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Preface 

 

Alzheimer’s disease (AD) is an incurable and fatal disease that 
threatens the lives of aging individuals. 100 years after the disease was 
first described, solutions for effective prevention and treatment still 
remain elusive[1]. Significant research efforts have so far led to insights 
concerning the cellular and molecular basis of AD that have illuminated 
potential causes of AD in the human brain.   Increasing lines of evidence 
indicate that multiple factors contribute to the clinical manifestation of 
AD.   

In this respect, the discovery of endogenous neural stem cells in the 
adult brain, and their capacity to functionally integrate into existing 
brain circuits has received considerable attention in the neuroscience 
field[2].  Our improved understanding of regulation and induction of 
adult neurogenesis has garnered interest in the therapeutic capacity of 
adult neurogenesis. Understanding the basic mechanisms of adult 
neurogenesis may allow us  to further understand the relationship 
between neurogenesis and AD. This is relevant since a) adult 
neurogenesis occurs in only few areas of the nervous system, including 
the hippocampus[3], b) neurogenesis is positively correlated with 
learning and memory function[4], and c) the hippocampus is heavily 
affected in AD, both structurally and functionally; neuropathology and 
cell loss are extensive in this brain region, where reduced volume 
reflects disease progression[5,6]. Moreover, AD patients suffer from 
prominent cognitive decline early in the course of disease. Since 
neurogenesis in rodents can be modified by pharmacological and 
environmental interventions, positive induction of neurogenesis could 
form a relevant target when evaluated within a multifactorial disease 
context[7].    

In this thesis I will explore the relationship between adult 
neurogenesis and AD in both human brain tissue and mouse models 
using the latest findings and tools. This will be done by starting broadly 
with details about these topics and later focusing on experiments that 
bring these areas together.   
 
1.  ALZHEIMER’S DISEASE 

1.1 Epidemiology: aging and AD incidence  
An impetus for doing AD research starts with projected costs, both 

human and financial, associated with the expected burden of care in the 
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near future. In the 21st century, changing demographics will place a 
huge burden on healthcare systems around the world.  In fact, the world 
population is currently undergoing a demographic shift in age, and this 
shift in age has been reported as, “no other force is likely to shape the 
future of national economic health, public finances, and policy making 
as the irreversible rate at which the world’s population is aging” [8]. 

Aging is the primary risk factor for developing AD; both the 
prevalence and incidence of AD increases dramatically with age [9].  
Early AD onset cases, synonymous with familial inheritance of rare 
mutations, make up less than 5% of all reported AD cases, while a 
number of gene polymorphisms are associated with increased risk to 
develop the disease. For the majority of sporadic occurring cases of AD, 
no major genetic risk factor is known. Hence, aging is a primary cause 
for AD development. However, understanding aging in general and the 
aging process of the brain in particular, has been a long-standing 
problem for mankind. As average life expectancy increases throughout 
the world so does the number of elderly men and women who become 
increasingly susceptible to AD. 

AD is the most prevalent neurodegenerative disease worldwide and 
has become a national health problem in the US and the Western world.  
A report issued in 2009 estimated that 7 million people in Western 
Europe and over 4 million in North America are currently afflicted with 
the disease[10].  It is estimated that by 2050, these numbers will 
increase to 13 and 11 million respectively if preventative treatments do 
not become available [9,10]. Worldwide prevalence is estimated to 
quadruple by 2050 at which time 1 in 85 persons will be living with the 
disease[11]. 

Because AD is such a debilitating disease and patients can suffer 
from AD for several years or even longer during which they require 
intensive care and nursing, the cost of AD for society is substantial. 
National direct and indirect cost of caring for AD patients have been 
estimated to be upwards of 100 billion USD per year, and this figure will 
undoubtedly rise with the projected growing number of AD cases[12]. 
In The Netherlands, the projected 10-year costs of care are close to 
100,000 EUR per individual (calculated by1996 values)[13]. According 
to the World Alzheimer Report, the worldwide costs of dementia in 
2010 were roughly 600 billion USD, with roughly 70% of the costs 
occurring in Western Europe and North America [14].  The total costs 
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associated with care are projected to reach 1.1 trillion USD by 2050 
within the United States, a 500% increase in current expenditure[15].   
 
1.2 Neuropathology 

Alois Alzheimer, a German psychiatrist and neuropathologist, first 
described Alzheimer's disease in 1907.  He used classical Silver staining 
techniques to identify neuropathological aberrations that are still used 
to this day for diagnosis. We now know they are based on 
accumulations of two aberrant proteins that are likely implicated in AD 
etiology. Despite an early identification of these protein accumulations, 
it wasn’t until 1984 and 1986 when major findings were published that 
identified amyloid-β peptide[16] and hyperphosphorylated tau 
protein[17] as the main components of the classic AD 
neuropathological alterations.    

