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Abstract

We consider the problem of cooperative multiagent plan-
ning under uncertainty, formalized as a decentralized par-
tially observable Markov decision process (Dec-POMDP).
Unfortunately, in these models optimal planning is provably
intractable. By communicating their local observations be-
fore they take actions, agents synchronize their knowledge of
the environment, and the planning problem reduces to a cen-
tralized POMDP. As such, relying on communication signif-
icantly reduces the complexity of planning. In the real world
however, such communication might fail temporarily. We
present a step towards more realistic communication models
for Dec-POMDPs by proposing a model that: (1) allows that
communication might be delayed by one or more time steps,
and (2) explicitly considers future probabilities of successful
communication. For our model, we discuss how to efficiently
compute an (approximate) value function and corresponding
policies, and we demonstrate our theoretical results with en-
couraging experiments.

Introduction
In this paper we consider planning for multiagent systems
(MASs), formalized in a decision-theoretic framework to
tackle various forms of uncertainty a multiagent team can
encounter. As in the single-agent case, two main sources of
uncertainty are each agent’s imperfect sensors and the un-
certain effects of its actions. Moreover, planning in MASs is
significantly harder than for a single agent, since when con-
sidering the plan for an agent, one also has to consider the ef-
fects of the actions of other agents. Especially when agents
have to base their decisions on local observations (sensor
readings), each agent has a different view of the environ-
ment, making it hard to predict the actions of other agents.
Optimal planning in such partially observable and decentral-
ized scenarios is provably intractable, which limits the scal-
ability of optimal solutions to a very small number of agents
and a planning horizon of a few time steps.

Communication capabilities can mitigate these issues of
partial observability, as they allow agents to share informa-
tion such as sensor readings. In this way, communication of
the local observations makes each agent better informed re-
garding the state of the environment, as well as providing a
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way for the agents to coordinate their actions. In particular,
assuming instantaneous and cost-free communication effec-
tively reduces the problem to a centralized problem (Pyna-
dath and Tambe 2002), modeled as a partially observable
Markov decision process (POMDP).

This approach requires synchronization within every time
step: after reading their sensors, each agent broadcasts its
local observation to the team, and waits for incoming mes-
sages. Instantaneous communication does not exist, so this
synchronization step requires some time. Moreover, com-
munication can fail temporarily, in which case the agent
still has to select an action. However, many current ap-
proaches for planning for decentralized POMDPs (Dec-
POMDPs) with communication assume that communication
is instantaneous and without failure (Roth, Simmons, and
Veloso 2005; Becker, Lesser, and Zilberstein 2005; Roth,
Simmons, and Veloso 2007), and do not provide a mecha-
nism to deal with less-than-perfect communication. Other
approaches in literature examined MASs in which commu-
nication arrives with a delay of one time step (Schoute 1978;
Grizzle, Hsu, and Marcus 1982), however, guaranteed com-
munication is still assumed (but with a fixed delay). More-
over, when communication is not delayed these methods are
not able to exploit this. We address these shortcomings by
explicitly reasoning about the probability of successful com-
munication (with variable delays) in the future. Our work
provides a significant step towards more realistic communi-
cation models for planning in Dec-POMDPs with unreliable
communication.

In previous work we have shown how Bayesian games can
be used to plan for a MAS in which communication arrives
with a delay of one time step (Oliehoek, Spaan, and Vlas-
sis 2007). To select an action at each stage in this 1-step
delayed (1TD) setting we proposed to use the QBG-value
function and we demonstrated how this QBG-value function
can be computed efficiently. We extend upon this work by
considering the setting in which there is stochastically de-
layed communication (SDC). That is, when communication
will usually succeed within a stage, but might fail with some
probability. In particular we formalize (1) at what points in
time synchronization (i.e., communication) is expected tobe
completed, (2) the probability with which this occurs, and
(3) what happens if synchronization does not finish within
the allotted wall-clock time frame. For this SDC setting



we propose a planning method that is exact when the delay
of communication is at most one stage. We show that the
resulting value function can be compactly represented and
how it can be computed efficiently by transferring POMDP
solution techniques. We apply our theoretical results by
demonstrating them in encouraging experiments, showing
the potential benefit of the proposed model.

The rest of the paper is organized as follows. First we
introduce the general Dec-POMDP model without commu-
nication. Then we describe three communication models,
namely instantaneous communication (0TD), communica-
tion with a one time step delay (1TD), and with a variable
stochastic delay (SDC). Next, we show how we can plan
in these models using value iteration. Finally, we perform
several experiments, we provide conclusions and we discuss
future work.

