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1 Introduction 
This thesis is about the analysis of time-resolved metabolomics data. For this 

analysis, models are used that employ a priori knowledge about the experiment 

and the data.  First ‘metabolomics’ is explained. Subsequently the use of a priori 

knowledge in multivariate data analysis is explained. Finally the multivariate data 

analysis models that are described in this thesis are briefly discussed. 

1.1 Metabolomics 
Any organism can be seen as consisting of a series of highly interlinked and 

complex system parts. In Systems Biology the properties of these parts and the 

relations between them are studied from a holistic viewpoint. Several ‘omics’-

techniques have been developed for this: for example DNA transcription is 

monitored by transcriptomics and the proteins that are present in an organism 

are analyzed using proteomics (1). 

Metabolomics is the ‘omics’ method in which the metabolism of an organism is 

analyzed, based on the measurement of the concentration of all (or most) of its 

metabolites. Thereby information is collected about the whole metabolic system 

of the organism. This distinguishes metabolomics from more conventional 

approaches for investigating the metabolism that focus on a specific metabolite 

or a limited set of compounds (2).  

In this thesis only case studies of metabolomics on mammals are presented, in 

which the composition of their body fluids is measured to determine the ‘status’ of 

their metabolism. A lot of work has been done in analytical method development 

for mammalian metabolomics. The use of various body fluids has been proposed 

(3-5) and different analytical platforms have been suggested for the analysis of 

their metabolite composition (6).  Urine is used in all applications described in this 

thesis. Its metabolite composition has been measured using proton Nuclear 

Magnetic Resonance (1H-NMR) spectroscopy. This approach, which is more 

focused on a rapid screening of the metabolism, is often referred to as metabolic 

fingerprinting (7) or metabonomics (8). Although the applications in this thesis are 
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limited to this fingerprinting, the ideas presented here can be applied in all fields 

of metabolomics. 

 

Several overview articles about metabolomics are available. A general overview 

about the history of metabolomics and its current challenges is given by Van Der 

Greef et al. (9). A paper specifically focused on metabonomics is written by 

Nicholson et al. (10). Also the articles by Fiehn (2) and by Dunn et al. (6) that 

were mentioned earlier give a good overview about the current possibilities and 

limitations of metabolomics. 

1.2 Black, white and grey models  
The NMR spectra collected from a metabolic fingerprinting experiment describe 

the concentrations of the metabolites in a urine sample. These concentrations 

contain the information about the status of metabolism. The collected spectra are 

information-rich: a visual inspection will not reveal all information about the 

metabolism contained within this data. To extract this information, multivariate 

data analysis techniques are required (11, 12). Usually these data analysis 

methods are similar or equal to methods from chemometrics: the field that deals 

with analysis of data collected from experiments in chemistry (13, 14).  

The selection of a data analysis method for a specific experimental question and 

corresponding dataset is dependent on several considerations. One of these 

considerations is the amount of a priori information that should be put into the 

model. Generally more information than the collected data itself is available from 

an experiment, such as information about the experimental design or information 

about the mechanisms underlying the studied phenomenon. The more of this 

information is used to construct the model, the stricter it becomes. However, the 

information introduced to the model usually simplifies its interpretation.  

Models that use no a priori information at all are referred to as ‘soft’ or ‘black’ 

models. Models that are derived from physical or chemical laws (for example 

differential equations that describe pathways present in an organism) are referred 

to as ‘hard’ or ‘white’ models. The drawback of black models is that they are 

generally difficult to interpret in terms of the natural factors underlying the 
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variation of the data and the drawback of white models is that quite often the 

physical or chemical background of the observed system is not completely 

known. 

The models that are discussed in this thesis are ‘grey’ models (15). These 

models are black, but the available a priori (‘white’) information is used to 

improve their interpretability. Grey models are not as strict as white models, but 

they are generally better interpretable than black models. A visual depiction of 

these different types of models is given in Figure 1. 

 

Black 
models

White 
models

Grey models 

•Only a priori information
•Strict
•Well interpretable

•No a priori information
•Not strict
•Poorly interpretable

Black 
models

White 
models

Grey models 

•Only a priori information
•Strict
•Well interpretable

•No a priori information
•Not strict
•Poorly interpretable  

Figure 1 Distinction between white, grey and black models 

1.3 Multivariate Data analysis of metabolomics data 
PCA is the most widely used method for the exploratory data analysis of time-

resolved metabolomics data (e.g. (16-18)). It makes no assumptions about the 

variation in the data and therefore it is a black model. Due to the limited 

interpretability of PCA the mechanisms underlying changes in metabolism often 

remain elusive. The need for models with increased interpretability is certainly 

present. 

In this thesis, two ‘grey’ models are used for the analysis of time-resolved 

metabolomics data. In Chapter 2 the a priori information that is used in the data 

analysis is knowledge about the measurement error. In the remainder of the 

thesis the design of the experiment is used as prior information for fitting a 

component model. 

In Chapter 2, Weighted PCA (WPCA) is described (19-21). This method can be 

used when the error of a signal is dependent on the magnitude of this signal 

(heteroscedastic), which cannot be handled well by PCA. The chapter describes 
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the process from obtaining the a priori information from the replicate 

measurements performed in the experiment, to the modeling of the measurement 

error and the final implementation of the information into the data analysis. 

Chapters 3 to 6 cover ANOVA-SCA (ASCA). This method is developed because 

PCA cannot distinguish between different factors and interactions in the 

experimental design. Therefore it is combined with Analysis of Variance 

(ANOVA), which is generally used for the analysis of a designed experiment. 

Thereby ANOVA-SCA (ASCA) is obtained, which is a novel multivariate data 

analysis tool that takes the experimental design into account.  

A precursor of ASCA has been proposed first by Timmerman (22). This method, 

developed for the multivariate analysis of hierarchically organized (multilevel) 

data. is called Multilevel Simultaneous Component Analysis (MSCA) (22). MSCA 

is used for the analysis of a time-resolved metabolomics dataset in Chapter 3 of 

this thesis. In Chapter 4 ASCA is described and applied to a disease intervention 

study of the effect of Vitamin C to the development of osteoarthritis in guinea 

pigs. Chapter 5 describes the applicability of the combination of ASCA and 

metabolomics in a case study from systems biology. The experimental question 

in this study is to determine the homeostatic capacity of rats for bromobenzene, a 

model toxic compound that acts on the liver. It is shown that this question can be 

indeed answered with the constructed ASCA model. In Chapter 6 the 

mathematical framework behind ASCA is explained. Also relations of ASCA to 

other methods are described in this chapter, as well as possible extensions of the 

method. 

The chapters in this thesis are each based on a finished manuscript and 

therefore can be read independently of each other.  

1.4 References 
(1) Morel, N., Holland, J.M., Van der Greef, J., Marple, E.W., Clish, C.B., Loscalzo, J. and Naylor, 
S., Primer on Medical Genomics Part XIV: Introduction to Systems Biology—A New Approach to 
Understanding Disease and Treatment. Mayo Clinics Proceedings, 2004; 79: 651-658 
(2) Fiehn, O., Metabolomics-the link between genotypes and phenotypes. Plant Molecular 
Biology, 2002; 48: 155-171 
(3) Nicholson, J.K., Buckingham, M.J. and Sadler, P.J., High resolution  1 H-NMR studies of 
vertebrate blood and plasma. Biochemistry Journal, 1983; 211: 605   
(4) Tate, A.R., Stephen, J.P.D. and John, C.L., Investigation of the metabolite variation in control 
rat urine using  1 H NMR Spectroscopy. Anal. Biochem., 2001; 291: 17 
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(5) Satake, M., Dmochowska, B., Nishikawa, Y., Madaj, J., Xue, J., Guo, Z., Reddy, D.V., Rinaldi, 
P.L. and Monnier, V.M., Vitamin C Metabolomic Mapping in the Lens with 6-Deoxy-6-fluoro-
ascorbic Acid and High-Resolution 19F-NMR Spectroscopy. Invest. Ophthalmol. Vis. Sci., 2003; 
44: 2047-2058 
(6) Dunn, W.B., Bailey, N.J. and Johnson, H.E., Measuring the metabolome: current analytical 
technologies. The Analyst, 2005; 130: 606-625 
(7) Lamers, R.-J.A.N., DeGroot, J., Spies-Faber, E.J., Jellema, R.H., Kraus, V.B., Verzijl, N., 
TeKoppele, J.M., Spijksma, G.K., Vogels, J.T.W.E., van der Greef, J. and van Nesselrooij, J.H.J., 
Identification of Disease- and Nutrient-Related Metabolic Fingerprints in Osteoarthritic Guinea 
Pigs. J. Nutr., 2003; 133: 1776-1780 
(8) Nicholson, J.K., Lindon, J.C. and Holmes, E., 'Metabonomics': understanding the metabolic 
responses of living systems to pathophysiological stimuli via multivariate statistical analysis of 
biological NMR spectroscopic data. Xenobiotica, 1999; 29: 1181 
(9) van der Greef, J., Davidov, E., Verheij, E.R., van der Heijden, R., Adourian, A.S., Oresic, M., 
Marple, E.W., Naylor, S., Harrigan, G.G. and Goodacre, R., The role of metabolomics in Systems 
Biology in Metabolic Profiling: Its role in Biomarker Discovery and Gene Function Analysis Kluwer 
Academic Publishers, Boston/Dordrecht/London, 2003 
(10) Nicholson, J.K., Connelly, J.C., Lindon, J.C. and Holmes, E., Metabonomics: a platform for 
studying drug toxicity and gene function. Nature Reviews Drug Discovery, 2002; 1: 153 
(11) Holmes, E., Nicholls, A.W., Lindon, J.C., Connor, S.C., Connelly, J.C., Haselden, J.N., 
Damment, S.J.P., Spraul, M., Neidig, P. and Nicholson, J.K., Chemometric models for toxicity 
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Verbeke, J., Handbook of Chemometrics and Qualimetrics: Part A. 20A, Elsevier, Amsterdam, 
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2 Analysis of Metabolomics Data using Weighted PCA 

2.1 Introduction 
In genomics and systems biology a range of new methods has been developed 

that investigate cell states on different aggregation levels. These methods form 

the basis for the analysis of the processes that lead from the DNA-code to 

phenotypic changes in an organism. Three of these methods are transcriptomics, 

proteomics and metabolomics; all three generating large amounts of data. 

Contained within this data is the information about the organism that is 

investigated. To obtain this information, various types of data analysis methods 

are used.  

Metabolomics investigates the metabolism of an organism. Specifically, the effect 

of certain influences (e.g. diet, toxic stress or disease) on metabolism is the focus 

of research. In metabolomics the chemical composition of cells, tissue or body 

fluids is studied and within Life Sciences a major emphasis is on studying effects 

on the metabolite pattern in the development of diseases (biomarker or disease 

research) or the effect of drugs on this pattern, so called drug response profiling. 

Although the term metabolomics is from recent years, the approach of metabolite 

fingerprinting and multivariate statistics has its origin in the seventies for the 

fingerprinting part and in the early eighties on the combined approaches (van der 

Greef, Davidov et al., 2003). In the development of these strategies focusing on 

disease biomarker patterns it became clear that biomarker patterns of living 

systems on a single time point or evaluated over different objects generate 

important information but do not capture the dynamics of a system and clear 

evidence has been generated that deregulation of the dynamics of a system can 

be the onset of disease development (dynamic disease concept, (Glass and 

Mackey, 1988)). Taking into account time information was explored by 

investigating pre-menstrual syndrome (PMS), by applying metabolomics while 

using the information on the menstrual cycle enabling the detection of trend-

specific changes in PMS (Tas, van den Berg et al., 1989). The key to investigate 
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dynamic phenomena is the analysis of time series and a better understanding of 

“normality”.  

Using non-invasive techniques like the analysis of urine (urinalysis) based on 

metabolomics is an attractive approach and has been used in many studies since 

the early onset in clinical chemistry related profiling. 

A technique that is suitable for the analysis of the chemical composition of urine 

is 1H-Nuclear Magnetic Resonance (NMR) spectroscopy (Holmes, Foxall et al., 

1994). Spectra of urine obtained by NMR-spectroscopy are complicated and 

have a high information density. The desired information can be extracted from 

these spectra using multivariate statistical methods commonly used in pattern 

recognition and chemometrics (Holmes and Antti, 2002).  

The unsupervised analysis of the variation in the data is important in 

metabolomics. Principal Component Analysis (PCA) (Jolliffe, 2002) is a method 

that is often used for this. PCA is also applied in transcriptomics, proteomics and 

plant metabolomics (Heijne, Stierum et al., 2003; Taylor, King et al., 2002). 

Methods like PCA give a simplified representation of the information that is 

contained in NMR-spectra.  

Weighted PCA (WPCA) (Kiers, 1997) is a method for unsupervised data analysis 

that is related to PCA. In WPCA each element of the data can be given a 

corresponding ‘weight’. These weights can be defined using different sources of 

information. Examples of information that can be introduced into the data 

analysis by using WPCA are scaling constants concerning the relative 

importance of variables or samples (Bro and Smilde, 2003). Also autoscaling, 

sometimes performed as a data pre-processing method in PCA, can be seen as 

a specific case of WPCA (Paatero and Tapper, 1993). Missing values in the data 

can be accommodated by defining zero weights for these values and can also fall 

in the framework of WPCA (Andrews and Wentzell, 1997). Information about the 

error in the measurements (Wentzell, Andrews et al., 1997) can be included in 

the data analysis to obtain a Maximum Likelihood PCA-model when errors are 

non-uniform. The definition of the weights can be generalised to include more 

forms of problem-specific a priori information about the data (Bro, Smilde et al., 
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2002). The broad range of mentioned applications shows that WPCA is a generic 

bioinformatics tool to introduce a priori information into the data-analysis of e.g. 

metabolomics data.  

The use of additional information in an analysis of metabolomics data is 

illustrated by the following application. The urine of healthy rhesus monkeys has 

been sampled at 29 time-points in a time course of 2 months in a longitudinal 

normality study. Since this is a normality study, the external disturbances of the 

environment of the monkeys are kept as low as possible. Therefore the variation 

in urine composition will mainly be caused by the natural variation in the 

metabolism of the monkeys. The objective of this research is obtaining a 

simplified view on the data, in which the metabolic biorhythms occurring in the 

chemical composition of the urine are captured. 

The dataset consists of 1H-NMR spectra of the described monkey urine. In 

addition to these spectra, information about the experimental error is present 

from repeated measurements on the urine samples. The experimental error is 

heteroscedastic, which means that the standard deviation of the experimental 

error depends on the size of the signal. A PCA model gives a distorted view on 

the data when the experimental error is non-uniform. WPCA is a method that can 

compensate for this non-uniform experimental error. The obtained WPCA model 

captures the natural variation underlying the data better than PCA (Wentzell, 

Andrews et al., 1997). Therefore WPCA is used for the analysis of this dataset. 

The error is described using a variance function (McCullaugh and Nelder, 1989). 

The weights used for the WPCA-analysis are calculated from the variance 

function. The results obtained from the analysis are compared to a data analysis 

with PCA, where the information about the error is not used.  

