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1. Introduction

The celebrated AdS/CFT correspondence [1, 2] has promoted the solution of string theory

in Anti-de Sitter (AdS) spaces to one of the central problems of modern mathematical

physics. Progress in this direction requires to construct new types of quantum field theories

with internal Lie superalgebra symmetries. The precise model to be considered depends on

the particular approach that is employed. Recent investigations have been based on certain

gauge fixed versions of the Green-Schwarz superstring [3 – 8], the pure spinor formalism [9 –

12] and the hybrid formalism [13, 14].

Without much further comment on the precise relation with string theory (see some

remarks below, however), we shall turn our attention to a particular class of quantum

theories with internal supersymmetries, namely to non-linear sigma models on supergroups.

They are characterized by the following simple action

Sf,k[S] = − 1

2πf2

∫

Σ
d2z str

(

S−1∂SS−1∂̄S
)

− k

12π

∫

Σ
d−1str

(

(

S−1dS
)3

)

(1.1)

with a suitably normalized supertrace str. Here, S is a map from the world-sheet Σ to

some supergroup G. We have weighted the standard kinetic term with a coupling constant

f2 and also added a topological Wess-Zumino (WZ) term with coefficient k. For sigma
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models on bosonic groups, quantum conformal invariance requires f−2 = k. Once we

have adjusted the coupling constants in this way, we are dealing with a Wess-Zumino-

Novikov-Witten (WZNW) theory which can be solved using the algebraic techniques of

2-dimensional conformal field theory, exploiting the infinite dimensional current algebra

symmetry of the WZNW model.

It is one of the intriguing features of certain supersymmetric target spaces that the

requirement of quantum conformal invariance may not impose any restriction on f−2, see

e.g. [13, 15 – 17]. This happens whenever the supergroup G has vanishing dual Coxeter

number. The latter condition is satisfied e.g. for the superconformal groups PSL(N|N)

that appear in the AdS/CFT correspondence, but also for OSP(2N+2|N) and D(2, 1;α).

In these cases, the action (1.1) gives rise to a continuous family of conformal quantum

field theories. All models share the same global target space symmetries. On the other

hand, the WZ point with f−2 = k is still distinguished by an enhancement of world-sheet

symmetries. For generic values of f , one only expects to find a few chiral higher spin fields

in addition to the Virasoro symmetry that comes with conformal invariance (see [15] for

details). Whatever the precise chiral symmetry is, it will almost certainly not suffice for

a full algebraic solution of generic supergroup sigma models. This insight has lead many

scientists working in the field to discard conformal field theory techniques and to turn to

other methods in integrable systems, such as the Bethe-Ansatz and generalizations thereof.

Though ultimately, computations in superspace sigma models may involve a variety of

integrable techniques (see e.g. [18 – 29] for an incomplete collection of recent relevant ideas,

a few results and many further references, in particular to the earlier literature), it seems

to us that the real potential of conformal field theory methods has not been explored with

sufficient care. In fact, we shall see below that a combination of algebraic techniques with

conformal perturbation theory can provide powerful new results going far beyond the WZ

point. To be more precise, we propose to consider the sigma models (1.1) as deformations

of a WZNW model,

Sf,k[S] = SWZNW
k [S] − λ

2π

∫

H
d2z str

(

S−1∂SS−1∂̄S
)

= SWZNW
k [S] + Sλ[S] . (1.2)

The deformation parameter λ is related to k and f through λ = f−2 − k. For reasons

to be explained below, we shall often refer to this deformation of the WZNW model as a

“RR-deformation”. Note, however, that on the level of sigma models it simply changes the

overall scale factor of the metric while leaving the magnetic background field invariant. Our

approach is then to study the sigma model through conformal perturbation theory around

the WZ point. In this note we restrict our attention to the simplest objects, namely to

partition functions, leaving investigations of correlators etc. as an interesting problem for

future research.

In order to explain our strategy, let us briefly look at simple torus compactifications.

Suppose we are interested e.g. in the spectrum of strings on a 1-dimensional circle with

arbitrary compactification radius r. At generic points in the 1-dimensional moduli space,

the chiral symmetry of the model is generated by the U(1) current i∂X and its anti-

holomorphic counterpart. With respect to these currents, the theory is not rational. But
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there exist some distinguished points in the moduli space at which the chiral symmetry is

enhanced and the theory becomes rational once the additional chiral fields are taken into

account. In particular, the moduli space contains one point, known as the self-dual radius

r0 = rSD, where the symmetry gets enhanced to an sl(2) current algebra at level k = 1.

At this special radius, all spectra can be composed from a finite number of sectors. With

later generalizations in mind, we consider the partition function on a strip or half-plane

with Neumann boundary conditions which is simply given by the vacuum character of the

sl(2) current algebra1

Zr0
N (q) = χ

su(2)
0,k=1 = ϑ3(q

2)/η(q) =
1

η(q)

∑

n∈Z

qn2
. (1.3)

Other points in the moduli space may be reached through a deformation with the per-

turbation Sγ = − γ
2π r2

0

∫

d2z∂X∂̄X. The perturbation series for the conformal dimensions

of boundary fields can be summed up to all orders in perturbation theory. Our partition

function (1.3) gets deformed to

Zr
N (q) =

1

η(q)

∑

n∈Z

q
n2

1+γ . (1.4)

The result corresponds to the spectrum of a point-like brane on a circle with radius r =

r0
√

1 + γ. In the perturbative treatment, the factor 1/(1 + γ) = 1 − γ/(1 + γ) arises from

a geometric series as explained e.g. in [31]. Bulk spectra can also be computed, either

directly or through modular transformation of the boundary partition function. Let us

point out that the perturbative analysis is insensitive to the fact that the theory ceases to

be rational once we move away from the self-dual radius. Of course, in this particular case

the U(1) current algebra symmetry is sufficiently large for an algebraic construction of the

theory at generic radii and such a construction is about as difficult as it is at the self-dual

point. Hence, there is no good motivation to pass through a perturbative construction.

But there exists a better example to illustrate the enormous potential conformal per-

turbation theory may possess. It is provided by the 1-dimensional boundary sine-Gordon

theory. In this model, a periodic potential is switched on along the boundary of a free

field theory. As a consequence, the spectrum of boundary dimension develops gaps which

can grow with the strength λ of the perturbation. Eventually, only a point-like spectrum

remains. Given the complexity of the spectrum at intermediate values of λ, one might

suspect that its precise form is very difficult to determine. Yet, the boundary partition

function can be calculated rather easily in perturbation theory [32, 30, 33], for any value of

the deformation parameter λ. In this example, the boundary potential reduces the chiral

symmetry to the Virasoro algebra. In principle, the latter is still sufficiently large to allow

for a standard CFT construction of the boundary sine-Gordon theory, but such an analysis

is of the same level of difficulty as the solution of Liouville theory and it has never been

carried out. Hence, the example of boundary sine-Gordon theory supports our claim that

1At the self-dual radius there is no fundamental difference between a D-instanton and an extended brane

since they can can be rotated continuously into the other, see e.g. [30].
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Figure 1: The influence of NSNS and RR potentials on strings in the bulk and on an instantonic

brane.

in some situations, conformal perturbation theory provides an easy route to complicated

results that seem (almost) inaccessible through the usual algebraic methods. A similar

picture will emerge from our study of boundary spectra on supergroup σ-models.

