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Abstract – The coiling of a thin filament of viscous fluid falling onto a surface is a common and
easily reproducible hydrodynamic instability. Here we report for the first time that this instability
can generate regular spiral patterns, in which air bubbles are trapped in the coil and then advected
horizontally by the fluid spreading on the surface. We present a simple model that explains how
these beautiful patterns are formed, and how the number of spiral branches and their curvature
depends on the coiling frequency, the frequency of rotation of the coiling center, the total flow
rate, and the thickness of the spreading fluid film.

Copyright c© EPLA, 2008

The study of spirals in Nature goes back at least to the
seventeenth century, when Swammerdam was among the
first to describe the beautiful forms of certain seashells [1].
The standard work on spontaneous pattern formation in
Nature, D’Arcy Thompson’s On Growth and Form [1]
describes a multitude of spiral patterns, including those
of shells, sunflower seeds, and the helical structure of
branches or leaves on growing plant stems. All these spirals
are self-organized and obey rather strict mathematical
rules. Shells, for example, are generally logarithmic spirals
in which the distance between successive loops grows in
a precisely determined way with increasing distance from
the center [2]. In the case of sunflower seed spirals (phyllo-
taxis), Douady and Couder [3] used a clever laboratory
experiment to show that the spirals form due to a self-
organized growth process whereby new seeds are generated
in the center at a fixed frequency and then repel each
other by steric repulsion. The maximization of the distance
between the seeds then leads to a special subtype of
the logarithmic spiral pattern: the golden or Fibonacci
spiral. The same authors showed how these ideas can be
applied to plants, accounting for instance for the sunflower
spirals [4].

Not all natural spirals are due to a steric repulsion
between constitutive elements, however. Over the past few
years, self-organized spiral waves have been studied exten-
sively [5]. These dynamic spirals form spontaneously in
excitable media [6,7] and have been observed in contexts
as different as catalytic surface oxidation [8], the Belousov-
Zhabotinsky chemical reaction [9–13], aggregating colonies
of slime mold [14,15] and contracting heart tissue, where
such waves are believed to be related to cardiac arrhyth-
mia and fibrillation [16].
Here we demonstrate that spirals can also arise during

the coiling of a thin “rope” of viscous fluid falling onto
a solid surface (fig. 1) [17–19]. In previous papers we
investigated how the frequency and radius of the coil-
ing depends on the orifice diameter, the height of fall,
the flow rate, and the fluid viscosity, and we showed
that coiling traverses four different dynamical regimes as
the fall height increases [20–24]. Here we report that in
a limited portion of the parameter space, air bubbles
become trapped between successive coils and are then
advected radially away to form surprising and very regu-
lar spiral patterns. We also present a simple model that
explains how these beautiful patterns are formed, and
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Fig. 1: Liquid rope coiling. Depending on the fluid viscosity,
the coils can either build up a tall pile like a corkscrew (a),
or vanish into the bulk of the fluid within one coiling period
(b). a) silicone oil with ν = 1000 cm2/s, injected from an orifice
of radius a0 = 0.034 cm at a volumetric rate Q= 0.0044 cm

3/s.
Effective fall height H = 0.5 cm. The diameter of the portion of
the rope shown is 0.06 cm. b) Silicone oil with ν = 125 cm2/s,
falling from an orifice of radius a0 = 0.2 cm at a flow rate
Q= 0.1 cm3/s. The fall height is 1.5 cm. The diameter of the
portion of the rope shown is 0.4 cm.

how the number of spiral branches and their curvature
depends on the total flow rate, the fluid film thickness, and
ratio of the coiling frequency to the frequency of preces-
sion of the coiling center. We find that the spiral waves
occur only when the center of the coil precesses with a
frequency that is distinct from that of the coiling itself, and
we show that this condition is both necessary and suffi-
cient for the appearance of Fermat spirals in this partic-
ular case. This is in contrast to the general case where
for instance the standard type (n= 1) of Archimedean
spiral wave patterns forming in excitable media can exist
with a single frequency, which is the primary rotation
frequency of the spiral, or alternatively form non-static
spirals with two frequencies resulting in a well-studied
meandering instability that causes the spiral wave tip to
trace out epicycloid trajectories (see for example [5]). The
second frequency associated with the meandering instabil-
ity is generally incommensurate with the primary rotation
frequency, which can be formally eliminated by transfor-
mation to a co-rotating frame in which the stable rigidly
rotating spirals appears stationary. In our experiments the
two frequencies are also generally incommensurate, but
the second frequency plays a quite different role than in
the meandering spirals.
We performed our experiments by ejecting a thin jet

of silicone oil from a syringe, driven by a syringe pump
with a computer-controlled stepper motor. In a typi-
cal experiment, the fluid was ejected continuously at
a constant rate Q while the fall height H was varied
over a range of discrete values. Silicone oils of viscosi-
ties ν = 100, 300, 1000, and 5000 cm2 s−1 were used, but
we observed spiral patterns only for ν = 300 cm2 s−1. We
also used different orifice diameters (d= 0.68, 1.5, 1.6,