In this paper the WPCA method is presented and its properties are compared to 

the properties of PCA. Then the application of WPCA to the analysis of the 

metabolomics dataset is shown. Finally the results of the WPCA analysis are 

compared to the results of the PCA analysis. The difference between the results 

obtained from PCA and WPCA is explained using the original data. 
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2.2 System and Methods 

2.2.1 Urine Samples 

Urine is obtained from rhesus monkeys (Macaca mulatta). Samples are taken of 

ten monkeys at 29 non-equidistant days over a time course of 57 days. Of the 

monkeys, 5 are male and 5 are female. Prior to NMR spectroscopic analysis the 

urine samples are lyophilised and pre-treated by adding 1mL of urine to 1 mL of 

sodium phosphate buffer (0.1 M, pH 6.0, made up with D2O) containing 1mM 

sodium trimethylsilyl-[2,2,3,3,-2H4]-1-propionate (TSP) as an internal standard 

(δTSP = 0.0). 

2.2.2 Data acquisition 

NMR spectra are measured in triplicate using a Varian Unity 400 MHz NMR 

spectrometer using a proton-NMR setup at 293 K. Free Induction Decays (FIDs) 

are recorded as 64K datapoints with a spectral width of 8.000 Hz. 45 degree 

pulses are used with an acquisition time of 4.10 s and a relaxation delay of 2 s. 

The spectra are acquired by accumulation of 128 FIDs. The signal of the residual 

water is removed by a pre-saturation technique in which the water peak is 

irradiated with a constant frequency during 2 s prior to the acquisition pulse. The 

spectra are processed using the standard Varian software. An exponential 

window function with a line broadening of 0.5 Hz and a manual baseline 

correction is applied to all spectra. After referring to the internal NMR reference 

(TSPδ =0.0), peak shifts are corrected and line listings are prepared using 

WINLIN software (internal software TNO, see also (Vogels, Tas et al., 1996)). 

Such preprocessing is a necessary step for subsequent data analysis. To obtain 

these listings all lines in the spectra above a threshold corresponding to about 

three times the signal-to-noise ratio are collected and converted to a data file 

suitable for multivariate data analysis applications. Each spectrum is normalised 

to have unit sum-of-squares, to remove differences in dilution between different 

urine samples.  
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NMR-spectra are obtained containing peaks on 332 chemical shifts from 0.89 to 

9.13 ppm. Since three repeated measurements are performed on each sample, 

the total available data consists of 870 NMR-spectra. To avoid the problems 

connected with multiple sources of variation in the data each sample is 

represented by the mean spectrum of the repeated measurements (Jolliffe, 2002, 

pg. 351). In total there are 290 spectra in the dataset.  

2.2.3 Data Analysis 

2.2.3.1 Principal Component Analysis 

The properties of PCA are well understood and thoroughly described in the 

literature (Jackson, 1991; Jolliffe, 2002). PCA defines a model of multi- or 

megavariate data. This model is a lower dimensional subspace that explains 

maximum variation in the original data. The dimension of this subspace is defined 

by the number of principal components that is chosen for the PCA-model. The 

loss function g  that is minimised in PCA is given in equation (1).  

 

(1)  ( ) 2
, T

PCAPCAPCAPCA PTXXPT −=g  

 

where X is the ( )JI ×  matrix containing the data, I  is the number of samples 

(e.g. spectra) in the dataset and J is the number of variables (e.g. chemical 

shifts); PCAT  is the PCA score matrix of size ( )RI × and PCAP  is the PCA loading 

matrix of size ( )RJ × , where R  is the number of principal components of the 

PCA-model. Each principal component is defined by the outer product of a 

column of PCAT  and the corresponding column of PCAP . The loading and the 

score matrices define the model obtained by PCA: The loadings-matrix is an 

orthonormal basis that describes the lower dimensional subspace of the PCA-

model as a set of vectors in the space spanned by the variables. The scores 

describe each sample as a co-ordinate within the space spanned by the loadings. 

The lower-dimensional representation of the data in the PCA-model is easier to 
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interpret than the original data and information about the phenomena underlying 

the variation in the data can be obtained from the PCA-model. 

2.2.3.2 Weighted Principal Component Analysis 

When there is additional information present about the data, PCA can not 

generally use this information. WPCA is a data analysis method that uses 

additional information about the data by the definition of weights. Using this 

information, a model containing scores and loadings is obtained that describes a 

space that is generally different from the space found with PCA. The weights in 

WPCA are introduced in the loss function. When there are no offsets in the data, 

the loss function h  that is minimised in WPCA is given in equation (2) (Bro, 

Smilde et al., 2002; Kiers, 1997; Wentzell, Andrews et al., 1997).  

 

(2)  ( ) ( ) 2
,, T

WPCAWPCAWPCAWPCA PTXWWXPT −∗=h  

 

The WPCA scores of dimensions ( )RI ×  are denoted by WPCAT and WPCAP  are the 

WPCA loadings of dimensions ( )RJ × , where R  is the number of principal 

components of the WPCA-model. The ∗  indicates the Hadamard (element-wise) 

product. Matrix W is the weight matrix containing weights corresponding to each 

element of the data and has dimensions ( )JI × . An element-wise expression of 

the minimisation function h  is given in equation (3). 

 

(3)  ( ) ( ) ( )∑∑∑∑
= == =

=−=
I

i

J

j
ijij

I

i

J

j
ijijijijijij ewxxwwxxh

1 1

2

1 1

22 ˆ,ˆ  

 

In equation (3) i  from 1 to I  is an index for the samples and j  from 1 to J  is an 

index for the variables. The value in the data for sample i  and variable j  is given 

by ijx , the corresponding weight is given by ijw  and the estimated value of ijx  

from the WPCA-model is given by ijx̂ . The model residuals are given by ije . 
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Equation (3) shows that in WPCA, each value of ije  receives its own weight ijw . 

Comparison of equation (1) to equation (2) shows that PCA is a special case of 

WPCA, where all weights ijw  are equal to 1. 

2.2.3.3 Properties of PCA and WPCA 

The fact that in WPCA the model residuals are weighted means that WPCA is not 

equal to a scaling of each value ijx  in the data with a weight ijw . Performing a 

PCA on the matrix product XW ∗  is not generally equal to solving the loss 

function given in equation (2). Only when the weight matrix W has a rank of 1, 

WPCA and performing a PCA on XW ∗  are equivalent (Bro and Smilde, 2003; 

Paatero and Tapper, 1993). Matrix W has a rank of 1 when WPCA is used as 

PCA or when scaling is applied to each variable or sample. When individual 

weights are defined for each ijx , the rank of W is generally higher than 1. If the 

rank of W is higher than 1, a simple transformation of the variables or samples 

cannot solve equation (3) anymore. 

A WPCA-model where the rank of W is higher than 1 is not nested (Wentzell, 

Andrews et al., 1997). Therefore, the model T
WPCAWPCAPT  with 1−R  principal 

components is not contained within the model of R  principal components. This 

means that the scores and loadings of every principal component will change 

when a different number of principal components is selected for the model. When 

WPCA-models of a different rank are compared, the information contained in all 

principal components should be considered simultaneously. Another difference 

between PCA and WPCA is the removal of the offsets in the data. Offsets are 

parts of the data that are constant for all samples. These offsets are often not 

interesting for the explanation of the variation in the data and a lower-rank model 

can be obtained by removing them. When PCA is used, offsets can be removed 

from the data by mean centering (Bro and Smilde, 2003; Gabriel, 1978; Kruskal, 

1977). When using WPCA, mean-centering prior to the data analysis does not 

guarantee that the offsets in the data are removed. In WPCA the offsets have to 
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be estimated along with the scores and loadings during the minimisation of the 

WPCA loss function.  

2.2.3.4 Algorithms 

Different algorithms are available that perform a data analysis using the loss 

function in equation (2) and provide a model of the obtained subspace containing 

orthogonal scores and orthonormal loadings. Gabriel and Zamir have developed 

an algorithm that performs criss-cross iterations (Gabriel and Zamir, 1979). Kiers 

has developed the PCAW algorithm (Kiers, 1997) that uses majorization 

iterations (Heiser, 1995) to minimise the loss function given in equation (2). 

Wentzell et al. have developed the Maximum Likelihood PCA (MLPCA) algorithm 

(Wentzell, Andrews et al., 1997) that uses alternating least squares regression to 

perform WPCA. In MLPCA the weights can be defined to include covariances 

between the errors of the different values in the data. Bro et al. (Bro, Smilde et 

al., 2002) have developed the MILES algorithm that combines the use of 

majorization iterations with the implementation of information about the 

covariances between the errors.  

For this research, the algorithm developed by Kiers has been used, since it 

allows for an easy implementation of a general method for estimating the offsets 

in the data. This offset estimation is not implemented in the publicly available 

criss-cross and MLPCA algorithms. The method for offset estimation that is 

available in the MILES algorithm is restricted to estimation of column offsets and 

more general forms of offset estimation have not been implemented. Furthermore 

MILES requires the input of a ( )IJIJ ×  weight matrix which decreases the 

computational efficiency. 
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Figure 2 A typical 1H NMR-spectrum in the dataset 

2.3 Implementation 
For each monkey, a 29 x 332 data block was constructed. In these blocks each 

row contains an averaged spectrum of a urine sample collected at a time-point 

during the study. A typical spectrum in the dataset is given in Figure 2. The data 

blocks of all monkeys are collected to form a data matrix X containing 290 

spectra on the rows. The variables in the matrix are the 332 chemical shifts in the 

NMR-spectra. The construction of the data matrix is given in Figure 3. 

The model of the data should describe a low dimensional space, in which the 

normal longitudinal (time-dynamic) variation of the chemical composition of the 

monkey urine is expressed. This expression of the longitudinal variation in the 

data should be based on all monkeys in the dataset. The scores of a model of the 

data in X should contain longitudinal urine profiles for each monkey, expressed 

on the space of the normal longitudinal variation of all monkeys. The space 

spanned by the normal longitudinal variation of all monkeys is described by the 

loadings. 

To make a model of the data that describes the longitudinal variation of the urine 

composition of all monkeys, the offsets belonging to each monkey need to be 

removed from the data. This can be achieved by column mean-centering each 

data block individually. Then the offset of each individual monkey will be removed 
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and mean-centering of the data matrix X will be sustained (Bro and Smilde, 2003; 

Timmerman, 2001). 
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Figure 3 The data matrix X consists of 10 blocks, one for each monkey. Each block 
contains the spectra for all 29 time-points. X contains the data values ijx  

2.3.1 PCA-analysis  

A PCA-model is made of the data matrix X. The rank of the PCA-model of matrix 

X can be determined by different methods. A simple and commonly used method 

is the ‘scree graph’ (Cattell, 1966;Jolliffe, 2002). The scree graph of this PCA 

model is given in Figure 4. Using this scree graph, 3 principal components are 

selected for the PCA-model. This PCA model explains 66 % of the variation in 

the data.  

PCA is performed using the PCA-routine from the PLS-Toolbox 2.1 (Eigenvector 

Research, Inc., Manson, WA) for MATLAB (Mathworks, Inc., Natick, MA). 

2.3.2 WPCA analysis 

Prior to the WPCA data analysis, the elements ijw  of matrix W have to be 

determined. The weights in matrix W are calculated by using information from the 

repeated measurements of each sample. Matrix W is obtained by the analysis of 

the relationship between the size of the data values ijx  and the standard 

deviation of the repeated measurements used to calculate ijx .  
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Figure 4 Scree graph of the PCA model. 3 principal components have been selected for the 
model from this graph 

To make the estimation of the experimental error from the repeated 

measurements more robust, a binning procedure is performed on the data. 

Increasing values of ijx  are divided in 160 bins. The mean of ijx  and the mean 

standard deviation are a descriptor of each bin and their relationship is given in 

Figure 5. A first-order variance function is fitted through this relationship using the 

ROBUSTFIT function from the Statistics toolbox for MATLAB (Mathworks, Inc., 

Natick, MA). Figure 5 also shows this variance function.  

The experimental error is estimated by calculating the variance function value for 

each ijx . When the experimental error is small, the accuracy of ijx  is large and 

should be given a high importance in the data analysis. Therefore each ijw  is 

defined as the reciprocal of the estimate of the experimental error. The fitted 

function is independent of the number of predefined bins, since its parameters 

are stable when between 120 and 640 bins are used to estimate the function.  

The insert in Figure 5 shows that for small signals with a peak size below 0.0030, 

the noise is relatively large (with a standard deviation up to 0.0035). Because we 

do not want to assign large weights to noise, the variance function is set to a 

constant value for signals lower than 0.0030. The signals below the threshold are 

not used to fit the variance function.  
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WPCA analysis is performed on the data matrix X where the data is not mean-

centered, but where the offsets of each data block are estimated together with 

the WPCA-model. WPCA is performed using the PCAW algorithm by Kiers 

(Kiers, 1997). The algorithm has been adapted to include the estimation of the 

offsets of each data block within the algorithm. The used algorithm is given in the 

Appendix at the end of this chapter. The number of selected principal 

components for the WPCA-model is identical to that of the PCA-model to 

facilitate comparison of the model results. A WPCA model containing 3 principal 

components explains 57 % of the variation in the data. Because PCA and WPCA 

use different distance measures, this number cannot be directly compared to the 

amount of explained variation in PCA. 
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Figure 5 Relationship between the data value and its corresponding standard deviation. 
The continuous line indicates the estimated function and the closed circles indicate the 
points that have been used to estimate the function. The open circles indicate the points 
that have been discarded from the estimation of the function. The insert shows the lower 
threshold that is defined for the function. 
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2.3.3 Comparison of the PCA and the WPCA-model 

The model obtained by PCA cannot be compared directly to the model obtained 

by WPCA. Both models describe a space that is spanned by a basis formed by 

the loadings. 

The differences between the bases consist of differences in the subspaces 

spanned by the bases and the rotation of the two bases relative to each other. To 

compare the differences between both subspaces, the rotational differences 

between both bases need to be removed. Therefore an orthogonal 

transformation is performed on the WPCA-loadings to match the PCA-loadings 

as closely as possible. The transformation of the loadings is performed using a 

Procrustes rotation and reflection (Gower, 1995; Vandeginste, Massart et al., 

1998). The WPCA loadings are rotated to match the PCA loadings using 

equation (4). 

(4) T
WPCA

-1T
RotWPCA, PQP =  

 

In equation (4), RotWPCA,P  are the rotated WPCA-loadings and Q  is an ( )RR ×  

orthogonal transformation matrix. The same rotation has to be applied to the 

scores obtained from WPCA. After rotation both scores can be compared to each 

other. The scores are rotated using equation (5), where RotWPCA,T  are the rotated 

WPCA-scores.  

 

(5) QTT WPCARotWPCA, =  

 

2.4 Results 
The effect of the weighting on the data analysis can be examined by investigating 

the difference between the obtained scores for PCA and WPCA.  

From PCA and WPCA a model is obtained. Both models consist of a loading 

matrix containing 3 loading vectors. Also a score matrix is obtained that consists 

of 3 vectors of 290 elements. The 290 elements are the scores of the 29 time-

points in the study for the 10 different monkeys. The scores obtained for PCA 
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and WPCA are compared for male monkey 3, which is a typical monkey for the 

dataset. The PCA scores PCAT  of monkey 3 are given in Figure 6 and Figure 7. 