Dec-POMDPs without communication
First we will briefly review the Dec-POMDP model; for
a detailed introduction we refer to (Oliehoek, Spaan, and
Vlassis 2008). In this standard Dec-POMDP setting no com-
munication is possible, and optimal planning is provably in-
tractable (NEXP-complete (Bernstein et al. 2002)).

Definition 1 A decentralized partially observable Markov
decision process (Dec-POMDP)with m agents is defined as
a tuple

〈
S,A, T,R,O, O, b0

〉
, where:

• S is a finite set of states.
• A = ×iAi is the set ofjoint actions, whereAi is the set

of actions available to agenti. Every time step, one joint
actiona = 〈a1, . . . , am〉 is taken. Agents do not observe
each other’s actions.

• T : S × A → P(S) is the transition function, a mapping
from states and joint actions to probability distributions
over states, specifyingP (s′|s,a).

• R is the immediate reward function, which maps states
and joint actions to real numbers:R(s,a).

• O = ×iOi is the set of joint observations, whereOi is a
finite set of observations available to agenti. Every time
step one joint observationo = 〈o1, . . . , om〉 is received,
from which each agenti observes its own componentoi.

• O is the observation function, which specifies the proba-
bility of joint observations given taken joint actions and
successor states:P (o|a, s′).

• b0 ∈ P(S) is the initial state distribution att = 0.

When there is only one agent in a Dec-POMDP, the model
reduces to a POMDP (Kaelbling, Littman, and Cassandra
1998). The planning problem is to compute a plan, orpol-
icy, for each agent that is optimal for a particular number
of time stepsh, also referred to as thehorizonof the prob-
lem. We denote the interval of wall-clock time that passes
between two decision points by∆t, and assume it to be con-
stant without loss of generality. A common optimality cri-
terion is the expected cumulative (discounted) future reward
E(

∑h−1
t=0 γtR(t)), whereR(t) denotes the reward at time

stept, and0 < γ ≤ 1 is a discount factor.

A tuple of policiesπ = 〈π1, . . . , πm〉 is referred to as
a joint policy. In general, each individual deterministic
(pure) policy πi is a mapping from histories of observa-
tions to actions:πi((o

1
i , . . . , o

t
i)) = ai. Here,(o1

i , . . . , o
t
i)

is the sequence of observations received by agenti up
to time stept, which we refer to as theobservation his-
tory ~o t

i . We also use a different notion of history, namely
the action-observation history~θ t

i which consists of all ob-
servations received and actions taken up to time stept:
~θ t
i = (a0

i , o
1
i , a

1
i , . . . , a

t−1
i , ot

i). We also consider corre-
spondingjoint histories, respectively denoted as~o t and~θ t.

Figure 1(a) demonstrates the no-communication setting
as modeled by a Dec-POMDP. It illustrates that the agents
select actions based on their individual observations only.

Instantaneous communication
A natural approach to tackle the problem of decentralized
observations is to allow the agents to communicate their ob-
servations. In the case of cost-free, instantaneous and noise-
less communication, sharing local observations at each time
step is optimal (Pynadath and Tambe 2002). Of course, true
instantaneous communication does not exist, but when com-
munication is guaranteed to be very fast, the assumption can
be applied as demonstrated in Figure 1(b). Once the pre-
vious actions are completed and the state transitions tost,
the agents get their new observations. We assume this hap-
pens at (real-world, wall-clock) timeτ t

o.1 At that point each
agent broadcasts its individual observation, resulting insyn-
chronization atτc. The specifics of how synchronization can
be achieved are beyond the scope of this paper, and we as-
sume the agents have synchronized clocks. For an in-depth
treatment of related common-knowledge issues, we refer to
(Halpern and Moses 1990). The agents will have to act at
time τ t

a, which means that synchronization must be guar-
anteed to be completed in∆t

c = τ t
a − τ t

o time units. We
assume without loss of generality that the communication
periods∆c are of equal length for all stages and we drop the
t index.