AD has two characteristic neuropathological hallmarks, i.e. senile 
plaques and neurofibrillary tangles, that are mainly constituted of 
amyloid-β (Aβ) and hyperphosphorylated tau protein respectively. 
Accumulation of these proteins is contributes to neuronal dysfunction, 
atrophy, and degeneration of the neurons in the hippocampus, cerebral 
cortex, and other select brain subregions. These distinguishing 
neuropathological features, however, may not account for all clinical 
outcomes. While the diagnosis of AD can only be definitely ascertained 
through postmortem histological examination of the brain for these 
lesions[18], the further molecular, biochemical and genetic 
characterizations of the Aβ and tau proteins have advanced our 
understanding of how these lesions relate to, and explain at least part of 
AD etiology, progression, and the clinical manifestation of the disease.  

The genetic factors known to cause early-onset AD have provided 
unique insights as potential mechanisms for disease pathogenesis. To 
date, three genes have been identified as containing fully penetrant, 
causal mutations that result in early-onset AD, also referred to as 
familial AD. They have been described as both genetically complex 
(indicating that there is no simple mode of inheritance that accounts for 
their heritability) and heterogeneous in AD [19]. These mutations can 
be found on the genes encoding the amyloid β protein precursor (APP), 
presenilin-1 protein (PSEN1) and the presenilin-2 protein (PSEN2). 
Their identification was fundamental to clarify the mechanisms behind 
the familial forms and have improved our understanding of the 
sporadic forms of AD. These heterogeneous mutations interact with 
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each other and with non-genetic risk factors exerting only small or 
modest effects with weak genotype-phenotype correlations [20]. All 
three mutations involve the differential processing of APP and result in 
various lengths of amyloid-β (Aβ) peptides. The discovery that Aβ can 
act as an initiator of disease pathogenesis in early-onset AD has led to 
the formulation of the ‘amyloid cascade hypothesis’ and the general 
expectation that Aβ may be critical in sporadic cases as well [21].   

 
Box 1.2.1: Proteolytic processing of Amyloid Precursor Protein 

(APP) 

Aβ peptide is a proteolytic cleavage product of APP, a type-1 
transmembrane protein of unknown function. The two aspartyl 
proteases responsible for cleavage and conversion of APP to Aβ are 
referred to as β- and γ-secretases [22]. However, most APP molecules 
undergo cleavage by another enzyme called α-secretase, that cleaves 
this protein near the middle of the Aβ domain [23], resulting in a 
cleavage product with a large soluble ectodomain (APPs-α) that is 
released into the extracellular space. The remaining C-terminal 
fragment can then be cleaved by γ-secretase to create a smaller 
fragment known as the p3 fragment. The exact function of such 
proteolytic processing in normal, healthy neurons has yet to be defined, 
although research has indicated that cleavage of APP by γ-secretase 
allows the release of the APP intracellular domain (AICD) to the nucleus 
where it is thought to participate in transcriptional signaling[24].  
Cleavage of APP by β-secretase leaves a longer C-terminal fragment that 
is retained in the cellular membrane and is subjected to further 
cleavage by γ-secretase, which finally results in the Aβ peptide cleavage 
product. Given the involvement of Aβ in the diagnosis of AD, the 
biochemistry and mechanisms for production of Aβ peptides have been 
rigorously investigated both in in vivo and in vitro experiments. While 
Aβ is constitutively secreted by mammalian cells and normally occurs in 
plasma and cerebrospinal fluid (CSF), Aβ and APP misprocessing are 
still targeted as primary causes of AD[25,26]. See next page. 
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The second major pathological feature of AD is hyperphosporylated 

tau protein.   Microtubule-associated protein (MAP) tau promotes 
assembly of tubulin and helps to maintain intracellular transport and 
structural stability in most cell types including neurons. Tau is 
abnormally phosphorylated in AD brain along numerous serine and 
threonine epitopes on the protein. Such hyperphosphorylation causes 
disengagement of tau from microtubules and aggregation of 
filamentous proteins. Hyperphosphorylated tau is considered to be the 
major subunit in both the paired helical filaments (PHF) as well as the 
neurofibrillary tangles (NFTs) [17,27].   

 
Box 1.2.2:  Mechanisms of tau hyper-phosphorylation and 

cytotoxicity 

Tau is the substrate for a number of kinases, such as glycogen 
synthase kinase 3 (GSK3), cyclin dependent protein kinase 5, and 
protein kinase A [28]. Dephosphorylation of phospho-tau protein has 
been shown in vivo by alkaline phosphatase, protein phosphatase 2A 
(PP-2A), PP-2B, and PP-1, all of which convert it into a normal state 
lacking toxic properties [29,30].  PP-2A and PP-1 are responsible for 
90% of the serine/threonine protein phosphatase activity in 
mammalian cells [31]. Activities of PP-2A and PP-1 have been shown to 
be compromised in AD [32,33], indicating that insufficient 
dephosphorylation could also be implicated in the appearance of 
phospho-tau.   

Hyperphosphorylated tau (phospho-tau) accumulates into 
PHF/NFT but is not directly toxic within neurons and does not induce 
an apoptotic cascade. The manner in which tau is toxic is not related to 
formation of NFT but appears specific to the hyperphosphorylation of 
tau. Indeed, it has been shown that as much as 40% of phospho-tau is 
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not aggregated into NFTs [34].  Pathologically active phospho-tau does 
not bind tubulin but instead sequesters normal tau in addition to other 
MAPs, which subsequently interrupts the assembly and disassembly of 
normal microtubules  [35,36]. 

