
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Avian information systems: Developing web-based bird avoidance models

Shamoun-Baranes, J.; Bouten, W.; Buurma, L.; DeFusco, R.; Dekker, A.; Sierdsema, H.;
Sluiter, F.; van Belle, J.; van Gasteren, H.; van Loon, E.

Publication date
2008

Published in
Ecology and Society

Link to publication

Citation for published version (APA):
Shamoun-Baranes, J., Bouten, W., Buurma, L., DeFusco, R., Dekker, A., Sierdsema, H.,
Sluiter, F., van Belle, J., van Gasteren, H., & van Loon, E. (2008). Avian information systems:
Developing web-based bird avoidance models. Ecology and Society, 13(2), 38.
http://www.ecologyandsociety.org/vol13/iss2/art38/

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/avian-information-systems-developing-webbased-bird-avoidance-models(dc7cb860-34bc-41e8-a23e-52e51dd3256e).html
http://www.ecologyandsociety.org/vol13/iss2/art38/


Copyright © 2008 by the author(s). Published here under license by the Resilience Alliance.
Shamoun-Baranes, J., W. Bouten, L. Buurma, R. DeFusco, A. Dekker, H. Sierdsema, F. Sluiter, J. Van
Belle, H. Van Gasteren, and E. Van Loon. 2008. Avian information systems: developing Web-based bird
avoidance models. Ecology and Society 13(2): 38. [online] URL: http://www.ecologyandsociety.org/vol13/iss2/
art38/

Insight
Avian Information Systems: Developing Web-Based Bird Avoidance
Models

Judy Shamoun-Baranes 1, Willem Bouten 1, Luit Buurma 2, Russell DeFusco 3, Arie Dekker 4, 
Henk Sierdsema 5, Floris Sluiter 1, Jelmer van Belle 4, Hans van Gasteren 4, and Emiel van Loon 1

ABSTRACT. Collisions between aircraft and birds, so-called “bird strikes,” can result in serious damage
to aircraft and even in the loss of lives. Information about the distribution of birds in the air and on the
ground can be used to reduce the risk of bird strikes and their impact on operations en route and in and
around air fields. Although a wealth of bird distribution and density data is collected by numerous
organizations, these data are not readily available nor interpretable by aviation. This paper presents two
national efforts, one in the Netherlands and one in the United States, to develop bird avoidance nodels for
aviation. These models integrate data and expert knowledge on bird distributions and migratory behavior
to provide hazard maps in the form of GIS-enabled Web services. Both models are in operational use for
flight planning and flight alteration and for airfield and airfield vicinity management. These models and
their presentation on the Internet are examples of the type of service that would be very useful in other
fields interested in species distribution and movement information, such as conservation, disease
transmission and prevention, or assessment and mitigation of anthropogenic risks to nature. We expect that
developments in cyber-technology, a transition toward an open source philosophy, and higher demand for
accessible biological data will result in an increase in the number of biological information systems available
on the Internet.

Key Words: birds; distribution; flight safety; migration; spatial modeling; web services.

INTRODUCTION

Close proximity between birds and aircraft can
result in serious conflict. Birds can cause
considerable damage and even the destruction of
aircraft or the loss of lives. For example, it is
estimated that bird strikes cost the United States Air
Force U.S. $33 million annually, including the loss
of aircraft; the United Kingdom Royal Air Force U.
S. $22.3 million annually, excluding lost aircraft;
and commercial airlines worldwide more than U.S.
$1 billion annually (Allan 2002). Between 1950 and
1999, 190 European military aircraft were destroyed
because of collisions or attempts to avoid collisions
with birds (Richardson and West 2000). To reduce
the potential hazards birds cause aviation, civil and
military aviation need reliable information about the
density distributions and movements of birds in time
and three-dimensioal space.