The WPCA scores RotWPCA,T  of monkey 3 are given in Figure 8 and Figure 9.  
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Figure 6 PCA scores for monkey 3 for PC 1 and PC 2 

Comparing Figure 6 to Figure 8 shows that the scores of both methods are very 

similar for the first principal component. The difference between the scores in 

Figure 6 and Figure 8 is mostly in the scores on the second principal component. 

The second principal component of PCA is therefore different from the second 

principal component of WPCA.  

Comparing Figure 7 to Figure 9 shows that there is a clear difference between 

the PCA and the WPCA models. For example, the scores on day 15 and day 19 

are very similar in the PCA model, while the WPCA scores are quite different. 

Conversely, the WPCA scores of days 6 and 17 are very similar, while the PCA 

scores are quite different from each other.  

The largest difference between both models for monkey 3 is the score of day 1. 

For time-point 1 the PCA-score has an extreme value for PC 3 and the WPCA 

score has an extreme value for PC 2. A possible explanation for the difference 
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between PC 2 and PC 3 for time-point 1 is that the deviation of this spectrum 

from the mean spectrum of all days belonging to monkey 3 is very large for small 

and medium peaks, contrary to the large peaks. The scores of time-point 1 for 

monkey 3 are different for WPCA and PCA because smaller peaks with a smaller 

experimental error are given a higher importance in WPCA. Since the first 

principal component of WPCA and PCA are very similar, the loadings of PC 1 

look very much alike for both methods. For PC 2 and PC 3 there are clear 

differences visible between the loadings. The loadings of PCA and WPCA for PC 

3 are given in Figure 10, together with the standard deviation of each signal in 

the offset corrected data. 
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Figure 7 PCA scores for monkey 3 for PC 2 and PC 3 
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Figure 8 WPCA scores for monkey 3 for PC 1 and PC 2 
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Figure 9 WPCA scores for monkey 3 for PC 2 and PC 3 

It is clear from Figure 10 that in both models the chemical shifts on which there is 

a large natural variation are very important. The signals at e.g. chemical shifts 

1.93, 2.93 and 3.56 have a large standard deviation and a large loading for both 
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PCA and WPCA. A clear difference between the loadings in Figure 10 is their 

direction: e.g. in the WPCA model the loading of 3.56 and 3.27 ppm are both 

positive, while in the PCA model the loading of 3.56 ppm is positive and the 

loading of 3.27 ppm is negative. Furthermore the large loading in PCA on 3.03 

ppm is absent in the WPCA model. Finally, in the loadings of the PCA model only 

the large peaks are visible, while the loadings of the WPCA model give a higher 

importance to the region between 3.1 – 4.1 ppm. This also shows that WPCA 

gives a higher importance to the smaller peaks in the data that have a smaller 

experimental error. This is an example of natural variation that is obscured in the 

view obtained of the data by using PCA and is made visible in the WPCA model. 

2.5 Conclusions 
The scores and loadings show that the WPCA-model is different from the PCA-

model.  This is due to the fact that a priori information about the data is used in 

WPCA. The weighing used in this WPCA analysis is based on the experimental 

error: peaks that contain a smaller error are made more important in the data 

analysis. The model of the experimental error in Figure 5 shows that smaller 

peaks have a smaller experimental error. This means that smaller peaks are 

given a larger weight and therefore a higher importance in the data analysis. 

Additionally to accounting for the experimental error, a favourable side effect of 

weighing based on peak size is that it will decrease the bias of the model towards 

compounds with a high concentration in the urine. Comparison of the scores 

shows that the data analysis using WPCA gives a different view on the data than 

PCA. The WPCA model is more focused on the natural variation in the data. 

The use of information about the experimental error in WPCA is one application 

where additional information about the data is used. Other possible applications 

of WPCA in metabolomics, proteomics and transcriptomics are abundant. Often 

prior information is present about the data. For example, data with many missing 

values can be obtained or information about the importance of certain variables 

can be present. 
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Figure 10 a. Standard deviation of the signal for each chemical shift in the data and 
loadings of PC 3 for b. PCA and c. WPCA. The horizontal dotted line in c. indicates the 
region between 3.1 and 4.1 ppm that has a higher importance in the WPCA model 

Using additional information about the data obtained from an experiment, the 

researcher can generate weights for a WPCA analysis. WPCA can then be used 

as a generic bioinformatics tool that can use these sources of information in a 

data analysis. 
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2.6 Appendix 
The adapted WPCA algorithm by Kiers is presented here. When the data 

contains column offsets, the algorithm minimises the function 

( ) 2
WPT1mX T

WPCAWPCA
T ∗−− , where Tm  is a size J  row-vector containing the 

offsets and 1 is a size I  column vector containing ones. The minimisation is 

performed by alternatingly estimating T
WPCAWPCAPT  from the offset corrected data 

T1mX − , and the offset vector 'm  from the WPCA-model and the non-offset 

corrected data: T
WPCAWPCAPTX − . Both estimations are performed by majorization 

iterations (Heiser, 1995). 
The algorithm is given by steps 1 to 11. 

 

Initialisation 

1. Initialise the algorithm using the PCA solution: PCAWPCA TT = , 

PCAWPCA PP = and the column mean of X, T
initm  as the offset vector Tm : T

init
T mm = . 

Also a random initialisation can be chosen or an initialisation with all zeros for the 

scores and loadings. 

2. Correct the data for the offset: T
initoff 1mXX −= , where offX is the offset 

corrected data and 1 is a size I  column vector of ones. 

 

Minimisation 
3. Calculate the majorizing function F  by: 

( ) ( ) T
WPCAWPCA2

T
WPCAWPCAoff

2

PTPT-XWF +
∗

=
maxw

where 2
maxw is the highest value in 

( )2W . And ( ) WWW 2 ∗=  

4. Update WPCAT and WPCAP  by performing a PCA on the matrix F  calculated 

in 3: 1
T
WPCAWPCA EPTF += , where 1E is a matrix containing the residuals. 

5. Calculate 2E : a matrix containing the residuals and the offsets: 
T
WPCAWPCAPTXE −=2  
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6. Estimate the offsets by calculating the majorizing function 2F : 
( ) ( ) T

T2

2 1m1mEWF +
−∗

= 2
max

2

w
 

7.  Calculate the offset vector: 2
TT F1m

I
1= , where T1  is a size I  row vector 

and Tm  is the updated offset.  

8. Update the offset corrected data: T
off 1mXX −=  

9. Evaluate the loss function ( ) 2T
WPCAWPCAoff PTXW −∗=iterSS where iterSS is 

the value of the loss function at iteration iter  

 
 
Evaluation 

10. Calculate the convergence criterion: 
1

1

−

−−
=

iter

iteriter
iter SS

SSSS
dSS  

11. Iterate steps 3 until 9 until convergence of iterdSS  

 

In our case, each block of the data contains a separate offset. This can be easily 

implemented in the presented algorithm.  
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3 Multilevel Component Analysis of Time-resolved 
Metabolic Fingerprinting data 

3.1 Introduction 
In genomics and systems biology a range of new methods has been developed 

that investigate the state of an organism or a cell on different aggregation levels. 

These methods form the basis for the analysis of the processes that lead from 

the DNA-code to phenotypic changes in an organism. Three of these methods 

are transcriptomics, proteomics and metabolic fingerprinting; all three generating 

large amounts of data. Contained within this data is the information about the 

organism that is investigated. To obtain this information, various types of data 

analysis methods are used.  

Metabolic fingerprinting investigates the metabolism of an organism. Specifically, 

the effect of certain influences (e.g. diet, toxic stress or disease) on metabolism is 

the focus of research. In metabolic fingerprinting the chemical composition of 

cells, tissue or body fluids is studied. Within Life Sciences a major emphasis is on 

studying effects on the metabolite pattern in the development of diseases 

(biomarker or disease research) or the effect of drugs on this pattern, so called 

drug response profiling. The approach of metabolite fingerprinting originates from 

the nineteen-seventies and the combined approach of metabolite fingerprinting 

and multivariate statistics has been first applied in the early nineteen-eighties 

[1,2]. In the development of these strategies focusing on disease biomarker 

patterns, it became clear that biomarker patterns of living systems on a single 

time point or evaluated over different individuals generate important information 

but do not capture the dynamics of a system. Clear evidence has been generated 

that deregulation of the dynamics of a system can be the onset of disease 

development (dynamic disease concept, [3]). The key to investigate dynamic 

phenomena is the analysis of time series and a better understanding of 

“normality”. Using non-invasive techniques like the analysis of urine (urinalysis) 

based on metabolic fingerprinting is an attractive approach and has been used in 

many studies since the early onset in clinical chemistry and toxicology related 
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profiling. An example of the application of metabolic fingerprinting in a time-

resolved experiment focusing on pre-menstrual syndrome (PMS) is given by Tas 

et al. [4]. 
A technique that is suitable for the analysis of the chemical composition of urine 

is 1H-Nuclear Magnetic Resonance (NMR) spectroscopy [5]. Spectra of urine 

obtained by NMR-spectroscopy are complicated and have a high information 

density. Information about the phenomena underlying the variation in these 

spectra can be extracted using multivariate statistical methods commonly used in 

pattern recognition and chemometrics. 

Much work has been done in both NMR spectroscopy and the multivariate 

statistical data analysis of urinalysis data in the field of sampling and 

instrumentation: e.g. [6,7,8,9,10,11] and in the development of models for the 

data analysis of metabolic fingerprinting data: e.g. [12,13,14,15].   

The data generated in metabolic fingerprinting experiments on multiple 

individuals where time-resolved information is present is longitudinal, multisubject 

and multivariate. The data consists of multivariate spectra taken at multiple time-

points in the study for several subjects (animals) simultaneously. Therefore, such 

datasets contain multiple types of variation: both originating from differences 

between the animals that are constant in time (e.g. due to differences in age, 

genotype) and the time-dynamic variation of the urine composition of each 

individual animal (e.g. biorhythms, onset of disease or a toxic insult). This means 

these datasets have a multilevel structure [16].  

Research where data with a multilevel structure is generated is abundant in 

biology, as well as in many other fields. Examples of multilevel problems are the 

monitoring of hospital patients in time, the monitoring of batch processes in 

process industry and economic time-series analysis of multiple countries, 

economic branches or companies. 

Principal Component Analysis (PCA) is a method that is often used for the 

unsupervised analysis of metabolic fingerprinting data. It gives a simplified lower-

dimensional representation of the variation that is present in a dataset. The 

scores and loadings obtained from PCA can be visualized and interpreted. 
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However, if PCA is used for the analysis of multilevel data, the different types of 

variation in the multilevel data will not be separated and the obtained principal 

components will describe a mixture of different types of variation. In the analysis 

of time-resolved metabolic fingerprinting data this means that a PCA model does 

not give a separate interpretation of the time-dynamic variation of the urine 

composition of the individuals and the variation between the individuals. Both 

types of variation in the data are confounded within the PCA model, which 

seriously hampers the interpretation of the phenomena underlying the variation in 

the data.  

Kiers et al. [17] have proposed a generalization of PCA to analyze data 

containing sets of samples belonging to multiple populations, measured on the 

same variables. This method is called Simultaneous Component Analysis (SCA). 

Prior to SCA, the static variation between the populations is removed from the 

data. Therefore the SCA model is focused on the variation within the populations 

and this variation is not confounded with the variation between populations, like 

in the PCA model. Timmerman et al. have applied this method to the analysis of 

multivariate multisubject time-resolved data [18]. An SCA model gives a better 

view on the time-resolved variation in these datasets. However if SCA is used, 

interesting information about the static variation between individuals is lost from 

the analysis. Therefore possibly valuable information about the processes 

underlying the variation in the data is not obtained using the SCA model. 

Multilevel methods make a model of a dataset that contains different submodels 

for the different types of variation in the data. Timmerman has proposed a 

method called Multilevel Component Analysis (MCA) [19], in which various 

component submodels give a summary of the different types of variation in the 

data. A constrained version of the MCA model is the Multilevel Simultaneous 

Component Analysis (MSCA) model. In this model the SCA and MCA 

approaches are combined. As a result a two-level MSCA model of time-resolved 

measurements on multiple individuals consists of two submodels: An SCA model 

describing the dynamic variation of the individuals (the within-individual variation) 
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and a PCA model describing the static differences between the individuals (the 

between-individual variation).  

The use of MSCA for the analysis of metabolic fingerprinting data is illustrated by 

the following application. The urine of healthy rhesus monkeys has been sampled 

at 29 time-points in a time course of 2 months in a normality study. Since this is a 

normality study, the external disturbances of the environment of the monkeys are 

kept as low as possible. The variation of the metabolism of the monkeys is 

monitored by 1H-NMR-spectroscopy of urine of the monkeys. These spectra are 

analyzed using MSCA. This model is used for investigating biorhythms in the 

urine composition and therefore in the metabolism of the monkeys. The 

information about these biorhythms can then be used to determine whether 

variation that is observed in e.g. a toxicology study can be attributed to the toxic 

insult or is part of the normal variation in metabolism. Also the phenomena 

underlying the normal biological variation in the urine composition between 

different monkeys can be identified using this MSCA model. 

The remainder of the article is organized as follows. First PCA is described 

briefly. Then the MCA method is explained and the constraints on the MCA 

model are defined that lead to the formulation of the MSCA model. Subsequently, 

MSCA is used for the analysis of the monkey urine data and the results of the 

data analysis are explained. Finally, the results obtained from MSCA are 

compared to the results of an analysis using PCA. In subsequent chapters MSCA 

is generalized for the use with any ANOVA model (MSCA builds on the one-way 

ANOVA model); this more general merger of ANOVA and SCA will be referred to 

as ANOVA-SCA, or ASCA. 

3.2 Materials and Methods 

3.2.1 Urine Samples 

Urine is obtained from rhesus monkeys (Macaca mulatta). Samples are taken of 

ten monkeys at 29 non-equidistant days over a time course of 57 days. Of the 

monkeys, 5 are male and 5 are female. Prior to NMR spectroscopic analysis the 

urine samples are lyophilized and pre-treated by adding 1mL of urine to 1 mL of 
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sodium phosphate buffer (0.1 M, pH 6.0, made up with D2O) containing 1mM 

sodium trimethylsilyl-[2,2,3,3,-2H4]-1-propionate (TSP) as an internal standard 

(δTSP = 0.0). 

3.2.2 Data acquisition 

NMR spectra are measured in triplicate using a Varian Unity 400 MHz NMR 

spectrometer using a standard proton-NMR setup at 293 K. Free Induction 

Decays (FIDs) are recorded as 64K datapoints with a spectral width of 8.000 Hz. 

A single 45 degree pulse is used with an acquisition time of 4.10 s and a 

relaxation delay of 2 s. The spectra are acquired by accumulation of 128 FIDs. 