In this 0TD case the planning problem reduces to a cen-
tralized POMDP, as one can assume there is a centralized
agent, say a ‘puppeteer’, that receives joint observations
and takes joint actions in response. During execution all
agents will communicate their observations, look up the
optimal joint action for the resultingjoint observation his-
tory, and execute their own action component. For such a
POMDP the (joint action-observation) history of the pro-
cess can be summarized by a probability distribution over
states called ajoint belief b. We will write b

~θ t

for the joint
belief as it would be computed by the puppeteer after action-
observation history~θ t. The joint beliefb~θ t+1

resulting from
b
~θ t

by joint actiona and joint observationo can be calcu-
lated by Bayes’ rule:

b
~θ t+1

(s′) =
P (o|a, s′)

P (o|b~θ t

,a)

∑

s

P (s′|s,a)b
~θ t

(s). (1)

1Throughout the paper,t indices refer to the discrete time steps
of the decision process, whileτ denotes a point in wall-clock time.
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(c) Delayed communication (1TD).

Figure 1: Illustration of different communication models used in this paper. For two consecutive time steps, and two agents,
i andj, we show on what information each agent bases its action choice. In (a) we show the general Dec-POMDP setting
which lacks communication. In the 0TD setting (b) agents canonly decide on their actions (atτ t

a) after receiving the local
observation of the other agents, shortly after synchronization atτ t

c . Finally, (c) shows the 1TD setting, in which agents act upon
receiving their local observation atτ t

o (∆c can be short), without waiting untilτ t
c . However, atτ t+1

a they have received all local
observations from timet, i.e.,τ t+1

a > τ t
c .

The optimal Q-value function for POMDPs is based on such
beliefs and satisfies the following Bellman equation:

Q∗
P(b

~θ t

,a) = R(b
~θ t

,a) +
∑

o∈O

P (o|b
~θ t

,a)

max
at+1

Q∗
P(b

~θ t+1

,at+1), (2)

whereR(b
~θ t

,a) =
∑

s R(s,a)b
~θ t

(s) is the expected im-
mediate reward.

It is well known that the value function (2) is a piecewise-
linear and convex (PWLC) function over the joint belief
space (Kaelbling, Littman, and Cassandra 1998). This
means we can use sets of vectorsVt

a
to represent the value

of a joint beliefb anda:

Qt(b,a) = max
vt
a
∈Vt

a

b · vt
a
, (3)

where(·) denotes inner product. The fact that the POMDP
value function is PWLC allows for a compact representation
for optimal algorithms, as well as many opportunities for
fast approximate ones. Note that for the Dec-POMDP case,
i.e., without communication, no such convenient policy rep-
resentation exists.

Communication delayed by one time step
We now consider communication that is delayed by one time
step as illustrated in Figure 1(c). In this 1TD setting syn-
chronization will not be completed before the agents select
an action, i.e.,τ t

a < τ t
c . Rather, synchronization must be

completed before the decision at the next stageτ t
c < τ t+1

a ,
i.e., synchronization is achieved within∆t + ∆c time units.
Note that, since the agents do not wait for communication
within a stage, they can act (almost) immediately when re-
ceiving their observation and∆c can be set to 0 (or be short).

When the agents communicate their individual observa-
tions and last taken action, then at every time stept each

agent knows the previous joint observation history~o t−1 and
actionat−1. However, each agenti has only observed its
individual last observationot

i and is uncertain regarding the
last joint observationot. For every(~θ t−1,at−1), this situa-
tion can be modeled using aBayesian game(BG) (Oliehoek,
Spaan, and Vlassis 2007), a strategic game with imper-
fect information and identical payoffs. In particular, the
private information of each agent (which defines itstype),
is its last local observationot

i. As such, the policies for
the BG map a single individual observation to an individ-
ual actionβi : Oi → Ai. A joint BG-policy is a tuple
β = 〈β1, . . . , βm〉. The probabilities of the joint observa-

tions in this BG are known:P (o) ≡ P (ot|b
~θ t−1

,at−1).
When a payoff functionQ(o,a) is available, the solution

of a BG with identical payoffs is given by the optimal joint
BG policyβ∗:

β∗ = arg max
β

∑

o∈O

P (o)Q(o, β(o)), (4)

where β(o) = 〈β1(o1), . . . , βm(om)〉 is the joint action
specified byβ for joint observation (type)o. β∗ is a Pareto-
optimal Bayesian Nash equilibrium (Oliehoek, Spaan, and
Vlassis 2008).

We have shown before that when considering the solu-
tions of all such BGs (for all stagest and all~θ t−1,at−1),
the optimal payoff functionQ for the 1TD setting is recur-
sively defined and corresponds to the QBG value function
(Oliehoek, Spaan, and Vlassis 2007):

Q∗
BG(~θ t,a) =

R(~θ t,a) + max
β

∑

o

P (o|~θ t,a)Q∗
BG(~θ t+1, β(o)), (5)

whereR(~θ t,a) = R(b
~θ t

,a), as defined at (2).
We now prove that we can write the QBG-value function as

a function over the joint belief space, and we prove that it is



PWLC over this space2. As such, we unify the mathematical
frameworks for both 0TD and 1TD communication.

