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Abstract: We compare the discrete dipole approximation (DDA) and the 
finite difference time domain (FDTD) method for simulating light scattering 
of spheres in a range of size parameters x up to 80 and refractive indices m 
up to 2. Using parallel implementations of both methods, we require them to 
reach a certain accuracy goal for scattering quantities and then compare 
their performance. We show that relative performance sharply depends on 
m. The DDA is faster for smaller m, while the FDTD for larger values of m. 
The break-even point lies at m = 1.4. We also compare the performance of 
both methods for a few particular biological cells, resulting in the same 
conclusions as for optically soft spheres. 

©2007 Optical Society of America  

OCIS codes: (000.4430) Numerical approximation and analysis; (170.1530) Cell analysis; 
(290.5850) Scattering, particles. 
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1. Introduction 

The discrete dipole approximation (DDA) [1,2] and the finite difference time domain method 
(FDTD) [3,4] are two of the most popular methods to simulate light scattering of arbitrarily 
shaped inhomogeneous particles. These methods have a very similar region of applicability; 
however, they are rarely used together. In a few published studies either one method is used to 
validate the other [5,6] or they are compared for a few scatterers [7]. We perform a new 
comparison, which in two respects is more extended than the previous studies. First, we cover 
a larger range of size parameter x and refractive index m, which includes almost the whole 
range of biological cells (x up to 80). Second, we set the accuracy to be reached by both 
methods, which makes the performance results more informative. 

We focus on particles with negligible absorption, e.g. biological particles. However, this 
also covers a broad range of slightly absorbing materials, e.g. water and ice, because 
performance of both methods do not depend significantly on small imaginary part of the 
refractive index. High-absorbing materials, which also are of great interest in many 
applications, are saved for another study. We have extended experience in using both methods 
for simulating light scattering by biological cells [8-12]. To verify our conclusions made for 
spheres we also perform simulations for a few realistically shaped biological cells. 

This manuscript is organized as follows. We describe the implementations of both 
methods and test scatterers in Section 2 and 3 respectively. The results for spherical scatterers 
and biological cells are presented and discussed in Sections 4 and 5 respectively. Section 6 
concludes the manuscript. 
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2. DDA and FDTD implementations 

As a numerical implementation of the DDA we have used the ADDA computer code v.0.76, 
which is capable of running on a cluster of computers (parallelizing a single DDA 
computation), allowing simulating light scattering by scatterers much larger than a 
wavelength [13,14]. This is currently an unique feature compared to other DDA codes [15].. 
In this manuscript we use the default ADDA settings for dipole polarizability and iterative 
method (lattice dispersion relation and quasi minimal residual method respectively). We only 
changed the convergence criterion of the iterative solver (required relative residual norm) to 
10−3, which is larger than the default value but is enough for the accuracy required in this 
study (as shown in Section 4). 

Many different DDA formulations exist and a number of parameters can be tuned. They 
are thoroughly described in recent review [1] and include formulations for dipole 
polarizability and interaction term, e.g. [16-18], and methods to decrease shape errors, e.g. 
[19]. The former are designed for large refractive index and their accuracy is not significantly 
different from formulation used in this manuscript tailored to smaller refractive indices. The 
shape errors are not that important for large particles with small absorption [20], except for 
large relative errors of S11 in deep minima, which are prominent for m very close to 1 (see 
Section 4). Hence decreasing shape errors will not drastically improve the overall 
performance of the DDA in this study. We do not analyze the impact of specific formulations 
because 1) they would not significantly change the final conclusion; 2) we want this 
comparison to be useful mostly to researchers who would rather use the publicly available 
code than implement the latest theoretical developments themselves. 

The implementation used for the FDTD was recently developed in the Biomedical Laser 
Laboratory at East Carolina University [10], based on the algorithms described by Yang and 
Liou [4] with numerical dispersion correction [3,12]. The implementation is written in 
standard Fortran 90 and uses the MPI standard for communications, allowing it to run on a 
variety of platforms. The incident field used was an approximate Gaussian pulse with an 
average wavelength equal to the wavelength of interest. Berenger’s perfectly matching layer 
(PML) boundary condition was used to terminate the lattice [21]. To determine the 
convergence, multiple simulations are carried out, each simulating a time period longer than 
the previous. The time periods are in increments of the time it takes the incident pulse to 
travel once across the scattering particle. When the difference in results for two simulations is 
negligible, or when the differences start to oscillate, the result is said to have converged. For 
each component of the electric and magnetic fields, located in different parts of the Yee cell, 
corresponding local refractive index is used during the time-marching. As for the DDA, we 
have not fine-tuned all possible parameters, since we wanted to compare two state-of-the-art 
production codes. 

