial-exponential form mentioned in Lemma 5.3.

5.2 Exact asymptotics of the densities of A and Q2

In the following lemma we use the expresssion for the LT of A in Corollary 3.5 to derive the asymptotic
behavior of the density fA(x) as x→∞.

Lemma 5.4 The asymptotic behavior of the density of A as x→∞ is given by

fA(x) ∼ KAx
−3/2e−sbx,

where sb is the same as in Lemma 5.3 and

KA :=
1
2

√
mc+
πβ

(
αd−
βd+

)1/4 √αd− +
√
βd+√

αd− −
√
βd+

×

[
c+
c+1

+
(
c+
c+0
− c+
c+1

)
αd+c+0/c+1 + 2

√
αβd+d− − βd+

αd+c+0/c+1 + 2
√
αβd+d− + βd−c+1/c+0

]
.

Proof: We first collect the exact asympotics for the densities of c+B and c+B
∗. Those of c+B

were already found in the previous subsection (using that c+B
d= mc+P and using Lemma 5.1); they

satisfy

fc+B(x) ∼ Kc+B x
−3/2e−sbx.

Similarly, since c+B∗
d= mc+R, where R is the residual busy period of the related M/M/1 queue, we

can again use Lemma 5.1 to find that

fc+B∗(x) ∼ Kc+B∗x
−3/2e−sbx with Kc+B∗ =

√
αd− +

√
βd+√

αd− −
√
βd+

Kc+B .

Hence, both c+B and c+B∗ have asymptotic behavior as X in Lemma 5.2, with σ = sb and p = 3/2.
Looking at the expression in (3.21), we can immediately apply this lemma (notice that R(sc+) is the
LT of c+B∗, and that sb < γ) to find:

fA(x) ∼ c+
c+1

fc+B∗(x) +
c+1 − c+0

mc+1

α/c+1

γ

γ

γ − sb
fc+B∗(x)

+
c+1 − c+0

mc+1

β/c+0

γ

γ

γ − sb
(
R(−sbc+)fc+B(x) + Eesbc+Bfc+B∗(x)

)
.
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Hence, fA(x) ∼ KAx
−3/2e−sbx, for some constant KA. To find this constant we note that

R(−sbc+) = 1 +

√
αd−
βd+

and Eesbc+B =

√
αd−
βd+

,

so that we can write

KA =
c+
c+1

Kc+B∗

[
1 +

c+1 − c+0

mc+(γ − sb)

(
α

c+1
+

β

c+0

(
2

√
αd−
βd+

− 1

))]
.

Using the fact that

mc+d+(γ − sb) = αd−
c+0d+

c+1d−
+ βd+

c+1d−
c+0d+

+ 2
√
αβd+d−,

this can be rewritten to the form of KA as stated in the lemma. ♦

Finally, now that we have the asymptotic behaviors of fW (x) and fA(x) at our disposal, we come
back to Theorem 3.6, from which we have

fQ2(x) = (1− ρ1)fW (x) + ρ1

∫ x

0

fW (u)fA(x− u)du. (5.33)

We apply Lemma 5.2 again to find the following:

Theorem 5.5 The asymptotic behavior of fQ2(x) as x→∞ is given by either of the following.
When condition (3.25) holds with strict inequality, fQ2(x) ∼ KQ2,p e

−spx, with

KQ2,p := (1− ρ1)KW,p + ρ1(KW,p EespA).

When condition (3.25) does not hold, fQ2(x) ∼ KQ2,b x
−3/2e−sbx, with

KQ2,b := (1− ρ1)KW,b + ρ1(KA EesbW +KW,b EesbA).

Proof: Immediate from (5.33) and both parts of Lemma 5.2 (noting that sp < sb in the first case). ♦

Corollary 5.6 The asymptotic behavior of the tail probability P(Q2 > x) as x→∞ is given by either
of the following. When condition (3.25) holds with strict inequality,

P(Q2 > x) ∼ KQ2,p

sp
e−spx. (5.34)

When condition (3.25) does not hold,

P(Q2 > x) ∼ KQ2,b

sb
x−3/2e−sbx. (5.35)

Proof: Immediate. ♦
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5.3 Exact asymptotics of the density of Q2 when sb = sp

When (3.25) holds with equality, we know from Lemma 3.9 that the pole sp and the branching point
sb coincide, both being equal to

spb :=
βmc+
c2−

.