Lemma 1 The QBG-value function(5) is a function over the
joint belief space, i.e., we can re-write it as:

QBG(b
~θ t

,a) = R(b
~θ t

,a)+

max
β

∑

ot+1

P (ot+1|b
~θ t

,a)QBG(b
~θ t+1

, β(ot+1)), (6)

whereb
~θ t

denotes the joint belief induced by~θ t.
Sketch of proof Converting a joint action-observation
history ~θ t to the corresponding joint beliefb~θ t

is a matter
of applying Bayes’ rule (1). What needs to be shown is that,
if two different joint action-observation histories~θ t,a, ~θ t,b

correspond to the same joint belief, they also have the same
QBG-values: ∀a QBG(~θ t,a,a) = QBG(~θ t,b,a). The proof
is inductive, with the base case given by the last time step
t = h − 1. In this case (5) reduces toR(b

~θ h−1

,a). Clearly
∀a QBG(~θ t,a,a) = QBG(~θ t,b,a) holds in this case. Proof
that∀a QBG(~θ t,a,a) = QBG(~θ t,b,a) given that the property
holds for t + 1 is given in (Oliehoek, Vlassis, and Spaan
2007). �

Theorem 1 The QBG-value function for a finite-horizon
Dec-POMDP with 1 time step delayed, free and noiseless
communication, as defined in(6) is piecewise-linear and
convex over the joint belief space.
Sketch of proof The proof is by induction. The base case
is the last time stept = h − 1, and again, for this case (6)
tells us thatQBG(b

~θ t

,a) =
∑

s R(s,a)b
~θ t

(s). ClearlyQBG
is trivially PWLC for the last time step. The induction step
proves that whenQBG is PWLC fort+1, it is also PWLC for
t. The full proof is listed in (Oliehoek, Vlassis, and Spaan
2007). �

These results are in accordance with the fact that a decen-
tralized system under one step delayed communication (also
“one step delay sharing patterns”) is separable (Varaiya and
Walrand 1978). Hsu and Marcus (1982) presented a, rather
involved, application of dynamic programming and mention
that the resulting value function (which is different from the
QBG-value function), is PWLC. Our results here should be
taken as a reformulation of this dynamic program which can
be interpreted in the context of BGs, and show a clear anal-
ogy between the setting with 0TD communication and the
1TD communication setting.

The implications of Theorem 1 are that, unlike the general
Dec-POMDP case, the value function for a Dec-POMDP
with 1TD communication can be compactly represented.
Also, it is possible to transfer POMDP solution methods that
exploit the PWLC property to the computation of the QBG
value function. Moreover, the identified analogy between
the 0TD and the 1TD setting, allows us to blend them in the
same methodological framework, as shown next.

2These results were already mentioned in (Oliehoek, Spaan,
and Vlassis 2007), however, formal proofs were not presented.

Stochastically delayed communication
The 0TD and 1TD models described in the previous sec-
tions assume guarantees on communication delay. However,
in the real world, communication may temporarily fail, and
such guarantees are hard to come by. For instance, consider
a team of robots connected via a wireless network. Such
wireless links can be unreliable, requiring retransmissions of
packets and resulting in variable delays. This makes guaran-
teed synchronization within a particular time window hard
to achieve.

We propose an approach for MASs with stochastically
delayed communication (SDC): systems where communi-
cation will be available most of the time, i.e., where syn-
chronization succeeds within a stage with a particular prob-
ability. We start by formalizing the probability that com-
munication succeeds, and we assume that successful com-
munication results in synchronization. For the 0TD model,
the agents need to synchronize their observations within
∆c time units and for the 1TD model within∆t + ∆c, as
described before (see Figure 1). Suppose we have a cu-
mulative distribution function (cdf)fc(∆) which provides
P (τc ≤ τo + ∆): the probability that communication suc-
ceeds within∆ time units after the begin of the communica-
tion phase (τo). This allows us to write

p0TD = fc(∆c) (7)

for the probability that communication is instantaneous;

p1TD = fc(∆t + ∆c) − fc(∆c) (8)

for the probability that communication is 1-step delayed;

p2TD = fc(2∆t + ∆c) − fc(∆t + ∆c) (9)

for the probability of two steps delay, and so on. The optimal
value function for such a setting would consider a weighted
sum of these different settings. Using simplified notation,
we have that the value of SDC can be expressed as

Q∗
SD = R + p0TDF0TD + p1TDF1TD + p2TDF2TD + . . . ,

(10)
whereFiTD is the expected future reward given that com-
munication will be delayedi stages.

