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Chapter 1

Introduction

Process and program algebra are mathematical frameworks for the study of system
and program behaviors. Process algebra is concerned with system behaviors (or pro-
cesses) in general, while program algebra is a theory of computer programs. Both
frameworks provide algebraic laws allowing process or program descriptions to be
manipulated and analyzed mathematically. This thesis is about semantics and appli-
cations of process and program algebra.

1.1 Process algebra: Thread algebra and orthogo-
nal bisimulation

Process algebra is defined over a set of actions together with a set of operators. Process
algebras such as CCS (Calculus of Communicating Systems) [75] and ACP (Algebra
of Communicating Processes) [19] have parallel operators to express concurrency. A
system behavior as a process is an algebraic term satisfying the axioms of a process
algebra.

In 2004, Bergstra and Middelburg introduced thread algebra (TA) [23], a process
algebra for the semantics of object-oriented and multi-threaded programming lan-
guages such as C# and Java. It comprises strategic interleaving operators that turn
a sequence of threads (or polarized processes) into a single thread capturing essential
aspects of multi-threading. Here, strategic interleaving, in contrast to the arbitrary
interleaving of other process algebras such as CCS and ACP, specifically determines
the ordering of actions from the threads. TA is less general in dealing with parallelism.
However, by considering a significant collection of different strategies, it is closer to a
programmer’s intuition. Recent results [28, 26] show that TA is a promising approach
for the study of computer viruses and virtual machines. We study the semantics of
TA. Chapter 4 presents a structural operational semantics (SOS) [81] for TA. Our SOS
is less general but simpler than that of [23]. We show that the axiomatization of the
strategic interleaving operators is sound and complete with respect to bisimulation
equivalence as induced by the new SOS. This means that two processes are equal if

1



2 Chapter 1. Introduction

τ

τ

a

a

p

q

Figure 1.1: A labeled transition system.

and only if they are bisimilar.

Chapter 5 describes a denotational semantics [11] for TA. Turning the domains of
TA into complete metric spaces, we show that the complete metric space consisting
of projective sequences is an appropriate domain for TA. We also prove that the
specification of a regular thread yields a unique solution. And finally, we propose a
particular interleaving strategy for TA that deals with abstraction [21], an important
operator that abstracts from internal actions in process algebra, in a natural way.

In giving semantics to process algebra, it is found that SOS is more flexible than
denotational semantics [1]. A process is modeled by a labeled transition system gen-
erated by an SOS whose states are processes and whose transitions are labeled by
actions. An example of a labeled transition system is given in Figure 1.1. In this
example, the transition p

τ
−→ q means that process p can perform an internal action

τ to process q. A trace of a process is obtained by putting in succession the actions
of a run of that process. For instance, ǫ (the trace of an empty run), a, τ , τa and
ττ are the traces of process p. Two process terms can be equated if their labeled
transition systems are semantically equivalent. In 2003, Bergstra, Ponse and van der
Zwaag proposed a semantic equivalence called orthogonal bisimulation [29] for pro-
cess algebra. This equivalence is a refinement of branching bisimulation equivalence
[52], the well-known semantics dealing with abstraction. A major difference between
orthogonal bisimulation and other coarser semantics such as branching bisimulation,
η-bisimulation equivalence [7], observation equivalence and delay bisimulation equiva-
lence [73, 74] is that in orthogonal bisimilarity one may compress, but not completely
discard internal activity. Therefore, a process without internal actions cannot be
equivalent to one with internal actions. The advantage of orthogonal bisimulation is
that it combines well with priority [6]. Also, orthogonal bisimulation has the following
nice properties:

1. There is a modal logic based on Hennessy-Milner logic [57] which characterizes
orthogonal bisimulation equivalence [29].

2. In the setting of ACP with abstraction, orthogonal bisimulation congruence is
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completely axiomatized by three laws:

xττ = xτ
xτ(y + z) = x(y + z) if τy = ττy, τz = ττz

x(τ(y + z) + z) = x(y + z) if τy = ττy

Unlike in branching bisimulation equivalence, the axiom xτ = x is not sound in
orthogonal bisimulation equivalence.

There are two open questions on orthogonal bisimulation raised in [29].
The first question is to define a trace characterization of orthogonal bisimilarity.

The authors of [29] suggest a notion of compression content of traces to be the traces
of a process from which all second and consecutive internal actions are removed. This
might lead to a characterization of orthogonal bisimilarity as the trace characteriza-
tion of branching bisimilarity given in [51]. That is, two processes are orthogonally
bisimilar if and only if they have the same set of compression contents.

The second question is to determine the complexity for deciding orthogonal bisim-
ulation in finite state transition systems.

In Chapter 2 we observe that there exist two orthogonally bisimilar processes that
have different sets of compression content in the sense of [29]. We then define another
notion of compression content of traces for a process, namely the traces of the process
from which all internal actions are removed. Furthermore, if a trace ends in an internal
action then the compression content of this trace is extended with the internal action
symbol. Our trace characterization of orthogonal bisimulation equivalence depends
on this new notion of compression content and is called the compression structure of a
process. This compression structure characterizes orthogonal bisimilarity in the same
way as in [51] the branching structure characterizes branching bisimilarity.

In Chapter 3 we study the complexity of deciding orthogonal bisimulation in finite
state transition systems. Unlike in branching bisimulation, in orthogonal bisimula-
tion, cycles of internal actions cannot be eliminated. Hence, the algorithm for decid-
ing branching bisimulation of Groote and Vaandrager [54] cannot be adapted easily.
However, we show that it is possible to decide orthogonal bisimulation with the same
complexity as that of Groote and Vaandrager’s algorithm. Thus if n is the number
of states, and m the number of transitions then it takes O(n(m+ n)) time to decide
orthogonal bisimilarity on finite labeled transition systems, using O(m+ n) space.

1.2 Program algebra

Program algebra (PGA) [22], proposed by Bergstra and Loots in 2002, is an algebraic
theory of sequential programming languages. The starting point of this research as
stated in [14] is that the theoretical literature pays no real attention to the question
of what constitutes a computer program. Bergstra and Loots define programs (or
program descriptions) as expressions in PGA.

PGA is defined over a set of primitive instructions generated from a set of basic
instructions, and two operators concatenation and repetition. The concatenation X;Y
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of two programs X and Y in PGA is in PGA. The repetition Zω of a program Z in
PGA is also in PGA. A basic instruction is viewed as a request to the environment,
and it is assumed that upon its execution a boolean value (true or false) is returned
that may be used for subsequent program control. The following is an example of a
program in PGA.

X::=+a; !; bω.

In this example, the instructions +a, b and ! are primitive instructions. The primitive
instructions +a and b are obtained from basic instructions a and b. The instruction
! yields termination of the program. Program X first performs a. If true is returned
after the execution of a, the program proceeds with the subsequent instruction and
terminates. If false is returned, the program skips the termination instruction ! and
performs b repeatedly.

Unlike in process algebra, the semantics of a program in PGA is given in a sepa-
rated setting. More precisely, a regular thread in TA is assigned to a program in PGA
by means of behavior extraction equations. Based on PGA, more complex program-
ming languages can be developed and studied by providing other general constructs.
In particular, a programming language is defined as a pair (L,ψ) where L is some
collection of textual objects and ψ a program algebra projection. The program algebra
projection ψ can be seen as a formal semantics that assigns to objects in L programs in
PGA, possibly with the use of state machines [27]. This definition of a programming
language is simplistic, but it covers the principles of programming languages such
as Cobol, Java, C# and other programming paradigms such as ASF+SDF [56, 18].
A steady development of the core theory of PGA has been created and results on
Maurer computers [26] and risk assessment [28] were achieved.

In Chapter 6 we study PGA itself and explore the expressiveness of extensions of
PGA with conditional statements and while-loops with respect to a lazy projection
semantics proposed in [22]. The advantage of this semantics, in comparison with
the full projection semantics of conditional statements and while-loops of [22], is
its simplicity. We show that PGA with while-loops yields non-regular behaviors in
certain cases. Under a restriction that avoids non-regular behaviors, we present two
projections from PGAuc (PGA extended with units [82] and conditional statements)
and PGAucw (PGAuc extended with while-loops) to PGA. The existence of these
projections shows that conditional statements and while-loops, while allowing for a
flexible style of programming, are not needed as primitive instructions in terms of
expressiveness.

1.3 Applications of thread and program algebra

In Chapter 7 we claim that the semantics TA of PGA creates a process-algebraic
framework for formalisation and analysis of security properties in language-based
security [88]. We quote from [88]: “There is a little assurance that current computing
systems protect data confidentiality and integrity; existing theoretical frameworks
for expressing these security properties are inadequate, and practical techniques for
enforcing these properties are unsatisfactory”. The current approaches based on type
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systems (see [88] for an overview) are confusing when parallelism is introduced in
the languages, and they cannot be applied to unstructured programs. Our approach
accepts all secure programs that are accepted by the type systems defined in [99, 91].
The advantage of our work is that it is suitable for considering security properties
in multi-threaded and unstructured programming languages. Furthermore, we can
use existing tools such as [48, 49, 31] for checking process-equivalence to develop our
security checkers.

Finally, in Chapter 8 we show that PGA provides a mathematical and system-
atic framework for reasoning about the correctness and equivalence of algorithms and
transformation rules for goto removal [45]. Goto removal eliminates goto statements
from a program by replacing them with other structured constructs. Although goto
removal has been studied for several decades, it is still important because of main-
tenance and redevelopment of legacy software systems. A particular application of
goto removal is to extract business knowledge embedded in these systems [92]. Once
the business logic from a legacy system has been extracted, it is ready for integration
and migration. Existing techniques indicate that goto removal can be applied, but
their correctness and equivalence have not been discussed formally. We explain goto
removal with mathematical rigor. We also provide formal correctness proofs for some
transformation rules to restructure Cobol programs in a real-life application [96].

1.4 The structure of this thesis

This thesis consists of three parts. The first part contains four chapters (from Chap-
ter 2 to Chapter 5) presenting our results on process algebra, in particular on or-
thogonal bisimulation and thread algebra. The second part consists of Chapter 6 and
presents our results on program algebra. The third part consists of the last two chap-
ters and is a connection between these two topics. All chapters are self-contained, and
can be read separately. Chapter 2 was published as [103]. Chapter 3 is to be published
as [100]. The chapters are available from http://www.science.uva.nl/∼tdvu.
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Process algebra: Thread
algebra and orthogonal

bisimulation
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Chapter 2

The compression structure of
a process

2.1 Introduction

In [29], Bergstra, Ponse and van der Zwaag introduce orthogonal bisimulation equiv-
alence as a refinement of branching bisimulation equivalence [52]. A major difference
with branching bisimulation equivalence and other coarser semantics dealing with
abstraction [73, 74, 7] is that in orthogonal bisimilarity one may compress, but not
completely discard internal activity (the performances of τ -steps). Therefore, a pro-
cess without τ -steps cannot be equivalent to one with τ -steps.

Moreover, it is well-known that the priority operator [6] is not fully compatible
with any known semantics that deals with abstraction. Several solutions for this
problem have been proposed [95, 34], but none of these are totally satisfactory and
generally accepted. The main advantage of orthogonal bisimulation equivalence is
that it is a congruence for ACP (Algebra of Communicating Processes) [19] with
abstraction and priority operators [6].

These features of orthogonal bisimulation represent another perspective on ab-
straction in process algebra. Hence, there is a need to reconsider results on previously
defined semantics.

In the case of branching time semantics, van Glabbeek has proposed a definition
called the branching structure of processes [51]. This definition depends on a notion
of observable content of the traces of a process, that is, the traces from which all
internal actions are removed. For instance, {ǫ, a} is the set of observable contents
of process p in Figure 2.1. Here, ǫ denotes the trace of an empty run of a process.
Two processes have the same branching structure if every trace of one process has
a correspondence in the other with the same observable content. It is shown in [51]
that branching bisimulation preserves the branching structure of processes, unlike
the standard observation equivalence of Milner [73]. As a consequence, a behavioral
equivalence on labeled transition systems respects the branching structure of processes

9
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a τ

τ

p

a

p′

Figure 2.1: An example of a process.

if and only if it is finer than or equal to branching bisimulation equivalence (for
processes containing τ -steps). Thus orthogonal bisimulation equivalence respects the
branching structure of processes.

This chapter presents a trace characterization of orthogonal bisimilarity which
is a solution to the open question on orthogonal bisimulation raised in [29]. The
authors of [29] suggested a notion of compression content of the traces to be the
traces of a process from which all second and consecutive internal actions are removed.
This notion might lead to a characterization of orthogonal bisimilarity as the trace
characterization of branching bisimilarity given in [51]. According to this notion,
{ǫ, a, τ, τa} is the set of compression contents of process p (see Figure 2.1). However,
we observe that there exist two orthogonally bisimilar processes that have different
sets of compression content in the sense of [29]. We then define another notion of
compression content of the traces of a process, which is the traces of the process
from which all internal actions are removed. Furthermore, if a trace ends in a τ -
action then the compression content of this trace is extended with τ . The set of
compression contents of process p in Figure 2.1 is now given by {a, τ}. Our trace
characterization of orthogonal bisimulation equivalence depends on this notion and is
called the compression structure of a process. We show that two processes have the
same compression structure if and only if they are orthogonally bisimilar.

The structure of this chapter is as follows. Section 2.2 defines the compression
structure of processes. In Section 2.3, we instantiate the general definition for the
case of labeled transition systems. The chapter is ended with some comments in
Section 2.4.

2.2 The compression structure of a process

In this section we define the compression structure of a process. Let P be a class of
processes. We assume that for each process p a set run(p) of partial runs is defined,
equipped with a prefix ordering ≤, and that each run e ∈ run(p) is associated with
its compression content C(e) and pre-run pre(e).

Definition 2.1 A labeled partial order set with a pre-run function (elpop) is a
tuple (E,≤, C, pre) with E a set, ≤ a partial order on E, C a function with domain E,
and pre : E → E a function. Two elpops (E,≤E , CE , preE) and (F,≤F , CF , preF )
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are isomorphic if there exists a bijective function i : E → F such that for e, e′ ∈ E,
e ≤E e′ ⇔ i(e) ≤F i(e′), CF (i(e)) = CE(e), and e = preE(e′) ⇔ i(e) = preF (i(e′)).
An isomorphism (∼=) is an equivalence relation, and an equivalence class of isomorphic
elpops is called a partial ordered multi set or pomset with pre-runs.

Definition 2.2 (Compression congruence). If ∼ is an equivalence relation on
a set E, then E/∼ denotes the set of equivalence classes of ∼ and [e]∼ denotes the
equivalence class containing e ∈ E.

A compression congruence relation on an elpop (E,≤, C, pre) is an equiva-
lence relation ∼ on E, such that

e ∼ f ⇒ C(e) = C(f),
∃f(e ∼ f ≤ f ′) ⇔ ∃e′(e ≤ e′ ∼ f ′),

pre(f ′) = f ∧ e ∼ f ⇒ ∃e′(pre(e′) = e ∧ e′ ∼ f ′).

If ∼ is a compression congruence relation on an elpop (E,≤, C, pre), then ≤∼, C∼

and pre∼ are defined on E/∼ by

[e]∼ ≤∼ [f ′]∼ ⇔ ∃e′ ∈ [f ′]∼ (e ≤ e′) (⇔ ∃f ∈ [e]∼ (f ≤ f ′)),
C∼([e]∼) = C(e),

pre∼([e]∼) = [pre(e)]∼.

Definition 2.3 The compression structure of a process p is the isomorphism
class of (run(p)/∼,≤∼, C∼, pre∼), where ∼ is the coarsest compression congruence
on (run(p),≤, C, pre). An equivalence ≡ on P respects the compression structure of
a process if

p ≡ q ⇒ (run(p)/∼,≤∼, C∼, pre∼) ∼= (run(q)/∼,≤∼, C∼, pre∼).

Definition 2.4 Let p, q ∈ P. A relation R ⊆ run(p) × run(q) with domain run(p)
(so, run(p) = {x|∃y ∈ run(q)R(x, y)}) and range run(q) (so, run(q) = {y|∃x ∈
run(p)R(x, y)}) is called a compression relation between p and q if there exists an
elpop (E,≤, C, pre) with run(p) ∪ run(q) ⊆ E such that R ∪ R−1 is a compression
congruence relation on E.

Lemma 2.5 Two processes p, q ∈ P have the same compression structure if and only
if there exist compression congruences ∼p and ∼q such that

(run(p)/∼p
,≤∼p

, C∼p
, pre∼p

) ∼= (run(q)/∼q
,≤∼q

, C∼q
, pre∼q

).

Proof: (Similar to the proof of Lemma 1 in [51].)

1. Only if: This follows from two facts:
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(a) If ∼ is the coarsest and ∼1 any congruence on an elpop (E,≤, C, pre), and
∼2 is the coarsest congruence on (E/∼1

,≤∼1
, C∼1

, pre∼1
), then

(E/∼1
/∼2

,≤∼1∼2
, C∼1∼2

, pre∼1∼2
) ∼= (E/∼,≤∼, C∼, pre∼).

(b) If (E,≤, C, pre) ∼= (E′,≤, C ′, pre′) and ∼ is a congruence on (E,≤
, C, pre), then there is a congruence ∼′ on (E′,≤, C ′, pre′) such that

(E/∼,≤∼, C∼, pre∼) ∼= (E′/∼′ ,≤∼′ , C ′
∼′ , pre′∼′).

Moreover, ∼′ is the coarsest if and only if ∼ is.

2. If: Straightforward.
⊓⊔

Proposition 2.6 Two processes p, q ∈ P have the same compression structure if and
only if there exists a compression relation between p and q.

Proof: Sketch based on the proof of Proposition 1 in [51].

1. Only if: Let R be a compression relation between p and q. We define ∼p (and
similarly ∼q) as follows.

e ∼p e
′ ⇔ ∃n ≥ 0∃e0, . . . , en, f1 . . . , fn :

e = e0Rf1R
−1e1Rf2R

−1 . . . RfnR
−1en = e′.

Since R is a compression relation between p and q, there exists an elpop (E,≤
, C, pre) with run(p)∪run(q) ⊆ E such that R∪R−1 is a compression congruence
relation on E. This follows that ∼p and ∼q are compression congruence relations
on (run(p),≤, C, pre) and (run(q),≤, C, pre), respectively. Let i : run(p)/∼p

→
run(q)/∼q

be defined by i([e]∼p
) = [f ]∼q

for some f ∈ run(q) with eRf . It is
not hard to see that i is a bijective function. We show that i is an isomorphism
by proving that it satisfies the following properties:

(a) [e]∼p
≤∼p

[e′]∼p
⇔ i([e]∼p

) ≤∼q
i([e′]∼p

);

(b) C∼p
([e]∼p

) = C∼q
(i(e∼p

));

(c) [e]∼p
= pre∼p

([e′]∼p
) ⇔ i([e]∼p

) = pre∼q
(i([e′]∼p

)).

Properties (a) and (b) are trivial. Property (c) follows from:

• [e]∼p
= pre∼p

([e′]∼p
) ⇒ i([e]∼p

) = pre∼q
(i([e′]∼p

)): This is the case
because

[e]∼p
= pre∼p

([e′]∼p
) ⇒ e ∼p pre(e′)

⇒ ∃e′′(pre(e′′) = e ∧ e′′ ∼p e
′

⇒ eRf ∧ e = pre(e′′) ∧ e′′ ∼p e
′

⇒ ∃f ′′(pre(f ′′) = f ∧ e′′Rf ′′) ∧ e′′ ∼p e
′

⇒ i([e]∼p
) = [f ]∼q

= [pre(f ′′)]∼q

= pre∼q
([f ′′]∼q

) = pre∼q
(i([e′′]∼p

))

= pre∼q
(i([e′]∼p

)),
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• [e]∼p
= pre∼p

([e′]∼p
) ⇐ i([e]∼p

) = pre∼q
(i([e′]∼p

)): Similar to the previ-

ous case by replacing p, i with q, i−1.

By Lemma 2.5, p and q have the same compression structure.

2. If: Let i : run(p)/∼ → run(q)/∼ be an isomorphism. We define a relation R ⊆
run(p)×run(q) with domain run(p) and range run(q) by eRf ⇔ i([e]∼) = [f ]∼.
Then R (similarly R−1) has the required properties as we can see from:
(a) eRf ⇒ C(e) = C(f):

C(e) = C∼([e]∼) = C∼(i([e]∼)) = C∼([f ]∼) = C(f),

(b) eRf ≤ f ′ ⇒ ∃e′(e ≤ e′Rf ′):

eRf ≤ f ′ ⇔ i([e]∼) = [f ]∼ ∧ f ≤ f ′

⇒ ∃e′′(i([e]∼) = [f ]∼ ≤ [f ′]∼ = i([e′′]∼))
⇒ [e]∼ ≤ [e′′]∼ ∧ i([e′′]∼) = [f ′]∼
⇒ ∃e′ ∼ e′′(e ≤ e′ ∧ i([e′]∼) = [f ′]∼)
⇒ ∃e′(e ≤ e′Rf ′),

(c) ∃f(eRf ≤ f ′) ⇐ e ≤ e′Rf ′:

e ≤ e′Rf ′ ⇔ e ≤ e′ ∧ i([e′]∼) = [f ′]∼
⇒ ∃f ′′(i([e]∼) = [f ′′]∼ ≤ [f ′]∼ = i([e′]∼))
⇒ ∃f ∼ f ′′(f ≤ f ′ ∧ i([e]∼) = [f ′′]∼)
⇒ ∃f(eRf ≤ f ′),

(d)pre(f ′) = f ∧ eRf ⇒ ∃e′(pre(e′) = e ∧ e′Rf ′):

pre(f ′) = f ∧ eRf ⇔ pre(f ′) = f ∧ i([e]∼) = [f ]∼
⇒ i([e]∼) = [pre(f ′)]∼ ∧ [f ′]∼ = i([e′′]∼)
⇒ i([e]∼) = pre∼(i([e′′]∼)) ∧ [f ′]∼ = i([e′′]∼)
⇒ [e]∼ = pre∼([e′′]∼) ∧ [f ′]∼ = i([e′′]∼)
⇒ e ∼ pre(e′′) ∧ [f ′]∼ = i([e′′]∼)
⇒ ∃e′(pre(e′) = e ∧ e′ ∼ e′′) ∧ [f ′]∼ = i([e′′]∼)
⇒ ∃e′(pre(e′) = e ∧ e′Rf ′),

⊓⊔

2.3 The case of labeled transition systems with and
without τ

In this section, we instantiate our definition for the case of labeled transition systems.
We define the compression content of a labeled transition system and show that the
resulting compression structure characterizes orthogonal bisimilarity.
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Definition 2.7 A labeled transition system (LTS) with termination and dead-
lock is a pair (P,→) with P a set of processes (or states), and →⊆ P × Act × P
for Act a set of actions (or labels). A triple (p, a, q) ∈→ is called a transition.
A process that has no outgoing transitions is called deadlock, denoted by δ. Let X

be a label in Act. A process that has only one outgoing transition with label X to δ
is called termination, denoted by ǫ. Furthermore, if (p,X, q) ∈→ then p = ǫ and
q = δ.

We write p
a
→ q for (p, a, q) ∈→ and p

a
→ for ∃q ∈ P : p

a
→ q.

The elements of P represent the processes we are interested in, and p
a
→ q means

that process p can evolve into process q by performing an action a. We note that the
set of actions Act may contain an internal action, denoted by τ .

Next, we recall the definition of orthogonal bisimulation from [29]. Let τ-paths(p)
be the set that consists of all sequences p0 · · · pn of states with p0 = p, n ≥ 0, and
pi

τ
→ pi+1 for all i < n.

Definition 2.8 (Orthogonal bisimulation). Let (P,→) be an LTS. Two processes
p, q ∈ P are orthogonally bisimilar, denoted by p -o q, if there exists a binary
symmetric relation B ⊆ P × P, called an orthogonal bisimulation, satisfying

1. if p
a
→ p′ for some p′ and a 6= τ , then q

a
→ q′ for some q′ with p′Bq′; or

2. if p
τ
→ p′ for some p′, then q

τ
→, and there is a path q0 · · · qn ∈ τ-paths(q) with

n ≥ 0 such that p′Bqn and pBqi for all i < n.

q

τ

τ τ

p

a

p′

a

a

Figure 2.2: An example of orthogonal bisimilarity. The dashed lines represent orthog-
onal bisimulation equivalence between processes.

Definition 2.8 is illustrated in Figure 2.2. In this figure, two processes p and q are
orthogonally bisimilar. However, the sets of compression contents {ǫ, a, τ, τa} and
{ǫ, a, τ} of p and q, according to the notion suggested in [29], are different. We now
present another notion of compression content of the traces of a process as follows.

Definition 2.9 (Run). A sequence of (connected) transitions e = p0
a1→ p1

a2→

p2 · · · pn−1
an→ pn for n ∈ N in an LTS (P,→) is called a run of p0. We define

that last(e) = pn. Let run(p) be the set of runs of process p ∈ P, and let ≤ be the
prefix ordering on runs.
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Definition 2.10 (Pre-run). Let e be a run of a process p. Then the pre-run

function pre : run(p) → run(p) is defined as pre(e) = e′ if e = e′
a
→ q for some

process q with a 6= τ , and pre(e) = e otherwise.

Definition 2.11 (Compression content). Let e be a run and p be a state. The
compression content C(e) is a string in (Act \ {τ})⋆ ∪ (Act \ {τ})⋆τ and is defined as
follows (we use ǫ for the empty string, and ≤ for the prefix ordering on strings).

C(p) = τ if p
τ
→,

C(p) = ǫ otherwise,

C(p
τ
→ e) = C(e),

C(p
a
→ e) = aC(e) for a 6= τ.

By Definition 2.11, processes p and q in Figure 2.2 have the same set {a, τ} of com-
pression contents.

Theorem 2.12 Let (P,→) be an LTS. Two processes p, q ∈ P have the same com-
pression structure if and only if they are orthogonally bisimilar.

This theorem follows from Proposition 2.6, Proposition 2.14 and Proposition 2.16. To
prove Proposition 2.14, we use the following lemma.

Lemma 2.13 Let (P,→) be an LTS, and p, q ∈ P. Let R be a compression relation
between p and q. Then for all e ∈ run(p) and f, f1, f2 ∈ run(q):

eRf1 ≤ f ≤ f2R
−1e⇒ eRf.

Proof: Since f ≤ f2R
−1e, it follows from Definition 2.2 that there exist e′ ≤ e and

e′Rf . Suppose that g ≤ e and gRf , and there does not exist g′ 6= g, g′ ≤ g and
g′Rf . Since g ≤ eRf1, there exists h ≤ f1 such that gRh. Since f1 ≤ fR−1g, there
exists g1 ≤ g and g1Rf1. Since h ≤ f1R

−1g1, there exists g2 ≤ g1 and g2Rh. R is
an equivalence, hence, g2Rf . Moreover, g2 ≤ g1 ≤ g. This implies that g2 = g1 = g.
Therefore, g1Rf . Since eRf1R

−1g1, eRf . ⊓⊔

Proposition 2.14 Let (P,→) be an LTS, and p, q ∈ P. If there exists a compression
relation between p and q then p -o q.

Proof: Let R be a compression relation between p and q. We define a binary relation
B on processes as follows. For all runs e, f , if eRf then last(e)Blast(f). It is
not hard to see that pBq. We will show that B is an orthogonal bisimulation. Let
s = last(e), t = last(f). We prove that
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1. if s
a
→ s′ with a 6= τ then t

a
→ t′ and s′Bt′. Let e′ = e

a
→ s′. Then e is the

pre-run of e′. Therefore, there exists f ′R−1e′, f = pre(f ′). Since C(f) = C(e)

and C(f ′) = C(e′), t
a
→ t′. Moreover, s′Bt′.

2. if s
τ
→ s′ for some s′, then t

τ
→, and there is a path t0 · · · tn ∈ τ-paths(t) with

n ≥ 0 such that s′Btn and sBti for all i < n. Since s
τ
→ s′, C(f) = C(e) = ατ

for some string α. Therefore, t
τ
→.

Now, let e′ = e
τ
→ s′. Since eRf and e ≤ e′, it follows from Definition 2.2

that there exists h such that f ≤ h and e′Rh. Let f ′ be a run of q such that
e′Rf ′, f ≤ f ′ and there does not exist h 6= f ′ such that f ≤ h ≤ f ′ and e′Rh′.
We prove that for all h 6= f ′ such that f ≤ h ≤ f ′, eRh. Since h ≤ f ′R−1e′,
there exists g ≤ e′ such that gRh. If g = e′ then e′Rh. This contradicts the
assumption of f ′. Thus, g ≤ e. Since eRf , there exists h′ ≤ f such that gRh′.
By Lemma 2.13, gRf . This implies that eRh. Let f0 = f, f1, . . . , fn−1 be all
the runs h such that fi ≤ fi+1 for all i < n, and fn = f ′. Let ti = last(fi) for
all 0 ≤ i ≤ n. Then for all 0 ≤ i < n, sBti and s′Btn. Furthermore, the path
t0 · · · tn ∈ τ-paths(t) because of the fact that C(f ′) = C(e′) ≤ C(e) = C(f).

Similarly, if t
a
→ t′ with a 6= τ then s

a
→ s′ and s′Bt′. If t

τ
→ t′ for some t′, then s

τ
→,

and there is a path s0 · · · sn ∈ τ-paths(s) with n ≥ 0 such that snBt′ and siBt for
all i < n. ⊓⊔
In order to prove Proposition 2.16, we provide the following lemma.

Lemma 2.15 If B is an orthogonal bisimulation with pBq, and there is a path
p0 · · · pn with p = p0 for some n ≥ 0, then there is, for every i ≤ n, an mi ≥ 0,
such that q has a path with q00 = q and mn = 0 and

1. for all i < n, if pi
τ
→ pi+1 then q0i · · · q

mi

i ∈ τ-paths(q0i ) and qmi

i = q0i+1,

2. for all i < n, if pi
a
→ pi+1 then q0i

a
→ q0i+1, mi = 1 and q1i = q0i+1,

3. for all i ≤ n, if j < mi or j = 0, then qj
iBpi.

Proof: Straightforward by induction on n. ⊓⊔

Proposition 2.16 Let (P,→) be an LTS. If two processes p, q ∈ P are orthogonally
bisimilar then there exists a compression relation between p and q.

Proof: Let B be an orthogonal bisimulation between p and q. Let R be a binary
relation between runs of p and q defined as follows. For all runs e ∈ run(p) and
f ∈ run(q) formed as p0 · · · pn and q00 · · · q

j
i · · · q

0
n in Lemma 2.15, (e, f) ∈ R. By

Lemma 2.15, for each e ∈ run(p) there is a run f ∈ run(q), and vice versa. Thus, the
domain of R is run(p) and the range of R is run(q). We prove that:

1. eRf ⇒ C(e) = C(f);
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2. ∃f(eRf ≤ f ′) ⇐ e ≤ e′Rf ′;

3. eRf ≤ f ′ ⇒ e ≤ e′Rf ′;

4. pre(f ′) = f ∧ eRf ⇒ ∃e′(pre(e′) = e ∧ e′Rf ′).

Property (1) and Property (2) follow from the definition of R. Property (3) and Prop-
erty (4) follow from Lemma 2.15 and the definition of R. It follows from Definition 2.4
that R is a compression relation. ⊓⊔

2.4 Conclusion

In this chapter, we have defined a compression structure of processes and a com-
pression relation that identifies processes having the same compression structure.
Furthermore, we have proven that in a labeled transition system, two processes have
the same compression structure if and only if they are orthogonally bisimilar. Our
definition of the compression structure of a process is thereby a solution to the open
question in [29].

We note that our definition of compression content (which is a part of compression
structure) is different from the one suggested in [29]. Moreover, we use an extra
function pre to define the compression structure of a process. It remains an open
question whether an alternative definition of the compression structure exists (can be
found).





Chapter 3

Deciding orthogonal
bisimulation

3.1 Introduction

Branching bisimulation equivalence proposed by van Glabbeek and Weijland [52] is a
well-known and elegant equivalence in concurrency theory. This equivalence resem-
bles, but is finer than the standard observation equivalence of Milner [73].

In 2003, Bergstra, Ponse and van der Zwaag [29] introduced the notion of or-
thogonal bisimulation equivalence on labeled transition systems. Orthogonal bisimu-
lation is a refinement of branching bisimulation in which consecutive τ -actions (silent
steps) can be compressed into one (but not zero) τ -action. This is a major difference
with branching bisimulation equivalence and other coarser semantics dealing with ab-
straction such as observation equivalence, delay bisimulation equivalence [73, 74] and
η-bisimulation equivalence [7].

The main advantage of orthogonal bisimulation, compared to branching bisimula-
tion, is that it combines well with priorities [29]. Moreover, it has the following nice
properties:

1. There is a modal logic based on Hennessy-Milner logic [57] which characterizes
orthogonal bisimulation equivalence [29].

2. On closed terms in the setting of ACP (Algebra of Communicating Processes)
with abstraction, orthogonal bisimulation congruence is completely axiomatized
by three laws:

xττ = xτ
xτ(y + z) = x(y + z) if τy = ττy, τz = ττz

x(τ(y + z) + z) = x(y + z) if τy = ττy

We note that unlike in branching bisimulation equivalence, the axiom xτ = x
is not sound in orthogonal bisimulation equivalence.

19
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3. A trace characterization of orthogonal bisimulation equivalence, called the com-
pression structure of a process, is provided in [103]. The compression structure
characterizes orthogonal bisimilarity in the same way as the branching structure
characterizes branching bisimilarity in [51].

A commonly used algorithm to analyze the complexity of branching bisimilarity on
finite labeled transition systems is presented by Groote and Vaandrager [54]. This al-
gorithm solves the Relation Coarsest Partition with Stuttering problem (RCPS) which
is closely related to the Relational Coarsest Partition problem (RCP) [78]. It is shown
in [54] that the algorithm for RCPS can be easily transformed to an O(n(m+n)) algo-
rithm for deciding stuttering equivalence on finite Kripke structures [38] and deciding
branching bisimulation equivalence on finite labeled transition systems.

In this chapter we take a step towards a theoretical foundation of orthogonal bisim-
ulation by presenting an algorithm for deciding orthogonal bisimulation equivalence
on finite labeled transition systems. This problem has been raised in [29]. Our ap-
proach is based on the work of Groote and Vaandrager. More precisely, the algorithm
in this chapter solves a generalization of the RCPS problem called Relational Coarsest
Partition with Stuttering problem characterizing Orthogonal bisimulation (RCPSO),
and therefore, can be used to decide orthogonal bisimulation. We note that in the
Groote-Vaandrager algorithm, the authors perform a preprocessing step by eliminat-
ing the presence of cycles of silent steps. This is possible since if two states of a
labeled transition system are strongly connected by silent steps, they are branching
bisimilar. In the case of orthogonal bisimulation, we cannot eliminate the presence of
cycles of silent steps. However, we show that the complexity of our algorithm remains
the same as that of Groote and Vaandrager’s algorithm. Thus, if n is the number
of states and m the number of transitions, it takes O(n(m+ n)) time and O(n+m)
space for deciding orthogonal bisimulation.

The structure of this chapter is as follows. Section 3.2 recalls from [29] the defi-
nition of orthogonal bisimulation equivalence. Section 3.3 presents the RCPSO prob-
lem, and an algorithm to solve it. We show that this algorithm can be used to decide
orthogonal bisimilarity. The chapter is concluded with some remarks in Section 3.4.

3.2 Labeled transition systems and orthogonal bisim-
ulation

In this section, we recall the definitions of labeled transition systems and orthogonal
bisimulation from [29].

Definition 3.1 A labeled transition system (LTS) is a pair (S,→) with S a set
of processes (or states), and →⊆ S × A × S for a set A of actions (or labels)
containing the silent step τ . A triple (s, a, r) ∈→ is called a transition.

An LTS is called finite if both S and A are finite.

We write s
a
→ r for (s, a, r) ∈→, s

a
→ for ∃r ∈ S : s

a
→ r, and s

τ
⇒ s′ if there is a

sequence s0 . . . sn of states with s0 = s, sn = s′, n ≥ 0, and si
τ
→ si+1 for all i < n.
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Figure 3.1: Examples of orthogonal bisimulation. Here the dashed lines represent
orthogonal bisimulation between processes.

We note that s
τ
⇒ s for all states s ∈ S. This is the case when n = 0.

Let τ-paths(s) be the set that consists of all sequences s0 . . . sn of states with

s0 = s, n ≥ 0, and si
τ
→ si+1 for all i < n.

Definition 3.2 (Orthogonal bisimulation). Let (S,→) be an LTS. An orthog-
onal bisimulation is a binary symmetric relation B ⊆ S × S satisfying that for all
states s, r ∈ S:

1. if sBr and s
a
→ s′ for some s′ and a 6= τ , then r

a
→ r′ for some r′ with s′Br′;

and

2. if sBr and s
τ
→ s′ for some s′, then r

τ
→, and there is a path r0 · · · rn ∈

τ-paths(r) with n ≥ 0 such that s′Brn and sBri for all i < n.

Two states s, r ∈ S are orthogonally bisimilar, denoted by s -o r, if there exists
an orthogonal bisimulation B such that sBr.

According to Definition 3.2, a state with a τ -outgoing transition will never be orthog-
onally bisimilar to a state without τ -outgoing transitions. Furthermore, the states of
a cycle of silent steps are not orthogonally bisimilar in most cases. This is the reason
why we cannot perform a preprocessing by eliminating cycles of silent steps as in [54].
Examples of orthogonal bisimulation are illustrated in Figure 3.1.
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3.3 An efficient algorithm for deciding orthogonal
bisimulation

In this section, we generalize the RCPS problem to the RCPSO problem that char-
acterizes orthogonal bisimulation. Next, we will present an algorithm based on the
algorithm in [54] to solve RCPSO. We also show that this algorithm can be used for
deciding orthogonal bisimulation.

3.3.1 The RCPSO problem

We recall the definition of partition from [78, 54] to describe RCPSO.

Definition 3.3 Let S be a set. A collection {Bi|i ∈ I} of nonempty subsets of S is
called a partition of S if ∪i∈IBi = S and for i 6= j : Bi ∩ Bj = ∅. The elements of
a partition are called blocks. If P and P ′ are partitions of S then P ′ refines P (P
is coarser than P ′) if any block of P ′ is included in a block of P . The equivalence
∼P on S induced by a partition P is defined by: r ∼P s if and only if ∃B ∈ P : r ∈ B
and s ∈ B.

The Relational Coarsest Partition with Stuttering problem characterizing Orthogonal
bisimulation (RCPSO) can be specified as follows:
Given: a nonempty, finite set S of states, a relation →⊆ S × A × S of transitions
and an initial partition P0 of S.
Find: the coarsest partition Pf satisfying:

1. Pf refines P0;

2. if s ∼Pf
r and s

a
→ s′ with a 6= τ , then there exists r′ ∈ S such that r

a
→ r′ and

s′ ∼Pf
r′;

3. if s ∼Pf
r and s

τ
→ s′, then there is an n ≥ 0 and there are r0, . . . , rn ∈ S such

that:

(a) r0 = r;

(b) for all 0 ≤ i < n: s ∼Pf
ri and ri

τ
→ ri+1;

(c) s′ ∼Pf
rn.

To decide orthogonal bisimulation, it is essential to start with a partition P0 in which
states with an outgoing τ -transition have been separated from states without an
outgoing τ -transition. This agrees with orthogonal bisimulation equivalence.

3.3.2 The algorithm

This section describes an algorithm to solve the RCPSO problem. The algorithm is
based on the algorithm for deciding branching bisimulation of Groote and Vaandrager
[54], where transition systems might contain cycles of silent steps.
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Let |S| = n and | → | = m. For blocks B,B′ ⊆ S we define posa(B,B′) with a 6= τ
as the set of states in B from which a state in B′ can be reached by an observable
action a. Furthermore, posτ (B,B′) is the set of states in B from which a state in B′

can be reached by a sequence of silent steps τ .

posa(B,B′) = {s ∈ B|∃s′ ∈ B′ : s
a
→ s′} for a 6= τ,

posτ (B,B′) = {s ∈ B|∃n ≥ 0∃s0, . . . , sn : s0 = s,

∀i < n : si ∈ B ∧ si
τ
→ si+1 and sn ∈ B′}.

Definition 3.4 We say that a block B′ is a splitter of a block B with respect to
a if and only if:

1. B 6= B′ or a 6= τ , and

2. ∅ 6= posa(B,B′) 6= B.

We note that Clause 1 in Definition 3.4 implies that in case a = τ , a block B cannot
be a splitter of itself.

If P is a partition of S and a block B′ is a splitter of a block B with respect
to a, then Ref a

P (B,B′) is the partition P where B is replaced by posa(B,B′) and
B \ posa(B,B′).

Definition 3.5 A partition P is stable with respect to a block B′ if for no block
B of P and for no action a, B′ is a splitter of B. P is stable if it is stable with
respect to all its blocks.

The algorithm maintains a partition P that is initially P0. It repeats the following
steps until P is stable:

1. find blocks B,B′ of P and a label a ∈ A such that B′ is a splitter of B with
respect to a;

2. P := Ref a
P (B,B′).

Theorem 3.6 The above algorithm for the RCPSO problem terminates after at most
n − |P0| refinement steps. The resulting partition Pf is the coarsest stable partition
refining P0.

Proof: Sketch based on the proof of Theorem 3.1 in [54]. At each iteration of the
refinement step, if we cannot find blocks B,B′ of the current partition P and a label
a ∈ A such that B′ is a splitter of B with respect to a then we know that the current
partition is stable, and that the algorithm terminates. Otherwise, the number of
blocks increases by one. Thus, termination will occur after at most n−|P0| iterations.
Next, we show that the resulting partition Pf is the coarsest stable partition refining
P0. We prove by induction on the number of refinement steps that any stable partition
refining P0 is also a refinement of the current partition P . Clearly the statement holds
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initially. Let R be a stable refinement of P0. By the induction hypothesis, R is a
refinement of P . Let Q be a refinement of P after a refinement step, using a splitting
pair (B,B′) with respect to a. We show that R is also a refinement of Q. Let C be
a block in R. Then C is included in a block D of P . We prove that C is included
in a block of Q. If D 6= B then we are done. In the case D = B, we show that
either C ⊆ posa(B,B′) or C ⊆ B \posa(B,B′). Suppose that there are r, s ∈ C with
s ∈ posa(B,B′) and r /∈ posa(B,B′). There are two cases:

1. a 6= τ . There exists s′ ∈ B′ such that s
a
→ s′. Let C ′ be a block in R such that

s′ ∈ C ′. Thus, C ′ ⊆ B′. Since R is a stable refinement of P0 and r, s ∈ C, there
exists r′ ∈ C ′ ⊆ B′ such that r

a
→ r′. This contradicts r /∈ posa(B,B′).

2. a = τ . There are s0 = s, . . . , sn such that for all i < n: si ∈ B, si
τ
→ si+1 and

sn ∈ B′. Let C0 = C, . . . , Cn be the blocks of R such that si ∈ Ci. Since R is
a refinement of P and sn ∈ Cn ∩ B′ and for all i < n: si ∈ Ci ∩ B, Ci ⊆ B
and Cn ⊆ B′. Since s, r ∈ C, there is a sequence r0, . . . , rm with r0 = r, for all
i < m, ri ∈ B and ri

τ
→ ri+1, and rm ∈ B′. This contradicts r /∈ posτ (B,B′).

Therefore, Pf is the coarsest stable partition refining P0. ⊓⊔
We now describe how one can find in O(m) time a splitter of the current partition,
or find in O(m) time that no such splitter exists. Furthermore, if a splitter has been
found, it takes O(m+n) time to refine the current partition. We will use the following
definitions and lemmas.

Definition 3.7 Let P be a partition of S. A transition s
a
→ s′ is called (P -)inert if

s ∼P s′ and a = τ . A transition is non-inert if it is not an inert transition.

Definition 3.8 Let P be a partition of S. A (P -)inert component is a maximal
subset C ⊆ S such that for arbitrary states s, s′ ∈ C where s 6= s′ there is a path
of inert transitions from s to s′, and vice versa. Let B be a block of P such that
C ⊆ B ⊆ S. We say that C is an inert component of B. An inert component C of
a block B is a terminal component of B if there is no inert component C ′ of B
with C ′ 6= C such that s

τ
→ s′ for some s ∈ C and s′ ∈ C ′. An inert component of a

block is called a non-terminal component if it is not a terminal component of that
block.

Note that an inert component can contain only one state (for example a state that is
not connected by a τ -transition).

Example 3.9 Let B be a block consisting of states s0, s1, s2, s3, s4, s5, and a state
s6 /∈ B as illustrated in Figure 3.2. Then the sets C1 = {s0, s1, s2, s3} and C2 =
{s4, s5} are two inert components of B. More precisely, C1 is a non-terminal compo-
nent, while C2 is a terminal component of B.

For a state s, an inert component C, blocks B,B′ and an action a, we write s
a
→ B

if there is a state s′ ∈ B such that s
a
→ s′ otherwise s

a9 B. Moreover, we denote
C

a
→ B if there are states s ∈ C and s′ ∈ B such that s

a
→ s′ otherwise C

a9 B, and
B

a
→ B′ if there are states s ∈ B and s′ ∈ B′ such that s

a
→ s′ otherwise B

a9 B′.
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Figure 3.2: An example of inert components.

Lemma 3.10 Let P be a refinement of P0 and let B,B′ ∈ P and a ∈ A. Then B′ is
a splitter of B with respect to a if and only if:

1. B 6= B′ or a 6= τ ;

2. B
a
→ B′;

3. if a 6= τ then there exists s ∈ B such that s
a9 B′;

4. if a = τ then there exists a terminal component C of B such that C
τ9 B′.

Proof:

1. ⇒: Suppose B′ is a splitter of B. Clause 1 follows from Definition 3.4. Since
posa(B,B′) 6= ∅ and B 6= B′ if a = τ , B

a
→ B′. Clause 3 follows from the fact

that posa(B,B′) 6= B. To prove Clause 4, we assume that for every terminal

component C of B there is a state s′ ∈ B′ such that s
τ
→ s′ for some s ∈ C. It

follows from Definition 3.8 that every state in B can lead to a state in B′ by a
sequence of τ transitions. Thus, posa(B,B′) = B. This is a contradiction to
the fact that B′ is a splitter of B.

2. ⇐: Suppose that B and B′ satisfy Clause 1, 2, 3 and 4. Then B′ is a splitter
of B because:

(a) ∅ 6= posa(B,B′) because of Clause 2.

(b) posa(B,B′) 6= B because of Clause 3 and Clause 4.
⊓⊔
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Figure 3.3: An example of splitting.

Example 3.11 Let B0, B1, B2 and B3 be the blocks given in Figure 3.3. Then B1 is
a splitter of B0 with respect to a, and B3 is a splitter of B2 with respect to τ . More
precisely, posa(B0, B1) = {s0, s2} and posτ (B2, B3) = {s6}.

We note that in the case of branching bisimulation, each state is an inert component
since the initial P0 does not have cycles of τ -transitions. Therefore, instead of dealing
with terminal-components, one has to deal with bottom-states only. This is the main
difference between the Groote-Vaandrager algorithm and our algorithm. Moreover,
while the initial partition of Groote-Vaandrager consists of a single block containing
all states, our initial partition will consist of two blocks: one block of states that can
perform a τ -transition, and one block of states that cannot perform a τ -transition.

Lemma 3.12 Let P and R be partitions such that R refines P , and P and R have
the same inert transitions. Let B′ be a block of both P and R such that P is stable
with respect to B′. Then R is stable with respect to B′.

Proof: We prove this lemma by contradiction. Suppose that there exists a block B
of R and an action a such that B′ is a splitter of B with respect to a. There are two
cases:

1. a 6= τ . By Lemma 3.10, there exists a transition r
a
→ r′ with r ∈ B, r′ ∈ B′,

and a state s ∈ B such that for no s′ ∈ B′: s
a
→ s′. Since R refines P , B is

included in a block B′′ of P . Thus, r, s ∈ B′′. By Lemma 3.10, B′ is a splitter
of B′′. This contradicts the fact that P is stable with respect to B′.

2. a = τ . Then B 6= B′. By Lemma 3.10, there is a terminal component C of
B such that for no s′ ∈ B′: s

τ
→ s′ for some s ∈ C. Since R refines P , B is

included in a block B′′ of P . Thus C is included in an inert component C ′′ of
B′′. We prove that C ′′ is also a terminal component of B′′. Suppose that C ′′

is not a terminal component of B′′. Then there exists an inert component K
with K 6= C ′′, and an inert transition r

τ
→ r′ of B′′ with r ∈ C ′′ and r′ ∈ K.
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Figure 3.4: An example of stability (a) and unstability (b).

Let p ∈ C. Then p ∈ C ′′. Thus there is a path p0 . . . pn of states such that
p0 = p and pn = r with pi ∼P pi+1 for all i < n. Since P and R have the
same inert transitions, pi ∼R pi+1 for all i < n, and r ∼R r′. It follows from
Definition 3.3 and p ∈ B that r′ ∈ B. Since C is a terminal component of B and
Definition 3.8, r′ ∈ C. Thus, r′ ∈ C ′′. This contradicts the fact that r′ ∈ K.

⊓⊔

Example 3.13 Let (S,→) be the LTS illustrated in Figure 3.4(a).

S = {s1, s2, s3, s4, s5, s6} and

→ = {s1
τ
→ s5, s2

a
→ s1, s2

τ
→ s5, s3

τ
→ s4, s4

τ
→ s6}.

Let B1 = {s1, s2, s3, s4}, B2 = {s5, s6} and P = {B1, B2}. It is obvious that P
is stable with respect to B2. Moreover, B1 is a splitter of itself with respect to
a. We split B1 into B11 = {s2} and B12 = {s1, s3, s4}. Let R be the refinement,

R = {B11, B12, B2}. Then P and R have the same inert transition s3
τ
→ s4. Therefore,

R is also stable with respect to B2.

We now extend (S,→) with a transition s3
a
→ s1 (see Figure 3.4(b)). The partition

P = {B1, B2} is still stable with respect to B2. Furthermore, B1 is also a splitter of
itself with respect to a. However, after the splitting of B1 into B11 = {s2, s3} and

B12 = {s1, s4}, the inert transition s3
τ
→ s4 becomes non-inert. The refinement R is

no longer stable with respect to B2 as B2 can be used as a splitter of B11 with respect
to τ (posτ (B11, B2) = {s2}).