 
 
 
1.3 Memory and behavioral deficits associated with AD 

Alzheimer's disease is most evident during the daily activities where 
memory and eventually executive functions are impaired.  
Manifestations of the disease evolve from mild memory impairments to 
severe cognitive dysfunction. Many times changes in mood accompany 
the decline in memory[37,38].  It is important to understand that at this 
time no single test or behavioral measurement can confirm AD.  
Nonetheless, neuropsychological studies combined with imaging 
studies have established that the cognitive deficits associated with AD 
are distinct from age-associated cognitive decline [39]. Despite much 
progress in identifying peripheral biomarkers and changes in brain 
through imaging, measuring functional memory deficits still remain a 
sensitive way to measure Alzheimer disease over time[40].  

Initially, impairments may manifest as an inability to retain recently 
acquired information. This is described as episodic memory, as opposed 
to semantic memory.  Episodic memory is associated with a time and 
place while semantic memory is not[41]. Deficits in working spatial 
memory have been documented in AD[42] with interventional studies 
showing an ability to improve specific spatial tasks [43]. The 
hippocampus plays a critical role in episodic memory (reviewed by 
Pennartz)[44].    
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Since mice can be tested for performance in memory tasks, this 
gives us the ability to test pharmacological and activity-based 
interventions in AD related behaviors of mouse models. Indeed, 
identifying and measuring behavioral changes in recently developed AD 
mouse models is considered critical to proving the efficacy of a 
candidate drug or treatment paradigm.  We will further review 
hippocampus-dependent behaviors later in this introduction.  
 
1.4 Alzheimer’s disease: Overlap between neurobiology of aging and 
disease 

While AD is primarily classified as a proteinopathy, the implications 
of Aβ and tau protein accumulations are very complex. It is clear that 
human aging causes a number of physiological changes; untangling 
processes associated with normal aging from Alzheimer's disease 
process is not an easy task. In addition to amyloid and tau pathology, 
inflammation plays and unknown role in the progression of the disease.   
Adding to the complex general pathological picture, post-mitotic 
neurons in the hippocampus have been observed to re-enter the cell 
cycle as part of an apoptotic cascade, often in close association with the 
tangle pathology. These features of AD pathology further demonstrate 
the uniqueness of the disease.   As we review adult neurogenesis, some 
special consideration will be discussed in light of these particular 
disease features.  
 
2     ADULT NEUROGENESIS  

2.1  Adult Neurogenesis: conserved, functional and modifiable 
One of the most exciting findings in recent neuroscience research 

has been the discovery that new neurons are produced in the adult 
brain.  The field has advanced rapidly since the introduction of 
Bromodeoxyuridine (BrdU) to trace cell lineage and life-long 
neurogenesis has been demonstrated in almost all mammals, including 
humans[45]. Neurogenesis in mammals decreases dramatically with 
age and studies of humans indicate similar reductions. Although there is 
no direct link between changes in adult neurogenesis per se and the 
risk for, or severity of, Alzheimer's disease, both are strongly correlated 
with aging. Given their restricted occurrence in the hippocampus, a 
brain structure critical to higher cognitive functions, and the fact that 
neurogenesis is modifiable, the relation between Alzheimer's disease 
and adult neurogenesis is of considerable interest.   
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Specialized micro-environments in particular appear to support the 
production of new cells in the brain. These zones are unique as they 
contain neural stem cells (NSCs) with the capacity to proliferate, 
migrate, and differentiate into adult, functional cell-types. NSCs 
proliferate and produce identical multipotent NSCs with the capacity to 
produce neurons, astrocytes, or oliogodendrocytes[46]. Self-renewal 
and the ability to differentiate into specialized cell types are exceptional 
properties that distinguish stem cells from other dividing cells, 
properties conferred by the microenvironment surrounding stem cells.  
Interestingly, stem cells isolated from the same regions behave 
differently when transplanted to other brain regions, confirming the 
important role for the local micro-environment or the neurogenic niche 
that enables stem cell maturation into fully functional neurons in these 
zones only [47](reviewed by Morrison).  It is apparent that regulation 
of neurogenesis occurs through cell-intrinsic and cell-extrinsic 
mechanisms.  

 It is important to understand that stem cells have the capacity to 
generate cell types other than neurons. This implies that NSC 
proliferation does not necessarily result exclusively in the generation of 
new neurons.  Likewise the use of a protein marker that identifies cell 
proliferation may also identify non-stem cells such as mature glia in the 
brain that can also proliferate in the adult brain.  

In the brains of adult mammals, new cell birth and neurogenesis has 
been best described in two locations; the subventricular (SVZ) and 
subgranualar zones (SGZ) located in the lateral ventricles and 
hippocampal dentate gyrus, respectively. Two types of NSCs have been 
identified by morphology and molecular markers (reviewed by 
Zhao)[3], namely radial NSCs (Type-1) and non-radial NSCs (Type-2).  
Within the DG, GFAP astrocytes are the NSCs of the brain that generate 
new granule neurons through a series of immature cells [48,49].  Wnt 
signaling has been previously demonstrated to be responsible for the 
neurogenic activity of these astrocytes [50].   