Even though most of the ideas and technical steps we are about to explain hold quite

generally, we shall carry them out in a particular example, namely for the supergroup

PSL(2|2). This allows our presentation to be very concrete. Furthermore, our results

apply to string theory in AdS3 × S3 whose solution has been reduced to the construction

of sigma models on the supergroup PSL(2|2) through the hybrid approach developed by

Berkovits, Vafa and Witten [13]. In this context, the WZNW model corresponds to a

background with pure NSNS 3-form flux. Switching on an additional RR field is modelled

by the marginal perturbation with Sλ which is why we often refer to this term as RR-

deformation. Sigma models on PSL(2|2) and closely related target superspaces have been

investigated by several groups [13, 15, 34 – 36]. For our analysis, the studies by Bershadsky

et al. have been particularly useful.

With the example of strings in AdS3 in mind, we may re-evaluate our optimistic

hopes to compute exact spectra through perturbation theory. Let us think of the target

space as a 3-dimensional solid cylinder. Since AdS3 is curved, the corresponding sigma

model is interacting. At the WZ point, the interaction falls off exponentially towards the

boundary of the cylinder. This has several effects on the bulk spectrum. In particular, the

spectrum is continuous and there exist so-called long string states that can stretch along

the boundary [37]. The RR-deformation now adds another term to the interaction which

increases exponentially near the boundary. Obviously, such a new term must have drastic

effects on the spectrum. Certainly, long string states disappear. In addition, the spectrum

is expected to become discrete since closed strings are now moving in a box between the

two exponential walls. The dramatic effects of the RR-deformation may raise doubts that

perturbative computations could be successfully performed. And indeed, it is most likely

true that the bulk spectrum of the theory is not amenable to a perturbative expansion in λ.

But the situation changes if we consider the boundary spectrum [38, 39] on a D-instanton
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instead. Suppose, the instanton has been placed at the center of the solid cylinder. Open

strings that end on such a D-instanton must be very highly excited in order to penetrate

into the region close to the boundary where the RR-background flux can be felt. Therefore

a D-instanton spectrum might be accessible through a perturbative computation. Below

we shall see that this intuition is indeed correct. In fact, we are able to determine the exact

spectrum of a D-instanton for any value of λ. The same calculation fails at one step when

we try to apply it to the bulk or to spectra on non-compact branes.

Our main new result is a complete computation of the boundary spectrum for max-

imally symmetric, point-like branes in sigma models on the supergroup PSL(2|2). The

partition function of such a system was argued in [40] to be of the general form

Z
PSL(2|2)
DI;λ (z1, z2; q) = strH

(

qL0−
c
24 z

K0
1

1 z
K0

2
2

)

(1.5)

=
∑

j1 6=j2

aλ
j1j2(q)χ[j1,j2](z1, z2) +

∑

j

bλ
j (q)χP[j](z1, z2) .

Here, K0
1 and K0

2 are two Cartan elements in the bosonic subalgebra sl(2)⊕sl(2) of psl(2|2)
and we have denoted the characters of the contributing finite dimensional psl(2|2) repre-

sentations by χ (see appendix A for explicit formulas). The branching functions bj and

aj1,j2 at the WZ point λ = 0 were also determined in [40]. Our aim in this work is to show

that the branching functions bj are independent of the deformation parameter λ while

aλ
j1,j2(q) = q

−C
j1,j2
2

λ
k(k+λ) aλ=0

j1,j2(q) with Cj1,j2
2 = j2(j2 + 1) − j1(j1 + 1) . (1.6)

Let us already point out that the dependence of the conformal weights on the deformation

parameter λ is very similar to the one found in free field theory (see eq. (1.4)). We shall

see that this is due to some peculiar features of the Lie superalgebra psl(2|2).
Our formulas (1.5) and (1.6) contain a surprising wealth of information. Let us unravel

some of that through a few selected cases. Consider, for example, the boundary current

Jµ(x) where µ runs through some 14-dimensional basis of psl(2|2). Under the action of the

global psl(2|2), the currents transform in the adjoint representation which is part of the

atypical module P[0] (see appendix A). Since the branching functions bj are independent

of λ, states transforming in any of the P[j] do not receive corrections. Hence, the currents

Jµ continue to possess dimension h = 1, as expected. Of course, they no longer satisfy

the relations of an affine Kac-Moody algebra. Things become more interesting once we

proceed to products JµJν of currents. These form a 196-dimensional subspace of fields

transforming in the 48-dimensional representations [0, 1], [1, 0] and various subspaces of

P[j]. Hence, under the deformation, the weight of 96 fields gets lifted while 100 fields

remain at conformal weight h = 2.

Formula (1.6) passes a few interesting test. To begin with, we observe that the energy

shift is positive for states with sufficiently large momentum j1 in the radial direction of

AdS3. This is in line with our geometric intuition: Only states that are highly excited in the

radial direction can penetrate to the region near the boundary of AdS3 where their energy

gets lifted due to the RR perturbation. It is also interesting to evaluate our formula in the

semi-classical regime, i.e. for large values of the level k. Inserting the relation λ = f−2 − k

– 5 –
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in (1.6) and sending k to infinity, the spectrum of boundary conformal weights is seen

to coincide with the spectrum of f2C2 up to the usual integer shifts. The eigenvalues of

f2C2 may be interpreted as energies for a particle moving on PSL(2|2). Hence, at large

level k and modulo integers, the spectrum of the sigma model on PSL(2|2) agrees with the

minisuperspace approximation, as it is supposed to. A much more detailed investigation

of the approach to minisuperspace spectra for supersphere models is included in a very

interesting upcoming paper by Candu and Saleur [41].

The plan of this work is as follows. In the next section we collect some background

material, partly from our earlier paper [40]. This includes a careful discussion of maximally

symmetric, point-like branes in the WZNW model on PSL(2|2). The ones that are relevant

for our analysis are located at the group unit e of the bosonic base and they extend in all

eight fermionic directions. The associated boundary partition function is discussed in

section 2.2 along with more details on the Casimir decomposition (1.5) at the WZ point.

Section 2.3 contains a construction of the perturbing field in terms of currents. Most

of our new results are obtained in section 3 which begins with a few comments on 2-

point functions. Section 3.2 lists several observations concerning the perturbative series

generated by Sλ. We shall show that the RR-deformation, while being non-abelian and

non-constant on PSL(2|2) in general, simplifies drastically in the evaluation of psl(2|2)
invariant quantities, such as conformal weights. In fact, the RR-deformation turns out to

be quasi-abelian, i.e. its combinatorics is no more complex than it is for constant shifts of

the closed string background fields in a flat target space. There remains a mixing problem,

however, that we can only overcome when the general results are applied to boundary

conformal weights of a point-like D-instanton. This is explained in section 3.3 before we

combine all our results into an exact computation of boundary weights, following closely the

steps of a similar computation in [31]. Our concluding section includes extensive comments

on possible generalizations, applications and consequences.

2. Collection of background material

The purpose of the following section is mainly to provide the background material that

our subsequent perturbative evaluation of boundary partition functions is based upon.

In the first part we gear up to explain the structure of the boundary partition function

we are about to deform. We start with a few comments on brane geometries in WZNW

models on PSL(2|2), extending our previous analysis of branes in the GL(1|1) WZNW

model [42].2 One of the instantonic D-branes we find, possesses exactly the spectrum that

was anticipated in [40]. The full field theory partition function and its so-called Casimir

decomposition is reviewed in the second subsection. We then turn to a more detailed

analysis of the perturbing field, mostly following our previous discussion in [40]. Most of

the results we describe below are not new and the impatient or experienced reader may

skip forward to section 3, at least on first reading.