Given an LTS, the data structure for an implementation for solving the RCPSO
problem is initialized as follows, where we identify a block, a component and a state
with a record representing it (transitions are represented indirectly):

• There are two lists of blocks tobeprocessed and stable. A block B′ is in
stable if the current partition is stable with respect to B′, otherwise B′ is in
tobeprocessed. Initially, all blocks in P0 are in the list tobeprocessed.
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Figure 3.5: Data structures for solving RCPSO.

• Each state contains two pointers block and component to the block and the
inert component of which it is an element, and a list inert transitions of
inert transitions ending in this state (see Figure 3.5).

• Each block B contains a list states of states in B.

Furthermore, it has a list terminal components of terminal components in B
and a list non terminal components of non-terminal components in B. Finally,
it points to a list non inert transitions of groups of non-inert transitions that
end in B. More precisely, all transitions with the same label are in subsequent
records in the list. To compute the lists of terminal and non-terminal compo-
nents of all blocks in the initial partition, one can apply a variant of the standard
depth first search algorithm [2] using O(m + n) time and space. In addition,
grouping of the non-inert transitions has a complexity O(|A|+m) (bucket sort).

• Each transition contains two pointers starting state and target: one to its
starting state, and one to its target.

• Each state, each component and each block has an auxiliary field flag of type
boolean, which is 0 (standing for false) initially.

• Moreover, there are two auxiliary booleans found a splitter and
inert becomes non inert, and an auxiliary list BL. Initially,
found a splitter = false, inert becomes non inert = false and BL = ∅.
We note that given a block B′, the block list BL contains all blocks B having a
non-inert transition from B to B′.

Note that the transitions of the LTS are either represented in the blocks (the non-inert
ones), or in the states (the inert ones).

The implementation of the algorithm for deciding the RCPSO problem is presented
in Table 3.1 and Table 3.2.

With reference to Table 3.1, we first explain how to compute in O(m) time whether
we can find a splitter of the current partition or decide that no such splitter ex-
ists, meaning that the current partition is stable. Let ma

BB’ denote the number
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(1) tobeprocessed = P0; stable = ∅;
(2) repeat

(3) Let B′ = head(tobeprocessed);
(4) // Scan the list L of all non-inert transitions that end in B′

(5) L = B′.non inert transitions;
(6) if L 6= ∅ then repeat

(7) Let Ta = head(L); L = tail(L);
(8) BL = ∅;

(9) for all transitions s
a
→ s′ ∈ Ta do

(10) if s.block.flag = 0 then s.block.flag = 1; insert(s.block, BL); end if;
(11) case a 6= τ : s.flag = 1;
(12) case a = τ : s.component.flag = 1;
(13) end case;
(14) end for;
(15) repeat

(16) Let B = head(BL); BL = tail(BL);
(17) case a 6= τ :
(18) if there is a state s ∈ B such that s.flag = 0 then

(19) found a splitter = true;
(20) case a = τ :
(21) if there is a terminal-component C ∈ B such that C.flag = 0 then

(22) found a splitter = true;
(23) end case;
(24) until found a splitter or BL = ∅;
(25) if not found a splitter then Reset all flags;
(26) until found a splitter or L = ∅;
(27) end if ;
(28) if found a splitter then

(29) B1, B2 = split(B, a);
(30) tobeprocessed = remove(B, tobeprocessed);
(31) tobeprocessed = insert(B1, insert(B2, tobeprocessed));
(32) if inert becomes non inert then

(33) tobeprocessed = tobeprocessed ∪ stable; stable = ∅;
(34) end if;
(35) Reset all flags;
(36) found a splitter = false; inert becomes non inert = false;
(37) else

(38) tobeprocessed = remove(B′, tobeprocessed); stable = insert(B′, stable);
(39) end if;
(40) until tobeprocessed = ∅

Table 3.1: An algorithm for solving the RCPSO problem. The functions insert,
head and tail are standard functions on lists. The function remove denotes removal
of an element from a list, and the function ∪ denotes concatenation of two lists.
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split(B, a)
(1) if a = τ then

(2) Raise the flag of all states in B that can lead to a state in a
(3) terminal-component with a raised flag by a path of inert transitions;
(4) end if;
(5) B1 = new; B2 = new;
(6) // Assign the states to B1 and B2

(7) for all states s ∈ B.states do

(8) if s.flag = 1 then insert(s, B1.states)
(9) else insert(s, B2.states); end if;
(10) end for;
(11) //Compute the list of non-inert transitions of B1 and B2

(12) for all transitions t ∈ B.non inert transitions do

(13) if t.target ∈ B1 then insert(t, B1.non inert transitions);
(14) else insert(t, B2.non inert transitions);end if;
(15) end for;
(16) //Compute the list of inert transitions ending in each state of B1

(17) for all states s ∈ B1.states do

(18) for all transitions t ∈ s.inert transitions do

(19) if t.starting state /∈ B1.states then

(20) inert becomes non inert = true;
(21) remove(t, s.inert transitions);
(22) insert(t, B1.non inert transitions);
(23) end if;
(24) end for;
(25) end for;
(26) //Compute the list of inert transitions ending in each state of B2

(27) for all states s ∈ B2.states do

(28) for all transitions t ∈ s.inert transitions do

(29) if t.starting state /∈ B2.states then

(30) inert becomes non inert = true;
(31) remove(t, s.inert transitions);
(32) insert(t, B2.non inert transitions);
(33) end if;
(34) end for;
(35) end for;
(36) Group non-inert transitions of B1 and B2;
(37) Compute the lists of terminal and non-terminal components for B1 and B2;

Table 3.2: Constructing B1 and B2.

of transitions from a block B to a block B′ with label a. Let B′ be a block in
tobeprocessed. Scan the list L of groups of non-inert transitions that end in B′

(initially, L = B′.non inert transitions). Consider subsequently all groups Ta of
non-inert transitions with a label a in L. We set the flag field of the blocks of the
starting states of all transitions in Ta, and add these blocks to the list BL. Further-
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more, if a is an observable action then we raise the flag of the starting states of all
transitions in Ta. In this case, to find out whether B′ is a splitter of a block B in
BL, we only have to check whether the flag of some state in B is not raised. In case
a = τ , we raise the flag of the components of the starting states of all transitions in
Tτ . To find out whether B′ is a splitter of a block B in BL with respect to τ , we only
have to check whether the flag of some terminal-component in B is not raised. The
complexity to find out that B′ is a splitter of B with respect to an action a or not
is O(ma

BB’). Therefore, the complexity to find a splitter of the current partition (if it
exists) is ΣO(ma

BB’) or O(m).
In the case we have found that B′ is a splitter of a block B in the current partition,

we split B into B1 and B2 and insert these blocks to the list tobeprocessed. By
Lemma 3.12, if some inert transition of the current partition becomes a non-inert tran-
sition in the new partition then we append the list stable to the list tobeprocessed
and make stable empty. If B′ is not a splitter in the current partition, then we move
B′ from the list tobeprocessed to the list stable, and repeat the same procedure
for the next block in tobeprocessed. If tobeprocessed is empty then we know that
the current partition is stable.

With reference to Table 3.2, we now explain how to split B by B′ into B1 and B2

in O(mB + nB) time, where mB is the number of transitions and nB the number of
states in B. In case a is a τ -action, we raise the flag of all states in B that can lead
to a state in a terminal-component with a raised flag by a path of inert transitions.
To do this, one can apply a standard depth first search algorithm using O(mB + nB)
time and space. (Here we use the list of inert transitions ending in each state of B).
We now refine B into B1 and B2. All states with a raised flag are inserted into B1,
the others are placed in B2. It is easy to compute the list of non-inert transitions
ending in B1 and B2, and the lists of inert transitions ending in each state of B1

and B2 (line 11-35 of Table 3.2). Since the set of actions is finite, one can apply the
bucket sort algorithm [2] to group the non-inert transitions of B1 and B2 in O(mB)
time. Finally, one can apply the well-known algorithm for finding strongly connected
components in a directed graph [2] using O(mB +nB) time and space to compute the
lists of terminal and non-terminal components for B1 and B2.

Therefore, we can find in O(m) time a splitter of the current partition or find in
O(m) time that the current partition is stable. If a splitter is found, it takes O(m+n)
time to construct the new partition. Moreover, it is not hard to check that the space
complexity of the algorithm above is O(m+n). Thus we have the following theorem:

Theorem 3.14 The RCPSO problem can be decided in O(n(m + n)) time, using
O(m+ n) space.

Example 3.15 Let (S,→) be the LTS given in Figure 3.6.

S = {s0, s1, s2, s3, s4, s5, s6, s7} and

→ = {s0
τ
→ s1, s0

a
→ s4, s1

τ
→ s0, s1

a
→ s5, s2

τ
→ s1, s2

b
→ s6, s3

τ
→ s2, s3

a
→ s7}.

At the beginning, let B0 = {s4, s5, s6, s7}, B1 = {s0, s1, s2, s3}, and P0 = {B0, B1}.
We find the coarsest partition Pf of P0 as follows. The block B0 is a splitter of B1



32 Chapter 3. Deciding orthogonal bisimulation

s1 s2 s3

τ

a a b a

ττ τ
s1 s3

a a b a

B1

a a b a

s1 s3s2

ττ

ττ

B12 B11 B122 B11

B121

s0 s0 s0

s5 s7

s2

τ τ

s4 s5 s6 s7s4 s5 s6 s7s4 s6

τ

τ

B0 B0 B0

Figure 3.6: An example for solving RCPSO.

with respect to b. Thus, B1 is split into B11 = {s2} and B12 = {s0, s1, s3} by (B0, a).
Let P1 = {B0, B11, B12}. Then it is easy to see that B11 is a splitter of B12 with
respect to τ . We split B12 to B121 = {s3} and B122 = {s0, s1}. The refinement P2 of
P1 is stable with respect to all the blocks, and therefore, Pf = P2.

3.3.3 The RCPSO problem can be used to decide orthogonal
bisimulation on finite LTS’s

To decide orthogonal bisimulation of two states in a finite LTS, we can check whether
they are in the same block of the coarsest stable partition Pf in the RCPSO problem
with the initial partition P0 consisting of two blocks: the first block contains all states
that have no outgoing τ transitions and the second block contains the remaining states
in this LTS. It takes O(m+ n) time to construct P0, using O(m+ n) space.

Theorem 3.16 Let (S,→) be a finite LTS, and let Pf be the final partition obtained
after applying the RCPSO algorithm on an initial partition P0 containing two blocks
B1 and B2, where B1 consists of all states in S that have no outgoing τ transitions
and B2 = S \B1. Then ∼Pf

=-o.

Proof: This follows from the following two facts:

1. ∼Pf
⊆-o. It follows from Theorem 3.6 that Pf exists. We show that if s ∼Pf

r

then s -o r. By the definition of Pf , if s
a
→ s′ then there exists r′ such that

r
a
→ r′ and s′ ∼Pf

r′. In the case that s
τ
→ s′, since Pf refines P0, r

τ
→ r′.

Moreover, there is an n ≥ 0 and there are r0, . . . , rn ∈ S such that r0 = r, for
all 0 ≤ i < n : s ∼Pf

ri and ri
τ
→ ri+1, and s′ ∼Pf

rn. This implies that Pf is
an orthogonal bisimulation equivalence.
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2. Pf ⊇-o. Orthogonal bisimulation equivalence -o induces a stable partition
that refines P0 on S. As Pf is the coarsest stable partition that refines P0,
-o⊆ Pf .

⊓⊔
The complexity for deciding orthogonal bisimulation is O(n(m+ n)) time, using
O(m+ n) space.

3.4 Concluding remarks

In this chapter, we have presented an algorithm for deciding orthogonal bisimula-
tion. Our algorithm is based on the well-known algorithm for deciding branching
bisimulation given by Groote and Vaandrager in [54]. The difference between the two
algorithms is that in our algorithm, transition systems may have cycles of silent steps.
This makes the problem addressed in this chapter more complicated. For instance,
instead of dealing with states, we have to deal with sets of states called inert compo-
nents. Nevertheless, we have shown that the complexity of our algorithm remains the
same as that of [54]. Thus, it takes O(n(m+n)) time to decide orthogonal bisimilar-
ity in finite state transition systems using O(m+ n) space. This thereby answers the
open question in [29].





Chapter 4

Structural operational
semantics for thread algebra

4.1 Introduction

Thread algebra (TA) is a framework for the description and analysis of multi-threaded
systems proposed by Bergstra and Middelburg [23, 24, 25]. This semantics is based
on basic thread algebra (BTA) first introduced under the name basic polarized pro-
cess algebra (BPPA) in [22], an algebraic theory about sequential program behaviors.
Thread algebra specifies a collection of strategic interleaving operators that turn a
sequence of threads into a single thread capturing the essential aspects of multi-
threading. Here strategic interleaving, in contrast with the arbitrary interleaving in
other process algebras such as CCS [75] or ACP [19], deterministically determines
the ordering of performed actions from various threads. Thread algebra is promising
for the study of security related phenomena involving concurrent systems [28, 101].
Therefore, there is a need to study carefully the semantics for thread algebra.

In [104], a metric denotational semantics for BTA is provided. This chapter focuses
on structural operational semantics (SOS) [81] (see [1] for an overview), a formal
semantics of programming and specification languages, for thread algebra. We present
a SOS for thread algebra which is less general than the SOS introduced in [23, 25].
However, it is simpler. We show that bisimulation equivalence defined by our SOS
characterizes the equality induced by the axioms of thread algebra.

The structure of this chapter is as follows. Section 4.2 recalls the basic concepts of
SOS, BTA and TA. Section 4.3 presents transition rules for TA. Section 4.4 shows that
bisimulation is a congruence with respect to TA. Hence, it characterizes the equality
induced by the axioms of TA. The chapter is ended with some concluding remarks in
Section 4.5.

35
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4.2 Preliminaries

This section recalls from [1, 4, 22, 23] the basic concepts of structural operational
semantics (SOS), basic thread algebra (BTA) and thread algebra (TA).

4.2.1 Structural operational semantics (SOS)

Structural operational semantics (SOS) generates a labeled transition system (LTS)
whose states are closed terms over an algebraic signature, and whose transitions be-
tween states are obtained inductively from a collection of transition rules, called
transition system specification (TSS).

Labeled transition systems

Definition 4.1 A labeled transition system (LTS) is a quadruple (S, A, { a
→ |a ∈

A}, Pred), satisfying:

• S is a set of states (or threads);

• A is a set of actions;

•
a
→⊆ (S × S) for every a ∈ A;

• P ⊆ S for every P ∈ Pred. We write pP if state p satisfies predicate P .

Binary relations s
a
→ s′ and unary predicates sP in an LTS are called transitions.

We write s
a
→ s′ for (s, s′) ∈

a
→.

Bisimulation [79] is an important equivalence in process algebras that classifies pro-
cesses (or threads) behaving identically.

Definition 4.2 Given an LTS (S, A, { a
→ |a ∈ A}, Pred), a symmetric relation B ⊆

S × S is a bisimulation if it satisfies:

1. If (p, q) ∈ B and pP then qP for all P ∈ Pred.

2. If (p, q) ∈ B and p
a
→ p then there exists q′ such that q

a
→ q′ and (p′, q′) ∈ B.

Two threads p and q are bisimilar, denoted by (p - q), if there is a bisimulation
relation B such that (p, q) ∈ B.

Term algebras

The states of an LTS can be given as closed terms over some signature. In the
following, we will present some basic notions of term algebras.

Let Var be an infinite set of variables, with typical elements x, y, z. A signature is
a set Sig of function symbols f with arity ar(f). The set T(Sig) of terms is defined
as usual. A term is closed if it does not contain any variables. Let t, u denote terms
and p, q closed terms. A substitution is a mapping σ : Var → T(Sig). A substitution
is closed if it maps each variable to a closed term in T(Sig).
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Definition 4.3 (Congruence) Assume a signature Sig. An equivalence relation ∼
over closed terms in T(Sig) is a congruence if, for all f ∈ Sig,

pi ∼ qi for i = 1, . . . , ar(f) implies f(p1, . . . , par(f)) ∼ f(q1, . . . , qar(f)).

Transition system specifications

The transitions between states in an LTS can be generated inductively from a col-
lection of transition rules, called transition system specification (TSS). Given a term
algebra, we define a TSS as follows.

Definition 4.4 (Transition system specification) A literal is an expression t
a
→

t′ or tP . A transition rule is of the form H
π

, where H is a set of literals called

the premises, and π is a literal. A rule ∅
π

is also written π. A transition system
specification (TSS) is a set of transition rules. A transition rule is closed if it
contains only closed terms.

We note that in the premises in the previous definition are positive. We do not
consider negative premises in this chapter. To define the LTS generated by a TSS, we
use the notion of a proof of a closed transition rule from a TSS.

Definition 4.5 A proof from a TSS T of a closed transition rule H
π

consists of an
upwardly branching tree in which all upward paths are finite, where the nodes of the
tree are labeled by transitions such that:

• the root has label π, and

• if some node has label l, and K is the set of labels of nodes directly above this
node then

1. either K is the empty set and l ∈ H,

2. or K
l

is a closed substitution instance of a transition rule in T .

Definition 4.6 (Generated LTS) The LTS generated by a TSS T consists of the
transitions π such that π can be proven from T .

In order to guarantee congruence for strong bisimulation between the states of the
LTS generated by a TSS, the path format [4] has been introduced for TSS’s. If a TSS
is in path format, then bisimulation is a congruence for that TSS, meaning that each
function symbol respects this equivalence.

Definition 4.7 (Path format)A transition rule is in path format if it is of the
forms

{ti
ai→ yi|i ∈ I} ∪ {ujPj |j ∈ J}

f(x1, . . . , xar(f))
a
→ t′
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or
{ti

ai→ yi|i ∈ I} ∪ {ujPj |j ∈ J}

f(x1, . . . , xar(f))P

where I, J are sets of indices, Pj are predicates, a, ai ∈ A, f ∈ Sig is a function
symbol, the variables x1, . . . , xar(f) and yi are all distinct, and, t′, ti, uj ∈ T(Sig) for
i ∈ I, j ∈ J .

A transition system specification is in path format if all its transition rules are in
path format.

Theorem 4.8 (see [4]). If a TSS is in path format, then bisimulation is a congruence
with respect to the LTS generated by that TSS.

4.2.2 Basic thread algebra (BTA)

Basic thread algebra (BTA) was introduced as basic polarized process algebra (BPPA)
in [22], a theory about sequential programming languages. The semantics of a de-
terministic sequential program is supposed to be a polarized process or a thread in
BTA. We assume the existence of a set Σ of basic actions in BTA. Each basic ac-
tion performed by a thread is taken as a command to be processed by the execution
environment of the thread. At completion of the processing of the command, the
execution environment produces a reply value. This reply is either T (true) or F
(false) and is returned to the thread concerned.

Definition 4.9 The set BTAΣ of finite threads is defined inductively the following
operators:

• Successful termination: S ∈ BTAΣ yields successful terminating behavior.

• Unsuccessful termination or deadlock: D ∈ BTAΣ represents inactive be-
havior.

• Postconditional composition: (−)�a�(−) with a ∈ Σ. The thread P�a�Q,
where P,Q ∈ BTAΣ, first performs a and then proceeds with P if T was returned
and with Q otherwise. In case P = Q we abbreviate this thread by the action
prefix operator: a ◦ (−). In particular, a ◦ P = P � a� P.

We note that S and D are similar to the termination ǫ and the deadlock δ used in
other process algebras such as CCS [75] and ACP [20].

Threads can be infinite. An infinite thread in thread algebra is represented by a
projective sequence consisting of its finite approximations. These finite approximations
are defined inductively by means of the approximation operators πn(−) of depth n of
threads with n ∈ N whose axioms on finite threads are given as P0-P3 in Table 4.1.

Definition 4.10 A projective sequence is a sequence (Pn)n∈N such that for all n ∈ N,
πn(Pn+1) = Pn.
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π0(x)=D P0

πn+1(S)=S P1

πn+1(D)=D P2

πn+1(x� a� y)=πn(x) � a� πn(y) P3

If πn(x) = πn(y) for all n ∈ N then x = y AIP

Table 4.1: Axioms for approximation operators and induction principle.

〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉) (i ∈ [1..n]) RDP

If yi = ti(y1, . . . , yn) for i ∈ [1..n] then yi = 〈Xi|E〉 (i ∈ [1..n]) RSP

Table 4.2: Axioms for the constants 〈X|E〉.

The axiom AIP (Approximation Induction Principle) in Table 4.1 states that two
threads are considered identical if their finite approximations at every depth are iden-
tical.

The notion of regular threads in thread algebra is given as in other process algebras.
They are considered as solutions of guarded recursive specifications defined formally
as follows.

Definition 4.11 A finite recursive specification E is a finite set of recursive
equations

X1 = t1(X1, . . . ,Xn)
...

Xn = tn(X1, . . . ,Xn)

where Xi are recursive variables, and ti(X1, . . . ,Xn) are terms in BTA. A finite
recursive specification E is guarded if for all i, ti(X1, . . . ,Xn) = S or
ti(X1, . . . ,Xn) = D or ti(X1, . . . ,Xn) = Xil �a �Xir with a ∈ Σ, and 1 ≤ il , ir ≤ n.

If E is a guarded recursive specification and X a recursive variable in E, then 〈X|E〉
denotes the thread that has to be substituted for X in the solution for E.

Theorem 4.12 A guarded recursive specification E determines a unique solution.

Proof: See Theorem 5.41. ⊓⊔
The threads determined by guarded recursive specifications are called regular. The
axioms for regular threads are given in Table 4.2.
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x� tau � y = tau ◦ x

Table 4.3: Axioms for the concrete internal action.

The concrete internal action tau ∈ Σ given in [23] plays a special role. Its
execution will never change any state and alway produces a positive reply. The
axiom for this action is given in Table 4.3.

4.2.3 Thread algebra (TA)

Thread algebra is an extension of BTA and is designed for strategic interleaving of
parallel threads. Thread algebra is a collection of strategic interleaving operators,
capturing essential aspects of multi-threading. A sequence of threads to be interleaved
is called a thread vector. Strategic interleaving operators turn a thread vector of
arbitrary length into a single thread. This single thread obtained via a strategic
interleaving operator is called a multi-thread. Formally, both threads and multi-
threads are polarized processes.

4.2.4 SOS depending on an execution environment for thread
algebra

This section recalls from [23, 25] the SOS for thread algebra. In this SOS, each action
of a thread is taken as a command to be processed by the execution environment.
This command can be accepted or rejected by the execution environment, depending
on the execution history of the thread and external conditions. For example, the
execution environment will not accept a command to write a file to a diskette if the
diskette is write-protected. Let ρ : (Σ × {T, F})∗ → P(Σ × {T, F}) be a function
representing an execution environment that satisfies the condition: (a, κ) /∈ ρ(α) ⇒
ρ(α y 〈(a, κ)〉) = ∅ for all a ∈ Σ, κ ∈ {T, F} and α ∈ (Σ × {T, F})∗. Here we write
〈〉 for the empty sequence, 〈d〉 for the sequence having d as sole element and α y β
for concatenation of sequences α and β. We assume that α y 〈〉 = 〈〉 y α = α. Let
E be the set of execution environments. Given an execution environment ρ ∈ E and a
basic action a ∈ Σ, the derived execution environment of ρ after processing a with a

positive reply, written ∂+

∂a
ρ, is defined by ∂+

∂a
ρ(α) = ρ(〈(a, T )〉 y α) and the derived

execution environment of ρ after processing a with a negative reply, written ∂−

∂a
ρ, is

defined by ∂−

∂a
ρ(α) = ρ(〈(a, F )〉 y α). The following transition relations on threads

are used in the structural operational semantics of [23]:

• the action step 〈p, ρ〉
a
→ 〈p′, ρ′〉 for each a ∈ Σ and ρ, ρ′ ∈ E ;

• the termination p ↓; and

• the deadlock q ↑;
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S ↓ 〈x� a � y, ρ〉
a
→ 〈x,

∂+

∂a
ρ〉 ((a, T ) ∈ ρ(〈〉))

D ↑ 〈x� a � y, ρ〉
a
→ 〈y,

∂−

∂a
ρ〉 ((a, F ) ∈ ρ(〈〉))

〈x� tau � y, ρ〉
tau
→ 〈x, ρ〉

Table 4.4: Transition rules for BTA using execution environments. Here a ∈ Σ\{tau}.

The structural operational semantics for BTA is described in Table 4.4. In this SOS,
a thread p in the environment ρ can perform an action a depending on a condition
(a, T ) ∈ ρ(〈〉) or (a, F ) ∈ ρ(〈〉).

4.3 SOS for thread algebra

In this section, we present another SOS for thread algebra in which the execution
of an action in a thread depends only on its execution history. We do not consider
threads with blocking actions and thread-service compositions as in [23]. Our SOS is
less general than the SOS of [23, 24], but it is simpler. We will show in Section 4.4
that bisimulation between the states of the LTS generated by our TSS characterizes
the equality induced by the axioms of thread algebra. We recall from [23] the axioms
for the strategic interleaving operators.

4.3.1 Labeled transition systems for thread algebra

We use the following transition relations on threads.

• The action step p
a,κ
→ p′ which essentially says that a thread p is capable of first

performing a basic action a, and proceeding with thread p′, where κ ∈ {T, F}
denotes the returned boolean value after the execution of a (κ = T if true is
returned after the execution of a and κ = F otherwise). This transition can

also be written as p
a
→ p′ if p

a,κ
→ p′ for both κ = T and κ = F , or κ is always T ;

• The concrete internal action step p
tau
→ p′ which essentially says that a thread p

is capable of first performing an internal action tau, and proceeding with thread
p′;

• The termination p ↓ means that thread p is capable of termination successfully;

• The deadlock q ↑ means that thread q is neither capable of performing an action
nor capable of termination successfully;

Let A = (Σ \ {tau})× {T, F} ∪ {tau}. A labeled transition system for TA is an LTS
whose states are threads, whose actions are from the set A, whose transitions are
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x� a � y
a,T
→ x x� a � y

a,F
→ y x� tau � y

tau
→ x S ↓ D ↑

Table 4.5: Transition rules for BTA. Here a ∈ Σ \ {tau}.

x
α
→ x′

πn+1(x)
α
→ πn(x′)

x ↓

πn+1(x) ↓

x ↑

πn+1(x) ↑ π0(x) ↑

〈tX |E〉
α
→ x′

〈X|E〉
α
→ x′

X = tX ∈ E
〈tX |E〉 ↓

〈X|E〉 ↓
X = tX ∈ E

〈tX |E〉 ↑

〈X|E〉 ↑
X = tX ∈ E

Table 4.6: Transition rules for πn(x) and 〈X|E〉. Here α ∈ A.

‖csi (〈〉) = S CSI1
‖csi (〈S〉 y γ) =‖csi (γ) CSI2
‖csi (〈D〉 y γ) = SD(‖csi (γ)) CSI3
‖csi (〈x� a � y〉 y γ) =‖csi (γ y 〈x〉) � a� ‖csi (γ y 〈y〉) CSI4

SD(S) = D S2D1
SD(D) = D S2D2
SD(x� a � y) = SD(x) � a � SD(y) S2D3

Table 4.7: Axioms for cyclic rotation. Here a ∈ Σ.

described as above, and whose predicates are ↑ and ↓. For a thread p, we write p l if
p ↑ or p ↓.

4.3.2 Transition rules for BTA

The transition rules for BTA are given in Table 4.5. Transition rules for the approx-
imation operator, and for the regular threads 〈X|E〉 are given in Table 4.6.

4.3.3 Transition rules for cyclic rotation

This section presents transition rules for the cyclic rotation or the cyclic interleaving
operator, a basic interleaving strategy of [23]. The axioms for this strategy are given
in Table 4.7.

The cyclic interleaving operator ‖csi : BTAΣ
∗ → BTAΣ works in a round-robin

fashion which invokes rotation of the thread vector after every step. Let 〈〉 denote the
empty sequence, 〈x〉 stand for a sequence of length one, and γ y β the concatenation
of two sequences. We assume that the following identity holds: γ y 〈〉 = 〈〉 y γ = γ.



4.3. SOS for thread algebra 43

x1 ↓, . . . , xn ↓, x
α
→ x′

‖csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y γ)
α
→‖csi (γ y 〈x′〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑, x
α
→ x′

‖csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y γ)
α
→ SD(‖csi (γ y 〈x′〉))

0 < m ≤ n

x1 ↓, . . . , xn ↓

‖csi (〈x1〉 y · · · y 〈xn〉) ↓
n ≥ 0

x1 l, . . . , xn l, xm ↑

‖csi (〈x1〉 y · · · y 〈xn〉) ↑
0 < m ≤ n

x
α
→ x′

SD(x)
α
→ SD(x′)

x ↓

SD(x) ↑

x ↑

SD(x) ↑

x ↑

x l

x ↓

x l

Table 4.8: Transition rules for the cyclic interleaving operator ‖csi (−) and SD(−).
Here α ∈ A.

The axioms for the cyclic interleaving operator are the axioms CSI1-CSI4 in Table 4.7,
where a ranges over Σ. In axiom CSI3, an auxiliary operator SD is used. This
operator turns termination of a thread to deadlock which means that if one thread in
a thread vector deadlocks, the whole does not deadlock till all other have terminated
or deadlocked. The axioms for SD are the axioms S2D1-S2D3 in Table 4.7.

Transition rules for cyclic rotation ‖csi (−) and SD(−) are given in Table 4.8.

4.3.4 Transition rules for step counting

A simple variation of the cyclic interleaving operator ‖csi is ‖k,l
csi : BTAΣ

∗ → BTAΣ

which is equipped with counters and gives each thread a fixed number k of consecutive
steps. The superscript l indicates that l−1 of the k steps have already been performed.
The axioms for the strategic interleaving operator ‖k,l

csi are given in Table 4.9 (CSIsc0-

CSIsc5). Here a ranges over Σ. Clearly, for all γ, ‖csi (γ) =‖1,1
csi (γ). We note that

the conditional operator − � − � − is defined as follows: x � true � y = x and
x� false � y = y.

The action YIELD

A thread in thread algebra can have an action YIELD ∈ Σ which means handing
over control to another thread. This action becomes meaningful in the step counting
strategy when k > 1. The axiom CSIsc6 in Table 4.9 is defined for this action.

Transition rules for the step counting strategy ‖k,l
csi are given as in Table 4.8 (for

k = l = 1) and in Table 4.10 (for k > 1). Transition rules for the strategy ‖k
csi are

similar to the transition rules for the strategy ‖k,1
csi . Note that in the transition rules

for the action YIELD, the counter k must be greater than 1.
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‖k
csi (γ) =‖k,1

csi (γ) CSIsc0

‖k,l
csi (〈〉) = S CSIsc1

‖k,l
csi (〈S〉 y γ) =‖k,1

csi (γ) CSIsc2

‖k,l
csi (〈D〉 y γ) = SD(‖k,1

csi (γ)) CSIsc3

‖k,l
csi (〈x� a � y〉 y γ)=

‖k,1
csi (γ y 〈x〉) � a� ‖k,1

csi (γ y 〈y〉)
�k = l�

‖k,l+1
csi (〈x〉 y γ) � a� ‖k,l+1

csi (〈y〉 y γ) CSIsc4

‖k,l
csi (〈x� YIELD � y〉 y γ)=

tau ◦ (‖k,1
csi (γ y 〈x〉) � γ 6= 〈〉� ‖k,l+1

csi (〈y〉)) CSIscY

Table 4.9: Axioms for the strategic interleaving operator ‖k,l
csi (−). Here a ∈ Σ.

4.3.5 Transition rules for the current thread persistence oper-
ator

The cyclic interleaving operator switches the execution of the current thread to an-
other thread automatically after every single step. In contrast, the current thread
persistence operator ‖ctp : BTAΣ

∗ → BTAΣ invokes rotation of the thread vector only
when asked for by the thread via an action YIELD. Table 4.11 provides axioms for the
current thread persistent strategy, and Table 4.12 presents its transition rules. Here
a ranges over Σ and α ranges over A.

4.3.6 Transition rules for the strategic interleaving operator
‖W2

csi

In thread algebra, basic actions from different threads can be performed simultane-
ously. The number of basic actions that can be performed simultaneously is called
the basic action width.

Table 4.13 provides axioms for the strategic interleaving operator ‖W2
csi : BTAΣ

∗ →
BTAΣ in which the basic action width is two. Actions a and b are independent,
written as a#b, if both can be performed simultaneously with an effect that equals
the effect of performing them in any of the two possible orderings. We assume that
independence is known as a relation given on actions, and basic actions independent
of other basic actions always returns true. The result of performing independent
actions a and b simultaneously is considered to be a basic action, denoted by a|b.

The axiomatization given in Table 4.13 provides transition rules for the strategic
interleaving operator ‖W2

csi as in Table 4.14.

4.3.7 Transition rules for thread creation

This section provides transition rules for thread creation (or forking off) [23], an
important feature in multi-threading. The axioms for thread creation are given in
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x1 ↓, . . . , xn ↓, x
α
→ x′

‖k,l
csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y γ)

α
→‖k,2

csi (〈x′〉 y γ)
n > 0

x1 l, . . . , xn l, xm ↑, x
α
→ x′

‖k,l
csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y γ)

α
→ SD(‖k,2

csi (〈x′〉 y γ))
0 < n, 0 < m ≤ n

x
α
→ x′

‖k,l
csi (〈x〉 y γ)

α
→‖k,l+1

csi (〈x′〉 y γ)
l < k

x
α
→ x′

‖k,l
csi (〈x〉 y γ)

α
→‖k,1

csi (γ y 〈x′〉)
l = k

x1 ↓, . . . , xn ↓

‖k,l
csi (〈x1〉 y · · · y 〈xn〉) ↓

x1 l, . . . , xn l, xm ↑

‖k,l
csi (〈x1〉 y · · · y 〈xn〉) ↑

0 < m ≤ n

x1 ↓, . . . , xn ↓

‖k,l
csi (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉 y γ)

tau
→‖k,1

csi (γ y 〈x〉)
γ 6= 〈〉

x1 l, . . . , xn l, xm ↑

‖k,l
csi (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉 y γ)

tau
→ SD(‖k,1

csi (γ y 〈x〉))
0 < m ≤ n, γ 6= 〈〉

‖k,l
csi (〈x� YIELD � y〉)

tau
→‖k,l+1

csi (〈y〉)
l < k

‖k,l
csi (〈x� YIELD � y〉)

tau
→‖k,1

csi (〈y〉)
l = k

x1 ↓, . . . , xn ↓

‖k,l
csi (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉)

tau
→‖k,2

csi (〈y〉)
n ≥ 0

x1 l, . . . , xn l, xm ↑

‖k,l
csi (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉)

tau
→ SD(‖k,2

csi (〈y〉))
0 < m ≤ n

Table 4.10: Transition rules for the step counting strategy with k > 1. Here α ∈ A.

Table 4.15. The axioms CSIf5, CSIbf5 and CSIbff5 are alternative choices of the
cyclic interleaving strategy when dealing with thread forking. More precisely, the
axiom CSIf5 defines thread creation in general, while the axiom CSIbf5 considers the
case that the current thread forking is temporarily blocked. Finally, the axiom CSIbff5
deals with thread creation by separating blocked thread forking from failed thread
forking. These notions are described below:
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‖ctp (〈〉) = S ctpSI1
‖ctp (〈S〉 y γ) =‖ctp (γ) ctpSI2
‖ctp (〈D〉 y γ) = SD(‖ctp (γ)) ctpSI3
‖ctp (〈x� a � y〉 y γ) =‖ctp (〈x〉 y γ) � a� ‖ctp (〈y〉 y γ) ctpSI4
‖ctp (〈x� YIELD � y〉 y γ) = tau ◦ (‖ctp (γ y 〈x〉) � γ 6= 〈〉� ‖ctp (〈y〉)) ctpSI5

Table 4.11: Axioms for the current thread persistent strategy ‖ctp (−). Here a ∈ Σ.

x1 ↓, . . . , xn ↓, x
α
→ x′

‖ctp (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y γ)
α
→‖ctp (〈x′〉 y γ)

n ≥ 0

x1 l, . . . , xn l, xm ↑, x
α
→ x′

‖ctp (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y γ)
α
→ SD(‖ctp (〈x′〉 y γ))

0 < m ≤ n

x1 ↓, . . . , xn ↓

‖ctp (〈x1〉 y · · · y 〈xn〉) ↓
n ≥ 0

x1 l, . . . , xn l, xm ↑

‖ctp (〈x1〉 y · · · y 〈xn〉) ↑
0 < m ≤ n

x1 ↓, . . . , xn ↓

‖ctp (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉 y γ)
tau
→‖ctp (γ y 〈x〉)

n ≥ 0, γ 6= 〈〉

x1 l, . . . , xn l, xm ↑

‖ctp (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉 y γ)
tau
→ SD(‖ctp (γ y 〈x〉))

0 < m ≤ n, γ 6= 〈〉
x1 ↓, . . . , xn ↓

‖ctp (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉)
tau
→‖ctp (〈y〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑

‖ctp (〈x1〉 y · · · y 〈xn〉 y 〈x� YIELD � y〉)
tau
→ SD(‖ctp (〈y〉))

0 < m ≤ n

Table 4.12: Transition rules for the current thread presistent strategy. Here α ∈ A.

Thread creation or forking (CSIf)

A new additional thread is created by a forking action, and will be running in the
same context. This forking action may succeed, giving rise to a new thread indeed or
fail in which case no new thread is created. To deal with forking off, an operator new
thread NT(x) is used to present the act of trying to fork off a new thread x. Therefore,
NT(x) is viewed as a basic action ignoring the way the new thread may be dealt with
by a strategic interleaving operator. An additional axiom for πn(−) with fork action is
given in Table 4.16. Furthermore, an additional basic action NT ∈ Σ is required whose
processing succeeds if the creation of a new thread takes place, and fails otherwise.
Transition rules for the strategy ‖csi,f : BTAΣ

∗ → BTAΣ in the case that the current
action is not a forking off action, are similar to the transition rules for the cyclic
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‖W2
csi (〈〉) = S CSIW1
‖W2
csi (〈S〉 y γ) =‖W2

csi (γ) CSIW2
‖W2
csi (〈D〉 y γ) = SD(‖W2

csi (γ)) CSIW3
‖W2
csi (〈x� a � y〉) =‖W2

csi (〈x〉) � a� ‖W2
csi (〈y〉) CSIW4

‖W2
csi (〈x� a � y〉 y 〈u� b � v〉 y γ) = a|b ◦ ‖W2

csi (γ y 〈x〉 y 〈u〉)
�a#b�
‖W2
csi (〈u� b � v〉 y γ y 〈x〉) � a� ‖W2

csi (〈u� b � v〉 y γ y 〈y〉) CSIW5

Table 4.13: Axioms for the strategic interleaving operator ‖W2
csi . Here a, b ∈ Σ.

x
α
→ x′

‖W2
csi (x)

α
→‖W2

csi (x′)

x1 ↓, . . . , xn ↓, x
a,T
→ x′, y

b,T
→ y′

‖W2
csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y 〈y〉 y γ)

a|b
→‖W2

csi (γ y 〈x′〉 y 〈y′〉)
n ≥ 0, a#b

x1 ↓, . . . , xn ↓, x
a,κ
→ x′, y

b,̺
→ y′

‖W2
csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y 〈y〉 y γ)

a,κ
→‖W2

csi (〈y〉 y γ y 〈x′〉)
n ≥ 0,¬(a#b)

x1 l, . . . , xn l, xm ↑, x
a,T
→ x′, y

b,T
→ y′

‖W2
csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y 〈y〉 y γ)

a|b
→ SD(‖W2

csi (γ y 〈x′〉 y 〈y′〉))
0 < m ≤ n, a#b

x1 l, . . . , xn l, xm ↑, x
a,κ
→ x′, y

b,̺
→ y′

‖W2
csi (〈x1〉 y · · · y 〈xn〉 y 〈x〉 y 〈y〉 y γ)

a,κ
→ SD(‖W2

csi (〈y〉 y γ y 〈x′〉))
0 < m ≤ n,¬(a#b)

x1 ↓, . . . , xn ↓

‖W2
csi (〈x1〉 y · · · y 〈xn〉) ↓

n ≥ 0
x1 l, . . . , xn l, xm ↑

‖W2
csi (〈x1〉 y · · · y 〈xn〉) ↑

0 < m ≤ n

Table 4.14: Transition rules for the strategic interleaving operator ‖W2
csi . Here a, b ∈ Σ

and α ∈ A.

interleaving strategy ‖csi in Table 4.8 with ‖csi replaced by ‖csi,f . Transition rules
for forking off are given Table 4.17.

Blocked thread forking (CSIbf)

It can happen that thread forking is temporarily blocked (or disabled). Blocked
thread forking is capable of postponing when thread forking is disabled. This strategy
requires an additional test action ?NT ∈ Σ. Its processing succeeds if thread forking
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‖csi,f (〈〉) = S CSIf1
‖csi,f (〈S〉 y γ) =‖csi,f (γ) CSIf2
‖csi,f (〈D〉 y γ) = SD(‖csi,f (γ)) CSIf3
‖csi,f (〈x� a � y〉 y γ) =‖csi,f (γ y 〈x〉) � a� ‖csi,f (γ y 〈y〉) CSIf4
‖csi,f (〈x� NT(z) � y〉 y γ) =‖csi,f (γ y 〈z〉 y 〈x〉) � NT� ‖csi,f (γ y 〈y〉) CSIf5
‖csi,f (〈x� NT(z) � y〉 y γ) =

‖csi,f (γ y 〈z〉 y 〈x〉) � ?NT� ‖csi,f (γ y 〈x� NT(z) � y〉) CSIbf5
‖csi,bff (〈x� NT(z) � y〉 y γ) =

‖csi,bff (γ y 〈z〉 y 〈x〉) � NT� ‖csi,f (γ y 〈y〉)
�?NT�

‖csi,bff (γ y 〈x� NT(z) � y〉) CSIbff5

Table 4.15: Axioms for thread creation. Here a ∈ Σ.

πn+1(x� NT(z) � y) = πn(x) � NT(πn(z)) � πn(x)

Table 4.16: An additional axiom for approximation operators with fork actions.

x1 ↓, . . . , xn ↓

‖csi,f (〈x1〉 y · · · y 〈xn〉 y 〈x� NT(z) � y〉 y γ)
NT,T
→ ‖csi,f (γ y 〈z〉 y 〈x〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑

‖csi,f (〈x1〉 y · · · y 〈xn〉 y 〈x� NT(z) � y〉 y γ)
NT,T
→ SD(‖csi,f (γ y 〈z〉 y 〈x〉))

0 < m ≤ n
x1 ↓, . . . , xn ↓

‖csi,f (〈x1〉 y · · · y 〈xn〉 y 〈x� NT(z) � y〉 y γ)
NT,F
→ ‖csi,f (γ y 〈y〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑

‖csi,f (〈x1〉 y · · · y 〈xn〉 y 〈x� NT(z) � y〉 y γ)
NT,F
→ SD(‖csi,f (γ y 〈y〉))

0 < m ≤ n

Table 4.17: Transition rules for ‖csi,f (−) dealing with thread forking.

is enabled and fails if thread forking is disabled. Transition rules for thread creation
with blocked thread forking are given in Table 4.18.

Blocked and failed fork actions

The previous strategy is only adequate if enabled thread forking always succeeds. A
better strategy for thread creation is given by axiom CSIbff that separates blocked
thread forking from failed thread forking. In this strategy, thread forking may still fail
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x1 ↓, . . . , xn ↓

P
?NT,T
→ ‖csi,f (γ y 〈z〉 y 〈x〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑

P
?NT,T
→ SD(‖csi,f (γ y 〈z〉 y 〈x〉))

0 < m ≤ n

x1 ↓, . . . , xn ↓

P
?NT,F
→ ‖csi,f (γ y 〈x� NT(z) � y〉)

n ≥ 0

x1 l, . . . , xk l, xl ↑

P
?NT,F
→ SD(‖csi,f (γ y 〈x� NT(z) � y〉))

0 < m ≤ n

Table 4.18: Transition rules for ‖csi,f (−) dealing with blocked thread forking. Here
P =‖csi,f (〈x1〉 y · · · y 〈xn〉 y 〈x� NT(z) � y〉 y γ).

if it is not blocked. Transition rules for blocked and failed fork actions are presented
in Table 4.19.

x1 ↓, . . . , xn ↓

P
?NT,T
→ ‖csi,bff (γ y 〈z〉 y 〈x〉) � NT� ‖csi,bff (γ y 〈y〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑

P
?NT,T
→ SD(‖csi,bff (γ y 〈z〉 y 〈x〉) � NT� ‖csi,bff (γ y 〈y〉))

0 < m ≤ n

x1 ↓, . . . , xn ↓

P
?NT,F
→ ‖csi,bff (γ y 〈x� NT(z) � y〉)

n ≥ 0

x1 l, . . . , xn l, xm ↑

P
?NT,F
→ SD(‖csi,bff (γ y 〈x� NT(z) � y〉))

0 < m ≤ n

Table 4.19: Transition rules for ‖csi,bff (−) with blocked and failed fork actions. Here
P =‖csi,bff (〈x1〉 y · · · y 〈xn〉 y 〈x� NT(z) � y〉 y γ).

4.3.8 Transition rules for terminating a named thread

This section presents transition rules for the strategic interleaving operator ‖β
csi,fn :

BTAΣ
∗ → BTAΣ of [23] that deals with terminating a named thread. Each thread

now is named by a positive number which should occur as the first parameter of
the thread forking action NT(k, x), and forking is possible unless a thread with the
intended name already exists. Thread names initially are 0. The superscript β of the
strategic operator ‖β

csi,fn is a vector of thread names, one for each thread in the thread
vector in the corresponding ordering. Two auxiliary operators on name vectors and
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‖csi,fn (γ) =‖~0
csi,fn (γ) CSIfn0

‖β
csi,fn (〈〉) = S CSIfn1

‖〈n〉yβ

csi,fn (〈S〉 y γ) =‖β
csi,fn (γ) CSIfn2

‖〈n〉yβ

csi,fn (〈D〉 y γ) = SD(‖β
csi,fn (γ)) CSIfn3

‖〈n〉yβ

csi,fn (〈x� a � y〉 y γ) =‖βy〈n〉
csi,fn (γ y 〈x〉) � a� ‖βy〈n〉

csi,fn (γ y 〈y〉) CSIfn4

‖〈n〉yβ

csi,fn (〈x� NT(k, z) � y〉 y γ) =

tau ◦ (‖βy〈k〉y〈n〉
csi,fn (γ y 〈z〉 y 〈x〉) � k /∈ β ∧ k 6= n� ‖βy〈n〉

csi,fn (γ y 〈y〉))
CSIfn5

‖〈n〉yβ

csi,fn (〈x� terminate!k � y〉 y γ) =

tau ◦ (‖β
csi,fn (γ) � k = n� (‖βy〈n〉

csi,fn (γ y 〈y〉) � k /∈ β� ‖β−ky〈n〉
csi,fn (ρβ−k(γ) y 〈x〉))

CSIfn6

‖〈n〉yβ

csi,fn (〈x� isalive?k � y〉 y γ) =

tau ◦ (‖βy〈n〉
csi,fn (γ y 〈x〉) � k = s ∨ k ∈ β� ‖βy〈n〉

csi,fn (γ y 〈y〉)) CSIfn7

Table 4.20: Axioms for ‖β
csi,fn (−). Here a ∈ Σ.

thread vectors are needed: β − k is the sequence obtained from β by removing k if
it occurs in it and β itself otherwise; and ρβ−k(γ) removes from thread vector γ the
thread(s) named k if k occurs in β and leaves the thread vector unchanged otherwise.
These operators give the ability to terminate a named thread from within another (or
the same) by an action of the form terminate!k, and the option to test if a named
thread is still alive by an action of the form isalive?k. Note that the axiomatization
of these operators is omitted. The axioms and transition rules for ‖β

csi,fn are given in
Table 4.20. and Table 4.21, respectively. Here a ranges over Σ and α ranges over A.

Transition rules for the strategy ‖csi,fn are similar to the transition rules for ‖~0
csi,fn .

One can see that the strategic interleaving operators presented in this section can
be defined on regular threads as well, since regularity is closed with respect to these
operators.

4.4 Bisimulation equivalence characterizes axioma-
tization

In this section, we show that bisimulation is a congruence with respect to our tran-
sition rules for thread algebra. This implies that bisimulation equivalence between
regular threads characterizes the equality induced by the axioms of thread algebra.
Let ETA be the set of axioms given in Table 4.1, Table 4.2, Table 4.3, Table 4.7, Ta-
ble 4.9, Table 4.11, Table 4.13, Table 4.15, Table 4.16 and Table 4.20. Let TTA be the
set of transition rules given in Table 4.5, Table 4.6, Table 4.8, Table 4.10, Table 4.12,
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x1 ↓, . . . , xN ↓

‖θ
csi,fn (〈x1〉 y · · · y 〈xN 〉) ↓

N ≥ 0, |θ| = N

x1 l, . . . , xN l, xm ↑

‖θ
csi,fn (〈x1〉 y · · · y 〈xN 〉) ↑

0 < m ≤ N, |θ| = N

x1 ↓, . . . , xN ↓, x
α
→ x′

P (x)
α
→‖βy〈n〉

csi,fn (γ y 〈x′〉)
N ≥ 0

x1 l, . . . , xN l, xm ↑, x
α
→ x′

P (x)
α
→ SD(‖βy〈n〉

csi,fn (γ y 〈x′〉))
0 < m ≤ N

x1 ↓, . . . , xN ↓

P (x� NT(k, z) � y)
tau
→‖βy〈k〉y〈n〉

csi,fn (γ y 〈z〉 y 〈x〉)
N ≥ 0, k /∈ β

x1 l, . . . , xN l, xm ↑

P (x� NT(k, z) � y)
tau
→ SD(‖βy〈k〉y〈n〉

csi,fn (γ y 〈z〉 y 〈x〉))
0 < m ≤ N, k /∈ β

x1 ↓, . . . , xN ↓

P (x� NT(k, z) � y)
tau
→‖βy〈n〉

csi,fn (γ y 〈y〉)
N ≥ 0, k ∈ β

x1 l, . . . , xN l, xm ↑

P (x� NT(k, z) � y)
tau
→ SD(‖βy〈k〉

csi,fn (γ y 〈y〉))
0 < m ≤ N, k ∈ β

x1 ↓, . . . , xN ↓

P (x� terminate!k � y)
tau
→‖β

csi,fn (γ)
N ≥ 0, k = n

x1 l, . . . , xN l, xm ↑

P (x� terminate!k � y)
tau
→ SD(‖csi (γ))

0 < m ≤ N, k = n

x1 ↓, . . . , xN ↓

P (x� terminate!k � y)
tau
→‖βy〈n〉

csi,fn (γ y 〈y〉)
N ≥ 0, k 6= n, k /∈ β

x1 l, . . . , xN l, xm ↑

P (x� terminate!k � y)
tau
→ SD(‖βy〈n〉

csi,fn (γ y 〈y〉))
0 < m ≤ N, k 6= n, k /∈ β

x1 ↓, . . . , xN ↓

P (x� terminate!k � y)
tau
→‖β−ky〈n〉

csi,fn (ρβ−k(γ) y 〈y〉)
N ≥ 0, k 6= n, k ∈ β

x1 l, . . . , xN l, xm ↑

P (x� terminate!k � y)
tau
→ SD(‖β−ky〈n〉

csi,fn (ρβ−k(γ) y 〈y〉))
0 < m ≤ N, k 6= n, k ∈ β

x1 ↓, . . . , xN ↓

P (x� isalive?k � y)
tau
→‖βy〈n〉

csi,fn (γ y 〈x〉)
N ≥ 0, k = n ∨ k ∈ β

x1 l, . . . , xN l, xm ↑

P (x� isalive?k � y)
tau
→ SD(‖βy〈n〉

csi,fn (γ y 〈x〉))
0 < m ≤ N, k = n ∨ k ∈ β

x1 ↓, . . . , xN ↓

P (x� isalive?k � y)
tau
→‖βy〈n〉

csi,fn (γ y 〈y〉)
N ≥ 0,¬(k = n ∨ k ∈ β)

x1 l, . . . , xN l, xm ↑

P (x� isalive?k � y)
tau
→ SD(‖βy〈n〉

csi,fn (γ y 〈y〉))
0 < m ≤ N,¬(k = n ∨ k ∈ β)

Table 4.21: Transition rules for the strategic interleaving operator ‖β
csi,fn (−). Here

P (t) =‖θy〈n〉yβ

csi,fn (〈x1〉 y · · · y 〈xN 〉 y 〈t〉 y γ) with |θ| = N and α ∈ A.
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Table 4.14, Table 4.17, Table 4.18, Table 4.19 and Table 4.21.

