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Abstract. We survey techniques for proving discrete maximum principles for finite ele-
ment approximations of linear elliptic and parabolic problems. Special emphasis is laid on
approrimations built on tetrahedral meshes.
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1 INTRODUCTION

Besides an obligatory requirement of convergence of computed approximations to the
exact solution of a model under investigation, the approximations are naturally required
to mirror basic qualitative properties of this exact solution in order to be reliable and
useful in computer simulation and visualization.

It is well known that solutions of mathematical models described by second order
elliptic and parabolic equations satisfy the maximum principles (see, e.g., [15], [16]). Its
discrete analogues (so-called the discrete maximum principles/DMPs) were first presented
and analysed in the papers [2], [3], and [7] for elliptic and parabolic cases, respectively.
Later, different aspects of DMPs for various types of problems were discussed in [1], [4],
[5], [6], [8], 9], [11], [12], [13], [14], [17], [18], [19], [20].

In most of those papers, it was noticed that DMPs hold true if certain geometric
restrictions are imposed on the computational meshes used. Thus, triangular meshes are
required to be acute or nonobtuse [3], [7], rectangular meshes to be non-narrow [1], etc.

In this work, we present a general framework for proving discrete maximum principles
for finite element approximations of linear elliptic and parabolic problems, and separately
discuss in detail the case of approximations built on tetrahedral meshes.

2 ELLIPTIC EQUATIONS
2.1 Problem setting and the continuous maximum principle

The first model (of elliptic type) consists of the Poisson equation with Dirichlet boun-
dary condition: Find a function w such that

—Au=f in (1)

u=1u’ on 09, (2)

where € is a bounded polytopic domain with Lipschitz boundary 9, and f,u° are given

functions. In this paper, we assume that all given functions are sufficiently smooth and

that a classical solution u of problem (1)—(2) exists and is unique. The continuous max-

imum principle for problem (1)-(2) is expressed by the following theorem (for the proof
see [16]).

Theorem 2.1 The classical solution u of problem (1)—(2) satisfies

< . 0
maxu(z) < max{0;maxu(s)}, (3)

provided f < 0.

Remark 2.2 In many papers dealing with mazimum principles for elliptic problems (see,
e.g., [13] and references therein), the authors consider only homogeneous Dirichlet bound-
ary conditions, i.e., u® = 0 in (2). The mazimum principle then takes the simpler form

<
maxu(z) <0, (4)

2
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provided f < 0.

2.2 Discretization

2.2.1 Variational formulation

The variational formulation for (1)—(2) reads as follows: Find u € H'(f2) such that
a(u,v) = F(v) Yv € Hy(Q) and  u—u’€ Hy(Q), (5)

where

a(u,v) = /VU-VU dx and Fv) = /fvdac. (6)

2.2.2 Computational scheme

We assume that a simplicial partition 7, of €2 is given, where h denotes the discretiza-

tion parameter. Let P, ..., Py denote interior nodes, and Py.1, ..., Py boundary nodes
in 7,. We also let Ny := N — N.
Let ¢1,...,¢5 be the continuous piecewise linear nodal basis functions. It is obvious
that
N
¢;>0, i=1,...,N, and > ¢;=1in Q. (7)
i=1

We denote the span of the basis functions by V* C H'(Q), and define its subspace
Vi ={v e V" |vlsq =0} C Hy(Q).
The discrete formulation of (1)-(2) reads: Find u;, € V" such that
a(up,vp) = F(vy) Yo, € VP and  wu, —u) €V, (8)

where u} is a given approximation of u°. In particular, we can take
No
up = Y u®(Prs) dvi (9)
i=1
Then u)(Py1i) = u’(Pn+i), ¢ = 1,..., Na. Looking for uy, in the form
N N Ny
Up = Zui@' = Z uig; + Z u®(Py4i) i (10)
i=1 i=1 i=1

we arrive at the following system of linear algebraic equations

Ad = b. (11)
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In the above,

A= [‘3 fﬂ : (12)
a=[ug,...,uy]f =[u|uwl’, ueRY, uyecRM, (13)
b=b,...,bx,u"(Pynt1),...,u’(Pg)]" =[b | up)", beRY, (14)
A= (axij)é\ilf\rjzl ,  where a;; = a(¢s, ¢;), (15)
Ay = (a?j)zj'vz’lf\]?:u where a’?j = a(di, PN+, (16)
bi:/fqﬁidac, i=1,....N, (17)