The signal of the residual water is removed by a pre-saturation technique in 

which the water peak is irradiated with a constant frequency during 2 s prior to 

the acquisition pulse. The spectra are processed using the standard Varian 

software. An exponential window function with a line broadening of 0.5 Hz and a 

manual baseline correction is applied to all spectra. After referring to the internal 

NMR reference TSP. The NMR data reduction file was imported into Winlin 

(V1.10, TNO, The Netherlands). Minor variations from comparable signals in 

different NMR spectra were adjusted and lines were fitted without loss of 

resolution, based on the Partial Linear Fit Algorithm [20]. Subsequently, all lines 

in the spectra above a threshold corresponding to about three times the signal-to-

noise ratio are collected and converted to a data file suitable for multivariate data 

analysis applications. Each spectrum is vector normalized. 

NMR-spectra are obtained containing peaks on 332 chemical shifts from 0.89 to 

9.13 ppm. Since three repeated measurements are performed on each sample, 

the total available data consists of 870 NMR-spectra. To avoid the problems 

connected with multiple sources of variation in the data, each sample is 

represented by the mean spectrum of the repeated measurements [21, pg. 351]. 

In total there are 290 spectra in the dataset.  
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Figure 11 Structure of the dataset. K  is the total number of measurement occasions in the 
study (that is equal for all monkeys). I is the total number of individuals (monkeys) and L  
is the total number of samples (spectra) in the dataset. J  is the total number of variables 
(chemical shifts) in the data. 

3.2.3 Data Analysis 

A matrix rawX  of dimensions ( )JL ×  is constructed that contains the obtained 

NMR-spectra, where L  is the number of samples (e.g. spectra) in the dataset 

and J  is the number of variables (e.g. chemical shifts). For the notation used 

here, see the Appendix. The structure of rawX  is given in Figure 11. The 

multivariate data analysis methods that are described here, all attempt to 

approximate the information that is contained in a data matrix rawX  by defining a 

model that contains one or more lower-dimensional subspaces within the high-

dimensional data. This model should focus on the variation in the data. Therefore 

the invariant part of the data (the offset) is removed by mean-centering: thereby 

each column mean of matrix rawX  is modeled separately from the column 

variation [22,23]. 
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The analysis methods used in this research attempt to approximate the 

information in rawX , by fitting component models that estimate this data. This 

estimation is given in equation (1). 

 

(1)  EX1mX T
raw ++= ˆ  

 

where Tm  is a size J  row vector containing the mean values of each column of 

rawX  and L1  is a size L  column vector containing ones (the term TmL1  is related 

to the mean centering); matrix X̂  of dimensions ( )JL ×  contains the data as it is 

estimated by the model. In equation (1), the parts of the data (e.g. small sources 

of variation, noise) that are not contained in the model are given in de model 

residuals E  of dimensions ( )JL × . Fitting the models boils down to minimizing 

the sum of squares 2E [24]. 

3.2.3.1  Principal Component Analysis 

The properties of PCA are well understood and thoroughly described in the 

literature [21,25]. PCA generates a bilinear model of multivariate data, by defining 

a lower dimensional subspace that explains as much variation in the original data 

as possible. The number of principal components that is chosen for the PCA 

model defines the dimension of this subspace. The model that is constructed in 

PCA is given in equation (2).  

 

(2)  PCA
T
PCAPCA

T
raw EPTm1X ++= L  

 

where PCAT  is the PCA score matrix of size ( )RL ×  and PCAP  is the PCA loading 

matrix of size ( )RJ × , where R  is the number of principal components of the PCA 

model. The matrix PCAE of size ( )JL ×  contains the residuals of the PCA model. 

Each principal component is given by the outer-product of a column of PCAT  and 

the corresponding column of PCAP . The loading and the score matrices define the 
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model obtained by PCA. The columns of the loading matrix form an orthonormal 

basis that describes the lower dimensional subspace of the PCA model as a set 

of vectors in the space spanned by the variables. The scores describe each 

sample as a co-ordinate within the space spanned by the loadings. The lower-

dimensional representation of the data in the PCA model is easier to interpret 

than the original data and information about the phenomena underlying the 

variation in the data can be more easily obtained from the PCA model. Equation 

(2) shows that a single lower-dimensional subspace is defined in the model to 

describe all variation in the data. 

3.2.3.2  Multilevel (Simultaneous) Component Analysis 

Multilevel Component Analysis (MCA) is an extension of PCA that can be used if 

the variation in the data occurs on different levels simultaneously, e.g. on two 

levels when a model is made of the time-dynamic variation of different 

individuals, like the urine composition of different monkeys on multiple time-

points in this study. A two-level MCA can also be defined as a model within the 

framework of equation (1), where the data matrix rawX  is reconstructed by an 

offset and models describing the variation on 2 levels. The equation for the MCA 

model for one individual i  (where Ii K1= ) is given in equation (3). 

 

(3)  
iiiiKKi ii MCA,

T
w,w,

T
b

T
b,

T
raw, EPTPt1m1X +++=  

 

where iraw,X  is the ( )JKi ×  part of rawX  that belongs to individual i ; T
b,t i  is a 

size bR row vector containing the between-individual scores of individual i ; bP  is 

a ( )bRJ ×  matrix containing the between-individual loadings and bR  is the 

number of components chosen for the between-individual model. The within-

individual scores of i  are denoted by iw,T , which is a ( )ii RK w,×  matrix; iw,P  is a 

( )iRJ w,×  matrix containing the orthogonal within-individual loadings of individual 

i  and iR ,w  is the number of components chosen for the within-individual model of 
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individual i  (this means each within-individual model can have a different number 

of components); 
iK1  denotes a size iK  column vector of ones and iK  is the 

number of measurement time-points (occasions) for individual i . The matrices 

iw,T  are constrained to be mean-centered: T
w,

T
w,

0T1
ii RiK = . Therefore all within-

individual models are orthogonal to the between-individual model. A 

mathematical proof of this has been given by Timmerman [19]. The constraint 

given to the between-individual scores is that ∑
=

=
I

i
RiiK

1
b

0tb, . By imposing this 

constraint the between-individual scores will describe the deviation of each 

individual from the overall mean Tm .  

Equation (3) shows that the data in matrix rawX  is reconstructed in the MCA 

model by an offset term Tm1L that is equal for all samples in the data, a between-

individual part T
b

T
b, Pt1 iKi

 that is equal for all samples belonging to an individual i  

(hence the vector 
iK1 ) and a within-individual part T

w,w, PT ii  that is different for 

each sample in the data. This is a familiar concept from ANOVA [26]. Hence, 

MCA can be seen as a ‘merger’ of the factor estimation aspect of ANOVA and 

PCA.  

The I  loading matrices iw,P  of the within-individual models are generally different 

from each other. This implies that the within-individual scores iw,T  of the different 

individuals cannot be compared directly between individuals. This seriously 

hampers the interpretability of the MCA model. To increase the interpretability of 

such a multilevel component model the within-individual variation of all individuals 

is expressed on the same basis. When the within-individual loadings are imposed 

to be equal for all individuals, the MSCA model is obtained. As a result, the two-

level MSCA model only contains two different subspaces in which different types 

of variation in the data are explained. In the MSCA model, the within-individual 

scores of different individuals can be directly compared to each other, since they 

are expressed on the same basis. The MSCA model is given in equation (4). 
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(4)  
iiiKKi ii MSCA,

T
ww,

T
b

T
b,

T
raw, EPTPt1m1X +++=  

 

where wP  is a ( )wRJ ×  matrix containing the within-individual loadings that are 

equal for all individuals. This means that each within-individual MSCA model 

contains an equal number of components wR . For the model in equation (4) the 

MCA constraints hold as well: 
b

0tT
b, R

I

i
iiK =∑

=1
 and T

w,
T

w
0T1 RiKi

= . Note that for 

simplicity both in equations (3) and (4), iw,T  is used to indicate the within-

individual scores of individual i . Although the symbols are identical, the values of 

iw,T  may differ between both methods. 

In the MSCA model in equation (4), the non-dynamic variation between the 

individuals is explained by the term T
b

T
b, Pt1 iKi

(that differs between individuals) and 

the dynamic variation of each individual is explained by the term T
ww, PT i . This 

means that in the MSCA model, the static and dynamic variations are separately 

described and are not confounded. When more than two types of variation are of 

interest to the experiment, the MSCA model can be extended to include more 

than two levels. Then each level will separately describe these types of variation. 

In general the subspace spanned by the PCA loadings differs from the 

subspaces spanned by the loadings of the MSCA submodels: therefore generally 

the MSCA model cannot be obtained by any rotation of the PCA model. 

The model described in equation (4) is the basis for a range of methods. These 

methods differ in the additional constraints that are defined for covariances of the 

within-individual scores iw,T . The most general MSCA model is the MSCA-P 

model. In this model no constraints are placed on the within-individual scores, 

apart from the mean centering of the scores. The MSCA-P model determines the 

directions in which the within-individual variation is largest for all individuals and 

takes these directions as the within-individual loadings. This means that for each 

individual, the correlation between the within-individual components can differ. 

Also the variation described by each component for each individual can be 
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different. Therefore the MSCA-P model does not make any assumptions about 

similarities between the time-dynamic variations of different individuals. 

Timmerman has given several additional constraints for the MSCA-P model. The 

MSCA-PF2, IND and ECP models are all increasingly constrained to incorporate 

assumptions about the relationships between the within-individual variation of 

different individuals. The mathematical basis for these MSCA models has been 

thoroughly described by Timmerman and Timmerman et al. [19,18].  

For all MSCA models using the appropriate constraints, the parameters can be 

obtained by a least-squares method. This means that the MSCA model can be 

obtained from the minimization of the criterion MSCAf  given in equation (5), under 

all constraints defined for the MSCA model. 

 

(5)  ( ) ∑
=

−−−=
I

i
iiKKiii ii

,,,,f
1

2T
ww,

T
b

T
b,

T
raw,ww,bb,

T
MSCA PTPt1m1XPTPtm  

 
Comparison of equation (4) (which has to be concatenated for all individuals) to 

equation (2) shows that all MSCA methods are constrained versions of the PCA 

model. Hence, the PCA model will explain equal or more variation in the data 

than a MSCA model in which an equal number of components (cumulative for all 

submodels) is fitted. The more constrained the MSCA model is, the less variation 

in the data it will explain for an equal number of fitted components. However, the 

MSCA models have a much better interpretability for multilevel data than the 

PCA model due to the fact that the different submodels of MSCA describe 

different types of variation in the data. The loss of fit can therefore be seen as a 

payoff for an increased interpretability of the model. Comparison of equation (4) 

to equation (2) shows furthermore that the PCA and the MSCA-P models are 

equal when there is no between-individual variation in the data. 

Due to the orthogonality of the submodels, the criterion MSCAf  can be minimized 

by separately determining the within and between-individual models [19]. How to 

obtain the MSCA model parameters in the case of an equal number of 

measurement occasions for all individuals is shown in the next paragraph. 
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3.2.3.3  Obtaining the MSCA model parameters 

In the remainder of the article an equal number of measurement occasions 

KKKK i === 21  is assumed for each individual, so that LIK = .  

The between-individual model and the within-individual model can be determined 

after a decomposition of matrix X , where matrix X  contains the mean-centered 

data and has dimensions ( )JL × . This decomposition consists of a mean-

centering of each matrix iX , where iX  is the ( )JK ×  partition of matrix X  

belonging to individual i . This is given in equation (6). 

 

(6)  T
c, m1XX iKii −=  

 

where Tmi  is a row vector containing the column means of matrix iX  and ic,X  is 

the size ( )JK ×  matrix containing only the dynamic within-individual variation 

belonging to individual i .  

The I  vectors Tmi  can be concatenated into a ( )JI ×  matrix M . Matrix M  now 

contains the non-dynamic differences between the individuals: the between-

individual variation. In the case of an equal number of measurement occasions 

for each individual, the between-individual model can be determined by 

performing a PCA on M . This is given in equation (7). The parameters of the 

between-individual model for different numbers of measurement occasions for 

each individual can be calculated by the method given by Timmerman [19].  

 

(7)  b
T
bb EPTM +=   

 

where bT  is a ( )bRI ×  matrix of which the rows contain the between-individual 

scores T
b,t i  and bE  is an ( )JI ×  matrix containing the residuals of the between-

individual model. Since matrix X  is mean-centered, matrix M  is also mean-
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centered and therefore the between-individual scores bT  are mean-centered as 

well. Hence the constraint ∑
=

=
I

i
RiiK

1
b

0tb,  is met. 

The within-individual submodel can be calculated by fitting a PCA (or a PF2, IND 

or ECP model [18]) on cX . This is given in equation (8), where the desired 

MSCA constraints are defined on ,iwT .  

 

(8)  w
T
wwc EPTX +=  

 

where cX  is a ( )JL ×  matrix in which all matrices i,cX  are concatenated, wT  is a 

( )wRL ×  matrix in which the within-individual scores i,wT  are concatenated and 

wE  is a ( )JL ×  matrix containing the residuals of the within-individual model. 

Since all matrices ic,X  are centered, matrix cX  is centered. Therefore the score 

matrices iw,T  (and therefore wT ) are centered by construction. 

In MSCA-P the least squares criterion MSCAf  can be minimized by calculating the 

model T
wwPT  performing a PCA on cX : therefore in the case of an equal number 

of measurement occasions for all individuals, the MSCA-P model is a 

combination of two PCA models and describes as much variation as possible 

both on the between and the within-individual level. The more constrained 

MSCA-PF2, IND and ECP models cannot be expressed as a combination of PCA 

submodels.  

3.2.3.4  Explained variation in MSCA  

The decomposition of X  into two orthogonal parts, given in equation (6) for a 

single individual, shows that the variation in X  can be separated into a part of 

between-individual variation and a part of within-individual variation, similar to 

ANOVA [26]. This is given in equation (9). 
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(9)  222 MX X c ×+= K  

 

The sums-of-squares 2
cX  and 2M×K  can be used to determine the 

magnitudes of the within and between-individual variation.  

Like in PCA, the percentage of explained variation can be used as a measure of 

fit of the model to the data. Because the two-level MSCA model consists of two 

independent submodels, three different criteria of fit can be defined: the 

percentage of explained variation of the within-individual submodel, of the 

between-individual submodel and of the entire MSCA model. Equations (7) and 

(8) show that the within-individual model spans a subspace of cX  and the 

between-individual model spans a subspace of M . Therefore the percentage of 

explained variation for each MSCA submodel can be calculated analogously to 

PCA. Furthermore, calculating the percentage of explained within-individual 

variation of each individual can identify individuals that are not well described by 

the within-individual level model.  

3.3 Results and discussion 

3.3.1 Model selection 

Analysis of the variation in X  by using equation (9) shows that 24 % is between-

individual information and 76 % is within-individual variation. Both the between-

individual variation and the within-individual variation have a considerable 

magnitude and therefore a Multilevel Component Analysis method should be 

used for the analysis of the monkey urine data to obtain a view on the data in 

which both types of variation are not confounded. To increase the interpretability 

of the model, the time-resolved variation of the urine composition of the different 

monkeys can be expressed in the same subspace by selecting a two-level MSCA 

model for the analysis of this data. 
In the analysis of the monkey urine data, no assumptions are made about the 

relationship between the within-individual variation of different individuals. 