To evaluate (10) exactly is impractical, and whenfc only
reaches 1 in the limit even impossible. Rather we propose to
approximate it. In particular we will assume (during the off-
line planning phase) that the communication is at most 1TD.
That is, we define the probability of delayed communication
as

pD = p1TD + p2TD + · · · = 1 − p0TD, (11)

and our approximate value function as

Q̃∗
SD(~θ t,a) =

R(~θ t,a) + p0TDF0TD(~θ t,a) + pDF1TD(~θ t,a), (12)

where

F0TD(~θ t,a) =
∑

o∈O

P (o|~θ t,a)max
at+1

Q̃∗
SD(~θ t+1,at+1),

(13)



F1TD(~θ t,a) = max
β

∑

o∈O

P (o|~θ t,a)Q̃∗
SD(~θ t+1, β(o)),

(14)
correspond to the expected future reward for the case of 0TD
resp. 1TD communication at the next stage. Formally, our
assumption is that the probability of 1TD communication
is 1 − fc(∆c). Note that such an approach is exact when
fc(∆t + ∆c) = 1 and may be an accurate approximation
when it is close to 1. When computing thẽQSD-value func-
tion we determine a joint actiona as well as a joint BG pol-
icy β for each belief. If in a staget synchronization occurs
within ∆c, the agents can computebt and usea. If not, they
choose their actions according to theβ of bt−1.

The PWLC property of the 0TD and 1TD value functions
allows us to assert the PWLC-property forQ̃SD.

Corollary 1 The value function for the stochastically de-
layed communication setting(12) is a function over the joint
belief space, i.e., it can be written as

Q̃∗
SD(b

~θ t

,a) =

R(b
~θ t

,a) + p0TDF0TD(b
~θ t

,a) + pDF1TD(b
~θ t

,a). (15)

Moreover, for a finite horizon, it is PWLC over this space of
joint beliefs.

Proof Proof thatQ̃SD is a function over the belief space
is analogue to the proof of Lemma 1. PWLC is proven as
follows. Using simplified notation, we have

Q̃t
SD = R + p0TDF t

0TD + pDF t
1TD.

Using our knowledge of POMDPs, we know thatF t
0TD

given by (13) is PWLC ifQ̃t+1
SD is PWLC. The PWLC prop-

erty of QBG also indicates thatF t
1TD given by (14) is PWLC

whenQ̃t+1
SD is PWLC. A weighted sum of two PWLC func-

tions and adding a third (R) yields a PWLC function. There-
fore Q̃t

SD is PWLC whenQ̃t+1
SD is. Once again the base

case is given by the last time stept = h − 1, for which
Q̃SD(b

~θ h−1

,a) = R(b
~θ h−1

,a) is PWLC. �

We note that it is possible to make the probability of com-
munication state-dependent by using a cdffc(∆; s). This
flexibility allows us to model scenarios in which communi-
cation links are strong in certain locations, for instance when
robots are close, and weaker in others. Let us writep0TD for
the probability that there is 0TD communication in the next
stage. Then

p0TD(s,a) ≡
∑

s′

P (s′|s,a)fc(∆c; s
′), (16)

p0TD(~θ t,a) =
∑

s

b
~θ t

(s)p0TD(s,a). (17)

The probability of one (or more) steps delayed commu-
nication in the next stage is given bypD(~θ t,a) = 1 −

p0TD(~θ t,a), which can be directly substituted in (12). Also,
including a dependence ofp0TD on a particular staget is
trivial (in this finite-horizon setting).

Delays of more than one time step

The Q̃SD-value function is exact when the communication
delays are at most one time step. However, we would also
like to be able to act successfully in models with longer de-
lays, i.e., in which it may occur that the communication of
t − k, k > 1 is not always received at staget. If this hap-
pens, the agents should still select actions in some meaning-
ful way. Given the complexity of computing (10) for de-
lays> 1 (it grows doubly exponential ink (Ooi and Wornell
1996)), we propose an approximate on-line algorithm. In or-
der to take into account the probability of 0TD communica-
tion in the future, it uses thẽQSD-value function, which has
been computed off-line. The proposed open-loop method
ensures agents take coordinated decisions in situations with
delays longer than 1 one time step, however, other types of
approximations are possible as well.