Q

the symbol I stands for the Ny x Ny identity matrix, and 0 denotes the Ny x N zero
matrix. In what follows all matrix and vector inequalities are meant elementwise.
2.3 The discrete maximum principle

2.3.1 Formulation of DMP

A discrete analogue of maximum principle (3), in terms of the solution of system (11),
reads as follows:

maxuy(r) =  max u; <max{0, max _
TEN i=1,...,.N j=N+1,..,N

W(P)} = max {0, maxul(s) }, (18)
sE
provided b < 0.

2.3.2 Algebraic conditions guaranteeing the validity of DMP

Theorem 2.3 The DMP (18) holds for all admissible b iff
the matriz A is monotone, i.e., A is nonsingular and

A'l>o0, (A1)
and
—AtAyey < ey, (A2)
where
eg=[1l,...,1]" €eRY and ey =11,...,1]7 € RM. (19)
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PROOF. Let us denote A~! by G. Then, obviously,

G =

= G Gy
0 I

] , where G=A""! and Gy = —A'A,. (20)
Assume first, that DMP (18) holds. We shall now show that the matrix A is nonsin-
gular, which is equivalent to A being nonsingular. Let the vector u = [uy,...,un]" be
such that Au = 0. Then v = [u | 05]7 € R”, (where 0y is a zero vector of the length
Np) is such that A¥ = 0. Thus, +u < 0 in view of (18). Hence, u = 0, which proves
that both matrices A and A are nonsingular.
Next, from representation (12), we have the identity

u=Gb + Galla. (21)
Let G = (gij)fvz’lezl and Gy = (g?j)fvz’lf\]?:l. For each j = 1,..., N, the vector g; =

(G1js-- - 9nj) € RY is the solution of (11) with the vector b = [0,...,1,...,0]", where
the 1 is in the j-th position and up = 05. Thus, g; > 0 by the DMP (18), which proves
that G > 0.

Similarly, for each j = 1,..., Ny, g2 = (¢;,...,9%;) € R" is the solution of (11) for
b=0,and us = [0,...,1,...,0]7, where the 1 is in the j-th position. Thus, by (18), it
follows again that g? > 0, which proves that Gy > 0. Thus, (A1) is proved.

Np
Now, we prove (A2). The vector g = Y ¢? is the unique solution of (11) with b =0
j=1
and uyg = es. Thus, from (18), we get (g); < 1, i =1,...,N, which proves (A2),
because g = Ggeg = —A"1Aze;.
Conversely, let us assume that (A1) and (A2) hold. Since A is nonsingular in view of
(A1), identity (21) holds, therefore,

N No
= 0+ Y giui, i=1,..,N.
j=1 J=1

Then, obviously, for b < 0, @ satisfies (18), as g;; > 0 and gf’j > 0 (in view of (A1l)), and
Ny
> 95 <1,i=1,...,N (in view of (A2)). =
j=1

Condition (A2) is not so easy to verify in practice. Therefore, in the following theorem
we give a simpler (sufficient) condition instead of (A2).

Theorem 2.4 The DMP (18) is valid if the following two conditions are satisfied:
A is monotone, (A1%)

Aeyg+Aszes > 0. (AQ*)
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PROOF. Since A~' =G > 0 by (A1*), we observe from (A2*) that
eo+AAyey > 0, or — A TAzey < ey, (22)

which proves (A2). Condition (A1) coincides with (A1*). m
Condition (A2*) actually means that

N
 a; >0, i=1,...,N, (23)

or, equivalently, that A is diagonally dominant.

Generally, (18) does not imply (A2*). The following matrix (cf. [2, p. 343])

-1 2 0
Al=|2 -3 0|, (24)
0 0 1

satisfies DMP, but (A2*) is, obviously, not fulfilled.