Theorem 4.13 Bisimulation is a congruence with respect to TTA.

Proof: This is the case because the TSS TTA is in path format. ⊓⊔

Theorem 4.14 The induced equality relation = by the axioms in ETA characterizes
bisimulation equivalence over TTA, i.e, for regular threads p and q, p = q ⇔ p - q.

Proof:

1. Soundness (⇒): Since bisimulation is both equivalence and congruence for TTA,
we only need to check that if p = q is obtained by an axiom s = t in ETA and
a substitution σ such that σ(s) = p and σ(t) = q then p - q. We consider
the case that p = q derived from the induction principle πn(p) = πn(q) for all
n ∈ N. It is not hard to see that πn(p) - πn(q). We define a binary relation
B between threads p′ and q′ as follows: (p′, q′) ∈ B if πn(p′) - πn(q′) for all
n ∈ N. We show that B is a bisimulation. If p′ ∈ {S,D} then this is trivial.

If p′
α
→ p′′ then πn+1(p

′)
α
→ πn(p′′) for all n ∈ N. Since πn+1(p

′) - πn+1(q
′),

q′
α
→ q′′ and πn(p′′) - πn(q′′). This implies that (p′′, q′′) ∈ B. Therefore, B is a

bisimulation. Hence, p - q. The other cases are obvious.

2. Ground-completeness (⇐): Given regular threads p and q, these can be equated
to 〈X1|E1〉 and 〈Y1|E2〉, respectively. By soundness, p - 〈X1|E1〉 and q -

〈Y1|E2〉. Since p - q, it remains to be proved that if 〈X1|E1〉 - 〈Y1|E2〉 then
〈X1|E1〉 = 〈Y1|E2〉. Let E be a recursive specification defined as follows. For
variables X and Y of E1 and E2 such that 〈X|E1〉 - 〈Y |E2〉, we define a
recursive variable ZXY of E as ZXY = S if X = S, ZXY = D if X = D, and
ZXY = ZX ′Y ′ � a �ZX ′′Y ′′ if X = X ′ � a �X ′′ and Y = Y ′ � a � Y ′′. It can
be shown that 〈X|E1〉 is a solution for the recursive variable ZXY of E. Since
a recursive specification has a unique solution, 〈ZXY |E〉 = 〈X|E1〉. Similarly,
〈ZXY |E〉 = 〈Y |E2〉. Thus, 〈X|E1〉 = 〈Y |E2〉. Therefore, 〈X1|E1〉 = 〈Y1|E2〉.

⊓⊔

4.5 Concluding remarks

In this chapter, we have presented a structural operational semantics for thread alge-
bra. This SOS is less general, but simpler than that of [23]. We have shown that the
axioms of thread algebra [23] are sound and ground-complete with respect to bisimu-
lation equivalence induced by this SOS, meaning that two processes are equal if and
only if they are bisimilar.



Chapter 5

Denotational semantics for
thread algebra

5.1 Introduction

In 2002, Bergstra and Loots proposed a semantics for sequential programming lan-
guages called basic polarized process algebra (BPPA) [22]. Later, Bergstra and Mid-
delburg renamed BPPA to basic thread algebra (BTA) and extended BTA to thread
algebra (TA) with a collection of strategic interleaving operators [23]. It has been
outlined in [22, 23, 24, 25] that TA is a dominant form of concurrency provided by
recent object-oriented programming languages such as C# and Java, where arbitrary
interleaving is not an appropriate intuition when dealing with multi-threading.

In [102], a structural operational semantics of TA is given. This chapter is an
extension of [104] which focuses on denotational semantics for TA. The difference be-
tween these two semantics is that the former generates expressions in a programming
language in a stepwise fashion, while the latter constructs them as elements of some
suitable domain equation [94]. We employ the metric methodology of de Bakker and
Zucker [11] to give a denotational semantics for TA. This method turns the domain of
single threads into a complete metric space, in which the distance between two threads
that do not differ in behavior until the n-th step is at most 2−n. We show that the
metric space consisting of projective sequences of threads is an appropriate domain
for TA by comparing it to other domains of TA. In particular, the infinite threads
of this domain are represented in a unique way. Furthermore, it deals naturally with
abstraction [73, 20]. Moreover, it is compatible with the domain based on complete
partial orders (cpo’s) of [16]. Our domain can be extended with strategic interleaving
operators of [23] in a natural way while the domain based on cpo’s cannot. Finally,
by means of Banach’s fixed point theorem, one can show that the specification of a
regular thread has a unique solution.

In this chapter, we also propose a particular interleaving strategy for thread al-
gebra, called the cyclic internal persistence operator, with respect to abstraction of
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internal actions. In TA, concrete internal actions [23] may arise due to the interactions
between clients and servers [17], threads and services, and threads and the execution
environment. It is stated in [23] that the presence of concrete internal actions matters,
and there is no abstraction made of it via equations that remove these actions. How-
ever, abstraction is still necessary in certain cases. For instance, in [17], abstraction is
defined to emulate the interaction between clients and servers, assuming that clients
and servers are threads in BTA. It would be natural if abstraction is compositional
with respect to interleaving strategies of parallel threads. Unfortunately, this prop-
erty does not hold for the existing interleaving operators of the thread algebra given
in [23]. The cyclic internal persistence strategy is a variant of the cyclic interleaving
operator of [23] which will not invoke the rotation of a thread sequence if the current
action is internal. We will show that with the use of this strategy, abstraction can
be made compositional, provided that threads cannot perform an infinite sequence of
internal actions.

The structure of this chapter is as follows. Section 5.2 recalls the basic concepts
of complete metric spaces, complete partial orders, BTA and TA. Section 5.3 turns
the domains of BTA into complete metric spaces, and shows that the complete metric
space consisting of projective sequences is an appropriate domain for BTA. Section 5.4
extends the domain of BTA with the strategic interleaving operators of thread algebra.
Section 5.5 defines the cyclic internal persistence operator dealing with abstraction for
thread algebra. The chapter is ended with some concluding remarks in Section 5.6.

5.2 Preliminaries

In this section, we provide some basic concepts that will be needed for the rest of the
chapter.

5.2.1 Metric spaces and complete partial orders

Complete metric spaces and complete partial orders have major applications in de-
notational semantics. In this chapter, we will use a few basic concepts of the metric
topology and the domain theory taken from [46, 94, 9] to give a denotational semantics
for thread algebra.

Metric spaces

A metric space is a set where a notion of distance (or metric) between elements of the
set is defined.

Definition 5.1 A metric space is a pair (M,d) consisting of a set M and a metric
d on M . The metric d(x, y) defined for arbitrary x and y in M is a nonnegative, real
valued function satisfying for all x, y, z ∈M the conditions:

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),
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3. d(x, z) ≤ d(x, y) + d(y, z).

(M,d) is said to be an ultra-metric space if d satisfies the strong triangle inequality:
For all x, y, z ∈M , d(x, z) ≤ max{d(x, y), d(y, z)}.

We note that for all x, y, z ∈M ,

d(x, z) ≤ max{d(x, y), d(y, z)} ⇒ d(x, y) + d(y, z) ≥ d(x, z).

The notion of complete metric spaces is based on Cauchy sequences defined as follows.

Definition 5.2 (xn)n is a Cauchy sequence in the space (M,d) if

∀ǫ > 0∃N ∀n,m > N : d(xn, xm) < ǫ.

Definition 5.3 If every Cauchy sequence in the metric space M converges to an
element in M , M is said to be complete.

Note that the space containing M , together with all limits of its Cauchy sequences is
a completion of M , where the distance between the limit points x∗ = limn→∞ xn and
y∗ = limn→∞ yn of M is defined as d(x∗, y∗) = limn→∞ d(xn, yn).

Given a metric space (M,d), we define the metric d′ on the set Mn (n ≥ 1) as
follows.

Definition 5.4 Let (M,d) be a metric space. Let X,Y ∈ Mn for some n ≥ 1,
X = [X1, . . . ,Xn], Y = [Y1, . . . , Yn]. Then

d′(X,Y ) = max
i≤n

d(Xi, Yi).

Then the pair (Mn, d′) constitutes a complete metric space if (M,d) does.

Proposition 5.5 If (M,d) is complete then so is (Mn, d′) for all n ≥ 1.

By using Banach’s fixed point theorem, one can guarantee the existence and
uniqueness of fixed points of contraction mappings in complete metric spaces. These
notions are given formally as in the following:

Definition 5.6 An element x ∈ X is said to be a fixed point of a function f : X →
X if f(x) = x.

Definition 5.7 Let (X, d) be a metric space. A function f : X → X is a contrac-
tion mapping if there is a real number c < 1 such that d(f(x), f(y)) < c · d(x, y) for
each x, y ∈ X.

Theorem 5.8 (Banach’s fixed point theorem, see [59]) Every contraction map-
ping of a complete metric space has a unique fixed point.
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Complete partial orders

Complete partial orders are special classes of partially ordered sets. These orders are
characterized by a completeness property which essentially says that every monotone
sequence has a supremum. Formally:

Definition 5.9 Let ⊑ be a partial order in a set D. A monotone sequence (Pn)n

in D is a sequence satisfying

P0 ⊑ P1 ⊑ · · · ⊑ Pn ⊑ Pn+1 ⊑ · · ·

Definition 5.10 A complete partial order (cpo) D = (D,⊑) is a partially ordered
set with a least element such that every monotone sequence has a supremum in D.

Compatibility between metric spaces and cpo’s

A complete partial order and a metric space can be compared by the notion of com-
patibility [9]. More precisely, a complete partial order and a complete metric space of
the same set are compatible if the supremum and the limit of every monotone Cauchy
sequence are identified.

Definition 5.11 A cpo (D,⊑) and a complete metric space (M, d) are said to be
compatible if D = M and

⊔

n xn = limn→∞ xn for each monotone Cauchy sequence
(xn)n.

5.2.2 Basic thread algebra (BTA) and thread algebra (TA)

We recall from [22, 23, 25] the notions of basic thread algebra (BTA) and thread
algebra (TA). We note that BTA was introduced as basic polarized process algebra
(BPPA) in [22].

Basic thread algebra as a cpo

Let Σ be a set of actions. Each action returns a boolean value after its execution.
Basic thread algebra (BTA) is defined by the following operators:

• Termination: S ∈ BTA yields the terminating behavior.

• Inactive behavior: D ∈ BTA, represents the inactive behavior.

• Postconditional composition: (−)�a �(−) with a ∈ Σ. The thread P �a�

Q ∈ BTA with P,Q ∈ BTA first performs a and then proceeds with P if true
was returned or with Q otherwise. In case P = Q we abbreviate this thread by
the action prefix operator: a ◦ (−). In particular, a ◦ P = P � a � P .
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To provide domains for BTA, we consider the following domain equation

P = {S,D}
⋃

(P � Σ � P). (5.1)

where X � Σ � Y = {x� a� y|x ∈ X, y ∈ Y, a ∈ Σ}. We say that a solution of (5.1)
is a domain of BTA.

Let BTAΣ be the set of finite threads in BTA defined as follows.

Definition 5.12 BTAΣ is a set consisting of all finite threads which are made from
S and D by means of a finite number of applications of postconditional compositions.

Proposition 5.13 BTAΣ is a solution of (5.1), and therefore, it is a domain of BTA.

Proof: It is obvious that S,D ∈ BTAΣ. If P and Q in BTAΣ and a ∈ Σ then P�a�Q
is also in BTAΣ. Vice versa, if R = P � a �Q ∈ BTAΣ then P,Q ∈ BTAΣ. ⊓⊔
Threads can be infinite. Infinite threads are given by sequences of finite approxima-
tions. In [16], a technique based on cpo’s is described to give a domain for BTA. The
main idea of this approach is to define a binary relation ⊑, a partial order, on threads.
The expression P ⊑ Q means that P is an approximation of Q. It is shown that the
set of projective sequences for threads is a cpo. This implies that it is a domain for
BTA. Thus, it serves as a semantics for BTA in a natural way.

Definition 5.14

1. The partial ordering ⊑ on BTAΣ is generated by the clauses

(a) for all P ∈ BTAΣ, D ⊑ P , and

(b) for all P,Q,X, Y ∈ BTAΣ, a ∈ Σ,

P ⊑ X &Q ⊑ Y ⇒ P � a�Q ⊑ X � a� Y.

2. Let (Pn)n and (Qn)n be two sequences in BTAΣ, then

(Pn)n ⊑ (Qn)n ⇔ ∀n ∈ N : Pn ⊑ Qn.

In order to define a projective sequence in BTAΣ, an operator called the approximation
operator that finitely approximates every thread is provided.

Definition 5.15 For every n ∈ N, the approximation operator πn : BTAΣ →
BTAΣ is defined inductively by

π0(P ) = D,
πn+1(S) = S,
πn+1(D) = D,
πn+1(P � a�Q) = πn(P ) � a� πn(Q),
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A projective sequence is a sequence (Pn)n∈N
such that for each n ∈ N,

πn(Pn+1) = Pn.

One can show that:

Lemma 5.16 Every projective sequence is monotone.

The following lemma gives an intuition for the projective approximations of a thread.
Given k, n ∈ N with k ≤ n, the k-th and the n-th projective approximations of a
thread do not differ in behavior until the k-th step.

Lemma 5.17 Let (Pn)n∈N be a projective sequence. Then for all k ≤ n,
Pk = πk(Pn).

Proof: This can be proven by induction on n. ⊓⊔
Let BTA∞

Σ be the set of projective sequences.

Definition 5.18 BTA∞
Σ = {(Pn)n∈N|(Pn)n is a projective sequence in BTAΣ}

For a thread P represented by a projective sequence (Pn)n in BTA∞
Σ , we denote

πn(P ) = Pn.

Theorem 5.19 ([16]). BTAΣ ⊂ BTA∞
Σ and (BTA∞

Σ ,⊑) is a complete partial order.

The theorem above indicates that the cpo (BTA∞
Σ ,⊑) is a domain for BTA in which

infinite threads can be represented as supremums of monotone sequences of their finite
approximations.

Abstraction in BTA

Abstraction [73, 20, 8] plays an important role in process algebras. It allows a simpler
view of a thread, ignoring internal details. In [17] abstraction is used to emulate the
interaction between clients and servers, assuming that clients and servers are threads
in BTA. We assume the existence of a concrete internal action tau ∈ Σ that does not
have any side effects and always replies true after its execution. This action can be
abstracted away by an operator called the abstraction operator defined as follows.

Definition 5.20 Let τtau : BTAΣ → BTAΣ be defined by

τtau(S) = S,
τtau(D) = D,
τtau(P � tau �Q) = τtau(P ),
τtau(P � a�Q) = τtau(P ) � a� τtau(Q) (a 6= tau ∈ Σ).
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It is shown in [17] that the abstraction operator is monotone, i.e.:

Lemma 5.21 For all P,Q ∈ BTAΣ, P ⊑ Q⇒ τtau(P ) ⊑ τtau(Q).

Lemma 5.21 suggests the definition of abstraction of an infinite thread P given as the
supremum of a monotone sequence of threads below.

Definition 5.22 Let (Pn)n be a monotone sequence of finite approximations of a
thread P ∈ BTA∞

Σ . Then τtau(P ) =
⊔

n τtau(Pn).

Thread algebra

Thread algebra is an extension of BTA, which is designed for strategic interleaving
of parallel threads. A single thread is defined in BTA. A thread vector is a finite
sequence of threads. Strategic interleaving operators turn a thread vector of arbitrary
length into a single thread. This single thread obtained via a strategic interleaving
operator is called a multi-thread. Thread algebra is meant to specify the collection of
strategic interleaving operators, capturing essential aspects of multi-threading. For
a simplification, in this chapter, we only consider the simplest interleaving strategy
called the cyclic interleaving operator [23].

Let 〈〉 denote the empty sequence, 〈x〉 stands for a sequence of length one, and
α y β for the concatenation of two sequences. We assume that the following identity
holds: α y 〈〉 = 〈〉 y α = α.

Definition 5.23 The axioms for the cyclic interleaving operator on finite
threads are given as follows:

‖csi (〈〉) = S
‖csi (〈S〉 y α) = ‖csi (α)
‖csi (〈D〉 y α) = SD(‖csi (α))
‖csi (〈x� a � y〉 y α) = ‖csi (α y 〈x〉) � a� ‖csi (α y 〈y〉)

where the auxiliary deadlock at termination operator SD turns termination into dead-
lock and is defined by

SD(S) = D
SD(D) = D
SD(x� a � y) = SD(x) � a � SD(y)

We note that for a thread vector of length one, the cyclic interleaving operator turns
the thread vector into the single thread contained in it.

5.3 BTA as a complete ultra-metric space

In the previous section, we have seen that BTA can be modeled as a complete partial
order. In this section, we follow [11] to give a metric denotational semantics for BTA.
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We prove that the domain of BTA can be turned into a complete metric space in
which the distance d between two threads that do not differ in behavior until the n-th
step is at most 2−n. We show that the complete metric space (BTA∞

Σ , d) consisting
of projective sequences is an appropriate domain for BTA by proving:

1. Infinite threads in (BTA∞
Σ , d) are represented in a unique way.

2. (BTA∞
Σ , d) is compatible with the domain (BTA∞

Σ ,⊑).

3. (BTA∞
Σ , d) deals with abstraction in a natural way, in comparison with the

domain of Cauchy sequences.

4. Finally, the specification of a regular thread in (BTA∞
Σ , d) determines a unique

thread by using Banach’s fixed point theorem.

5.3.1 The metric d between threads

We formally define a metric (or distance) d between two threads in BTAΣ as follows.

Definition 5.24

1. d(S, S) = 0, d(D,D) = 0,
d(P, P ′) = 1 if P ∈ {S,D} and P ′ 6= P with P ′ ∈ BTAΣ or vice versa,

2. d(P1 � a1 � P2, Q1 � a2 �Q2) =
{

1 if a1 6= a2,
1
2 max{d(P1, Q1), d(P2, Q2)} otherwise

with P1, Q1, P2, Q2 ∈ BTAΣ.

According to Definition 5.24, the metric between two finite threads that do not differ
in behavior until the n-th step is at most 2−n.

Lemma 5.25 Let P,Q ∈ BTAΣ. Then for all n ∈ N,

d(P,Q) ≤
1

2n
⇔ πn(P ) = πn(Q).

Proof: This can be proven by induction on n. ⊓⊔
One can show that the set of finite threads with the metric d constitutes an ultra-
metric space.

Proposition 5.26 (BTAΣ, d) is an ultra-metric space.

This proposition suggests the completion (BTAω
Σ, d) of the metric space (BTAΣ, d)

whose elements are the limits of all Cauchy sequences in (BTAΣ, d).

Definition 5.27 BTAω
Σ = {(Pn)n∈N|(Pn)nis a Cauchy sequence in BTAΣ}
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5.3.2 The uniqueness of threads in (BTA∞

Σ , d)

In this section, we show that completion (BTAω
Σ, d) of all limits of Cauchy sequences

of finite threads and the metric space (BTA∞
Σ , d) of projective sequences achieve two

equivalent domains for BTA. However, the domain (BTA∞
Σ , d) represents (infinite)

threads in a unique way.
First of all, we show that the complete metric space (BTAω

Σ, d) is a solution of
(5.1).

Lemma 5.28 BTAω
Σ = {S,D}

⋃

(BTAω
Σ � Σ � BTAω

Σ).

Proof:

1. (⊇): Since {S,D} ⊆ BTAΣ, {S,D} ⊆ BTAω
Σ. We prove that if P,Q ∈

BTAω
Σ then (P � a � Q) ∈ BTAω

Σ. Since P,Q ∈ BTAω
Σ, P = limn→∞ Pn,

Q = limn→∞Qn for some Cauchy sequences (Pn)n and (Qn)n. It is not hard
to see that (Pn � a � Qn)n is also a Cauchy sequence and P � a � Q =
limn→∞ Pn � a�Qn. Thus, P � a�Q ∈ BTAω

Σ.

2. (⊆): If P ∈ BTAω
Σ then P = S or P = D or P = Q � a � R, Q,R ∈ BTAω

Σ.
We only consider the case P /∈ {S,D}. Since P ∈ BTAω

Σ, P = limn→∞ Pn

for some Cauchy sequence (Pn)n. Without lack of generality we can assume
that for all n, Pn = Qn � a � Rn. Since (Pn)n is a Cauchy sequence and
d(Pn, Pm) = 1

2 max{d(Qn, Qm), d(Rn, Rm)}, (Qn)n and (Rn)n are also Cauchy
sequences. Therefore, there exist Q and R in BTAω

Σ such that Q = limn→∞Qn,
R = limn→∞Rn. Hence P = Q� a�R.

⊓⊔
The previous lemma shows that the completion (BTAω

Σ, d) is a domain for BTA in
which an infinite thread can be represented by a class of Cauchy sequences with the
same limit. It can be seen that these representations are equivalent to projective
sequences of threads. More precisely, we show that the metric space (BTA∞

Σ , d)
yields an equivalent domain in which all limits of Cauchy sequences are represented
in a unique way. We will use some supporting results.

In the next lemma, we prove that every projective sequence is a Cauchy sequence.

Lemma 5.29 (BTA∞
Σ , d) ⊆ (BTAω

Σ, d).

Proof: Let (Pn)n be an element in BTA∞
Σ . By Lemma 5.17, for all m,n ∈ N, m >

n > 0, Pn−1 = πn−1(Pn) = πn−1(Pm). Therefore, by Lemma 5.25, d(Pn, Pm) ≤ 1
2n−1 .

This implies that (Pn)n is a Cauchy sequence. ⊓⊔
We now show that for every Cauchy sequence, there always exists a projective se-
quence having the same limit.

Lemma 5.30 (BTAω
Σ, d) ⊆ (BTA∞

Σ , d).
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Proof: Let Q be an element in (BTAω
Σ, d). We will show that there exists P = (Pk)k

in (BTA∞
Σ , d) such that P = Q. Since Q is an element in (BTAω

Σ, d), Q = limk→∞Qk

for some Cauchy sequence (Qk)k. By Definition 5.2, we have that

∀ǫ > 0∃N ∈ N∀m,n > N : d(Qm, Qn) < ǫ.

We choose a sequence N0, N1, . . . of natural numbers satisfying πk(πk+1(QNk+1
)) =

πk(QNk
) inductively as follows.

• Let ǫ = 1
20 . Then there exists N0 ∈ N such that for all m,n ≥ N0, d(Qm, Qn) <

1
20 . It follows from Lemma 5.25 that for all n ≥ N0, π0(Qn) = π0(QN0

).

• Assume that we have chosen the numbers N0, . . . , Nk such that for all n ≥ Nk,
πk(Qn) = πk(QNk

). We choose Nk+1 as follows. Let ǫ = 1
2k+1 . Then there exists

N ∈ N such that for all m,n ≥ N , d(Qm, Qn) < 1
2k+1 . Thus, by Lemma 5.25,

for all n ≥ N , πk+1(Qn) = πk+1(QN ). Let Nk+1 = max{Nk, N}. Then by the
induction hypothesis, πk(QNk+1

) = πk(QNk
). It follows from Lemma 5.17 that

πk(πk+1(QNk+1
)) = πk(QNk+1

) = πk(QNk
).

Let Pk = πk(QNk
) for all k ∈ N. Then P = (Pk)k is an element of BTA∞

Σ . To see
that d(P,Q) = 0, consider m,n ∈ N such that m > max{Nn, n}. Then πn(Qm) =
πn(QNn

) = Pn = πn(Pm). Thus, d(Pm, Qm) < 1
2n . Hence limm→∞ d(Pm, Qm) = 0 or

d(P,Q) = 0. ⊓⊔
It follows from Lemma 5.29 and Lemma 5.30 that the metric spaces (BTAω

Σ, d) and
(BTA∞

Σ , d) are equivalent. Formally:

Theorem 5.31 (BTA∞
Σ , d) = (BTAω

Σ, d).

In addition, pointwise equal threads in (BTA∞
Σ , d) are identified. That is, the ap-

proximations of two equivalent threads in (BTA∞
Σ , d) are equal at every step. To

prove this, we will use an auxiliary lemma which essentially says that the distance
between the n-th projective approximations Pn and Qn of two infinite threads P and
Q is monotone. Since these distances are less than or equal to 1, the distance of two
(finite or infinite) threads is equal to the supremum of the distances between their
n-th projective approximations.

Lemma 5.32 For all (Pn)n, (Qn)n ∈ BTA∞
Σ , d(Pn, Qn) is a non-decreasing se-

quence. Therefore,

lim
n→∞

d(Pn, Qn) =
⊔

n∈N

d(Pn, Qn).

Proof: We show that for all n ∈ N, d(Pn, Qn) ≤ d(Pn+1, Qn+1). It follows from
Lemma 5.17 that

d(Pn, Qn) = d(πn(Pn+1), πn(Qn+1)) ≤ d(Pn+1, Qn+1).
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⊓⊔
The previous lemma implies the uniqueness of representations of infinite threads by
projective sequences, i.e.:

Proposition 5.33 Let P and Q be two threads in (BTA∞
Σ , d) which are represented

by two projective sequences (Pn)n and (Qn)n, respectively. Then

P = Q⇔ ∀n ∈ N : Pn = Qn.

Proof: If Pn = Qn for all n ∈ N then d(P,Q) = limn→∞ d(Pn, Qn) = 0. Therefore,
P = Q. We now show that if P = Q then Pn = Qn for all n ∈ N. It follows from
Lemma 5.32 that for all n ∈ N, d(Pn, Qn) ≤ d(P,Q) = 0. Hence d(Pn, Qn) = 0 or
Pn = Qn for all n ∈ N. ⊓⊔

5.3.3 Compatibility between (BTA∞

Σ ,⊑) and (BTA∞

Σ , d)

This section shows the compatibility of the two domains (BTA∞
Σ ,⊑) and (BTA∞

Σ , d)
based on complete partial orders and complete metric spaces for BTA. We will use
the following lemma which states that given a monotone sequence of finite threads
and a number n ∈ N, there always exists a subsequence with the property that the
n-th projective approximations of the threads in the subsequence do not differ.

Lemma 5.34 Let (Pn)n be a monotone sequence of finite threads. Then

∀n∃N ∀m > N : πn(Pm) = πn(PN ).

Proof: We distinguish two cases. If for all m, Pm ∈ {D,S} then there exists a
minimal N such that for all m > N , Pm = PN . Thus, for all n, πn(Pm) = πn(PN ).
The other case is that there exists a minimal N0 such that for all m ≥ N0, Pm =
Qm � a � Rm. It is not hard to see that (Qm)m and (Rm)m are also monotone
sequences. We note that for all m < N0, Qm = Rm = D. We employ induction on n.

1. If n = 0 then N = 0.

2. If n > 0 then for all m ≥ N0, πn(Pm) = πn−1(Qm) � a� πn−1(Rm). Applying
the induction hypothesis, there exist N1 and N2 such that for all m > N1,
πn−1(Qm) = πn−1(QN1

) and for all m > N2, πn−1(Rm) = πn−1(RN2
). Let

N = max{N0, N1, N2}. Then for all m > N , πn(Pm) = πn(PN ).

Therefore, for all n ∈ N, there exists N ∈ N such that for all m > N , πn(Pm) =
πn(PN ). ⊓⊔
Lemma 5.34 implies that a monotone sequence of finite threads is also a Cauchy
sequence. Formally:
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Lemma 5.35 Every monotone sequence (Pn)n of finite threads is a Cauchy sequence.
As a consequence,

⊔

n Pn = limn→∞ Pn.

Proof: Let P =
⊔

n Pn. It follows from Lemma 5.34 and Lemma 5.25 that for all
n ∈ N, there exists N ∈ N such that for all m > N , d(Pm, P ) < 1

2n . This implies that
limn→∞ Pn = P . Hence, (Pn)n is a Cauchy sequence and

⊔

n Pn = limn→∞ Pn. ⊓⊔
Hence, by Definition 5.11, the two domains of BTA based on complete partial orders
and complete metric spaces are compatible.

Theorem 5.36 (BTA∞
Σ ,⊑) and (BTA∞

Σ , d) are compatible.

5.3.4 Abstraction in (BTA∞

Σ , d) and (BTAω

Σ, d)

This section shows an advantage of the domain (BTA∞
Σ , d) of projective sequences,

in comparison with the domain (BTAω
Σ, d) of Cauchy sequences. More precisely, the

former can deal with abstraction in a natural way, while the latter cannot.
As we have seen in the previous section, the two domains (BTA∞

Σ ,⊑) and
(BTA∞

Σ , d) are compatible. As a result, for a projective sequence (Pn)n, the mono-
tone sequence (τtau(Pn))n has a limit. Hence, the abstraction of an (infinite) thread
P ∈ (BTA∞

Σ , d) represented by the projective sequence (Pn)n can be defined as the
limit of the sequence (τtau(Pn))n. This definition coincides with the definition of
abstraction of infinite threads in the domain (BTA∞

Σ ,⊑).

Proposition 5.37 Let (Pn)n be a projective sequence representing a thread P ∈
BTA∞

Σ . Then limn→∞ τtau(Pn) exists. In particular,

lim
n→∞

τtau(Pn) =
⊔

n→∞

τtau(Pn) = τtau(P ).

Abstraction, however, cannot be defined by means of Cauchy sequences. In particular,
abstraction is not continuous in (BTAω

Σ, d).

Proposition 5.38 There exists P = limn→∞(Pn)n for a Cauchy sequence (Pn)n

such that limn→∞ τtau(Pn) 6= τtau(P ).

Proof: Let (Pn)n be defined as follows

(Pn)n = D, tau ◦ S, tau2 ◦D, . . . , tau2n ◦D, tau2n+1 ◦ S, . . .

One can see that (Pn)n is a Cauchy sequence. Let P = limn→∞ Pn. Then P ∈ BTAω
Σ.

Thus, there exists τtau(P ) ∈ BTAω
Σ. However, the sequence

(τtau(Pn))n = D,S,D, . . . ,D, S, . . .

is not a Cauchy sequence. Thus, it does not have a limit in BTAω
Σ. Therefore,

limn→∞ τtau(Pn) 6= τtau(P ). ⊓⊔
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5.3.5 The uniqueness of regular threads in (BTA∞

Σ , d)

When dealing with infinite threads in concurrency theories, besides the method of
providing finite approximations of an (infinite) thread, there is another way to con-
struct infinite threads by means of guarded recursive specifications [73, 20, 30]. The
threads defined by these specifications are called regular threads. By using Banach’s
fixed point theorem, we can show the uniqueness of regular threads in the complete
metric space (BTA∞

Σ , d). This suggests the existence of a domain consisting of regular
threads for BTA.

Definition 5.39 A thread P is regular if P = E1, where E1 is defined by a finite
system of the form (n ≥ 1):

{Ei = ti|1 ≤ i ≤ n, ti = S or ti = D or ti = Eil � ai � Eir}

with Eil , Eir ∈ {E1, . . . , En} and ai ∈ Σ.

The finite system in the previous definition is called a guarded recursive specification.
To show that this specification determines a unique thread, we consider the thread
represented by it as a component of the solution of the equation X = T (X), where
the definition of T is given as follows.

Definition 5.40 Let T : (BTA∞
Σ )n → (BTA∞

Σ )n be defined such that

T = λX.[t1(X), . . . , tn(X)]

where
ti = λX1, . . . ,Xn.S or
ti = λX1, . . . ,Xn.D or
ti = λX1, . . . ,Xn.Xil � ai �Xir

with Xil ,Xir ∈ {X1, . . . ,Xn}.

Given a complete metric space (BTA∞
Σ , d), we define the metric d′ on (BTA∞

Σ )n as
in Definition 5.4, assuming that BTA∞

Σ = M . Thus, by Proposition 5.5, the metric
space ((BTA∞

Σ )n, d′) is also complete. We now show that:

Theorem 5.41 T has a unique fixed point.

Proof: Let I be the set of all indexes i such that ti = Xil � ai � Xir . Then
d(ti(X), ti(Y )) = 0 if i /∈ I, since ti(X) is a constant, and d(ti(X), ti(Y )) =
1
2 max{d(Xil , Yil), d(Xir , Yir )} otherwise. Let X,Y be elements of (BTA∞

Σ )n. By
Definition 5.4 we have

d′(T (X), T (Y )) = maxi≤n d(ti(X), ti(Y ))
= maxi∈I(

1
2 max{d(Xil , Yil), d(Xir , Yir )})

≤ 1
2 maxi≤n d(Xi, Yi) = 1

2d
′(X,Y ).
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It follows from Definition 5.7 that T is a contraction mapping. Since ((BTA∞
Σ )n, d′)

is complete and by Banach’s fixed point theorem, T has a unique solution. ⊓⊔
The previous theorem implies the uniqueness of regular threads. This suggests the
domain consisting of regular threads in (BTA∞

Σ , d) given below.

Definition 5.42 BTAr
Σ is the set of regular threads in BTA∞

Σ .

Proposition 5.43 BTAr
Σ is a domain of BTA, and BTAΣ ⊂ BTAr

Σ ⊂ BTA∞
Σ .

Proof: It is straightforward that BTAr
Σ is a domain of BTA, and BTAΣ ⊆ BTAr

Σ ⊆
BTA∞

Σ . In the following, we give two examples to show the strictness of the inclusions.

1. BTAΣ ⊂ BTAr
Σ: Let R = a ◦R. Then R ∈ BTAr

Σ but R /∈ BTAΣ.

2. BTAr
Σ ⊂ BTA∞

Σ : Let P be the thread taken from [27].

P = a ◦Q1,0,
Qi+1,j = b ◦Qi,j+1,
Q0,j = a ◦Qj+1,0.

Then P ∈ BTA∞
Σ but P /∈ BTAr

Σ (P performs a ◦ b ◦ a ◦ b2 ◦ a ◦ b3 ◦ . . .).
⊓⊔

Our results show that (BTA∞
Σ , d) is an appropriate domain for BTA, called the

projective limit domain of BTA.

5.4 Extending BTA with strategic interleaving op-
erators to TA

In this section, we show that the domain (BTA∞
Σ , d) of BTA can be extended with

the strategic interleaving operators of thread algebra. For simplicity, we will consider
only the basic strategy, the cyclic interleaving operator in [23]. Other strategies
can be done in the same way. We denote the extensions of BTAΣ and BTA∞

Σ with
strategic interleaving operators as TAΣ and TA∞

Σ , respectively. It will be shown that
multi-threads in TA∞

Σ can be defined by means of Cauchy sequences in the domain
(TA∞

Σ , d), but not by means of monotone sequences in the domain (TA∞
Σ ,⊑). We will

provide the projective sequence for a multi-thread by the projective sequences of its
components.

5.4.1 (TA∞

Σ , d) as an appropriate domain for TA

As followed from the previous section, the complete metric space (TA∞
Σ , d) contains

all limits of Cauchy sequences of finite threads. Given a thread vector of some lim-
its in TA∞

Σ , we will show that the limit of the sequence, whose elements are the
multi-threads obtained by vectors of the approximations of those limits via the cyclic
interleaving operator, exists. We will use some supporting results.
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The first auxiliary lemma shows the compositionality property of the deadlock at
termination operator SD.

Lemma 5.44 Let Pi ∈ TAΣ (1 ≤ i ≤ m) be finite threads. Then

SD(‖csi (〈P1〉 y · · · y 〈Pm〉)) =‖csi (〈SD(P1)〉 y · · · y 〈SD(Pm)〉)

Proof: This can be proven by induction on the lengths of threads. ⊓⊔
Next, we prove that the distance of two finite threads after turning termination into
deadlock decreases.

Lemma 5.45 Let P and Q be finite threads. Then d(SD(P ), SD(Q)) ≤ d(P,Q).

Proof: Straightforward. ⊓⊔
The following lemma shows that the distance of two multi-threads with the same
length obtained via the cyclic interleaving operator is always less than or equal to the
maximum distance of their corresponding components.

Lemma 5.46 Let Pi and Qi (1 ≤ i ≤ m) be finite threads. Then

d(‖csi (〈P1〉 y · · · y 〈Pm〉), ‖csi (〈Q1〉 y · · · y 〈Qm〉)) ≤ max1≤i≤m{d(Pi, Qi)}.

Proof: We prove this lemma by induction on the length and the number of threads.
Let d = d(‖csi (〈P1〉 y · · · y 〈Pm〉), ‖csi (〈Q1〉 y · · · y 〈Qm〉)). We distinguish the
following cases:

1. P1 6= Q1 and (P1 ∈ {S,D} or Q1 ∈ {S,D}). Then d(P1, Q1) = 1. Thus,
d ≤ max1≤i≤m{d(Pi, Qi)} = 1.

2. P1 = Q1 = S (or P1 = Q1 = D). Then d = d(‖csi (〈P2〉 y · · · y
〈Pm〉), ‖csi (〈Q2〉 y · · · y 〈Qm〉)) (or d = d(‖csi (〈SD(P2)〉 y · · · y
〈SD(Pm)〉), ‖csi (〈SD(Q2)〉 y · · · y 〈SD(Qm)〉))). By the induction hypothesis
and Lemma 5.45, d ≤ max1≤i≤m{d(Pi, Qi)}.

3. P1 = P ′ � a � P ′′ and Q1 = Q′ � a �Q′′. Then

d = 1
2 max{
d(‖csi (〈P2〉 y · · · y 〈Pm〉 y 〈P ′〉), ‖csi (〈Q2〉 y · · · y 〈Qm〉 y 〈Q′〉)),
d(‖csi (〈P2〉 y · · · y 〈Pm〉 y 〈P ′′〉), ‖csi (〈Q2〉 y · · · y 〈Qm〉 y 〈Q′′〉))
}.

By the induction hypothesis and d(P1, Q1) = 1
2 max{d(P ′, Q′), d(P ′′, Q′′)},

d ≤ max1≤i≤m{d(Pi, Qi)}.
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⊓⊔

Proposition 5.47 Let (P k
n )n be Cauchy sequences for 1 ≤ k ≤ m. Then

(‖csi (〈P 1
n〉 y · · · y 〈Pm

n 〉))n is also a Cauchy sequence.

Proof: By Definition 5.2, we have

∀1 ≤ k ≤ m∀ǫ > 0∃Nk ∈ N∀i, j > Nk : d(P k
i , P

k
j ) < ǫ.

Let Qn =‖csi (〈P 1
n〉 y · · · y 〈Pm

n 〉) for all n ∈ N and N = max1≤k≤m{Nk}. It follows
from Lemma 5.46 that

∀ǫ > 0∃N ∈ N∀i, j > N : d(Qi, Qj) < ǫ.

Therefore, (Qn)n is a Cauchy sequence. ⊓⊔
Proposition 5.47 suggests a definition for multi-threads obtained by thread vectors in
(TA∞

Σ , d) via the cyclic interleaving operator ‖csi (−) as follows.

Definition 5.48 Let Pj = limn→∞ P j
n (1 ≤ j ≤ m) be threads in TA∞

Σ , where (P j
n)n

(1 ≤ j ≤ m) are Cauchy sequences. Then

‖csi (〈P1〉 y · · · y 〈Pm〉) = lim
n→∞

‖csi (〈P 1
n〉 y · · · y 〈Pm

n 〉)

We note that these multi-threads cannot be defined by means of monotone sequences
as can be seen in the following example.

Example 5.49 Let (Pn)n and (Qn)n be monotone sequences of finite threads defined
as follows: P0 = D, Pn = a ◦ D for all n > 0 and Qn = b ◦ D for all n ≥ 0. Let
Rn =‖csi (〈Pn〉 y 〈Qn〉) for all n ≥ 0. Then the supremum of the sequence (Rn)n

does not exist, since it is not monotone as R0 = b ◦D and R1 = a ◦ b ◦D.

5.4.2 Projective sequences of multi-threads

This section shows that the projective sequence of a multi-thread in TA∞
Σ can be

computed by the projective sequences of its components.

First of all, we prove that two multi-threads are the same in behavior until the
n-th step if their corresponding components also are.

Lemma 5.50 Let Pi be single threads in TA∞
Σ for all 1 ≤ i ≤ m. Then

πn(‖csi (〈πn(P1)〉 y · · · y 〈πn(Pm)〉))) = πn(‖csi (〈πi1(P1)〉 y · · · y 〈πim
(Pm)〉)))

with ij ≥ n for all 1 ≤ j ≤ m.
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Proof: This can be proven by induction on n and m. ⊓⊔

We now show that a multi-thread and the multi-thread obtained by the n-th projective
approximations of its components do not differ until the n-th step. This property
allows us to compute the projective sequence of a multi-thread by the projective
sequences of its components.

Theorem 5.51 Let Pi be single threads in TA∞
Σ for all 1 ≤ i ≤ m. Then

πn(‖csi (〈P1〉 y · · · y 〈Pm〉)) = πn(‖csi (〈πn(P1)〉 y · · · y 〈πn(Pm)〉))).

Proof: Let Q =‖csi (〈P1〉 y · · · y 〈Pm〉) and Qn =‖csi (〈πn(P1)〉 y · · · y
〈πn(Pm)〉). We show that πn(Q) = πn(Qn) for all n ∈ N. It follows from Lemma 5.50
that (πn(Qn))n is a projective sequence. Since d(πn(Qn), Qn) ≤ 1

2n , limn→∞ πn(Qn) =
limn→∞Qn = Q. Thus, πn(Qn) is a projective sequence of Q. Hence, πn(Q) =
πn(Qn) for all n ∈ N. ⊓⊔

5.5 An interleaving strategy with respect to ab-
straction

We have introduced and discussed abstraction of single threads in Section 5.2.2 and
Section 5.3.4. It would be natural if abstraction is compositional with respect to
the interleaving strategies in [23]. Unfortunately, this property does not hold for the
cyclic interleaving operator, the basic strategy of the interleaving strategies in [23],
as can be seen in the following example.

Example 5.52 Let P = tau ◦ a ◦ S and Q = b ◦ S be two single threads. Then
‖csi (〈P 〉 y 〈Q〉) = tau◦ b◦a◦S. One can see that τtau(‖csi (〈P 〉 y 〈Q〉) (= b◦a◦S)
and ‖csi (〈τtau(P )〉 y 〈τtau(Q)〉) (= a ◦ b ◦ S) are not equal.

In this section, we propose a variant of the cyclic interleaving operator called the cyclic
internal persistence operator for thread algebra. We will show that this interleaving
strategy deals with abstraction in a natural way.

5.5.1 The cyclic internal persistence operator

The phrase cyclic internal persistence means that upon the execution of a thread
vector, the internal action tau is persistent. That is, its execution will not invoke the
rotation of the thread vector. The definition of the cyclic internal persistence strategy
is given below.
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Definition 5.53 The axioms for the cyclic internal persistence operator ‖cip (−)
on finite threads are given by

‖cip (〈〉) = S
‖cip (〈S〉 y α) = ‖cip (α)
‖cip (〈D〉 y α) = SD(‖cip (α))
‖cip (〈tau ◦ x〉 y α) = tau ◦ ‖cip (〈x〉 y α)
‖cip (〈x� a � y〉 y α) = ‖cip (α y 〈x〉) � a� ‖csi (α y 〈y〉)

Like the cyclic interleaving operator, we define the cyclic internal operator on infinite
threads as follows.

Definition 5.54 Let Pj = limn→∞ P j
n (1 ≤ j ≤ m) be threads in TA∞

Σ , where (P j
n)n

(1 ≤ j ≤ m) are Cauchy sequences. Then

‖cip (〈P1〉 y · · · y 〈Pm〉) = lim
n→∞

‖cip (〈P 1
n〉 y · · · y 〈Pm

n 〉)

Furthermore, one can approximate the multi-threads obtained via the cyclic internal
persistence operator by the projective approximations of its components.

Theorem 5.55 Let Pi be single threads in TA∞
Σ for all 1 ≤ i ≤ m. Then

πn(‖cip (〈P1〉 y · · · y 〈Pm〉)) = πn(‖cip (〈πn(P1)〉 y · · · y 〈πn(Pm)〉))).

Proof: Similar to the proof of Theorem 5.51. ⊓⊔

5.5.2 Compositionality of abstraction with respect to the
cyclic internal persistence strategy

This section shows that abstraction satisfies compositionality with respect to the
cyclic internal persistence operator, provided that threads cannot perform an infi-
nite sequence of internal actions. The condition suggests an approximation operator
πtaun (−) which respects concrete internal actions. This operator only takes the per-
formance of non-internal actions into account.

Definition 5.56 The approximation operator with respect to tau πtaun : TAΣ → TAΣ

is defined on finite threads by

πtau0 (P ) = D,
πtaun+1(S) = S,
πtaun+1(D) = D,
πtaun+1(tau ◦ P ) = tau ◦ πtaun+1(P )
πtaun+1(P � a�Q) = πtaun (P ) � a� πtaun (Q)

A projective sequence with respect to tau is a sequence (Pn)n∈N
such that for

each n ∈ N,
πtaun (Pn+1) = Pn.
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One can prove that every projective sequence with respect to tau is monotone, and
therefore, its supremum is in (TA∞

Σ ,⊑). Let TAtau
Σ be the set of the threads repre-

sented by these projective sequences given formally as follows.

Definition 5.57

TAtau
Σ = {(Pn)n| (Pn)n is a projective sequence with respect to tau}

For a thread P ∈ TAtau
Σ represented by a projective sequence (Pn)n with respect to

tau, we denote πtaun (P ) = Pn.
In the following lemma, we will see that the abstraction of the n-th projective

approximation with respect to tau of a finite thread coincides with the n-th projective
approximation of its abstraction.

Lemma 5.58 Let P be a finite thread. Then for all n ∈ N,

τtau(π
tau
n (P )) = πn(τtau(P )).

Proof: This can be proven by induction on n. ⊓⊔
By using the approximation operator πtaun (−), one can approximate a multi-thread in
TAtau

Σ obtained via the cyclic internal persistence strategy, by the approximations of
its components as follows.

Theorem 5.59 Let Pi (1 ≤ i ≤ m) be threads in TAtau
Σ . Then

‖cip (〈P1〉 y · · · y 〈Pm〉) =
⊔

n π
tau
n (‖cip (〈πtaun (P1)〉 y · · · y 〈πtaun (Pm)〉))

Proof: Let Q =‖csi (〈P1〉 y · · · y 〈Pm〉) and Qn =‖csi (〈πtaun (P1)〉 y · · · y
〈πtaun (Pm)〉). Similar to the proof of Theorem 5.51, one can show that the sequence
(πtaun (Qn))n is a projective sequence with respect to tau. Therefore,

⊔

n(πtaun (Qn)) =
limn(πtaun (Qn)) = limnQn = Q. ⊓⊔
Finally, abstraction is compositional with respect to the cyclic internal persistence
operator, provided that threads cannot perform an infinite sequence of internal ac-
tions.

Theorem 5.60 Let Pi (1 ≤ i ≤ m) be threads in TAtau
Σ . Then

τtau(‖cip (〈P1〉 y · · · y 〈Pm〉)) =‖cip (〈τtau(P1)〉 y · · · y 〈τtau(Pm)〉))

Proof: We consider two possibilities:
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1. The threads Pi (1 ≤ i ≤ m) are finite. The theorem can be proven by induction
on the length of threads.