The main idea is that even when communication is failing,
the agents know at whatt−k they have synchronized for the
last time, i.e., all know~θ t−k. Basing decisions exclusively
on information that is common knowledge ensures that the
agents will continue to act in a coordinated manner. We pro-
pose to use an algorithm similar to Dec-COMM (Roth, Sim-
mons, and Veloso 2005), in which each agent models the dis-
tributionP (~θ t−k+l|~θ t−k,at−k+l), 1 < l ≤ k overpossible
~θ at subsequent time steps. To ensure that the joint actions
taken at intermediate time stepst′ (until communication is
restored) will be known, the agents base their decisions only
on information that is common knowledge such as the prob-
ability that a~θ t′ has been realized, denoted byp(~θ t′). Each
agent computes

arg max
a

∑

~θ t′

p(~θ t′)Q̃∗
SD(~θ t′ ,a), (18)

and executes its component actionai. When communication
is restored, the agents fully synchronize their knowledge by
sending all local observations sincet − k.

Finite-horizon value iteration
So far we have discussed the existence of value functions
corresponding to different communication models and we
have shown some of their properties. Next we detail how
a value-iteration algorithm for finite-horizon problem set-
tings can be defined for all these PWLC value functions.
Analogous to the POMDP case (Kaelbling, Littman, and
Cassandra 1998), we will define how to compute Qt

BG

from Qt+1
BG , and Q̃t

SD from Q̃t+1
SD , by computing new sets

of vectorsVt
a

from those representing the next stage Q-
function Vt+1

a′ . This operation is called the backup oper-
ator H and can be performed in roughly two ways. The
first way is to exhaustively generate all|A| × |Vt+1||O|

possible vectors and use those asVt. The second one is
to compute a set of joint beliefs for staget, generating a
vector for each of them, resulting inVt. We will focus
on the latter method as it is used by recent approximate
POMDP solvers (e.g., (Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005)).



The basis of the new vectors is formed by ‘back-
projected’ vectorsgao from the next time step. For a par-
ticulara,o andv ∈ Vt+1

a′ they are defined as

gv
ao

(st) =
∑

st+1∈S

P (o|a, st+1)P (st+1|st,a)v(st+1).

(19)
We denote the set ofgao for a particulara,o (but differ-
ent next-stage vectorsvt+1

a′ ) by Gao. In the POMDP case,
we can define the (finite-horizon and thus not discounted)
backupHP

ab for a particular joint actiona and for the joint
belief b of staget as

HP
abQ

t+1
P = ra + fP

ab, (20)

with ra is an |S|-dimensional vector,ra(s) = R(s,a) and
fP
ab a vector that expresses the expected future reward

fP
ab =

∑

o

arg max
gao∈Gao

b · gao, (21)

whereGao is the set of gamma vectors constructed from the
setsVt+1

a′ ,∀a′ that represent the next-stage value function
Qt+1

P (Kaelbling, Littman, and Cassandra 1998).
The QBG backup operator uses the same back-projected

vectors, but instead of maximizing over all, it only maxi-
mizes over those whose next time-step joint actiona′ is con-
sistent with a particular joint BG-policy (Oliehoek, Spaan,
and Vlassis 2008). This set is defined as

Gaoβ ≡

{
g

v
t+1

a
′

ao | vt+1
a′ ∈ Vt+1

a′ ∧ β(o) = a′

}
. (22)

The QBG-backupHB
ab is completed by maximizing over the

BG-policies:
HB

abQ
t+1
BG = ra + fB

ab, (23)

with
fB
ab = max

β

∑

o

arg max
gao∈Gaoβ

b · gao. (24)

At this point, we can introduce the backup operatorHSD
ab

for theQ̃SD-value function. It can be seen as a weighted sum
of the POMDP and QBG backup operators and is defined as

HSD
ab Q̃t+1

SD = ra + p0TD
a

fP
ab + pD

a
fB
ab, (25)

wherep0TD
a

is a vector defined asp0TD
a

(s) ≡ p0TD(s,a)
and similar forpD

a
. Note that in this equation the sets

Gao,Gaoβ used by respectivelyfP
ab, f

B
ab are computed from

Q̃t+1
SD and therefore different from those in the pure 1TD,

2TD settings. Also, when∀s,a p0TD(s,a) = 1, HSD
ab re-

duces toHP
ab, while if ∀s,a p0TD(s,a) = 0, HSD

ab reduces
to HB

ab. The off-line computational effort ofHSD
ab is similar

to that of QBG, as computing theGaoβ sets (22) is the main
computational burden.