Therefore a two-level MSCA-P model is selected for the data analysis. 
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Figure 12 MSCA-P within-individual scores of monkey 6. 

3.3.2 Results of the MSCA-P model 

The results of the analysis of the monkey urine using MSCA-P presented here, 

should be seen as an illustration of the MSCA method.  

The numbers of components for the between and the within-individual model are 

selected using a scree-graph. Three components are chosen for both the 

between and the within-individual models. The model explains 66 % of the within-

individual variation and 77 % of the between-individual variation. The percentage 

of total variation in the data explained by the MSCA-P model is 68 %. 

The within-individual scores of monkey 6 (a male monkey that is representative 

for the dataset) are given in Figure 12. These scores describe the dynamic 

variation of monkey 6 better than the corresponding PCA scores. The first 
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component describes 45 % of the within-individual variation over all individuals. 

Components 2 and 3 describe 14 and 6 % respectively. The percentage of 

explained within-individual variation per component for all individuals is 

monotonously decreasing for increasing component number. This is not 

necessarily the case for the explained variation for each of these components for 

each separate individual. The percentage of explained variation of the first within-

individual component for (female) monkey 10 is 34 %. For components 2 and 3 

this is 13 and 16 % respectively. This means that the variation of monkey 10 on 

component 3 is larger than the variation on component 2. However, the variation 

over all individuals is larger in the direction of component 2 than in the direction 

of component 3. This means that the components of the within-individual model 

describe the most important metabolic biorhythms considering all individuals. 

The within-individual variation explained per individual is between 49 and 77 %. 

The within-individual model of monkey 9 has an explained variation of 49 %, 

which is considerably less than the explained within-individual variation for the 

other monkeys. Therefore, there are differences between the metabolic 

biorhythms of monkey 9 and the other monkeys. 

Figure 13 shows the between-individual scores of the male and female monkeys 

on the first and second components. The first between-individual component 

explains 33% of the between-individual variation and the second component 

explains 29%. Although this data analysis does not focus on gender differences, 

a separation between the scores of the male and female monkeys can be 

observed on the first component. This shows that the most important non-

dynamic variation between the monkeys is related to gender differences.   
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Figure 13 MSCA-P between-individual scores of the first and second component. A 
gender-based difference is visible on Component 1. 

The loadings of the between and within-individual model can be compared to 

identify compounds that are important to describe the variation between and 

within the individuals. The loadings of the first component of the between-

individual model are given in Figure 14. The loadings of the first component of 

the within-individual model are given in Figure 15. Comparison of both loadings 

shows that many compounds that are important to describe the variation on the 

within-individual level, are also important to describe the variation on the 

between-individual level (e.g. the loadings at 3.28, 3.05 and 1.93 ppm are large 

both in the within and between-individual model, these peaks can be attributed to 

trimethylamine N-oxide (TMAO), creatine and acetate respectively). There are 

also chemical shifts that have only a high loading for the between-individual 

model (e.g. 5.07 ppm, which cannot be assigned to a chemical compound and to 

a lesser extent 3.62 ppm, which can be attributed to fructose). This means that 
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the concentration of these compounds varies between the monkeys, but is 

relatively constant in time within each monkey. It could be concluded that 

relatively large variation of these compounds in time for a certain monkey 

indicates abnormal behavior. This conclusion could not have been drawn from an 

interpretation of a PCA model of the monkey urine data, since in this model the 

between and within-individual variation are confounded.  

Some compounds have a high loading for the within-individual model, but not for 

the between-individual model (e.g. the doublet at 1.32 and 1.34 ppm, that can be 

attributed to lactate). This means the concentration of lactate varies in time, but 

the average concentration of this compound is similar for different monkeys.  
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Figure 14 MSCA-P loadings of the first component of the between-individual model of the 
monkey urine data. 
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Figure 15 MSCA-P loadings of the first component of the within-individual model of the 
monkey urine data. 

3.3.3 Comparison of the PCA and MSCA-P models 

A PCA model is fitted to the monkey urine data using equation (2). The number 

of principal components for the model is determined by a scree-graph and 3 

principal components are chosen. This PCA model describes 62 % of the 

variation in the data (the percentage of explained variation of PCA is lower than 

the percentage explained by MSCA-P, however the PCA model contains less 

components than the MSCA-P model). 

To illustrate the distinction between the results of PCA and MSCA-P, the 

difference between the PCA scores and the MSCA-P within-individual scores of 

monkey 6 is calculated. This difference is given in Figure 16. This figure shows 

that the difference between the PCA and the within-individual MSCA-P scores of 

the first component is almost constant in time: the difference between both 
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scores consists mainly of a (monkey-specific) offset. The differences between the 

scores of PCA and MSCA-P for the second and third components are clearly 

non-constant: for components 2 and 3 both methods describe different features 

in the data. The difference between the PCA and MSCA scores shows that the 

PCA model clearly does not only focus on the dynamic variation in the data: 

therefore it does not focus on describing the metabolic biorhythms. 

Another way to compare the results obtained from the MSCA-P and PCA models 

is to focus on the non-dynamic variation in the data. This can be done by 

comparing the between-individual scores obtained from MSCA-P given in Figure 

13 with the mean of the 29 PCA scores belonging to each monkey. The average 

PCA scores computed over all occasions for each individual for PC 1 and PC 2 

are given in Figure 17. The average scores in Figure 17 show a separation 

between the male and the female monkeys on PC 2.  

In the MSCA between-individual scores given in Figure 13, the gender-based 

differences could be straightforwardly interpreted to be responsible for the largest 

static variation between the monkeys. Due to the fact that in the PCA model 

different sources of variation are confounded, the gender-based differences are 

not identified as a factor underlying the largest variation in the data (because the 

PCA model also explains the dynamic variation in the data). This means that 

although the gender-based differences can also be observed from the PCA 

scores, the results of the MSCA model are much easier to interpret than the PCA 

model. 

3.4 Conclusions 
Time-resolved multisubject multivariate datasets (like those often acquired in 

metabolic fingerprinting) contain multiple types of variation. Methods that focus 

on all variation in the data simultaneously (like PCA), give a view on the data in 

which these different types of variation are confounded. 

MSCA is a method that constructs a model that contains submodels in which 

different types of variation are described independently. A 2-level MSCA model 

contains a within-individual and a between-individual submodel.  
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Figure 16 Difference between PCA and MSCA scores for monkey 6. 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1

2

3

4

5

6
7

8

9

10

PC 1

P
C

 2

female
male

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1

2

3

4

5

6
7

8

9

10

PC 1

P
C

 2

female
male

 

Figure 17 Average PCA scores for each monkey on PC 1 and PC 2. A gender-based 
difference is visible on PC 2. 
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The within-individual model gives a better representation of the dynamic variation 

in the data than PCA and the between-individual model gives a better 

representation and interpretation of the non-dynamic variation between the 

individuals than PCA. The price to pay for this improved interpretation is the fact 

that MSCA requires more components to be fitted for the same percentage of 

explained variation in the data as PCA. 

The comparison of MSCA to PCA shows that MSCA leads to a better 

interpretation of all of the variation in a time-resolved metabolic fingerprinting 

dataset. However, scientific questions often refer to only one type of variation. 

When this type of variation is present in a multilevel dataset, MSCA can be also 

used to isolate this specific type of variation. Information about the other types of 

variation in the data is then not lost, since it is present in the other submodels of 

the MSCA model. 

If the separation of within and between-individual variation is made in the 

analysis of the monkey urine data using a 2-level MSCA-P model, information 

can be obtained about the variation underlying the non-dynamic differences 

between the monkeys. The largest variation between the monkeys is identified to 

be gender-related. Furthermore, the dynamic variation in the urine composition of 

each monkey can be identified, thereby focusing on the normal metabolic 

biorhythms in the data. Comparison of the PCA and MSCA models of the same 

data shows that the different types of variation that are present in the data can be 

better interpreted using MSCA model than using PCA. 
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3.6 Appendix: Notation 
  Matrices and vectors 

rawX  ( )JL ×  Raw data 

X  ( )JL ×  Column centered data 
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X̂  ( )JL ×  Estimated data of a subspace model of X  

iX  ( )JK ×  Partition of X  of individual i  

ic,X  ( )JK ×  Mean-centered iX  

cX  ( )JL ×  Concatenation of all ic,X  

   

m  ( )1×J  Vector containing column means of rawX  

im  ( )1×J  Vector containing column means of iX  

M  ( )JI ×  Concatenation of all vectors Tmi  

   

PCAT  ( )RL ×  PCA scores 

i,bt  ( )1×bR  Between-Individual scores of individual i  

bT  ( )bRI ×  Between-Individual scores 

i,wT  ( )wRK ×
 

Within-individual scores of individual i  

wT  ( )wRL ×
 

Within-individual scores of MSCA (concatenation of all i,wT ) 

PCAP  ( )RJ ×  PCA loadings 

bP  ( )bRJ × Between-Individual loadings 

i,wP  ( )wRJ ×
 

Within-individual loadings of individual i  

wP  ( )wRJ ×
 

Within-individual loadings of MSCA 

E  ( )JL ×  Model residuals 

PCAE  ( )JL ×  PCA model residuals 

iMCA.E  ( )JKi × MCA model residuals of individual i  

iMSCA.E  ( )JKi × MSCA model residuals of individual i  

bE  ( )JI ×  Between-individual model residuals 

wE  ( )JL ×  Within-individual model residuals 
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L1 , 
iK1 , I1  Size L , iK , I  column vector containing ones 

b
0R ,

iRw,
0  Size iRw, , bR  column vector containing zeros 

 
 Scalars  

L  
Number of spectra in the dataset ∑

=

=
I

i
iK

1
 

IiKK1  Index for the individuals 

J  Number of variables (chemical shifts) 

iK  Number of measurement time-points (occasions) of individual i  

K  Number of measurement time-points 

R  Number of principal components of the PCA model 

iRw,  Number of principal components of the within-individual MCA 

model for individual i  

bR  Number of principal components of the between-individual MSCA 

model 

wR  Number of principal components of the within-individual MSCA 

model 

  

MSCAf  Least squares criterion of MSCA 
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4 ANOVA-Simultaneous component analysis (ASCA): a 
new tool for analyzing designed metabolomics data 

4.1 Introduction 
Recent developments in genomics and human systems biology have shown the 

importance of metabolomics (Clish, Davidov et al., 2004; Lindon, Holmes et al., 

2004; van der Greef, Davidov et al., 2003). This is understandable, since 

metabolomics is a crucial element in bridging the difference between the 

genotype and phenotype of an organism (Fiehn, 2002). Considerable effort has 

gone into the development of instrumental methods for metabolite profiling, since 

it emerged in the sixties and seventies in clinical chemistry (Gates and Sweeley, 

1978; Jellum, 2001), specially focusing on inborn errors of metabolism. The 

combination with mass spectrometry (GC-MS) and in particular chemometrics 

created the basis of the technology of today in metabolomics for mammalian 

systems (Gaspari, Vogels et al., 2001; van der Greef, Tas et al., 1983). Nuclear 

Magnetic Resonance (NMR) spectroscopy has become an important component 

in the field for screening of biofluids  (Bales, Higham et al., 1984) and an 

important step was the combination with chemometrics (Gartland, Sanins et al., 

1990). Moreover, methods for handling metabolomics data are receiving 

increased attention, both regarding preprocessing of metabolomics data (Keun, 

Ebbels et al., 2003; Vogels, Tas et al., 1996) as well as in the analysis of data 

itself (Antti, Bollard et al., 2002; Jansen, Hoefsloot et al., 2004; Keun, Ebbels et 

al., 2004).  

Metabolomics data sets are becoming more and more complex. It is not 

uncommon to measure a multiple of metabolites in body fluids of several animals, 

at different points in time with an underlying experimental design, e.g. different 

dose groups (Antti, Ebbels et al., 2004; Keun, Ebbels et al., 2004; Lamers, 

DeGroot et al., 2003). This calls for data analysis methods specifically suited for 

time-resolved (or ‘longitudinal’), multigroup, multisubject (containing data of 

multiple animals) and multivariate data. 
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For the case of measuring a single variable (e.g. a metabolite) as a function of 

design factors, analysis of variance (ANOVA) is a well established technique to 

analyze the data (Searle, 1971). When measuring many metabolites 

simultaneously, generalizations of ANOVA are necessary. In the statistics 

literature, the classical generalization of ANOVA to multiple variables is 

multivariate-ANOVA (MANOVA) (Mardia, Kent et al., 1979). For the large number 

of measured variables in a metabolomics experiment, however, MANOVA breaks 

down due to problems of singularity of covariance matrices and assumptions that 

are not fulfilled (Ståhle and Wold, 1990).  

In the data analysis literature, also mixtures of multivariate analysis and ANOVA 

have been reported. One approach first performs a principal component analysis 

of the whole data set and then uses ANOVA on the component score values to 

test effects (Bratchell, 1989). This approach has been criticized, since the 

separate ANOVA's on the score values are not independent (Jackson, 1991). 

Moreover, the initial principal component analysis does not necessarily 

distinguish between the groups in the data. Another approach is suggested by 

using PLS (partial least squares; a popular regression technique for collinear 

data) to solve the problem (Ståhle and Wold, 1990). However, different 

suggestions have been made to implement this method depending on whether 

the coded design variables are regressors (Martens and Martens, 2001) or 

regressands (Ståhle and Wold, 1990). Moreover, the exact properties of these 

methods are unknown, since the criterion that is maximized or minimized is not 

clear. Redundancy analysis using a coded design matrix seems to be a better 

alternative than the PLS based approach (Van den Brink and Ter Braak, 1999).     

In this paper, a new method is presented that can deal with a temporal and/or 

design structure of complex multivariate data sets such as those emerging from 

metabolomics experiments. However, the problems to which ASCA can be 

applied are certainly not limited to metabolomics. Complex multivariate datasets 

are abundant in the other postgenomic technologies (e.g. transcriptomics, 

proteomics) and also in many more fields of biological and non-biological 

research. 
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ASCA builds upon and generalizes some earlier proposed methods. Two early 

papers in pomology and botanics realized the importance of distinguishing 

between and within factor treatments (Jeffers, 1962; Pearce and Holland, 1960). 

In the metabolomics literature, the SMART method (Keun, Ebbels et al., 2004) 

also makes this distinction, but is less general than the method proposed in the 

current paper. The method proposed in this paper builds on the Multilevel 

Component Analysis method that was developed in psychometrics (Timmerman, 

In Press) and metabolomics (Jansen, Hoefsloot et al., 2004) and generalizes it 

for a situation with any design structure underlying the metabolomics data. 

The ANOVA-SCA (ASCA) method will be explained and illustrated with an 

example from a metabolomics intervention study, where guinea pigs from a strain 

developing osteoarthritis (OA) were treated with several dosage levels of vitamin 

C and their urine was analysed using NMR spectroscopy at several points in 

time. This study is therefore a typical example of a designed metabolomics 

experiment. Osteoarthritis is a multi-factorial chronic joint disease that is 

characterized by the progressive destruction of articular cartilage, resulting in 

impaired movement, pain and ultimately disability (Creamer and Hochberg, 

1997). The Hartley outbred strain guinea pig develops spontaneous progressive 

knee osteoarthritis starting when they are about 10 months of age, with features 

similar to the human disease (Bendele, 2001; Huebner, Otterness et al., 2001). 