2. The threads Pi (1 ≤ i ≤ m) are infinite. Let P = (‖csi (〈P1〉 y · · · y 〈Pm〉)).
It follows from Theorem 5.55, Theorem 5.59, Lemma 5.58 and the previous case
that

τtau(P )
=

⊔

n τtau(π
tau
n (‖cip (〈πtaun (P1)〉 y · · · y 〈πtaun (Pm)〉))) (by Theorem 5.59)

=
⊔

n πn(τtau(‖cip (〈πtaun (P1)〉 y · · · y 〈πtaun (Pm)〉))) (by Lemma 5.58)
=

⊔

n πn(‖csi (〈τtau(πtaun (P1))〉 y · · · y 〈τtau(πtaun (Pm))〉)) (by 1.)
=

⊔

n πn(‖cip (〈πn(τtau(P1))〉 y · · · y 〈πn(τtau(Pm))〉)) (by Lemma 5.58)
=‖cip (〈τtau(P1)〉 y · · · y 〈τtau(Pm)〉) (by Theorem 5.55)

⊓⊔

5.6 Concluding remarks

We have studied a metric denotational semantics for thread algebra. We have shown
that the projective limit domain (BTA∞

Σ , d) is an appropriate domain for BTA. In
particular, this domain represents infinite threads in a unique way. Furthermore, it
is compatible with the domain based on cpo’s in [16]. Moreover, it deals naturally
with abstraction. As a consequence of Banach’s fixed point theorem, the specification
of a regular thread yields a unique thread. In the setting of multi-threads, we have
shown that (BTA∞

Σ , d) can be extended with the cyclic interleaving operator. The
extension of (BTA∞

Σ , d) with the other strategic interleaving operators in [23] can be
done in the same way. We have also proposed an interleaving strategy with respect
to abstraction, namely the cyclic internal persistence operator, for thread algebra.
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Chapter 6

Projection semantics for
while-languages in program
algebra

6.1 Introduction

Program algebra (PGA) is a simple programming language for the study of sequential
programming [22]. The aim of [22] is to provide a better understanding of sequential
programming and to answer the question “What is a programming language?”, since
there is no a proper definition of a computer program in the literature [14]. In
[22], programs are defined as expressions in PGA. Based on PGA, more complex
programming languages can be developed and studied, by adding simple and general
constructs. In [82], Ponse provides a flexible style of programming by extending PGA
with the unit instruction operator to the program notation PGAu. This operator
takes a program and wraps it into a unit of length one. By defining a projection from
PGAu to PGA, Ponse shows that the flexibility does not come with an increase in
the expressiveness.

The extensions of PGA with conditional statements and while-loops, as defined in
[22], are also natural extensions for PGA. Apparently, with the use of these instruc-
tions, PGA is close to the programming languages that are used in practice. These
instructions are introduced in [22] with two semantics: a full projection semantics
and a lazy projection semantics. The extension PGLEcw of PGA with conditional
and while-loop instructions respecting the full projection semantics has been stud-
ied in [22]. In this chapter, we investigate extensions of PGAu with conditional and
while-loop instructions respecting the lazy projection semantics. This semantics is
less flexible than the full projection semantics. However, it is much simpler. We will
explore the expressive power of the programming language generated by PGAucw
(PGA extended with unit, conditional and while-loop instructions), in comparison
with that of PGA.

75
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For simplicity, we will first study the extension PGAuc of PGAu with conditional
instructions. We present a projection from PGAuc to PGAu, and prove correctness
for this projection.

In the study of the extension PGAucw of PGAuc with while-loops, we aim to
provide a projection from PGAucw to PGA. It turns out that the lazy projective
semantics of while-loops produces non-regular behaviors in certain cases. Under the
restriction that no consecutive occurrence of while-loops is allowed, we present a pro-
jection from PGAucw to PGLBu, a variant of PGAu containing backward jumps
given in [82]. The projection from PGAucw to PGA is a composition of this pro-
jection and the projection from PGLBu to PGA covered in [82]. The correctness
of our projections implies that the conditional and while-loop instructions are not
needed as primitive instructions in terms of expressiveness, provided that consecutive
occurrences of while-loops are forbidden.

The structure of this chapter is as follows. Section 6.2 recalls the basic concepts
of PGA, BTA and summarizes a projection semantics for PGAu. Section 6.3 defines
behavior extraction equations on positions for primitive instructions in PGAu and
PGLBu. In Section 6.4, a projection pgauc2pgau from PGAuc to PGAu is defined.
In Section 6.5, under the restriction of no consecutive occurrences of while-loops, a
projection pgaucw2pga from PGAucw to PGA is described in detail and its correctness
is proved. Section 6.6 draws some conclusions.

6.2 PGA, BTA and PGAu

This section recalls some basic concepts of PGA, BTA and PGAu from [22, 25] and
[82].

6.2.1 Program algebra

Program notation syntax

Program algebra (PGA) is defined over a set Σ of basic instructions. Each basic
instruction returns a boolean value upon execution. The collection of program ex-
pressions in PGA over Σ, denoted by PGAΣ, is generated by primitive instructions
and two composition constructs. These primitive instructions are defined by

Basic instruction All a ∈ Σ are basic instructions. Upon execution of a basic
instruction, a boolean value is generated and a state may be modified. After
execution, its subsequent instruction is performed.

Termination instruction Termination instruction, denoted by !, indicates termi-
nation of the program. (It does not modify the state and does not return a
boolean value.)

Positive test instruction For each a ∈ Σ, there is a positive test instruction, de-
noted by +a. If +a is performed by a program then first a is executed. The
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state is affected according to a. In case true is returned, the subsequent instruc-
tion is performed. In case false is returned, the next instruction is skipped and
the execution continues with the following instruction.

Negative test instruction For each a ∈ Σ, there also exists a negative test instruc-
tion, denoted by −a. If −a is performed by a program then first a is executed.
The state is affected according to a. In case false is returned, the subsequent
instruction is executed. In case true is returned, the next instruction is skipped
and the execution proceeds with the following instruction.

Forward jump instruction For any natural number k, there is an instruction #k
which denotes a jump of length k. The number k is the counter of the jump
instruction.

• If k = 0, the jump is to itself (zero steps forward). In this case inaction
will result.

• If k = 1, the subsequent instruction is performed.

• If k > 1, the execution skips the next k − 1 instructions. The instruction
after that will be performed.

If there is no instruction to be executed, inaction will occur. The two composition
constructs are defined by

Concatenation The concatenation of two programs X and Y in PGAΣ, denoted by
X;Y , is also in PGAΣ.

Repetition The repetition of a program X in PGAΣ, denoted by Xω, is also in
PGAΣ.

Typical program expressions in PGA are given in the following example.

Example 6.1 Consider the two programs below:

X ::= +a;#2; b; !
Y ::= −a; !; (b)ω.

Program X first performs action a. If true is returned then it jumps two steps and
terminates otherwise it skips the jump instruction #2 and performs action b. After
the execution of b it terminates. Program Y first performs action a as well. If true is
returned then it performs action b repeatedly otherwise it terminates.

A program in PGA is finite if it does not contain a repetition, otherwise it is infinite.
Formally:

Definition 6.2 A program expression X is finite if it has the form u1; . . . ;uk for
primitive instructions u1, . . . , uk.

According to the definition above, program X in Example 6.1 is finite, while program
Y is infinite.
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Instruction sequence congruence and canonical forms

If two program expressions can be shown to be equal by means of the program object
equations in Table 6.1, the program expressions are said to be instruction sequence
equivalent. Here X1 = X, Xn+1 = X;Xn, n is a positive integer.

(X;Y );Z = X; (Y ;Z) (PGA1)
(Xn)ω = Xω (PGA2)
Xω;Y = Xω (PGA3)
(X;Y )ω = X; (Y ;X)ω (PGA4)

Table 6.1: Program object equations.

By these program object equations, the unfolding of a repetition can be obtained:
Xω = (X;X)ω = X; (X;X)ω = X;Xω. Furthermore, each program expression in
PGAΣ can be written into one of the following first canonical forms.

Definition 6.3 Let X be a program expression in PGA. Then X is in first canonical
form iff

• X does not contain a repetition, or

• X = Y ;Zω, with Y and Z not containing a repetition.

Note that in [22], Bergstra and Loots also provide the second canonical form for
program expressions in PGAΣ. For our purpose, we do not need to consider programs
in this form.

6.2.2 Basic thread algebra

Behaviors of programs in PGA can be defined as regular threads in basic thread algebra
(BTA) [22, 25], a semantics of sequential programming languages. We note that BTA
was introduced as basic polarized process algebra (BPPA) in [22].

Primitives of BTA

We call basic instructions in Σ actions. Then finite threads in BTA are given as
follows.

Definition 6.4 Let BTAΣ denote the set of finite threads over Σ. It is generated
inductively by the following operators:

• Termination: S ∈ BTAΣ.

• Inactive behavior: D ∈ BTAΣ.
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• Postconditional composition: (−)�a�(−) with a ∈ Σ. The thread P�a�Q
with P,Q ∈ BTAΣ first performs a and then proceeds with P if true was produced
and with Q otherwise. In case P = Q we abbreviate this thread by the action
prefix: a ◦ (−). In particular,

a ◦ P = P � a� P.

Infinite threads

Threads can be infinite. An infinite thread in BTA is represented by a projective
sequence consisting of its finite approximations. These approximations are determined
by means of approximation operators πn(−) for n ∈ N given as follows.

Definition 6.5 For every n ∈ N, the approximation operator πn : BTAΣ →
BTAΣ is defined inductively by

π0(P ) = D,
πn+1(S) = S,
πn+1(D) = D,
πn+1(P � a�Q) = πn(P ) � a� πn(Q),

and hence, πn+1(a ◦ P ) = a ◦ πn(P ).
A projective sequence is a sequence (Pn)n∈N

such that for each n ∈ N,

πn(Pn+1) = Pn.

We say that two (finite or infinite) threads are equal exactly if for each n ∈ N, their
n-th approximations are equal. Let BTA∞

Σ be the set of projective sequences.

Regular threads

Regular threads in BTA are used to represent program behaviors in PGA.

Definition 6.6 A thread P is regular over Σ if P = E1, where E1 is defined by a
finite system of the form (n ≥ 1):

{Ei = ti|1 ≤ i ≤ n, ti = S or ti = D or ti = Eil � ai � Eir}

with Eil , Eir ∈ {E1, . . . , En} and ai ∈ Σ.

The finite system in the definition above is called a guarded recursive specification.

Theorem 6.7 A guarded recursive specification has a unique solution in BTA∞
Σ .

Proof: See Theorem 5.41. ⊓⊔
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6.2.3 Assigning a thread in BTA to a program in PGA

This section assigns a regular thread in BTA to a program in PGA by means of
behavior extraction equations. This suggests the notions of behavioral equivalence
and program algebra projections that map programs of a programming language to
behaviorally equivalent programs in PGA.

Behavior extraction equations

Program behaviors in PGA are given by means of an operator called the behavior
extraction operator | − | and behavior extraction equations.

Definition 6.8 For a finite program X, the behavior is given by

|X| = |X; (#0)ω|.

Definition 6.9 The behavior |X| of an (infinite) program X is determined recursively
by the behavior extraction equations below:

|!;X| = S,
|a;X| = a ◦ |X|,

| + a;u;X| = |u;X| � a� |X|,
| − a;u;X| = |X| � a� |u;X|,

|#0;X| = D,
|#1;X| = |X|,

|#(k + 2);u;X| = |#(k + 1);X|.

where u is a primitive instruction, a ∈ Σ and k ∈ N.

By means of these equations, successive steps of the behavior of a program can be
obtained. In the case that a program has a non-trivial loop in which no action occurs,
its behavior will be identified with D. Phrased differently: if for a behavior |X| the
behavior extraction equations fail to prove |X| = S or π1(|X|) = a◦D for some a ∈ Σ,
then |X| = D.

Theorem 6.10 Each regular thread in BTA∞
Σ can be specified in PGAΣ. Vice versa,

each program behavior specified in PGAΣ is regular.

Proof: See [30]. ⊓⊔

Behavioral equivalence

Behavioral equivalence identifies programs whose behaviors are the same.

Definition 6.11 Two programs X and Y are behaviorally equivalent if |X| = |Y |.
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Program algebra transformations

Program algebra transformations are used to map a program in a programming lan-
guage to a behaviorally equivalent one in another programming language. This notion
allows us to study and develop more complex programming languages based on PGA.

Definition 6.12 A transformation is a mapping ϕ from a programming language
L1 to another programming language L2. This transformation ϕ is correct if for
every X ∈ L1, |X|L1

= |ϕ(X)|L2
where |−|L is an assignment of behaviors to elements

of L. This transformation is called a projection if L2 ⊆ L1, and an embedding if
L1 ⊆ L2.

We can write |X| instead of |X|L if L is fixed.

6.2.4 PGAu and projecting PGAu into PGA

This section introduces the extension PGAu of PGA with the unit instruction and
the projection from PGAu into PGA given in [82]. This extension allows for a more
flexible style of programming, and can be used to study the program algebra itself.

The unit instruction operator

The unit instruction operator takes a PGA program and wraps it into a unit of length
one, and can be regarded as a primitive instruction. This length matters in connection
with the evaluation of jumps and tests in Definition 6.9.

Definition 6.13 The behavior extraction equation of unit instructions is given by

|u(X);Y | = |X;Y |.

A PGAu program is in first canonical form if the program itself and the bodies of all
units are in first canonical form when units are regarded as primitive instructions.

PGLB, PGLBg, PGLBu and PGLBur

In order to define the projection pgau2pga from PGAu to PGA, some variants of
PGA are needed. They are the program notations PGLB, PGLBg and PGLBu. In
particular, the program notation PGLB is a modification of PGA by adding backward
jump instructions and omitting repetition. The program notation PGLBg is a variant
of PGLB with labels and gotos instead of forward and backward jumps. The program
notation PGLBu is the extension of PGLB with the unit instruction operator. For our
projections, we will extend PGAu with backward jump instructions to the program
notation PGLBur (r stands for repetition). We recall the notion of backward jump
instructions from [22].
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PGLBu
pglbu2pglbg

−→ PGLBg
pglbg2pglb

−→ PGLB
↑pgau2pglbu ↓pgau2pglbu
PGAu PGA

Table 6.2: Projection from PGAu to PGA.

Backward jump instruction For any natural number k, there is an instruction
\#k which denotes a backward jump of length k. If k = 0, this jump is to itself
and inaction occurs. If k > 0, it moves execution to proceed at k instructions
backwards. If there are not that many instructions in the preceding part of the
program, inaction occurs.

Projecting PGAu into PGA

The projection pgau2pga from PGAu into PGA is defined as a composition of four
mappings pgau2pglbu, pglbu2pglbg, pglbg2pglb and pglb2pga in Table 6.2. These
mappings are described in detail in [82].

6.3 Behavior extraction equations based on posi-
tions

The behavior extraction equations given in Definition 6.9 enable single pass execution
for programs in PGA. However, they cannot be applied for determining program
behaviors in the case that the programs contain a backward jump instruction. In this
section, we define behavior extraction equations based on the positions of instructions
in a program containing backward jumps, in order to determine its behavior in a
natural way.

6.3.1 Positions of instructions as sequences of natural numbers

To define behavior extraction equations based on positions of instructions in a pro-
gram, we locate all instructions in a PGAu program by sequences of natural numbers.
The empty sequence is written as ǫ, and the concatenation of a sequence σ with a
natural number n is σ, n. This location serves to keep track of the relative position in
a unit and in all encompassing units. We define a partial order < between sequences
of natural numbers as follows.

Definition 6.14

1. ǫ < γ for every sequence γ.

2. For two sequences δ = i, δ′ and σ = j, σ′ with i, j ∈ N and δ′, σ′ some sequences,
δ < σ if i < j or i = j and δ′ < σ′.



6.3. Behavior extraction equations based on positions 83

Definition 6.15 The disunification operator ∆ is defined on unit instructions
u(Y ) by ∆u(Y ) = Y .

We use the notation [X]σ to denote the instruction at position σ of a program X.

Definition 6.16 Let X be a program in PGAu in first canonical form. The notation
[X]σ is defined inductively as follows.

1. [X]ǫ = u(X).

2. If ∆[X]σ = v1; . . . ; vn then for all 1 ≤ i ≤ n : [X]σ,i = vi.

3. If ∆[X]σ = v1; . . . ; vn; (vn+1; . . . ; vn+m)ω then for all 1 ≤ i ≤ n+m : [X]σ,i = vi

and for all i > n+m : [X]σ,i = vn+1+((i−n−1) mod m).

If [X]σ is not defined then we write ∄[X]σ. If σ 6= ǫ and [X]σ is defined then we say
that σ is a position of program X.

Example 6.17 Let X = +a;u(+b;#2; \#3); !. Then the instructions of X are lo-
cated as follows:

[X]1 = +a,
[X]2 = u(+b;#2; \#3),
[X]2,1 = +b, [X]2,2 = #2, [X]2,3 = \#3,
[X]3 =!.

We now define addition and subtraction of a sequence with a natural number in order
to compute the position reached from a position by jumping some steps forward or
backward.

Definition 6.18 (Addition.) The function σ ⊕X l computes the position of the
instruction or unit in a program X that one reaches by jumping l steps forward from
position σ. Suppose σ = δ, i. If δ = ǫ then Y = X otherwise let Y = ∆[X]δ. We
consider the following possibilities:

1. Y = u1; . . . ;un. If δ = ǫ or i+ l ≤ n then σ ⊕X l = δ, i+ l otherwise σ ⊕X l =
δ ⊕X (l − n+ i);

2. Y = u1; . . . ;un; (un+1; . . . ;un+k)ω. Then σ ⊕X l = δ, i+ l.

Definition 6.19 (Subtraction.) The function σ ⊖X l computes the position of the
instruction or unit in a program X that one reaches by jumping l instructions backward
from position σ of X. Suppose σ = δ, i. We consider the following possibilities:

1. δ = ǫ. Then σ ⊖X l = max(0, i− l).

2. δ 6= ǫ. If i > l then σ ⊖X l = δ, i− l otherwise σ ⊖X l = δ ⊖X (l − i+ 1).

We can simply use the notations ⊕ and ⊖ instead of ⊕X and ⊖X if X is fixed.

Example 6.20 Consider program X in Example 6.17. By Definition 6.18 and Defi-
nition 6.19, (2, 2) ⊕ 2 = 3 and (2, 3) ⊖ 3 = 1.
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6.3.2 Behavior extraction equations on positions for PGAu

The behavior extraction equations based on positions of programs in PGAu are given
as follows.

Definition 6.21 Let X be a PGAu program in the first canonical form. Then |σ,X|
denotes the behavior of X at position σ and is defined by:

|σ,X| =







































S if [X]σ =!,
D if [X]σ = #0 or ∄[X]σ,
a ◦ |σ ⊕ 1,X| if [X]σ = a,
|σ ⊕ 1,X| � a� |σ ⊕ 2,X| if [X]σ = +a,
|σ ⊕ 2,X| � a� |σ ⊕ 1,X| if [X]σ = −a,
|σ ⊕ l,X| if [X]σ = #l,
|(σ, 1),X| if [X]σ = u(Y )

If |σ,X| cannot be computed then inaction occurs, i.e., |σ,X| = D.

One can show that the behavior at the first position of a program in PGAu coincides
with its behavior computed by behavior extraction equations in Definition 6.9.

Lemma 6.22 Let X be a program in PGAu. Then |1,X| = |X|.

Proof: Omitted. ⊓⊔

6.3.3 Behavior extraction equations based on positions for
PGLBur

In this section, we provide behavior extraction equations based on positions of in-
structions for programs containing backward jumps in PGLBur.

We note that the notion of first canonical form for programs in PGLBur is defined
as in Section 6.2.4 (backward jump instructions are regarded as primitive instruc-
tions).

Definition 6.23 Let X be a PGLBur program in the first canonical form. The be-
havior extraction equations at position σ for backward jumps of X are defined by

|σ,X| = |σ ⊖ l,X| if [X]σ = \#l.

The behavior extraction equations at position σ for the other instructions in PGLBur
are given as in Definition 6.21. The behavior |X| of X is its behavior at the first
position, i.e., |X| = |1,X|.
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Example 6.24 The behavior |X| of program X = +a;u(+b;#2; \#3); ! in Exam-
ple 6.17 is determined by

|X| = |1,X| = |1 ⊕ 1,X| � a � |1 ⊕ 2,X|
= |2,X| � a � |3,X|
= |(2, 1),X| � a � S
= (|(2, 1) ⊕ 1,X| � b � |(2, 1) ⊕ 2,X|) � a � S
= (|(2, 2),X| � b � |(2, 3),X|) � a � S
= (|(2, 2) ⊕ 2,X| � b � |(2, 3) ⊖ 3,X|) � a � S
= (|3,X| � b � |1,X|) � a � S
= (S � b � |X|) � a � S.

6.4 PGA with conditional instructions

It is observed in [22] that PGA extended with conditional instructions is a natural ex-
tension for PGA. The conditional instruction is introduced in [22] with two semantics:
a full projection semantics and a lazy projection semantics. The latter semantics is
less flexible than the former, however, it is much simpler. The extension of PGA with
conditional instructions respecting the full projection semantics, denoted by PGLEc,
has been studied in [22]. In this section, we investigate the extension PGAuc of
PGAu with conditional instructions, with respect to the lazy projection semantics,
by providing a projection from PGAuc to PGAu.

6.4.1 The conditional instruction

We recall the notion of conditional instructions from [22]. There are two types of
conditional instructions:

Positive conditional For each basic instruction a ∈ Σ, there is a positive condi-
tional choice for PGA, denoted by if + a. Its execution starts with a, if true
is returned the next instruction is performed and the subsequent instruction
is skipped. If false is returned the next instruction is skipped and execution
continues thereafter.

Negative conditional For each basic instruction a ∈ Σ, there is a negative condi-
tional choice for PGA, denoted by if − a. Its execution starts with a, if false
is returned the next instruction is performed and the subsequent instruction
is skipped. If true is returned the next instruction is skipped and execution
continues thereafter.

The definitions of finite programs and first canonical form in PGAuc are given as
usual (see Definition 6.2, Definition 6.3 and Section 6.2.4) where units and conditional
instructions are regarded as primitive instructions.

The behavior of a PGAuc program is determined by the behavior extraction equa-
tions in Definition 6.8, Definition 6.9, Definition 6.13, and the behavior extraction
equations for conditional instructions defined as follows.
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Definition 6.25 The behavior extraction equations for conditional instructions are

|if + a;u;X| = | − a;#3;u;#2;X| = |u;#2;X| � a� |X|,
|if− a;u;X| = | + a;#3;u;#2;X| = |X| � a� |u;#2;X|.

Example 6.26

|if + a; b; c; !| = |b;#2; c; !| � a� |c; !| = (b ◦ S) � a � (c ◦ S)

It should be noticed that the behavior extraction equations for conditional instructions
sometimes give undesired behaviors for programs as can be seen in the following
example.

Example 6.27

1. |if + a;#2; b; !| = |#2;#2; b; !| � a� |b; !| = |b; !| � a� |b; !| = a ◦ b ◦ S,

2. |if + a; +b; c; !| = | + b;#2; c; !| � a� |c; !| = (S � b� (c ◦ S)) � a� (c ◦ S),

3. |if + a; if + b; c; !| = |if + b;#2; c; !| � a� |c; !| = (b ◦ c ◦ S) � a� (c ◦ S).

6.4.2 Projecting PGAuc into PGAu

To define the projection pgauc2pgau, we will use the 2-update Upd2(X) that up-
dates the contents of jumps with two more steps in some cases. This operation uses
least jumps(σ,X) to count the least jump from position σ that takes one outside X.

Definition 6.28 Let X be a program in first canonical form. The function
least jumps(σ,X) calculates the least jump that takes one outside X from position
σ of X. Suppose σ = δ, i. We consider the following possibilities:

1. δ = ǫ. There are two cases:

(a) X = u1; . . . ;un. Then least jumps(σ,X) = n− i+ 1.

(b) X = Y ;Zω. Then least jumps(σ,X) = ∞.

2. δ 6= ǫ. There are also two cases:

(a) ∆[X]δ = u1; . . . ;un. Then least jumps(σ,X) = least jumps(δ,X) +n−
i.

(b) ∆[X]δ = Y ;Zω. Then least jumps(σ,X) = ∞.

Example 6.29 Let X = u(a;#3;#3); b be a program in PGAu. Then
least jumps((1, 2),X) = 3 and least jumps((1, 2),X) = 2.
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Definition 6.30 Let X be a program expression in PGAu. Then the 2-update
Upd2(X) is the program expression Y which is the same as X except that when
[X]σ = #l with l > least jumps(σ,X), [Y ]σ = #l + 2.

Example 6.31 Let X be the program in Example 6.29. Then
Upd2(X) = u(a;#2;#4); b.

Definition 6.32 The projection pgauc2pgau from PGAuc to PGAu is the operation
on program expressions in first canonical form that replaces a conditional instruction
if± a at position σ of X by the unit

u(±a;u(Upd2(pgauc2pgau([X]σ⊕X1;#2)));#2)

leaving the rest unchanged.

Let Y be the program after projecting program X from PGAuc to PGAu. The
function Upd2() in the previous definition ensures that the behavior at position (σ, 2, 1)
of instruction [Y ]σ,2,1 (the replacement of [X]σ⊕X1 in [Y ]σ) is the same as the behavior
at position σ ⊕ 1 of instruction [Y ]σ⊕Y 1 (the replacement of [X]σ⊕X1 in Y ). If there
is a forward jump l in [Y ]σ⊕Y 1 that takes one outside [Y ]σ⊕Y 1 then this jump is
updated to l+2 in [Y ]σ,2,1 in order to reach the same instruction, since there are two
instructions (#2) between [Y ]σ,2,1 and [Y ]σ⊕Y 1.

Since [X]σ⊕X1;#2 contains fewer conditional instructions than X, the projection
pgauc2pgau(X) is well-defined. We illustrate this projection by the following example.

Example 6.33 Consider the program given in Example 6.26. Its projection into
PGAu is given as follows.

pgauc2pgau(if + a; b; c; !) = u(+a;u(Upd2(pgauc2pgau(b;#2)));#2); b; c; !
= u(+a;u(b;#4);#2); b; c; !

In Table 6.3, a more complicated example taken from Example 6.27 for the projec-
tion pgauc2pgau is given. In this example, the occurrence of consecutive conditional
statements produces an undesired behavior for the program.

In the following, we prove correctness for the projection pgauc2pgau. Let Ψ
abbreviate this projection. We provide some supporting results.

Lemma 6.34 Let X,Y be programs in PGAuc. Then

|Ψ(!;X)| = S,
|Ψ(a;X)| = a ◦ |Ψ(X)|,

|Ψ(+a;u;X)| = |Ψ(u;X)| � a� |Ψ(X)|,
|Ψ(−a;u;X)| = |Ψ(X)| � a� |Ψ(u;X)|,
|Ψ(#0;X)| = D,
|Ψ(#1;X)| = |Ψ(X)|,

|Ψ(#k + 2;u;X)| = |Ψ(#k + 1;X)|,
|Ψ(u(X);Y )| = |Ψ(X;Y )|.
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pgauc2pgau(if + a; if + b; c; !)

= u(+a;u(Upd2(pgauc2pgau(if + b;#2)));#2);

u(+b;u(Upd2(pgauc2pgau(c;#2)));#2); c; !

= u(+a;u(Upd2(u(+b;u(Upd2(pgauc2pgau(#2;#2)));#2);#2));#2);

u(+b;u(c;#4);#2); c; !

= u(+a;u(Upd2(u(+b;u(#2;#4);#2);#2));#2);

u(+b;u(c;#4);#2); c; !

= u(+a;u(u(+b;u(#2;#6);#2);#4);#2); u(+b;u(c;#4);#2); c; !

Table 6.3: An example on pgauc2pgau.

Proof: This follows from Definition 6.9, Definition 6.13 and Definition 6.32. ⊓⊔

Lemma 6.35 Let X be a program in PGAuc, and u a unit. Then

|#k + 1;Ψ(u;X)| = |#k; Ψ(X)|.

Proof: This follows from the fact that Ψ(u;X) = v; Ψ(X) for some primitive instruc-
tion or unit v. ⊓⊔

Lemma 6.36 Let X be a program in PGAuc. Then

|Ψ(if + a;u;X)| = |Ψ(u;#2;X)| � a� |Ψ(X)|,
|Ψ(if− a;u;X)| = |Ψ(X)| � a� |Ψ(u;#2;X)|.

Proof: It follows from Definition 6.32 and Lemma 6.35 that

|Ψ(if + a;u;X)| = |u(+a;u(Upd2(Ψ(u;#2)));#2);Ψ(u;X)|
= | + a;u(Upd2(Ψ(u;#2)));#2;Ψ(u;X)|
= |u(Upd2(Ψ(u;#2)));#2;Ψ(u;X)| � a� |#2;Ψ(u;X)|
= |Upd2(Ψ(u;#2));#2;Ψ(u;X)| � a� |Ψ(X)|

Let Y = Upd2(Ψ(u;#2));#2;Ψ(u;X) and Z = Ψ(u;#2;X). We define a binary
relation ∼ between positions of Y and Z as follows.
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1. 1, σ ∼ 1, σ for every sequence σ. Here [Y ]1,σ = [Z]1,σ if [Z]1,σ ∈ {a,±a, !}.
Moreover, if [Z]1,σ = #l then [Y ]1,σ = #l if l ≤ least jumps((1, σ),Ψ(u;#2))
otherwise [Y ]1,σ = #l + 2.

2. 2 ∼ 2. Here [Y ]2 = #4 (by Definition 6.30) and [Z]2 = #2.

3. 3 ∼ 3. Here [Y ]3 = #2 and [Z]3 = [Ψ(X)]1.

4. Finally, (5 ⊕Y l, σ) ∼ (3 ⊕Z l, σ) for all l ≥ 0 and for all sequences σ. Here
[Y ]5⊕Y l = [Z]3⊕Z l = [Ψ(X)]1⊕Ψ(X)l.

Let Pσ = |σ, Y | and Qδ = |δ, Z| for positions σ of Y and positions δ of Z. We show
that for all positions σ of Y and δ of Z with σ ∼ δ,

if Pσ = S then Qδ = S;
if Pσ = D then Qδ = D;
if Pσ = Pσ′ then Qδ = Qδ′ with σ′ ∼ δ′;
if Pσ = Pσ′ � a � Pσ′′ then Qδ = Qσ′ � a �Q′′

σ with σ′ ∼ δ′ and σ′′ ∼ δ′′

(6.1)

and vice versa.
Let α and β be the positions of Y (if they exist) such that α⊕Y 2 = β ⊕Y 1 = 2.

We consider the following possibilities:

1. σ = δ = α. There are eight cases:

(a) [Y ]σ = [Z]σ =!. By Definition 6.21, Pσ = Qσ = S.

(b) [Y ]σ = [Z]σ = a for some a ∈ Σ. Then Pσ = a◦Pσ⊕Y 1 and Qσ = a◦Qσ⊕Z1

with σ ⊕Y 1 ∼ σ ⊕Z 1.

(c) [Y ]σ = [Z]σ = +a for some a ∈ Σ. Then

Pσ = Pσ⊕Y 1 � a � Pσ⊕Y 2 = Pσ⊕Y 1 � a � P2 = Pσ⊕Y 1 � a � P2⊕Y 4

= Pσ⊕Y 1 � a � P5

Qσ = Qσ⊕Z1 � a �Qσ⊕Y 2 = Qσ⊕Z1 � a �Q2 = Qσ⊕Z1 � a �Q2⊕Z2

= Qσ⊕Z1 � a �Q3

with σ ⊕Y 1 ∼ σ ⊕Z 1 and 5 ∼ 3.

(d) [Y ]σ = [Z]σ = −a for some a ∈ Σ. Similar to the previous case, we
likewise get Pσ = P5 � a � Pσ⊕Y 1 and Q = Q3 � a � Qσ⊕Z1 with 5 ∼ 3
and σ ⊕Y 1 ∼ σ ⊕Z 1.

(e) [Y ]σ = [Z]σ = #0. Then Pσ = Qσ = D.

(f) [Y ]σ = [Z]σ = #l for 1 ≤ l ≤ 3. Then Pσ = Pσ⊕Y l and Qσ = Qσ⊕Z l with
σ ⊕Y l ∼ σ ⊕Z l.

(g) [Y ]σ = l+2 and [Z]σ = l for some l > 3. Then Pσ = Pσ⊕Y l+2 = P5⊕Y (l−3)

and Qσ = Qσ⊕Z l = Q3⊕Z(l−3) with 5 ⊕Y (l − 3) ∼ 3 ⊕Z (l − 3).

Hence, (6.1) also holds for this case.
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2. σ = δ = β. The proof of (6.1) is similar to the previous case.

3. σ = δ = 2. Here [Y ]2 = #4 and [Z]2 = #2. Therefore P2 = P2⊕Y 4 = P6 and
Q2 = Q2⊕Z2 = Q4 with 6 ∼ 4.

4. σ = δ = 3. Here [Y ]3 = #2. Therefore P3 = P3⊕Y 2 = P5 with 5 ∼ 3.

5. σ < α or σ ≥ 5. (6.1) can be derived similarly to the first case.

It follows from Theorem 6.7 that Pσ = Qδ for all positions σ of Y and δ of Z with
σ ∼ δ. Therefore |Y | = |Z|. Hence,

|Ψ(X)| = |Ψ(u;#2;X)| � a� |Ψ(X)|.

We likewise get |Ψ(if− a;u;X)| = |Ψ(X)| � a� |Ψ(u;#2;X)|. ⊓⊔

Theorem 6.37 The projection pgauc2pgau from PGAuc to PGAu is correct, i.e, for
every program X in PGAuc:

|pgauc2pgau(X)| = |X|.

Proof: This follows from Definition 6.9, Definition 6.25, Lemma 6.34, Lemma 6.36
and Theorem 6.7. ⊓⊔
Our projection pgauc2pgau from PGAucw to PGAu together with the projection
pgau2pga from PGAu to PGA constitutes a projection from PGAuc to PGA. This
projection is useful for the study of PGA itself. Furthermore, its correctness shows
that the conditional instruction is not needed as a primitive instruction in terms of
expressiveness.

6.5 PGA with while-loops

A while-loop is a control structure used in most programming languages that allows
code to be executed repeatedly based on a given condition. Similar to the condition
instruction, the while-loop instruction is also introduced in [22] with a full projection
semantics and a lazy projection semantics. The extension of PGA with conditional
and while-loop instructions respecting the full projection semantics has been given as
the program notation PGLEcw in [22]. This section studies the extension PGAucw
of PGA with units, conditional instructions and while-loops, with respect to the lazy
projection semantics. We discuss non-regularity of PGA with while-loops. Under a
restriction that no consecutive occurrences of while-loops are permitted, we present
a projection pgaucw2pga from PGAucw into PGA.

6.5.1 The while-loop instruction

We recall from [22] the notion of while-loop instructions. There are two types of
while-loop instructions:
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Positive while header For each a ∈ Σ, there is a positive while header for PGA,
denoted by while+ a. Its execution starts with a. If true is returned, the next
instruction is executed and then we return to while + a. If false is returned,
the next instruction is skipped and execution continues thereafter.

Negative while header For each a ∈ Σ, there is a negative while header for PGA,
denoted by while− a. Its execution starts with a. If false is returned, the next
instruction is executed and then we return to while−a. If true is returned, the
next instruction is skipped and execution continues thereafter.

Definition 6.2 for finite programs in PGA is extended straightforwardly to PGAucw
where units, conditional instructions and while-loops are regarded as primitive in-
structions.

Definition 6.38 The behavior extraction equations for while-loop instructions are

|while + a;u;X| = | − a;#4;u; while + a;u;X|
= |u; while + a;u;X| � a� |X|,

|while− a;u;X| = | + a;#4;u; while− a;u;X|
= |X| � a� |u; while− a;u;X|.

It should be noticed that PGA programs with while-loop instructions can yield curious
behaviors, as seen in the following example:

Example 6.39

1. |while + a;#2; b| = |#2; while + a;#2; b| � a� |b| = D � a� b ◦D.

2. |if+ c; while+a; b| = |while+a;#2; b|� c � |b| = (D�a � b◦D)� c � (b◦D)

3. |while + a; if + c; b; !| = |if + c; while + a; if + c; b; !| � a � |b; !|
= (|while + a;#2; if + c; b; !| � c � |if + c; b; !|) � a � (b ◦ S)
= (((b ◦ S) � a � ((b ◦D) � c � S)) � c � ((b ◦D) � c � (S))) � a � (b ◦ S)

6.5.2 Non-regularity of programs containing while-loops

This section shows that programs containing while-loops may yield non-regular be-
haviors.

Proposition 6.40 There exists a program in PGAucw that produces a non-regular
behavior.

Proof: Let X = while+a; while+b; c be a program in PGAucw. We will show that
the behavior |X| of X is not regular. Let E1 = |X|, E0 = |while+b; c| = c◦E0�b�D
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and E−1 = |c| = c ◦D. By Definition 6.38,

E1 = E2 � a� E−1

E2 = E3 � b� E0

E3 = E4 � a� E1

...
E2k+1 = E2k+2 � a� E2k−1

E2k+2 = E2k+3 � b� E2k

...

where for all k > 0,

E2k−1 = |(while + a; while + b)k; c|,
E2k = |while + b; (while + a; while + b)k; c|.

Suppose that P is regular. Then there is a least n ∈ N such that ∃i < n with En = Ei.
But, by the equations above, this implies that En+1 = Ei+1 and En−2 = Ei−2: a
contradiction. So, P is not regular. ⊓⊔
The undesired result above implies that the program notation PGAucw containing
while-loops cannot be projected into PGA (see Theorem 6.10). To circumvent this
problem, we impose a restriction on PGAucw in order to avoid non-regular behaviors
as follows: No consecutive occurrence of while-loops is permitted, that is to say a
while-loop instruction while± a must not be followed by another while-loop instruc-
tion while± b or a unit u with li(u) = while± b, where the function li(u) denotes
the last primitive instruction performed by u given as follows.

Definition 6.41 The last primitive instruction li(X) of a program X in the first
canonical form is defined by

1. li(X) = X if X consists of a single primitive instruction;

2. li(u(X)) = li(X);

3. if X = u1; . . . ;un then li(X) = li(un);

4. if X = Y ;Zω then li(X) = #0.

Example 6.42

1. The program X = while + a;u(c; while + b); d produces a non-regular behav-
ior although the two while-loop instructions of X are not placed next to each
other. It is because after the application of the lazy projection semantics for the
instruction while + a, the code fragment while + b; while + a will occur and
produce a non-regular behavior for the program as seen in Proposition 6.40.

2. The program Y = while + a;u(while + b; c); ! produces a regular behavior
although Y seems to contain a consecutive occurrence of while-loops. After the
application of the lazy projection semantics for the instruction while + a, the
instructions while + b and while + a is separated by the instruction c.
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In the next section we define the projection pgaucw2pga from PGAucw to PGA under
the restriction above and show its correctness.

6.5.3 Projecting PGAucw into PGA

Replacing while-loop instructions requires an instruction that can move back the
control-flow such as backward jumps. Thus, instead of defining a projection from
PGAucw to PGAu as considered in Section 6.4, we define a projection from PGAucw
to PGLBu, a variant of PGA with units and backward jumps (see Section 6.2.4).
We first describe a transformation pgaucw2pgbur from PGAucw to PGLBur under
the restriction that no consecutive occurrences of while-loops are permitted, where
PGLBur is an extension of PGLBu with repetition. We then define a transfor-
mation pglbur2pglbu from PGLBur to PGLBu. The program algebra projection
pgaucw2pga from PGAucw to PGA is a composition of three mappings pgaucw2pgbur,
pglbur2pglbu and pglbu2pga. We note that the projection pglbu2pga from PGLBu
to PGA is covered in [82].

Transformation from PGAucw to PGLBur

The transformation pgaucw2pgbur from PGAucw to PGLBur removes all conditional
instructions and while-loops of the programs with the use of backward jumps.

Definition 6.43 The transformation pgaucw2pgbur from PGAucw to PGLBur is the
operation on program expressions in first canonical form that replaces a conditional
instruction if± a at position σ of X by

u(±a;u(Upd2(pgaucw2pgbur([X]σ⊕X1;#2)));#2)

and a while-loop while± a at position δ by

u(±a;u(Upd2(χδ([X]δ⊕X1)); \#2;#2);#2)

leaving the rest unchanged. The operation χδ is the same as pgaucw2pgbur except
that if the last primitive instruction of [X]δ⊕X1 is a conditional instruction if ± c
then it is replaced by

u(±c;u(Upd2(pgaucw2pgbur([X]δ;#2)));#2)
= u(±c;u(Upd2(pgaucw2pgbur(while± a;#2));#2))
= u(±c;u(u(±a;u(#4; \#2;#2);#2);#4);#2)

(6.2)

This transformation is defined under the restriction that li([X]δ⊕X1) 6= while± b.

The meaning of the expressions χσ depends, of course, on the program X that we
are considering. If it is not obvious by itself which program this is, we write χX

σ to
emphasize that the current projecting objects are in program X.

The projection above is illustrated by three examples in Table 6.4, Table 6.5 and
Table 6.6. The programs in Table 6.5 and Table 6.6 are taken from Example 6.39 in
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pgaucw2pgbur(X) = pgaucw2pgbur(while + a; b)

= u(+a;u(Upd2(χ
X
1 (b)); \#2;#2);#2); b

= u(+a;u(b; \#2;#2);#2); b

Table 6.4: First example on pgaucw2pgbur

pgaucw2pgbur(X) = pgaucw2pgbur(if + c; while + a; b)

= u(+c;u(Upd2(pgaucw2pgbur(while + a;#2)));#2);

u(+a;u(Upd2(χ
X
2 (b)); \#2;#2);#2); b

= u(+c;u(Upd2(u(+a;u(Upd2(χ
while+a;#2
1 (#2)); \#2;#2);#2);#2));#2);

u(+a;u(b; \#2;#2);#2); b

= u(+c;u(Upd2(u(+a;u(#4; \#2;#2);#2);#2));#2);

u(+a;u(b; \#2;#2);#2); b

= u(+c;u(u(+a;u(#4; \#2;#2);#2);#4);#2);

u(+a;u(b; \#2;#2);#2); b

Table 6.5: Second example on pgaucw2pgbur

which a conditional instruction is followed by a while-loop and a while-loop is followed
by a conditional instruction. Both programs produce undesired behaviors after the
transformation.

Lemma 6.44 The transformation pgaucw2pgbur is well-defined.

Proof: It is because both [X]σ⊕X1 and [X]δ⊕X1 in Definition 6.43 contain fewer
conditional instructions and while-loops than X. ⊓⊔
Let Ψ abbreviate the projection pgaucw2pgbur. To prove correctness for Ψ, we use
some supporting results.

Lemma 6.45 Let X be a PGLBur program that does not contain any backward jump
instruction that takes one outside X. Then for all k ≥ 0,

|1 ⊕X k + 1, u;X| = |1 ⊕X k,X|.
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pgaucw2pgbur(X) = pgaucw2pgbur(while + a; if + c; b; !)

= u(+a;u(Upd2(χ
X
1 (if + c)); \#2;#2);#2);

u(+c;u(Upd2(pgaucw2pgbur(b;#2)));#2); b; !

= u(+a;u(Upd2(u(+c;u(u(±a;u(#4; \#2;#2);#2);#4);#2)); \#2;#2);#2);

u(+c;u(b;#4);#2); b; !

= u(+a;u(u(+c;u(u(+a;u(#4, \#2;#2);#2);#6);#4); \#2;#2);#2);

u(+c;u(b;#4);#2); b; !

Table 6.6: Third example on pgaucw2pgbur

Proof: Straightforward. ⊓⊔

Lemma 6.46 Let X,Y be program in PGAucw. Then

|Ψ(!;X)| = S,
|Ψ(a;X)| = a ◦ |Ψ(X)|,

|Ψ(+a;u;X)| = |Ψ(u;X)| � a� |Ψ(X)|,
|Ψ(−a;u;X)| = |Ψ(X)| � a� |Ψ(u;X)|,
|Ψ(#0;X)| = D,
|Ψ(#1;X)| = |Ψ(X)|,

|Ψ(#k + 2;u;X)| = |Ψ(#k + 1;X)|,
|Ψ(u(X);Y )| = |Ψ(X;Y )|,

|Ψ(if + a;u;X)| = |Ψ(u;#2;X)| � a� |Ψ(X)|,
|Ψ(if− a;u;X)| = |Ψ(X)| � a� |Ψ(u;#2;X)|.

Proof: Similar to the proofs of Lemma 6.34 and Lemma 6.36. ⊓⊔

Lemma 6.47 Let X be a PGAucw program. Then

1. |Ψ(while + a;u;X)| = |Ψ(u; while + a;u;X)| � a� |Ψ(X)|,

2. |Ψ(while− a;u;X)| = |Ψ(X)| � a� |Ψ(u; while− a;u;X)|

for some instruction u with li(u) 6= while± b.
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Proof: We prove Clause 1 as follows. Let X ′ = while + a;u;X, Y = Ψ(X ′) and
Z = Ψ(u, while + a;u;X). Then Y and Z are PGLBur programs. It follows from
Definition 6.43 that

Y = u(+a;u(Upd2(χ
X′

1 (u)); \#2;#2);#2);Ψ(u;X).

By Definition 6.21, Definition 6.23 and Lemma 6.45,

|Y | = |(1, 2), Y | � a� |(1, 3), Y |
= |(1, 2), Y | � a� |(1, 3) ⊕Y 2, Y |
= |(1, 2), Y | � a� |Ψ(X)|.

Let α and β be the positions in Y and Z of the replacements of li(u) occurring in
[Y ]1,2,1 and [Z]1, α⊕Y 1 = 1, 2, 2 and β⊕Z 1 = 2. It follows from Definition 6.43 that
if li(u) = if± c then

[Y ]α = u(±c;u(u(+a;u(#4; \#2;#2);#2);#6);#4),
[Z]β = u(±c;u(u(+a;u(#4; \#2;#2);#2);#4);#2)

(see Table 6.5 and Table 6.6 for an illustration). It can be derived that that [Y ]1,2,1 =
Upd2([Z]1). We define a binary relation ∼ between positions of programs Y and Z as
follows.

1. 1 ⊕Y l, σ ∼ 2 ⊕Z l, σ for all l ≥ 0 and for all sequences σ. Here [Y ]1⊕Y l,σ =
[Z]2⊕Z l,σ. Moreover, \#2 is the only backward jump that can occur in Y and
Z. If [Y ]1⊕Y l,σ = \#2 then by Definition 6.43, σ = δ, 1, 2, 2 for some sequence
δ and (1 ⊕Y l, σ) ⊖Y 2 = 1 ⊕Y l, δ, 1, 1. Similarly, if [Z]2⊕Z l,σ = \#2 then
σ = δ, 1, 2, 2 for some sequence δ and (2 ⊕Z l, σ) ⊖Z 2 = 2 ⊕Z l, δ, 1, 1;

2. 1, 2 ∼ 1.

3. 1, 2, 1, σ ∼ 1, σ for every sequence σ. Here [Y ]1,2,1 = Upd2([Z]1);

4. 1, 2, 2 ∼ 2, 1. Here [Y ]1,2,2 = \#2, [Y ]1,2,2⊖Y 2 = [Y ]1,1 and 1, 1 ∼ 2, 1;

5. 1, 2, 3 ∼ 3. Here [Y ]1,2,3 = #2, [Y ]1,2,3⊕Y 2 = [Y ]2 and 2 ∼ 3;

6. 1, 3 ∼ 4. Here [Y ]1,3 = #2, [Y ]1,3⊕Y 2 = [Y ]3 and 3 ∼ 4;

Let Pσ = |σ, Y | and Qδ = |δ, Z| for positions σ of Y and positions δ of Z. Similar to
the proof of Lemma 6.36, we can show that if σ ∼ δ and

Pσ = S then Qδ = S;
Pσ = D then Qδ = D;
Pσ = Pσ′ then Qδ = Qδ′ with σ′ ∼ δ′;
Pσ = Pσ′ � a � Pσ′′ then Qδ = Qσ′ � a �Q′′

σ with σ′ ∼ δ′ and σ′′ ∼ δ′′

and vice versa. By Theorem 6.7, Pσ = Qδ for all positions σ of Y and δ of Z with
σ ∼ δ. Therefore, |(1, 2), Y | = |1, Z|. This implies that |Ψ(while + a;u;X)| =
|Ψ(u; while+a;u;X)|�a� |Ψ(X)|. Likewise we get |Ψ(while−a;u;X)| = |Ψ(X)|�
a� |Ψ(u; while− a;u;X)|. ⊓⊔
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Theorem 6.48 The transformation pgaucw2pgbur from PGAucw to PGLBur is cor-
rect, i.e., for every program X in PGAucw:

|pgaucw2pgbur(X)| = |X|.

Proof: This follows from Definition 6.9, Definition 6.25, Definition 6.38, Lemma 6.46,
Lemma 6.47 and Theorem 6.7. ⊓⊔

Projection from PGLBur to PGLBu

This section defines the projection pglbur2pglbu that removes repetition from a
program in PGLBur.

Definition 6.49 The projection pglbur2pglbu from PGLBur to PGLBu is defined
on program expressions in first canonical form.

pglbur2pglbu(u1; . . . ;uk) = pglbur2pglbu(u1); . . . ; pglbur2pglbu(uk),
pglbur2pglbu(u1; . . . ;uk; (uk+1; . . . ;uk+n)ω) =

pglbur2pglbu(u1); . . . ; pglbur2pglbu(uk);
pglbur2pglbu(uk+1); . . . ; pglbur2pglbu(uk+n); (\#n)max(m,2),

pglbur2pglbu(u(X)) = u(pglbur2pglbu(X)),
pglbur2pglbu(u) = u otherwise.

where m is the maximum of jump counters occurring in u1; . . . ;uk+n and 0 otherwise.

One can see that the projection pglbur2pglbu from PGLBur to PGLBu is well-
defined. Furthermore:

Theorem 6.50 The projection pglbur2pglbu from PGLBur to PGLBu is correct,
i.e., for every program X in PGLBur:

|pglbur2pglbu(X)| = |X|.

Proof: Let Ψ denote the projection pglbur2pglbu and Y = Ψ(X). A binary relation
∼ between positions of programs X and Y is defined inductively as follows.

1. If X = u1; . . . ;uk then for all 1 ≤ i ≤ k : i ∼ i.

2. If X = u1; . . . ;uk; (uk+1; . . . ;uk+n)ω then for all 1 ≤ i ≤ k + n : i ∼ i and
for all i > k + n : i ∼ k + 1 + ((i − k − 1) mod n)). Furthermore, for all
k + n < i ≤ k + n+ max(m, 2) : i− n ∼ i.

For a position σ of X:
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1. If ∆[X]σ = v1; . . . ; vn then for all 1 ≤ i ≤ n : σ, i ∼ σ, i.

2. If ∆[X]σ = v1; . . . ; vn; (vn+1; . . . ; vn+m)ω and

∆[Y ]σ = Ψ(v1); . . . ; Ψ(vn);Ψ(vn+1); . . . ; Ψ(vn+m); (\#m)max(t,2),

where t is the maximum of jump counters occurring in v1; . . . ; vn+m and 0
otherwise, then for all 1 ≤ i ≤ n +m : σ, i ∼ σ, i and for all i > n +m : σ, i ∼
σ, n+1+(i−n−1) mod m. Furthermore, for all n+m < i ≤ n+m+max(t, 2) :
σ, i−m ∼ σ, i.