As a consequence, we find a different asymptotic behavior for fW (x), in some sense lying in between
the two outcomes in Lemma 5.3. In the derivation of the analogue of this lemma, we (again) find
that

fW (x) =
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)(
β

c− +mc+

∫ ∞
x

fc+B(u)espbudu

)
e−spbx,

but instead of (5.30) we now find∫ ∞
x

fc+B(u)espbudu ∼ 2Kc+B x
−1/2.

The asymptotic behavior of fW (x) as x→∞ is therefore given by fW (x) ∼ KW,pb x
−1/2e−spbx, with

KW,pb :=
(

1− β

c−

c+(d+ + d−)
αd− − βd+

)
β

c− +mc+

√
c+m

πβ

(
αd−
βd+

)1/4

. (5.36)

Since the behavior of fA(x) is the same as before, we only need to apply the first part of Lemma 5.2
with σ = τ = spb, p = 1/2 and q = 3/2 to find the following.

Theorem 5.7 When condition (3.25) holds with equality, the asymptotic behavior of fQ2(x) as x→
∞ is given by fQ2(x) ∼ KQ2,pb x

−1/2e−spbx, with

KQ2,pb := (1− ρ1)KW,pb + ρ1(KW,pb EespbA).

The asymptotic behavior of the tail probability P(Q2 > x) as x→∞ is given by

P(Q2 > x) ∼ KQ2,pb

spb
x−1/2e−spbx. (5.37)

6 Concluding remarks

In this paper we considered a rather general class of two-node fluid queues, that includes the classical
tandem and priority systems. In these systems the first queue can be analyzed in isolation by applying
standard techniques; the evolution of the other queue, however, is affected by the first queue being
empty or not, which makes this queue substantially harder to analyze. We explicitly derived the
buffer-content distribution of this second queue (in terms of its Laplace transform), as well as its
tail asymptotics, relying exclusively on probabilistic argumentation. Interestingly, there is a sharp
dichotomy, in that two asymptotic regimes can be distinguished; large deviations theory provides an
appealing interpretation of these regimes.
A direction for further research is to broaden the class of input models. In this paper we restricted
ourselves to fairly elementary Markov fluid input, but, suggested by e.g. [3, 14], one would expect
that the dichotomy of the tail asymptotics carries over to a considerably larger class of inputs. The
recent results in [8] may give a handle on resolving this issue.
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Appendix: Proof of Lemma 5.2

In this appendix we provide a proof of Lemma 5.2. The proof explains how large values of X +Y are
typically attained. As can be expected this happens due to X taking a large value when the tail of
X is heavier than that of Y . However, when both tails are equally heavy, it typically happens due
to a large value of either X or Y , but not by both taking large values, even though X and Y are not
heavy-tailed.
We repeat the statement of the lemma for convenience.

Lemma 5.2 Let X and Y be independent random variables with densities satisfying

fX(x) ∼ KXx
−pe−σx, fY (x) ∼ KY x

−qe−τx,

as x→∞, for some constants p, q ≥ 0 and σ, τ,KX ,KY > 0.

(i) If either σ < τ holds, or it holds that σ = τ and p < q and q > 1, then we have as x→∞,

fX+Y (x) ∼ EeσY fX(x) ∼ EeσYKXx
−pe−σx.

(ii) If both σ = τ and p = q > 1 hold, then we have as x→∞,

fX+Y (x) ∼ EeσY fX(x) + EeτXfY (x) ∼
(
KXEeσY +KY EeσX

)
x−pe−σx.

Proof: To prove the first part of the lemma we first fix some small ε > 0 and write

fX+Y (x) =
∫ x

0

fY (u)fX(x− u)du

=
∫ εx

0

fY (u)fX(x− u)du+
∫ (1−ε)x

εx

fY (u)fX(x− u)du+
∫ x

(1−ε)x
fY (u)fX(x− u)du.

For the first integral in this sum we have

xpeσx
∫ εx

0

fY (u)fX(x− u)du =
∫ εx

0

eσufY (u)(x− u)peσ(x−u)fX(x− u)
(

x

x− u

)p
du

The given asymptotics of fX imply that for any δ > 0 we have, for x sufficiently large (and any
u ∈ [0, εx]),

KX − δ ≤ (x− u)peσ(x−u)fX(x− u) ≤ KX + δ,

so that we find

xpeσx
∫ εx

0

fY (u)fX(x− u)du ≥
∫ εx

0

eσufY (u)(KX − δ)du,

and hence

lim inf
x→∞

xpeσx
∫ εx

0

fY (u)fX(x− u)du ≥ EeσYKX .