2This first subsection is based on unpublished notes of TC on branes in supergroup WZNW models.
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2.1 Branes at the WZ point: gluing conditions and geometry

As we shall explain in great detail below, the success of our subsequent exact computation

of a boundary partition function for the sigma model on PSL(2|2) hinges on three key

properties of the imposed boundary condition. To begin with, it (i) must preserve some

combination of left and right regular psl(2|2) transformations. At the WZ point, maximally

symmetric boundary conditions are associated with so-called twisted conjugacy classes

(see [44] and [42] for the supersymmetric case). Explicit formulas for the deformation of

the partition function can only be found if (ii) the corresponding twisted conjugacy class

is point-like localized on the bosonic base and (iii) it is delocalized in all the fermionic

directions. Later we shall rephrase these conditions as inherent features of the boundary

conformal field theory. Our aim here is to describe a boundary condition which meets all

these requirements and to determine the relevant boundary partition function at the WZ

point.

In the WZNW model, the global symmetries of the PSL(2|2) sigma model are generated

by the zero modes of chiral currents

J(z) := −k∂SS−1 , J̄(z̄) := kS−1∂̄S . (2.1)

A boundary WZNW model is scale invariant if the Sugawara stress tensor obeys T (z) =

T̄ (z̄) all along the boundary z = z̄. Such a conformal boundary theory preserves a global

psl(2|2) symmetry provided that the currents satisfy the following gluing condition

Jµ(z) = ΩJ̄µ(z̄) for z = z̄ . (2.2)

Here, Ω is a metric preserving automorphism of the Lie superalgebra. It determines the

precise combination J0 + ΩJ̄0 of global psl(2|2) charges that remains unbroken by the

boundary condition. In the case of bosonic groups, the geometry underlying maximally

symmetric boundary conditions in WZNW models was unravelled in [44] (see also [45, 46]

for various generalizations and [47] for a review). There it was shown that a boundary

condition in which left and right moving currents are identified with a trivial gluing auto-

morphism Ω = id correspond to branes whose world-volume is localized along conjugacy

classes. When Ω is nontrivial, the relevant geometric objects are twisted conjugacy classes

CΩ
u = {h ∈ G |h = Ω(g)ug−1 }

where u is an element in G and we have lifted the automorphism Ω from the Lie algebra

to the group. As explained in [42], the derivation of [44] carries over to WZNW models on

supergroups (see also [48] for a general analysis).

Having outlined the link between boundary conditions and conjugacy classes we are

now searching for a pair (u,Ω) such that CΩ
u meets the requirements (ii) and (iii) we have

listed in the introductory paragraph to this subsection. We shall not conduct our search

systematically. Instead, let us simply argue that the choice u = e and Ω(X) = (−1)|X|X

does the job. The corresponding twisted conjugacy class CΩ
u is localized at the unit element

e of the bosonic group and it extends in all fermionic directions, i.e. along those tangent

– 7 –
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vectors X ∈ psl(2|2) which have degree |X| = 1. It is easy to see that Ω(X) = (−1)|X|X

is consistent with the Lie superalgebra structure and the metric. Hence, it extends to a

gluing automorphism on the entire current algebra. Moreover, parametrizing elements g of

the supergroup in the form g = exp(F ) exp(B) where F and B are any linear combination

of odd and even elements, respectively, we find

CΩ
u = {h ∈ G |h = Ω(eF eB)e−Be−F = e−2F } .

Indeed, the bosonic coordinates have dropped out and we remain with a superconjugacy

class of superdimension 0|8 which extends merely along the 8 fermionic directions. We

conclude that the space of functions on the corresponding brane is given by

f = f(ηa, η̄b) (2.3)

where η1, . . . , η4 and their bared counterparts are four fermionic coordinates that parame-

trize the odd generators F . The relevant action of psl(2|2) on this 28-dimensional space

can be spelled out explicitly. To this end, let us consider the special parametrization

h = Ω(eηeη̄)e−η̄e−η = e−ηe−2η̄e−η

for elements h in the twisted conjugacy class CΩ
u . Here η = ηaSa

2 and η̄ = η̄aSa
1 are

constructed with the help of the fermionic generators Sa
α of psl(2|2) (see appendix A).

Our parametrization is particularly adapted to computations on the Ω-twisted conjugacy

classes. In particular, the twisted adjoint action now reads

Aa
1 = −∂̄a +

1

2
ǫabcdηb(ηc∂d − ηd∂c) + ǫabcdηb(η̄c∂̄d − η̄d∂̄c) ,

Aab = −iηa∂b + iηb∂a − iη̄a∂̄b + iη̄b∂̄a , Aa
2 = ∂a .

(2.4)

Under the twisted adjoint action AX , the 28-dimensional space of ground states (2.3) may

be seen to transform according to the representation

B(0, 0) := Indg

g(0)V(0,0) = U(g) ⊗
g(0) V(0,0)

∼= P[0] ⊕ [1, 0] ⊕ [0, 1] .

Here, g
(0) denotes the bosonic subalgebra of the Lie superalgebra g = psl(2|2) and we

introduced V(0,0) for the trivial 1-dimensional representation of g
(0). According to general

mathematical results, the module B(0, 0) is projective. Hence, it is guaranteed to decom-

pose into a direct sum of projective modules. The corresponding decomposition is spelled

out on the right hand side. Here, the symbols [0, 1] and [1, 0] denote 48-dimensional irre-

ducible typical representations (long multiplets) of psl(2|2). These are generated from the

two 3-dimensional representations of sl(2) ⊕ sl(2) by the application of four fermionic gen-

erators. In addition, there appears the 160-dimensional projective cover P[0] of the trivial

representation [0]. It is an indecomposable representation that is built up from irreducible

atypicals (short multiplets) of psl(2|2) according to the following diagram

P[0] : [0] −→ 3[1/2] −→ 2[1] ⊕ 6[0] −→ 3[1/2] −→ [0] .

– 8 –
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This so-called composition series tells us that P[0] contains the trivial representation [0]

as a true subrepresentation. Its representation space is spanned by the unique invariant

element in P[0]. We call this subrepresentation [0] the socle of P[0]. At the other end of the

diagram, i.e. in the so-called head of P[0], we find another copy of [0]. It is associated with

the factor space of P[0] which is obtained if we divide the projective cover by its maximal

non-trivial subrepresentation. A brief summary of the representation theory of psl(2|2) is

provided in appendix A. Many more details can be found in [49, 40]. We advise readers

who are unfamiliar with indecomposable representations of Lie superalgebras to consult

those references or other mathematical literature.