Let Pσ = |σ,X| and Qδ = |δ, Y | for positions σ of X and positions δ of Y . Similar to
the proof of Lemma 6.36, we can show that if σ ∼ δ and

Pσ = S then Qδ = S;
Pσ = D then Qδ = D;
Pσ = Pσ′ then Qδ = Qδ′ with σ′ ∼ δ′;
Pσ = Pσ′ � a � Pσ′′ then Qδ = Qσ′ � a �Q′′

σ with σ′ ∼ δ′ and σ′′ ∼ δ′′

and vice versa. By Theorem 6.7, Pσ = Qδ for all positions σ of X and δ of Y with
σ ∼ δ. This implies that |X| = |1,X| = |1, Y | = |Y |. ⊓⊔
In summary, we have defined and shown the correctness of the projection pgaucw2pgbur

from PGAucw to PGLBur and the projection pglbur2pglbu from PGLBur to PGLBu
under the restriction that no consecutive occurrences of while-loops are allowed.
These two projections together with the projection pglbu2pga from PGLBu to PGA
obtained from [82] constitute a projection from PGAucw to PGA. Hence, the while-
loop instruction is not needed as a primitive instruction in terms of expressiveness,
provided that consecutive occurrences of while-loops are not allowed.

6.6 Concluding remarks

In this chapter, we have explored the expressiveness of two extensions PGAuc and
PGAucw of PGA with units, conditional instructions and while-loops respecting the
lazy projection semantics. With these extensions, PGA is closer to program notations
that are used in practice. For instance, the program written in a modern programming
language below

X::= WHILE a DO

WHILE b DO

IF c THEN d ELSE e END IF;

END WHILE;

END WHILE;

is formulated in PGAucw as

X = while + a;u(while + b;u(if + c; d; e)); !.

First of all, we have described the projection pgauc2pgau from PGAuc to PGAu.
We note that if programs do not contain units, we can define another projection
pgac2pgau from PGAc to PGAu as follows.
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PGAu
pgau2pglbu

−→ PGLBu
pglbu2pglbg

−→ PGLBg

↑pgauc2pgau ↑pglbur2pglbu ↓pglbg2pglb
PGAuc PGLBur PGLB

↑pgaucw2pgbur ↓pglb2pga
PGAucw PGA

Table 6.7: Projection from PGAuc and PGAucw to PGA.

Definition 6.51 The projection pgac2pgau from PGAc to PGAu is defined on pro-
gram expressions in first canonical form.

pgac2pgau(u1; . . . ;uk) = ψ1(u1); . . . ;ψk(uk),
pgac2pgau(u1; . . . ;un; (un+1; . . . ;un+m)ω) =

ψ1(u1); . . . ;ψn(un); (ψn+1(un+1); . . . ;ψn+m(un+m))ω

where uk+1 = #0, un+m+1 = un+1 and the auxiliary operations ψj are given by

ψj(if± a) = u(±a; Φ(uj+1);#2),
ψj(u) = u otherwise

with
Φ(if± a) = a,
Φ(!) = !,
Φ(a) = u(a;#4),
Φ(±a) = u(±a;#4),
Φ(#0) = #0,
Φ(#1) = #4,
Φ(#l + 2) = #l + 3 otherwise.

This projection works only on programs in PGA extended with conditional instruc-
tions. However, its resulting program in PGAu is much shorter than the one projected
by pgauc2pgau when PGAuc is restricted to PGAc as can be seen in the following
example.

Example 6.52

pgac2pgau(if + a; if + b; c; !) = u(+a; b;#2);u(+b;u(c;#4);#2); c; !
pgauc2pgau(if + a; if + b; c; !) =
u(+a;u(u+b;u(#2;#6);#2;#4);#2);u(+b;u(c;#4);#2); c; !

Next, we have shown that PGA extended with while-loops yields non-regular
program behaviors in certain cases. Under the restriction that consecutive occurrences
of while-loops are forbidden, we have defined two projections pgaucw2pgbur from
PGAucw to PGLBur and pglbur2pglbu from PGLBur to PGLBu.
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Our projections together with the projections covered in [82] constitute two pro-
jections pgauc2pga and pgaucw2pga from PGAuc and PGAucw into PGA, illustrated
in Table 6.7. More precisely, the projection pgauc2pga is a composition of five map-
pings pgauc2pgau, pgau2pglbu, pglbu2pglbg, pglbg2pglb and pglb2pga. The pro-
jection pgaucw2pga is a composition of five mappings pgaucw2pgbur, pglbur2pglbu,
pglbu2pglbg, pglbg2pglb and pglb2pga.

The existence of these projections shows that conditional statements and while-
loops, while allowing for a flexible style of programming, are not needed as primitive
instructions in terms of expressiveness.
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Chapter 7

Noninterference in thread
algebra

7.1 Introduction

Thread algebra (TA) is introduced by Bergstra and Middelburg in [23, 24, 25] as a
semantics for sequential and multi-threaded programming languages. It contains a set
of strategic interleaving operators that turn a sequence of threads into a single thread
capturing the essential aspects of multi-threading. One may argue that thread alge-
bra with strategic interleaving is technically less elegant in dealing with parallelism
than process algebras such as CCS [75] and ACP [19] with arbitrary interleaving.
However, thread algebra is designed specifically for multi-threaded programs whose
executions are on virtual machines that make use of scheduling. In addition, process
algebras introduce nondeterminism which might be disadvantageous for a program-
mer’s intuition. On the other hand, in thread algebra, the programmer can always
expect what might happen by considering a significant collection of different inter-
leaving strategies. TA is a promising approach for the study of computer viruses and
virtual machines [28, 26].

Noninterference [53] (see [88] for an overview) is an important property of secure
information flow [13, 44]. It characterizes systems whose execution does not reveal
secret information. Formalizing and analyzing this property becomes increasingly im-
portant because of the privacy question raised in real-life applications such as mail
and banking transactions. Various definitions of noninterference have been intro-
duced. However, as stated in [88], “existing theoretical frameworks for expressing
these security properties are inadequate, and practical techniques for enforcing these
properties are unsatisfactory”.

There are two main classes of information flow security: language-based security
[88] and process calculus-based information security [47, 84, 69]. The former deals
with the leaking of secret data through the execution of programs, while the latter is
concerned with the prevention of secret events from being revealed through the exe-

103



104 Chapter 7. Noninterference in thread algebra

cution of communicating processes. This chapter discusses noninterference problems
for language-based security in a process-algebraic framework like thread algebra.

7.1.1 Related work

A typical example of leaking secret data is described as follows. Suppose that program
variables are classified into two classes: VarH and VarL. Program variables l ∈ VarL

hold low-security information, while program variables h ∈ VarH hold high-security
information. Consider the program

X ::= IF h==1 THEN l:=0 ELSE l:=1 END IF.

X is insecure since an attacker may learn the value of h through branching on the
condition 〈h == 1〉. After this condition, the value of l becomes significant.

Most approaches on language-based security are based on type systems [99, 91, 71]
which have been shown to be effective. They provide a collection of typing rules
describing what security type L (low) or H (high) is assigned to a program (or ex-
pression) based on the types of subprograms, under two notions of noninterference:
termination-insensitive and termination-sensitive. The former classifies programs un-
der the condition that the programs terminate successfully, while the latter considers
termination to be observable. The typing rules of Volpano, Smith and Irvines [99] con-
cern termination-insensitive noninterference in which any expression can have type
H, and an expression can have type L only if it has no occurrences of high vari-
ables. Furthermore, given a conditional statement or while-loop with a high guard,
the branches or loop body cannot have type L. For instance, according to these
typing rules, the program X above is insecure. The typing rules treated by Volpano
and Smith [91] (and others) consider termination-insensitive noninterference in which
loop guards are required to have low security. The advantage of the approaches on
type systems is that the type checker only needs to work on program texts, so these
approaches are decidable and easy to implement. However, the programs must satisfy
some structure. Furthermore, these approaches appear confusing when parallelism is
introduced in the language.

Other approaches on language-based security are the works in the context of con-
currency [86, 89, 87, 36, 85]. They consider the worst-case scenario where an attacker
may observe the timing of program execution. These approaches characterize timing-
sensitive noninterference which essentially says that given two low-equivalent input
states, the high parts of memories at any point of computation do not introduce
any difference between the low parts of the memories throughout the computation.
Recently, a formal link between them and the approaches on process-calculus infor-
mation security has been established [50]. Since these works are based on states of
programs, it is difficult to decide noninterference properties [43].

7.1.2 Contributions and outline of the chapter

In this chapter, we show that thread algebra provides an elegant process-algebraic
framework for reasoning about and classifying various notions of noninterference in
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sequential and multi-threaded programming languages.

We define termination-insensitive noninterference (TINI), termination-sensitive
noninterference (TSNI) and timing-sensitive noninterference (TISNI) for threads in
BTA which are analogous to the existing notions of noninterference from the literature.
More precisely, a thread is termination-insensitive (termination-sensitive) noninter-
fering if its behavior, from the view of low actions, is always the same. We note that
TINI requires the condition that the program terminates normally [99], while TSNI
considers termination to be observable. A thread is timing-sensitive noninterfering if
its behavior is always the same, assuming that high actions behave similarly. We prove
soundness for these definitions, meaning that if a thread satisfies one of these proper-
ties then it satisfies the noninterference property proposed by Goguen and Meseguer
[53]. In the setting of thread algebra, we show that TISNI satisfies compositionality
with respect to the cyclic interleaving operator, the basic strategic interleaving of [23]
which turns a thread vector of arbitrary length into a single thread in a round-robin
fashion. To preserve compositionality for TINI and TSNI, we propose a particular
interleaving strategy for thread algebra called the cyclic strategic interleaving with
persistence operator. This strategy invokes the rotation of the thread vector only in
the case that the current action is not a high action. Hence, it maintains the order
of the high actions, and therefore, the analysis can be made compositional.

The advantage of our approach is that it is suitable for considering security proper-
ties of unstructured and multi-threaded programming languages. In case of TINI and
TSNI, we accept all secure programs that are typable by type systems such as in [99,
91]. Furthermore, we also accept certain commands which are rejected by most type
systems. For instance, the commands l:=h−h, IF h==0 THEN l:=1 ELSE l:=1 END IF

and WHILE l+h > h DO l:=1 END WHILE where h holds high-security information and
l holds low-security information, are not typable by the checker in [99]. (These com-
mands have recently been considered in [35].) In case of TISNI, our definition is not
as precise as the definition given in [86]. However, it is decidable and easy to im-
plement. Like [50], we can also use existing tools such as in [48, 49, 31] for checking
process-equivalence to develop our security checkers.

The structure of the chapter is as follows. Section 7.2 recalls the basic concepts of
basic thread algebra and thread algebra. We also introduce the notion of noninterfer-
ence given by Goguen and Meseguer [53] and the type systems of [99, 91]. Section 7.3
characterizes actions and defines abstraction of high actions for threads. Section 7.4
provides bisimulation and bisimulation up to a set of high actions, in order to define
noninterference properties. Section 7.5 presents our definitions of noninterference.
Section 7.6 shows compositionality of TISNI with respect to the cyclic interleaving
operator. Section 7.7 introduces the cyclic interleaving with persistence operator for
thread algebra. Section 7.8 shows that TINI and TSNI satisfy compositionality with
respect to the cyclic interleaving with persistence operator. The chapter is ended with
some concluding remarks in Section 7.9.
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7.2 Preliminaries

This section recalls from [22, 23, 25] the basic concepts of basic thread algebra (BTA)
and thread algebra (TA). We note that basic thread algebra was introduced as basic
polarized process algebra (BPPA) in [22]. Furthermore, we introduce a simple pro-
gramming language Lang which is used to illustrate our approach. We also describe
the earliest notion of noninterference given by Goguen and Meseguer [53] and the
type systems of [99, 91] for checking this property.

7.2.1 Basic thread algebra (BTA)

Primitives of basic thread algebra

Let Σ be a set of actions. Each action is supposed to return a boolean value after its
execution. BTA is constructed over Σ by the following operators:

Successful termination : S ∈ BTA yields successful terminating behavior.

Unsuccessful termination or deadlock: D ∈ BTA represents inactive behavior.

Postconditional composition : (−) � a � (−) with a ∈ Σ. The thread P � a�Q
first performs a and then proceeds with P if true was returned and with Q
otherwise. In case P = Q we abbreviate this thread by the action prefix
a ◦ (−): a ◦ P = P � a� P.

Let BTAΣ denote the set of finite threads which are made from S andD by means of a
finite number of applications of postconditional composition. Threads can be infinite.
To define an infinite thread in BTA, we use a sequence of its finite approximations.

Definition 7.1 For every n ∈ N, the approximation operator πn : BTAΣ →
BTAΣ is defined inductively by

π0(P ) = D,
πn+1(S) = S,
πn+1(D) = D,
πn+1(P � a�Q) = πn(P ) � a� πn(Q).

A projective sequence is a sequence (Pn)n∈N
such that for each n ∈ N, πn(Pn+1) =

Pn.

We note that for all (finite or infinite) threads P and Q, P = Q⇔ ∀n ∈ N : πn(P ) =
πn(Q). If P = a ◦ a ◦ · · · (P can do subsequently infinitely many actions a), then
we write P = a∞. Let BTA∞

Σ be the set of all threads represented by projective
sequences in BTAΣ. Then BTAΣ ⊆ BTA∞

Σ .
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BTA as a complete partial order

It is shown in [16] that the domain BTA∞
Σ of BTA is a complete partial order (cpo)

which essentially says that there always exists a supremum for every monotone se-
quence. This is an important property of BTA which allows us to represent an infinite
thread in BTA as a monotone sequence of finite threads. Formally:

Definition 7.2 A complete partial order (cpo) D = (D,⊑) is a partially ordered
set with a least element such that every monotone sequence has a supremum in D.

In the next definition, we define a partial order on threads in BTA.

Definition 7.3

1. The partial ordering ⊑ on finite threads is generated by the clauses

(a) for all P ∈ BTAΣ, D ⊑ P , and

(b) for all P,Q,X, Y ∈ BTAΣ, a ∈ Σ, P ⊑ X &Q ⊑ Y ⇒ P � a � Q ⊑
X � a� Y.

2. For two infinite threads P = (Pn)n and Q = (Qn)n with (Pn)n and (Qn)n

projective sequences, P ⊑ Q⇔ ∀n ∈ N Pn ⊑ Qn.

Definition 7.4 A monotone sequence is a sequence (Pn)n satisfying

P0 ⊑ P1 ⊑ · · · ⊑ Pn ⊑ Pn+1 ⊑ · · ·

Theorem 7.5 (BTA∞
Σ ,⊑) is a complete partial order.

Proof: See [16]. ⊓⊔

Regular threads

Regular threads in BTA are defined as follows.

Definition 7.6 A thread P is regular over Σ if P = E1, where E1 is defined by a
finite system of the form (n ≥ 1):

{Ei = ti|1 ≤ i ≤ n, ti = S or ti = D or ti = Eil � ai � Eir}

with Eil , Eir ∈ {E1, . . . , En} and ai ∈ Σ.

These regular threads are well-defined in the domain (BTA∞
Σ ,⊑) (see Chapter 5) and

are used to represent program behaviors.
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7.2.2 Thread algebra

Thread algebra is designed on top of BTA and is meant to specify a collection of
strategic interleaving operators, capturing some essential aspects of multi-threading.
We assume that a collection of threads to be interleaved takes the form of a se-
quence, called a thread vector. Strategic interleaving operators turn a thread vector
of arbitrary length into a single thread. This single thread obtained via a strategic in-
terleaving operator is called a multi-thread. For simplicity, we consider in this chapter
only the basic interleaving strategy called cyclic interleaving [23]. This interleaving
strategy works in a round-robin fashion which invokes the rotation of a thread vector
at every step. Furthermore, if one thread in the thread vector deadlocks, the whole
does not deadlock till all others have terminated or deadlocked.

Let 〈〉 denote the empty sequence, 〈x〉 stand for a sequence of length one, and
α y β the concatenation of two sequences. We assume that the following identity
holds: α y 〈〉 = 〈〉 y α = α.

Definition 7.7 The axioms for the cyclic strategic interleaving ‖csi operator are
given as follows:

‖csi (〈〉) = S
‖csi (〈S〉 y α) = ‖csi (α)
‖csi (〈D〉 y α) = SD(‖csi (α))
‖csi (〈x� a � y〉 y α) = ‖csi (α y 〈x〉) � a� ‖csi (α y 〈y〉)

where the auxiliary deadlock at termination operator SD turns termination into dead-
lock and is defined by

SD(S) = D
SD(D) = D
SD(x� a � y) = SD(x) � a � SD(y).

For a thread vector α of arbitrary (finite or infinite) threads α = α1 y · · · y αn,
‖csi (α) is determined by its projective sequence:

πn(‖csi (α)) = πn(‖csi (πn(α1) y · · · y πn(αn))).

Example 7.8 Let P = a∞ and Q = b∞ be two single threads. Then ‖csi (〈P 〉 y
〈Q〉) = a ◦ b ◦ a ◦ b · · · .

7.2.3 The programming language Lang

It has been outlined in [22, 15, 23] that program behaviors of sequential and multi-
threaded programming languages can be represented as threads in BTA. To illustrate
our approach, we consider threads as program behaviors of programs written in a
simple imperative programming language Lang which, similar to that of [99, 91], is
defined as follows.

X,Y, . . . ::= x := e|
IF e THEN X ELSE Y END IF|
WHILE e DO X END WHILE
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where e stands for a boolean or an arithmetic expression, whose syntax we do not
describe here.

We now consider assignments x:=e and tests e of Lang as the actions in Σ, written
as [x:=e] and 〈e〉. Then program behaviors of Lang are regular threads, as illustrated
in the following example.

Example 7.9 Let X and Y be given as follows.

X::= IF h==1 THEN l:=1 ELSE l:=0 END IF.

Y::= l:=0;

WHILE h==0 DO

h:=0;

END WHILE;

l:=1.

The behaviors of X and Y , denoted by |X| and |Y |, are determined by: |X| =
([l:=1] ◦ S) � 〈h==1〉 � ([l:=0] ◦ S) and |Y | = [l:=0] ◦ P , where P = ([h:=0] ◦ P ) �

〈h==0〉 � ([l:=1] ◦ S).

7.2.4 Input-output transformations

In this section, we present the notion of input-output transformations of program
behaviors. This notion is based on the effect and yield of an action on a state space.
We assume the existence of a set Var of program variables, and a state space S whose
elements play the role of inputs as well as of outputs of programs (or threads) in the
programming language Lang. All results of the chapter are related to these two sets.

The effect and yield of an action on the state space S

Suppose that upon the execution of a program, the values of a program variable x
are ranging over the set values(x). A state of a variable is a pair of the form
〈x, v〉 with v ∈ values(x). A state of the state space S is a set s consisting of
states of all variables in Var, in which there is a one-to-one correspondence between
variables and their states. If s is a state of the state space and 〈x, v〉 ∈ s, we write
s.x.value = v.

For an action a ∈ Σ, there is an operation effecta : S → S that changes the
state due to the execution of a called the effect operation, and an operation ya : S →
{true, false} that determines a boolean value when a is performed in a state of S,
called the yield operation.

We assume that if an action has some effect on the state space then its yield always
determines true. Formally, for an action a ∈ Σ, if there exists a state s ∈ S such that
effecta(s) 6= s then ya(s′) = true for all states s′ ∈ S.

In the following, we will specifically define the effect and yield of an assignment
and a test on the state space S. An assignment [x:=e] may have effect on the state
space and always returns true after its execution. Formally, for all states s ∈ S,

effect[x:=e](s) = s \ {〈x, s.x.value〉} ∪ {〈x, σ(e)〉},
y[x:=e](s) = true
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where σ(e) is obtained by first replacing occurrences of variables y in the expression
e by s.y.value, and then calculating its value in the set values(x).

A test 〈e〉 has no effect on the state space, and can produce a negative reply.
Formally, for all states s ∈ S, effect〈e〉(s) = s and y〈e〉 = σ(e), where σ(e) is
obtained by first replacing occurrences of variables y in e by s.y.value, and then
computing the result in the set {true, false}.

Program behavior and input-output relations

Input-output transformations are derived from program behaviors rather than from
programs themselves. An action of a program behavior must be viewed as a trans-
formation of the states in a state space, producing a boolean whenever applied. This
action is taken as an input value of a behavior. The state reached after the final
action has been performed represents the output value of a computation. Let D
represent a failure value that can’t be computed. The notion of input-output trans-
formations can be captured formally as follows.

Definition 7.10 Given a finite thread P , a function P • (−) : S → S ∪ {D} which
represents what P computes on an input s in S is defined inductively as follows.

1. D • s = D,

2. S • s = s,

3. (a ◦ P ) • s = P • effecta(s),

4. P � a �Q • s = (a ◦ P ) • s if ya(s) = true, otherwise (a ◦Q) • s.

In case P is infinite, i.e. P = (Pn)n for (Pn)n a monotone sequence, P •s =
⊔

n Pn •s.
Note that the partial ordering ≤ on S is defined by D ≤ s for all s ∈ S. If P • s = D
for a state s ∈ S then we say that this computation produces no result. In other
words, P • s = D precisely if for all n ∈ N, πn(P ) • s = D.

The previous definition suggests an equivalence called input-output equivalence for
threads.

Definition 7.11 Two threads P and Q are input-output equivalent (P ≈S Q)
over the state space S if P • s = Q • s for all s ∈ S.

We adopt the following convention on states of the state space S: if in a pro-
gram behavior only the variables x1, . . . , xk occur, we represent states simply as
[〈x1, v1〉, . . . , 〈xk, vk〉] with vi ∈ values(xi) for 1 ≤ i ≤ k.

Example 7.12 Consider the program

X ::= WHILE x>0 DO

x:=x+1;

END WHILE.
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Then the behavior |X| of X is defined as |X| = ([x := x + 1] ◦ |X|) � 〈x > 0〉 � S.
The effect and yield of the actions [x:=x+1] and 〈x > 0〉 are given as follows. For all
v ∈ values(x), effect[x:=x+1]([〈x, v〉]) = [〈x, v + 1〉] and y[x:=x+1]([〈x, v〉]) = true.
Moreover, effect〈x>0〉([〈x, v〉]) = [〈x, v〉], and y〈x>0〉([〈x, v〉]) = true if v > 0 and
y〈x>0〉([〈x, v〉]) = false otherwise. It is easy to see that if initially v > 0, then the
computation |X| • [〈x, v〉] goes on forever, i.e., X produces no result for every input
v of x that is greater than 0.

7.2.5 Noninterference based on input-output transformations

The earliest definition of noninterference of security information flow was given by
Goguen and Meseguer [53]. Following the idea of [53], we provide a definition of
noninterference based on input-output transformations for threads in BTA.

We suppose that program variables in Var are classified into two security classes
VarL (low) and VarH (high), VarL ∩ VarH = ∅ and VarL ∪ VarH = Var. We provide
some notions of equivalence for states and threads based on security classes as follows.

Definition 7.13 Two states s and t of the state space S are low equivalent, denoted
by s =L

S
t, if for all l ∈ VarL, s.l.value = t.l.value, otherwise s 6=L

S
t. Similarly, two

states s and t of the state space S are high equivalent, denoted by s =H
S
t, if for all

h ∈ VarH , s.h.value = t.h.value, otherwise s 6=H
S
t.

Definition 7.14 Two threads P and Q are low quasi-equivalent (P ≈L
S
Q) over

the state space S if for all low equivalent states s and t (s =L
S
t), P • s = Q • t = D

or P • s and Q • t are low equivalent (P • s =L
S
Q • t).

Informally speaking, a program is secure if its low output does not depend on its high
input. This notion is translated to threads in BTA as follows.

Definition 7.15 A thread P is noninterfering (P ∈ NI) if it is low quasi-equivalent
to itself. A program is secure if its behavior is noninterfering.

Example 7.16 Let h ∈ VarH and l ∈ VarL. Consider the program behavior below.

P = Q� 〈h == 1〉 �R,
Q = [l := l + 1] ◦Q,
R = [l := l − 1] ◦R.

It can be derived that P ≈S D. Hence P ≈L
S
P . Thus, P ∈ NI.

The previous example shows that non-termination implies NI. The following example
illustrates insecure programs.

Example 7.17 Let h ∈ VarH and l ∈ VarL. Consider the programs X and Y given
in Example 7.9.

|X| = ([l:=1] ◦ S) � 〈h==1〉 � ([l:=0] ◦ S)
|Y | = [l:=0] ◦ P
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where P = ([h:=0] ◦ P ) � 〈h==0〉 � ([l:= 1] ◦ S). One can check that Y produces
no result in the case that the input of h is 0. Furthermore, X and Y are not secure,
since

|X| • [〈h, 0〉, 〈l, 0〉] = [〈h, 0〉, 〈l, 0〉] while |X| • [〈h, 1〉, 〈l, 0〉] = [〈h, 1〉, 〈l, 1〉];
|Y | • [〈h, 0〉, 〈l, 0〉] = D while |Y | • [〈h, 1〉, 〈l, 0〉] = [〈h, 1〉, 〈l, 1〉].

7.2.6 Noninterference based on type systems

The definition of noninterference given by Goguen and Meseguer [53] is precise, but
might require a complex computation. To simplify the checking, the approaches
based on type systems [99, 91] (see [88] for an overview) have been developed. In
these approaches, if a program is well-typed according to the typing rules of a type
system then it has the noninterference property. This section introduces the type
systems of [99, 91] in order to compare their results with ours later.

We suppose that there are two security classes L (low) and H (high), and a partial
order ⊆ between security classes with L ⊆ H (L 6= H) (L is a subtyping of H). The
types used in the type systems of [99, 91] are:

(data types) τ ::= L | H
(phrase types) ρ ::= τ | τ var | τ cmd

Here type τ var is the type of a program variable. Type judgments are of the form
γ ⊢ X : τ cmd whereX is an expression or a program and γ is a mapping from variables
to types of variables, i.e. γ(x) = L var if x ∈ VarL and γ(x) = H var otherwise. The
typing rules of [99] are given in Table 7.1. We assume that all constants have type L
(rule (INT)). Furthermore, we omit typing rules for some expressions since they are
similar to rule (SUM).

According to these typing rules, every test and every expression is well-typed. In
particular, a test (or an expression) has type H if it contains a high variable, otherwise
it has type L.

Assignments of the form x:=e, where x ∈ VarL and e contains a high variable,
are untypable in this type system because of the rule (ASSIGN). By this rule, x:=e
is accepted and has type L cmd if both x and e have type L, or it is accepted and has
type H cmd if x has type H.

The meaning of γ ⊢ X : τ cmd is that type τ is a lower bound for the security
level of the assigned variables of X. Hence, if the condition of a well-typed condi-
tional statement (or a well-typed while-loop) has type H then every assigned variable
contained in its branches (or its body) has type H as well.

Example 7.18 We consider the insecure program X taken from Example 7.9.

X ::= IF h==1 THEN l:=1 ELSE l:=0 END IF

where l ∈ VarL and h ∈ VarH . This program is untypable in the type system of [99].
Here the condition h == 1 has type H. According to rule (IF), X is accepted only
if both l:=0 and l:=1 have type H cmd or a lower one. However, these assignments
have type L cmd which contains type H cmd (rule (CMD−)).
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(IDENT)
γ(x) = ρ

⊢ x : ρ

(INT) ⊢ n : L

(R-VAL)
⊢ e : τ var

⊢ e : τ

(SUM)
⊢ e1 : τ ⊢ e2 : τ

⊢ e1 + e2 : τ

(ASSIGN)
⊢ x : τ var ⊢ e : τ

⊢ x:=e : τ cmd

(COMPOSE)
⊢ c1 : τ cmd ⊢ c2 : τ cmd

⊢ c1; c2 : τ cmd

(IF)
⊢ e : τ ⊢ c1 : τ cmd ⊢ c2 : τ cmd

⊢ IF e THEN c1 ELSE c2 END IF : τ cmd

(WHILE)
⊢ e : τ ⊢ c : τ cmd

⊢ WHILE e DO c END WHILE : τ cmd

(BASE) L ⊆ H

(REFLEX) ρ ⊆ ρ

(CMD−)
τ1 ⊆ τ2

τ1 cmd ⊇ τ2 cmd

(SUBTYPE)
⊢ X : ρ1 ρ1 ⊆ ρ2

⊢ X : ρ2

Table 7.1: Typing and subtyping rules.

Example 7.19 Similar to the previous example, the following while-loop statement

WHILE h==1 DO

l:=0;

END WHILE

is not well-typed, either.

We note that the typing rules in Table 7.1 respect termination-insensitive noninter-
ference. That is to say, a well-typed program is secure by these typing rules if the



114 Chapter 7. Noninterference in thread algebra

(WHILE-TSNI)
⊢ e : L ⊢ c : L cmd

⊢ WHILE e DO c END WHILE : L cmd

Table 7.2: A typing rule for while-loop with respect to TSNI.

program terminates successfully. To deal with termination-sensitive noninterference,
in [91] Smith and Volpano do not allow the guard of a while-loop holding high-security
information and the while-loop itself can only get type L cmd. More precisely, they
replace rule (WHILE) in Table 7.1 by rule (WHILE-TSNI) in Table 7.2.

In Section 7.5 we will present alternative definitions of noninterference based on
program behaviors with certain advantages. We first characterize actions of program
behaviors in Section 7.3, and define a bisimulation equivalence that identifies program
behaviors with respect to security in Section 7.4.

7.3 Characterizing actions with respect to security

This section characterizes actions of a thread as insecure, secure, invisible, low and
high actions with respect to security. We also define two abstraction operators that
abstract from internal and high actions of a thread. Here the internal action t ∈ Σ
can have effect on the state space (but not on the low space) and can yield a negative
reply.

7.3.1 Secure, low, invisible and high actions

To illustrate our definition of characterizing actions, we consider the following exam-
ples. The untypable action [l:=h] with l ∈ VarL and h ∈ VarH is insecure in our
approach because it reveals information of h. The assignment [l:=1] is a low action
because it has effect on the low subspace. The test 〈h==1〉 and the assignment [h:=1]
are regarded as high actions since they have something to do with the high subspace.
Finally, the secure actions that have no effect on the low subspace such as tests and
high actions are invisible. Formally:

Definition 7.20

1. An action a is secure if it does not reveal any high-security information, i.e.
effecta(s) =L

S
effecta(t) for all low equivalent states s, t ∈ S (s =L

S
t).

2. A secure action a is low if it has effect on the low subspace, i.e.
effecta(s) 6=L

S
s for some s ∈ S.

3. A secure action a is invisible if it has no effect on the low subspace, i.e.
effecta(s) =L

S
s for all states s ∈ S.
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4. An invisible action a is high if it has effect or yield on the high subspace, i.e.
effecta(s) 6=H

S
s for some state s ∈ S, or ya(s) 6= ya(t) for some states s, t ∈ S

such that s 6=H
S
t.

We note that the terminology that actions are secure (or not) in Definition 7.20 is
obtained from the standard terminology of secure information flow of [99].

Definition 7.20 allows us to accept certain assignments and programs which are
rejected by most type systems (for instance that of [99]) as can be seen in the following
examples.

Example 7.21 Let l ∈ VarL and h ∈ VarH be low and high program variables.
Consider an action a of the form [l:=h − h]. Then the effect of a on S is given by
effecta(s) = s \ {〈l, s.l.value〉} ∪ {〈l, 0〉} for all s ∈ S. By our definition, a is secure.
However, a is untypable in the type system of [99] because the type of h− h contains
the type of l.

Example 7.22 Let l ∈ VarL and h ∈ VarH be low and high program variables. The
program

X ::= WHILE l+h>h DO

l:=1;

END WHILE.

is insecure in type systems, since the while-loop guard has type H while the assignment
within the while-loop has type L cmd. In our approach, although the while-loop guard
contains the high variable h, its value does not depend on the value of h at all, and
therefore, it is a low action. Thus, this program can be shown to be secure in our
approach (see Section 7.5).

Let ΣS be the set of secure actions, ΣI the set of invisible actions, ΣL the set of low
actions and ΣH the set of high actions. Then ΣS = ΣI ∪ ΣL ⊆ Σ, ΣI ∩ ΣL = ∅ and
ΣH ⊆ ΣI .

Lemma 7.23 Let a be an action in Σ, a /∈ ΣH . Then for all low equivalent states
s, t ∈ S, ya(s) = ya(t).

Proof: We distinguish three cases:

1. s =H
S
t. Since s =L

S
t, s = t. Thus, ya(s) = ya(t).

2. s 6=H
S
t and a has some effect on the state space. Then ya(s) = ya(t) = true.

3. s 6=H
S
t and a has no effect on the state space. If ya(s) 6= ya(t) then a has yield

on the high subspace. By Definition 7.20, a is a high action. This contradicts
the assumption that a /∈ ΣH . Therefore, ya(s) = ya(t).
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⊓⊔
To choose secure, invisible, low and high actions, let Σwelltyped be the set of well-
typed actions by the typing rules in Table 7.1, ΣL+H the set of tests, ΣLcmd the set of
assignments with type L cmd, and ΣH+Hcmd the set of actions with type H and H cmd

(see Section 7.2.6). Then:

Lemma 7.24

1. Σwelltyped ⊆ ΣS.

2. ΣH+Hcmd ∪ ΣL+H ⊆ ΣI .

3. ΣL ⊆ ΣLcmd ⊆ ΣL ∪ ΣI = ΣS.

4. ΣH ⊆ ΣH+Hcmd ⊆ ΣH ∪ ΣI = ΣI .

Hence one can choose the sets ΣS of secure actions, ΣL of low actions and ΣH of high
actions as the sets Σwelltyped, ΣLcmd and ΣH+Hcmd, respectively. The set ΣI of invisible
actions can be chosen as ΣI = ΣH ∪ ΣL+H. The previous lemma shows that these
decisions are merely approximations of ΣS , ΣL, ΣH and ΣI . However, we can extend
or restrict these sets with certain associated actions, in order to optimize them. The
closer we get to the optimal solutions, the more secure programs can be accepted.
For instance, the set ΣS can be extended with actions of the form [l:=h− h] as given
in Example 7.21. The set ΣH can be restricted by removing the actions 〈l + h > h〉
from Example 7.22.

7.3.2 The pre-abstraction operator

To define abstraction of high actions, we present a pre-abstraction operator that re-
names all actions of a set Φ to the internal action t. This operator was first introduced
in [5].

Definition 7.25

1. The pre-abstraction operator tΦ : BTAΣ → BTAΣ for some Φ ⊆ Σ is defined
as follows

tΦ(S) = S,
tΦ(D) = D,
tΦ(P � a�Q) = tΦ(P ) � t� tΦ(Q) for a ∈ Φ,
tΦ(P � a�Q) = tΦ(P ) � a� tΦ(Q) otherwise.

2. For an infinite process P = (Pn)n∈N with (Pn)n is a projective sequence, then
tΦ(P ) = (tΦ(Pn))n. Thus tΦ(P ) ∈ BTA∞

Σ .
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7.3.3 Abstraction of internal actions

This section introduces an abstraction operator that omits occurrences of internal
actions, assuming that a thread always behaves the same from the view of non-
internal actions. This operator is similar to the abstraction operator that abstracts
from concrete internal actions of [16].

Definition 7.26 The abstraction operator τt : BTAΣ → BTAΣ is defined as follows:

τt(S) = S,
τt(D) = D,
τt(P � t�Q) = τt(P ),
τt(P � a�Q) = τt(P ) � a� τt(Q) for a 6= t.

One can show that this operator is monotone, i.e.:

Lemma 7.27 For all P,Q ∈ BTAΣ, P ⊑ Q⇒ τt(P ) ⊑ τt(Q).

Lemma 7.27 suggests the abstraction of internal actions in an infinite process P =
(Pn)n∈N with (Pn)n a projective sequence as follows:

Definition 7.28 τt(P ) =
⊔

n τt(Pn).

Since BTA∞
Σ is a cpo, τt(P ) ∈ BTA∞

Σ if P ∈ BTA∞
Σ (see [16, 104]).

Example 7.29 τt((a ◦ S) � t � (b ◦ S)) = a ◦ S, τt(t
∞) = D.

7.3.4 Abstraction of high actions

Assuming that a thread always behaves the same after the execution of high actions
from the view of low actions, the abstraction of high actions simply removes occur-
rences of high actions of a thread.

Definition 7.30 The abstraction operator τH : BTA∞
Σ → BTA∞

Σ is defined by
τH(P ) = τt(tΣH

(P )).

7.4 Labeled transition systems over BTA

In this section, we define a labeled transition system over BTA, and two bisimulation
equivalences to give noninterference properties in the next section.



118 Chapter 7. Noninterference in thread algebra

7.4.1 Labeled transition systems

A labeled transition system (LTS) with termination S and deadlock D is a pair
(P,→) with P a class of threads, and →⊆ P× (Σ× {T, F})× P a set of transitions.

We write P
a,κ
−→ Q with a ∈ Σ and κ ∈ {T, F} for (P, (a, κ), Q) ∈→. An LTS is a

finite-state (regular) LTS if both P and Σ are finite.
For a state P , if P = S then it is a termination state. If P = D then it is a

deadlock. If P = P1 � a � P2 then P
a,T
−→ P1 and P

a,F
−→ P2.

We note that since program behaviors in the programming language Lang can be
represented as regular threads, they can always be associated with a finite-state LTS.

7.4.2 Bisimulation

Bisimulation equivalence classifies threads behaving identically, defined as follows.

Definition 7.31 A bisimulation relation B is a symmetric binary relation on
threads satisfying:

1. If (P,Q) ∈ B and P = S, then Q = S.

2. If (P,Q) ∈ B and P = D, then Q = D.

3. If (P,Q) ∈ B and P
a,κ
−→ P ′ then there exists Q′ such that Q

a,κ
−→ Q′ and

(P ′, Q′) ∈ B.

Two threads P and Q are bisimilar, denoted by (P - Q), if there is a bisimulation
relation B such that (P,Q) ∈ B.

Proposition 7.32 Bisimulation is an equivalence.

7.4.3 Bisimulation up to I

Let I ⊆ Σ be a set of actions. The relation bisimulation up to I identifies threads
behaving the same from the view of the actions which are not in I. In other words,
this bisimilarity is obtained by ignoring the presence of actions of I. We will use the
following notion to define bisimulation up to I.

Definition 7.33 Let P be a thread. A thread Q is a residual thread of P , written

as P ⇒ Q, if there is a path of transitions P = P0
a0,κ0−→ P1

a1,κ1−→ · · ·
an−1,κn−1

−→ Pn = Q

with n ≥ 0. We write P
I
⇒ Q if ai ∈ I for all 1 ≤ i ≤ n.

Definition 7.34 A bisimulation up to I is a symmetric binary relation B on
threads satisfying:

1. If (S,Q) ∈ B then there exists a path Q
I
⇒ S.
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Figure 7.1: Examples of bisimulation with I = {i, j} and a ∈ Σ. The dashed lines
represent bisimulation up to I between threads.

2. If (P,Q) ∈ B and P
a,κ
−→ P ′ then either:

(a) a ∈ I and (P ′, Q) ∈ B, or:

(b) there exists a path Q
I
⇒ Q1

a,κ
−→ Q′ such that (P,Q1) ∈ B and (P ′, Q′) ∈ B.

Two threads P and Q are bisimilar up to I, denoted by (P -I Q), if there is a
bisimulation up to I relation B such that (P,Q) ∈ B.

We note that in Clause 2(b) of the above definition, it is allowed that a ∈ I. Fur-
thermore, in case I = ∅, bisimulation up to I coincides with bisimulation. Figure 7.1
illustrates the notion of bisimulation up to I between threads.

Proposition 7.35 Bisimulation up to I is an equivalence.

We omit the proof of the previous proposition, since it is similar to the proof for
branching bisimulation [52] given in [12].

Proposition 7.36 Let I ⊆ I ′ ⊆ Σ. Then -I⊆-I′ .
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7.5 Noninterference based on behaviors

The approaches for checking the noninterference property based on type systems have
been shown to be effective [88]. However, they cannot be applied to unstructured pro-
gramming languages. Furthermore, these approaches are confusing when parallelism
is introduced in the programming languages.

In this section, we define noninterference for program behaviors in the setting of
thread algebra. We assume the existence of a set I of invisible actions that contains
the set ΣH of high actions (ΣH ⊆ I ⊆ ΣI). Following the existing notions from
the literature, we propose termination-insensitive noninterference up to I (TINII)
and termination-sensitive noninterference up to I (TSNII). Depending on certain
features, I can be chosen to accept the most secure programs, while preserving other
properties of threads. We also consider the worst-case scenario where an attacker may
observe the timing of program execution, by providing the notion of time-sensitive
noninterference (TISNI) for threads. We prove soundness for our definitions and show
that we accept all secure programs that are typable in the type systems of [99, 91].
Our definitions can be applied to unstructured programming languages because they
are based on program behaviors. Furthermore, they are also suitable for considering
noninterference properties in multi-threaded languages since a multi-thread is also a
single thread in thread algebra.

Let σ(P ) denote the set of actions occurring in a process P .

7.5.1 Termination-insensitive noninterference up to I

In this section, we present termination-insensitive noninterference up to I for threads.
We consider the following programs.

X ::= l:=h

Y ::= IF h==1 THEN l:=0 ELSE l:=1 END IF

Z ::= IF h==1 THEN l:=0 ELSE l:=0 END IF

where l ∈ VarL and h ∈ VarH are low and high variables. Program X is insecure
and is not accepted by the type systems of [99, 91] since the assignment l:=h reveals
the value of h. The insecure program Y is untypable in these type systems, too.
It is because the type of the assigned variable l in the branches of the conditional
statement is lower than the type of the condition h==1 (see Section 7.2.6). By the
reason of the same fact, program Z is rejected by these type systems although it is
secure. In our approach, we also reject X and Y , but accept Z. Because this program
behaves the same after the execution of 〈h==1〉. Hence, an attacker cannot learn the
value of h of program Z through branching on the condition 〈h == 1〉.

We then propose a notion of termination-insensitive noninterference for threads
as follows. A thread is termination-insensitive noninterfering if its actions are secure.
Furthermore, its behavior from the view of low actions, is always the same regardless
of the returned boolean value after the execution of a high action. Formally:

Definition 7.37 Let ΣH ⊆ I ⊆ ΣI . A thread P is termination-insensitive non-
interfering up to I (P ∈ TINII) if
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1. all actions of P are secure, i.e. σ(P ) ⊆ ΣS,

2. for all residual threads Q of P such that Q
a,κ
−→ Q′ with a ∈ ΣH , Q -I Q

′.

In the definition above, in case I = ΣI , TINII would accept the most secure programs,
while in case I = ΣH , TINII would accept the least secure programs. For instance,
consider the following example.

Example 7.38 Let U , V and W be programs given as follows.

U ::= IF h==1 THEN h:=h+1 ELSE h:=h-1 END IF.

V ::= l:=0;

IF h==0 THEN

IF l==1 THEN h:=1 ELSE h:=2 END IF;

ELSE

h:=3;

END IF;

W ::= WHILE h<10 DO

h:=h+1;

END WHILE.

Program U and W are accepted in both cases I = ΣI and I = ΣH . However, program
V is only accepted in case I = ΣI . This program is rejected by TINIΣH

since it will
proceed with the test 〈l == 1〉 /∈ ΣH if h = 0, while in the other case it will not.

Proposition 7.39 Let ΣH ⊆ I ⊆ I ′ ⊆ ΣI . Then TINII ⊆ TINII′ .

Proof: This follows from Proposition 7.36. ⊓⊔
We now show that in case I = ΣI , we accept all secure programs that are accepted
by the type system of [99].

Theorem 7.40 Let X be a program in the programming language Lang. If X is
well-typed by the typing rules in Table 7.1 then |X| ∈ TINIΣI

.

Proof: Since all actions in X are well-typed, they are secure. Let Q be a residual

thread of X such that Q
a,κ
−→ Q′ with a ∈ ΣH . By the typing rules of Table 7.1, if a

is the condition of a conditional statement (or a while-loop) then all the assignments
within the branches (or the body) of that statement are high. Hence there exists a

residual thread P of Q satisfying the following property: for every path Q = Q0
a0,κ0−→

Q1
a1,κ1−→ · · · from Q, there exists n ∈ N such that Qn = P and ai ∈ ΣI for all i < n.

We define that (Qi, P ) ∈ B for all i ≤ n. Then B is a bisimulation up to ΣI . Hence
Q -ΣI

Q′. By Definition 7.37, |X| ∈ TINIΣI
. ⊓⊔

It should be noticed that TINII will accept insecure programs in certain cases as can
be seen in Example 7.41.
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Example 7.41 We consider the program below:

T ::= WHILE h>0 DO

h:=h+1;

END WHILE

where h ∈ VarH . It can be derived that T ∈ TINII for all sets ΣH ⊆ I ⊆ ΣI .
However, T /∈ NI since |X| • [〈h, 0〉] = [〈h, 0〉] while |X| • [〈h, 1〉] = D.

The program in Example 7.41 exemplifies a termination-leak insecure program. To
preserve the noninterference property for TINII we impose a condition that the pro-
gram terminates successfully as in [99], given as follows.

Definition 7.42 A thread P terminates successfully if for all s ∈ S, P • s 6= D.
Let BTAT

Σ be the set of all threads that terminates successfully.

Definition 7.42 implies that for a thread P ∈ BTAT
Σ and a state s ∈ S, there is a

finite deterministic path (P0 = P, s0 = s)
a0,κ0−→ (P1, s1)

a1,κ1−→ · · ·
an−1,κn−1

−→ (Pn = S, sn)

satisfying that Pi
ai,κi−→ Pi+1, κi = yai

(si) and si+1 = effectai
(si) for all 0 ≤ i < n.

In the next theorem we show that if a thread is termination-insensitive noninter-
fering then it is secure under the condition that the thread terminates successfully.

Theorem 7.43 (Soundness of TINII). Let ΣH ⊆ I ⊆ ΣI . Then TINII ∩ BTAT
Σ ⊆

NI.

Proof: Let P ∈ TINII ∩ BTAT
Σ. We show that for all low equivalent states s, r ∈ S

(s =L
S
r), P • s =L

S
P • r. Since P terminates successfully, there are two finite

deterministic paths obtained by the computations of P with s and r, given as in the
following.

(P0 = P, s0 = s)
I
⇒ (P ′

0, s
′
0)

a0,κ0−→ (P1, s1)
I
⇒ · · ·

an−1,κn−1
−→ (Pn = S, sn) and

(Q0 = P, r0 = r)
I
⇒ (Q′

0, r
′
0)

b0,γ0−→ (Q1, r1)
I
⇒ · · ·

bm−1,γm−1
−→ (Qm = S, rm)

where Pi
I
⇒ P ′

i , Pi -I P ′
i and P ′

i 6-I Pi+1 for 0 ≤ i < n, and where Qj
I
⇒ Q′

j ,
Qj -I Q

′
j and Q′

j 6-I Qj+1 for 0 ≤ j < m. We prove by induction on i that Pi -I Qi

and si =L
S
ri for all 0 ≤ i ≤ n. We consider the following possibilities:

1. i = 0. Then P0 = Q0 = P . Thus, P0 -I Q0 and s0 = s =L
S
r = r0.

2. Assume that Pi -I Qi and si =L
S
ri. We prove that Pi+1 -I Qi+1 and si+1 =L

S

ri+1. One can derive that P ′
i -I Q

′
i. Moreover ai = bi because of P ′

i

ai,κi−→ Pi+1,

Q′
i

bi,γi−→ Qi+1, P
′
i 6-I Pi+1 and Q′

i 6-I Qi+1. Furthermore, by Definition 7.37,
ai /∈ H. Since invisible actions do not have effect on the low space, s′i =L

S

si =L
S
ri =L

S
r′i. It follows from Lemma 7.23 and s′i =L

S
r′i that κi = yai

(s′i) =
ybi

(r′i) = γi. This implies that Pi+1 -I Qi+1 and si+1 = effectai
(s′i) =L

S
=

effectai
(r′i) = ri+1.
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Hence Pi -I Qi and si =L
S
ri for all 0 ≤ i ≤ n. Since Pn = Qm = S, n = m.

Therefore, P • s =L
S
sn =L

S
rn =L

S
P • r. By Definition 7.15, P ∈ NI. ⊓⊔

Example 7.44 Consider the program:

X ::= IF h==1 THEN

h:=h+1;

l:=1;

ELSE

l:=1;

END IF.

where h ∈ VarH and l ∈ VarL. The behavior of X is determined by |X| = ([h :=
h + 1] ◦ [l:=1] ◦ S) � 〈h==1〉 � ([l:=1] ◦ S). Let I = {〈h==1〉, [h := h + 1]}. X is
accepted by TINII since it behaves the same after the execution of the test 〈h==1〉
from the view of low actions. Note that X is rejected by the type system of [99].

7.5.2 Termination-sensitive noninterference up to I

In this section, we assume that an attacker can observe the termination of a program
(termination leak). Hence the attacker may learn that the value of the high variable
h in Example 7.41 is greater than 0 when the program does not terminate.

To circumvent this problem, we restrict the notion of termination-insensitive non-
interference presented in the previous section to termination-sensitive noninterference
up to I with the condition that threads cannot perform an infinite sequence of invisible
actions from I. Formally:

Definition 7.45 Let ΣH ⊆ I ⊆ ΣI . A thread P is termination-sensitive nonin-
terfering up to I (P ∈ TSNII) if

1. all actions of P are secure, i.e. σ(P ) ⊆ ΣS,

2. P cannot perform an infinite sequence of actions from I, i.e., P cannot have a

residual thread Q such that Q = Q0
i0,κ0−→ Q1

i1,κ1−→ · · · with ij ∈ I.

3. for all residual threads Q of P such that Q
a,κ
−→ Q′ with a ∈ ΣH , Q -I Q

′.

Proposition 7.46 TSNII ⊆ TINII for all ΣH ⊆ I ⊆ ΣI .

The previous definition of termination-sensitive noninterference seems strict. How-
ever, in case of structured programming languages, we accept all secure programs that
are accepted by termination-sensitive noninterference treated by Smith and Volpano
in [91] (in which loop guards are required to have type L, i.e. they are not high ac-
tions). Here the set I is defined as the set of all high actions and all invisible actions
occurring in a conditional statement with high guard.
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Theorem 7.47 Let X be a program in the programming language Lang such that
X is well-typed by the typing rules in Table 7.1 with rule (WHILE) replaced by rule
(WHILE-TSNI) in Table 7.2, and let I be the set of high actions together with all
invisible actions occurring in a conditional statement with high guard. We assume
that these actions are distinct from the remaining actions of X. Then |X| ∈ TSNII .