More suitable (sufficient) conditions providing the validity of DMP (18) are given in
the following theorem.

Theorem 2.5 The DMP (18) is valid if
diagonal entries a;;, 1 =1,..., N, are positive, (A1

off-diagonal entries a;j, i =1,...,N, j=1,...,N (i # j), are nonpositive, (A2’
matriz A is diagonally dominant (see [19, p. 23]),i.e., Aeg + Azey > 0, (A3
matriz A is irreducibly diagonally dominant, see [19, p. 23]. (A4

ProOF. Condition (A3') is equivalent to (A2*). From (A4’), (A3'), and (A1’), we have
A~' > 0, (see [19, p. 85]). Further, since Ay < 0 by (A2'), we observe that Gy =
—A~'A, > 0, proving that A is monotone, i.e., condition (A1*) holds. ]
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B

Figure 1: Tetrahedron K.

2.4 The validity of DMP on tetrahedral meshes
2.4.1 Entries of the finite element matrix

First, we recall the following result (see [13, p. 63]). Let K = B; B;B,; B, be an arbitrary
tetrahedron. Let p and ¢ be two linear functions such that

p(B;) =1, p(Bj) =p(Bs) = p(B;) =0, and ¢(Bj) =1, ¢(B;) = q(Bs) = q(B;) =0,

then

measy B; B, B, - measy, B; B, B
9 (meas3 K')?

measy B; B, By

Vp-Va= - 3 meass K

,  (25)

cosajy, ||Vp| =

where O&Z-I](- is the angle between faces B; B;B; and B;B;B; (see Fig. 1) and the symbol meas,
stands for d-dimensional measure. Thus, each obtuse dihedral angle of the tetrahedron K;
gives a positive contribution to the corresponding off-diagonal entry of the element stiffness
matrix, and each nonobtuse dihedral angle gives a nonpositive contribution. Further, we
can write

aij = Z meas3 K V¢, - Vo, + Z meas3 K Vo, - Vo, (26)

KEeT;; KeT;f
where 77 = {K € T, | V$; - V¢; <0on K}, T ={K €T,|V¢i-V¢;>0o0n K}
2.4.2 Nonobtuse tetrahedral meshes

A tetrahedron is said to be nonobtuse (acute) if all its six dihedral angles between faces
are nonobtuse (acute).
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Theorem 2.6 The DMP (18) holds for the linear finite element approzimations of prob-
lem (1)—(2) if the employed tetrahedral mesh Ty is nonobtuse (i.e., consists of nonobtuse
tetrahedra only).

PROOF. Conditions (Al’) and (A2') of Theorem 2.5 are, obviously, valid. Condition
(A3') can be rewritten in the following form:

N Np
Y a;+Y a >0, i=1,...,N.
7j=1

7=1
Actually,

N Ny N N
Zaij"_za'?jzz ¢z:¢] Z ¢za¢j —a¢zz ¢za —0,

forall i=1,...,N, i.e., condition (A3') is satisfied as well.

Now, we check (A4’). Matrix A is irreducible, since its directed (oriented) graph
is strongly connected (cf. [19, p. 20]). The fact that A is diagonally dominant follows
immediately from (A2') and (A3') already proved above.

The property of A being irreducibly dominant now obviously follows from the fact
that A is positive definite. To prove this, we observe that

N N
An-n=> agmni= Y aléié;)mn; =
=1 irj=1

N N
= o> i, 3 1i65) = alon, ) = / Von2de = [Voul3 > C llunll2 > 0,
i=1 j=1 o

N
for all n = [n1,...,nn|" # 0, where v, = Y. 7; ¢; and where the Friederichs’ inequality
i=1

was applied.
Thus, in view of Theorem 2.5, we have now proved the statement. m

2.4.3 Weakened nonobtuse type conditions

From the representation (26), we immediately observe that the requirement for the
tetrahedral elements of the mesh to be nonobtuse in order to get the validity of DMP is
too strong. In fact, some tetrahedra in the mesh can be nonobtuse, thus giving positive
contributions to the corresponding entry, but the total sum of the contributions can still
be nonpositive.
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Condition (A2') on off-diagonal entries (to be nonpositive) is only sufficient. We can
observe the validity of DMP even in case when some off-diagonal entries are positive (in
this case also some tetrahedra may have obtuse dihedral angles).