Ascorbic acid has been associated with the slowing of osteoarthritis progression 

in guinea pig and human (McAlindon, Jacques et al., 1996). However, recent 

studies indicate that Vitamin C increases the severity of development of OA in 

the guinea pig (Kraus, Huebner et al., 2004). The details of the biological 

questions regarding this study are published elsewhere (Lamers, DeGroot et al., 

2003).  

4.2 System and Methods 

4.2.1 Urine samples and data acquisition 

This dataset contains information about Male Hartley guinea pigs, which develop 

osteoarthritis during aging. Beginning at 4 months of age, the guinea pigs are 
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divided randomly into three dose groups to which varying doses of vitamin C are 

provided: low dose (2.5–3 mg/day), medium dose (30 mg/day), and high dose 

(150 mg/day). The doses were chosen such, that the low dose exceeds the 

minimum amount to prevent scurvy and the medium dose corresponds to the 

normal intake of Vitamin C. The high dose of Vitamin C corresponds to the 

amount that was shown in previous studies to slow the development of surgically 

induced OA. 

Each dose group consists of 6 animals. Urine samples are collected at 4, 7, 10 

and 12 months, where the samples collected after 4 months are pre-dose. Each 

urine collection was performed for 24 hours, to remove the influence of diurnal 

variation of the metabolite composition of the urine. The total dataset consists of 

72 samples. These samples were analyzed with NMR spectroscopy and the 

dataset was prepared as peak listings (NMR spectra) using the standard Varian 

software (Varian inc., Palo Alto, CA). The dataset contains spectra with peaks 

listed at 253 chemical shifts, expressed in parts per million (ppm), that are equal 

for all spectra. A typical spectrum in this dataset is given in Figure 18.  

The dataset is a subset of a larger dataset. The acquisition of this larger dataset 

has been described elsewhere (Lamers, DeGroot et al., 2003).  
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Figure 18 Structure of the dataset: the relationship between the measurements is given in 
the top of the figure: the guinea pigs are nested within the dose groups, all other 
relationships between the factors in the experiment are crossed. Each square in the top of 
the figure represents a NMR spectrum like the one given in the bottom left corner. These 
obtained spectra are arranged into a matrix containing HIH submatrices, as indicated in 
the bottom right corner. 

4.2.2 Data analysis 

4.2.2.1  Structure of the data set 

The structure of the data set is shown in Figure 18. The following indices will be 

used: j=1,...,J for the chemical shifts; k=1,...,K  for the time-points at which 

measurements are taken; h=1,..,H  for the dosage groups (h=1: low; h=2: 

medium and h=3: high dosage); ih=1,...,Ih  for the guinea pigs nested within the 

dosage groups: the guinea pigs in dosages group 'low' are different from those in 

the other dosage groups (the subindex h on i is used to stress this fact). This will 

be important to realize for the remainder of the paper.  
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4.2.2.2  Analysis of variance 

An NMR signal at one particular chemical shift j, for one time point k, and for one 

guinea pig ih (in dosage group h) will be denoted by the scalar jhkih
x . Collecting 

such values jhkih
x  in matrices 

hhiX  of size (K x J) will be convenient. The 

construction of these matrices is shown in Figure 18. Considering only an NMR 

signal at one chemical shift (and therefore dropping the index j for convenience) 

a reasonable ANOVA model would be 

 

( ) ( )
hh hkihkkhkix αβγαβαµ +++=  (1) 

 

where µ represents an overall offset; αk represents the effect of the factor 'time' 

that is common for all guinea pigs; (αβ)hk represents the interaction of 'time' and 

'dose'; ( )
hhkiαβγ  represents the guinea pig specific contribution. Of these effects, 

(αβ)hk is most important for the biological interpretation: it represents the effect of 

the dosage measured as deviations from  the common time effect  αk . The 

contributions ( )
hhkiαβγ represent the variations on the lowest (individual animal-

specific) level, and can be used for significance testing. Classical ANOVA 

techniques can now be used to estimate the factor effects and test significance.  

Equation (1) shows a division of variation on several factors. This is the basic 

idea of ANOVA: variation is separated and assigned to factors. The factor effects 

can be estimated and tested. ANOVA is capable of doing this by splitting the 

variations in orthogonal and independent parts (Searle, 1971). This division of the 

variation into orthogonal contributions is also the goal of ANOVA-SCA (see 

below).  

4.2.2.3  Simultaneous Component Analysis 

When analyzing the simultaneous underlying variation in several related data 

sets, simultaneous component analysis is a useful tool. This method was 

developed in psychometrics (Ten Berge, Kiers et al., 1992), but extensions also 
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found their use now in metabolomics (Jansen, Hoefsloot et al., 2004; 

Timmerman, In Press).  

Suppose data matrices iX  ( iK  x J) are available where measurements on J 

identical chemical shifts are available at iK  time-points on I animals (the 

subdivision of the individuals i into different dose groups h is omitted from the 

explanation of SCA for simplicity, therefore the used indices are simpler in this 

section compared to the other sections of this paper). Note that the number of 

measurement time-points for individual i, denoted by Ki, can differ between 

animals in SCA. Then a reasonable model for simultaneously analyzing these 

data matrices is 

 

iii EPTX T +=  (2) 

 

where P of dimensions (J x R) represents the common basis with R directions 

(components) and Ti of dimensions ( iK  x R) contains the scores of the 

measurement time-points of the ith animal. Since the variation across the 

animals at the various time-points is expressed on the common basis P, the 

scores contained in Ti can be compared between animals to explore the data. 

There exist different versions of simultaneous component analysis depending on 

the type of constraint put on the covariance of Ti, but such constraints are not 

discussed in this paper. 

The model parameters in equation (2) can be found by solving 

   

∑
=

−
I

i
iisi 1

2

,'
min T

PT
PTX  

(3) 

 

which is a standard least squares problem that can be solved by performing a 

PCA on the matrix in which all matrices Xi  are concatenated as 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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IX

X
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4.2.2.4  ANOVA-Simultaneous component analysis (ASCA) 

The ANOVA-SCA analog for model (1) is 

 

hhh hihihhi EPTPTPT1mX T
3K

T
2K

T
1K

T ++++=  (4) 

 

where 1 is a )(K 1×  vector of ones; m is a )(J 1×  vector of the overall means of 

the NMR responses (where the mean is taken over all factors and guinea pigs 

per chemical shift); TK of dimensions )R(K 1×  is the matrix containing the 

contributions of the factor 'time' expressed on the basis 1P  of dimensions 

)R(J 1× ; 1R  is the number of components chosen for the basis 1P ; TKh of 

dimensions )R(K 2×  is the matrix containing the dose-specific 'time' contributions 

(h=1,...,H) expressed on the basis 2P  of dimensions )R(J 2× ; 2R  is the number of 

components chosen for the basis 2P ; 
hhiKT  of dimensions )R(K 3×  is the matrix of 

guinea pig specific dose-time contributions (ih = 1,...,Ih ∀ h) expressed on the basis 

3P  of dimensions )(JxR3 ; 3R  is the number of components chosen for the basis 

3P  and 
hhiE  is the matrix of residuals. Note that in equation (4), TK is equal for all 

animals, TKh is equal for all animals belonging to the same dose group and 
hhiKT  

is different for all animals. Because in TK and TKh each time-point 
hhiK  is 

compared between different individuals, the measurement time-points are 

required to be equal for all animals, such that KK
hhi = . 

In words, equation (4) means that the matrix X  is separated into contributions 

from the overall mean ( T1m ), one SCA model ( T
1KPT ) describing the overall 

effect of the factor time, a SCA model ( T
2K PT h ) describing the interaction of dose 

with time, and a SCA model ( T
3K PT

hhi ), describing the interaction of dose, time 

and guinea pig, which is the contribution to the variation of each individual guinea 

pig. This is a direct multivariate generalization of equation (1). Note that since the 

number of components in each part of this model is low (which is the basic idea: 



63 

dimension reduction) there is a residual matrix 
hhiE  in equation (4) that contains 

the information that is not described by any of the ASCA submodels, whereas 

such a residual term is not present in (1). To illustrate the basic idea behind 

ASCA, a toy example is given in Appendix 1 at the end of this chapter. 

4.2.2.5  Properties of ASCA 

By imposing the proper constraints, the different parts of the model in equation 

(4) are orthogonal to each other. These constraints are 

 

∑

∑
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=
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(5) 

 

where 1 is a vector of ones of the proper order and 0 is a vector or a matrix of 

zeros of the proper order. In words, a) ensures that TK is orthogonal to 1mT, and 

likewise b) and c) ensure orthogonality of the other parts (for a detailed 

description of the mathematics behind ASCA, see Appendix 2 at the end of this 

chapter). This also means that the total variation of the data set can be separated 

in parts corresponding to the different factors. 

4.2.2.6  ASCA-Algorithms 

The parameters of the ASCA model can be calculated by solving the following 

least squares problem 

 

∑∑
= =

−−−−
H

h

I

i
hihi

h

h

hh
1 1

2
min T

3K
T
2K

T
1K

T

sP's,T'm,
PTPTPT1mX  

(6) 

 

under the constraints given in equation (5). Although this looks like a complicated 

problem, these constraints actually make the problem relatively simple. Due to 

these contraints the parameter sets corresponding to the different factor 
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combinations (m; TK, 1P ; hKT , 2P ; 
hhiKT , 3P ) can be estimated independently. 

Note that there is rotational freedom in the model parts containing 1P , 2P  and 3P . 

Hence, the matrices 1P , 2P  and 3P  can be chosen to be orthogonal. For the case 

of a balanced design (equal number of guinea pigs for each factor combination) it 

comes down to proper centering and performing PCA's on rearranged data. An 

algorithm is provided, but standard algorithms for PCA can also be used after the 

proper centering and rearrangement of the data. For the unbalanced case, a 

slightly more elaborate algorithm should be used, which is a straightforward 

generalization of the balanced one. For an explanation of the algorithm, see the 

Appendix 3 given in the additional material. 

 

4.3  Results 

4.3.1 Split-up of variation 

Table 1 Contributions to the total variation

Level % of variation in the data 

K  24 

Kh  10 

hKhi  66 

 

An impression of the amount of variation related to the design factors can be 

obtained by separating this variation into contributions from the different factors. 

Table 1 shows this separation and it is clear that the dominant part of the 

variation is at the lowest level (guinea pig-specific contributions). This shows the 

biological variation between the animals used in the study. Note that Table 1 

reports sums of squared deviations from the overall mean and not variances.  
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Figure 19 factor 'Time' scores on the first component: clearly an initially increasing and 
subsequently decreasing time profile is visible. 

4.3.2 Factor 'time' 

The scores of the first component of the factor 'time' are given in Figure 19 (the 

TK values of Equation (4)). This first component explains 72 % of the variation on 

the  factor ‘time'. The maximum number of components that can be fitted for the 

factor ‘time’ submodel (and therefore the rank of the factor time variation) is 3, 

since the dataset contains 4 measurement time-points. Hence, only one 

component is used to illustrate the variation on this level. 

The scores in Figure 19 indicate that all guinea pigs in the data show an initial 

increasing and a subsequent decreasing behavior. This trajectory is consistent 

with the biology of growth for the Hartley guinea pig strain (Huebner, Otterness et 

al., 2001). From 4 to 7 months the metabolism of the guinea pigs changes, 

because during this time they are in the growing phase. Between 7 and 10 

months, the guinea pigs are full-grown, which is shown by the leveling off in the 

time profile from 7 and 10 months. From 10 months on the guinea pigs develop 

osteoarthritis. The decrease in score of the 12 months samples is supposed to 

reflect this effect (Lamers, DeGroot et al., 2003).  
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The loadings 1P  belonging to the first component are given in Figure 20. These 

loadings show the chemical shifts and therefore the compounds that are 

corresponding to the behavior observed in the scores and can be used for 

biological interpretation. However, urine is a biological fluid that is used by the 

body for the excretion of waste products and therefore its contents are difficult to 

trace back to biology. Nevertheless, metabolites like creatinine (δ 3.04 and 4.05 

ppm), creatine (δ 3.04 and 3.95 ppm), glucose (δ 3.27, 3.53, 3.60, 3.78, 3.82 and 

3.94 ppm) and alpha-hydroxybutyrate (δ 1.36 ppm), lactate (δ 1.32 and 1.34 

ppm), glycine (δ 3.56 ppm) and acetate (δ 1.92 ppm) that change in time may 

point at altered energy metabolism due to growth and disease development. 

These observations are consistent with results that were described previously 

(Lamers, DeGroot et al., 2003). 
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Figure 20 factor 'Time' loadings on the first component. The chemical shifts that are 
mentioned in the text are indicated in the figure 



67 

4.3.3 Interaction time x dose 

The rank required for this submodel is determined using a scree-test (Cattell, 

1966). From this test, the rank of this submodel is determined to be two. A model 

containing two components explains 65 % of the variation corresponding to the 

factor ‘interaction time x dose’. The first component explains 50 % of this 

variation and the second component explains 15 %.  

The scores of this submodel should be seen be interpreted as the deviation of 

each dose group from the ‘time’ factor (( T
1KPT  or kα  in the ANOVA model). The 

‘interaction time x dose’ scores for the first component are given in Figure 21. On 

this component there is no trend related to Vitamin C dose visible: none of the 4 

measurement time-points show an increasing or decreasing score value for 

differing Vitamin C doses.  Also the scores of the second component do not show 

such a quantitative trend. 

The model results show that the potential of vitamin C in affecting the 

development of osteoarthritis is questionable. According to our results vitamin C 

has no effect on disease development: neither the association of vitamin C with 

the slowing of osteoarthritis progression in guinea pig and humans (McAlindon, 

Jacques et al., 1996) nor the observation that vitamin C could increase the 

severity of development of OA in the guinea pig (Kraus, Huebner et al., 2004) 

can be corroborated with the results of ASCA on the described dataset. However, 

the results of the ASCA model of this dataset were in agreement with additional 

clinical measurements that were performed after the experiment on the guinea 

pigs used in the study: the severity of OA was determined using ‘histology 

scores’ on the Mankin grading system (Mankin HJ, Dorfman H, et al., 1971). 

These scores did not differ between dose groups that indicates an equal 

development of OA. 

4.3.4 Individual guinea pig contributions 

The rank required for the ‘Individual guinea pig contributions’ submodel can also 

be determined by a scree-test. From this test, two components are defined for 

this submodel. This submodel describes 57 % of the variation corresponding to 
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the ‘Individual guinea pig contributions’. The first component explains 45 % and 

the second component explains 12 %. The scores of this submodel must be seen 

as a deviation of each individual from the dose-time interaction. 
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Figure 21 Interaction 'Dose x Time' scores on the first component. No quantitative effect is 
visible in the scores and therefore this model shows that Vitamin C has no effect on the 
development of OA. 