Proof: We only show that |X| cannot perform an infinite sequence of actions from
I. The rest of the proof is similar to the proof of Theorem 7.40. By rule (WHILE-
TSNI) in Table 7.2, every while-loop of X has type L cmd. Since X is well-typed, it
follows from rule (IF) in Table 7.1 that there is no while-loop occurring in a conditional
statement with high guard. This implies that |X| cannot perform an infinite sequence
of actions from I. ⊓⊔
We note that unlike TINI, in case I ⊆ I ′, TSNII * TSNII′ as can be seen in the
following example.

Example 7.48 Let ΣH = I = ∅, I ′ = {i} ⊆ ΣI and P = i∞. Then P ∈ TSNII while
P /∈ TSNII′ since it can perform an infinite sequence of i-actions.

The condition that P cannot perform an infinite sequence of invisible actions from I
suggests the following projective sequence of P based on the approximation operator
πI

n.

Definition 7.49 The approximation operator πI
n : BTAΣ → BTAΣ with I ⊆ Σ is

defined by

πI
0(P ) = D,
πI

n+1(S) = S,
πI

n+1(D) = D,
πI

n+1(P � a�Q) = πI
n+1(P ) � a� πI

n+1(Q) with a ∈ I,
πI

n+1(P � a�Q) = πI
n(P ) � a� πI

n(Q) otherwise.

A projective sequence with respect to I is a sequence (Pn)n∈N such that for each
n ∈ N,

πI
n(Pn+1) = Pn.

For an infinite thread P represented by a projective sequence (Pn)n with respect to
I, we write πI

n(P ) = Pn for all n ∈ N.
In order to show the soundness of TSNII , we use the following auxiliary lemmas.

Lemma 7.50 Let ΣH ⊆ I ⊆ ΣI , and let P and Q be threads such that P,Q ∈ TSNII

and P -I Q. Then P ≈L
S
Q.

Proof: We consider the following possibilities:
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1. P and Q are finite threads. We prove this lemma by induction on the length of
P . If P ∈ {S,D} then this is trivial. Let P = P1 � a � P2. There are three
cases:

(a) a ∈ ΣH . Since P ∈ TSNII , P1 -I P and P2 -I P . Thus, P1 -I Q and
P2 -I Q. Then by the induction hypothesis, P1 ≈L

S
Q and P2 ≈L

S
Q.

Therefore, P ≈L
S
Q.

(b) a ∈ I \ ΣH and P1 -I Q. It can be derived that P2 -I Q. Then by the
induction hypothesis, P1 ≈L

S
Q and P2 ≈L

S
Q. Therefore, P ≈L

S
Q.

(c) There are finite paths Q
I
⇒ Q′ a,T

−→ Q1 and Q
I
⇒ Q′ a,F

−→ Q2 such that
P -I Q

′, P1 -I Q1 and P2 -I Q2. By the induction hypothesis, P1 ≈L
S
Q1

and P2 ≈L
S
Q2. Since a /∈ ΣH , ya(s) = ya(t) for all states s, t of a state

space S such that s =L
S
t. This implies that P ≈L

S
Q′. Since invisible

actions have no effect on the low space, Q ≈L
S
Q′. Therefore, P ≈L

S
Q.

2. P and Q are infinite threads. Let Pn = πI
n(P ) and Qn = πI

n(Q) for all n ∈ N.
One can see that Pn and Qn are finite, and Pn -I Qn. It follows from the
previous case that Pn ≈L

S
Qn. Therefore, P ≈L

S
Q.

⊓⊔

Lemma 7.51 Let ΣH ⊆ I ⊆ ΣI and P be a thread that cannot perform an infinite
sequence of invisible actions in I. Then P ∈ TSNII ⇔ P -I τH(P ).

Proof: Straightforward. ⊓⊔
The next theorem shows that if a thread is termination-sensitive noninterfering up to
I then it is secure.

Theorem 7.52 (Soundness of TSNII). Let ΣH ⊆ I ⊆ ΣI . Then TSNII ⊆ NI.

Proof: Let P be a thread such that P ∈ TSNII . It follows from Lemma 7.50 and
Lemma 7.51 that P ≈L

S
τH(P ). Thus, P ∈ NI. ⊓⊔

7.5.3 Timing-sensitive noninterference

Finally, this section assumes the worst-case scenario, an attacker may observe the
timing of program execution. Consider the following program:

X ::= WHILE h>0 DO

h:=h-1;

END WHILE.

This program is an example of a timing leak insecure program. Here, the attacker
may learn the value of h from the timing behavior of the program. Timing leaks have
been shown, for instance in [63], to leak sensitive information.
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We assume the existence of the command SKIP in the programming language
Lang. This command does nothing upon execution, but takes a single unit of time to
perform and is represented by a special action, called tick. The action tick has no
effect on the state space and always returns true after its executions.

We define another noninterference property called timing-sensitive noninterference
for threads in order to avoid timing leaks. Following [87], we assume that the execution
of each action takes a single unit of time. Our definition is based on the notion of
bisimulation presented in Section 7.4. Informally speaking, a thread is timing-sensitive
noninterfering if it behaves the same (in the sense that all high and tick actions are
considered similarly) through branching on a high risk condition. Formally:

Definition 7.53 A thread P is timing-sensitive noninterfering (P ∈ TISNI) if

1. all actions of P are secure, i.e. σ(P ) ⊆ ΣS,

2. for all residual threads Q of P such that Q
a,T
−→ Q1 and Q

a,F
−→ Q2 with a ∈ ΣH ,

tΣH∪{tick}(Q1) - tΣH∪{tick}(Q2).

According to the previous definition, the above program X is insecure. The following
program is an example of a timing-sensitive secure program.

Y ::= IF h==1 THEN h:=h+1 ELSE SKIP END IF; l:=1.

One can derive that a timing-sensitive noninterfering thread is secure. Formally:

Theorem 7.54 (Soundness of TISNI). TISNI ⊆ NI.

Proof: Straightforward. ⊓⊔

7.6 Compositionality of TISNI

In this section, we show that timing-sensitive noninterference satisfies composition-
ality, a fundamental property in programming languages, with respect to the cyclic
interleaving operator.

Lemma 7.55 (Congruence). Let Pi and Qi (1 ≤ i ≤ n) be threads such that
Pi - Qi. Then

‖csi (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) -‖csi (〈Q1〉 y 〈Q2〉 y · · · y 〈Qn〉)

Proof: See Theorem 4.13. ⊓⊔
One can see that the pre-abstraction operator is closed under the cyclic interleaving
operator, i.e.:
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Lemma 7.56 Let α = α1 y · · · y αn be a thread vector. Then

tΦ(‖csi (α)) =‖csi (tΦ(α1) y tΦ(α2) y · · · y tΦ(αn)).

It follows from Definition 7.53, Lemma 7.55 and Lemma 7.56 that timing-sensitive
noninterference satisfies compositionality with respect to the cyclic interleaving oper-
ator.

Theorem 7.57 (Compositionality of TISNI). Let Pi ∈ TISNI for all 1 ≤ i ≤ n.
Then

‖csi (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) ∈ TISNI

7.7 An interleaving strategy with respect to nonin-
terference

In the previous section, we have seen that timing-sensitive noninterference is com-
positional with respect to the cyclic interleaving operator. It would be natural if
termination-insensitive noninterference and termination-sensitive noninterference also
satisfy compositionality with respect to this operator. Unfortunately, it is shown in
the following example that the compositionality property does not hold for the cases
of TINII and TSNII .

Example 7.58 Let h ∈ VarH , l ∈ VarL. Let α and β be two single threads defined
as

α = (([h:=h+ 1] ◦ [l:=0] ◦ S) � 〈h==1〉 � ([l:=0] ◦ S);
β = [l:=1] ◦ [l:=2] ◦ S.

Let I = ΣH = {[h:=h + 1], 〈h==1〉}. It can be checked that α and β are secure.
However ‖csi (α y β) is not secure, since

‖csi (α y β) = ([l:=1] ◦ [h:=h+ 1] ◦ [l:=2] ◦ [l:=0] ◦ S)
�〈h==1〉�

([l:=1] ◦ [l:=0] ◦ [l:=2] ◦ S)

which produces l = 0 if h = 1, and l = 2 otherwise.

To preserve compositionality for TSNII and TINII , we propose in this section a variant
of the cyclic interleaving operator called the cyclic strategic interleaving with persis-
tence operator (‖csip) for thread algebra. This strategy is similar to the current thread
persistence operator of [23] and will not invoke the rotation of a thread vector if the
current action is persistent. We will show that bisimulation up to I is a congruence
under this interleaving strategy with the assumption that all invisible actions of I
are persistent. Later, in Section 7.8, it will be shown that TINII and TSNII sat-
isfy compositionality with respect to the cyclic strategic interleaving with persistence
operator.
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7.7.1 The cyclic strategic interleaving with persistence opera-
tor

Let persistent : Σ → {true, false} be a boolean function defined on the set of
actions Σ. Cyclic strategic interleaving with persistence ‖csip is defined formally as
follows.

Definition 7.59 The axioms for the cyclic strategic interleaving with persis-
tence ‖csip operator are given for finite threads by

‖csip (〈〉) = S
‖csip (〈S〉 y α) = ‖csip (α)
‖csip (〈D〉 y α) = SD(‖csip (α))
‖csip (〈x� a � y〉 y α) = ‖csip (〈x〉 y α) � a� ‖csip (〈y〉 y α) if persistent(a)
‖csip (〈x� a � y〉 y α) = ‖csip (α y 〈x〉) � a� ‖csip (α y 〈y〉) otherwise.

For a thread vector α of arbitrary (finite or infinite) threads α = α1 y · · · y αn,
‖csip (α) is determined by its projective sequence:

πn(‖csip (α)) = πn(‖csip (πn(α1) y · · · y πn(αn))).

In order to preserve compositionality of TINII and TSNII with respect to cyclic
interleaving with persistence, we define that for all invisible actions a ∈ I,
persistent(a) = true. This assumption is to maintain the order of the invisible
actions of I in the execution of a multi-thread, and therefore, the analysis can be
made compositional.

Example 7.60 We now return to Example 7.58. We define that
persistent([h:=h+1]) = persistent([〈h==1〉) = true and persistent yields false
for all other actions. The multi-thread ‖csip (α y β) is secure, since

‖csip (α y β) = ([h:=h+ 1] ◦ [l:=0] ◦ [l:=1] ◦ [l:=2] ◦ S)
�〈h==1〉�

([l:=0] ◦ [l:=1] ◦ [l:=2] ◦ S)

which always produces l=2.

We note that in the case that all actions are not persistent, the cyclic interleaving
with persistence operator coincides with the cyclic interleaving operator (‖csip=‖csi).

The cyclic interleaving with persistence strategy with the assumption that all
invisible actions of I are persistent may appear conservative in handing over the
control to another thread in some cases. For instance, consider the following example.

Example 7.61 Let P =‖csip (〈tick∞〉 y a∞) and I = {tick}. According to our
approach, persistent(tick) = true. By Definition 7.59, P will never have a chance
to perform action a, since P = tick∞, which is considered disadvantagous for multi-
threading.
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To circumvent this issue, we could restrict I to the set ΣH of high actions. This
restriction would accept less secure threads as described in Section 7.5. However,
it would increase the chance to hand over the control of multi-threading to another
thread. We return to Example 7.61. In this example, the set ΣH of high actions is
empty. Let I = ΣH = ∅. The multi-thread P now is determined by P = tick ◦ a ◦
tick ◦ a · · · .

7.7.2 Congruence with respect to TSNII

In this section, we show that bisimulation up to I is a congruence under the cyclic
interleaving with persistence operator, with respect to the assumptions that a thread
cannot perform an infinite sequence of invisible actions from I, and all invisible actions
of I are persistent. We will use the following auxiliary lemma.

Lemma 7.62 Let ΣH ⊆ I ⊆ ΣI , and let P and Q be threads such that P -I Q.
Then SD(P ) -I SD(Q).

Lemma 7.63 (Congruence with respect to TSNII). Let ΣH ⊆ I ⊆ ΣI , and
persistent(a) = true for all a ∈ I. Let Pi and Qi (1 ≤ i ≤ n) be threads such that
Pi -I Qi, and Pi and Qi cannot perform an infinite sequence of actions from I. Then

‖csip (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) -I‖csip (〈Q1〉 y 〈Q2〉 y · · · y 〈Qn〉)

Proof: Let B be a binary relation defined as follows. For threads P and Q, (P,Q) ∈ B
if there are sequences α and β with the same length n for some n ∈ N such that
P =‖csip (α), Q =‖csip (β), and for all components αi and βi of α and β, αi -I βi

respectively. We show that B is a bisimulation up to I.

1. P = S. Then for all i, 1 ≤ i ≤ n, αi = S. Since, βi -I αi. It is not hard to see

that there exists a finite path Q
I
⇒ Q′ with Q′ = S.

2. P
a,κ
−→ P ′. There exists i such that for all j < i, αj ∈ {S,D} and αi

a,κ
−→ x. Let

P1 =‖csip (αi y · · · y αn) and P ′
1 =‖csip (x y αi+1 y · · · y αn). Since for all

j < i, αj -I βj and βj cannot perform an infinite sequence of invisible actions,

there exist finite paths βj
I
⇒ β′

j with β′
j = αj . Since αi -I βi, there exists a finite

path βi
I
⇒ β′

i

a,κ
−→ y with αi -I β

′
i and x -I y. Let Q1 =‖csip (β′

i y · · · y βn)
and Q′ =‖csip (y y βi+1 y · · · y βn). Then P1 -I Q1 and P ′

1 -I Q
′. If αj = S

for all j < i then P = P1, P
′ = P ′

1 and Q
I
⇒ Q1

a,κ
−→ Q′ with P -I Q1 and

P ′
-I Q

′, otherwise P = SD(P1), P
′ = SD(P ′

1) and Q
I
⇒ SD(Q1)

a,κ
−→ SD(Q′)

with P -I SD(Q1) and P ′
-I SD(Q′) (because of Lemma 7.62).

Thus, B is a bisimulation up to I. ⊓⊔
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One may expect that Lemma 7.63 also works on the case that threads can perform an
infinite sequence of invisible actions from I. However, the following example shows
that it is not the case.

Example 7.64 Let P =‖csip (〈i∞〉 y 〈a ◦S〉) = i∞ and Q =‖csip (〈D〉 y 〈a ◦S〉) =
a ◦ D with I = {i}. It is obvious that P and Q are not bisimilar up to I although
i∞ -I D and a ◦ S -I a ◦ S.

7.7.3 Congruence with respect to TINII

We now show that Lemma 7.63 will hold for the case that a thread may perform an
infinite sequence of invisible actions from I if all threads are deadlock-free.

Definition 7.65 A thread is deadlock-free if it does not contain a residual deadlock
D.

Lemma 7.66 (Congruence with respect to TINII). Let ΣH ⊆ I ⊆ ΣI , and
persistent(a) = true for all a ∈ I. Let Pi and Qi (1 ≤ i ≤ n) be deadlock-free
threads such that Pi -I Qi. Then

‖csip (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) -I‖csip (〈Q1〉 y 〈Q2〉 y · · · y 〈Qn〉)

Proof: Let B be a binary relation defined as follows. For threads P and Q, (P,Q) ∈ B
if there are sequences α and β of the same length n for some n ∈ N such that
P =‖csip (α), Q =‖csip (β), and for all process components αi and βi of α and β,
αi -I βi respectively. We show that B is a bisimulation up to I.

1. P = S. Then for all i, 1 ≤ i ≤ n, αi = S. Since, βi -I αi. It is not hard to see

that there exists a finite path Q
I
⇒ Q′ with Q′ = S.

2. P
a,κ
−→ P ′. Since αj 6= D for all 1 ≤ j ≤ n, there exists i such that for

all j < i, αj = S and αi
a,κ
−→ x. Furthermore, P =‖csip (αi y · · · y αn)

and P ′ =‖csip (x y αi+1 y · · · y αn). Since for all j < i, αj -I βj ,

there exist finite paths βj
I
⇒ S. Since αi -I βi, there exists a finite path

βi
I
⇒ β′

i

a,κ
−→ y with αi -I β

′
i and x -I y. Let Q1 =‖csip (β′

i y · · · y βn) and

Q′ =‖csip (y y βi+1 y · · · y βn). Then Q
I
⇒ Q1

a,κ
−→ Q′ with P -I Q1 and

P ′
-I Q

′.

Thus, B is a bisimulation up to I. ⊓⊔
Example 7.64 is also a counter example of Lemma 7.66 for the case that threads
contain deadlocks.



7.8. Compositionality of TSNII and TINII 131

7.8 Compositionality of TSNII and TINII

Assuming that invisible actions in the set I ⊇ ΣH are persistent and threads cannot
perform an infinite sequence of invisible actions from I, we show that the abstraction
of high actions is closed under the cyclic strategic interleaving with persistence. This
implies that termination-sensitive noninterference satisfies compositionality with re-
spect to this strategy. Furthermore, if we leave out the condition that threads cannot
perform an infinite sequence of invisible actions from I, then for threads containing
no deadlocks, termination-insensitive noninterference also satisfies compositionality
with respect to the cyclic interleaving with persistence strategy.

7.8.1 Closure of abstraction of high actions

In order to show that the abstraction of high actions is closed under the cyclic in-
terleaving with persistence operator, provided that all high actions are persistent, we
use the following auxiliary lemma.

Lemma 7.67 Let P be a finite thread. Let πΣH
m : BTAΣ → BTAΣ be an approxi-

mation operator as defined in Definition 7.49 with I replaced by ΣH . Then for all
m ∈ N,

τH(πΣH
m (P )) = πm(τH(P )).

Theorem 7.68 (Closure of abstraction). Let ΣH ⊆ I ⊆ ΣI , and persistent(a) =
true for all a ∈ I. Let α = α1 y · · · y αn be a thread vector such that for 1 ≤ i ≤ n,
αi cannot perform an infinite sequence of invisible actions of I. Then

τH(‖csip (α)) =‖csip (τH(α1) y · · · y τH(αn))

Proof: We consider two possibilities:

1. The thread α is finite. This implies that the threads αi are finite for all 1 ≤ i. For
a thread vector β of length n, we define that τH(β) = τH(β1) y · · · y τH(βn).
We prove this lemma by induction on the length of the threads and on the length
of the thread vector. More precisely, we suppose that for all sequences β with
length(β) < n, τH(‖csip (β)) =‖csip (τH(β)). Furthermore, for all threads Q
with length(Q) < length(P ): τH(‖csip (〈Q〉 y β)) =‖csip (〈τH(Q)〉 y τH(β)).
We prove that τH(‖csip (〈P 〉 y β)) =‖csip (〈τH(P )〉 y τH(β)).

(a) P = S. Then

τH(‖csip (〈S〉 y β)) = τH(‖csip (β)) =‖csip (τH(β)) =‖csip (〈S〉 y τH(β)).
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(b) P = D. Then

τH(‖csip (〈D〉 y β)) = τH(SD(‖csip (β))) = SD(‖csip (τH(β)))
=‖csip (〈D〉 y τH(β)).

(c) P = x� a � y with a ∈ ΣH . Then

‖csip (〈P 〉 y β) =‖csip (〈x〉 y β) � a� ‖csip (〈y〉 y β).

By the induction hypothesis,

τH(‖csip (〈P 〉 y β)) = τH(‖csip (〈x〉 y β))
= ‖csip (〈τH(x)〉 y τH(β))
= ‖csip (〈τH(P )〉 y τH(β)).

(d) P = x� a � y with a ∈ I \ ΣH . Similar to the previous case,

τH(‖csip (〈P 〉 y β))
= τH(‖csip (〈x〉 y β)) � a � τH(‖csip (〈y〉 y β))
=‖csip (〈τH(x)〉 y τH(β)) � a� ‖csip (〈τH(y)〉 y τH(β))
=‖csip (〈τH(P )〉 y τH(β)).

(e) P = x� a � y with a /∈ I. Then

‖csip (〈P 〉 y β) =‖csip (β y 〈x〉) � a� ‖csip (β y 〈y〉).

By the induction hypothesis,

τH(‖csip (〈P 〉 y β))
= τH(‖csip (β y 〈x〉)) � a � τH(‖csip (β y 〈y〉))
=‖csip (τH(β) y 〈τH(x)〉) � a� ‖csip (τH(β) y 〈τH(y)〉)
=‖csip (〈τH(P )〉 y τH(β)).

2. The thread α is infinite. Let P =‖csip (α) and

Pm = πΣH
m (‖csip (πΣH

m (α1) y πΣH
m (α2) y · · · y πΣH

m (αn))).

One can derive that P =
⊔

m Pm. It follows from Lemma 7.67 and the previous
case that

τH(Pm) = πm(τH(‖csip (πΣH
m (α1) y πΣH

m (α2) y · · · y πΣH
m (αn))))

= πm(‖csip (τH(πΣH
m (α1)) y τH(πΣH

m (α2)) y · · · y τH(πΣH
m (αn))))

= πm(‖csip (πm(τH(α1)) y πm(τH(α2)) y · · · y πm(τH(αn))))
= πm(‖csip (τH(α1) y τH(α2) y · · · y τH(αn)))

This implies that P =‖csip (τH(α1) y τH(α2) y · · · y τH(αn)).
⊓⊔
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7.8.2 Compositionality of termination-sensitive noninterfer-
ence

In this section, we discuss the compositionality property of termination-sensitive non-
interference. By assuming that all invisible actions of I are persistent, we show that
TSNII satisfies compositionality with respect to the cyclic interleaving with persistence
strategy.

Theorem 7.69 (Compositionality of TSNII). Let ΣH ⊆ I ⊆ ΣI and for all ac-
tions a ∈ I, persistent(a) = true. Let Pi ∈ TSNII for all 1 ≤ i ≤ n. Then

‖csip (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) ∈ TSNII

Proof: This follows from Lemma 7.51, and Lemma 7.63 and Theorem 7.68. ⊓⊔
We note that without the assumption that all actions in I are persistent, the com-
positionality property for TSNII does not hold as can be seen in Example 7.58. Fur-
thermore, upon the execution of the thread vector, the current thread will switch to
another thread since it cannot an infinite sequence of actions from I. Hence, every
thread Pi in the thread vector will have a chance to perform its actions.

7.8.3 Compositionality of termination-insensitive noninterfer-
ence

Similar to the previous section, we show that TINII satisfies compositionality with
respect to the cyclic interleaving with persistence, provided that all invisible actions
of I are persistent, and that threads contain no deadlocks.

Theorem 7.70 (Compositionality of TINII). Let ΣH ⊆ I ⊆ ΣI and for all ac-
tions a ∈ I, persistent(a) = true. Let Pi ∈ TINII be deadlock-free threads for all
1 ≤ i ≤ n. Then

‖csip (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) ∈ TINII

Proof: Let P =‖csip (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉). We show that for all residual
threads Q of P , if Q = Q′ � a �Q′′ with a ∈ ΣH then Q′

-I Q
′′. It can be derived

that Q = S or Q =‖csip (〈Qi1〉 y 〈Qi2〉 y · · · y 〈Qim
〉), where Qk is a residual

thread of Pk for 1 ≤ k ≤ n. Let Qi1 = Q′
i1

� a �Q′′
i1

. Then

Q′ = ‖csip (〈Q′
i1
〉 y 〈Qi2〉 y · · · y 〈Qim

〉)
Q′′ = ‖csip (〈Q′′

i1
〉 y 〈Qi2〉 y · · · y 〈Qim

〉).

Since Pi1 ∈ TINII , Q
′
i1

-I Q
′′
i1

. It follows from Lemma 7.66 that Q′
-I Q

′′. There-
fore, P ∈ TINII . ⊓⊔
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7.9 Concluding remarks

In this chapter, we have modelled various notions of noninterference in thread al-
gebra. In particular, we have discussed termination-insensitive and termination-
sensitive noninterference up to a set I which contains all high actions. These no-
tions are based on bisimulation up to I. The former requires the condition that
the program terminates successfully while the latter considers termination-leak in-
formation. Furthermore, we have defined timing-sensitive noninterference regarding
timing-leak information. We have proven soundness of these noninterference prop-
erties and shown that we accept all secure programs that are accepted by the other
approaches based on type systems discussed in [99, 91]. Hence, thread algebra is suit-
able as a process-algebraic framework for formalizing and analyzing security proper-
ties in multi-threaded languages. Furthermore, it is also an applicable framework for
considering security properties for unstructured programs.

In the setting of multi-threading, it has been shown that timing-sensitive noninter-
ference satisfies compositionality with respect to the cyclic interleaving strategy [23].
In order to preserve compositionality for termination-insensitive and termination-
sensitive noninterference up to I, we have proposed the cyclic interleaving with per-
sistence operator, and shown that these notions of noninterference satisfy composi-
tionality, under the assumption that all actions of I are persistent.

For checking the noninterference properties presented in this chapter, one can
apply existing techniques [78, 54] and existing tools [48, 49, 31] for checking process-
equivalence to develop our security checkers.

In this chapter, we only cover a basic interleaving strategy namely the cyclic
interleaving operator of [23] to illustrate our ideas. We have not considered plausible
interleaving strategies dealing with other features of multi-threading such as forking
and blocking in thread algebra. We leave these issues for future work. We hereby
show that previous work on security for sequential and multi-threaded systems can
be reconsidered in thread algebra.



Chapter 8

Goto elimination in program
algebra

8.1 Introduction

Program algebra (PGA) is an algebraic framework for formalizing and analyzing se-
quential programming languages [22]. The virtue of PGA is that it is simple and
easily memorized. Based on PGA, more complex programming languages such as
Cobol, Java and C# can be developed and studied. A steady development of the
core theory of PGA has been created and results on Maurer computers [26] and risk
assessment [28] were achieved. This chapter discusses the topic of goto removal [45]
in PGA.

Although goto removal has been studied for several decades, it is still important
because of maintenance and redevelopment of legacy software systems. These systems
have been growing and evolving over the years. Changing the code of legacy software
systems is needed to keep up with requirements of real-life applications and technical
evolution [32, 58, 70]. It requires a lot of time and effort for a programmer to maintain
and modify unstructured source codes. Goto removal to aid the restructuring of the
source code is a basic step in extracting business knowledge embedded in legacy
applications [92]. Once the business logic from a legacy system has been extracted,
the system is ready for modifications and integrations, for instance porting to Object
Cobol [42]. Another example is to create web services from legacy host programs [93].

We distinguish two classes of approaches on goto removal. The first work considers
gotos as a harmful statement [45]. It eliminates all gotos from programs by providing
additional boolean variables, or by introducing a variety of loops with multi-level exits
as studied in modern programming languages such as Java and C#. The latter is to
remove certain types of gotos in order to restructure programs for modifiability and
maintainability. This work has been studied exhaustively for legacy programming
languages such as Cobol [90, 96]. In the following, we will briefly introduce these two
classes.

135
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8.1.1 Removing all gotos

Removing all gotos is involved with various notions of equivalence.

The most basic equivalence is input-output equivalence [67]. Two programs are
input-output equivalent if given identical inputs, they produce identical outputs.
Programs with gotos are considered as flowcharts. Goto removal with the use of
additional variables is known as the Folk theorem (for an overview, see [55]) which
states that every flowchart is equivalent to a while-program with only one occurrence
of a while-loop under input-output equivalence, provided that additional variables are
allowed. Many algorithms and transformation rules [33, 41, 76, 3, 39, 72] including
that of Böhm and Jacopini [33] and Cooper [41] have been provided to prove this
theorem. However, their correctness has not been discussed formally. Furthermore,
goto removal described in the Folk theorem is treated under input-output equivalence,
which is rather weak.

Goto removal is more complex under path equivalence [10]. Two flowcharts are
path equivalent if they execute the same sequence of actions and tests. It is shown in
[62, 3, 80, 61, 64] that conventional iterative constructs are not sufficient to replace
gotos under this equivalence. To overcome this issue, Peterson et al. [80] introduce
loops and multi-level exits, and show that a flowchart is path equivalent to a program
written in this extension.

In [83], Ramshaw considers a stricter notion of flow-graph equivalence. Two pro-
grams are flow-graph equivalent if their flowcharts are the same. He provides a condi-
tion of reducibility to eliminate gotos under this equivalence. In particular, he shows
that a program can be converted to another program which is free of head-to-head
crossings under flow-graph equivalence if its flowchart is reducible. Furthermore, he
defines the highest standard of equivalence, structural equivalence. Two programs are
structurally equivalent if they are flow-graph equivalent, and we can convert the text
of the source into the text of the target simply by replacing some components of the
source without rearranging or altering any other statements. He then introduces two
simple rules to remove all gotos and labels under structural equivalence: the Forward
Elimination Rule and the Backward Elimination Rule for programs which are free of
head-to-head crossings.

Both methods of Peterson et al. and Ramshaw aim to achieve structural equiva-
lence. Therefore, they require strong conditions such as reducibility or being free of
head-to-head crossings. In addition, the fact that path and flow-graph equivalence
are defined for flowcharts, while structural equivalence is defined for program sources,
causes inhomogeneity in reasoning about equivalences of programs. We will pick up
where Peterson et al. and Ramshaw left off. Furthermore, we show that PGA pro-
vides a mathematical and systematic framework for reasoning about correctness and
equivalence of goto removal with and without the use of additional variables.

8.1.2 Removing gotos for knowledge extraction

Removing all goto statements is not always a good solution in maintenance and re-
development of legacy systems because the resulting programs cannot be expected
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more transparent than the original ones [45]. In [90, 96], Sellink et al. and Veerman
provide a collection of transformation rules using the ASF+SDF Meta-Environment
[60, 37], which removes only certain gotos for restructuring programs in Cobol. These
transformation rules have been shown to be very effective and were applied to several
large industrial Cobol systems. However, no formal correctness proof for these rules
is available. This is because of a lack of time and the several semantics defined for
Cobol [97]. In particular, the semantics of the PERFORM statement in Cobol differs
between Cobol dialects [98]. A lightweight approach to check correctness of these
transformation rules has been proposed in [97]. But this is rather a circumstantial
evidence for transformation correctness than a formal proof. We will define a restric-
tion on Cobol that avoids the unexpected behaviors as studied in [98] and discuss
correctness of these transformation rules in the setting of PGA. We also hint at an
automatable method to prove correctness for most of them.

8.1.3 Our contributions and outline of the chapter

In this chapter, we show that:

1. Gotos can be eliminated in the setting of PGA by the use of additional boolean
variables, or by introducing loops with multi-level exits. We formulate the
algorithm of Cooper [41] for goto removal using additional boolean variables in
the setting of PGA. Furthermore, we propose a technique to get rid of head-
to-head crossings in order to subsequently employ the results of Peterson et al.
and Ramshaw [80, 83] for goto removal without the use of additional variables.
These are useful for the study of the program algebra itself.

2. PGA provides a mathematical and systematic framework for reasoning about
and classifying the correctness and equivalence of various standard algorithms
and transformation rules in goto removal. We show that the algorithm of Cooper
is correct under behavioral equivalence with respect to additional boolean vari-
ables. This equivalence is finer than input-output equivalence in the approaches
of [33, 41]. Furthermore, our algorithm for goto removal without the use of
additional variables is correct under behavioral equivalence, an analogous notion
of path equivalence defined for programs in PGA. We hereby explain goto re-
moval with mathematical rigor. We also prove correctness for some industrial
transformation rules [96] in restructuring Cobol programs.

The structure of this chapter is as follows. Section 8.2 recalls the basic concepts of
PGA. Section 8.3 defines behaviors for programs containing gotos and structured pro-
grams. Section 8.4 eliminates gotos using additional variables. Section 8.5 eliminates
gotos without using additional variables. Section 8.6 discusses correctness of transfor-
mation rules in [96]. The chapter ends with some concluding remarks in Section 8.7.

8.2 Technical concepts

In this section we recall the technical concepts of program algebra from [22, 27].
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8.2.1 Program algebra (PGA)

Program algebra (PGA) [22] is an algebraic framework for the description of sequential
programming languages. PGA is generated by a set of primitive instructions and two
compositions concatenation and repetition. These primitive instructions are basic
instructions, termination, tests (positive/negative) and jumps. Let Σ be a set of
basic instructions. Each basic instruction returns a boolean value upon execution.
Program expressions in PGA over Σ, denoted by PGAΣ, are generated by a collection
of primitive instructions and two composition constructs. These primitive instructions
are:

Basic instruction All a ∈ Σ are basic instructions. Upon the execution of a basic
instruction, a boolean value is generated and a state may be modified. After
execution, a program has to execute its subsequent instruction.

Termination instruction Termination instruction, denoted by !, indicates termi-
nation of the program.

Positive test instruction For each a ∈ Σ, there is a positive test instruction de-
noted by +a. If +a is performed by a program, then first a is executed. The
state is affected according to a. In case true is returned, the subsequent instruc-
tion is performed. In case false is returned, the next instruction is skipped and
the execution continues with the following instruction.

Negative test instruction For each a ∈ Σ, there also exists a negative test instruc-
tion denoted by −a. If −a is performed by a program, then first a is executed.
The state is affected according to a. In case false is returned, the subsequent
instruction is executed. In case true is returned, the next instruction is skipped
and the execution proceeds with the following instruction.

Forward jump instruction For any natural number k, there is an instruction #k
which denotes a jump of length k. The number k is the counter of the jump
instruction.

• If k = 0, the jump is to itself (zero steps forward). In this case inaction
will result.

• If k = 1, the instruction is skipped. The subsequent instruction is executed
next.

• If k > 1, the execution skips the next k − 1 instructions. The instruction
after that is performed.

If there is no instruction to be executed, inaction will occur.
The two composition constructs of PGA are:

Concatenation The concatenation of two programs X and Y in PGAΣ, denoted by
X;Y , is also in PGAΣ.

Repetition The repetition of a program X in PGAΣ, denoted by Xω, is also in
PGAΣ.
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The unfolding of a repetition can be derived: Xω = X;Xω.

8.2.2 Programming languages based on program algebra

Based on PGA, more complex programming languages can be developed and studied
by providing simple and general constructions. This section introduces two variants
of PGA: PGLE and PGLS. The program notation PGLE describes programming lan-
guages with labels and gotos while the program notation PGLS describes structured
programming languages in general.

PGLE as a programming language with labels and gotos

PGLE is a modification of PGA by allowing the use of labels and gotos, and omitting
the jump instructions and repetition. We recall the descriptions of labels and gotos
from [22].

Label instruction For a natural number k, £k is a skip instruction that cannot
modify a state. Upon execution, this instruction is simply passed.

Goto instruction For a natural number k, ##£k represents a jump to the leftmost
occurrence of the label instruction £k in the program. If no such instruction
can be found termination will occur.

The descriptions of the other primitive instructions in PGLE are given as in PGA
(see Section 8.2.1). However, unlike PGA, in the execution of a program in PGLE, if
there are no instructions to be performed, termination will occur. Programs in PGLE
must satisfy the following restriction: each test instruction (positive or negative) must
always be immediately followed by a goto instruction or a termination instruction.
With this condition, in PGLE one can omit repeated occurrences of label instructions,
while preserving the same behavior. Furthermore, one can simply replace a goto
instruction by termination if a label with the same number does not exist, or simply
leave out a label that has no associated goto instruction. For our purpose, we provide
another restriction on programs in PGLE: labels of a program in PGLE must occur
with different numbers. Furthermore, for a label instruction there must be at least
an associated goto instruction, and vice versa, for a goto instruction there must be
an associated label instruction.

Example 8.1 The typical program with labels and gotos in modern programming
languages

L0:

statement1;

IF condition1 THEN GO L0 END IF;

EXIT;

statement2
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can be formulated in PGLE as follows

£0; statement1; +condition1;##£0; !; statement2.

Note that for simplicity, we only consider removing gotos for PGLE. Extensions of a
PGLE program with IF-THEN-ELSE-END IF and WHILE-END WHILE statements
can be transformed into PGLE.

PGLS as a structured programming language

PGLS is obtained from PGLE by adding conditional statements and while-loops, and
leaving out termination, labels and gotos. A conditional statement in PGLE consists
of three following instructions corresponding to three parts IF-THEN, ELSE, and
END IF.

Conditional instruction For each basic instruction a ∈ Σ the instructions +a{n
and −a{n initiate the text of a conditional statement. The number n is the
position of the corresponding separator.

Then/else separator The instruction }n{ connects two sections that are enclosed
in braces. The number n is the position of the corresponding end brace.

End brace The instruction } serves as a closing brace of a conditional statement.

Similarly, a while-loop statement can be defined with the following instructions cor-
responding to WHILE and END WHILE, or LOOP and END LOOP.

Positive/negative while-loop header For an action a ∈ Σ the instruction +a{∗n
and −a{∗n initiate the text of a while-loop. The number n is the position of
the corresponding closing brace in the while-loop.

Unconditional while-loop header The instruction {∗ initiates the text of an un-
conditional while-loop, i.e, a while-loop in which the loop condition is always
true.

End of while-loop The instruction ∗}n serves as a closing brace of a while-loop in
connection with its opening brace containing in a while-loop header at position
n.

We note that the annotations n of these instructions can be left out if we do not want
to emphasize the positions of their relative instructions in a conditional statement or
a while-loop. Furthermore, a separator is considered as an opening brace or a closing
brace in connection with its end brace or conditional instruction in a conditional
statement.

Example 8.2 The following conditional and while-loop statements in modern pro-
gramming languages
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IF condition1 THEN statement1 ELSE statement2 END IF;

WHILE condition2 DO statement3 END WHILE;

are transformed into PGLS as

+condition1{3; statement1; }5{; statement2; };
+condition2{∗3; statement3; ∗}.

Definition 8.3 A PGLS program X = u1; . . . ;uk is well-formed if it satisfies the
following conditions:

1. There is a one-to-one correspondence between opening braces and closing braces
in X. If (i, n) is a pair of positions of an opening brace and its corresponding
closing brace then i < n.

2. If (ij , nj) (j = 1, 2) are pairs of positions of an opening brace and its correspond-
ing closing brace such that i1 < i2 then either n1 ≤ i2 or i1 < i2 < n2 < n1.

Example 8.4 The program X = +a{3;+b{3; }4{; } is not well-formed since there
are two opening braces +a{3 and +b{3 for the separator }4{.

8.2.3 Basic thread algebra (BTA)

The behaviors of programs in PGA and its generated programming languages can be
defined in basic thread algebra (BTA) [22, 25], an algebraic theory about the seman-
tics of sequential programming languages. We note that basic thread algebra was
introduced as basic polarized process algebra (BPPA) in [22].

Primitives of BTA

The basic instructions in Σ are called actions.

Definition 8.5 Let BTAΣ be the set of finite threads over Σ. It is generated induc-
tively by the following operators:

• Termination: S ∈ BTAΣ.

• Inactive behavior: D ∈ BTAΣ.

• Postconditional composition: (−)�a�(−) with a ∈ Σ. The thread P�a�Q
with P,Q ∈ BTAΣ first performs a and then proceeds with P if true was produced
and with Q otherwise. In case P = Q, we abbreviate this thread by the action
prefix operator: a ◦ (−). In particular, a ◦ P = P � a� P .

We note that the inactive behavior D represents, for instance, the behavior of an
infinite-loop containing no basic instructions or tests.

Threads can be infinite. To define an infinite thread in BTA, we require a pro-
jective sequence of its finite approximations.
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Definition 8.6 For every n ∈ N, the approximation operator πn : BTAΣ →
BTAΣ is defined inductively by

π0(P ) = D,
πn+1(S) = S,
πn+1(D) = D,
πn+1(P � a�Q) = πn(P ) � a� πn(Q).

A projective sequence is a sequence (Pn)n∈N
such that for each n ∈ N, πn(Pn+1) =

Pn.

We say that two (finite or infinite) threads are equal exactly if for each n ∈ N, their n-
th approximations are equal. Let BTA∞

Σ be the set of all (finite and infinite) threads.
Regular threads in BTA∞

Σ are well-defined (see [104]) and are given as follows.

Definition 8.7 A thread P is regular over Σ if P = E1, where E1 is defined by a
finite system of the form (n ≥ 1):

{Ei = ti|1 ≤ i ≤ n, ti = S or ti = D or ti = Eil � ai � Eir}

with Eil , Eir ∈ {E1, . . . , En} and ai ∈ Σ.

The finite system in the previous definition is called a guarded recursive specification.

Theorem 8.8 A guarded recursive specification has a unique solution in BTA∞
Σ .

Proof: See Theorem 5.41. ⊓⊔

8.2.4 Assigning a thread in BTA to a program in PGA

This section assigns a regular thread in BTA to a program in PGA by means of
behavior extraction equations. This suggests the notions of behavioral equivalence for
programs and program algebra transformations that map programs of two different
programming languages while preserving behavioral equivalence.

Behavior extraction equations

Program behaviors in PGA are given by means of an operator called the behavior
extraction operator | − | and behavior extraction equations.

Definition 8.9 For a finite program X that does not contain repetition, its behavior
is given by |X| = |X; (#0)ω|.
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Definition 8.10 The behavior |X| of an (infinite) program X is determined recur-
sively by the behavior extraction equations below:

|!;X| = S,
|a;X| = a ◦ |X|,

|+a;u;X| = |u;X| � a� |X|,
|−a;u;X| = |X| � a� |u;X|,
|#0;X| = D,
|#1;X| = |X|,

|#(k + 2);u;X| = |#(k + 1);X|.

where u is a primitive instruction, a ∈ Σ and k ∈ N.

By means of these equations, successive steps of the behavior of a program can be
obtained. In the case that a program has a non-trivial loop in which no action occurs,
its behavior will be identified with D. Phrased differently: if for a behavior |X| the
behavior extraction equations fail to prove |X| = S or π1(|X|) = a◦D for some a ∈ Σ,
then |X| = D.

It is shown in [30] that every program in PGA can be specified by a regular thread
in BTA, and vice versa.

Behavioral equivalence

Behavioral equivalence classifies programs whose behaviors are the same. This pro-
gram equivalence resembles path equivalence [10] defined for flowcharts.

Definition 8.11 Programs X and Y are behaviorally equivalent if |X| = |Y |.

We note that one can provide similar notions of flow-graph and structural equivalence
for programs in the setting of PGA (see Section 8.1.1).

Program algebra transformation

A program in a programming language can be transformed into one in another pro-
gramming language. This transformation is correct if the obtained program does not
change its behavior.

Definition 8.12 A transformation is a mapping ϕ from a programming language
L1 to another programming language L2. This transformation ϕ is correct if for
every X ∈ L1, |X|L1

= |ϕ(X)|L2
where |−|L is an assignment of behaviors to elements

of L. This transformation is called a projection if L2 ⊆ L1, and an embedding if
L1 ⊆ L2.

We can write |X| instead of |X|L if L is fixed.
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8.3 Behaviors for programs in PGLE and PGLS

The behavior extraction equations given in Definition 8.10 for programs in PGA
enable single pass execution (each instruction in a PGA program can be dropped after
having been processed). They, however, cannot be adapted to programs in PGLE and
PGLS because of the complex semantics of labels, gotos, conditional instructions and
while-loops. Thus, to determine behaviors for programs in PGLE and PGLS, we
define behavior extraction equations based on positions of instructions of programs.
Once these behaviors are given, we show that any flowchart can be represented by a
PGLE program and vice versa. Furthermore, they can be combined with additional
boolean variables.

8.3.1 Behavior extraction equations for labels and gotos

This section presents behavior extraction equations at each position of a program in
PGLE. The behavior of this program is determined by the behavior starting at the
first position of the program.

Definition 8.13 Let X = u1; . . . ;uk be a program in PGLE. The behavior |X| of X
is defined by |X| = |1,X|, where

|i,X| =































S if ui =! or i /∈ [1..k],
a ◦ |i+ 1,X| if ui = a,
|i+ 1,X| � a� |i+ 2,X| if uσ = +a,
|i+ 2,X| � a� |i+ 1,X| if uσ = −a,
|i+ 1,X| if ui = £j,
|l,X| if ui = ##£j, ul = £j.

The inactive behavior D will occur if the computation produces no result, i.e., if
|i,X| 6= S and there do not exist n,m ∈ N such that |i,X| = |n,X| � a � |m,X| for
some a ∈ Σ, then |i,X| = D.

We note that by this definition, one can prove that the transformation from PGLE to
PGA defined in [22] is correct. This implies that PGLE is not more expressive than
PGA.

Example 8.14 Consider the following program Prog taken from [27].

Prog ::=

br.set(T);

L0:

IF br.eq(T) THEN GO L1;

GO L2;

L1:

br.set(F);

Console.println(hello);

GO L0;
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L2:

br.set(F);

Console.println(goodbye);

GO L0.

The program Prog can be formulated in PGLE as follows.

Prog = br.set(T);£0;+br.eq(T);##£1;##£2;
£1; br.set(F);Console.println(hello);##£0;
£2; br.set(T);Console.println(goodbye);##£0.

By applying behavior extraction equations, the behavior |Prog| of Prog can be deter-
mined by

|Prog| = br.set(T) ◦ P,
P = Q� br.eq(T) �R,
Q = br.set(F) ◦ Console.println(hello) ◦ |Prog|,
R = br.set(T) ◦ Console.println(goodbye) ◦ |Prog|.

We note that in the example above some actions are of the form f.a(x) where f is
called a focus and a(x) a co-action. We will give further explainations to the nature
of these co-actions in Section 8.3.4.

8.3.2 Behavior extraction equations for conditional statements
and while-loops

This section defines behaviors for programs in the structured program notation PGLS.

Definition 8.15 Let X = u1; . . . ;uk be a PGLS program. The behavior extraction
equations for conditional statements and while-loops are defined as follows.

|i,X| =















































|i+ 1,X| � a � |n+ 1,X| if ui = +a{n,
|n+ 1,X| � a � |i+ 1,X| if ui = −a{n,
|n+ 1,X| if ui =}n{,
|i+ 1,X| if ui =},
|i+ 1,X| � a � |n+ 1,X| if ui = +a{∗n,
|n+ 1,X| � a � |i+ 1,X| if ui = −a{∗n,
|i+ 1,X| if ui = {∗,
|n,X| if ui = ∗}n,

It is shown in [22] that the structured program notation PGLS is strictly weaker than
PGLE, i.e., there exists a PGLE program that cannot be transformed into PGLS with
the same behavior. This agrees with the “well-known” result of [62, 3, 80, 61, 64] that
we cannot replace goto statements with the use of conditional statements and while-
loops without additional variables. Definition 8.13 and Definition 8.15 suggest the
notions of reached, reachable, live and dead positions of a program as follows.
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Definition 8.16 Let X = u1; . . . ;uk be a program, and i, j two positions in X (1 ≤
i, j ≤ k).

1. Position j is reached from position i (or instruction uj is reached from in-
struction ui), denoted by i→ j, if j occurs in the right-hand side of a behavior
extraction equation defined for X at position i.

2. Position j is reachable from position i (or instruction uj is reachable from
instruction ui), if there is a path i = i0 → i1 → · · · → in = j of zero or more
steps from i to j.

3. ui is live if i is reachable from 1, otherwise it is dead.

Example 8.17 Consider the program given in Example 8.1. Then the instructions
##£0 and ! are reached from the instruction +condition1. Furthermore, the in-
struction statement2 is dead, while the other instructions are live.

8.3.3 Representing flowcharts in PGLE

Flowcharts as illustrated in Figure 8.1 are used to represent programs when dealing
with goto removal in literature.

Definition 8.18 A flowchart is a finite binary directed graph which has a starting
node, labeled by ↓. It may have a successful termination node S and an unsuc-
cessful termination node D. If a node is not a termination node then either it
represents an action, and has exactly one outgoing branch, or it represents a test,
and has exactly two outgoing branches (negated and unnegated), labeled by − and +,
respectively.

Given a flowchart F , a PGLE program X representing F can be defined as follows.

X = ψ(£1); . . . ;ψ(£k),

where £1, . . . ,£k are labels of the nodes in F , and £1 is the label of the starting
node. Let £i be the label of a node s in F . Then ψ(£i) is given below.

• If s is the successful termination node S then ψ(£i) = £i; !.

• If s is the unsuccessful termination node D then ψ(£i) = £i;##£i.

• If s is a test node a that has two outgoing branches labeled by + and − to s1 la-
beled by £j, and s2 labeled by £l, respectively, then ψ(£i) = £i; +a;##£j;##£l.

• Otherwise s represents an action a. It has only one outgoing branch to node s′

labeled by £j. Then ψ(£i) = £i; a;##£j.
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Figure 8.1: Example of a flowchart.

Example 8.19 The flowchart given in Figure 8.1 can be represented in PGLE by

X = £1;+a;##£2;##£3;
£2;+b;##£4;##£3;
£3;+c;##£1;##£2;
£4;+d;##£2;##£5;
£5; !.

Conversely, given a PGLE program X, we can produce a corresponding flowchart F
as the graphical representation of |1,X|.

8.3.4 Combining threads with additional boolean variables

In order to eliminate gotos, some standard algorithms such as [33, 76, 55] introduce
new boolean variables. The question is how to combine the behavior of a program
with the use of these additional boolean variables. We adapt the interaction between
threads and services of [27] to answer this question.

We assume that the value of an additional boolean variable is stored in a memory
device called boolean register [27] that supports the program in its execution. A
boolean register B has four co-actions

{set(T ), set(F ), eq(T ), eq(F )}

and two states BT and BF representing the truth values T (true) and F (false). The
co-actions set(b) with b ∈ {T, F} always return true after their execution. The co-
actions eq(b) return true after its execution whenever b is the current value of the
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register, and false otherwise. Furthermore, the state of the register is flipped whenever
it receives a ‘set co-action’ to the opposite truth value. Initially, B = BT . We note
that in [27], a function called reply function is also given to define the returned boolean
values of the co-actions. For simplicity, we ignore the presence of this reply function
in this chapter.

We use the use-operator /f to combine a program behavior P and a boolean
register B with focus f producing a behavior, written P/fB. This operator is to
support a program X in its operation, which will express its value by executing
actions that are not processed by B. Upon termination of the execution of X, B is
forgotten and so is the state it is in. For a basic action a of a program behavior that
does not have a focus, we assume that a = ǫ.a where ǫ is the empty focus.

Definition 8.20 The semantic equations for the use-operator that combines program
behaviors and boolean registers are defined as follows.