An analysis of the above cases gives rise to the so-called “weakened nonobtuse type
conditions” [10, 17, 18].

3 PARABOLIC MODEL
3.1 Problem setting and the continuous maximum principle
Consider the second model (of parabolic type): Find a function u = u(¢, ) such that

i cAu=f in (0,T) xQ, (27)

u=g on [0,7)x 090, and ulio=1uy in £, (28)

where € is, as before, a bounded polytopic domain with Lipschitz boundary 02, T > 0,
c is a positive constant, and f, g, uy are given functions. We assume that all the given
functions are sufficiently smooth and that the classical solution of the above problem
exists and is unique.

We formulate now the continuous maximum principle for this type of problems. Let
Q: stand for the cylinder (0,%) x 2, and T'; — for the union of its lateral surface S; and its
bottom Iy, ¢ € [0,7]. The following theorem holds (cf. Theorem 2.1 from [15]).

Theorem 3.1 Let u(t,z) be the classical solution of problem (27)—(28) in Qr. Then

A

SAlilg min{0; rlgltin(exp(A(tl —1))); Igtin(exp(/\(tl —))f)} < u(t,z) <

(29)
< jnf max{0; max(exp(A(ts — 1))¥); %rgiX(exp(/\(tl —1))f)}

holds for any t, € [0, T, where the function ¢ coincides with uy on Ty, and with g on St.
In particular, u(t,x) > 0 provided f > 0, ug > 0, and g > 0.

Let us further introduce the following functions (0 <t < t; < T, t; is fixed):

9(t, x) = max{0; max Y} + t max{0; max f}—ut ),
tq t1

and
v(t,x) = u(t,z) — min{0; I?in ¥} — t min{0; Ichlin I}
t1 t1
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where u and 1) are defined above. Due to positivity of the given data of the initial
boundary-value problems to that the functions ¥ and o satisfy, and Theorem 3.1, we
immediately observe that

o(t,x), v(t,x) >0, for t € [0,¢1], i.e., ¥(t1,z), v(t1,2) >0,
which implies that for all ¢; € [0, T,
min{0; I?in ¥} + t1 min{0; Igin f} <wu(ty,z) < max{0; max Y} + t; max{0; max . (30)
tq ty t1 t1

Formula (30) represents the form of the continuous maximum (and also minimum) prin-
ciple that we shall deal with for the above parabolic problem.

3.2 Discretization

3.2.1 Weak formulation

The weak formulation for (27)—(28) reads as follows: Find v = u(t,z) € H(Q) for
€ (0,T) such that

/—vdm—i—Luv /fvdac Vv € Hy(Q), te(0,7), (31)

and
u(0,7) =u’(z), z€Q, and u—ge Hy(Q), te(0,7), (32)
where L(u,v) = ¢ [ Vu - Vo dz.
Q

3.2.2 Semidiscretization in space

The semidiscrete problem for (31)—(32) reads: Find a function uy = up(t, ) such that

/—Uh dx + L(up,vy) = /fvh de Yu, €V, t€(0,T), (33)

and
up(0, ) = ug(x), x € Q, up(t,x) — gn(t,z) € Voh, te (0,7), (34)

where uj (z) and g(t, z) (for any fixed t) are suitable approximations of uy(x) and g(¢, z),
respectively. In what follows, we assume that they are linear interpolants in V", i.e.,

z) = Zuo(a)cm(x), (35)

10
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and
Zgz ¢N+Z where gzh(t) :g(t7PN+i)7 7;:17"'7N07 (36)

(see Subsection 2.2.2 for the notation and definitions).

From the consistency of the initial and the boundary conditions g(0, s) = ug(s), s € 09,
we have ¢(0) = uo(Pnyi), 1=1,..., Na.