Fig. 2: Inside a quite narrow region of the control parameter
space, the coiling rope traps bubbles of air which form nice
spiral patterns. Notice how the subsequent coils are displaced
with respect to each other. The diameter of the pile is about
1 cm.

and 2.5mm). While we saw some irregular patterns for
d= 0.68mm with Q= 0.02 cm3 s−1 and H = 30mm, clear
spiral patterns were observed only for d= 1.5 and 1.6mm,
Q= 0.047–0.137 cm3 s−1, and H = 32–50mm.
Figure 1 shows two pictures of steady “liquid rope

coiling”. Depending on the fall height and the fluid
viscosity, the pile of coils can have different shapes. For
low fall heights and high viscosities (“viscous” regime),
the pile remains intact for several coiling periods, becomes
quite high, and has a shape like a corkscrew (fig. 1a). For
somewhat greater heights and/or lower viscosities (called
the “gravitational regime”), the pile disappears within
one or two coiling periods, and remains low (fig. 1b). No
bubbles are generated in either of these cases.
At still larger fall heights (called the “inertial regime”),

fluid inertia becomes important. Because the coiling
period is much shorter than the time required for an
individual coil to coalesce completely with its predecessor,
the coiling filament forms a tall liquid tube that builds
up, buckles under its own weight at a critical height, and
starts rebuilding again with a characteristic period [23].
In this regime we observed bubbles of two different sizes:
bubbles smaller than the filament radius that form with
a period comparable to that of the coiling; and larger
bubbles with sizes comparable to that of the liquid
tube that form during the secondary buckling. However,
the patterns formed by both types of bubbles are very
irregular.
Within a quite narrow portion of the gravitational

coiling regime, however, encapsulated air bubbles are
observed to form very regular and beautiful spiral patterns
(fig. 2). The origin of this behavior is as follows. In all
other coiling regimes, each newly formed coil falls exactly
on top of the one laid down previously. In this small
part of the gravitational regime, by contrast, the center
of coiling precesses along a separate circle of its own, with
a frequency much smaller (≈ 25%) than that of the coiling
itself. As a result, successive coils do not land exactly on
top of one another; and it is at the intersections of two
such coils that small air bubbles are formed and trapped

38004-p2



Hydrodynamic spiral waves

Fig. 3: The process of air trapping and bubble formation.
Reflection and refraction on the curved surface of the coils
makes it difficult to study the details of bubble formation, but
one can still follow the dynamics as seen in this series of pictures
showing one cycle of bubble formation in two branches —one
just above the center of the picture, and one in the upper right
corner.

Fig. 4: Angular coiling frequency Ω vs. fall height H
for an experiment with ν = 300 cm2 s−1, d= 1.6mm, and
Q= 0.137 cm3 s−1, predicted numerically using the method
of [20]. The symbols G and IG indicate portions of the
curve corresponding to gravitational and inertio-gravitational
(multivalued) coiling, respectively. The dashed portion of the
curve indicates steady coiling states that are unstable to small
perturbations, as determined using the method of [24]. Clear
spiral patterns were observed in the height range H = 3–4 cm,
before the turning point in the numerical curve that marks
the onset of IG coiling [22]. The experimentally measured
angular frequencies of coiling and precision were 17± 1 s−1
and 4± 1 s−1, respectively.

in the liquid due to its high viscosity. The spiral patterns
are then generated as the bubbles are advected radially
away from the pile of coils by the flow associated with the
pile’s gravitational collapse (fig. 3).
In our experiments, the behavior of the bubbles showed

a clear progression as the fall height was increased. At rela-
tively low heights corresponding to the lower-frequency
part of the gravitational regime [20–23], the center of coil-
ing precessed and some irregular bubbles were formed.
At somewhat greater heights, the bubble pattern became
more regular and some rather unclear spiral patterns were
observed. At still greater heights, the patterns become
clear spirals. Finally, at heights corresponding to the upper
end of the gravitational regime the patterns once more
became unclear and finally disappeared. The correspon-
dence between spiral patterns and the gravitational regime
is illustrated in fig. 4, which shows a numerical prediction
of the steady coiling frequency vs. height for the para-
meters of one of our laboratory experiments [20]. The