3. Test objects 

We simulate scattering by spheres with different size parameter x (defined as ka, where a is 
the sphere radius and k is the wavenumber of the incident light) and refractive index 
m = m′ + im″. Here m″ is fixed at 1.5×10–5. This imaginary part of m does not significantly 
influence the final simulation results; however, it may decrease the simulation time for the 
FDTD, at least for m′ = 1.02, as indicated by previous preliminary studies (data not shown). 
The lower limit for x is 10 and the upper limit depends on m′ (to keep the computational times 
manageable). It decreases from 80 to 20 for m′ increasing from 1.02 to 2. The exact set of x, 
m′ pairs is shown in Table 1. For each sphere we compute the extinction efficiency Qext, 
asymmetry parameter <cosθ >, and Mueller matrix in one scattering plane (polar angle θ 
changes from 0° to 180° in steps of 0.25°). From the whole Mueller matrix we analyze only 
the S11 element and the linear polarization P = −S21/S11. We do not put any constraints on the 
number of dipoles to optimize sphericity of the dipole representation of the sphere [22], since 
it does not significantly improve the accuracy for particle sizes used in this study. However, 
the spherical symmetry of the problem is used to calculate the Mueller matrix using the result 

#88470 - $15.00 USD Received 10 Oct 2007; revised 29 Nov 2007; accepted 5 Dec 2007; published 17 Dec 2007

(C) 2007 OSA 24 December 2007 / Vol. 15,  No. 26 / OPTICS EXPRESS  17904



for only one incident polarization [13]. This accelerates the simulation almost twice compared 
to the general shapes, both for the DDA and the FDTD. We use the same trick for the coated 
sphere model, which is described below. In this study we fix the accuracy required by both 
methods. We take the crudest discretization, described by dpl – number of dipoles (grid cells) 
per wavelength – that satisfies both of the following: the relative error (RE) of Qext less than 
1%, and the root mean square (RMS) RE of S11 over the whole range of θ less than 25%. All 
simulations were performed on the Lemieux cluster [23] using 16 nodes (each has 4 Alpha 
EV6.8 1 GHz processors and 4 GB RAM). The cluster was decommissioned on December 22, 
2006 after we had finished all simulations for spheres. 

In the second part of this manuscript we apply both methods to two realistically shaped 
biological cells: a red blood cell (RBC) and a B-cell precursor (BCP). We consider both of 
them to be suspended in buffered saline with refractive index 1.337. We assume the 
wavelength of the HeNe laser (0.633 μm) for the incident light. The wavelength inside the 
medium is then equal to 0.473 μm. We choose the z-axis to coincide with the propagation 
direction of the incident light. For these biological particles we calculate the same final 
quantities as for spheres except <cosθ >. S11 is calculated in the yz-plane for the same range of 
θ, and Qext is calculated for incident light that is linearly polarized along the y-axis. 

A mature red blood cell can be modeled as a homogeneous axisymmetric biconcave 
body. We describe its outer boundary as 

02 224224 =+++++ RQzrPzzSrr , (1) 

where r is a distance from the symmetry z-axis. The coefficients are set to their typical values: 
P = −14.3 μm2, Q = 38.9 μm2, R = −4.57 μm4, S = −0.193, which corresponds to an RBC with 
diameter 7.65 μm and maximum thickness 2.44 μm (see Fig. 1). Equation (1) is proposed in 
[24] as an extension to the discocyte shape described by Kuchel and Fackerell [25]. To 
consider a general case, we orient the RBC so that its symmetry axis lies in the yz-plane and 

-3 -2 -1 1 2 3

-1

1

z, μm

 r, μm

 

Fig. 1. Profile of a typical RBC used for the simulations. 

 

Fig. 2. An image of a B-cell precursor obtained with confocal microscopy. 
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constitutes a 30° angle with the z-axis. The refractive index (relative to the medium) is set to 
1.045 + 8×10−5i, which corresponds to the average hemoglobin concentration [24]. Note that 
m″ of the RBC is different from that of all other scatterers studied in this manuscript. 