In the hippocampus, immature neurons migrate from the SGZ into 
the granule cell layer (GCL) of the dentate gyrus (DG) where they 
mature into granule neurons. Similarly, neuroblasts born in the SVZ 
migrate tangentially towards the olfactory bulb along the rostral 
migratory stream (RMS) [51,52] an area that has also been identified in 
human brain [53]. Migratory, DCX-positive (+) neurons present in the 
primate SVZ were found to co-express polysialylated neural cell 
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adhesion molecule (PSA-NCAM), identifying a migratory pathway to the 
striatum [54].  

Recent studies show further that neurogenesis may also occur 
outside the classical neurogenic niches of hippocampus and SVZ; 
indeed, rare neurogenesis has also been reported in the cortex, 
amygdala, hypothalamus and substantia nigra, notably often in 
response to insult or other challenges [55-58]. Ischemia/reperfusion in 
the striatum can e.g. recruit new neurons from glial precursors in 
closely related brain regions like the subventricular zone [59,60]. 
Moreover, neurogenesis has been reported after hippocampal or 
cortical damage from excitotoxic, ischaemic or epileptic events [59,60] 
[61-64]. Interestingly, factors like brain-derived neurotrophic factor, 
insulin-like growth factor 1, fibroblast growth factor 2 and vascular 
endothelial growth factor [65-67] that are expressed after hypoxia, are 
known stimulators of adult neurogenesis [68-70]. 
 
2.2  Neurogenesis in Primates  

The fact that neurogenesis occurs throughout the lifespan of many 
different species including rodents, primates and even humans, 
indicates an important role for this form of structural plasticity that is 
conserved throughout evolution. Chapter 3 of this thesis highlights a 
novel population of plastic cells described in the brains of the adult 
common marmosets, a small new-world monkey studied in relation to 
psychosocial stress.  Marmosets are small New World monkeys native 
to Brazil.  They have been studied in laboratory settings since the 1960s 
because of their small size and primate brain.  Their behavior and social 
order have been extensively studied in their native habitat. The study 
highlights the fact that areas of the brain with adult neurogenesis 
occurring under normal physiological conditions continue to be refined.    

As discussed earlier, neurogenesis is conserved in the dentate gyrus 
and olfactory bulb.   While marmosets have neurogenesis in these two 
areas, a distinct, less well characterized migratory stream exists in 
primates and allows neuroblasts to migrate directly to the amygdala, an 
area associated with emotional memories[71]. The temporal stream 
(TS) has only been described in rhesus and squirrel monkeys[55]. 
However, due to structural homology it was suspected to also exist in 
other primates.  
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� Open Research Question:   

If neuronal progenitors migrate to the amygdala, how extensive is 

this cell population in primates compared to a traditional zone of 

adult neurogenesis such as the dentate gyrus?  

 
3   THE HIPPOCAMPUS: A CRITICAL STRUCTURE FOR LEARNING 

AND MEMORY DURING HEALTH AND DISEASE 

3.1  Hippocampus: Structure and Function 
As argued in the previous section, the hippocampus is unique in that 

it contains stem cells that continue to generate new neurons in the 
adult brain of several mammalian and primate species, including 
humans. The hippocampus is also well known for its critical role in 
higher-level cognitive functions. In regard to AD, the hippocampus is 
severely affected and reduced in volume in this condition. Also the two 
main neuropathological lesions of AD, i.e. amyloid-β (Aβ) plaques and 
neurofibrillary tangles (NFTs), advance through the brain in a 
hierarchical manner, with the hippocampus being affected already early 
in the disease [72]. In the early stages of disease, these protein 
accumulations are not directly correlated with cognitive decline, and 
pathology has e.g. been found in the hippocampus of elderly individuals, 
irrespective of their cognitive status[73]. Given this central role of the 
hippocampus in my thesis, I will address the main structural and 
functional properties of this structure in more detail below. This is also 
of relevance for the behavioral tests that were applied in the second 
half of my thesis. 
 
3.2  Hippocampal anatomy and the trisynaptic circuit 

The SGZ is part of the dentate gyrus (DG), an integral portion of the 
hippocampal formation. The DG largely contains granule neurons and 
has a trilaminar anatomy organized in a unique trisynaptic circuit 
involved in specific and largely unidirectional information processing 
(reviewed by Amaral)[74]. Anatomically, the trisynaptic circuit starts 
with projections from the entorhinal cortex to DG granule neurons. 
Mossy fibers from DG granule neurons then project to the large 
pyramidal neurons in the Cornu Ammonis 3 (CA3) subregion of the 
hippocampus and these CA3 pyramidal neurons then project to 
hippocampal CA1 neurons, that in their turn, project into the cortex. 
The CA1 and CA3 regions of the hippocampus are known to contain 
“place cells “, which exhibit high firing rates corresponding to a specific 
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location within a given environment. Very early work also established 
the important role of the hippocampus in forming new memories, 
whereas recent studies have implicated the DG in complex aspects of 
learning and memory, such as pattern separation and completion (see 
3.3). As such, the hippocampus is considered to be involved in encoding 
spatiotemporal maps of the environment [75].  
 