Fig. 5: Time sequence showing how a spontaneous change
of coiling direction changes the sign of the curvature of
the spiral pattern, for an experiment with ν = 300 cm2 s−1,
d= 1.6mm, Q= 0.137 cm3 s−1, and H = 4 cm. (a) t= 0: coiling
with spirals curving clockwise towards the center; (b) t= 2 s: in
the middle of changing direction, with an “extra” coil outside
the pile; (c) t= 6 s: counterclockwise coiling with a disturbed
spiral pattern near the pile; (d) t= 7 s: completed change of
direction: counterclockwise coiling and curvature of the spiral
pattern.

portions of the curve corresponding to the gravitational
regime and the multivalued “inertio-gravitational” regime
are labelled (G) and (IG), respectively [22]. In the exper-
iment in question, we observed clear spiral patterns in
the height range H = 3–4 cm, which evidently corresponds
to the gravitational regime just below the first turning
point in the curve in fig. 4. This conclusion is further
confirmed by our observation that the coiling frequency in
the spiraling regime was nearly constant, as predicted by
the numerics for H = 3–4 cm (fig. 4). However, we empha-
size that the numerical calculation leading to fig. 4 is
for steady coiling only, without precession. The preces-
sion is due to the interaction of the free portion of the
liquid rope with the pile of coils beneath it. At present
this interaction is not accounted for in the boundary
conditions used in the numerical calculation of the steady
coiling frequency. Accordingly, fig. 4 should not be inter-
preted as a bifurcation diagram for (unsteady) coiling with
precession. Rather, its purpose is simply to help “locate”
the phenomenon of spiral waves within the now well-
understood regime diagram of steady coiling.
In all cases where clear spirals are observed, the spirals

have five branches, and five bubbles are generated in
approximately four coiling periods. The bubble size
increases with increasing flow rate and also depends on
the fall height, and is larger for clear spiral patterns than
for unclear ones. The curvature of the spiral branches
depends on the flow rate, the fall height, and the direction
of coiling. If the coiling direction is reversed after an
external perturbation of the filament, the curvature of the
branches changes sign (fig. 5). Changing the height leads
to a change in the coiling frequency and also changes the
curvature of the branches (fig. 6). While the branches are
strongly curved in most of the relevant parameter region
they can be nearly straight (fig. 6(c)). The curvature of
the pattern also depends on the radial flow away from the
pile along the surface. Thus if we modify the experiment
by using a plane with boundaries at some distance from
the pile, the radial flow is slower and the branches closer
together.
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Fig. 6: Effect of fall height on the shape of the spiral branches,
for an experiment with ν = 300 cm2 s−1, d= 1.6mm, and
Q=0.137 cm3 s−1. (a) H=3 cm; (b) H=3.5 cm; (c) H=3.7 cm;
(d) H = 4 cm. In all photographs, the coiling is in the same
direction and the number of spiral branches is 5. Photos were
taken from below; reflection of light from the glass substrate is
the cause of the extra “ghost” branches.

On the basis of our experimental observations we now
propose a simple model for the formation of the spirals.
We have seen that the slow precession of the coiling
center causes successive coils to be slightly displaced from
each other, leading to the trapping of air bubbles which
are subsequently transported radially with the stagnation
flow. Assumptions of volume conservation and constant
height of the fluid film implies that the radial position
of a bubble obeys drdt ∼ 1/r or r∼ t0.5. Since the bubble
generator moves with constant angular speed, this gives
r=±aθ0.5, where r is the radius, a some constant, and θ
the angle. Spirals obeying this type of equation are called
Fermat’s spirals. To model this we assume that the coiling
center moves with frequency fp on a circle with radius rp.
If the radius and frequency of the coiling about this center
are rc and fc, respectively, then the path laid down by the
coiling filament is

x(t) = rp cos(2πfpt)+ rc cos(2πfct), (1a)

y(t) = rp sin(2πfpt)− rc sin(2πfct). (1b)

We observe experimentally that the coiling and precession
are always in opposite directions and since we want to
keep fc and fp positive we include the minus sign in (1b).
An example of the trajectory given by eq. (1) is shown
in fig. 7.
Our experiments show that fc/fp ≈ rc/rp ≈ 4. Now if
fc/fp = 4 exactly, the path defined by eq. (1) will repeat
itself after one precession period and the “spirals” will
be straight lines pointing outwards from the origin. If
however fc/fp differs slightly from 4, the path will shift
slightly with each precession period and a curved spiral
pattern will emerge (fig. 8). As already mentioned, our
numerical code does not include the interaction between
the coiling rope and the pile so we do not yet understand
what causes this precession. We are currently attempting
to correctly include this interaction and understand how
the precession frequency varies with the experimental
parameters and why fc/fp ≈ rc/rp ≈ 4 for all experiments
we performed. This is however far beyond the scope of
the present paper. We did observe, however, that the
spiral patterns change smoothly with system parameters,
indicating that frequency locking does not occur. Our

f
c

r
c

f
p

r
p

Fig. 7: Rope coiling around a center which moves on a circle
of its own. rc and fc are the radius and frequency of coiling,
while rp and fp are the radius and frequency of precession of
the coiling center. The direction of precession is opposite to
that of the coiling. A figure very similar to this one has been
used to explain the meandering of spirals [5,12]. Here rc/rp = 3
and fc/fp = 4.