We search for a semidiscrete solution of the form

Z u! ) + gn(t, @), (37)

and notice that it is sufficient that u, satisfies (33) only for v, = ¢;, i =1,..., N.
Introducing the notation

vEi(t) = [ui(2), .., un (1), 91 (2), -, gn, (D], (38)

we arrive at a Cauchy problem for the systems of ordinary differential equations,

Mdd—tmv =f, v*(0) = [u’(P),...,u"(Py),g!0),- -, gk, (0)]" (39)

for the solution of the semidiscrete problem, where

M = (mi) N, my :/¢j¢z‘ dv, K= (ki) 1, ki = L(8;, ),
Q

f:[fla"':fN]Ta fz: f¢zdx
/

3.2.3 Fully discretized problem

In order to get a fully discrete numerical scheme, we choose a time-step At and denote
the approximations to v*(nAt) and f(nAt) by v* and f*, n = 0,1,...,ny (npAt =T),
respectively. To discretize (39), we apply the #-method (6 € [0, 1] is a given parameter)
and obtain a system of linear algebraic equations

n+l _ mn
M% FOKV™T 4+ (1 — O)Kv" = £ (=g 4 (1— 0)f"), (40)

which can be rewritten as

(M + 0AIK)v™ = (M — (1 — O)AtK)v* + At £™0) n=0,1,...,np — 1,  (41)

11



J. Brandts, S. Korotov, and M. Kiizek

where v° = v(0).
Further, let A = M + 0AtK and B =M — (1 — §)AtK . We shall use the following
partitions of the matrices and vectors:

A =[Ao|A], B=[BoBy], v"=[u"|g"", (42)
where Ay and By are (IV x N) matrices, Ay, By are of size (N x Np), u® = [u?, ..., u%]|l €
RY and g" = [¢,...,g%,]" € R". Similar partitions are used for matrices M and K.
Iteration (41) can now also be written as

Av™t = Bv" + At £f(M9) (43)
or
un—|—1 0
Aolao] | 00 | = BolBal [ 2 |+ 20 (14

3.3 The discrete maximum principle

3.3.1 Formulation of DMP

Let us define the following values for n = 0,..., ny:
Imin = min{0, g7, ..., 9%} Gmaz = max{0, g7, ..., g5, }, (45)
vpn = min{0, gr.ul, o U}, Upee = max{0,gn ul, o ul ) (46)
and
ff,g:“ =min{0, min f(r,2)}, firnt) —max{o, max (7, z)}47)

z€Q,7E(nAt,(n+1)At) z€Q,TE(nAL,(n+1)At)

forn=0,...,np — 1.
The discrete analogue (DMP) for the continuous maximum principle (30) can be rep-
resented as follows:

min{0, v>,,, min{gk. k= .,n}} + nAt min{0, min{ f nf”IfH) k=0,....n—1}} <
<y < (48)
< max{0,v° . ,max{g" k= ., n}} 4 nAt max{0, max{f&*+ k=0, n—1}},
where ;1 =1,...,N, n=1,...,np.

The DMP (48) easily follows from the following relation (cf. [7, p. 100]):
min{0, g1 .} + ALfI <yt < max{0, gL oY 4 At fnED), (49)

man’ mm min max’ maw maw

1=1,...,N; n=0,...,np — 1.

12
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3.3.2 Algebraic conditions guaranteeing the validity of DMP
Write

e=[1,...,1TeRY, eg=1[1,...,1]" € RY, ey=][1,...,1]T € R, (50)
fén,n—kl) _ f(n n+1)e € RN V(T)l — Um(weo c R (51)
f[gn,nJrl) — f(n n+1)e c RNB, Va — Umawea c RMo.

Lemma 3.2 We have
(P1) Ke=0,
(P2) £00) < AfATY. (52)

(P3) If A;' >0, then — Aj'Ajses <eg.