Bird strikes can be reduced in two ways: by avoiding
birds or by reducing the number of birds in and
around airfields via habitat management, active
bird-scaring techniques, and even hunting. Military
aviation can do both during training, whereas
commercial aviation can generally only do the latter.
In some countries, real-time or near real-time
information on bird movements is already used for
to make alterations in the flight trajectory of military
aircraft, delay takeoff, or cancel flights. Information
with a time scale of days or months can be used for
flight planning, habitat management, spatial
planning, and conservation mitigation. Clearly,
information is needed at different scales in time and
space to reduce the impact birds have on aviation
en route and locally in and around airfields.

In many countries worldwide, geo-referenced
presence-absence and abundance data are collected
for numerous organisms. These data are often
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collected by thousands of volunteers involved in
various monitoring schemes representing a
significant contribution of citizen science. These
monitoring data have proven to be extremely
valuable for spatiotemporal analyses, for example,
to identify phenological changes indicating a
response to climate change (e.g., Parmesan and
Yohe 2003, Jonzen et al. 2006, Menzel et al. 2006),
or population trends affected by environmental
change (e.g., Krebs et al. 1999, Benton et al. 2002,
Stuart et al. 2004). Observational data can provide
essential information about densities and
distributions of birds on the ground and to some
extent even about birds in the air. In addition, during
the last few decades, radar ornithology has provided
information on birds in the air unobtainable from
visual observations (e.g., Gauthreaux 1996 and
references therein). Although a massive amount of
data has been collected by many people, both
professionals and volunteers, these data cannot be
applied directly to reduce the risk birds pose to
aircraft. The data must be processed and presented
in such a way as to provide an indication of the
relevant risk that birds may pose in different regions
and during different times of the year.

This paper briefly describes two independently
developed Web-based bird avoidance models
(BAMs), the Netherlands BAM (NL-BAM)(https://
www.bambas.ecogrid.nl/) and the US-BAM
covering the continental United States and Alaska (
http://www.usahas.com/bam/). Both systems provide
fine-resolution and frequent predictions of bird
densities in interactive GIS-enabled, user-friendly
environments that are available on the Internet. In
addition, the NL-BAM has a dynamic module for
migration predictions. The development of these
models has required a transdisciplinary approach
including expertise in field and radar ornithology,
geostatistics, computational modeling, information
management, GIS, remote sensing, computer
sciences, and cooperation between military,
academic, commercial, and nature conservation
institutes, including the contribution of citizen
science. Finally, we discuss future perspectives to
improve these BAMs and how avian information
systems may be applicable to broader ecological
communities.

METHODS

From field observations to spatiotemporal
density distribution maps

Both bird observation models (BAMs) provide
predictions of the density in numbers and mass/km²
or mass/km 3, biweekly (26 time frames/yr, US-
BAM) or twice a month (24 time frames/yr, NL-
BAM), 4 periods/d for a number of key species or
species groups (62 for the NL-BAM, 71 for the US-
BAM). Field observation data were collected from
various sources, mainly from the Dutch Centre for
Field Ornithology (SOVON), the U.S. Geological
Survey, and the U.S. Fish and Wildlife Service. The
density of birds was modeled to develop density
distribution maps to fill temporal and spatial gaps
in the observational data. Information about the
diurnal activity patterns of birds, seasonal
abundance, the relative amounts of birds in the air,
and other essential information were stored in
relational databases to facilitate easy access,
management, quality assurance, and integration
with models. The additional biological information
needed to develop both models was collected from
the literature, expert knowledge from field
ornithologists, and bird strike databases (Dolbeer et
al. 2000, Dekker et al. 2003, Zakrajsek and
Bissonette 2005).