Keeping in mind the asymptotic behavior of fY it may be good to note that EeσY is indeed finite
when σ < τ , while it is also finite when σ = τ , due to q > 1.
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To find an upper bound for the first integral, we write it in a slightly different form; with δ > 0 and
sufficiently large x we have

xpeσx
∫ εx

0

fY (u)fX(x− u)du = (1− ε)−p
∫ εx

0

eσufY (u)(1− ε)pxpeσ(x−u)fX(x− u)du

≤ (1− ε)−p
∫ εx

0

eσufY (u)(x− u)peσ(x−u)fX(x− u)du

≤ (1− ε)−p
∫ εx

0

eσufY (u)(KX + δ)du,

and hence

lim sup
x→∞

xpeσx
∫ εx

0

fY (u)fX(x− u)du ≤ (1− ε)−pEeσYKX .

For the second integral we can write

lim sup
x→∞

xpeσx
∫ (1−ε)x

εx

fY (u)fX(x− u)du

= lim sup
x→∞

∫ (1−ε)x

εx

xp

uq(x− u)p
e(σ−τ)uuqeτufY (u)(x− u)peσ(x−u)fX(x− u)du

≤ lim sup
x→∞

∫ (1−ε)x

εx

xp

(εx)q(εx)p
e(σ−τ)uKYKXdu

= lim sup
x→∞

KXKY

εp+qxq

∫ (1−ε)x

εx

e(σ−τ)udu = 0

when σ < τ , but also when σ = τ and q > 1.
Finally, for the third integral we have, assuming that σ < τ , that

lim sup
x→∞

xpeσx
∫ x

(1−ε)x
fY (u)fX(x− u)du

≤ lim sup
x→∞

∫ x

(1−ε)x

xp−q

(1− ε)q
uqeτufY (u)e(σ−τ+τε)xfX(x− u)du

≤ lim sup
x→∞

(1− ε)−qKY x
p−qe(σ−τ+τε)x = 0,

assuming that ε is chosen such that σ − τ + τε < 0. On the other hand, when σ = τ we have

lim sup
x→∞

xpeσx
∫ x

(1−ε)x
fY (u)fX(x− u)du

≤ lim sup
x→∞

xp
∫ x

(1−ε)x
u−qKY e

σ(x−u)fX(x− u)du (6.38)

= lim sup
x→∞

xp
(∫ ε

0

(x− u)−qKY e
σufX(u)du+

∫ εx

ε

(x− u)−qKY e
σufX(u)du

)
= 0 + lim sup

x→∞
xp
∫ εx

ε

u−p(x− u)−qKXKY du

= lim sup
x→∞

KXKY

1− q
xp
([
−u−p(x− u)1−q

]εx
ε
−
∫ εx

ε

pu−p−1(x− u)1−qdu
)

= 0,

where the last step is due to integration by parts; note that we used p < q and q > 1.
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Taking the three terms together, we have

lim inf
x→∞

xpeσx
∫ x

0

fY (u)fX(x− u)du ≥ EeσYKX ,

lim sup
x→∞

xpeσx
∫ x

0

fY (u)fX(x− u)du ≤ (1− ε)−pEeσYKX ,

and hence, letting ε→ 0,

lim
x→∞

xpeσx
∫ x

0

fY (u)fX(x− u)du = EeσYKX ,

which proves the part (i) of the lemma. The proof of part (ii), in which σ = τ and p = q > 1, is com-
pletely similar, except for the third integral. The limsup in (6.38) now becomes ≤ (1− ε)−qKY EeσX ,
and since the liminf can be shown to be KY EeσX (or by using the full symmetry with the first integral
term), the result is easily shown. ♦
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38, pp. 768–791.

[8] T. Dieker and M. Mandjes (2007). Extremes of Markov-additive processes with one-sided jumps,
with queueing applications. Submitted.

[9] P. Glynn and W. Whitt (1994). Logarithmic asymptotics for steady-state tail probabilities in
a single-server queue. Studies in Applied Probability, Papers in Honour of Lajos Takács, J.
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