2.2 Boundary partition function and its Casimir decomposition

After this brief discussion of brane geometry and the space of ground states, let us analyze

the excited states which arise through application of current algebra modes. By construc-

tion, these states transform in representations that emerge from a product of a projective

module with some power of the adjoint and which, by abstract mathematical results, can

be decomposed into projectives. Explicit formulas for the involved characters were pro-

vided in [40]. Since we do not need the details below, we refrain from reproducing these

formulas here. In [40] we also explained how sectors erected over projective modules can

be decomposed into representations of the Lie superalgebra psl(2|2). The result can be

expressed in the form

Z
PSL(2|2)
D0 (z1, z2; q) = χP[0](z1, z2; q) + χ[1,0](z1, z2; q) + χ[0,1](z1, z2; q)

=
∑

j1 6=j2

(

a
P[0]
j1j2

(q) + a
[1,0]
j1j2

(q) + a
[0,1]
j1j2

(q)
)

χ[j1,j2](z1, z2) (2.5)

+
∑

j

(

b
P[0]
j (q) + b

[1,0]
j (q) + b

[0,1]
j (q)

)

χP[j](z1, z2)

where χ[j1,j2] and χP[j] are supercharacters of the Lie superalgebra psl(2|2) (see appendix A

for explicit formulas). Formula (2.5) is known as the Casimir decomposition of the partition

function. The various branching coefficients aij and bj count how many times a projective

psl(2|2) multiplet appears on a given energy level. These numbers may be determined with

the help of the Racah-Speiser algorithm. A detailed explanation can be found in [40] along

with a few explicit expressions for the branching of the affine representation P̂[0]. Here

it suffices to recall that the lowest conformal weight h̟
j1,j2

among all the multiplets [j1, j2]

that are generated out of ground states in the representations ̟ ∼= P[0], [0, 1], [1, 0] satisfies

h̟
j1,j2 = C2(̟)/k + n(j1, j2) with n(j1, j2) ∈ N

where we denoted the eigenvalue of the quadratic Casimir element in the representation

̟ by C2(̟).3 The same formula with j1 = j2 applies to the projective covers P[j].

Note that at the WZ point the spectrum has huge degeneracies because many different

representations of psl(2|2) can appear on the same level of the state space. We shall see

how the RR-deformation partially removes this degeneracy.

3The Casimir element is non-diagonalizable in P [0]. Its generalized eigenfunctions possess vanishing

eigenvalue.

– 9 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
4

2.3 The RR-perturbation and its exact marginalilty

The most important actress of this work certainly is the perturbing field Φ that generates

the deformation away from the WZ point. So, it is important to fully appreciate its

structure and properties. The following discussion is mostly borrowed from our paper [40]

which in turn was based upon [15, 13]. The deformation we are interested in is generated

by the field

Φ(z, z̄) = : str
(

S−1∂SS−1∂̄S
)

: = − 1

k2
: Jµ(z)φµν(z, z̄) J̄ν(z̄) : (2.6)

The second formulation involves the left and right invariant (anti-)holomorphic currents

Jµ(z) and J̄ν(z̄) along with some degenerate primary fields φµν(z, z̄) that transform in the

(atypical) adjoint representation [1/2] of psl(2|2), i.e.

Jµ(z)φνρ(w, w̄) =
ifµ

ν
σ

z − w
φσρ(w, w̄) + . . . , (2.7)

J̄µ(z̄)φνρ(w, w̄) =
ifµσ

ρ

z̄ − w̄
φνσ(w, w̄) + . . . . (2.8)

The vertex operators φµν possess zero conformal weight, as all vertex operators that are

associated with the atypical sector of the theory. Hence, the operator Φ is marginal. By

construction, Φ is also invariant with respect to the global left and right psl(2|2) actions.

We wish to point out that a similar invariant field Φ can be built for WZNW models

on any group or super-group. It is marginal if and only if the vertex operator φµν for the

adjoint representation has conformal weight h = 0. This is the case whenever the quadratic

Casimir vanishes in the adjoint representation, or, put differently, whenever the symmetry

algebra has vanishing dual Coxeter number.

According to [15], the field Φ generates a truly marginal perturbation SΦ
λ of the WZNW

model. As we have just reviewed, the field Φ has conformal weights h = h̄ = 1 but in

principle its dimension could change when we perturb the theory, i.e. Φ could be marginally

relevant. This is not the case. We shall establish true marginality of Φ in section 3.2

where we will actually prove a more general statement: The conformal weight of any

psl(2|2) × psl(2|2) invariant bulk field and any psl(2|2) invariant boundary field remains

unaltered upon perturbation with Φ.

3. Deformation of the boundary partition function

With the proper preparation from the previous section we now come to the central aim of

this work: To compute the conformal weights of boundary fields on our point-like brane

as we go beyond the WZ point. After a few remarks on the general structure of 2-point

functions we shall discuss several remarkable features of the RR-deformation for conformal

weights. These lead to drastic simplifications of the relevant perturbative expansions. In

fact, their combinatorics is no more complex than the combinatorics of radius deformations

in torus compactifications! There remains a mixing problem, however, that we can only

overcome for the boundary spectra of point-like localized branes. The relevant argument
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is presented in the third subsection. Finally, all the pieces are collected and the conformal

weights of boundary fields are computed explicitly, following a closely related computation

in [31].

3.1 The boundary 2-point function

A boundary partition function stores all information about the conformal weights of bound-

ary fields. The latter are also encoded in the boundary 2-point functions which is the place

from which we are going to read them off. In logarithmic conformal field theories, such as

the WZNW model on PSL(2|2), the 2-point functions contains additional data that we are

not interested in and, in fact, cannot compute perturbatively. Since the reader may not

be so familiar with these issues, we shall briefly discuss the general structure of 2-point

functions in RR-deformations of the WZNW model on PSL(2|2).
Let us recall that our boundary conditions were chosen such that they preserve a global

psl(2|2) symmetry. This remains unbroken by the RR-deformation and hence all quantities

in the deformed theory are organized in psl(2|2) multiplets. We shall label the boundary

fields by Ψπ(x) with a superscript π that refers to the psl(2|2) representation the field

transforms in. As we have reviewed above, boundary fields on our instantonic brane can

only transform in projective modules π of psl(2|2). These can be either typical long multi-

plets or the projective covers of atypical short multiplets. In the following discussion we do

not have to distinguish between these two possibilities. The form of the 2-point functions

is strongly constrained by the usual Ward identities expressing conformal invariance and

global psl(2|2) symmetry,

〈Ψπ1(x1)Ψπ2(x2) 〉λ =
1

(x1 − x2)∆1(λ)+∆2(λ)
C12(λ) . (3.1)

Here, the symbol C12(λ) denotes an intertwiner from the carrier space of the tensor prod-

uct π1 ⊗ π2 to the trivial representation. Let us note in passing that the space of such

intertwiners may be multi-dimensional. The objects ∆ = ∆(Ψπ) act on the carrier space of

the representation π. They describe the action of L0 on the field multiplets Ψπ. Therefore,

they clearly commute with the action of psl(2|2). We may split ∆ into a term that is

proportional to the identity and a nil-potent contribution,

∆(λ) = h(λ) · 1π + δ(λ)

where some finite power of δ vanishes. If the nilpotent part δ is non-zero for one of the fields

Ψπ1 or Ψπ2 then the 2-point function contains logarithmic singularities. It is important to

stress that all the quantities we have introduced, namely the constants h and the maps

δ, C12 depend on the deformation parameter λ. For reasons that will soon become clear,

we are not able to say anything useful about the λ-dependence of δ and C12. On the

other hand, we shall compute h(λ) exactly, to all orders in perturbation theory. For a field

Ψ = Ψπ, the result is

hΨ(λ) = hΨ(0) − Cπ
2

k

λ

k + λ
= hΨ(0) − Cπ

2 /k + Cπ
2 f2 . (3.2)

– 11 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
4

Here, Cπ
2 is the (generalized) eigenvalue of the quadratic Casimir in the representation

π, i.e. Cπ
2 = j2(j2 + 1) − j1(j1 + 1) for π = [j1, j2] and Cπ

2 = 0 whenever π is one of

the projective covers P[j]. Note that the shift of the conformal weight only depends

on the transformation behaviour of Ψ = Ψπ under the action of psl(2|2). The simple

result (3.2) is rather remarkable. Let us stress again that the numbers h(λ) provide exactly

the information that is encoded in the boundary partition function. In particular, the trace

over state space is blind to any nilpotent terms δ(λ) so that our ignorance concerning their

λ dependence does not really matter as long as we don’t attempt to go beyond computing

partition functions.