For the NL-BAM, regression kriging (Odeh et al.
1995, Hengl et al. 2004) was used to model the
spatial distribution of each of the 62 species in
relation to environmental factors such as soil type,
land use, and water bodies. When applying a species
distribution model (SDM) to our bird observations,
we often observed that the residuals, i.e., the
differences between model predictions and
measurements, were spatially correlated. Therefore
we used a geostatistical model to describe the
residuals and added its prediction to the SDM
predictions. As seen in step 1 of Fig. 1, the observed
counts for the NL-BAM were first related to
environmental variables via general additive
regression models (GAMs). GAMs are able to
describe nonlinear relationships between the
environmental factors and the number of birds and
are a frequently used SDM (Elith et al. 2006).
Second, we described the spatial correlation in the
residuals with a correlation function, the functional
form of which may be different for each GAM and
is identified manually, and interpolated the residuals
to the regular grid of the GAM by universal kriging
(step 2, Fig. 1). We then added the kriging
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Fig. 1. A diagram of the Netherlands bird avoidance model (NL-BAM) workflow describing the
modeling and processing procedures used to produce the NL-BAM maps. Central boxes represent the
processing steps described in the text and in Table 1. Boxes with dashed lines represent processing steps
that were repeated for each type of survey data. For example, for the buzzard, a separate general additive
model was fit to the breeding bird survey as well as each of the four nonbreeding point surveys. Boxes
shaded in grey represent supporting information needed to perform specific tasks.

http://www.ecologyandsociety.org/vol13/iss2/art38/
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Fig. 2. (A) The number of common buzzards (Buteo buteo) observed per nonbreeding bird survey site in
December 2000. The larger and darker the circle, the more birds per survey site. (B) The modeled
buzzard density distribution, i.e., number of birds per km². The modeled distribution was created using
regression-kriging, further described in the methods section (see also Fig. 1 and steps 1–3 in Table 1).

predictions to the GAM predictions (step 3, Fig. 1).
This results in maps that make optimal use of the
relationships between environmental predictors and
the information in the individual counts (Fig. 2).
Predicted flight altitude distribution of birds was
integrated into the NL-BAM based on dedicated
bird-radar measurements (Shamoun-Baranes et al.
2006), bird strike data (Dekker et al. 2003), the
literature, and expert knowledge. Information on
seasonal trends in abundance was collected from
weekly counts on air fields, monthly wetland
counts, and the literature.

Because of the complexity of integrating different
data sources, a modeling workflow was designed
(Fig. 1). All expert knowledge and observational
data used in this workflow were stored in a database.
In this way the workflow streamlined the entire

modeling procedure, ensured the replicability of the
results, and made it possible to update the output
maps when data and expert knowledge change. The
modeling workflow shown in Fig. 1 is described in
detail in Table 1 for a single species, the common
buzzard (Buteo buteo); more detailed information
on the modeling techniques can be found in
Shamoun-Baranes et al. (2005).

One of the special features of the NL-BAM is the
inclusion of both species-specific maps and
composite density maps. In total, 31,680 species-
specific maps and 960 composite maps were created
and are presented on the NL-BAM Web site. A
regional summary table of the 10 most abundant
species in the air provides the total number of birds
in the air and is hyperlinked to the respective
species-specific maps (Fig. 3).

http://www.ecologyandsociety.org/vol13/iss2/art38/
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Table 1. A description of the Netherlands bird avoidance model workflow (Fig. 1) presented for a single
species, the common buzzard (Buteo buteo). GAM stands for general additive regression model, and BAM
for bird avoidance model.

Step 1
GAM

The relationship between the counts on samples sites and environmental variables is
described using a GAM. A separate GAM is developed for each survey and applied at a
resolution of 1 km², covering the entire Netherlands. For the buzzard, counts are available
from five surveys: one breeding bird survey and four point counts of nonbreeding birds
throughout the year (Fig. 2A), resulting in five different GAMs and five different maps.

Step 2
Kriging

To account for spatial correlation in the residuals, the residuals for each GAM are spatially
interpolated using universal kriging.

Step 3
Regression-kriging

The spatially interpolated residuals are added to the respective GAMs creating regression-
kriging distribution maps (Fig. 2B). In this step, a breeding factor is used to convert counts
of breeding pairs to numbers of individuals.

Step 4
Combined maps

This step combines the different regression-kriging models to estimate the spatial
distribution of each species twice a month. For different groups of birds, different count
data are available. For example, for some species, only the breeding bird counts and the
nonbreeding bird counts are available; for other species, monthly waterbird counts are
available as well. Each regression-kriging map is assigned a weight (data set weight) based
on proximity of the survey period to the BAM period (weight diminishes with time).
Subsequently, linear interpolation is applied to produce predictive maps for those BAM
periods for which no surveys are assigned.