Fig. 8: A model of the path laid down by the coil for the
experimentally measured values of rc/rp ≈ 4 and fc/fp ≈ 4.
(a) When fc/fp = 4, the path exactly repeats itself, giving rise
to straight radial branches (fig. 9a.) Bubbles are generated at
positions 1, 2, 3, 4, and 5. (b) When fc/fp = 3.9 the path is
slightly displaced after each precession period, giving rise to
curved spiral branches (fig. 9b.)

experimental observations indicate that during coiling
bubbles are trapped at points 1 through 5 in fig. 8, so
that five bubbles will be generated for each four coils.
Geometrically speaking, a bubble is formed each time the
vector rp = rp(x̂ cos 2πfpt− ŷ sin 2πfpt) from the rotation
center to the coiling center is antiparallel to the vector
rc = rc(x̂ cos 2πfct+ ŷ sin 2πfct) from the coiling center to
the filament laid down (see fig. 7). The frequency of bubble
formation is therefore just that of the dot product

rc · rp = rcrp cos 2π(fc+ fp)t, (2)

or fc+ fp. The number of bubbles generated per coil
is therefore (fc+ fp)/fc. For the measured value

38004-p4
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Fig. 9: Patterns of bubbles generated at positions 1, 2, 3, 4,
and 5 in fig. 8. a) If fc/fp = 4 exactly the loop is closed and the
bubble branches are radial. b) If fc/fp is only approximately
4 (here 3.9) the loop is open and the bubble branches will be
curved.

fc/fp ≈ 4, this gives (fc+ fp)/fc ≈ 5/4, as observed in our
experiments. From the frequency of bubble generation
one can also predict the number of spiral branches to be
n(fc+ fp)/fp, where n is the smallest natural number that
makes n(fc+ fp)/fp approximately a natural number.
The factor n is present because if, e.g., fc/fp = 4.33,
then (fc+ fp)/fp = 5.33 and it will take three rotations
of the coiling center to add a bubble to all branches and
start adding to the first one again, yielding a total of
16 branches. The reason that n(fc+ fp)/fp need not be
exactly a natural number is that if it is sufficiently close,
say 4.98, the bubbles will not be seen as defining 50
distinct branches but rather 5 branches that are slightly
curved (see fig. 9)
To test our model against the experiments, we did a

simple numerical simulation assuming that the precession
frequency fp and the coiling frequency fc are constants
and that the bubbles generated move radially with a speed
v=Q/(2πrh), where r is the radial position and h the
height of the fluid film. Figure 10 shows a “fit” of this
simple model to the observations for an experiment with
Q= 0.047 cm3 s−1, h= 4mm, fc = 2.7Hz, and fp = 0.7Hz.
Because h was measured less accurately than the other
parameters, we adjusted its value to obtain the best fit
between the experiments and the model. The excellent
agreement shown in fig. 10 is obtained for h= 3.6mm,
very close to the measured value. We attribute the slight
difference between the two values to the approximation
v=Q/(2πrh). Since the bubbles are near the top of the
fluid, they will move slightly faster than the average speed
assumed here. The average bubble speed assumed in the
model must therefore be slightly higher than it is in reality,
which requires that the assumed film thickness be slightly
lower than the true value, as we found above. This simple
model thus yields not only a qualitative picture, but also
a quantitatively detailed understanding of the formation
of the spiral bubble patterns.
In conclusion, we have shown that surprising and neatly

ordered spiral bubble patterns can be formed during liquid
rope coiling. In the context of liquid rope coiling, and in
contrast to the general case, two frequencies are required

Data
Model

Fig. 10: A fit of the theoretical model for the bubble
patterns to the observed pattern, for an experiment with
Q= 0.047 cm3 s−1, h= 4mm, fc = 2.7Hz, and fp = 0.7Hz. The
model predictions shown are those for the same values of Q, fc
and fp but h= 3.6mm.

for spiral formation, namely the frequencies of the coiling
itself and that of the (retrograde) precession of the coiling
center. We present a very simple model that explains how
the spiral patterns are formed and why two frequencies
are needed in this particular case. The specific spiral we
observed is a particular type of an Archimedean spiral
(r= aθ1/n), namely Fermat’s spiral r= aθ1/2, which arises
because the radial and angular positions of the bubbles
obey r∼ t1/2 and θ∼ t.
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