3.3  Hippocampal specific behaviors 

The hippocampus is a brain structure of critical importance in 
cognition and executive functions like spatial and working memory 
tasks. In this thesis we will evaluate the role of adult neurogenesis for 
this structure and its functional relevance for health and disease. In 
order to measure hippocampal function in quantitative detail, the 
Morris water maze is commonly used for mice and rats.  

The Morris Water Maze (MWM) was designed to test spatial 
learning and memory with high relevance for hippocampal function. 
Richard G. Morris first described the original maze requiring rodents to 
find a submerged platform in a pool of opaque water. Distal cues are 
placed on the walls to allow the animals to navigate to the platform. 
During learning and recall of placement of the submerged platform 
within the pool, a number of measurements are used to assess 
performance. A review of the testing criteria and the procedure 
provides an accurate description of the methodology used in this 
thesis[76].   

Many studies have shown that modulation of adult neurogenesis 
either directly or indirectly, contributes to adaptations in hippocampal 
function [77,78]. Pattern separation and pattern completion are two 
related behaviors where adult neurogenesis is known to play an 
essential role (reviewed by Sahay et al., and Aimone et al) [79,80].  
Pattern separation is the process of making similar inputs and 
representations less similar while pattern completion involves the 
reconstruction or remapping of stored representations from partial 
inputs [81].  

We can subdivide structural plasticity in the adult brain into 
regulation of synapses connecting neurons and the generation of new 
neurons through adult neurogenesis.  While synaptic plasticity is 
thought to be the main structural change corresponding to cognition, 
ongoing neurogenesis is a novel and unique form of structural plasticity 
that has the potential to modify structural arrangements in this brain 
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region on a longer time scale. While new neurons born in the 
subgranular zone (SGZ) progress through proliferation, migration and 
neuronal differentiation before becoming new DG neurons, stage-
specific markers are available to identify the individual phases of the 
neurogenic process.  

Although the total number of new neurons incorporated in the 
hippocampus per day may be quite low during aging, adult 
neurogenesis does generate new, functional neurons within an existing 
brain circuit and as such, represents a potential for adaptation. The 
extent of neurogenesis present from early age onwards has been 
described previously as the 'neurogenic reserve'; a special type of brain 
plasticity that could, when the hippocampus is actively engaged, allow 
for adaptation and resistance to accumulated deleterious insults, such 
as those developing during e.g. aging and/or Alzheimer pathology.[82]. 
 
4 HIPPOCAMPAL CELL PROLIFERATION IN ALZHEIMER’S DISEASE 

 

4.1  Cell cycle abnormalities and adult neurogenesis during AD 
When discussing adult neurogenesis and Alzheimer disease we must 

confront some unique evidence regarding proliferation in the 
hippocampus.  Besides neurogenesis, there is evidence that mature 
neurons re-enter the cell cycle, driven by mechanisms that are not 
completely understood.  Normally, proliferation in the brain, outside 
the neurogenic niches, only occurs during development; mature 
neurons in the brain are post-mitotic and do not divide to produce 
identical daughter cells.  Only recently has proliferation of microglia 
and astrocytes started to be examined during aging and disease.  

Cell-cycle abnormalities have been reported in mature neurons in 
hippocampus during AD, and additionally at stages considered 
prodromal to dementia such as mild cognitive impairment[83]. 
Understanding such proliferative changes in the aged and diseased 
brain are of considerable interest because expression of cell cycle 
proteins in the CA1 areas of the hippocampus is not seen without 
disease. Immunohistochemical studies identified cell cycle proteins in 
pyramidal neurons with significant AD pathology, namely tangle-
bearing neurons of the hippocampus. These proteins included various 
cyclins and cyclin-dependent kinases [84-89].   Work in this area has 
identified that re-expression of cell-cycle proteins in mature neurons is 
part of an apoptotic cascade[90].   Whether such responses are 
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functionally significant or exclusively represents an abortive exit 
remains unclear. 

Regarding neurogenesis during AD, a limited number of studies 
have attempted to examine adult proliferation and neurogenesis in the 
postmortem human brain using immunocytochemical markers. These 
studies reported equivocal results; one report described increased cell 
proliferation and expression of doublecortin (DCX), a marker of 
immature neurons [91] [92,93], in a cohort of senile AD cases, 
suggesting that neurogenesis is increased in AD [94]. Proliferation and 
transient neurogenesis have been observed in rodent models of brain 
injury [95].  The evidence indicates that neural stem cells are capable of 
proliferation during AD in a compensatory mechanism, but whether 
they receive the appropriate inputs from the hippocampus to mature 
naturally and integrate into the dentate gyrus is unknown.   

Proliferation and markers of proliferation are not limited to neurons 
in the hippocampus.  A study in a presenile patients found increases in 
proliferation but did not replicate the neurogenesis results; 
proliferating cells were significantly increased in the AD hippocampus 
but were morphologically identified as non-neuronal glia [96].  These 
cells were not observed exclusively in granule cell layer but additionally 
in subregions known to contain large numbers of glia cells, suggesting 
that glia proliferation occurred during AD.  
 