Step 5
Normalized maps

To prevent abrupt changes from one BAM period to another because of differences
between the various data sets, the combined maps were smoothed with known seasonal
trends. The smoothing procedure was as follows. Total abundance over the Netherlands,
on the basis of the combined maps for each species and each BAM period, was normalized
to range between 0 and 1; we call this the “model_trend.” We used the known seasonal
trends (the expert_trend) to correct the model trend via the following equation:
NMi,t = CMi,t * ( model_trend + ( model_trend - expert_trend )* expert_weight )
where CMi,t  stands for Combined Map for bird i in BAM period t, NMi,t stands for
Normalized Map for bird species i in BAM period t, and expert_weight is the degree to
which expert_trend can correct model_trend (for most birds, expert_weight is set to 0.5).

Step 6
Inflated maps

For each bird species, the altitude distributions and activity patterns were derived for the
four periods of day (morning, afternoon, dusk, dawn). Maps of the number of birds in the
air are created for each combination of BAM period, time of day, and altitude, producing
480 predictive maps/species (24 periods a year x 4 times a day x 5 flight altitude layers).

Step 7 Classified maps: Each map was classified into eight equal interval classes of birds/km².
Composite maps: Maps of all species were combined to create maps of total number of
birds/km² and total mass/km². Summary table: The sum of birds was calculated for three
regions/time of year, time of day, and altitude layer, for the top 10 most abundant species.

For the US-BAM, data on bird distribution and
abundance were obtained from many sources
including federal, state, and private agencies. Data
for those species considered potentially hazardous
to aircraft operations were pooled to form species
groups. Data on the temporal distribution of birds
were obtained from a variety of sources including
but not limited to wildlife refuges. The combined
data formed an incomplete coverage of the United

States, with gaps between sampled sites to be filled
by interpolation methods. The US-BAM risk
surfaces are interpolated using a standard inverse
distance-weighted interpolation protocol using the
12 nearest neighboring points and a squared decay
function. After the raw normalized risk surface was
derived for each 2-wk period of the year, daily
activity patterns were added based on field
observations, a literature review, and expert input

http://www.ecologyandsociety.org/vol13/iss2/art38/
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Fig. 3. Screenshots from the spatial distribution module of the Netherlands bird avoidance model. Upper
screenshot is of birds/km² at different altitudes from 1–15 March during dawn. The lower screen shot is
the distribution of black-headed gulls (Larus ridibundus) in the air, one of the most abundant species
during this time of day and year.

http://www.ecologyandsociety.org/vol13/iss2/art38/
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to develop four daily time-period risk maps during
each 2-wk time frame (DeFusco et al. 2005). In the
Alaska module, behavioral aspects were added to
depict percentages of birds expected in the air during
each of these periods. Further analyses were
conducted by evaluating the presence of birds from
numerous sample sites and correlating these data to
the terrain and habitat present at those sites. Masking
algorithms were applied to limit or eliminate
predicted distribution and abundance of birds from
environments in which suitable habitat was absent.
These algorithms were applied to the raw risk
surfaces to produce the final risk surfaces (Fig. 4).
These surfaces were then classified to depict relative
risk polygons.

Migration predictions

In several countries, e.g., the Netherlands,
Germany, Belgium, Israel, and the USA, radar is
used operationally by military aviation to monitor
bird migration and to provide real-time bird
migration warnings to air crews. However, radar
monitoring alone does not make it possible to
forecast migration intensity, information that is
needed for short-term planning and rescheduling of
military training flights. Without the development
and application of models, the collected data can
only be extrapolated to future times by expert
judgment. Therefore, radar measurements of bird
migration and meteorological data were used to
develop and calibrate models predicting migration
intensity in the Netherlands. Models were designed
using different techniques including multiple
regression analysis (Van Belle et al. 2007), artificial
neural networks, and concept-based models
(Bouten et al. 2005). The predictive variables
included in the operational model are seasonal
migration trend, preferential winds, 24-h change in
barometric pressure, and precipitation. The
migration module of the NL-BAM uses daily
updated meteorological forecast data as input (ww
w.arl.noaa.gov/ready/cmet) and provides a three-
day forecast of the intensity of broad front migration
over the Netherlands during the day and at night.