There is one more comment that might be worth adding. As we have seen in sec-

tion 2.3 already, logarithmic conformal field theories contain many vanishing correlators.

In particular, suppose that Ψ1 and Ψ2 are two fields that are associated with states in the

socle of a projective cover. Then their 2-point function is bound to vanish by the same

arguments we explained in section 2.3. A related observation was made by Bershadsky et

al. in [15]. The authors of that work then went on to conclude that the conformal weights

of fields in atypical representations could not be read off from their 2-point functions. We

see now that this conclusion is incorrect. For each field in an atypical multiplet there exists

some field such that the associated 2-point function is non-zero. If we pick Ψ1 from the

socle of a projective cover, for instance, then we can find an appropriate field Ψ2 in the

head of the dual projective cover.

3.2 Perturbative expansion for conformal weights

The perturbative computation of hΨ(λ) may seem like a daunting task at first, yet alone

because of the very involved combinatorics of perturbation theory in curved backgrounds.

In this subsection we shall list three observations that will allow us to drop most of the terms

in the expansion for conformal weights. In fact, the terms that can safely be ignored are

precisely the ones that arise from the curvature of PSL(2|2). Such simplifications, however,

only apply to computations of psl(2|2) invariant quantities such as conformal weights etc.

The reader is warned never to use the rules we are about to derive for computations of

other structure constants.

All observations made in this subsection are based on a simple mathematical result

that was first formulated and exploited in the work of Bershadsky et. al. [15]. Consider

some psl(2|2) invariant A and suppose that A may be written as A = Cabcf
abc where

fabc are the structure constants of psl(2|2) and Cabc are some numbers. Then A can be

shown to vanish, i.e. A = 0. Since the supporting argument provided in [15] lacks a bit of

mathematical precision, we have included a full proof and further discussion in appendix B

of this paper. Bershadsky and collaborators applied the vanishing of A to a perturbative

construction of the psl(2|2) invariant β-function. We shall exploit the same result in our

computation of the numbers hΨ which are psl(2|2) invariants as well. A similar vanishing

criterion is not satisfied for intertwiners ∆ between two indecomposables or for maps C

from the tensor product of indecomposables to the trivial representation (see also further

comments in appendix B). Therefore, we are not able to compute the full 2-point function

of boundary fields, as mentioned before.
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Let us now apply this mathematical lemma to our computation of conformal weights.

The perturbative treatment we have in mind requires to evaluate correlators with insertions

of the perturbing field Φ. Recall that Φ was composed from the vertex operators φµν and

currents Jµ, J̄ν . An initial step is to remove all the current insertions through current

algebra Ward identities. In the process, pairs of currents get contracted using

Jµ(z)Jν(w) =
ifµν

σ

z − w
Jσ(w) +

kκµν

(z − w)2
+ . . . ∼ kκµν

(z − w)2
. (3.3)

The first equality is the usual operator product for psl(2|2) currents. Since we are only

interested in computing the invariants hΨ, we can drop all terms that involve the structure

constants f of the Lie superalgebra psl(2|2). This applies to the first term in the above

operator product which distinguishes the non-abelian currents from the abelian algebra of

flat target spaces. Here and in the following we shall use the symbol ∼ to mark equalities

that are true up to terms involving structure constants. In conclusion, we have seen that,

as far as the computation of conformal dimensions is concerned, we may neglect the non-

abelian nature of the currents Jµ. Obviously, this leads to first drastic simplifications of

the perturbative expansion.

Currents are not only contracted with other currents. They can also act on the vertex

operators φµν . The relevant operator product expansions have already been displayed in

eq. (2.7) when we first introduced φµν . With our new sensitivity for the appearance of

structure constants we notice immediately that these operator products are proportional

to f . Hence, we conclude

Jµ(z) φνρ(w, w̄) =
ifµ

ν
σ

z − w
φσρ(w, w̄) + . . . ∼ 0 . (3.4)

Consequently, we can simply ignore all terms in which a current acts on one of the vertex

operators φµν . In this respect, φµν does no longer behave like a vertex operator, but rather

mimics the behavior of a constant background field.

Of course, φµν still is a non-trivial field and it therefore has possibly singular operator

products with other fields in the theory. Such non-trivial operator products of the fields

φµν could threaten a successful computation of conformal dimension. Here is where a third

observation comes to our rescue. Note that shifts of the insertion point of the field φµν are

controlled by the following operator version of the Knizhnik-Zamohlodchikov equation

∂zφµν(z, z̄) =
i

k
fσµ

ρ : Jσ(z)φρν(z, z̄) : ∼ 0 . (3.5)

This means that in computations of invariants we can treat φµν as a function of con-

formal weight zero. Let us stress again that the operator products of φµν can certainly

contain singularities. Relation (3.5) only asserts that all singular terms may be dropped in

computations of conformal dimensions.

As a first application of the previous statements, let us come back to the claim we

formulated at the very end of section 2.3. Suppose we are given some bulk or boundary field

ϕ which is invariant under global psl(2|2) transformations. By this invariance assumption,

the first order poles in the operator products of currents with ϕ possess vanishing residue.
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Moreover, as we have just shown, the operator product of the fields φµν with ϕ is regular.

Consequently, there are no logarithmic singularities in the perturbative expansion for the

2-point function of ϕ and hence ϕ does not acquire any contribution to its anomalous

dimension upon perturbation with Φ. This is what we had anticipated in section 2.3. It

implies that the perturbation with Φ is truely marginal.

The rules (3.3) to (3.5) are the main results of this subsection. They will be employed at

the end of this section when we compute boundary conformal weights. Related observations

for the background field expansion of sigma models on PSL(N|N) were formulated in [15].

A successful computation of conformal weights requires one more important ingredient,

though, that is novel to our analysis. This is what we are going to address next.

3.3 Perturbation of boundary conformal weights

Our arguments up to this point have made no use of the fact that we were setting off to

compute conformal dimensions of boundary fields for a very particular boundary condition.

In fact, everything we have stated applies to whatever conformal dimension we would like

to compute, bulk or boundary. But there remains an issue that we cannot overcome in such

a general context. According to the results of the previous subsection our vertex operators

φµν behave like a matrix of functions rather than fields. This simplifies things immensely.

But even multiplication with a set of functions can be a rather involved operation which

we would have to diagonalize explicitly on field space before we could spell out conformal

dimensions. In other words, there still exists a potentially complicated mixing problem to

be solved. Here is where our special choice of boundary conditions comes in. As we shall

see, it is chosen such that we can effectively replace φµν by a constant. Thereby, the mixing

problem disappears.

While the reasoning to be detailed below is somewhat technical, the basic idea is rather

simple: Before the bulk field φµν can act on boundary fields, it must be restricted to the

world-volume of the brane. Since our brane is point-like localized at the group unit of

the bosonic base, the restriction of φµν contains no further dependence on the bosonic

coordinates and hence should have a rather simple action on boundary fields.