PROOF. (P1) For the i-th coordinate of the vector Ke, we have

N N
(Ke)i =Y kij =Y L(¢j, ¢:) = (Z%,@) = L(1, ;) —c/Vl Véidr =0, (53)
Jj=1

Jj=1

which proves the statement.
(P2) For the i-th element of f(%  we observe that

(€0 = [ (1= 0)f(nt,2) + OF (n+ 1A 2)6(2) do < [ [ 6(z) da =

N

< [ (So0) e S = pasr), = o0

= (M + 0AK)EL D) = (A£Gt

max mazx

where in the above, we used (P1).

(P3) Matrix M is non-negative, because the basis functions are nonnegative. Thus,
0 < Me = (M + 0AtK)e = Ae = Agey + Ayes, and (P3) is obtained by multiplying
both sides by the non-negative matrix A;'. m

13
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Theorem 3.3 Galerkin approximation for the solution of problem (27)-(28), combined
with the 8-method for time discretization, satisfies (49) if and only if

Aj' >0, (C1)
Aj'A, <0, (C2)
A,'B > 0. (C3)

PROOF. First, we prove that (C1)—(C3) are sufficient by verifying the inequality on
the right-hand side in (49). From (43) and (P2), we have

Agu"t 4 Apg™tt = Avitt = By At £ < By® 4+ AtAfHD, (55)

max

From (P1), we find Bv?,, = Av",.. Multiplying both sides of (55) by A;' > 0 (see

(C1)), expressing u™*! and using (C3), we obtain

u"tt < —ASTA, g"t 4+ ATIBVY 4 AtAGTAFR D < (56)

max —

< —AJ'A, gt + ASIBYVT + AtAGTAFLHD —
= —AJT Ay g T+ AT AV, + ALAGT ALY =
= —AJ A5 g™+ A A Ap]vh,, + AtAG[Ao| Ag) gnn+1) _
= —AalAa gn+1 +vI A+ AalAavg + Atfén,n+1) + AtAalAa f({(?n,n—kl)'

max

Regrouping the above inequality, we get
vl — AT < A A (g™ — v — AT, (57)

Hence, for the i-th coordinate of both sides we obtain

7 max max max mazx

Np
ugn Ay flent) < Z (—AalAa)i,- (g;_H—l —on — At fntl)) < (58)
7j=1

Np
< (Z (—AalAa)iJ) - max{0, mjax{g;-”“l — vt} <
=1
< max{0, max{g] " — v}, }} < max{0, griz},

J

where we applied (C2) and (P3). Finally, isolating u**, we obtain the required inequality.
The inequality on the left-hand side of (49) can be proved similarly. Hence, (C1)-(C3)

are sufficient.

14
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Now, let the DMP be valid, then it is valid for any choice of (™% g" g1 and u™.
With choice g"t! = 0, v* = 0, f(*9 = e;, we get A;' > 0. Indeed, combining (44) and
(49) we observe 0 < u™t! = AtA;'e;, which means that each column of Aj' is non-
negative, and thus, A;' > 0. So the necessity of (C1) is proved. Using again (44) and
(49) with the choice g = e;, g" = 0, £ = 0 and u" = 0, we obtain the necessity of
(C2), and similarly, with g"*! = 0, v" = e, £f("9) = 0, we get the necessity of condition
(C3). m

Remark 3.4 It is easy to see that conditions (C1)—(C3) are ensured by

Aj' >0, (C1%)
Ay <0, (C2%)
B > 0. (C3¥)

Theorem 3.5 Galerkin approzimation for the solution of problem (27)—(28), combined
with the 6-method for time discretization, satisfies the discrete mazimum principle (49) if

kij <0, i#j, i=1,...,N,j=1,...,N, (C1")
mi; +0At ki <0, i#3j, i=1,...,N, j=1,...,N, (C2")

PrOOF. It is enough to show that (C1*)-(C3*) follow from the conditions of the
theorem. The relations (C1') and (C3') yield (C3*), whereas (C2*) follows from (C?2').
Condition (C1*) is valid if we prove that, under the assumptions of the theorem, A,
is irreducibly diagonally dominant with positive diagonal and nonpositive off-diagonal
entries (cf. [19, Corollary 1, p. 85]). The sign conditions on the entries of A, follow from
(C2') and the structure of Aj. Further, we observe that Ay is irreducible, since its directed
(oriented) graph is strongly connected (cf. [19, p. 20]), also, we see that Kopey = —Kyey
as follows from (P1), and