The scores for the first component of the ‘Individual guinea pig contributions’ 

submodel are given in Figure 5 for the low, medium and high dose groups 

respectively. From this figure it is clear that the deviation of the individual profile 

from the group average profile is largest at 4 and 12 months: at the start and the 

end of the experiment. The NMR signals that correspond to this behavior are, 

amongst others, lactate (δ 1.32 and 1.34 ppm), acetate (δ 1.92 ppm) and glycine 

(δ 3.56 ppm) that increase and creatinine (δ 3.04 and 4.05 ppm) that decrease. 

The larger interindividual differences at 4 and 12 months may be explained by 

the fact that at these timepoints growth and disease development, respectively, 

occurs. 
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Figure 22 ‘Individual guinea pig contribution’ scores on the first component. These scores 
indicate the deviation of each individual from the dose-group specific variation of the 
metabolism. 

4.4 Conclusions 
In metabolomics, an increasing amount of data sets becomes available with an 

underlying design in factors. Currently, no methods are available to analyze such 

data. The method proposed in this paper called ANOVA-SCA or ASCA for short, 

fills this gap. It works by separating the variation in the total data set by parts that 

can be assigned to contributions of the different factors and interactions thereof.  

The ASCA method is illustrated by a real example of an intervention study 

examining the effect of Vitamin C on the development of osteoarthritis in guinea 

pigs. This shows how the method works and that interpretation of the resulting 

components works in the same way as in ordinary principal component analysis. 

For the case of a balanced design, the algorithm is simple and comes down to 

performing principal component analyses on properly centered and rearranged 

data. For the case of unbalanced data, a more elaborate algorithm is necessary, 

but available.  
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In follow-up research, questions regarding validation using resampling methods 

and significance testing of effects will be treated. This will allow not only for 

estimating factor effects, but also for judging their reliability and testing their 

significance. 
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4.7 Appendices 
 

In Appendix 1, the working of ASCA is demonstrated using a simulated dataset. 

In Appendix 2, some mathematical properties of the ASCA model are 

demonstrated. These properties are required for the calculations performed in the 

manuscript “ANOVA-Simultaneous component analysis (ASCA): a new tool for 

analyzing designed metabolomics data”. This appendix is built up as follows: 

Appendix 2A shows that the column spaces of all submodels are orthogonal to 

each other. A consequence is that the submodels can be calculated separately 

and sequentially.  

Appendix 2B shows that constraining the scores of the ASCA submodels to a 

specific subspace is equivalent to projecting the data on this subspace and fitting 

an unconstrained model to this projected data. The data analysis can then be 

performed by standard PCA modules. 

Appendix 2C shows the orthogonality properties within each submodel and 

between each submodel and its residuals. It shows proof of the percentages of 

explained variation that are calculated in the manuscript. 

The orthogonality properties of the ASCA model as described in Appendix 2 

allow the model to be estimated using a relatively simple algorithm. This 

algorithm is described in Appendix 3. 
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4.7.1 Appendix 1: Illustration of ASCA using a simulated dataset 

In this appendix the use of ASCA is illustrated using a simulated dataset. It is a 

bivariate example, consisting of two treatment groups, each containing 3 animals. 

Measurements have been performed on two variables at 5 time-points. The non-

systematic variation (e.g. biological variation, measurement error) is constructed 

to be considerably larger for group 2 than for group 1. The simulated dataset is 

given in Figure 23. In the figure two groups of points are indicated: group A 

contains the measurements taken for group 2 at time-point 4 and group B 

contains the measurements of group 1 at time-point 5. 
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Figure 23 Simulated dataset: the measurements of the 3 individuals at time-point 4 for 
group 2 are indicated by A and the measurements of the 3 individuals at time-point 5 for 
group 1 are indicated by B. 

This dataset is analyzed using ASCA. As is shown in Appendix 2, the method 

boils down to a decomposition of the data and a subsequent fitting of SCA 

models to the obtained matrices. Since this dataset contains only two variables, 

we will not consider a dimension reduction.  

ASCA separates the data in Figure 23 into 3 different contributions: submodel K, 

which is an average trajectory that is equal for all individuals; submodel Kh that 

contains the treatment-group specific trajectories as a deviation from submodel K 



75 

and submodel Khih that contains the individual animal-specific variation as a 

deviation from submodel Kh. Since the simulated data is constructed to be mean-

centered, the mean is not a part of the model. 

The data for submodel K can be obtained from the measurements in Figure 23, 

by calculating the average for all individuals at a specific measurement time-

point. The submodel K data is given in Figure 24 (indicated by the diamonds), 

together with the original measurements on both treatment groups (indicated by 

the open circles and squares). In the figure the dashed arrow indicates the 

difference between the submodel K data at time-point 4 to the average of group 

A (indicated by a filled square). The dotted arrow indicates the difference 

between the time-point 5 of submodel K to the average of group B (indicated by a 

filled circle).  
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Figure 24 Simulated dataset: Data for submodel K. Again the measurements at time-point 
4 for group 2 are indicated by A and the measurements at time-point 5 for group 1 are 
indicated by B. The filled circle indicates the average of all measurements B and the filled 
square indicates the average of all measurements A. 

The submodel K data in Figure 24 is subsequently subtracted from the 

measurements in Figure 24. The remainder of this subtraction is indicated in 

Figure 25 by the open circles and squares. The submodel Kh data can be 

constructed from this remainder, by calculating the average over all individuals 
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within each dose group, for each time-point (e.g. the submodel Kh data 

corresponding to group A is calculated by taking the average of all open squares 

in Figure 25 belonging to group A). These data points of submodel Kh have been 

indicated in Figure 25 by the filled squares and circles. The dashed and dotted 

arrows from Figure 24 are also indicated in Figure 25 . 

Finally, the submodel Khih data is obtained by subtracting the submodel Kh data 

(the filled circles and squares) from the open circles and squares in Figure 25. 

The remainder  

of this subtraction is given in Figure 26. Clearly, no systematic treatment group-

related variation is left in the data: submodel Khih will only describe information 

that is specific for each individual animal. The available a priori knowledge 

concerning the larger non-systematic variation in group 2 is clearly visible in this 

figure: the spread between the squares is considerably larger than the spread 

between the circles. 
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Figure 25 Simulated dataset: Data for submodel Kh. Each filled square and circle now 
indicates the average of all individuals belonging to either group 1 or 2 at each time-point. 
A and B indicate the same as in Figure 2, as well as the dotted and the dashed line. 
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Figure 26 Simulated dataset: Data for submodel Khih. In the figure two time-trajectories, 
one for each group, are indicated. 

4.7.2 Appendix 2: Orthogonality properties of the ASCA model 

4.7.2.1  Appendix 2A: Orthogonality between the ASCA submodels 

In this appendix the orthogonality of the column spaces of the different 

submodels is proven. This proof is required for the algorithm used for ASCA. The 

consequence of this orthogonality is explained after the proof. 

 

The ASCA model can also be written simultaneously for all individuals as: 

 

X = 1mT +T1P1
T + T2P2

T + T3P3
T + E (7) 
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 The constraints that are put on the ASCA-scores (in the general not necessarily 

balanced case) are: 
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Using these constraints, the orthogonality between the ASCA-submodels can be 

proven, as will be done now. 

 

From these constraints it can be proven that matrices T1, T2 and T3 are mean-

centered. 
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From the preceding proofs of mean-centering it follows that all score matrices 

and therefore all submodels are orthogonal to the matrix 1mT that contains the 

column averages. 

The orthogonality between the different submodels follows from the orthogonality 

of their scores: 
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Finally, since the model in equation (1) is estimated using a least-squares 

minimization, it follows that the residuals E are orthogonal to the regressors of 

the model: i.e. the column mean mT and the scores T1, T2 and T3 [1]. This 

orthogonality will be proven in Appendix 1C. 
 
Consequences: 
The consequence of the proof given in this Appendix, is that the submodels can 

be obtained individually and sequentially [2]. In mathematical terms this means 

that: 
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Where T1, T2 and T3 are constrained as described before izn this appendix. 

4.7.2.2 Appendix 2B: Proof that the least-squares minimization of a constrained 

model is equal to the least-squares minimization of an unconstrained 

model of projected data on the space where the constraint is valid. 

In this appendix proof is given that the results of a constrained PCA-type model 

can also be obtained by constraining the data on which the analysis is performed. 

The consequence of this proof is again given after the proof itself. 

 
J is a projection matrix (JJ = J and JT = J), I is the identity matrix. 

The minimization of a linearly constrained PCA model is given by: 

( )PT,  = 
( )

2

,
minarg T

PJT
TP-X
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 where IPPT = , TTT  is a diagonal matrix in which the 

elements are sorted from large to small and JTT = . 

The minimization of a PCA model on constrained data is given by: 

( )P,T ~~  = 
2

~,~

~~minarg T

PT
PT-JX  where IPPT =

~~  and TTT ~~  is a diagonal matrix in which 

the elements are sorted from large to small. 
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The question now is: ( ) ( )PT,P,T
?~~
=  

2TTP-X  can be rewritten as: 
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Note that the constraint that T should be in the range of J becomes redundant 

when it is estimated from JX. 

Since all submodels obtained from the ASCA models are based on centering in 

certain directions and every such centering is a projection step, every submodel 

can be estimated by an unconstrained PCA-model on properly centered data. 

A similar proof of this equality is given in the paper about CANDELINC by Carrol 

et al. [3]. 

Consequences: 
The consequence of the proof given in this appendix is, that the following 

minimization (obtained from Appendix 1A): 
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is equal to minimizing : 

 
2222

minargminargminargminarg T
333

P ,T

T
222

P ,T

T
111

P ,T

T

m
PTXPTXPTX1mX

332211

−+−+−+−  

where: 

  X1 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

c

c

c

c

X

X

X

X

M

M

M

,  X2 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

H

H

d

d

d

d

X

X

X

X

M

M

M

1

1

and X3 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

HHI

H

I

I

I

I

I

X

X

X

X

M

M

M

1

1

11

1

 

Where: 

∑∑
= =

−=
H

h

I

i
hih

h

h

h
HI

1 1

1
CC XX  and T

C

C

C 1m-X
X

X
X =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

hHI

M
111

 

∑
=

−=
h

h

h

I

i
hihh I

1

1
DD XX  and CCD XXX −=

hh hihi  

and hhihi hh DDI XXX −=  

Such that the constraints on X1, X2 and X3 are given by: 
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Using a proof that is analogous to Appendix 2A, it can be proven that: 

0X1mX1mX1mXXXXXX 3
T

2
T

1
T

3
T
23

T
12

T
1 ======  

such that: 
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T XXX1mX +++=  

4.7.2.3 Appendix 2C: Orthogonality within the ASCA submodels 

The percentage of explained variation of each of the submodels K, Kh and Khih 

can also be calculated for partitions of matrices X1, X2 and X3. Proof of this is 

given below. The consequences of this proof are given after the proof itself. 

The total variation in the data X can be split up into different matrices, according 

to equation (2). 
22222

321
T XXX1mX +++=  (8) 

where: 
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Submodel K 

Submodel K is given by: 

 

X1 = T1P1
T+E1 (9) 

 

Because of the least squares estimation the following properties hold: T1
TE1 = 0 

and E1P1 = 0. From this it follows that : 

 
222

1
T

111 EPTX +=  (10) 

 

Furthermore, since IPP 1
T

1 = : 
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2222
11

1
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11
T1

1
1
11 EptptX +++= RRK  

(11) 

 

Where T
11 pt 11 rr is the r1’th component of submodel K 

Thus the variation explained by submodel K can also be calculated per 

component. 
 

Submodel Kh 

Submodel Kh is given by: 

 

X2 = T2P2
T+E2 (12) 

 

Because of the least squares estimation the following properties hold: T2
TE2 = 0 

and E2P2 = 0. From this it follows that: 

 
222

2
T

222 EPTX +=  (13) 

 

Furthermore, since IPP 2
T

2 = : 

222

2
2

11
2

T
22

T1
2

1
2 EptptX +++= RRK  (14) 

 

Where T
2pt 22

2
rr is the r2’th component of submodel Kh 

Thus the variation explained by submodel Kh can also be calculated per 

component. 

 

Submodel Khih 

Submodel Khih is given by: 

 

X3 = T3P3
T+E3 (15) 
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From the least squares properties T3
TE3 = 0 and E3P3 = 0 it follows that: 

 
222

3
T

333 EPTX +=  (16) 

 

Furthermore, since IPP 3
T

3 = : 

 

2222
3

11
3

T
33

T1
3

1
3 EptptX +++= RRK  (17) 

 

Where T
3pt 33

3
rr  is the r3’th component of submodel Khih 

Thus the variation explained by submodel Khih can also be calculated per 

component. 

Consequences:  
A consequence of the proof in Appendix 1C is that matrix E in equation (1) of 

Appendix 1A can be written as: 

321 EEEE ++=   

The orthogonality properties of these residuals follow from the known properties 

of PCA, they are demonstrated for submodel 1 (but also hold for submodels 2 

and 3): 

0PEET 111
T
1 ==  

It is known from Appendix 1B that 0XXT
1 =2  

Together with the fact that ( )11 XT ℜ∈  and ( )22 XE ℜ∈  it follows that: 

0ETXT 2
T
12

T
1 == , 

using the analogous proof for submodels 2 and 3 it follows that: 

0ETETET T
3

T
2

T
1 ===  

and that the column space of the residuals of the ASCA model is orthogonal to 

the column spaces of all three ASCA submodels, such that: 
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Due to this equality the percentage of explained variation by the entire ASCA 

model can be calculated as follows: 
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4.7.3 Appendix 3: the Algorithm 

First we present the algorithm for balanced data, such that HII ==K1  

1. The dataset X has dimensions (HIhK x J) 
2. Mean center the data: XC = X – 1mT    

3. XC contains HIh data blocks 
hhiCX  of dimensions (K x J), containing the 

data corresponding to each individual 

4. Calculate the ‘mean data’ CX  over all animals hih = 111 ... HIH 

: 
h

H

h

I

i
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h

h

h∑∑
= == 1 1

C

C

X
X  

5. submodel K: perform a PCA on CX  

6. subtract CX  from all 
HHICC XX K11  to obtain 

HHIDD XX K11  

7. Calculate the ‘mean data’ hDX  for each dose group h = 1 ... H: 

 
h
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8. submodel Kh: perform a PCA on 
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9. subtract hDX   from all 
HhIh DD XX K1  to obtain 

HHIII XX K11  
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10. submodel hhiK : perform a PCA on
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When the data is unbalanced (i.e. contains a different number of animals hI  for 

different dose groups), this can be implemented into the algorithm in step 8. This 

step then changes into: 

8a. submodel Kh: perform a PCA on
⎥
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8b. The scores hKT  obtained from 8a then have to be re-weighted by 
1−

hI  
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5 Visualising homeostatic capacity: hepatoxicity in the 
rat 

5.1 Introduction 
In Life Sciences, the development in recent years of novel technologies to 

analyze biological systems has been impressive and has opened up new 

strategies for studying biology. The focus on systems biology using the so-called 

‘-omics’ technologies in combination with advanced bio-statistical and 

bioinformatics methods has created a significant step towards a better 

understanding of biology; specifically in understanding critical remaining 

challenging issues as discussed in a recent issue of Nature Biotechnology (1). 