In order to make this geometric intuition more precise, let us look at the bulk-boundary

operator product expansion of the vertex operator φµν(z, z̄). As the world-sheet coordinate

approaches the point x on the boundary of the upper half-plane, we can re-expand the bulk

field in terms of operators Ψ(x) on the boundary. The leading terms of this expansion read

φµν(z, z̄) =
1

|z − z̄|2/k
C [1,0] Ψ[1,0](x) + CP[0] ΨP[0](x) + . . . . (3.6)

On the boundary, the field with smallest conformal weight is the multiplet Ψ[1,0] that is

associated with the ground states in the 48-dimensional typical representation [1, 0]. In

addition, there is one multiplet ΨP[0] of fields with vanishing conformal weight. All other

fields possess positive scaling dimension and we have not displayed them in the expansion.

The structure constants C [1,0] and CP[0] are largely determined by psl(2|2) symmetry.

Under the action of the unbroken global psl(2|2), the bulk multiplet φµν transforms in the
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2-fold twisted4 tensor product [1/2] ⊗Ω [1/2] of the adjoint representation. Consequently,

CP[0] intertwines between [1/2] ⊗Ω [1/2] and the projective cover P[0] etc.

Let us recall from the previous subsection that, in all computations of conformal di-

mensions, the bulk field φµν behaves like a set of functions on target space. Thereby, we

are allowed to drop all terms from the bulk boundary operator product (3.6) which contain

a non-trivial dependence on world-sheet coordinates, i.e.

φµν(z, z̄) ∼ CP[0] ΨP[0](x) . (3.7)

Here, ∼ has the same meaning as before, warning us that the relation (3.7) should only be

used in computations of conformal weights.

Further progress now requires to turn attention to the intertwiner CP[0] from the

twisted tensor product [1/2] ⊗Ω [1/2] to the projective cover P[0]. The precise structure

of [1/2] ⊗ [1/2] ∼= [1/2] ⊗Ω [1/2] has been determined in [49]. There, the tensor product

was shown to decompose into four indecomposable representations. These include the

typical multiplets [1, 0] and [0, 1] along with the trivial representations [0] and one atypical

indecomposable whose socle consists of a single adjoint [1/2]. The result implies that the

space of intertwiners from [1/2]⊗[1/2] to the projective cover P[0] is 1-dimensional. In fact,

the only non-trivial intertwiner CP[0] maps the invariant [0] in [1/2] ⊗Ω [1/2] to the socle

of P[0]. Transferred back to our bulk boundary operator product (3.7) we conclude that

only the socle of the boundary multiplet Ψ[0] can arise. Since the corresponding boundary

operator is the identity field, we conclude

φµν ∼ c0 (−1)|µ|κµν 1 . (3.8)

Here, we have used that every intertwiner from [1/2] ⊗Ω [1/2] to the trivial representation

[0] is related to the metric by (−1)|µ|κµν with |µ| = |Xµ| as before. Since the field φµ
ν

is a quantum analogue of the representation matrix Rad(g)µν and since we are evaluating

the latter at the unit element, g = e, we obviously have c0 = 1. Consequently, in all

computations of boundary conformal weights we are allowed to set φ ∼ (−1)|µ|κµν . Let us

stress that our arguments rely heavily on the fact that we analyze the boundary fields on

point-like branes. In particular, we used that there was no boundary field that transforms

in the atypical [1/2] representation.

Before we conclude this subsection let us briefly touch upon one issue that we have not

raised before. In a boundary conformal field theory, a truly marginal bulk deformation may

generate a a non-trivial boundary renormalization group flow. As discussed in detail in

e.g. [50] this happens if the deforming bulk field can excite non-trivial (marginally) relevant

boundary fields through the bulk-boundary operator product expansion. In fact, if such

terms appear, they give rise to a non-vanishing contribution to the beta function of the

corresponding boundary coupling. In our case, the phenomenon can be ruled out. In fact,

the possibly relevant beta functions are psl(2|2) invariants. Hence, their computation can

be based on the same simplified set of rules that we have derived for the calculation of

4All tensor products in this subsection are constructed with the action X → X⊗1+(−1)|X|1⊗X where

the second term is twisted by the gluing automorphism Ω
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conformal weights. But according to eqs. (3.8) and (3.3), Φ ∼ −2/(z− z̄)2 and hence there

appears no non-trivial relevant boundary field in the operator expansion of the perturbing

field near the boundary. Hence, our bulk deformation cannot generate a boundary flow,

just as e.g. in the case of Neumann or Dirichlet boundary conditions for the free bosonic

field (see [50] for a more extensive discussion).

3.4 Computation of boundary conformal weights

Let us now finally harvest the results of our careful analysis in the previous two subsec-

tions. As we have shown in the second subsection, the perturbation series for conformal

dimensions is identical to the one that appears in an abelian theory with constant back-

ground fields. Put differently, the currents Jµ and J̄ν behave like Jµ ≈ −i
√

k∂Xµ and

J̄ν ≈ i
√

k∂̄Xν in a theory of 14 free fields Xµ. Moreover, the matrix φµν can be treated

as if it was a constant, similar to the parameter γ we introduced in our brief discussion

of circle compactifications around eq. (1.3). Including our choices of normalization, the

precise relation is read off from

− λ

2π
Φ(z, z̄) =

λ

2πk2
: Jµ(z)φµν(z, z̄) J̄ν(z̄) : ∼ λ

2πk
φµν(x)∂Xµ∂̄Xν .

Here, we have used a lower case x in the argument of φ in order to stress that it behaves

like a function on target space. On the other hand, there is no dependence on the fields

Xµ. For our special choice of Ω, the gluing condition (2.2) mimics Dirichlet boundary

conditions for the bosons and Neumann boundary conditions for the fermions in free field

theory,

∂Xµ(z, z̄) = −(−1)|µ|∂̄Xµ(z, z̄) for z = z̄ .

Putting things together, our setup is essentially identical to the starting point of the pertur-

bative analysis in [31]. Hence, we can carry over all results from that paper and conclude

that the change of boundary conformal dimensions can be determined from an effective

perturbing bulk field of the form

Sλ −→ λ

2πk

∫

H
dzdz̄

(

1

k + (−1)F λφ

) ρ

µ

φρνJ
µ(z)J̄ν(z̄) (3.9)

where H is the upper half-plane and we are no longer allowed to contract currents among

each other or with the matrix valued fields φ = (φµν). The matrix (−1)F is defined

by (−1)Fµν = (−1)|µ|κµν . To leading order, the effective perturbation (3.9) agrees with

the original perturbing term. Higher order contributions are encoded in a factor k/(k +

λφ(−1)F ) that resembles the familiar 1/(1−γ) in the circle compactification (see discussion

after eq. 1.3). The signs in the denominator take care of the gluing condition we imposed.

There are a few remarks we would like to add. To begin with, note that there is no

need for any normal ordering in the previous formula, just as in free field theory with

constant background fields. Our effective perturbation (3.9) has rather limited validity,

though. While in [31] the effective perturbation was used to compute both the change of

conformal weights and of 3-point couplings, our entire derivation here was restricted to

conformal weights! So, the formula (3.9) for the effective interaction should never be used
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in computations of structure constants. Let us finally point out that for the time being

we only assumed that the left and right moving currents satisfy the gluing condition (2.2).

Therefore, our result holds for all branes of this gluing type, including those cases in which

the brane extends along some of the bosonic directions.