The US-BAM does not have a separate component
that forecasts migratory movements in relation to
weather. However, the US-BAM is linked to the
Avian Hazard Advisory System, which provides
near real-time warnings of migration “hot spots” as
well as a 24-h forecast based on the WSR-88D

(Weather Surveillance Radar 88 Doppler) network
and other remote sensing measurements (Kelly
2002; http://www.usahas.com/).

Target users

The avian information provided in the BAMs must
be efficiently disseminated for it to be effectively
applied. Therefore, several measures were taken to
ensure that these BAMs would be integrated into
operations. In the United States, staff members were
provided with training programs. In the
Netherlands, the user interface and model
presentation was designed through an iterative
process together with the users.

The NL-BAM has been in operational use since
January 2006 and is currently used as a decision
support tool by the ecology unit in the Royal
Netherlands Air Force. The spatial distribution and
migration modules are used differently. The spatial
distribution models, which are based on historic
data, are used for bird strike prevention in and
around airfields. Information from these models is
used to help formulate guidelines for airport bird
control units and review spatial planning in the
airport vicinity. During the migration season, the
dynamic migration models are run every morning
to generate a three-day forecast and are used in daily
operations to reduce the risk and operational impact
of en route bird strikes. The migration predictions
and real-time radar observations form the basis for
warnings to pilots (e.g., https://www.notams.jcs.mil/
common/birdtam.html) and for short-term flight
planning. These predictions greatly reduce the
impact migration has on operations. For example,
in the past, night training missions were cancelled
after sunset once migration was measured by the
radar. Such last-minute cancellations are extremely
costly, because all personnel and equipment are
ready for training. Now migration model forecasts
are used to cancel operations several hours in
advance.

Different versions of the US-BAM have been in
operation for more than 20 yr, with continuous
upgrades to the system. The first Web-based US-
BAM with GIS functionality became operational in
1998. The US-BAM is used by a broad spectrum of
military and civil users including pilots, flight
schedulers, and airspace planners. All U.S. Air
Force pilots are required to consult the BAMs and
Avian Hazard Advisory System (AHAS) when
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Fig. 4. A sample bird strike risk map for Alaska from the United States bird avoidance model during the
period 7–20 May, during daytime.

operating on low-altitude missions within the area
of model coverage. Pilots are trained in the use of
the models during Air Force Pilot Training with
refresher briefings on the systems throughout their
flying assignments. All air force flight safety
officers and flight supervisors are also periodically
trained in the use of and updates to the models so
that they can pass the information to pilots in their
flight squadrons. Airfield management personnel
are also trained in the use of the models during their
initial certification courses and are periodically
retrained during their continuing education
requirements. Training sessions on the US-BAM
and AHAS system are also conducted during all
assistance visits from headquarters-level flight
safety staff to ensure the currency and appropriate
application of the models. Training modules are

available to all levels of users and are posted online
on the BAM/AHAS Web site.

Technical aspects of the Web services

In the spirit of open-access philosophy, which is
gaining momentum in many scientific communities
(Doyle et al. 2004, Chan and Costa 2005, Engelward
and Roberts 2007), the various organizations
involved in developing the models made the
decision to provide the output of the BAMs freely
available on the Internet. It is the hope of the
developers that this culture continues to spread and
that international collaborations will form to expand
these models.

http://www.ecologyandsociety.org/vol13/iss2/art38/


Ecology and Society 13(2): 38
http://www.ecologyandsociety.org/vol13/iss2/art38/

Because of the spatial nature of the density
distribution models, both systems are GIS enabled,
providing electronic cartographic capabilities such
as zooming, panning, and the selection of particular
features as overlays on the relative risk surfaces
(US-BAM only). The NL-BAM uses UMN/
MapServer open source software (http://mapserver.
gis.umn.edu/) to facilitate the visualization and
access of hazard maps stored in postgreSQL (http:/
/www.postgresql.org/), an open-source spatial
database. The US-BAM uses arcIMS (ESRI) to
access maps stored in Access (Microsoft).