Experiments
In previous work we have provided experimental results on
comparing the POMDP and QBG value functions, in the
1TD context (Oliehoek, Spaan, and Vlassis 2007), as well
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Figure 2: The “Meet in corner” test domain: (a) shows the
map of the large variation, and (b) the small version. In (c)
we compare differentp0TD in the large version. We show
the empirically determined value (Ṽ (b0), y-axis) of three
policies computed for a particularp0TD, evaluated using a
varying range of actualp0TD values (x-axis).

as when used as heuristics for non-communicative Dec-
POMDP solving (Oliehoek, Spaan, and Vlassis 2008). Here,
we demonstrate how thẽQSD-value function can be applied
in SDC scenarios. As the scenarios we target are too large to
be solved optimally, we applied an approximate point-based
technique, based on (Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005). The main idea here is to main-
tain a PWLC approximate value function, computed on a
sampled set of beliefs. All reported sampled control quality
values were averaged over1, 000 independent runs.

Problem domains
We use a number of two-agent domains, of which Dec-Tiger
and GridSmall are standard test problems (details provided
by Oliehoek, Spaan, and Vlassis (2008), for instance). One-
Door is a noisy version of the OneDoor environment intro-
duced by Oliehoek, Spaan, and Vlassis (2007). “Meet in
corner” is a problem in which two robots have to reach a
particular corner of their maze, denoted by G in Figures 2(a)
and 2(b), after starting in S. They can move clockwise (CW)
or counter-clockwise (CCW) with the intended effect80%
of the time, or declare goal when both have reached G, in
which case they receive a reward of 10 (and are transported
to an absorbing state). Declaring goal at another location or
not coordinated is penalized with reward−1 for each agent.
When at the goal, agents observe the goal withp = 1, in all
other states they receive the same non-goal observation.

Delays of up to one time step
In this section we consider settings in which synchronization
will be achieved with either 0TD or 1TD, i.e., the setting in
which our approximation (12) is exact. First we perform
tests whenp0TD(s,a) (and hencepD(s,a)) is uniform, i.e.,
the probability that synchronization does not occur within
∆c time units is equal∀s,a. Figure 3 shows thẽQSD-value
for the initial beliefb0 for a range of values ofp0TD, and
h = 20. We see that the value increases monotonically with
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Figure 3: TheQ̃SD-valueV (b0) (y-axis) for the initial be-
lief b0, computed forh = 20 and varyingp0TD (x-axis),
ranging from 0 to 1 in increments of0.1.

an increasingp0TD. This is expected: when communication
is more likely to complete within∆c time units, the agents
can expect to take more informed decisions. Also this figure
clearly illustrates that the effect of communication delays is
very much problem dependent. The relative impact in the
Dec-Tiger and “Meet in corner” problem is much larger.

Figure 2(c) shows the performance of a joint policy com-
puted for a particular value ofp0TD in the large “Meet in
corner” environment in which the actual value ofp0TD is
different. We computed̃QSD-value functions forp0TD = 0,
0.5 and1, and tested them by simulating trajectories in the
same environment, but where the value ofp0TD ranged from
0 to 1. It demonstrates how the control quality of a pol-
icy that assumes perfect communication (πp0TD=1.0) can
deteriorate severely when in fact synchronization is never
achieved within∆c time units (atp0TD = 0 on thex-axis).
This highlights the risk of assuming perfect communication,
largely ignored in relevant literature, as discussed in thein-
troduction. On the other hand, the policyπp0TD=0.5 (which
assumesp0TD = 0.5 at computation time) performs well at
run time for all values ofp0TD tested.

We also empirically verified that thẽQSD-value function
considers potential future communication capabilities. In a
small “Meet in corner” variation (h = 10), we penalized
move actions in the locations labeled CW in Figure 2(b)
with reward−0.1, and the CCW ones with−0.15. Hence,
the CW route is cheaper, and policies computed for uniform
p0TD = 1 and 0 take that route, resulting in values of5.73
resp.2.61 (actual sampled control performance). However,
when we use a non-uniform communication model, setting
p0TD(s,a) = 0,∀a,∀s ∈ CW and to 1 everywhere else, the
Q̃SD policy takes the CCW route obtaining a expected re-
ward of5.22. The proposed model hence successfully trades
off the heavier move penalty with more accurate information
resulting from 0TD communication.