Cultured NALM-6 cells, a human BCP derived from the peripheral blood of a patient 
with acute lymphoblastic leukemia [26], were used in our study. The shape of a BCP was 
constructed from stacked images obtained from a confocal microscope. Sample preparation, 
used dyes, confocal imaging procedure, and 3D shape reconstruction procedure are described 
in detail in [11]. We have used the reconstructed model of cell #8 for the simulations in this 
manuscript (see Fig. 2, more Figs. can be found in [11]). It consists of cytoplasm and nucleus, 
for which we assign m′ = 1.023 and 1.071 respectively (as was done in previous studies of the 
BCP [11,27]). m″ is the same as for spheres. Its orientation is the default one, so that z-axis is 
normal to the layers used for 3D reconstruction. 

As an intermediate case between homogeneous spheres and real biological cells, we 
consider a coated sphere model consisting of two concentric spheres, which is an 
approximation for the BCP shape described above (volume-equivalent for both the nucleus 
and the cytoplasm). Its inner and outer radiuses are 4.14 and 5.13 μm respectively (x = 68.1). 
Refractive indices are the same as for the BCP. We tune the discretization for the coated 
sphere to reach the same accuracy as for spheres. For biological cells we use a single 
discretization, because of lack of a rigorous exact solution. For the BCP the discretization is 
similar to those used for the coated sphere and for the RBC – similar to those used for 
m′ = 1.08 spheres (see Table 3). 

The simulations for biological cells and the coated sphere were run on a different 
hardware platform : 32 nodes of LISA cluster [28] were used (each node has dual Intel Xeon 
3.4 GHz processor with 4 GB RAM). This platform is about 2-3 times faster than 32 nodes of 

Table 1. Performance results of the DDA vs. the FDTD for spheres with different x and m′.a 

  Time, s  Dpl  Used RAM, GB  Iterationsb 
m′ x DDA FDTD  DDA FDTD  DDA FDTD  DDA FDTD 
1.02 10 1.1 0.6  15 12  0.15 0.02  2 275 
 20 11 4.1  20 14  1.4 0.13  4 509 
 30 24 17  17 13  2.9 0.28  4 651 
 40 78 384  18 22  7.1 2.3  5 1398 
 60 453 7026  20 32  30 20  7 4004 
 80 691 (40580)  16 (32)  40 (47)  9 (5239) 
1.08 10 0.7 2.1  10 18  0.07 0.06  6 453 
 20 1.9 25  10 19  0.22 0.30  12 1005 
 30 8.7 207  10 19  0.79 0.84  18 2531 
 40 19 388  10 20  1.4 2.1  25 1928 
 60 31 1196  6.7 18  1.4 4.7  49 2509 
 80 129 12215  6.3 22  2.9 18.7  84 4009 
1.2 10 0.9 3.2  10 18  0.07 0.07  20 671 
 20 3.2 58  7.5 20  0.15 0.44  57 1589 
 30 8.7 645  6.7 24  0.22 2.09  146 3321 
 40 106 740  7.5 18  0.79 2.09  384 3837 
 60 1832 35998  8.4 25  2.9 15.9  1404 13762 
1.4 10 4 2.5  15 10  0.15 0.03  78 1047 
 20 896 3203  25 37  2.9 3.4  687 10333 
 30 7256 3791  17 23  2.9 2.8  5671 11013 
 40 10517 (47410)  18 (32)  7.1 (15.7)  2752 (21580) 
1.7 10 185 5.5  25 8  0.61 0.03  900 2323 
 20 22030 998  35 18  7.1 0.82  5814 13101 
 30 (185170) 47293  (37) 30  (25) 10  (12005) 39751 
2 10 1261 32  40 11  1.4 0.07  2468 7481 
 20 (252370) 6416  (60) 20  (30) 1.7  (14067) 30693 
a Parentheses indicate that computational method failed to achieve required accuracy for this x and m′. 
b Number of the iterations and time steps during time marching for the DDA and the FDTD respectively. 
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Lemieux; however, the scaling factor depends on the details of the particular problem. 
Therefore, the main benchmark results are those obtained on Lemieux, while LISA 
performance results are presented mainly for illustration purpose. 

4. Results for spheres 

Results of the performance comparison of the DDA and the FDTD are shown in Table 1. The 
total computational wall-time describes overall performance. It is determined by two factors: 
the number of cells in the computational grid and the number of iterations or time steps. The 
former depends on x and dpl and determines the memory consumption. Values of dpl cannot 
be directly compared between both methods because the typical values for the DDA [1] are 
twice as small as for the FDTD [4]. The same applies to the iteration count in an even greater 
extent. For some problems, one of the methods failed to reach the prescribed accuracy for the 
given hardware. Results of these simulations are shown in parentheses. 