In the final step we specialize now to the instantonic brane that is located at the unit

element e of the bosonic base. Using our results from the previous subsection we may then

replace the functions φµν by constants, i.e. we insert φ = (−1)F 1 into the formula (3.9),

Sλ −→ λ

2πk

∫

H
dzdz̄

(

1

k + λ

)

Jµ(z)(−1)|µ|J̄µ(z̄) . (3.10)

The change of the boundary conformal weights is determined by the logarithmic divergence

in the regularized 2-point function which in turn arises from the simple poles of the operator

products between the effective perturbing field and the boundary fields Ψπ. With the usual

normalizations, the resulting shift δλh of conformal weights becomes

δλh(Ψπ) = −2π

(

λ

2πk

1

k + λ
π(JµJµ)

)

= − λ

k(k + λ)
Cπ

2 .

Note that the factor (−1)|µ| in the effective perturbation is absorbed when we relate the

anti-holomorphic current J̄µ with the boundary value of the holomorphic current Jµ. As

a result, we have established the anticipated formula (3.2).

4. Conclusions and outlook

In this note we computed the full spectrum on a point-like brane in sigma models with

target space PSL(2|2). The result was obtained by summing explicitly the perturbation

series that is generated by the RR-deformation Sλ. A non-vanishing topological WZ term

was required in our analysis to guarantee that we could construct the spectrum directly at

one point of the moduli space. We believe that this is merely a technical condition that can

be overcome, at least in many examples (see next paragraph). A very decisive element was

to focus on invariants of a Lie superalgebra to which the vanishing lemma (see appendix B)

applies. This leaves ample room for generalization to other supergroup and coset spaces

with psl(N|N) or osp(2N+2|2N) symmetry. As explained in section 3.2, the vanishing

lemma renders the perturbation series for conformal dimensions quasi-abelian. On the other

hand, the effective perturbing operator (3.9) requires additional diagonalization whenever

φµν is non-trivial. Here, we circumvented the issue with our special choice of instantonic

boundary conditions which allowed us to replace φµν by a constant. Finally, to have

sufficient control over the boundary partition function, a Casimir decomposition of the

spectrum had to be performed. Such a decomposition is not always possible - it needs

the brane to stretch out in all fermionic directions. Since branes in generic positions

are fully delocalized along fermionic coordinates, no serious limitations should arise for

generalizations to other backgrounds. In the following few paragraphs we shall go through

all our assumptions in more detail, with an emphasis on general structures rather than the

specific model we dealt with above.
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To get our perturbative expansion started, we need the exact form of the boundary

partition function at one point of the moduli space. In many cases, such an initial condition

may come from a WZNW model. The solution of WZNW models on type I supergroups has

been addressed in [51], based on similar studies of several concrete examples [52, 40, 53]. It

may be interesting to stress that a point with non-abelian current algebra symmetry may

exist in the moduli space even if no topological term appears in the action of the model

under consideration. The simplest example is once more provided by circle compactification

whose world-sheet symmetry gets enhanced to an su(2) current algebra at the self-dual

radius. Similar phenomena are very likely to occur for many other principal chiral models

on supergroups or cosets. For example, according to an intriguing conjecture of Candu

and Saleur [41], there exists a particular choice of the coupling at which the principal

chiral model on the supersphere S3|2 coincides with a OSP(4|2) WZNW model at level

k = −1/2. In general, such special points in moduli space and their exact properties are

difficult to detect. But even if no points with current algebra symmetries are known to

exist, exact spectra may still be accessible with different techniques, such as the use of

lattice constructions etc. (see e.g. [18, 29, 41]).

Once the WZ point (or any other explicitly solvable point) is under control, we would

like to deform the model. In most cases, summing up an entire perturbation series is a

hopeless enterprise. Still, we have seen that explicit summation is possible for the RR-

deformation of the PSL(2|2) sigma model, at least once we focus on appropriate quantities

such as conformal weights of boundary fields. Drastic simplifications in the combinatorics

of the perturbative expansion resulted from three observations, (3.3) to (3.5), in section 3.2.

None of them is specific to a target space with psl(2|2) symmetry. In fact, the underlying

technical lemma (reviewed in appendix B) is closely related to the vanishing dual Coxeter

number of psl(2|2), a property psl(2|2) shares with three families of Lie superalgebras,

namely psl(N|N), osp(2N+2|2N) and D(2, 1;α). These describe the global symmetries of

many interesting superspaces, ranging from odd dimensional superspheres S2N+1|2N to the

coset spaces that are involved in the AdS/CFT correspondence. We wish to stress that

a vanishing β function of the deformation and the quasi-abelianness of the perturbative

expansion for conformal dimensions appear as two sides of the same coin. Indeed, they can

both be traced back to the vanishing lemma.

Let us also point out once more that, even though the perturbation series simplifies

for all spectra, we were only able to exploit this fact in the case of point-like branes. It

seems to us that the absence of bosonic zero modes might be an important feature for the

success of the computation, but whether it is decisive remains an interesting open problem.

In particular, our brief discussion of bulk spectra in AdS3 (see introduction) suggests that

the remaining diagonalization for closed string modes could be more than a mere tech-

nical issue. In case the direct perturbative computation of bulk spectra turns out to be

impossible, one might still be able to find bulk conformal dimensions indirectly through

modular transformation of boundary partition functions. Approaching the bulk spectrum

through open closed string duality would certainly require explicit formulas for the branch-

ing functions a(q), b(q), going somewhat beyond their mere algorithmic construction [40].

Another potential hurdle to overcome are the modular properties of the branching func-
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tions a(q), b(q) which might be difficult to control. Even if this is not possible in general,

the branching functions might well combine into simpler objects for specific values of the

deformation parameter λ. At points with an enhanced world-sheet symmetry one would

expect an infinite number of branching functions to align such that they build the charac-

ters of a larger chiral algebra. The latter could well possess simpler modular properties.

A systematic detection of points with enhanced symmetry along the line of deformations

and the reconstruction of the bulk spectrum is a promising path for future research.

Two further comments concern the degeneracies we found in our D-instanton spectra.

According to the results in [15], the chiral symmetry of sigma models on PSL(2|2) is

generated by the psl(2|2) Casimir fields, and hence is much smaller than the full Casimir

algebra, see [40] for more explanation. Here, we found that the degeneracies of the boundary

spectrum are determined by the Casimir decomposition. Hence, they are larger than one

would have expected based on the chiral symmetry alone. This is a remarkable result

which points towards the existence of some enhanced (possibly non-local) symmetry, at

least for the boundary spectra we were concerned with in our work. It would certainly be

very rewarding to uncover this symmetry. A second enhancement of degeneracies is found

in the atypical sector of the model. In fact, the conformal weight of fields transforming in

an atypical representation of psl(2|2) do not receive any corrections. Therefore such fields

are guaranteed to possess an integer conformal weight. Similar phenomena have been

encountered in recent work of Read and Saleur [54]. Following their analysis we believe

that the large degeneracy in the atypical sector may be explained by the combined action

of two commuting symmetries. One of them is the Lie superalgebra psl(2|2) of global

transformations. The second should be closely related to the algebra of Casimir fields or

some extension thereof.

Results on non-linear sigma models with target superspaces are currently not directly

applicable to strings in AdS geometries other than via the hybrid approach for AdS3.

Nevertheless we believe that two rather general lessons can be inferred from our studies.