Longer delays

Next, we tested our approach for settings in which delays
of more than one time step occur. In particular, in Table 1

a b c d e f

p0TD 0.8 0.8 0.6 0.6 0.6 0.6

p1TD 0.2 0.1 0.4 0.3 0.2 0.2

p2TD 0.1 0.1 0.2 0.1

p3TD 0.1

Table 1: Six communication models, “a” through “f”, de-
fined by the probability communication will succeed within
a certain number of time steps (uniform for all states and
joint actions). Empty entries indicate the probability is zero.
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Figure 4: Sampled control performanceṼ (b0) for the large
“Meet in corner” domain, for the communication models de-
tailed in Table 1. Black bars show the proposed method, and
white bars the baseline algorithm.

we defined a set of communication models, ordered roughly
by decreasing quality. For instance, we would expect model
“f” to have the worst performance, as there is a higher prob-
ability of longer delays. Note that communication models
with the samep0TD use the samẽQSD-value function, as it
approximatesp1TD, p2TD, p3TD, . . . as1 − p0TD.

We compared algorithm (18), which keeps track of all
possible joint beliefs and uses thẽQSD-value function,
with the performance of a baseline algorithm. This base-
line is identical to (18), except that it uses the POMDP
(0TD) value function, and already needs to consider
P (~θ t−k+l|~θ t−k,at−k+l) when l = 1, while the proposed
algorithm uses thẽQSD-value function for a delay of 1 time
step (and when there is no delay). Figure 4 shows that algo-
rithm (18) consistently outperforms the baseline algorithm,
as it takes into account the probabilityp0TD of instantaneous
communication in the future. As expected, the control qual-
ity goes down as communication becomes worse, i.e., as
longer delays are more likely.

Conclusions
In this paper we presented an overview of different com-
munication assumptions that are often made in decision-
theoretic multiagent planning. In particular we discussedthe
assumption of instantaneous communication (0TD) (Roth,
Simmons, and Veloso 2005; Becker, Lesser, and Zilber-
stein 2005; Roth, Simmons, and Veloso 2007), as well
as one-step delayed communication (1TD) (Schoute 1978;
Grizzle, Hsu, and Marcus 1982; Oliehoek, Spaan, and Vlas-
sis 2007). Such models assume that communication is guar-
anteed to complete within 0 or 1 time steps. However, in the
real world such guarantees may be hard to enforce. We in-



troduced a model for stochastically delayed communication
(SDC) which more realistically models unreliable communi-
cation for such Dec-POMDP settings. The model can handle
variable delays, and the delays can be dependent on the state
(e.g., agents that are physically close might have stronger
communication links). Because computing optimal solu-
tions is impractical, we proposed an approximation for this
SDC setting and demonstrated how this approximation can
be computed efficiently. Finally, we performed experiments
that indicate that a joint policy constructed with an overly
positive assumption on communication may result in a se-
vere drop in value. We also empirically demonstrated that,
in settings where 0TD communication is beneficial, the joint
policy computed by our methods specifies actions that are
likely to lead to 0TD communication in the future. Finally,
we demonstrated also that delays of more than one time step
can be tackled successfully, outperforming a POMDP-based
baseline.

There are quite a number of directions for future research
of which we mention a few here. In settings where com-
munication delays are typically longer than one stage, the
proposed approximation can be crude due to its open-loop
nature. For such settings alternative methods should be de-
veloped that do take into accountFkTD, k ≥ 2. However,
sincek-steps delay problem withk ≥ 2 are not separable
(Varaiya and Walrand 1978), the proposed value-iteration
method will not transfer directly to such settings. Another
direction is to extend this work to the infinite-horizon SDC
setting. As the infinite-horizon QBG-value function can be
approximated with arbitrary accuracy using a PWLC func-
tion (Oliehoek, Vlassis, and Spaan 2007), we should be able
to naturally extend our results for the SDC setting to the in-
finite horizon.

Our framework depends on the ability of the agents to
synchronize, i.e., to establish common knowledge regarding
the individual observation histories. In some settings where
not only delayed, but also noisy communication is consid-
ered, this may be non-trivial. It may be possible to aug-
ment our model to explicitly incorporate the probabilitiesof
transmitting error-free messages. Finally, in our work we
have assumed that a model of communication is available.
However, in some cases it may be hard to obtain an accurate
estimation of communication probabilities a priori. It would
be interesting to consider methods that allow the communi-
cation model to be learned on-line.
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