Naturally, both methods require larger computational time for larger x just because the 
number of grid cells scale cubically with x, if dpl is kept constant. Apart from that, the 
behavior of the methods is quite different. Dpl required by the DDA to reach the prescribed 
accuracy do not systematically depend on x, except for m′ = 1.7 and 2. However, dpl does 
depend on m′ – it increases both when m′ increases over 1.4 and approaches unity. The 
number of iterations for the DDA is relatively small and only moderately increases with x for 
m′ = 1.02 and 1.08. However, for larger m′ it rapidly increases both with m′ and x. For 
m′ = 1.7 and 2 this combines with increasing dpl leading to the sharp increase in 
computational time. 

The behavior of dpl for the FDTD does not show systematic trends and is unpredictable 
in the whole range of x and m′ studied. On the contrary, the number of time steps increase 

Table 2. Same as Table 1 but for accuracy results. 

  RE(Qext)  RMSRE(S11)  RE(<cosθ >)  RMSE(P) 
m′ x DDA FDTD  DDA FDTD  DDA FDTD  DDA FDTD 
1.02 10 2.5×10−3 4.3×10−3  0.20 0.17  1.6×10−4 3.6×10−4  0.039 0.043 
 20 1.4×10−4 9.3×10−4  0.17 0.22  1.6×10−5 6.9×10−5  0.088 0.095 
 30 5.2×10−5 7.9×10−3  0.13 0.22  1.5×10−5 5.3×10−5  0.037 0.10 
 40 8×10−6 3.3×10−3  0.19 0.21  4×10−6 1.6×10−5  0.064 0.074 
 60 1.6×10−4 5.9×10−3  0.25 0.20  1×10−6 4×10−6  0.071 0.048 
 80 1.2×10−4 (4.3×10−3)  0.25 (0.33)  3×10−6 (2×10−6)  0.074 (0.12) 
1.08 10 2.5×10−4 5.5×10−3  0.15 0.064  6.4×10−5 1.2×10−4  0.074 0.024 
 20 5.8×10−5 1.0×10−2  0.17 0.063  3.6×10−4 5.2×10−5  0.097 0.061 
 30 3.8×10−4 9.3×10−3  0.10 0.054  1.3×10−4 6×10−6  0.062 0.033 
 40 2.8×10−4 9.5×10−3  0.083 0.053  5.1×10−5 8.2×10−5  0.11 0.045 
 60 2.2×10−3 8.3×10−3  0.16 0.072  2.7×10−4 4.7×10−4  0.14 0.062 
 80 3.8×10−3 8.7×10−3  0.13 0.071  9.6×10−5 1.1×10−3  0.13 0.054 
1.2 10 7.1×10−4 7.6×10−3  0.073 0.024  6.2×10−4 3.6×10−4  0.059 0.022 
 20 5.4×10−3 9.3×10−3  0.13 0.037  3.3×10−4 3.4×10−3  0.11 0.029 
 30 2.5×10−3 7.8×10−3  0.16 0.075  3.4×10−4 1.4×10−3  0.14 0.069 
 40 3.9×10−3 9.1×10−3  0.19 0.25  1.2×10−3 1.0×10−2  0.15 0.23 
 60 2.3×10−3 6.0×10−3  0.13 0.25  1.2×10−3 1.3×10−3  0.14 0.23 
1.4 10 7.0×10−3 8.9×10−3  0.13 0.14  8.2×10−3 4.6×10−2  0.059 0.093 
 20 9.7×10−3 9.8×10−3  0.23 0.17  1.3×10−2 2.7×10−2  0.095 0.15 
 30 7.4×10−3 8.2×10−3  0.24 0.19  5.6×10−3 4.6×10−3  0.24 0.19 
 40 7.1×10−3 (1.5×10−2)  0.15 (0.24)  7.3×10−5 (2.7×10−3)  0.13 (0.097) 
1.7 10 5.2×10−4 8.0×10−3  0.12 0.22  3.4×10−2 9.6×10−2  0.097 0.13 
 20 1.0×10−2 8.0×10−3  0.12 0.24  1.2×10−2 1.8×10−2  0.086 0.21 
 30 (2.0×10−2) 1.1×10−2  (0.14) 0.12  (1.5×10−2) 1.0×10−2  (0.12) 0.095 
2 10 4.7×10−3 8.3×10−3  0.16 0.16  5.1×10−3 2.3×10−2  0.11 0.17 
 20 (2.6×10−2) 8.3×10−3  (0.086) 0.14  (5.0×10−3) 3.1×10−2  (0.098) 0.11 
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systematically with both x and m′, which is expected. The dependences of the FDTD 
performance on x and m′ are less interdependent than that of the DDA. Comparing the overall 
performance of the two methods, one can see that for small m′ and large x the DDA is an 
order of magnitude faster than the FDTD, and for large m′ vice versa. The boundary value of 
m′ is about 1.4, for which both methods are comparable. They are also comparable for small 
values of both m′ and x. Memory requirements of the two methods are generally similar. 
However, they naturally correlate with computational time – in most cases the faster method 
is also less memory consuming. 