Aoeo = (M() + OAL Ko)eo = Moeo + OAL Koeo = Moeo — OAL Kae@. (59)

Obviously, Myeg > 0, and due to (C1'), the vector —0At Kpeps is nonnegative. Hence,
A, is irreducibly diagonally dominant. m
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3.4 The validity of DMP on tetrahedral meshes

3.4.1 The entries of mass and stiffness matrices

The contributions to the mass matrix M over the tetrahedron K are

meass K

meass K
50 )

10

The contribution to the stiffness matrix K over K (with vertices B;, B;, B;, B;) is equal
o (cf. Section 2.5)

(G #7), miilk = (60)

mij|K =

measy B; B, B; - meas, B; B, B, . )
kijli = —c 9 mens, K J cosajy, (i #j), kilk =c

(measy B; B;B;)*
9 meass K

.(61)

We assume also that the mesh 7, we deal with is regular, i.e., there exist positive
constants C% min, Co,mazs C3,mins C3.maz, independent of A, such that for any tetrahedral
element K from the mesh and any face S;;; of any element of this mesh, we have

C2,minh2 S meaSQSijk S C2,ma;ch2a C3,minh3 S meaSSK S C3,ma;ch3- (62)

3.4.2 Conditions on mesh and time-step

Lemma 3.6 Let the employed tetrahedral mesh Ty, be nonobtuse, then

kij <0, fori#j, i=1,...,N, j=1,...,N.

Y

ProoF. We denote supp ¢; Nsupp ¢; by S, then for k;;, ¢ # j, we have

L(¢;, ¢5) = /w] Vqﬁzdx—cZ/Vqﬁj Vi dv =Y kijlx <0.

KCSK KCS

since the value k;;|x is nonpositive for any nonobtuse tetrahedron K. [ ]

A system of acute tetrahedral meshes is called acute, if there exists a constant o such
that all dihedral angles of all tetrahedra are less than 7/2 — «.

Lemma 3.7 Let the tetrahedral mesh T;, be acute. Then

mz]+0Atk1JSOa Z%],’L:L,N,]:L,N

I

provided
At > 9 C??,mam h2
~ 200 csinay C? '

,min
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ProoF. We denote supp ¢; Nsupp ¢; by S, then

K Ccz .. h

KCS KCS 20 3,maz

meass K . 03, . hmeass K
< —— — At 2 <
- ch:s ( 20 S o 9C3 mez measg K | —

measg K . C2, i h meas; K
< — —OAt . <
o ch;s' ( 20 Com o 9 C3,ma;c CS,maw h3 o

1 . C'22,m'm
< meassz S 2—0—0Atcsma0W <0. []

3,maz

Lemma 3.8 Let T}, be nonobtuse, then

m”—(l—ﬁ)AtkMZO, izl,...,N,
provided
At < 9C§,min h2
T 10(1-0)cC3,0n

Proor. We denote supp ¢; N supp ¢;by S, then

cz ht
mi—(1—0) Atk = (il x—(1— ) Athis| ) > > (meas?’K —(1 — ) Ate 2 3) >

10
KCS KCS

mea83K 022 matheaS3K 1 022 -
> —(1—0)Ate—= > S| —=—(1-0)Ate—>"""~}>0.
N KZCS ( 10 ( Jate 9C3 ymin measz K ) — meass 10 ( ) C902 )=

3,min

Theorem 3.9 The piecewise linear finite element solution of (27)-(28) on a tetrahedral
mesh of acute type satisfies the discrete mazimum principle (48) if the conditions

9 C??,mm h2 > At > 9 C??,mam hQ
101-60)cC3,..  —  — 200csinagC3,,;,

are fulfilled.

The proof immediately follows from Theorem 3.5 and Lemmas 3.6-3.8.
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