S/fB = S
D/fB = D
(P � g.a �Q)/fB = P/fB � g.a �Q/fB if g 6= f
(P � f.set(T ) �Q)/fB = P/fBT

(P � f.set(F ) �Q)/fB = P/fBF

(P � f.eq(b) �Q)/fB = P/fB if B = Bb

(P � f.eq(b) �Q)/fB = Q/fB if B 6= Bb

(P � f.c �Q)/fB = D

where b ∈ {T, F} and c /∈ {set(T ), set(F ), eq(T ), eq(F )}.

Lemma 8.21 Let B1 and B2 be boolean registers with foci f1 and f2, respectively.
Let P be a program behavior. Then P/f1

B1/f2
B2 = P/f2

B2/f1
B1.

Proof: See [27]. ⊓⊔

Example 8.22 Consider the program behavior |Prog| and the boolean register B
with focus br in Example 8.14.

|Prog| = br.set(T) ◦ P,
P = Q� br.eq(T) �R,
Q = br.set(F) ◦ Console.println(hello) ◦ |Prog|,
R = br.set(T) ◦ Console.println(goodbye) ◦ |Prog|.

The interaction between |Prog| and B via the focus br produces the behavior
|Prog|/brB abbreviated by PB . It can be derived that

PB = Console.println(hello) ◦ Console.println(goodbye) ◦ PB.
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8.3.5 Behavioral equivalence with respect to additional vari-
ables

Definition 8.20 suggests a program equivalence called behavioral equivalence with re-
spect to additional variables that classifies programs whose behaviors in combination
with additional variables are the same. This equivalence is coarser than behavioral
equivalence, but finer than input-output equivalence of [33, 76, 55].

Definition 8.23 Programs X and Y are behaviorally equivalent with respect
to additional variables if there are boolean registers B1, . . . , Bn and foci f1, . . . , fn

such that |X|/f1
B1 . . . /fn

Bn = |Y |/f1
B1 . . . /fn

Bn.

8.4 Eliminating gotos using additional variables

As mentioned earlier, many algorithms and transformation rules [33, 41, 76, 3, 39, 72]
have been proposed to prove the Folk theorem [55] which states that every flowchart
is equivalent to a while-program with only one occurrence of a while-loop under
input-output equivalence, provided that additional variables are allowed. However,
the correctness proofs of these algorithms and transformation rules have not been
discussed formally. Furthermore, they are treated under the coarsest equivalence,
input-output equivalence. In this section, we show that PGA provides a mathemati-
cal framework for reasoning about the correctness of the Folk theorem under a finer
equivalence: behavioral equivalence with respect to additional variables. In particu-
lar, we formulate the algorithm of Cooper [41] by transforming a program in PGLE
(instead of flowcharts) into a structured program in PGLS, and show its correctness
under behavioral equivalence with respect to additional variables.

8.4.1 The algorithm

The algorithm of [41] for transforming a program X with labels and gotos to a struc-
tured program using additional variables works as follows. The whole program X is
put within a while-loop which executes one code fragment belonging to a label each
time around the loop. Assume that X contains n labels, we will need n+ 1 boolean
variables for this transformation. The first variable is to handle the conditional of
the while-loop. Whenever X terminates, the value of this variable is set to true.
The control of the structured program then exits from the while-loop. The other n
boolean variables correspond to the n labels in X. Upon the execution of a fragment,
the value of the associated variable to the next label is set to true. The control then
returns to the beginning of the while-loop. This transformation is illustrated in the
following example.

Example 8.24 Consider the program ProgA containing labels and gotos written in
a syntactic sugared version of PGLE with modern programming features to enhance
readability in the left-hand side of Table 8.1. ProgA has three labels, and therefore,
in order to eliminate all gotos of ProgA, we need four additional boolean variables.
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ProgA ::=

statement0;

GO L1;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN

GO L2;

END IF;

GO L1;

ProgB ::=

x0.set(FALSE);

x1.set(FALSE);

x2.set(FALSE);

x3.set(FALSE);

statement0;

x1.set(TRUE);

WHILE not x0.eq(TRUE) DO

IF x1.eq(TRUE) THEN

x1.set(FALSE);

statement1;

x3.set(TRUE);

ELSE

IF x2.eq(TRUE) THEN

x2.set(FALSE);

x0.set(TRUE);

ELSE

IF x3.eq(TRUE) THEN

x3.set(FALSE);

IF condition THEN

x2.set(TRUE);

ELSE

x1.set(TRUE);

END IF;

ELSE

END IF;

END IF;

END IF;

END WHILE;

Table 8.1: Example of goto elimination with additional variables.

Program ProgA is transformed into program ProgB containing one while-loop in the
right-hand side of the figure.

We now assume that the value of an additional boolean variable is stored in a boolean
register. We will show that the algorithm above is correct under behavioral equiva-
lence with respect to additional variables by formulating it as a transformation from
PGLE to PGLS. In order to reduce the target code, we perform a preprocessing con-
sisting of two transformations Removing empty blocks and Adding implicit gotos.
The former transformation removes all redundant labels and dead instructions, while
the latter adds implicit gotos to the program. We then eliminate gotos by provid-
ing additional variables under behavioral equivalence with respect to these variables.
In short, the goto removal using additional variables Gte using variables from
PGLE to PGLS is the composition of three transformations: Removing empty blocks,
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PGLE

PGLEr

PGLS

PGLEa

Removing empty blocks

Providing additional variables

Adding implicit gotos

Figure 8.2: Goto elimination using additional variables.

Adding implicit gotos and Providing additional variables, illustrated in Fig-
ure 8.2. In the following sections, we will formally define and prove correctness of
these three transformations.

8.4.2 Removing empty blocks

This section removes redundant labels and dead instructions of a program in PGLE to
a program in PGLEr. Here, a redundant label is a label that precedes another label or
another goto with a different number. The projection Removing empty blocks from
PGLE to PGLEr works as follows. For each program X in PGLE we perform the
following repeatedly:

1. For a label instruction ui = £l such that ui+1 = £l′ or ui+1 = ##£l′ with
l 6= l′, replace it and all goto instructions ##£l with the instruction ##£l′.

2. Remove all dead instructions.

Example 8.25 Consider the program Prog in the left-hand side of Table 8.2. Then
Prog can be refined into ProgR in the right-hand side by removing L4 and statement2.

One can see that the target program is behaviorally equivalent to the subject program,
i.e.:

Lemma 8.26 The projection Removing empty blocks from PGLE to PGLEr is cor-
rect.

Furthermore, since this transformation simply removes certain instructions without
altering other instructions, it preserves structural equivalence (see Section 8.1.1).

8.4.3 Adding implicit gotos

The preprocessing Adding implicit gotos is a crucial step in goto elimination using
additional variables. The labels of the obtained program after applying this trans-
formation can only be reached by a goto statement. This transformation adds gotos
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Prog ::=

statement0;

L1:

statement1;

GO L4;

L2:

EXIT;

L4:

L3:

IF condition THEN GO L2 END IF;

GO L1;

statement2;

ProgR ::=

statement0;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN GO L2 END IF;

GO L1;

Table 8.2: Example of removing empty blocks.

ProgR ::=

statement0;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN GO L2 END IF;

GO L1;

ProgA ::=

statement0;

GO L1;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN GO L2 END IF;

GO L1;

Table 8.3: Example of adding implicit gotos.

that are considered implicit into a PGLEr program. Here, an implicit goto is a goto
to the next instruction (which is the associated label instruction). Furthermore, if the
last instruction of the program is neither a goto nor a termination then the program
is ended with an extra termination. The resulting program notation is called PGLEa.

Example 8.27 Consider the program ProgR in the left-hand side of Table 8.3. This
program can be transformed to the program ProgA (in the right-hand side) by adding
an implicit goto immediately before label L1.

Definition 8.28 The projection from PGLEr to PGLEa is defined by:

Adding implicit gotos(u1; . . . ;uk) = ψ1(u1); . . . ;ψk(uk)

where

ψi(£l) = ##£l;£l if i = 1 or ui−1 = a or ui−2 = ±a,
ψk(u) = u; ! if uk 6= ##£l and uk 6= !,
ψi(u) = u otherwise.
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Lemma 8.29 The projection Adding implicit gotos from PGLEr to PGLEa is
correct.

Proof: Straightforward. ⊓⊔
We note that this projection indeed preserves structural equivalence, since it does not
rearrange any instructions of the programs.

8.4.4 Goto elimination by providing additional variables

This section defines a transformation of a program X from PGLEa to PGLS, working
as the algorithm described in Section 8.4.1. Assume that X contains n labels, we
use n + 1 boolean registers B0, . . . , Bn, and n + 1 foci x0, . . . , xn representing n + 1
additional variables. The transformation from PGLEa to PGLS is described below.

Definition 8.30 Let X be a program in PGLEa. Without loss of generality (Wlog)
we assume that

X = u0,1; . . . ;u0,k0
;

£1; u1,1; . . . ;u1,k1
;

...
£n; un,1; . . . ;un,kn

where ui,j are not label instructions. Let B0, . . . , Bn be boolean registers with foci
x0, . . . , xn. The transformation Providing additional variables from PGLEa to
PGLS is defined as follows.

Providing additional variables(X)
= x0.set(F );x1.set(F ); . . . ;xn.set(F );ψ0,1(u0,1);−x0.eq(T ){∗; Φ1; ∗}

where

Φi = +xi.eq(T ){;xi.set(F );ψi,1(ui,1); }{; Φi+1; }; for i < n,
Φn = +xn.eq(T ){;xn.set(F );ψn,1(un,1); }{; };

and where

ψi,j(!) = x0.set(T ),
ψi,j(a) = a;ψi,j+1(ui,j+1),
ψi,j(±a) = ±a{;ψi,j+1(ui,j+1); }{;ψi,j+2(ui,j+2); },
ψi,j(##£l) = xl.set(T ).

We now show that the transformation Providing additional variables from
PGLEa to PGLS preserves behavioral equivalence with respect to additional variables.

Lemma 8.31 Let X be a program in PGLEa. Then

|Providing additional variables(X)|/x0
B0/x1

B1 . . . /xn
Bn = |X|.
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Proof: Let P = |X|. It can be derived that P = P0,1, where Pi,j (0 ≤ i ≤ n,
0 ≤ j ≤ ki) are determined by the following system

Pi,j =































S if ui,j =!,
a ◦ Pi,j+1 if ui,j = a,
Pi,j+1 � a � Pi,j+2 if ui,j = +a,
Pi,j+2 � a � Pi,j+1 if ui,j = −a,
Pi,1 if j = 0,
Pl,1 if ui,j = ##£l.

Now let Q = |Providing additional variables(X)|. By Definition 8.15,

Q = x0.set(F ) ◦ x1.set(F ) ◦ · · · ◦ xn.set(F ) ◦M0,1,
M = S � x0.eq(T ) �M1,0

where

Mi,j =































x0.set(T ) ◦M if ui,j =!,
a ◦Mi,j+1 if ui,j = a,
Mi,j+1 � a �Mi,j+2 if ui,j = +a,
Mi,j+2 � a �Mi,j+1 if ui,j = −a,
(xi.set(F ) ◦Mi,1) � xi.eq(T ) �Mi+1,0 if j = 0,
xl.set(T ) ◦M if ui,j = ##£l.

Let Qi,j = x0.set(F ) ◦x1.set(F ) ◦ · · · ◦xn.set(F ) ◦Mi,j/x0
B0/x1

B1 . . . /xn
Bn. Then

Q/x0
B0/x1

B1 . . . /xn
Bn = Q0,1. It follows from Definition 8.20 and Lemma 8.21 that

Qi,j =







S if Pi,j = S,
D if Pi,j = D,
Qi,l � a �Qi,r if Pi,j = Pi,l � a � Pi,r.

with j, l, r ∈ [1..ki]. It follows from Theorem 8.8 that Qi,j = Pi,j for all 0 ≤ i ≤ n
and 0 ≤ j ≤ ki. Therefore,

|Providing additional variables(X)|/x0
B0/x1

B1 . . . /xn
Bn = Q0,1 = P0,1 = |X|.

⊓⊔
We have shown correctness and equivalence of the transformations
Removing empty blocks, Adding implicit gotos and
Providing additional variables. This implies that goto statements can be elim-
inated from the setting of PGA using additional boolean variables under behavioral
equivalence with respect to these variables, a finer equivalence than input-output
equivalence of [33, 55].

Theorem 8.32 The projection Gte using variables from PGLE to PGLS is cor-
rect under behavioral equivalence with respect to additional variables.

Proof: This follows from Lemma 8.26, Lemma 8.29 and Lemma 8.31. ⊓⊔
We hereby have shown that the algorithm of Cooper for the Folk theorem is correct
under behavioral equivalence with respect to additional variables.
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8.5 Eliminating gotos without the use of additional
variables

In this section, we consider goto removal without the use of additional variables. We
intend to apply the forward and backward elimination rules of Peterson et al. and
Ramshaw [80, 83] to eliminate gotos, by introducing loops with multi-level exits into
the language. Since these rules preserve structural equivalence, it is required that the
program must be free of so-called head-to-head crossings. Hence, in order to eliminate
gotos without the use of additional variables under behavioral equivalence, we perform
a preprocessing that gets rid of head-to-head crossings for a program containing labels
and gotos, and subsequently employ the result of Peterson et al. and Ramshaw.

We introduce the program notation PGLM which is a modification of PGLE by
replacing labels and gotos with loops and multi-level exits. The first step is to remove
empty blocks and add implicit gotos to the program as described in Section 8.4.2 and
Section 8.4.3. We then reorder labels in the program in a reasonable way. Note that
this step can be omitted, however, this would double certain code fragments after
getting rid of head-to-head crossings (see Example 8.53). We get rid of head-to-head
crossings by copying certain blocks of code in the program. In order to use the result
of Peterson et al. and Ramshaw, we remove all implicit gotos and add extra labels to
the program. Finally, we apply the Elimination rules of [80, 83] to remove all gotos.
The goto elimination without the use of additional variables Gte without variables

from PGLE to PGLM is the composition of the transformations above and is depicted
in Figure 8.3.

PGLEfa

PGLEf

PGLEo

PGLEr

PGLE

PGLEwf

PGLM

PGLEa

Applying Elimination rules

Getting rid of h2h crossings

Removing implicit gotos

Adding extra labels

Reordering

Adding implicit gotos

Removing empty blocks

Figure 8.3: Goto elimination without additional variables.
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Our algorithm is illustrated by two examples taken from Example 8.25 and Ex-
ample 8.19 running throughout every step of the goto removal: one is written in a
syntactic sugared version (using modern programming features to enhance readabil-
ity), and one is written in PGLE, respectively.

8.5.1 The program notation PGLM with loops and multi-level
exits

Loops and multi-level exits are introduced in modern programming languages such as
Ada, Java and C# to replace the use of goto statements. In this section we provide
the program notation PGLM in the setting of PGA which is a variant of PGLE by
leaving out labels and gotos and adding loops with multi-level exits. This program
notation consists of the following instructions:

Basic instruction Basic instructions are given as in PGA.

Test instruction Test instructions consist of positive tests and negative tests given
as in PGA. Each test instruction must be immediately followed by an exit
instruction.

Loop with multi-level exit For any natural number k, the instructions k{ and
k}n, where n is the position of k{, serve as an opening and closing braces of a
loop labeled by k. The exit instruction break km is inside the loop with label k,
and serves as an exit statement from the loop with label k to the instruction at
position m+ 1 in the program, where m is the position of the instruction k}n.

We note that the notations n and m can be left out if we do not want to emphasize
the positions of opening braces and closing braces of loops with multi-level exits in a
PGLM program.

Example 8.33 A typical program in Java with loops and multi-level exits

X::= outerloop:

LOOP

innerloop:

LOOP

IF something_really_bad_happened THEN

break outerloop;

END IF;

END innerloop;

END outerloop;

can be formulated in PGLM as

X::=1{; 2{; +something really bad happened; break 16; 2}2; 1}1.
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Similar to Definition 8.3, we define the notion of well-formed programs in PGLM as
follows.

Definition 8.34 A PGLM program is well-formed if it satisfies the following con-
ditions:

1. There are one-to-one correspondences between opening braces and closing braces,
and between exits and closing braces of loops. Furthermore, if un = k{, ui =
break km and um = k}n form a loop with multi-level exit then n < i < m.

2. If (nj ,mj), j = 1, 2, are positions of opening braces and their correspond-
ing closing braces of two loops such that n1 < n2 then either m1 < n2 or
n1 < n2 < m2 < m1.

8.5.2 Behavior extraction equations for loops with multi-level
exits

In this section, we give behavior extraction equations for the instructions of loops
with multi-level exits in order to determine the behavior of a program in PGLM.

Definition 8.35 Let X = u1; . . . ;uk be a program in PGLM. The behavior extraction
equations for loops with multi-level exits in X are given by

|i,X| =







|i+ 1,X| if ui = k{,
|n,X| if ui = k}n,
|m+ 1,X| if ui = break km.

Example 8.36 Consider the program X given in Example 8.33. Then its behavior
can be determined as a regular thread given below.

|X| = |1,X| = |2,X| = |3,X| = |4,X| � something really bad happened � |5,X|
= |7,X| � something really bad happened � |2,X|
= S � something really bad happened � |X|.

8.5.3 Reordering the labels in programs

The projection Reordering from PGLEa (see Section 8.4.3) to PGLEo is a pre-
processing for goto elimination in order to get rid of head-to-head crossings in a
program. It rearranges the labels of the program respecting the dominator order
while preserving behavioral equivalence. Here the dominator order means that a
label of a goto program which is executed earlier than some other labels should occur
first in the program. This rearrangement is to reduce copies of certain code fragments
of a subject program in PGLEa when eliminating head-to-head crossings.
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ProgA ::=

statement0;

GO L1;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN GO L2 END IF;

GO L1;

ProgO ::=

statement0;

GO L1;

L1:

statement1;

GO L3;

L3:

IF condition THEN GO L2 END IF;

GO L1;

L2:

EXIT;

Table 8.4: Example of reordering.

Example 8.37 Consider the program ProgA written in a syntactic sugared version
of PGLE in Example 8.27. Then L1<L3<L2 is a dominator order between the labels
of ProgA. The program ProgA can be transformed to the program ProgO given in
Table 8.4.

In order to define the dominator order and the transformation Reordering in a formal
way, we provide some supporting definitions.

Definition 8.38 Let X be a program in PGLEa, and £i a label of X. A label
£n ( 6= £i) of X dominates £i if every path from the first instruction of X to
£i goes through £n. A label £l is the immediate dominator of £i, denoted by
immediate dominator(£i) = £l, if it dominates £i, and there does not exist another
dominator £n of £i such that £l dominates £n.

There could be many labels that are immediately dominated by the same label. In
Figure 8.4, label £l is the immediate dominator of labels £i and £j, while label
£i is the immediate dominator of label £m. We group these labels in the following
definition.

Definition 8.39 Let X be a program in PGLEa, and £l be a label of X. The group
immediately dominated by(£l) is defined by

immediately dominated by(£l) = {£i| immediate dominator(£i) = £l}.

Let £i and £j be two labels in immediately dominated by(£l). Then £i is reach-
able from £j through the group immediately dominated by(£l) if there is a path
i1 → · · · → in with ui1 , . . . , uim

∈ immediately dominated by(£l) such that ui1 =
£i, uin

= £j. Two labels £i and £j are connected through the group
immediately dominated by(£l) if both are reachable from the other through this
group.

We now provide the notion of dominator orders between labels of a program.
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£j

£l

£i£m

Figure 8.4: An example of dominating between labels in programs. Here £l dominates
£i and £j, and £i dominates £m.

Definition 8.40 Let X be a program in PGLEa. A dominator order < be-
tween the labels occurring in X is defined as follows. For all elements £i, £j in
immediately dominated by(£l) in X:

1. £l < £i.

2. If £i is reachable from £j and £j is not reachable from £i, through the group
immediately dominated by(£l), then £i < £j.

3. If there is no connection between £i and £j or they are connected through
immediately dominated by(£l), then either £i < £j or £j < £i.

4. If £i < £j then for all £m in X such that £i dominates £m, £m < £j.

For a program X in PGLEa, there are several ways to define a dominator order
between the labels of X.

Example 8.41 Consider the program X given in Example 8.19. Then £1 < £3 <
£2 < £4 < £5 and £1 < £2 < £4 < £3 < £5 are two dominator orders which can
be defined for the labels in X.

Definition 8.42 A PGLEa program X is in dominator order when the textual
order of its labels is a dominator order.

Let PGLEo be the set of PGLEa programs that are in dominator order.

Definition 8.43 Let X be a program in PGLEa. Wlog we assume that

X = u0,1; . . . ;u0,k0
;

£1; u1,1; . . . ;u1,k1
;

...
£n; un,1; . . . ;un,kn
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where ui,j are not label instructions. The projection Reordering from PGLEa to
PGLEo is defined by

Reordering(X) = u0,1; . . . ;u0,k0
;ψ(£i1); . . . ;ψ(£in

)

where £i1 < . . . < £in is a dominator order between the labels of X, and where

ψ(£i) = £i;ui,1; . . . ;ui,ki

Lemma 8.44 The projection Reordering from PGLEa to PGLEo is correct.

Proof: Straightforward. ⊓⊔
Indeed, it can be derived that the projection Reordering preserves flow-graph equiv-
alence.

Example 8.45 Consider the programX from Example 8.19 and Example 8.41. Then
we can project X into a program in PGLEo as in Table 8.5.

X = Reordering(X)=
£1;+a;##£2;##£3; £1;+a;##£2;##£3;
£2;+b;##£4;##£3; £3;+c;##£1;##£2;
£3;+c;##£1;##£2; £2;+b;##£4;##£3;
£4;+d;##£2;##£5; £4;+d;##£2;##£5;
£5; ! £5; !

Table 8.5: Example of reordering.

8.5.4 Getting rid of head-to-head crossings

This section defines a projection from PGLEo into PGLEf to get rid of head-to-head
crossings.

Definition 8.46 Let X = u1; . . . ;uk be a program in PGLE, and ui = £l a label
instruction of X. The instruction uj = ##£l of X is a backward goto, written
as bw(##£l, j) if i < j, and a forward goto, written as fw(##£l, j) otherwise.
The label £l is a backward goto label, written as bw(£l), if it is the label of some
backward goto. The label £m is a forward goto label, written as fw(£m), if it is
the label of some forward goto.

We note that a label instruction of a PGLE program can be both backward and
forward goto.

Definition 8.47 Let X be a program in PGLE. A backward goto instruction
ui = ##£n causes a head-to-head crossing in X (see Figure 8.5), denoted by
head2head(##£n, i), if there is a forward goto instruction uj = ##£m in X such
that j < i′ < j′ < i, where i′ and j′ are positions of £n and £m, respectively.
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j’i’ ij

##£n£m##£m £n

Figure 8.5: A head-to-head crossing.

Let PGLEf be the set of PGLE programs that are free of head-to-head crossings.
To project a program in PGLEo to a program in PGLEf, we represent the number
in a label instruction in Getting rid of h2h crossings(X) by a pair (i,m). The
number m is the position of this label and the number i is the position of the equiva-
lent label instruction in X to emphasize that from these positions the two programs
Getting rid of h2h crossings(X) and X behave indentically. We denote these la-
bels in Getting rid of h2h crossings(X) as £i

m. Therefore, the gotos are denoted
by ##£i

m as well.
The projection Getting rid of h2h crossings of a program X from PGLEo to

PGLEf works as follows. Let Y = Getting rid of h2h crossings(X). At the begin-
ning, the program Y is similar to X, except that its labels and gotos are represented
as explained in the previous paragraph. Assume that at position n of the program,
a head-to-head crossing occurs because of a goto instruction ##£i

m. We then look
for a label £i

m′ with m′ < n such that there is no head-to-head crossing at n if we
replace ##£i

m by ##£i
m′ . If such position m′ does not exist, we copy a part of the

program X from position i to the instruction standing before the next label in X and
replace the goto ##£i

m by this part. This step is performed repeatedly until the
target program is free of head-to-head crossings as described in the next definition.

Definition 8.48 Let X = u1; . . . ;uk be a program in PGLEo. The projection
Getting rid of h2h crossings from PGLEo to PGLEf is defined as follows.

Y = Getting rid of h2h crossings(X) = ψ1(u1); . . . ;ψk(uk).

We denote [Y ]i as the instruction at position i of Y . The auxiliary functions ψσ are
given by

ψi(£l) = ψi(£
i
i)

ψσ(##£l) = ψσ(##£i
i) where ui = £l,

ψσ(##£i
m) =







##£i
m if ¬head2head(##£i

m, n),
##£i

m′ if ∃m′ < n ∧ ¬head2head(##£i
m′ , n),

copy(σ, i, n) otherwise,
ψσ(u) = u otherwise

where n is the position of ψσ(##£i
m). The function copy(σ, i, n) is given as follows.

copy(σ, i, n) =











£i
n;ψσ,i+1(ui+1); . . . ;ψσ,i+mi

(ui+mi
) if [Y ]n−1 6= ±a

##£i
n+2;##£n;

£i
n+2;ψσ,i+1(ui+1); . . . ;ψσ,i+mi

(ui+mi
);£n otherwise
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with mi a minimal number satisfying ui+mi+1 = £l for some l.

We note that in the previous definition we have a label of the form £n. This label is
to mark the end of an inserted code fragment. The projection above is illustrated by
the following example.

Example 8.49 Consider the PGLEo program given in Example 8.45. This program
can be projected to a program in PGLEf as follows.

Getting rid of h2h crossings(
£1;+a;##£2;##£3;
£3;+c;##£1;##£2;
£2;+b;##£4;##£3;
£4;+d;##£2;##£5;
£5; !)

= ψ1(£1);ψ2(+a);ψ3(##£2);ψ4(##£3);
ψ5(£3);ψ6(+c);ψ7(##£1);ψ8(##£2);
ψ9(£2);ψ10(+b);ψ11(##£4);ψ12(##£3);
ψ13(£4);ψ14(+d);ψ15(##£2);ψ16(##£5);
ψ17(£5);ψ18(!)

= ψ1(£
1
1);+a;ψ3(##£9

9);ψ4(##£5
5);

ψ5(£
5
5);+c;ψ7(##£1

1);ψ8(##£9
9);

ψ9(£
9
9);+b;ψ11(##£13

13);ψ12(##£5
5);

ψ13(£
13
13);+d;ψ15(##£9

9);ψ16(##£17
17);

ψ17(£
17
17); !

= £1
1; +a;##£9

9;##£5
5;

£5
5; +c;##£1

1;##£9
9;

£9
9; +b;##£13

13; copy(12, 5, 12);
ψ13(£

13
13);+d;ψ15(##£9

9);ψ16(##£17
17);

ψ17(£
17
17); !

= £1
1; +a;##£9

9;##£5
5;

£5
5; +c;##£1

1;##£9
9;

£9
9; +b;##£13

13;£
5
12;ψ12,6(+c);ψ12,7(##£1

1);ψ12,8(##£9
9);

ψ13(£
13
13);+d;ψ15(##£9

9);ψ16(##£17
17);

ψ17(£
17
17); !

= £1
1; +a;##£9

9;##£5
5;

£5
5; +c;##£1

1;##£9
9;

£9
9; +b;##£13

13;£
5
12; +c;##£1

1;##£9
9;

£13
13; +d;##£9

9;##£17
17;

£17
17; !

In the following, we prove well-definedness and correctness for the projection
Getting rid of h2h crossings.

Lemma 8.50 The projection Getting rid of h2h crossings is well-defined.
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Proof: We prove that when projecting a PGLEo program X to a program in PGLEf
at position n, the function copy(σ, i, n) is terminating. Suppose there is a label £j

p oc-
curring in copy(σ, i, n). This means that at position p, a head-to-head crossing occurs
because of some goto instruction ##£j

q for some q. It follows from Definition 8.48

that j 6= i otherwise we would have replaced ##£j
q by ##£i

n (or ##£i
n+2) which

does not cause a head-to-head crossing. Since i and j are positions of some labels in
X, the labels occurring in copy(σ, i, n) are finite, or the function copy(σ, i, n) is ter-
minating. Thus, the projection Getting rid of h2h crossings is well-defined. ⊓⊔

Lemma 8.51 Let X be a program in PGLEo.
Then Getting rid of h2h crossings(X) is free of head-to-head crossings.

Proof: This follows from Definition 8.48 and Lemma 8.50. ⊓⊔

Theorem 8.52 The projection Getting rid of h2h crossings from PGLEo to
PGLEf is correct.

Proof: Let X and Y be defined as in Definition 8.48. We prove that |X| = |Y |.
Wlog we assume that if ui = £l then l = i. Let iσ denote the position of ψσ,i(ui) in
Y , and let P = |i,X| and Q = |iσ, Y |. We distinguish the following cases:

1. ui =!. Then Pi = S and ψσ,i(ui) =!. Hence Qiσ
= Pi = S.

2. ui = ##£j. Then Pi = Pj and ψσ,i(ui) = ##£j
m for some m or ψσ,i(ui) =

copy((σ, i), j, iσ). It follows from Definition 8.48 and Definition 8.15 that Qiσ
=

Qjδ
for some δ.

3. ui = a. Then Pi = a ◦ Pi+1 and ψσ,i(ui) = a. This implies that Qiσ
=

a ◦Qi+1σ,i+1
.

4. ui = +a. Then Pi = Pi+1 � a � Pi+2. There are two cases:

(a) ψσ,i+1(ui+1) is an instruction. Then Qiσ
= Qi+1σ,i+1

� a �Qi+2σ,i+2
.

(b) ψσ,i+1(ui+1) = ##£j
n+2;##£n;£j

n+2; . . . ;£n with n = iσ +1 and j some
position of X. By Definition 8.15, we can also get
Qiσ

= Qi+1σ,i+1
� a �Qi+2σ,i+2

.

5. ui = −a. Then Pi = Pi+2 � a � Pi+1. Similar to the previous case,
Qiσ

= Qi+2σ,i+2
� a �Qi+1σ,i+1

.

Hence for all positions i and iσ of X and Y ,

1. if Pi = S then Qiσ
= S;

2. if Pi = Pn then Qiσ
= Qnδ

for some δ;

3. if Pi = Pm � a � Pn then Qiσ
= Qmδ

� a �Qnγ
for some δ and γ
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ProgA ::=

statement0;

GO L1;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN GO L2 END IF;

GO L1;

ProgF ::=

statement0;

GO L1;

L1:

statement1;

GO L3;

L2:

EXIT;

L3:

IF condition THEN GO L4 END IF;

GO L5;

L4:

EXIT;

L5:

GO L1;

Table 8.6: Example of getting rid of head-to-head crossings.

and vice versa. It follows from Theorem 8.8 that Pi = Qiσ
for all positions i and iσ

of X and Y . Therefore |X| = |1,X| = |1, Y | = |Y |. ⊓⊔
We note that the projection Getting rid of h2h crossings also works on PGLEa,
i.e., we can apply this projection to get rid of head-to-head crossings even in the case
that the program is not in dominator order. However, this would double certain code
fragments of the program as can be seen in the following example.

Example 8.53 Consider the PGLEa program ProgA in Example 8.37. We can elim-
inate head-to-head crossings of ProgA by applying the projection
Getting rid of h2h crossings directly on ProgA as can be seen in Table 8.6. The
code fragment L2;EXIT of ProgA is copied to L4;EXIT in the resulting program ProgF.
This would not be necessary if we apply the projection Getting rid of h2h crossings

on the reordering ProgO of ProgA which is already free of head-to-head crossings. We
note that the numbers occurring in the label and goto statements of ProgF are
simplified.

8.5.5 Removing implicit gotos

Our programs now are free of head-to-head crossings, a condition that is sufficient
to replace all labels and gotos with loops and multi-level exits. To reduce the target
code of the replacement, we remove all implicit gotos of the program. This procedure
is a reverse of the projection Adding implicit gotos given in Section 8.4.3, and is
defined on PGLE. We note that it can happen that implicit labels which have no
associated gotos will occur after removing certain implicit gotos. These labels should
also be left out.

The projection Removing implicit gotos from PGLE to PGLE− works as fol-
lows. For a program X = u1; . . . ;uk in PGLE, we perform the following repeatedly:
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ProgO=

statement0;

GO L1;

L1:

statement1;

GO L3;

L3:

IF condition THEN GO L2;

GO L1;

L2:

EXIT;

ProgF=

statement0;

L1:

statement1;

IF condition THEN GO L2;

GO L1;

L2:

EXIT;

Table 8.7: Example of removing implicit gotos.

1. For an implicit goto ##£l at position i, if i = 1 or ui−1 is not a test (ui 6= ±a)
then remove ui;

2. Remove all implicit labels.

Lemma 8.54 The projection Removing implicit gotos from PGLE to PGLE− is
correct.

Proof: Straightforward. ⊓⊔
We note that one can obtain that the projection Removing implicit gotos preserves
structural equivalence. Let PGLEfa be the set of PGLEf programs that are free of
implicit gotos.

Example 8.55 Consider the program ProgO in Example 8.37. This program is free
of head-to-head crossings, and therefore, it is in PGLEf. We can remove implicit
labels and gotos of ProgO to the program ProgF as described in Table 8.7.

Example 8.56 Let F be the program obtained from the program in Example 8.49 by
replacing the labels (δ, i) with concrete natural numbers. We can remove all implicit
gotos from F as in Table 8.56.

F = Removing implicit gotos(F ) =
£1;+a;##£2;##£3; £1;+a;##£2;
£3;+c;##£1;##£2; +c;##£1;
£2;+b;##£4; £2;+b;##£4;
£31;+c;##£1;##£2; +c;##£1;##£2;
£4;+d;##£2;##£5; £4;+d;##£2;
£5; ! !;

Table 8.8: Example of removing implicit gotos.
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8.5.6 Adding extra labels

In the previous section, we have defined a projection to get rid of head-to-head cross-
ings in a goto program. As explained in [83], this is a sufficient condition to replace
all labels and gotos in a program under structural equivalence. However, in order to
achieve Elimination rules, it is required that PGLEfa programs must be well-formed,
meaning that a label of a PGLEfa program must be either a forward goto label or
a backward goto label (see Definition 8.46). Let PGLEwf be the set of well-formed
programs in PGLEfa. This section provides a projection from PGLEfa to PGLEwf
that transforms PGLEfa programs to well-formed programs in PGLEwf by adding an
extra label next to the label of both forward and backward gotos, and replacing its
forward gotos with the gotos associated with the new label. Formally:

Definition 8.57 Let X = u1; . . . ;uk be a program in PGLEfa. The projection
Adding extra labels is defined as follows.

Adding extra labels(X) = ψ1(u1); . . . ;ψk(uk)

where the auxiliary functions ψi(ui) are defined by

ψi(##£l) = ##£l + n; if fw(##£l, i) ∧ bw(£l),
ψi(£l) = £l + n;£l; if fw(£l) ∧ bw(£l),
ψi(u) = u; otherwise

and where n = m+ 1, and m is the maximum number in the labels of X.

Lemma 8.58 The projection Adding extra labels from PGLEfa to PGLEwf is cor-
rect.

Proof: Straightforward. ⊓⊔
Again, it can be shown that the projection Adding extra labels preserves structural
equivalence.

Example 8.59 Consider the program Fa in PGLEfa Example 8.56. This program is
not well-formed. We project it into PGLEwf as in Table 8.9.

Fa = Adding extra labels(Fa)=
£1;+a;##£2;+c;##£1; £1;+a;##£7;+c;##£1;
£2;+b;##£4;+c;##£1;##£2; £7;£2;+b;##£4;+c;##£1;##£2;
£4;+d;##£2; ! £4;+d;##£2; !

Table 8.9: Example of adding extra labels.
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ProgF=

statement0;

L1:

statement1;

IF condition THEN

GO L2;

END IF;

GO L1;

L2:

EXIT;

ProgM=

mainloop:

LOOP

statement0;

loop2:

LOOP

aux_loop1:

LOOP

loop1:

LOOP

statement1;

IF condition THEN

BREAK loop2;

END IF;

BREAK loop1;

END loop1;

END aux_loop1;

BREAK loop2;

END loop2;

BREAK mainloop;

END mainloop;

Table 8.10: Example of applying the Elimination rules.

8.5.7 Replacing labels and gotos by loops with multi-level exits

Finally, in this section, we apply the Elimination rules of [83, 80] to replace all labels
and gotos in a PGLEwf program by loops with multi-level exits. The whole program
is put within a loop. Whenever the program terminates, the control of the program
exits from that loop. Given a label £l of the program to which there are only for-
ward gotos, the Forward Elimination rule [80] is a transformation that eliminates all
gotos by replacing ##£l with break l and £l with break l; l}. The opening brace l{
is inserted immediately before or after some label that precedes all the gotos ##£l.
Similarly, given a label £m to which there are only backward gotos, the Backward
Elimination rule [83] replaces ##£m with breakm and £m with m′{m{. The phrase
breakm′;m};m′} is inserted immediately before or after some label that stands be-
hind all the gotos ##£m in the program. The application of the Elimination rules
can be seen in the following example.

Example 8.60 Consider the program ProgF in Example 8.55. Then the label L1 in
the program is of backward gotos, while the label L2 is of forward gotos. We can
eliminate goto statements in ProgF with the Elimination rules to the program ProgM

given in Table 8.10.

To determine where to insert the opening braces l{ and the phrases breakm′;m};m′},
we use the notions of lower bounds and upper bounds of labels (see Figure 8.6) in a
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program.

a lower bound

an upper bound

j

i

j′′

i′′

j′

i′

j £n

i £l

##£l

i′′

##£m′′

£m′′

##£m′

£m′

##£l′

£l′′

##£l′′

£l′ ##£m

£m

£n

i′

j′

j′′

Figure 8.6: Example of lower bounds and upper bounds.

Definition 8.61 Let X = u1; . . . ;uk be a program in PGLEwf.

1. Let ui = £l be a label to which there are only forward gotos. The position
j < i of a label instruction £n is a lower bound of £l if all positions j′ of
##£l satisfy j < j′ < i. Furthermore, there does not exist a label ui′ = £l′

of a forward goto uj′ = ##£l′ and there does not exist a label ui′′ = £l′′ of a
backward goto uj′′ = ##£l′′ such that j′ < j < i′ < i and i′′ < j < j′′ < i. If
there is no such position j then j = 0. We denote greatest lower bound(£l)
as the greatest lower bound of £l.

2. Similarly, let ui = £m be a label to which there are only backward gotos. The
position j < i of a label instruction £n is an upper bound of £l if all positions
j′ of ##£l satisfy i < j′ < j. Furthermore, there does not exist a label ui′ =
£m′ of a backward goto uj′ = ##£m′ and there does not exist a label ui′′ =
£m′′ of a forward goto uj′′ = ##£m′′ such that i < i′ < j < j′ and i <
j′′ < j < i′′. If there is no such position j then j = k + 1. We denote
lowest upper bound(£m) as the lowest upper bound of £m.

The transformation from PGLEwf to PGLM by applying the Elimination rules is
given below.

Definition 8.62 Let X = u1; . . . ;uk be a program in PGLEwf, and m the max-
imum number in labels and gotos of X. Let n = m + 2. The transformation
Applying Elimination rules from PGLEwf to PGLM is defined by

Applying Elimination rules(X) =
m+ 1{; o braces(before, 0);ψ1(u1); . . . ;ψk(uk); c braces(after, k + 1); m+ 1}
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where the auxiliary functions ψi(ui) are defined by

ψi(£l) = c braces(before, i); break l; l}; c braces(after, i); o braces(after, i)
if fw(£l),

ψi(£l) = c braces(before, i); o braces(before, i); l + n{; l{; o braces(after, i)
if bw(£l),

ψi(##£l) = break l,
ψi(!) = breakm+ 1,
ψi(u) = u otherwise.

The auxiliary function o braces(x, i) with pos(£l,X) = i and x ∈ {before, after}
determines a sequence of opening braces inserted immediately before or immediately
after position i. Here pos(£l,X) determines the position of £l in X. If there is no
such position, it returns 0. The opening braces given by o braces(x, i) correspond
to the closing braces that are replacements of the labels whose greatest lower bounds
are i. Formally:

o braces(x, i) = i1{; . . . ; il{

where £i1, . . . ,£il are labels of all forward goto instructions in X satisfying the condi-
tion that greatest lower bound(##£ij) = i for all 1 ≤ j ≤ l and pos(£ij+1,X) <
pos(£ij ,X) for all 1 ≤ j < l. If x = before and £l is a label of backward gotos
then pos(£ij ,X) ≤ lowest upper bound(£l) for all 1 ≤ j ≤ l. If x = after and
£l is a label of backward gotos then pos(£ij ,X) > lowest upper bound(£l) for all
1 ≤ j ≤ l.

Similarly, the auxiliary function c braces(x, i) with pos(£l,X) = i and x ∈
{before, after} determines a sequence of closing braces inserted immediately before
or immediately after position i. These closing braces correspond to the opening braces
that are replacements of the labels whose lowest upper bounds are i. Formally:

c braces(x, i) = break i1 + n; i1}; i1 + n}; . . . ; break il + n; il}; il + n}

where £i1, . . . ,£il are labels of all backward goto instructions in X satisfying the con-
dition that lowest upper bound(##£ij) = i for all 1 ≤ j ≤ l and pos(£ij+1,X) <
pos(£ij ,X) for all 1 ≤ j < l. If x = before and £l is a label of forward gotos
then pos(£ij ,X) < greatest lower bound(£l) for all 1 ≤ j ≤ l. If x = after and
£l is a label of forward gotos then pos(£ij ,X) ≥ greatest lower bound(£l) for all
1 ≤ j ≤ l.

Lemma 8.63 Let X be a program in PGLEwf. Then the program
Applying Elimination rules(X) is well-formed.

Proof: Omitted. ⊓⊔

Lemma 8.64 The transformation Applying Elimination rules from PGLEwf to
PGLM is correct.
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Proof: Similar to the proof of Theorem 8.52. ⊓⊔
Furthermore, the transformation Applying Elimination rules preserves structural
equivalence since it does not rearrange or alter any instruction of the program except
for the label, goto and termination instructions.

Example 8.65 Let X be the PGLEwf program defined in Example 8.59. We can
transform X to a program in PGLM as in Table 8.65.

X = Applying Elimination rules(X) =
8{;

£1; 10{; 1{;
7{;

+a;##£7;+c;##£1; +a; break 7;+c; break 1;
break 7;

£7; 7};
£2; 11{; 2{;

4{;
+b;##£4;+c;##£1;##£2; +b; break 4;+c; break 1; break 2;

break 4;
£4; 4};
+d;##£2; ! +d; break 2; break 8;

break 11;
2}; 11};
break 10;

1}; 10};
8}

Table 8.11: Example of applying the Elimination rules.

We have shown correctness and equivalence of the transformations Reordering,
Getting rid of h2h crossings, Adding extra labels and
Applying Elimination rules. Hence, labels and gotos can be eliminated from the
setting of PGA by introducing loops and multi-level exits under behavioral equiva-
lence.

Theorem 8.66 The transformation Gte without variables from PGLE to PGLM
is correct.

Proof: This follows from Lemma 8.26, Lemma 8.29, Lemma 8.44, Theorem 8.52,
Lemma 8.58 and Lemma 8.64. ⊓⊔
The inverse of the transformation Gte without variables can be given as follows.

Definition 8.67 Let X = u1; . . . ;uk be a program in PGLM. The transformation
from PGLM to PGLE is defined by

Eliminating loops with multi level exits = ψ1(u1); . . . ;ψk(uk)



8.6. Restructuring Cobol programs 171

where the auxiliary functions ψk(ui) is determined by the following rewrite rules

ψi(j{) = £i,
ψi(j}n) = ##£n;£i,
ψi(break j n) = ##£n,
ψi(u) = u otherwise.

This transformation together with the transformation Gte without variables indi-
cates that the program notation PGLM with loops and multi-level exits is as expres-
sive as the program notation PGLE with labels and gotos.

8.6 Restructuring Cobol programs

Removing all goto statements in a program is not always a good solution in the
maintenance of legacy systems such as ones written in Cobol. As can be seen in the
previous sections, the programs after eliminating all gotos are often very different from
the original ones. This makes it difficult for a maintenance programmer to recognize
and modify programs [40]. To circumvent this issue, in [96], Veerman presents a
collection of transformation rules using the ASF+SDF Meta-Environment [60] to
revitalize Cobol programs while preserving the track of the original ones. These
transformation rules remove certain goto statements in order to extract business logic,
and have been applied to several large industrial Cobol systems. However no formal
correctness proofs of them have been provided due to a lack of time and the different
semantics defined for Cobol as discussed in [65, 66]. In this section, we show that PGA
provides a mathematical framework for reasoning about formal correctness proofs
for these transformation rules. In order to do this, we first introduce a program
notation namely CoPA (Cobol in program algebra) that interprets the programming
language Cobol in PGA. We then define a restriction on CoPA in order to avoid the
unexpected behaviors as studied in [98] (see Section 8.6.2). Finally, we formulate
some transformation rules of [96] in CoPA and prove their correctness. We also hint
at an automatable method to prove correctness for most of transformation rules in
[96]. We note that the transformation rules presented in this chapter are obtained
directly from the author of [96].

8.6.1 The program notation CoPA

In this section, we will introduce the program notation CoPA in the setting of PGA
that is used to interpret the programming language Cobol.

First of all, we will explain a few basic concepts of Cobol. A Cobol program
consists of four divisions: one for a description of the program, one for external de-
pendencies, one for variable declarations, and one for the programming logic. The
division for the logic is ordered similar to a text in a natural language. We will concen-
trate only on this division. It consists of sections, a section is divided into paragraphs,
a paragraph consists of sentences, and a sentence consists of statements. Sections and
paragraphs usually start with a label, which can be used for reference from elsewhere
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in the program. Unlike other simple program notations in PGA, a program in Cobol
may contain procedure calls using out-of-line PERFORM statements. There are two
types of out-of-line PERFORM statements in Cobol:

• The first type of PERFORM statements is of the form PERFORM£l. When the
instruction PERFORM£l is performed, the control-flow jumps to the label £l
and executes the paragraph belonging to this label. As soon as the control flow
reaches the last statement of the paragraph, it is passed back to the statement
following the PERFORM statement.

• The second type PERFORM statements is of the form
PERFORM£iTHRU £j, assuming that the label £i precedes the label £j
in the program. When this statement is performed, the control-flow jumps to
label £i and executes the subsequence following £i. As soon as the control
flow reaches the end of the paragraph belonging to label £j, the control-flow is
passed back to the statement following the PERFORM THRU statement.

Our purpose is to show correctness of some transformation rules in [96]. Thus, for
simplicity, we will construct CoPA with a least collection of primitive statements, a
subset of the language, but rich enough for important applications.

The structure of a program in CoPA

A program in CoPA consists of paragraphs, and a paragraph consists of statements.
We do not provide sections and sentences into CoPA, since they can be constructed
as sequences of paragraphs or statements. In particular, a program in CoPA must
have the following form:

£l1;u1; . . . ;£lk;uk

where ui (1 ≤ i ≤ k) are paragraphs containing no labels, and the numbers li contained
in the labels are all distinct.

Primitive statements of the program notation CoPA

The program notation CoPA is constructed from the following primitive statements:

Basic instruction Basic instructions in Σ represent basis statements such as DIS-
PLAY statements which are executed sequentially in Cobol.

Termination instruction Termination instruction ! represents the STOP RUN
statement in Cobol.

Label instruction Labels given as in PGLE represent labels in Cobol. In CoPA, a
label is always placed immediately before a paragraph.

Goto instruction Gotos given as in PGLE represent gotos in Cobol. Like in PGLE,
for each goto in a CoPA program there must be an associated label.
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Conditional statement Conditional statements given as in PGLS represent condi-
tional statements in Cobol.

While-loop While-loops given as in PGLS represent inline PERFORM statements
in Cobol. For instance, a phrase of inline PERFORM statements

PERFORM TEST BEFORE UNTIL condition

statement

END PERFORM

in Cobol can be written in CoPA as u(−condition{∗; statement; ∗}).

PERFORM statement The statement PERFORM£li THRU £lj with i ≤ j rep-
resent out-of-line PERFORM statements in Cobol. The statement
PERFORM£l in Cobol is represented as PERFORM£lTHRU £l in CoPA.

Unit Finally, we allow the use of the unit instruction operator u(−) (see [82] for
details) which takes a part of a program and wraps it into a unit of length one,
in order to represent paragraphs of Cobol. These units are also used to keep
track of instructions of a conditional statement or a while-loop. We impose the
following restriction on CoPA: Every conditional statement and while-loop of a
CoPA program is wrapped in a unit. For instance, consider the typical Cobol
program below

L1.

IF A>B

DISPLAY ’1’

ELSE

DISPLAY ’2’

END IF.

L2.

PERFORM TEST BEFORE UNTIL NOT (A>B)

DISPLAY ’3’

END PERFORM.

The program above can be written in CoPA as

£1;u(+(A>B){; DISPLAY ’1’;}{; DISPLAY ’2’;});
£2;u(+(A>B){∗; DISPLAY ’3’; ∗}).

We note that a program in CoPA may contain an empty unit, denoted by u(), to
represent an empty paragraph. This unit takes place in the program but does not
contain any statement. Furthermore, the condition of a conditional statement or an
in-line PERFORM statement can be a boolean expression such as (condition1 AND
condition2) or (condition1 OR condition2). For simplicity, we will not consider these
expressions in this chapter.
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8.6.2 The behavior of a program in CoPA

In this section, we impose a restriction on CoPA that avoids the unexpected behaviors
explained in [98], and project programs in CoPA to PGLSu (PGLS with units), a sub-
language of CoPA without PERFORM statements, in order to determine behaviors
of programs in CoPA.

Cobol mines

To define program behaviors in CoPA, one needs a precise semantics of PERFORM
statements. However, out-of-line PERFORM statements in Cobol can be programmed
in ways that lead to unexpected behaviors. We consider the following Cobol programs
taken from [98].

P1::=L1.

DISPLAY ’1’

PERFORM L2 THRU L3

STOP RUN.

L2.

DISPLAY ’2’

PERFORM L3 THRU L4.

L3.

DISPLAY ’3’.

L4.

DISPLAY ’4’.

Program P1 has a nested overlapping PERFORM statement. In the paragraph fol-
lowing L1, a perform statement performs L2 through L3. Then in the paragraph
following L2, a second perform statement references L3 through L4, thereby passing
control through the exit of the first perform statement.

P2::=L1.

DISPLAY ’1’

a=1

PERFORM L3

DISPLAY ’END’

STOP RUN.

L2.

DISPLAY ’2’.

L3.

DISPLAY ’3’

IF a=1 THEN

a=0

GO L2

END IF.