In this manuscript we limit ourselves to moderate refractive indices; however, currently 
FDTD is most probably by far superior to DDA for larger m′, at least for large scatterers. 
Although enhancements mentioned in Section 2 definitely improve DDA performance in this 
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Fig. 3. Comparison of the DDA and FDTD results with the exact Mie solution 
for simulation of S11(θ ) for spheres with x = 20 and m′ equals (a) 1.02, (b) 1.4, 
and (c) 2. 
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regime, they do not solve the main problem of poor convergence of the iterative solver. 
However, this conclusion does not apply to particles with large m″, which require a separate 
study. 

Accuracy results for several scattering quantities are shown in Table 2, where RMSE(P) 
denotes RMS (absolute) error of P over the whole range of θ. For m′ ≥ 1.4 errors of both Qext 
and S11 are close to the required values (0.01 and 0.25 respectively) for both the DDA and the 
FDTD. However, for smaller m′ the DDA has relatively small errors of Qext while the FDTD 
has smaller errors of S11. In other words, performance of the DDA is limited by S11, while 
performance of the FDTD is limited by Qext. The DDA results in several times smaller errors 
of <cosθ >, which is correlated with smaller errors of Qext. The FDTD has smaller errors of P. 
We can, therefore, conclude that the DDA is generally more accurate for integral scattering 
quantities while the FDTD – for angle-resolved ones. However, that only means that general 
interrelation between the DDA and the FDTD as a function of m′ may slightly change 
depending on the certain scattering quantities that are calculated. 

To appreciate what it means that RMSRE of S11 is equal to 25%, we show S11 results for 
three sample spheres in Fig. 3. Three subfigures are for the same x = 20 and three different m′: 
1.02, 1.4, and 2. Each of them shows the exact Mie solution and simulation results of the 
DDA and the FDTD. One can see that visual agreement is very good, probably more than 
enough for most applications. 

The increase of required dpl for the DDA when m′ is close to unity may seem 
counterintuitive. However, this is explained by the relative nature of the accuracy criterion 
and the large dynamical range of S11(θ ) for optically soft spheres. This function has very 
sharp minima, the position of which depends on the exact shape of the particle. For example, 
consider a particular case of m′ = 1.02, x = 20. The exact Mie solution for this case is shown in 
Fig. 3(a), dpl = 20 is required for the DDA to reach good accuracy. If one uses dpl = 10 
(similar to those required for m′ = 1.08) the relative errors are relatively large: their angle 
dependence is shown in Fig. 4 and the RMS value is 0.73. Using the methodology described 
elsewhere [29], we separated the total errors into shape and discretization errors, and these 
also are shown in Fig. 4. Discretization errors are inherent to the DDA formulation itself, 
while shape errors are caused by the imperfect description of the particle shape by a set of 
cubical dipoles. One can see that shape errors clearly dominate, their RMS value is 0.65 
compared to 0.11 for discretization errors. This particular example shows that shape errors are 
pronounced for index-matching particles, and the DDA requires larger dpl to decrease them. 
The FDTD is less susceptible to shape errors because 1) it naturally uses larger dpl than the 

0 30 60 90 120 150 180
10-4

10-3

10-2

10-1

100

101

R
el

at
iv

e 
er

ro
r 

of
 S

11
(θ

 )

Scattering angle θ, deg

 total
 shape
 discr

 

Fig. 4. Comparison of shape and discretization errors for DDA simulation of 
S11(θ ) for sphere with x = 20 and m′ = 1.02. All errors are taken relative to the 
exact Mie solution. Total error is the sum of the two. 
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DDA; 2) internally it considers points both in the center and on the boundary of grid cells, 
thus effectively doubling dpl for description of the particle shape. Sharp minima observed in 
Fig. 3(a) are due to the symmetric shape, they are expected to be less prominent for rough 
and/or inhomogeneous particles. Therefore, performance, e.g. computational time to reach a 
certain accuracy, of both methods, and especially of the DDA, should improve for general 
nonsymmetric optically soft particles. 