4.2  Astrocytes and microglia in the AD brain 

There has been a long-standing focus on neuronal changes during 
health and disease of the brain. This nearly exclusive focus on neurons 
in the brain has changed. The complex interactions between neurons 
and glia and the role of glia in neuronal function have become well 
accepted. This includes the use of protein markers such as the astrocyte 
marker GFAP, which is known to have multiple alternatively spliced 
isoforms with specific structural functions [97]. For instance, in the 
human SVZ, the isoform GFAP delta (GFAPδ) is expressed in quiescent 
neuronal progenitors[98].  

Microglia are immune cells of the brain and serve an important role 
in surveillance, trophic support, and synaptic pruning.  The extensive 
presence of microglia at sites of amyloid deposition in humans has been 
previously documented [99-101], strongly suggesting that these cells 
play an important role in metabolism, maintenance and/or morphology 
of the plaque pathology. While cell-cycle proteins in neurons have been 
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extensively documented, it remained unknown whether proliferation of 
microglia and/or astroglia occurs during disease progression and 
whether this can contribute to the proliferative changes seen in the AD 
hippocampus.   

There is evidence that the innate immune system generates an 
active response to remove excess Aβ from the brain[102].  In light of 
this phenomenon, immunological approaches to clearing Aβ from the 
brain have been developed and active and passive immunization 
strategies have reached clinical testing.  To briefly review this topic, Aβ 
deposition is thought to be reduced by Fc receptor mediated microglial 
phagocytosis[103].  Indeed, passive immunization with antibodies 
raised against Aβ have demonstrated that microglia are responsible for 
clearing Aβ plaques through Fc-receptor mediated phagocytosis and 
subsequent degradation[104].   

The first immunotherapy study was stopped early due to serious 
side effects.  AN-1792 (Elan Pharmaceuticals/Wyeth) reached  Phase IIa 
clinical trials in the US and Europe when the program was suspended in 
January 2002 when approximately 5% of the patients in the active 
treatment group developed symptoms of aseptic meningo-
encephalitis[105].   While AN-1792 suffered from considerable 
shortsightedness regarding drug safety, it became evident from this 
strategy, that understanding the role of microglia during each stage of 
AD was important to understand if immunotherapy was to be used 
successfully without causing deleterious inflammation.   

Within months of publication of this thesis, phase III clinical data 
from the leading immunotherapy, a fully humanized monoclonal 
antibody will be expected.  Anticipation of the results is extremely high 
within the Alzheimer’s field; the results of the study will be intensely 
scrutinized.   Active and passive immunotherapy will continue to be 
tested in clinical trials, although at this time we do not fully understand 
how microglia respond to plaques during disease progression.  
 
� Open Research Question: 
Do glia cells proliferate during AD in response to Aβ plaque 

accumulation? 
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5     MODULATING NEUROGENESIS DURING AGING AND AD 
5.1  Known mechanisms of positive and negative regulation 

This thesis is concerned with regulation under normal physiological 
conditions   i.e. non-acute/traumatic conditions.   We know that 
neurogenesis is highly susceptible to environmental/experience-
dependent modulation such as voluntary exercise and environmental 
enrichment which stimulate survival and steer new cells to a neuronal 
phenotype [106,106]. Studies have further identified factors that can 
regulate production and survival of hippocampal neurons maturing 
during rodent adulthood. Some, like estrogen, environmental 
complexity[107-109], and NMDA-related excitatory input [110] 
positively regulate neurogenesis, while others like cholinergic 
denervation[111], stress, and aging [112] decrease levels of 
neurogenesis. Stress is well known to reduce different stages of 
neurogenesis [113] that have been implicated in depression and in 
antidepressant drug action[114-117]. Of interest, high circulating levels 
of stress hormones form a substantial risk factor for Alzheimer 
disease[118,119] Acute and chronic brain diseases generally elicit acute 
and chronic responses from the endogenous NSC population.  
Traumatic head injuries, epileptic seizures, and transient global and 
focal ischemia all increase hippocampal neurogenesis in rodents.  The 
effects of transient neurogenesis occurring under these conditions have 
unknown effects on the hippocampal circuit (reviewed by Castellani et 
al.)[120].   

In this thesis I explored the ability of pharmacologic agents and 
physical exercise to counteract the negative regulators of neurogenesis 
that occur during aging and stress conditions. The rationale behind 
these two approaches is explained in the next two sections.  

 
5.2  Regulation of neurogenesis by antidepressants 

Antidepressants, such as the SSRI Fluoxetine hydrochloride 
(fluoxetine) are prescribed to more than 40 million patients 
worldwide[121]. Yet, the exact mechanism of action for most 
antidepressants, as well as the pathophysiology of depression in 
general, is not well understood[122]. The altered HPA axis activity and 
observed hippocampal atrophy in a subset of depressed 
patients[123,124] as well as the time-to-effect of most antidepressants 
of more than a month, has raised the possibility that prolonged stress-
induced reductions in adult hippocampal neurogenesis may at least in 
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part contribute to the structural and functional alterations in this 
condition [114-116,125]. In 2000, the first evidence was found that 
antidepressants increase neurogenesis in the brains of rats [126] 
suggesting that neurogenesis and anti-depressive action could be 
linked[127].  There is a wealth of research supporting a role for adult 
neurogenesis in the therapeutic effect of antidepressants, although 
deficiencies in neurogenesis have yet to be established as an etiological 
cause of depressive disorders.  