Program P2 has an external goto that jumps out of a performed paragraph. The first
time the paragraph following L3 is entered, variable a has value 1 and thus a goto
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statement jumps to L2 before the end is reached. After L2, the control-flow can fall
through to L3. The second time this paragraph is entered, a has value 0 and thus
the end of paragraph is reached. When the perform statement in L1 terminates, the
program displays ’END’.

P3::=L1.

a=1

PERFORM L2

STOP RUN.

L2.

DISPLAY a

IF a<3 THEN

a=a+1

PERFORM L2

END IF.

DISPLAY ’END’.

Program P3 has a recursive PERFORM statement. In L1, a is initialized with value
1 and L2 is performed. In L2, the value of a is displayed. Then, if the value of a is
less than 3, it is increased by one, and the recursive perform of L2 is made. If a ≤ 3,
the program prints ’END’.

It is shown in [98] that with a number of different compilers on different platforms,
the outputs of the three programs above are different. This means that the semantics
of PERFORM statement differs between Cobol dialects. A code containing structures
as in programs P1, P2 and P3 is regarded as a Cobol mine. The behaviors of programs
containing Cobol mines are often unexpected. We will use the following definition to
define Cobol mines in CoPA in a formal way.

Definition 8.68 For a statement PERFORM£li THRU £lj in a paragraph uk of a
CoPA program, we say that labels £ln for all i ≤ n ≤ j are performed and are
contained in this statement. In particular, £li is the first performed label while £lj
is the last performed label. Furthermore, for all i ≤ n ≤ j paragraphs un (following
labels £ln) are performed, and label £lk (preceding paragraph uk) is a predecessor
of all labels £ln. A label £lj is a descendant of a label £li in the program if there
is a sequence i0, . . . , in with n ≥ 0 such that i0 = i, in = j, and £lik

is a predecessor
of £lik+1

for all 0 ≤ k < n.

Definition 8.69

1. A PERFORM statement is recursive if it contains a performed label that is a
descendant of itself.

2. A PERFORM£li THRU £lj statement is nested overlapping if it contains
a performed label £ln such that £lj is a descendant of £ln.

3. A goto ##£ln in a performed paragraph uk whose label contained in the state-
ment PERFORM£li THRU £lj is external if n /∈ [i..j].
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Hence, to avoid unexpected behaviors, we propose a restriction on programs in CoPA:
Programs in CoPA may not contain recursive PERFORM statements, nested over-
lapping PERFORM statements, or external gotos in their performed paragraphs.

The proposed restriction on PERFORM statements avoids unexpected program
behaviors in CoPA. However, it is still difficult to determine the behavior of a CoPA
program because of the complex semantics of procedure calls. To circumvent this
problem, we project CoPA to the program notation PGLSu (PGLS with units), a
sub-language of CoPA by leaving out all PERFORM statements. The behavior of a
CoPA program is determined by the behavior of its transformation in PGLSu.

In order to remove PERFORM statements in CoPA, we locate instructions of a
program by sequence of natural numbers that keeps track of the relative position in
a unit and that of all encompassing units. The empty sequence is written as ǫ, and
“,” is used as a separator between the natural numbers occurring in a sequence. We
explain this location with the following example.

Example 8.70 Let X be a program in CoPA, and [X]σ denote the instruction at
position σ of X.

X = £1;u(a;u(+b{; PERFORM£2; }{; d; }));£2;u(g).

We locate all instructions of X as follows:

[X]1 = u(a;u(+b{; PERFORM£2; }{; d; })),
[X]1,1 = a,
[X]1,2 = u(+b{; PERFORM£2; }{; d; }),
[X]1,2,1 = +b{,
[X]1,2,2 = PERFORM£2,
[X]1,2,3 = }{,
[X]1,2,4 = d,
[X]1,2,5 = },
[X]2 = u(g),
[X]2,1 = g.

In this location notation, labels are locationless. We assume that for each instruction
[X]σ at position σ of a program X in CoPA or PGLSu there is a label instruction
£Xσ (explicitly or hiddenly) placed before [X]σ in the program. Furthermore, this
label Xσ can be represented by a sequence of natural numbers.

Definition 8.71 Given two positions σ and δ of a program X in CoPA. We say that
σ is a predecessor of δ if δ = σ, i for some i ∈ N, or [X]σ = PERFORM£li THRU £lj
and δ = n with i ≤ n ≤ j. Furthermore, δ is a descendant of σ if there is a sequence
σ0, . . . , σn such that σ = σ0, σn = δ, and σi is a predecessor of σi+1 for all 0 ≤ i < n.

Example 8.72 Position (2, 1) of program X in Example 8.70 is a descendant of
position (1, 2, 2). Hence it is a descendant of the first position of X.

The restriction on CoPA (that does not allow recursive PERFORM statements) en-
sures that a position is not a descendant of itself.
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The projection from CoPA to PGLSu

Let X be a program in CoPA. Wlog we assume that X = £1; [X]1; . . . ;£k; [X]k.
The projection Perform removal(X) from CoPA to PGLSu replaces a statement
PERFORM£iTHRU £i at position σ of the current program by the code fragment
£σ; vi, where the unit vi is the same as [X]i except that the goto ##£i in [X]i is
replaced by the goto ##£σ in vi. Similarly, the projection Perform removal(X) from
CoPA to PGLSu replaces a statement PERFORM£iTHRU £j with i < j at position
σ of the current program by the code fragment u(£σ, 1; vi; . . . ;£σ, j−i+1; vj), where
the units vl (i ≤ l ≤ j) are the same as [X]l except that the gotos ##£n in [X]l with
i ≤ n ≤ j are replaced by the goto ##£σ, n− i+ 1 in vl. These replacements ensure
that the control flow does not jump out of the procedure call. In order to keep track of
the labels £σ and £σ, n−i+1 with i ≤ n ≤ j, we use a sequence χ with χ = χ1; . . . ;χk,
where k is the number of labels in X. Initially, χ = 1; . . . ; k. Whenever a statement
PERFORM£iTHRU £i at position σ is considered, the value of χi is updated to σ.
Similarly, whenever a statement PERFORM£iTHRU £j with i < j at position σ is
considered, the values of χn for i ≤ n ≤ j are updated to σ, n− i+ 1. This update is
formally defined by:

update(i, i, σ, χ) = χ1; . . . ;χi−1;σ;χi+1; . . . ;χk

update(i, j, σ, χ) = χ1; . . . ;χi−1; (σ, 1); . . . ; (σ, j − i+ 1);χj+1; . . . ;χk.

The projection Perform removal described above is given formally as follows.

Definition 8.73 Let X be a program in CoPA. Wlog we assume that for every
instruction at position σ of the current program there is a label £σ placed hiddenly
before it, and initially X = u1; . . . ;uk. The transformation Perform removal from
CoPA to PGLSu is defined by

Perform removal(X) = P1;...;k
1 (u1); . . . ;P

1;...;k
k (uk)

where
Pχ

σ (PERFORM£iTHRU £i) = Pupdate(i,i,σ,χ)
σ (ui),

Pχ
σ (PERFORM£iTHRU £j) =

u(Pupdate(i,j,σ,χ)
σ,1 (ui); . . . ;P

update(i,j,σ,χ)
σ,j−i+1 (uj)),

Pχ
σ (u(s1; . . . ; sn)) = u(Pχ

σ,1(s1); . . . ;P
χ
σ,n(sn)),

Pχ
σ (##£i) = ##£χi,

Pχ
σ (u) = u otherwise

with i, j, l,m, n ∈ N.

The previous definition is illustrated in the following example.

Example 8.74 Consider the program X containing a PERFORM statement in the
left-hand side of Table 8.12. The program Y in the right-hand side is obtained by
removing PERFORM statements from X. We note that in these two programs the
labels of paragraphs and the labels of units replacing PERFORM statements are
displayed explicitly. Program X is formulated in CoPA as
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X::=L1.

PERFORM L3.

L2.

a.

L3.

IF b THEN

GO L3

ELSE

c

END IF.

Y::=L1.

L1,1.

IF b THEN

GO L1,1

ELSE

c

END IF.

L2.

a.

L3.

IF b THEN

GO L3

ELSE

c

END IF.

Table 8.12: Example of PERFORM removal.

X = £1;u(PERFORM£3THRU £3);£2;u(a);£3;u(u(+b{;##£3; }{; c; })).

The PERFORM removal from X to Y is determined by

Perform removal(X)

= £1;P1;2;3
1 (u(PERFORM£3THRU £3));

£2;P1;2;3
2 (u(a));

£3;P1;2;3
3 (u(u(+b{;##£3; }{; c; })))

= £1;u(P1;2;3
1,1 (PERFORM£3THRU £3));

£2;u(a);
£3;u(u(+b{;##£3; }{; c; }))

= £1;u(£1, 1;P1;2;(1,1)
1,1 (u(u(+b{;##£3; }{; c; }))));

£2;u(a);
£3;u(u(+b{;##£3; }{; c; })).

= £1;u(£1, 1;u(+b{;##£1, 1; }{; c; }));
£2;u(a);
£3;u(u(+b{;##£3; }{; c; })).

Since programs in CoPA do not contain recursive PERFORM statements, the trans-
formation Perform removal terminates. This is equivalent to the following lemma.

Lemma 8.75 The transformation Perform removal from CoPA into PGLSu is well-
defined.

The previous lemma suggests the definition of behaviors of programs CoPA as follows.
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Definition 8.76 The behavior |X| of a program X in CoPA is given by

|X| = |Perform removal(X)|.

Behavior extraction equations for PGLSu

The behavior of a PGLSu program is determined by the behavior extraction equations
for PGLSu given below. We note that for a position σ of a PGLSu program X, the
computation σ⊕1 denotes the position of the next instruction of [X]σ in the program.

Definition 8.77 Let X be a program in PGLSu. The behavior |X| of X is defined
by |X| = |1,X|, where

|σ,X| =















































































S if [X]σ =! or σ is not a position in X,
a ◦ |σ ⊕ 1,X| if [X]σ = a,
|δ,X| if [X]σ = ##£Xδ,
|(σ, 1),X| if [X]σ = u(U),
|σ ⊕ 1,X| � a � |δ ⊕ 1,X| if [X]σ = +a{δ,
|δ ⊕ 1,X| � a � |σ ⊕ 1,X| if [X]σ = −a{δ,
|δ ⊕ 1,X| if [X]σ =}δ{,
|σ ⊕ 1,X| if [X]σ =},
|σ ⊕ 1,X| � a � |δ ⊕ 1,X| if [X]σ = +a{∗δ,
|δ ⊕ 1,X| � a � |σ ⊕ 1,X| if [X]σ = −a{∗δ,
|σ ⊕ 1,X| if [X]σ = {∗,
|δ,X| if [X]σ = ∗}δ,

Inactive behavior D will occur if the computation produces no result.

Example 8.78 The behavior of program X in Example 8.74 is determined by
|X| = |Perform removal(X)| = P where

P = P � b �Q,
Q = c ◦R,
R = a ◦ T,
T = T � b � U,
U = c ◦ S.

8.6.3 Correctness of transformation rules for goto removal

The transformation rules of [96] are written in the ASF+SDF Meta-Environment
[60, 37]. Intuitively, most of them preserve structural equivalence. Despite the un-
derstandable intuition of these transformation rules, it is quite difficult to prove their
correctness because of the procedure calls via PERFORM statements. In this section,
we formulate and prove correctness of some transformation rules in [96] in the setting
of CoPA. These transformation rules remove certain types of goto statements in order
to revitalize programs while preserving their original shapes. The correctness of the
remaining rules can be shown in the same way.
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conditions

=⇒
left-hand side −→ right-hand side

Table 8.13: Notation for a transformation rule in the ASF+SDF Meta-Environment.

=⇒
Goto elimination(

L1. −→ L1.

S1 S1.

GO L2. L2.

L2.

,Last-performed-labels

)

Table 8.14: The Goto elimination rule in the ASF+SDF Meta-Environment.

Transformation rules in the ASF+SDF Meta-Environment

In order to formulate the transformation rule eliminate-go in the setting of PGA, first
of all, we give a brief introduction of transformation rules written in the ASF+SDF
Meta-Environment. Here SDF stands for Syntax Definition Formalism and supports
the definition of both lexical and context-free syntax (see [56]), while ASF stands for
Algebraic Specification Formalism and supports the definition of conditional rewrite
rules (see [18]). A transformation rule (or a rewrite rule) in the ASF+SDF Meta-
Environment as illustrated in Table 8.13, consists of a left-hand side pattern and a
right-hand side pattern with abstract and concrete syntax, and may have a condition.
Whenever a transformation rule is applied on a source code, a parser generated by SDF
will transform all the codes matching the left-hand side pattern to the codes matching
the the right-hand side pattern from left to right, provided that their conditions are
successfully evaluated.

The Goto elimination rule

The Goto elimination rule removes implicit goto statements standing immediately
before their associated labels (see Table 8.14). We note that since CoPA programs
do not contain Cobol mines, label L1 of the left-hand side pattern is not the last
performed label otherwise GO L2 would be an external goto. We formulate the
transformation rule Goto elimination in the extension of CoPA with PGLSu, so
that it can be applied on PGLSu programs as well.

Definition 8.79 Let X be a program in CoPA ∪ PGLSu. Wlog we assume that
for every instruction at position σ of the current program, there is a label £σ placed
hiddenly before it, and initially X = u1; . . . ;uk. The Goto elimination rule is defined
by

Goto elimination(X) = G1(u1); . . . ;Gk(uk)
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where
Gδ,i(u(s;##£δ, i+ 1)) = u(Gδ,i,1(s)),
Gσ(u(v1; . . . ; vn)) = u(Gσ,1(v1); . . . ;Gσ,n(vn)),
Gσ(u) = u otherwise.

One can see that the Goto elimination rule terminates.

Lemma 8.80 The transformation rule Goto elimination is well-defined.

Furthermore, if a program does not contain PERFORM statements then the correct-
ness of this transformation rule on this program is straightforward.

Lemma 8.81 The transformation rule Goto elimination on PGLSu is correct.

Finally, the composition result of two transformations Perform removal and
Goto elimination on CoPA does not depend on their order, i.e.:

Theorem 8.82 Let X be a CoPA program defined as in Definition 8.73 and Defini-
tion 8.79. Then

Perform removal(Goto elimination(X)) =
Goto elimination(Perform removal(X)).

Proof: Let Y = Goto elimination(X) and Z = Perform removal(X). We show
that Perform removal(Y ) = Goto elimination(Z). By Definition 8.73 and Defini-
tion 8.79, let

Y = G1([X]1); . . . ;Gk([X]k),

Z = P1;...;k
1 ([X]1); . . . ;P

1;...;k
k ([X]k),

Perform removal(Y ) = P 1;...;k
1 (G1([X]1)); . . . ;P

1;...;k
k (Gk([X]k)),

Goto elimination(Z) = G1(P
1;...;k
1 ([X]1)); . . . ;Gk(P1;...;k

1 ([X]k)),

where Gσ and Pχ
σ are defined as Gσ and Pχ

σ in Definition 8.79 and Definition 8.73 for
programs Y and Z, respectively. For a position γ of X and a position σ of Y and Z,
we prove by induction on the descendants of σ that

Gσ(Pχ
σ ([X]γ)) = Pχ

σ (Gγ([X]γ)).

where γ, σ and χ satisfy following condition: If γ = i, γ′ then σ = σ′, i′, γ′ and
χi = σ′, i′ for some sequences γ′, σ′ and natural numbers i, i′. Furthermore, if [X]γ =
##£i± n then χi±n = σ′, i′ ± n, γ′ for some natural number n. This condition is to
avoid external gotos in a program. We assume for all descendants σ′ of σ, positions

γ′ of X and sequences χ′ satisfying the condition above that Gσ′(Pχ′

σ′ ([X]γ′)) =

Pχ′

σ′ (Gγ′([X]γ′)). We consider the following possibilities:
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1. [X]γ = u with u ∈ Σ. Then Gσ(Pχ
σ (u)) = Pχ

σ (Gγ(u)) = u.

2. [X]γ = ##£i. Then Gσ(Pχ
σ (##£i)) = Pχ

σ (Gγ(##£i)) = ##£χi.

3. γ = i, [X]i = u(s;##£i + 1) and σ = δ, i′. Then χi+1 = δ, i′ + 1 since X
does not contain external gotos. By Definition 8.73, Definition 8.79 and the
induction hypothesis,

Gδ,i′(P
χ
δ,i′(u(s;##£i+ 1))) = Gδ,i′(u(Pχ

δ,i′,1(s);##£δ, i′ + 1))

= u(Gδ,i′,1(P
χ
δ,i′,1(s)))

= u(Pχ
δ,i′,1(Gi,1(s)))

= Pχ
δ,i(Gi(u(s;##£i+ 1)))

4. [X]γ = u(v1; . . . ; vn). Then

Gσ(Pχ
σ (u(v1; . . . ; vn))) = u(Gσ,1(P

χ
σ,1(v1)); . . . ;Gσ,n(Pχ

σ,n(vn)))
= u(Pχ

σ,1(Gγ,1(v1)); . . . ;P
χ
σ,n(Gγ,n(vn)))

= Pχ
σ (Gγ(u(v1; . . . ; vn))).

5. [X]γ = PERFORM£iTHRU £i. It follows from Definition 8.73, Defini-
tion 8.79 and the induction hypothesis that

Gσ(Pχ
σ ([X]γ)) = Gσ(Pupdate(i,i,σ,χ)

σ ([X]i))

= P
update(i,i,σ,χ)
σ (Gi([X]i))

= P
update(i,i,σ,χ)
σ ([X]i)

= Pχ
σ (PERFORM£iTHRU £i) = Pχ

σ (Gγ([X]γ)).

6. [X]γ = PERFORM£iTHRU £j. Similar to the previous case, we also have

Gσ(Pχ
σ ([X]γ)) = Pχ

σ (Gγ([X]γ)).

Hence Gi(P
1;...;k
i ([X]i)) = P 1;...;k

i (Gi([X]i)) for all 1 ≤ i ≤ k. This implies that
Goto elimination(Z) = Perform removal(Y ). ⊓⊔
Therefore:

Theorem 8.83 The transformation rule Goto elimination is correct.

Proof: Let X be a CoPA defined as in Definition 8.79. It follows from Definition 8.76,
Lemma 8.81 and Theorem 8.82 that

|Goto elimination(X)| = |Perform removal(Goto elimination(X)|
(by Definition 8.76)

= |Goto elimination(Perform removal(X))|
(by Theorem 8.82)

= |Perform removal(X)| (by Lemma 8.81)
= |X| (by Definition 8.76).



8.6. Restructuring Cobol programs 183

=⇒
Loop reformulation(

L1. −→ L1.

IF condition THEN PERFORM TEST BEFORE UNTIL NOT condition

S1 S1

GO L1 END PERFORM

ELSE S2

S2 S3.

END IF

S3.

)

Table 8.15: The Loop reformulation rule in the ASF+SDF Meta-Environment.

⊓⊔
We note that the transformation rule Goto elimination indeed preserves structural
equivalence (see Section 8.1.1), since it does not rearrange any other instructions of
a program.

The Loop reformulation rule

The Loop reformulation rule eliminates local gotos while preserving behavioral
equivalence (see Table 8.15). Like the Goto elimination rule, we define the
Loop reformulation rule in the extension of CoPA with PGLSu, so that it can be
applied on programs in PGLSu as well.

Definition 8.84 Let X be a program in CoPA ∪ PGLSu. Wlog we assume that for
every instruction at position σ of the current program there is a label £σ placed
hiddenly before it, and initially X = u1; . . . ;uk. The Loop reformulation rule is
defined by

Loop reformulation(X) = L1(u1); . . . ;Lk(uk)

where

Lσ(u(u(±a{; s1;##£σ; }{; s2; }; ); s3)) = u(u(±a{∗;Lα(s1); ∗}; );Lβ(s2);Lγ(s3)),
Lσ(u(v1; . . . ; vn)) = u(Lσ,1(v1); . . . ;Lσ,n(vn)),
Lσ(u) = u otherwise

with α = σ, 1, 2; β = σ, 1, 5 and γ = σ, 2 the positions of the units s1, s2 and s3 in X.

Since the number of gotos decreases by one after each step, the transformation rule
Loop reformulation terminates successfully.

Lemma 8.85 The transformation rule Loop reformulation is well-defined.
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Furthermore, if a program does not contain PERFORM statements then the correct-
ness of this transformation rule on this program is straightforward.

Lemma 8.86 The transformation rule Loop reformulation on PGLSu is correct.

Finally like the Goto elimination rule, the composition result of the two transfor-
mations Perform removal and Loop reformulation does not depend on their order.
In other words, we can first remove all PERFORM statements, then reformulate the
program, or we can transform the program conversely.

Theorem 8.87 Let X be a CoPA program Definition 8.73 and Definition 8.84. Then

Perform removal(Loop reformulation(X)) =
Loop reformulation(Perform removal(X)).

Proof: Similar to the proof of Theorem 8.82. ⊓⊔
The previous results imply that:

Theorem 8.88 The transformation rule Loop reformulation is correct.

Proof: Similar to the proof of Theorem 8.83, this follows from Definition 8.76,
Lemma 8.86 and Theorem 8.87. ⊓⊔

The Switch paragraph rule

The Switch paragraph rule transforms repeatedly from left to right any code frag-
ment of a program having the form as the left-hand side pattern in Table 8.16 to the
code fragment of the form as the right-hand side pattern. In this figure, the goto
statement GO L2 is eliminated, since it becomes an implicit goto after exchanging
labels L2 and L3 together with their paragraphs. The condition imposed on this
transformation rule is that labels L4 and L5 are different from labels L2 and L3, re-
spectively. Furthermore, in order to avoid Cobol mines after the transformation, label
L2 is not the first label of a PERFORM statement and label L3 is not the last label
of a PERFORM statement in the original program. We note that since programs in
CoPA do not contain Cobol mines, label L3 is not the first label of a PERFORM
statement.

Let First performed labels and Last performed labels be the sets of first
performed labels and last performed labels, respectively. We use an auxiliary trans-
formation called Sp gte to define the Switch paragraph rule in CoPA.

Definition 8.89 Let X be a program in CoPA. Wlog we assume that
X = £1;u1; . . . ;£k;uk. The transformation Sp gte is defined as follows. Let i be
the first position of X satisfying that the code fragment Xi+2

i is of the form as the
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L4 != L2,

L5 != L3,

L2 in First-performed-labels == false,

L3 in Last-performed-labels == false

=⇒
Switch paragraph(

L1. −→ L1.

S1 S1

GO L4. GO L4.

L2. L3.

S2 S3.

GO L5. L2.

L3. S2

S3 GO L5.

GO L2.

,Last-performed-labels

)

Table 8.16: The Switch paragraph rule in the ASF+SDF Meta-Environment.

left-hand side pattern in Table 8.16, where Xj
i = £i;ui; . . . ;£j;uj (i ≤ j). If there is

no such position i then
Sp gte(X) = X

otherwise let

Xi+2
i = £i;u(s1;##£m);£i+ 1;u(s2;##£n);£i+ 2;u(s3;##£i+ 1)

with i + 1 /∈ First performed labels, i + 2 /∈ Last performed labels, m 6= i + 1
and n 6= i+ 2. Then

Sp gte(X) = Xi−1
1 ;£i;u(s1;##£m);£i+ 2;u(s3);£i+ 1;u(s2;##£n);Xk

i+3.

Definition 8.90 The Switch paragraph rule is obtained by applying the transfor-
mation Sp gte repeatedly from left to right.

Since the number of gotos decreases by one after applying the transformation Sp gte,
the system-specific rule terminates, i.e.:

Lemma 8.91 The Switch paragraph rule is well-defined.

We note that unlike the Goto elimination rule and the Loop reformulation rule,
the composition result of the Perform removal and the Switch paragraph rule in
different orders is significant as can be seen in the following example.

Example 8.92 Consider the program below:
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L0.

PERFORM L1 THRU L2.

L1.

GO L1.

L2.

GO L1.

L3.

a

GO L2.

Then the left-hand side program of Table 8.17 is obtained from this program by
first applying the Switch paragraph rule and then removing PERFORM statements,
while the right-hand the program is obtained conversely. It is obvious that these two

L0.

L1’.

GO L1’.

L3’.

a.

L2’.

GO L1’.

L1.

GO L1.

L3.

a.

L2.

GO L1.

L0.

L1’.

GO L1’.

L2’.

GO L1’.

L1.

GO L1.

L3.

a.

L2.

GO L1.

Table 8.17: Example of applying the Perform removal and the Switch paragraph

rule.

programs are not the same.

Lemma 8.93 The transformation Sp gte is correct.

Proof: Let Y be obtained from program X in CoPA by applying the transformation
Sp gte given as below.

X = Xi−1
1 ;£i;u(s1;##£m);£i+ 1;u(s2;##£n);£i+ 2;u(s3;##£i+ 1);Xk

i+3,

Y = Xi−1
1 ;£i;u(s1;##£m);£i+ 2;u(s3);£i+ 1;u(s2;##£n);Xk

i+3

LetX ′ = Perform removal(X) and Y ′ = Perform removal(Y ). We show that |X ′| =
|Y ′|. To do this, we define a binary relation ∼ between positions of X ′ and Y ′

inductively as follows.

1. j ∼ j for all 1 ≤ j ≤ k, j /∈ {i+ 1, i+ 2}.
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2. i+ 1 ∼ i+ 2.

3. i+ 2, 1 ∼ i+ 1, 1.

4. i+ 2, 2 ∼ i+ 2.

5. If σ ∼ δ and [X ′]σ and [Y ′]δ are the replacements of the same unit u =
u(t1; . . . ; tp) of X and Y then σ, j ∼ δ, j for all 1 ≤ j ≤ p.

6. If σ ∼ δ and [X ′]σ and [Y ′]δ are the replacements of the statement
PERFORM£pTHRU £q then by Definition 8.6.3, p 6= i + 1 and q 6= i + 2.
Furthermore, p 6= i + 2 otherwise ##£i + 1 is an external goto of X. We
consider the following cases:

(a) q < i+ 1 or p > i+ 2. We define that σ, j ∼ δ, j for 1 ≤ j ≤ q − p+ 1.

(b) p < i+ 1 < i+ 2 < q. We define that

i. (σ, j) ∼ (δ, j) for all 1 ≤ j ≤ q − p + 1, j /∈ {i + 2 − p, i + 3 − p}.
Here [X ′]σ,i+2−p and [X ′]σ,i+3−p are the replacements of [X]i+1 =
u(s2;##£n) and [X]i+2 = u(s3;##£li+2), while [Y ′]δ,i+2−p and
[Y ′]δ,i+3−p are the replacements of [Y ]i+1 = u(s3) and [Y ]i+2 =
u(s2;##£n).

ii. σ, i+ 2 − p ∼ δ, i+ 3 − p.

iii. σ, i+ 3 − p, 1 ∼ δ, i+ 2 − p, 1.

iv. σ, i+ 3 − p, 2 ∼ δ, i+ 3 − p.

(c) q = i+1. SinceX does not contain external gotos, the units [X]p, . . . , [X]i+1

do not contain any goto ##£i + 2. Thus the units [Y ]p, . . . , [Y ]i, [Y ]i+2

do not contain any goto ##£i+2 whose associated label precedes [Y ]i+1.
This implies that the units [Y ′]δ,1, . . . , [Y ]δ,i+1−p, [Y

′]δ,i+3−p do not con-
tain any goto ##£δ, i+ 3− p whose associated label precedes [Y ′]δ,i+2−p.
Hence [Y ′]δ,i+2−p is a dead instruction in Y ′. We then define that σ, j ∼ δ, j
for all 1 ≤ j ≤ i+ 1 − p and σ, i+ 2 − p ∼ δ, i+ 3 − p.

Let Pσ = |σ,X ′| and Qδ = |δ, Y ′| for all positions σ of X ′ and δ of Y ′. Similar to the
proof of Theorem 8.52, we can derive that Pσ = Qδ if σ ∼ δ. Therefore |X ′| = |Y ′|.

⊓⊔
The previous result implies that:

Theorem 8.94 The Switch paragraph rule is correct.

Proof: This follows from Definition 8.90 and Lemma 8.93. ⊓⊔
We note that the Switch paragraph rule indeed preserves flow-graph equivalence (see
Section 8.1.1) since the target program and its original have the same flowchart.
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8.6.4 An automatable method for proving correctness of trans-
formation rules

In the previous section, we have proved by hand correctness of some transformation
rules in [96] for goto elimination in the setting of PGA. This shows that PGA pro-
vides a mathematical framework for reasoning about correctness and equivalence of
transformation rules for restructuring Cobol programs. Although one can learn PGA
quickly, it still requires time, effort and theoretical skills to prove correctness of all
of them. In this last section, we will suggest an automatable method [105, 68] for
formally proving correctness of these transformation rules.

We observe that the correctness of transformation rules in [96] is straightforward
if the programs do not contain PERFORM statements. Hence for a given transfor-
mation rule Transf rule of [96], if we can prove that for every program X in CoPA
the following equation holds

Perform removal(Transf rule(X)) = Transf rule(Perform removal(X)) (8.1)

then the correctness proof of this transformation rule follows. It is because the pro-
gram after the transformation behaves the same as the original one, i.e.:

|Transf rule(X)| = |Perform removal(Transf rule(X))| (by definition)
= |Transf rule(Perform removal(X))| (by (8.1))
= |Perform removal(X)| (straightforward)
= |X| (by definition)

Intuitively, Equation (8.1) holds for most transformation rules in [96], for instance the
Goto elimination rule and the Loop reformulation rule. Its proof is not straight-
forward and requires induction as seen in the proof of Theorem 8.82. However, it
can be attained automatically by using existing theorem provers such as PVS (a Pro-
totype Verification System) [77]. This method guarantees that these transformation
rules are correct. Furthermore, it can save us time and effort in providing formal
correctness proofs for all transformation rules in [96]. We note that for certain trans-
formation rules of [96] that do not satisfy (8.1) such as the Switch paragraph rule,
their correctness can be proved by hand.

8.7 Conclusion

We have studied the correctness and equivalence of various standard algorithms and
transformation rules for goto removal in the setting of PGA.

First of all, to eliminate gotos using additional variables, we have shown that the
algorithm of Cooper [41] for proving the Folk theorem is correct under behavioral
equivalence with respect to additional variables. This equivalence is finer than the
input-output equivalence used in the literature [55, 33] when dealing with goto removal
using additional boolean variables. We note that one can achieve a similar result for
the approach of Böhm and Jacopini [33].
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To eliminate gotos without the use of additional variables we have proposed a
technique that removes head-to-head crossings in the programs. Subsequently using
the results of Peterson et al. and Ramshaw, we have proven that gotos can be elim-
inated without using additional variables by introducing loops with multi-level exits
under behavioral equivalence.

By assuming that Cobol programs do not produce the unexpected behaviors as
studied in [98], we have proved correctness and equivalence of some transformation
rules for restructuring Cobol programs given in [96]. We also suggested an automat-
able method for formally proving correctness of these transformation rules.

Our work shows that gotos can be eliminated in the setting of PGA by the use
of additional variables under behavioral equivalence with respect to these variables,
or by introducing loops with multi-level exits under behavioral equivalence. Further-
more, PGA creates a systematic and mathematical framework for reasoning about
and classifying correctness and equivalence of standard algorithms and transforma-
tion rules for goto removal and the restructuring of programs. We hereby show that
PGA’s mechanism can explain goto elimination with mathematical rigor to a larger
public.





Chapter 9

Summary

This thesis is about semantics and applications of process and program algebra, which
are algebraic frameworks for formalizing and analyzing system behaviors and com-
puter programs. We have given solutions to two open questions raised in [29] on
orthogonal bisimulation, a semantic equivalence that deals with abstraction in pro-
cess algebra. Furthermore, we have studied the semantics of thread algebra, a process
algebra for the semantics of recent object-oriented and multi-threaded programming
languages such as C# and Java. In the study of program algebra itself, we have
explored the expressiveness of extensions of program algebra with conditional state-
ments and while-loops. In the applications of thread and program algebra, we have
shown that thread algebra can be applied to define various notions of noninterference
in language-based security. Also, program algebra can be used for proving correctness
of algorithms and transformation rules for goto removal.

Chapter 2 defines a trace characterization of orthogonal bisimulation called the
compression structure of a process. This definition depends on a notion of compression
content of the traces of a process. That is, the traces of the process from which
all internal actions are removed, and if a trace ends in an internal action then its
compression content is extended with the internal action symbol. We have shown
that this notion of compression structure characterizes orthogonal bisimilarity in the
same way as the branching structure in [51] characterizes branching bisimilarity. In
particular, two processes have the same compression structure if and only if they are
orthogonally bisimilar.

Chapter 3 studies the complexity of deciding orthogonal bisimulation in a finite
state transition system. We have presented an algorithm for deciding orthogonal
bisimulation. This algorithm is based on the well-known algorithm for deciding
branching bisimulation [52] given by Groote and Vaandrager [54]. We have shown
that the complexity of our algorithm remains the same as the one of Groote and
Vaandrager’s algorithm. Thus if n is the number of states, and m the number of
transitions then it takes O(n(m + n)) time to decide orthogonal bisimilarity on a
finite labeled transition system, using O(m+ n) space.

Chapter 4 gives a structural operational semantics (SOS) [81] for thread algebra.

191
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We have presented transition rules for the strategic interleaving operators of [23]
and shown that bisimulation equivalence defined by the new SOS characterizes the
equality induced by the axioms of thread algebra.

Chapter 5 presents a denotational semantics [11] for thread algebra. We have
followed the metric methodology of de Bakker and Zucker [11] to turn the domains of
thread algebra into complete metric spaces. We have shown that the complete metric
space consisting of projective sequences is an appropriate domain for thread algebra.
More precisely, in the setting of single threads, we have proved that this domain
represents infinite threads in a unique way. Furthermore, it is compatible with the
domain based on complete partial orders (cpo’s) of thread algebra [16]. Moreover, it
deals naturally with abstraction in comparison with the domain consisting of Cauchy
sequences. We also have proved that the specification of a regular thread determines
a unique solution in this domain. In the setting of multi-threads, it has been shown
that this domain can be extended with the strategic interleaving operators of [23] in
a natural way, while the domain based on cpo’s cannot. We also have proposed a
particular interleaving strategy with respect to abstraction for thread algebra.

Chapter 6 explores the expressiveness of the extensions PGAuc and PGAucw of
program algebra (PGA) with units, conditional statements and while-loops with re-
spect to the lazy projection semantics proposed in [22]. First of all, we have presented
a projection from PGAuc (PGA extended with units and conditional statements) to
PGAu (PGA extended with units) [82]. The projection from PGAuc to PGA is
a composition of our projection and the projection from PGAu to PGA defined in
[82]. Next, we have shown that PGA with while-loops yields non-regular behaviors
in certain cases. Under the restriction that consecutive occurrences of while-loops are
forbidden, we have given a projection from PGAucw (PGAuc extended with while-
loops) to PGLBu, a variant of PGAu with backward jumps [82]. The projection from
PGAucw to PGA, therefore, is a composition of this projection and the projection
from PGLBu to PGA described in [82]. The existence of our projections shows that
conditional statements and while-loops, while allowing for a flexible style of program-
ming, are not needed as primitive instructions in terms of expressiveness. Finally,
these projections can be used to study PGA itself.

Chapter 7 shows that thread algebra, the semantics of program algebra, creates
a process-algebraic framework for formalisation and analysis of security properties
in language-based security [88]. We have interpreted various standard notions of
noninterference, an important security property that characterizes systems whose ex-
ecution does not reveal secret information. In particular, we have defined termination-
insensitive noninterference (TINI), termination-sensitive noninterference (TSNI) and
timing-sensitive noninterference (TISNI) in thread algebra. We have proved sound-
ness for these noninterference properties, meaning that if a thread satisfies one of
these properties then it satisfies the noninterference property given by Goguen and
Meseguer [53]. Furthermore, we have shown that our approach accepts all secure
programs that are accepted by the current approaches based on type systems [99, 91]
of language-based security. In the setting of multi-threads, it has been proved that
TISNI composes with respect to the cyclic interleaving operator, a basic interleaving
strategy of [23]. In order to preserve compositionality for TINI and TSNI, we have
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proposed a particular interleaving strategy for thread algebra that invokes the rota-
tion of the thread vector only in the case that the current action is not persistent.
By assuming that high actions are persistent, the analysis can be made composi-
tional. For checking our noninterference properties, one can use existing tools such
as [48, 49, 31] for deciding process-equivalence to develop our security checkers. We
hereby have shown that thread algebra it is suitable as a process-algebraic framework
for considering security properties in unstructured and multi-threaded programming
languages. Hence, previous work on security for sequential and multi-threaded pro-
gramming languages can be reconsidered in this framework.

Chapter 8 shows that program algebra provides a mathematical and systematic
framework for reasoning about the correctness and equivalence of algorithms and
transformation rules for goto removal [45]. We have considered three existing classes
of goto removal: removing all gotos using additional variables, removing all gotos
without additional variables, and removing certain types of gotos for knowledge ex-
traction. In the first class, we have proved correctness for the algorithm given by
Cooper [41] under behavioral equivalence with respect to additional boolean vari-
ables. This equivalence is finer than the input-output equivalence used in [41] and
other techniques [33, 41, 76, 3, 39, 72] dealing with goto removal using additional
variables. We note that one can achieve a similar result for the approach of Böhm
and Jacopini [33]. In the second class, both well-known approaches of Peterson et
al. [80] and Ramshaw [83] require a condition that programs are reducible or free
of head-to-head crossings. Hence, to remove all gotos without the use of additional
variables, we have proposed a technique to get rid of head-to-head crossings in pro-
grams and subsequently used the results of Peterson et al. and Ramshaw. We have
shown that our algorithm is correct under behavioral equivalence, an analogous no-
tion of path equivalence used in [80, 83]. Finally, in the class of removing certain
types of gotos in order to extract knowledge embedded in legacy software systems, we
have provided formal correctness proofs for some transformation rules to restructure
Cobol programs in a real-life application [96]. We also have suggested an automatable
method to prove correctness for all transformation rules in [96]. Therefore, we have
shown that gotos can be eliminated in the setting of program algebra. Furthermore,
we have explained goto removal with mathematical rigour.





Samenvatting∗

Dit proefschrift gaat over semantiek en toepassingen van proces- en programma-
algebra, algebräısche kaders voor formalisering en analyse van systeemgedrag en com-
puterprogramma’s. Het bevat oplossingen voor twee problemen, opgeworpen in [29],
met betrekking tot orthogonale bisimulatie, een semantische equivalentie die te maken
heeft met abstractie in de procesalgebra. Verder bestuderen we de se man tiek van de
draad-algebra, een procesalgebra voor de semantiek van recente objectgeorienteerde
en meerdradige programmeertalen zoals C# en Java. Binnen de programma-algebra
zelf onderzoeken we de expressiviteit van uitbreidingen met voorwaardelijke keuze en
de zolang-lus. Op het stuk van toepassingen laten we zien dat ver scheidene noninter-
ferentiebegrippen op het gebied van de taalgebaseerde beveiliging gedefinieerd kunnen
worden met behulp van de draad-algebra; en we gebruiken programma-algebra om de
correctheid te bewijzen van algoritmen en transformatieregels voor goto-verwijdering.

Hoofdstuk 2 bevat een karakterisering van orthogonale bisimulatie. Deze karak-
terisering berust op een notie van compressie-inhoud van de sporen van een proces:
de sporen van het proces na verwijdering van alle interne acties, met uitzondering van
een eventuele interne actie aan het eind van het spoor. De compressiestructuur staat
tot orthogonale bisimilariteit als de vertakkingsstructuur van [51] tot vertakkende
bisimilariteit. In het bijzonder hebben twee processen dezelfde compressiestructuur
dan en slechts dan als ze orthogonaal bisimilair zijn.

In hoofdstuk 3 onderzoeken we de complexiteit van het beslissingsprobleem voor
orthogonale bisimulatie in een eindig toestandsovergangssysteem. We formuleren een
beslissingsalgoritme. Dit algoritme is gebaseerd op het bekende algoritme voor ver-
takkende bisimulatie [52] beschreven door Groote en Vaandrager [54]. Dus als n het
aantal toestanden is, en m het aantal overgangen, dan is O(n(m+ n)) tijd nodig om
orthogonale bisimilariteit te beslissen op een eindig gelabeld overgangssysteem, en
O(m + n) ruimte.

Hoofdstuk 4 geeft een structurele operationele semantiek (SOS) [81] voor de draad-
algebra. Er worden transitieregels opgesteld voor de strategische afwisselingsopera-
toren van [23]. We bewijzen dat de bisimulatie-equivalentie gedefinieerd door de
nieuwe SOS de gelijkheid karakteriseert die wordt gëınduceerd door de axioma’s van
de draad-algebra.

Hoofdstuk 5 beschrijft een denotationele semantiek [11] voor de draad-algebra. Bij

∗Summary in Dutch
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de constructie van volledige metrische ruimten uit de domeinen van de draad-algebra
is de metrische methodologie van De Bakker en Zucker [11] gevolgd. We bewijzen dat
de volledige metrische ruimte gevormd door de projectieve rijen een geschikt domein
is voor de draad-algebra. Preciezer gezegd, op het niveau van individuele draden
bewijzen we dat dit domein oneindige draden uniek representeert. Het is bovendien
compatibel met het draadalgebra-domein gebaseerd op volledige ordes (cpo’s) [16].
Daarnaast geeft het, vergeleken bij het Cauchyrijendomein, een natuurlijke behan-
deling van abstractie. We bewijzen dat een specificatie van een reguliere draad een
unieke oplossing heeft in dit domein. Op het niveau van multidraden is bewezen
dat dit domein op een natuurlijke manier kan worden uitgebreid met de strategische
afwisselingsoperatoren van [23], zulks in tegenstelling tot het domein ge baseerd op
cpo’s. Met betrekking tot abstractie beschrijven we een speciale strategie voor de
draad-algebra.

Hoofdstuk 6 verkent de expressiviteit van de uitbreidingen PGAuc en PGAucw
van de programma-algebra (PGA) met de eenheidsoperator, voorwaardelijke keuze,
en zolang-lussen, onder de luie projectiesemantiek voorgesteld in [22]. Allereerst de
finiëren we een projectie van PGAuc (PGA uitgebreid met de eenheidsoperator en
voorwaardelijke keuze) naar PGAu (PGA met alleen de eenheidsoperator) [82]. De
projectie van PGAuc naar PGA is de samenstelling van deze projectie met de projec-
tie van PGAu naar PGA gedefinieerd in [82]. Vervolgens laten we zien dat PGA met
zolang-lussen in bepaalde gevallen niet-regulier gedrag beschrijft. Onder de restrictie
dat opeenvolgende voorkomens van zolang-lussen verboden zijn, geven we een pro-
jectie van PGAucw (PGAuc uitgebreid met de zolang-constructie) naar PGLBu, een
variant van PGAu met achterwaartse sprongen [82]. De projectie van PGAucw naar
PGA is bijgevolg de compositie van deze projectie en de projectie van PGLBu naar
PGA die beschreven staat in [82]. Het bestaan van onze projecties laat zien in welke
mate voorwaardelijke keuzen en zolang-lussen, afgezien van de flexibele program-
meerstijl die ze faciliteren, in termen van expressiviteit niet nodig zijn als primitieve
instructies. Tot besluit merken we op dat deze projecties gebruikt kunnen worden bij
het onderzoek van PGA zelf.

Hoofdstuk 7 laat zien dat de draad-algebra, de semantiek van de programma-
algebra, een procesalgebräısch kader schept voor formalisering en analyse van taal-
gebaseerde veiligheidskenmerken [88]. We geven interpretaties van verscheidene
standaard-noninterferentiebegrippen; noninterferentie is een belangrijke eigenschap
die systemen karakteriseert waarvan de executie geen geheime informatie onthult.
In het bijzonder hebben we terminatie-ongevoelige noninterferentie (TINI, voor
Termination-Insensitive NonInterference) gedefinieerd in de draad-algebra, terminatie-
gevoelige noninterferentie (TSNI, voor Termination-Sensitive NonInterference), en
tijdgevoelige noninterferentie (TISNI, voor TIming-Sensitive NonInterference). We
bewijzen correctheid voor deze noninterferentie-eigenschappen, dat wil zeggen dat als
een draad n van deze eigenschappen heeft, hij de noninterferentie-eigenschap heeft die
Goguen en Meseguer formuleren in [53]. Verder bewijzen we dat on ze benadering alle
veilige programma’s accepteert die geaccepteerd worden door de gangbare benaderin-
gen van taalgebonden veiligheid die gebaseerd zijn op typensystemen [99, 91]. Met
betrekking tot multidraden is bewezen dat TISNI behouden blijft on der de cyclische



197

afwisselingsoperator, een basale afwisselingsstrategie uit [23]. Met het oog op het
behoud van TINI en TSNI introduceren we een speciale afwisselingsstrategie voor de
draad-algebra die de rotatie van de draadvector alleen inroept in het geval dat de
lopende actie niet persistent is. Behoud kan worden afgedwongen door aan te nemen
dat hoge acties persistent zijn. Om te controleren op noninterferentie-eigenschappen
kan men bestaande beslissings-tools voor procesalgebräısche equivalentie gebruiken,
zoals [48, 49, 31], om veiligheidscontroleprogramma’s te ontwikkelen. Hiermee laten
we zien dat de draad-algebra een geschikte procesalgebräısche theorie is voor de studie
van veiligheidseigenschappen in ongestructureer de en meerdradige programmeer-
talen. Eerder werk aan veiligheid voor sequentiële en meerdradige programmeertalen
kan in dit kader dus opnieuw worden bezien.

Hoofdstuk 8 laat zien dat de programma-algebra een wiskundig en systematisch
kader verschaft voor redeneringen over correctheid en equivalentie van algoritmen
en trans formatieregels voor goto-verwijdering [45]. Wij beschouwen drie bestaande
klassen van goto-verwijdering: verwijdering van alle goto’s met gebruik van extra
variabelen, verwijdering van alle goto’s zonder extra variabelen, en verwijdering van
bepaalde typen goto’s voor kennisextractie. In de eerste klasse bewijzen we de correc-
theid van het algoritme van Cooper [41] onder gedragsequivalentie met betrekking tot
extra boolese variabelen. Deze equivalentie is fijner dan de invoer-uitvoer-equivalentie
die gebruikt wordt in [41] en andere technieken [33, 41, 76, 3, 39, 72] voor goto-
verwijdering met gebruik van extra variabelen. We merken op dat een soortgelijk
resultaat kan worden bereikt voor de benadering van Böhm en Jacopini [33]. In
de tweede klasse moet voor de welbekende benaderingen van Peterson et al. [80]
en Ramshaw [83] worden voorondersteld dat de programma’s reducibel zijn of vrij
van kop-kop-kruisingen. Voor de verwijdering van alle gotos zonder invoering van
extra variabelen stellen we daarom een techniek voor om kop-kop-kruisingen in pro-
gramma’s kwijt te raken, en vervolgens gebruiken we de resultaten van Peterson et al.
en Ramshaw. We laten zien dat ons algoritme correct is onder gedragsequivalentie,
een relatie analoog aan de padequivalentie die gebruikt wordt in [80, 83]. En tenslotte,
in de derde klasse, het verwijderen van bepaalde typen goto’s met het doel kennis te
extraheren die ligt ingebed in geërfde programmatuur, geven we correctheidsbewijzen
voor enkele transformatieregels voor het herstructureren van Cobol-programma’s in
een realistische toepassing [96]. We suggereren ook een automatiseerbare methode
om correctheid te bewijzen voor alle transformatieregels in [96]. Om kort te gaan,
we hebben laten zien dat goto’s geëlimineerd kunnen worden met de aanpak van de
programma-algebra; en we hebben de goto-verwijdering met wiskundige strengheid
uitgelegd.
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[41] D.C. Cooper. Böhm and Jacopini’s reduction of flow charts. Comm. ACM, 10:463–473,
1967.

[42] K. Cremer, A. Marburger, and B. Westfechtel. Graph-based tools for re-engineering.
Software Maintenance and Evolution, 14(4):257–292, 2002.

[43] M. Dam. Decidability and proof systems for language-based noninterference relations.
In POPL’06, pages 67–78, 2006.

[44] D.E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–
243, 1976.



202 Bibliography

[45] E.W. Dijkstra. Goto statement considered harmful. Comm. ACM, 11:147–148, 1968.

[46] R. Engelking. General Topology. Polish Scientific Publishers, 1977.

[47] R. Focardi and R. Gorrieri. A classification of security properties for process algebras.
J. of Computer Security, 3(1):5–33, 1995.

[48] R. Focardi and R. Gorrieri. Automatic compositional verification of some security prop-
erties for process algebras. In T. Margaria and B. Steffen, editors, Proc. of TACA’96,
volume 1055 of LNCS, pages 111–130, 1996.

[49] R. Focardi and R. Gorrieri. The compositional security checker: A tool for the verifi-
cation of information flow security properties. IEEE Transactions on Software Engi-
neering, 23(9):550–571, 1997.

[50] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-based and process calculi
security. In FOSSACS’05, Lecture Notes in Computer Science. Springer-Verlag, 2005.

[51] R.J. van Glabbeek. What is branching time semantics and why to use it? Bulletin of
the EATCS, 53:190–198, 1994.

[52] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43:555–600, 1996.

[53] J. Goguen and J. Meseguer. Secure policies and security models. In IEEE Symp. on
Security and Privacy, pages 11–20, 1982.

[54] J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. In M.S. Paterson, editor, ICALP 90, volume 443 of Lecture
Notes in Computer Science, pages 626–638. Springer-Verlag, 1990.

[55] D. Harel. On Folk theorem. Comm. ACM, 23:379–389, 1980.

[56] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF-Reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

[57] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137–161, 1985.

[58] C. Jones. Estimating Software Costs. McGraw-Hill: New York, 1998.

[59] W.A. Kirk and B. Sims. Handbook of Metric Fixed Point Theory. Kluwer Academic,
London, 2001.

[60] P. Klint. Meta-environment for generating program environments. ACM Transactions
on Software Engineering and Methodology, 2(2):176–201, 1993.

[61] D.E. Knuth. Structured programming with go to statements. Computing Surveys,
6:261–301, 1974.

[62] D.E. Knuth and R.W. Floyd. Notes on avoiding goto statements. Inform. Processing
Letters, 1:23–31, 1971.



Bibliography 203

[63] P.C. Kocher. Timing attacks on implementations on Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO’96, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag, 1996.

[64] S.R. Kosaraju. Analysis of structured programs. J. of Computer and Systems Sciences,
9:232–255, 1974.
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