5. Sample applications to biological cells 

For complex biological particles we do not have a rigorous exact method to provide a 
reference. Therefore, for that we use the results obtained by the DDA using large dpl values. 
For BCP the reference results were obtained with dpl = 30, the highest we could reach on our 
hardware. The RBC is smaller than the BCP, and we were able to reach dpl = 49 for it. We 
further improved the accuracy of the RBC reference results using the extrapolation technique, 
described in [29]. For that we used simulation results for 9 dpl values in the range from 12 to 
49. Error estimates of the extrapolation results are the following: RE(Qext) = 2.6×10−4, 
RMSRE(S11) = 0.12, RMSE(P) = 0.052. 

Performance and accuracy results for the biological cells and the coated sphere model are 
shown in Table 3. The accuracy results for the RBC are expected to have an uncertainty of the 
extrapolation errors. The errors of the reference results for BCP are not known, we expect 
them to be not much smaller than the values shown in Table 3. Therefore, accuracy results for 
the BCP are not definite and are included only for illustration purpose. S11 results of both 
methods together with the reference results for the RBC and the BCP are shown in Fig. 5. In 
Fig. 5(b) we also included the Mie solution for the coated sphere model. One can see that it is 
a bad approximation of the realistic BCP shape. 

The simulations for biological cells support the conclusion made in Section 4: both 
methods are able to provide accurate results, however the DDA is clearly superior to the 
FDTD in this range of x and m (faster by about 50 times). One can also see that the DDA 
provides accurate results for realistic cell shape with dpl ≈ 10, at least for these two particular 
examples. 

6. Conclusion 

A systematic comparison of the DDA and the FDTD for a range of x up to 80 and m′ up to 2, 
using state-of-the-art parallel implementations of both methods, was performed requiring a 
certain accuracy of the simulated scattering quantities. The DDA is more than an order of 
magnitude faster for m′ ≤ 1.2 and x > 30, while for m′ ≥ 1.7 the FDTD is faster by the same 
extent. m′ = 1.4 is a boundary value, for which both methods perform comparably. The DDA 
errors of S11(θ ) for m′ = 1.02 are mostly due to the shape errors, which are expected to be 
smaller for rough and/or inhomogeneous particles. Simulations for a few sample biological 
cells lead to the same conclusions. 

Table 3. Performance and accuracy results of the DDA vs. the FDTD for the biological cells and the 
coated sphere model.a 

 RBC  BCP  Coated sphere 
 DDA FDTD  DDA FDTD  DDA FDTD 
Time, s 10 808  105 5914  56 2507 
Dpl 10 30  8.85 30  8.85 28 
Used RAM, GB 1.1 4.0  5.5 26  4.2 18 
Iterationsb 18 808  52 5914  32 2507 
RE(Qext) 2.2×10−3 3.4×10−4  8.6×10−4 8.5×10−4  7.5×10−4 4.1×10−3 
RMSRE(S11) 0.31 0.21  0.48 0.29  0.20 0.24 
RMSE(P) 0.088 0.072  0.12 0.10  0.12 0.17 
a Accuracy results for BCP are approximate, given only for illustration purpose. 
b For nonsymmetric shapes it is total number of iterations (time steps) for both incident polarizations. 
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Although our conclusions depend on particular scattering quantity and on the 
implementations of both methods, they will not change principally unless a major 
improvement of one of the method is made. For instance, one possible way is to improve the 
iterative solver and/or preconditioning of the DDA, which may large improve performance for 
larger m. However, this remains an open research question. On contrary, changing the details 
of the DDA model does not seem to be beneficial in the considered range of x and m. For the 
FDTD, a “safe” set of PML parameters was chosen; fine tuning these parameters could lead to 
a thinner PML and increase performance especially for the larger problem sizes. Also the 
FDTD code is designed to use memory conservatively; relaxing the memory restrictions 
would allow faster simulation times at the expense of additional memory use. However, all 
these improvements are not expected to cover an order of magnitude difference in the 
performance of two methods in the near future. 

The current study is far from being complete, since we do not vary the imaginary part of 
the refractive index, which is known to significantly influence the performance of the methods 
[3,30]. This should be a topic of a future work. 
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Fig. 5. Comparison of the DDA and FDTD results with the reference results 
for simulation of S11(θ ) for (a) the RBC and (b) the BCP. Part (b) also includes 
the Mie solution for the coated sphere model of the BCP. 
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