Therapeutic benefits of antidepressants generally occur not until 
after a 4-week delay. Notably, this coincides with the maturation time-
course of newly born neurons [112].  Supporting evidence has further 
been published showing that chronic treatment with antidepressants 
increases survival and rate of maturation for nascent neuroblasts 
[126,128]. Furthermore, experiments with different classes of 
antidepressants (tricyclics and SSRIs) showed reversal of depression-
like phenotypes in tests such as novelty suppressed feeding (NSF)[129]. 
The link between neurogenesis and behavior was tested further by 
selectively deleting newly born cells; e.g. hippocampal progenitor 
selective knockouts and X-ray ablation of the neural stem cells, all 
blocked changes in NSF indicating that hippocampal neurogenesis is 
required for antidepressants to exert their effect on clinical 
improvements [129,130].   

 
� Open research question:  

Are other antidepressants, such as the duloxetine, a unique dual 

SSRI/SNRI, as effective as other antidepressants or physical exercise 

with regard to their ability to increase neurogenesis? 

 
It is important to mention that many of the adult-generated cells die 

within the first few weeks [131],[132] due to selection mechanisms 
most likely determined by a balance between local neuronal activity 
and trophic support [133]. Significant proportions of the newborn cells 
(>50%), however, survive and eventually differentiate into fully 
functional neurons. Although neurogenesis on a short time scale is 
thought to have a rather limited direct input into the adult hippocampal 
circuit, modulation of neurogenesis for prolonged periods of time is 
thought to significantly influence hippocampal learning and pattern 
separation[134,135]. Moreover, neurogenesis appears to be required 
for the behavioral effects of antidepressants.[129], [77,136]. 



Chapter 1 27 

 

  
5.3  Regulation of neurogenesis by activity 

Exercise similarly acts as an antidepressant [137] and induces 
neurogenesis, as further described in Box 4.   

 
Box 5.3.1: Regulation of neurogenesis by voluntary wheel running 

While a number of known physiological changes occur with physical 
exercise, we will primarily focus on effects in the brain, particularly the 
hippocampus. Most of the data we will review has been collected in 
mice allowed to freely exercise on a running wheel.  As wheel running 
has been shown to potently stimulate neurogenesis in mice, this 
method will be used later in the thesis. Voluntary wheel running 
resulted in a robust enhancement in the survival of newly born cells in 
the DG of the hippocampus as well as an increase in synaptic 
plasticity[138,139]. This finding has been replicated in different mouse 
strains, ages and exercise paradigms, as reviewed by van Praag [140].  

Running also enhances learning and memory in aged mice[141], 
which supported that age-related declines in neurogenesis could be 
reversed. However, details about benefits of running are still 
forthcoming.  Many times, mice are allowed to exercise for 4 weeks, 
coinciding with the development time for new neurons. Whether long-
term exercise paradigms has the same benefit in aged or genetically 
modified models of AD is unknown and addressed in this thesis.    

 
Exercise elevates monoamine levels[142] including the precursor 

for serotonin synthesis, tryptophan hydroxylase [143], which may 
mediate the reported anti-depressant effect of exercise. Clinical data 
from humans shows that running and antidepressants have similar 
efficacy for treating major depressive disorder [144]. In the 
hippocampus, running is further known to increase the levels of 
different trophic factors [145,145,146,146], the extent of angiogenesis, 
dendritic spine density  and synaptic plasticity [139]. Specific to the 
dentate gyrus (DG) subfield of the hippocampus is a robust increase in 
neurogenesis with exercise[140]. Both running and antidepressants 
increase BDNF levels [145,147], which is hypothesized to contribute 
significantly to neurogenesis and mood regulation [148].  
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� Open Research Question:   

Does chronic exercise, started in middle age, prevent age-associated 

loss of spatial memory? 

 

 
5.4  Alzheimer’s disease mouse models 

In the last part of the thesis we discuss and produce experiments in 
which we actively modified neurogenesis through activity and 
pharmacology in a transgenic AD mouse model. While identifying 
neurogenesis and pathology in the AD brain can be done through 
relatively straightforward methods, evaluating data from transgenic AD 
mice often requires a careful interpretation. Whereas AD has a long 
asymptomatic phase and generally a late onset with a complex, mixed 
neuropathology, most AD mouse models are in fact incomplete because 
they do not reproduce all aspects of AD.  These mouse models allow key 
elements of AD to be tested instead of the full spectrum of the 
disease[149]. 

To begin discussing the transgenic AD animals available, we need to 
revisit the proteins and enzymes implicated in AD, as genes coding 
human proteins are introduced into these animals. In a traditional 
sense, we expect that introducing a pathogenic protein from a human 
into a mouse would faithfully recapitulate the human condition. In 
practice however, the phenotype of Alzheimer disease mouse models 
must be carefully documented and experimentally tested as reviewed in 
Chapter 7. 