FUTURE PERSPECTIVES

Bird populations are constantly changing in
response to various anthropogenic as well as natural
factors. We estimate the longevity of the predictions
by the bird avoidance models (BAMs) to be in the
order of 5–10 yr. Therefore, a model update is
recommended approximately once every 5 yr.

Beyond this model adjustment and maintenance we
envision that a new generation of BAMs will
develop both on larger multinational scales and on
small scales for local airfields. New data will
become available as animal tracking systems
continue to advance, providing higher quality and
quantities of data, which are essential to increase
our understanding of bird movements. This
knowledge can then be used to improve model
performance. For example, improvements in
biotelemetry and the continuous miniaturization of
individual transmitters (Cooke et al. 2004, Wikelski
et al. 2007) will provide more detailed information
at the species level on flight speeds, altitudes, routes,
time budgets, and habitat selection. Detailed data
on bird movements can be particularly beneficial
for modeling foraging and roosting flight routes,
which are currently not included in either of the
BAMs described in this paper. The increased
availability of mobile radar units adapted for
studying bird movements (Gauthreaux and Belser
2003, Huppop et al. 2006) can provide another
source of movement data, both for modeling and for
near real-time operations, either to mobilize bird
control units or warn pilots in and around airfields.
Furthermore, in Europe, the potential exists to
collect information on migration flight altitudes
from more than 150 weather radars in Europe via
the OPERA (Operational Programme for the
Exchange of weather RAdar information) network
to improve the altitude component of the migration

models (Gasteren et al., in press). Because of the
continuous development in computer technology,
huge quantities of data will become more easily
accessible for processing and analysis and real-time
transfer via the Internet or GRID. This is made
possible not only by the mere availability of raw
observations but especially by advances in tools to
annotate, homogenize, and interpret the observations,
e.g., tools for spatial modeling (Phillips et al. 2006,
Rangel et al. 2006), automated georeferencing
(Guralnick et al. 2006), and metadata storage and
organization (Kareiva 2001, Fegraus et al. 2005).
Therefore, in the future we hope to develop a bird
avoidance system whose ensemble forecasts
provide both enhanced predictions and a faithful
representation of predictive uncertainty. In such a
system, the models are continuously updated with
radar measurements by applying data assimilation
techniques.

Historically, civil aviation has been rather
apprehensive of bird avoidance models as well as
real-time warning systems. However, as these
systems continue to develop and improve, they may
even be integrated into safety management systems
for civil air traffic control (Buurma 2007).

Web-based ecological information systems are
quickly emerging and evolving (Bisby 2000, Zhang
and Grassle 2002). Intuitive visualization of
information about the distribution, abundance, and/
or movements of fauna and flora presented through
these or similar systems such as the BAMs would
be extremely useful for conservation advocacy,
environmental planning, mapping the risk of
zoonosis outbreak and spread, and education. For
example, a mapping system that integrates the
density and distribution of animals, their movement
patterns, and relevant environmental information
would greatly facilitate the identification of
potential source and spread of vector-borne diseases
such as avian influenza (Normile 2005, Kilpatrick
et al. 2006, Yasue et al. 2006, Moffett et al. 2007,
Xiao et al. 2007). In short, using the cyber
infrastructure and new analytical and modeling
tools, major advances can be made in ecological
information systems with improved access to and
integration of data from biological surveys, radar
networks, animal tracking systems, and supporting,
e.g., environmental, social, and economic,
information collected by a multitude of
conservation organizations, research institutes, and
international organizations such as FAO and WHO.
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Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol13/iss2/art38/responses/
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