First of all, conformal field theory techniques, and in particular conformal perturbation

theory, can be rather powerful even in cases when the chiral symmetry is not sufficient

to carry out a full-fledged algebraic construction of the model. Furthermore, models with

a psl(2|2) symmetry can be much better behaved than one would expect after looking at

any of their subsectors. In fact, supposedly simpler subsectors, such as e.g. those based on

the bosonic sl(2), can lead to technical problems that are much more difficult and never

encountered in the full psl(2|2) model. In this sense, subsector theories may turn out to be

inappropriate as toy models for the kind of theories we are ultimately interested in.
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A. The superalgebra psl(2|2) and its representations

The Lie superalgebra psl(2|2) possesses six bosonic generators Kab = −Kba with a, b =

1, . . . , 4. They form the Lie algebra so(4) which is isomorphic to sl(2)⊕ sl(2). In addition,

there are eight fermionic generators that we denote by Sa
α. They split into two sets (α =

1, 2) each of which transform in the vector representation of so(4) (a = 1, . . . , 4) which is

the (1/2, 1/2) of sl(2) ⊕ sl(2). The relations of psl(2|2) are then given by

[Kab,Kcd] = i
[

δacKbd − δbcKad − δadKbc + δbdKac
]

[Kab, Sc
γ ] = i

[

δacSb
γ − δbcSa

γ

]

[Sa
α, Sb

β] = i ǫαβ ǫabcdKcd .

(A.1)

Here, ǫαβ and ǫabcd denote the usual completely antisymmetric ǫ-symbols with ǫ12 = 1 and

ǫ1234 = 1, respectively. An invariant metric is given by

〈Kab,Kcd〉 = −ǫabcd 〈Sa
α, Sb

β〉 = −2ǫαβ δab . (A.2)

It is unique up to a scalar factor. The signs have been chosen in view of the real form

psu(1, 1|2) which is considered in the main text. In order to define a root space decompo-

sition of psl(2|2) we split the fermions into two sets of four generators

g
(1)
+ = span{Sa

1} , g
(1)
− = span{Sa

2} .

As indicated by the subscripts ±, we shall think of the fermionic generators Sa
1 as annihi-

lation operators and of Sa
2 as creation operators.

Finite dimensional projective representations of psl(2|2) fall into two classes. The first

one consists of all the long multiplets. These are labelled by two spins j1, j2 with j1 6= j2

and their supercharacters read

χ[j1,j2](z1, z2) = tr
[

(−1)F z
K0

1
1 z

K0
2

2

]

= χj1(z1)χj2(z2)χF (z1, z2) . (A.3)

where χj(z) =
∑j

l=−j zl are the standard characters for finite dimensional representations

of the Lie algebra sl(2) and the fermionic factor χF is given by

χF (z1, z2) = 4 + z1
1 + z−1

1 + z2 + z−1
2 − 2

(

z
1
2
1 + z

− 1
2

1

)(

z
1
2
2 + z

− 1
2

2

)

. (A.4)

Let us also note in passing that the value C2([j1, j2]) of the quadratic Casimir in typical

representations may be expressed as

C2

(

[j1, j2]
)

= j2(j2 + 1) − j1(j1 + 1) .
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There exists a second class of projective representations P[j] whose members are labelled

by a single spin j. They are built up from short multiplets such that their supercharacter

becomes

χP[j] =
[

2χj(z1)χj(z2) − χj+ 1
2
(z1)χj+ 1

2
(z2) − χ|j− 1

2
|(z1)χ|j− 1

2
|(z2)

]

χF (z1, z2) . (A.5)

The quadratic Casimir is non-diagonalizable in the projective covers, with Jordan cells up

to rank five. Generalized eigenvalues of C2 in P[j] are well known to vanish for all spins j.

In this sense we shall write C2

(

P[j]
)

= 0.

The characters (A.3) and (A.5) are important ingredients in the Racah-Speiser algo-

rithm that furnishes the Casimir decomposition for the partition function of a point-like

brane, see [40] for details.

B. Derivation of the main vanishing lemma

Our evaluation of the perturbative expansion for conformal weights is based on the fact

that a psl(2|2)-invariant A vanishes whenever it is of the form A = Cabcf
abc. In order to

make our presentation self-contained the vanishing lemma is derived below. We use this

opportunity to clarify a few unsatisfactory issues in the original argument [15].

For the following discussion it is useful to consider A,C and f as intertwiners rather

than a bunch of numbers. By definition, an invariant A is an intertwiner from the trivial

representation to itself. Similarly, the structure constants fabc may be considered as an

intertwiner from the 3-fold tensor product of the adjoint [1/2] to the trivial representation.

The possible form of [1/2]⊗3 can be severely constrained using results from [49]. The 2-fold

tensor product [1/2]⊗ [1/2] contains three irreducible representations I = [0]⊕ [1, 0]⊕ [0, 1]

as well as a more complicated indecomposable πindec
1/2,1/2. The tensor product of I with [1/2]

can easily be evaluated. Furthermore, the typical contributions to πindec
1/2,1/2 ⊗ [1/2] do not

present any obstacle. This results in the decomposition

[1/2]⊗3 = [1/2] ⊕ 2P1/2 ⊕ 3
(

[1, 0] ⊕ [0, 1]
)

⊕ 4
(

[3/2, 1/2] ⊕ [1/2, 3/2]
)

⊕
(

[2, 0] ⊕ [0, 2]
)

⊕ · · ·
(B.1)

The remaining terms “· · · ” are the atypical parts in the tensor product πindec
1/2,1/2 ⊗ [1/2].

They are built by combining the following constituents

{

2[0]1, 2[0]3, 5[1/2]1, 2[1/2]3, 4[1]2, [3/2]1, [3/2]3
}

(B.2)

into a bunch of indecomposable representations.5 The precise form of these indecompos-

ables is currently not known to us. Nevertheless one can derive analytically that their

socles can only contain the representations [0]1 and 2[1/2]1. Due to the self-duality of

[1/2]⊗3, the same statement holds for the heads. One can also check that there is no true

invariant in [1/2]⊗3, i.e. that the head and the socle are formed by two different [0]’s. The

argument rests on an explicit construction of the unique invariant state and the subsequent

5The subscript refers to an additional SL(2, C) multiplicity, see [49].
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proof that it, in fact, lies in the image of the quadratic Casimir operator. Hence the unique

invariant state has to be the socle of a larger indecomposable multiplet.

Given any representation of psl(2|2), the number of independent interwiners to the

trivial representation may be obtained by counting the number of times [0] appears as

the head of an indecomposable sub-representation. In the case of [1/2]⊗3, there is only

one such occurrence of [0], as we have just argued. Hence, the intertwiner to the trivial

representation is unique up to normalization. This map is what we denote by f . Bershadsky

et al. now continued to argue that the constants Cabc that are contracted with fabc to form

the invariant A must be proportional to fabc (indices lowered with the metric) because

of the uniqueness of f . A then vanishes because of the numerical identity fabcf
abc = 0.

We arrive at the same conclusion if we employ that f and C combine into an invariant A

provided that C is a co-invariant, i.e. an intertwiner from the trivial representation to the

3-fold tensor product of the adjoint. Such co-invariants are in one to one correspondence

with representations [0] in the socle of [1/2]⊗3. A glance back onto our argument above

shows that there is a single such representation and hence C is unique. The reason for

the vanishing of any invariant A = C ◦ f is that the image ImC of C, given by the socle

of [1/2]⊗3, is in the kernel of f , i.e. ImC has no component in the head of [1/2]⊗3. The

outcome of this analysis, namely the vanishing of an invariant A = C ◦ f , is the crucial

ingredient in our observations (3.3) to (3.5).
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