 The phenotype of each model is dependent on the promoters, 
transgenes, methods, and techniques used to experimentally study the 
animals.   Each model has its own pathological signature and this 
requires when designing experiments to evaluate neurogenesis.  In 
chapter 7 we take a more in-depth look at transgenic models of 
Alzheimer’s disease including mice expressing mutant APP.  Earlier we 
briefly described the biochemical basis for APP cleavage and the 
generation of Aβ peptides. Transgenic animals have been generated 
that express both mutant APP as well as the enzymes responsible for 
cleaving APP to Aβ.  Given the interaction between these factors, many 
transgenic strains highly overexpress a mutant protein that is 
preferentially cleaved by a corresponding mutant enzyme, such as the 
bigenic mice that express mutant PS1 and human APP. As reviewed 
recently, most APP and APP/PS1 mouse models show reductions in cell 
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proliferation[150], but this depends on the age at which they are 
studied and the extent of neuropathology.  

These APP or amyloid based animals lack however the pathological 
phosphorylation of tau protein and also tangles do not develop. This led 
to further development of mice with multiple mutant transgenes in 
which the development of these pathological features is either 
introduced separately and/or accelerated and aggravated.  In the final 
chapter of this thesis I study modulation of neurogenesis in the well-
known triple transgenic mouse line (3xTg mice).  Much of the important 
details regarding the 3xTg mice will be discussed in Chapter 9 while in 
the general discussion I will also review and compare our findings with 
those produced in other laboratories.   

The 3xTg mice were first described in 2003[151,152], and since that 
time have been widely distributed to investigators. They quickly 
became one of the most frequently used AD models because the 3 
mutated transgenes are responsible for recapitulating several aspects 
of AD.   An exciting report was also issued regarding neurogenesis in 
these mice.  Pathogenic accumulations of Aβ occurred within neurons in 
the brain; these accumulations were responsible for behavioral deficits 
and correlated with the electrophysiological responses recorded from 
the brain. Interestingly, these mice were shown to have impaired 
neurogenesis compared to their non-transgenic littermates in a sex and 
age-specific manner[153]. Based on this evidence the following 
research questions were introduced: 
 

� Open Research Questions: 

Can antidepressant treatment or exercise increase neurogenesis 

and reduce AD neuropathology in these animals?   

Do age and/or disease preclude the stimulation of adult 

neurogenesis? 

 
In Chapter 8 these questions will be discussed in relation to 
experimental findings and ongoing work in this area[154].  
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6  OUTLINE OF THIS THESIS 

This thesis includes 5 primary studies on aspects of adult 
neurogenesis in relation to Alzheimer's disease as well as 2 review 
chapters on the topic.   

Chapter 2 provides a closer look at the therapeutic potential of 
neurogenesis to treat Alzheimer's disease. In this chapter we explore 
current thoughts about adult neurogenesis and the potential of 
neurogenesis as an effective therapy.  

One goal for translational neuroscience is to conduct basic research 
in models with predictive value for humans.   Indeed, our 
understanding of adult neurogenesis in primates is incomplete and 
expanding as new brain regions are studied. In chapter 3 we performed 
basic research on a adult new world primate and report on the 
occurrence of new neurons in the hippocampus as well as amygdala 
under stress conditions.  

In chapter 4 we sought to identify the phenotype of the proliferating 
cells present in the hippocampus of aged (>70 years of age) humans 
and AD patients. This chapter provides results on the actual extent of 
proliferation in the affected human AD brain and relates this to glia cell 
responses and cognitive status.  The wider question is determining how 
amyloid plaque pathology influences adult neurogenesis.   

In chapter 5 we switch to activity and pharmacology dependent 
neurogenesis; two different antidepressant drugs, fluoxetine 
hydrochloride (marketed as Prozac) and duloxetine hydrochloride 
(marketed as Cymbalta), a novel anti-depressant with dual-
pharmacology, are compared with exercise to evaluate their potential to 
stimulate neurogenesis in female C57Bl6J mice.  

Chapter 6 uses the same non-transgenic inbred mouse strain as in 
chapter 5 but here, middle-aged animals are started on long-term 
exercise. Instead of measuring the acute effects of these interventions 
on neurogenesis and cognition, we chronically treated mice to 
investigate if long-term activity could preserve spatial memory during 
aging.    

In chapter 7 we review mouse models of Alzheimer disease and 
experimental results already published.  This includes changes in 
neurogenesis reported in many of the commonly used Alzheimer mouse 
models. This provides an overview of work already completed in this 
area and the questions that remain to be answered.  
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Chapter 8 utilizes a similar study design as described in Chapter 6 
but here we used the 3xTg mouse model of Alzheimer disease, a widely 
studied model previously reported to have deficit in hippocampal 
neurogenesis.  Middle-aged 3xTg mice were maintained on either 1) 
fluoxetine 2) open access wheel running or 3) combined fluoxetine and 
wheel running for 11 months.  This study adds multiple components, 
namely the presence of AD pathology in the mouse model and the 
synergistic treatment paradigm.   

In chapter 9 the results from all chapters are reviewed and 
discussed with  indications for further areas of study and 
experimentation. 
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