Studies in mammalian Systems Biology have pointed out that the analysis of 

biological systems in view of the coverage of important biological levels such as 

transcripts, proteins and metabolites still needs to be further technologically 

enhanced. However, at the current state of these technologies it is already 

possible to reveal unique and significant new levels of information from biological 

systems (2-4). Such observations specifically emphasize typical system 

characteristics: for example the connectivity and interdependence within 

biological systems, potential non-linearity and the emerging properties at different 

levels of complexity of these systems (5-7). More applied research in systems 

biology focuses either on systems pathology to discover biomarkers of disease or 

on systems pharmacology or toxicology to reveal the response of a system 

towards an exogenous intervention (8).  

The changes in biology when moving from a healthy towards a disease state are 

based on a disturbance of the self-organization principles of an organism (9). An 

observed loss of homeostasis is often only quantitatively reflected in biomarker 

patterns in a later stage of the system response (10), while earlier stages of this 

response are often characterized by a change in pathway dynamics to 

compensate for the exogenous perturbation (as described in the dynamic 

disease concept (11)). These dynamics (determined by the system properties of 

the organism) determine whether and how fast the perturbed organism regains 
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homeostasis. This is referred to as the ‘homeostatic capacity’ (12). A system-

wide analysis on these dynamics gives a more complete view on such a system 

response than a view on a relatively small number of biomarkers.  

Studying these complex dynamic systems and describing them in a model is 

extremely difficult. However, when specific questions are asked and optimized 

experiments are available, impressive results have been reported (e.g. in 

studying aspects of metabolic syndrome (13)). 

For the diagnostic measurement of the homeostatic capacity of an organism a 

perturbation of the system followed by measurement of its dynamic response 

profile, especially at an early disease stage, is a good approach (8). Of specific 

interest in this response is the ‘homeostatic capacity’: the ability of a biological 

system to retain its homeostasis despite the presence of an exogenous 

perturbation. An example of this is the oral glucose tolerance test, which is used 

to detect the deregulation of glucose metabolism in early states of diabetes type 

2. This experiment is typically performed in the most simplified way: perturbing 

the system by drinking a glucose solution and measuring the resulting glucose 

level after 2-3 hours to evaluate the homeostatic capacity. These measurements 

can be extended with concentrations of insulin or glucagon, which are directly 

involved in the regulatory system for blood glucose concentration.  

When time-resolved ‘omics’-technologies are used, rather than the measurement 

of individual biomarkers, more details about the behavior of the system become 

available and the perturbation of the metabolism can be measured at an earlier 

stage, as mentioned before. For example in toxicological research often insight is 

needed in the time-dependent response of a system to evaluate the different 

stages of the impact of a toxic compound on an organism. These dose-response 

studies are preferably performed using a robust and relatively uncomplicated 

analytical strategy, while trying to obtain as much information about the system 

under investigation as possible. Nuclear Magnetic Resonance (NMR) (14) and 

Mass spectrometry (15) are often used techniques in metabolic fingerprinting. 

Studies have shown that a toxic insult, specifically by compounds having an 
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effect on organs that are important in metabolism, can be monitored using time-

resolved metabolic fingerprinting on urine (16-19).  

In this paper, the toxicity of Bromobenzene (BB) in the rat is investigated. BB is a 

model hepatoxicant that causes necrosis in the liver and in the kidneys. The 

hepatic transformation and the toxicity of BB in the rat have been reported in 

detail (20-25). Earlier research has shown that the reaction of metabolism to BB 

can be monitored using time-resolved metabolic fingerprinting on urine and that 

the reaction of the metabolism to BB toxicity can be differentiated based on 

animal species (26). 

The focus in this study is on the dose-dependence of the reaction of metabolism 

to a toxic insult with BB. Therefore rats are divided into different groups, to which 

different doses of BB are administered. The urinary metabolite composition of the 

rats is monitored at different points in time using NMR. The concentration of a 

metabolite might be dependent on the factors imposed by the experimental 

design, as well as influenced by the concentration of other, related metabolites. 

These relationships are determined from the available data using an analysis of 

the collected metabolic fingerprinting data.  

Univariate data collected from an experimental design is conventionally analyzed 

using ANOVA (27, 28), while for the analysis of the variation in multivariate data 

usually Principal Component Analysis (PCA) is used (29, 30). However, 

important parts of information contained within multivariate data from an 

experimental design are lost when either of these methods are used for the 

analysis (31). Therefore ANOVA-SCA (or ASCA) is chosen for the analysis of this 

dataset (32, 33). The ASCA model disentangles the different contributions to the 

variation caused by the different factors in the experimental design and takes the 

covariance between the urinary concentrations of different metabolites into 

account as well. The response of the urine composition to the toxic insult is 

evaluated using the ASCA model, specifically with respect to the homeostatic 

capacity of the rat for bromobenzene. 
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5.2 Materials and Methods 

5.2.1 Samples and data acquisition 

The experiment is conducted on 45 rats that are randomly divided into 5 different 

groups, each containing 9 rats. Three of these groups receive a dose of toxicant 

at the beginning of the experiment: the low, medium and high dose groups 

respectively receive 0.5, 2.0 and 5.0 mmol BB / kg body weight, dissolved in corn 

oil. The 2 remaining groups are the ‘vehicle group’ that receives only corn oil and 

the control group that receives no treatment. During the experiment the rats 

received water ad libitum but no food. The focus of the study is the homeostatic 

capacity of the rats to the administration of this toxicant. 

After 6 hours urine is obtained from 3 of the rats in each group, which are 

subsequently sacrificed. The livers of the sacrificed rats are collected for visual 

inspection. This procedure is repeated after 24 and 48 hours in the experiment. 

The data contains one missing value: after 48 hours the urine of one of the 3 rats 

in the high dose group could not be obtained. The samples collected in time 

reflect the ability of the rats to regain homeostasis of their metabolism. 

Animals were kept under controlled conditions, and the welfare of the animals 

was maintained in accordance with the general principles governing the use of 

animals in toxicity experiments of the European Communities (Directive 

86/609/EEC) and Dutch legislation (The Experiments on Animals Act, 1997). 

A description of the sampling and subsequent NMR analysis is given by Heijne et 

al. (34). The obtained NMR spectra were vector normalized to compensate for 

differences in dilution of the urine. 
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Figure 27 Design of the bromobenzene experiment. Each square corresponds to a sample 
in the design and therefore to an NMR spectrum. This figure represents the design of one 
treatment group. Note that the design of the total experiment consists of five of these 
groups of squares. 

5.2.2 Experimental design and the variation in the data 

The described dataset contains 5 treatment groups 

( ( ) ( )dose high, ,control 51 K=h ). Measurements are performed at 3 time-points 

during the study ( ( ) ( )hours 48 , ,hours 6 31 K=k ): the measurement time-points 

are crossed with treatment groups. Measurements are performed on 3 rats per 

treatment group per measurement time-point ( 31K=hki , but 2148, K=highi ): this 

means that the rats are both nested within treatment group and within 

measurement time-point. The design of the BB experiment is given in Figure 27. 

The NMR spectrum of each sample contains information on 310 NMR channels 

( 3101K=j ) that are identical for all samples: each NMR channel corresponds to 

one chemical shift in the spectrum.  

The total variation in the data can be split up into different contributions.  These 

contributions are schematically depicted for one simulated metabolite in Figure 

28.  The variation consists of a time-course that is equal for all rats, since all rats 

receive a perturbation with the same toxin and are subject to identical 

experimental circumstances.  
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Figure 28 Univariate schematic representation of the variation in the BB dataset. A. All 
variation in the dataset, this variation can be decomposed into the contributions B: time-
course equal for all rats, C: treatment group specific time-course, D: individual rat specific 
variation. In B the treatment-group specific profiles are indicated by the thinner lines, in C 
the individual-specific related profiles are indicated by the dots. 

Rats are divided into different treatment groups, which will lead to an additional 

specific time-course of the metabolism that is related to the administered dose of 

BB. Furthermore, due to biological variability each rat will have an individual 

contribution to the variation. Information about the homeostatic capacity of the 

rats to BB is described by the treatment-group specific variation as described by 

C in Figure 28: when a specific treatment group is close to the control group, it is 

in homeostasis. When this is not the case, the treatment group has not (yet) 
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regained homeostasis. For multivariate data the representation of the variation in 

Figure 28 is severely oversimplified, because the different variables (i.e. the 

different NMR channels in this metabolic fingerprinting dataset) covary. The 

urinary concentrations of different metabolites and therefore the sizes of different 

peaks in each spectrum will be interrelated. This covariance is generally not 

identical for the different contributions defined in Figure 28. The relative 

importance of metabolites in each contribution is crucial to elucidating the 

biological phenomena underlying the information in a metabolic fingerprinting 

dataset: the covariance between the metabolites is important to obtain a system-

wide view on the metabolic mechanisms underlying the homeostatic capacity of 

the rats for BB.  

5.2.3 Data Analysis - ASCA 

The basis of ASCA is an ANOVA equation. ANOVA separates the observed 

variation in the data into different contributions, corresponding to different factors 

and interactions in an experimental design. An appropriate ANOVA equation for 

the BB study, that reflects the split-up of the variation into the contributions 

defined in Figure 28, is given by equation [1].  

 

[1]  ( ) ( ) jihkjkjjji hkhk
x αβγαβαµ +++=  

 

where jihk
x  indicates the data value of rat ihk (nested within dose group h and 

measurement time-point k) on NMR channel j; µj is the average value of the values 

jihk
x  for each channel j; kjα

 
is the factor ‘time’ of channel j and varies between 

time-points k; ( )hkjαβ
 
signifies the treatment group specific variation of channel j 

(it is not a multiplication) and ( ) jihk
αβγ

 
indicates the variation of channel j that is 

specific for each individual rat. Equation [1] differs only from a ‘standard’ ANOVA 

equation in the presence of the additional variable index j. 

The available data is used to estimate the model parameters in equation [1]. 

These estimates are given in terms of the data in equation [2]. 
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[2]  ( ) ( ) ( )kjhjikjkjhjkjjji xxxxxxxx
hkhk ............ −+−+−+=  

 

where jx...  is the average of the values in the data for each variable j, kjx..  is the 

average of the values in the data for each time-point k and variable j and kjhx .  is 

the average of all values in the data for each time-point k, treatment group h and 

variable j. 

All values of jihk
x  can be placed into a data matrix X, such that each row is an 

NMR spectrum of one sample (all values j of one rat ihk). This can be done for the 

different factors and interactions in the design as well, such that matrices of size 

equal to X are obtained, which leads to the matrix-wise expression of equation [2] 

given in equation [3]. 

 

[3]  ( ) ( )abgaba
T XXX1mX +++=  

 

where 1 is a column vector containing ones, m is a size J column vector 

containing the values of jx... , matrix aX
 
contains all values of ( )jkj xx ..... − , ( )abX  of 

( )kjkjh xx ... −  and ( )abgX  of ( )kjhji xx
hk .− . 

The variation in aX , ( )abX  and ( )abgX  can be modeled using Simultaneous 

Component Analysis (SCA) models. SCA is a generalization of PCA for fitting a 

model to multiple matrices simultaneously (35-37). SCA (like PCA) uses the 

covariance between the different NMR channels to obtain a simplified view on the 

variation that is better interpretable than the original data. By combining the SCA 

models of the different matrices, the ASCA model in equation [4] is obtained. 

 

[4]  ( ) ( ) ( ) ( ) EPTPTPT1mX T
abgabg

T
abab

T
aa

T ++++=  
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where aT  denotes the score matrix and aP  the loading matrix of the SCA model 

of aX , ( )abT   and ( )abP  of ( )abX  and matrices ( )abgT   and ( )abgP  of ( )abgX   respectively; 

all loading matrices in the ASCA model are constrained as IPPT =  ; E is a matrix 

of the same dimensions as X that  contains the residuals of the ASCA model.  

The three different submodels in equation [4] will be subsequently indicated as 

follows: T
aaPT  will be called the ‘time’ submodel, ( ) ( )

T
abab PT  will be called the 

‘interaction time x treatment’ submodel and ( ) ( )
T
abgabg PT  will be called the 

‘Individual rat‘ submodel. 

The information about each NMR channel (and therefore about the urinary 

metabolites) is captured by the loadings of the submodels. Interpretation of these 

loadings can reveal the biological background of the phenomena observed in the 

scores. An algorithm in MATLAB that fits the ASCA model to data is available 

online at: 

http://www-its.chem.uva.nl/research/pac/people/phdstudents/jeroen_jansen.html 

5.3 Results and Discussion 

5.3.1 Contributions to the variation 

The relative magnitude of each contribution can be determined from the 

estimates in equation [2] (31, 32). The variation of the factor ‘time’ contributes 36 

% to the total variation in the dataset and the treatment groups contribute 40 % to 

the total variation in the data (that is described by the ‘interaction time x 

treatment’ submodel). The individual rats contribute the remaining 24 % to the 

total variation. This means that the treatment group-specific variation, that 

contains information about the homeostatic capacity, is the largest contributor to 

the variation. The information about the homeostatic capacity of the rats to BB 

can be obtained from the scores of the ‘interaction time x treatment’ submodel. 
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Figure 29 Scores of the 'time’ submodel 

5.3.2  ‘Time’ submodel 

The ‘time’ submodel, containing one component, describes 88% of the average 

dynamic variation of all animals in the data. This submodel therefore gives a 

good view on the dynamic variation that is equal for all rats in the experiment. 

The scores of the ‘time’ submodel are given in Figure 29. These scores clearly 

show that the change in the composition of the urine is largest between the 

measurement time-points at 6 and 24 hours. The loadings of the ‘time’ submodel 

are given in Figure 30 I, the loadings of the other submodels are given in Figure 

30 II and III. Of each loading, the ten largest peaks are indicated in the figure by 

their chemical shift. The metabolites that are annotated to these chemical shifts 

are given in Table 2. 

In Figure 30 I, the peaks corresponding to allantoine, glycerol and creatinine are 

positive and the peaks corresponding to citric, hippuric and acetic acid are 

negative. Furthermore, the scores in Figure 29 increase in time. The combination 

of this information shows that a toxic insult by BB is characterized by a 
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decreasing urinary concentration of citric, hippuric and acetic acid and an 

increasing concentration of allantoine, glycerol and creatinine. 

Comparison of the loadings in Figure 30 I to the loadings in II and III shows that 

for the 10 largest peaks, allantoine is identified as unique to the ‘time’ submodel. 

This means that its concentration varies equally in time for all treatment groups. 

 

Table 2 Chemical shifts and annotated urinary 
metabolites that are important in the ASCA 
loadings 

Chemical Shift (ppm) Compound 

Allantoine 5.38 

hippuric acid 3.9675 

Glycerol 3.7525 

Glycerol 3.675 

Creatinine 3.0475 

citric acid 2.735 

2.6975 

2.5825 

2.5425 

acetic acid 2.055 

Trimethylamine N-oxide (TMAO) 3.285 

Trimethylamine 2.93 

Dimethylamine 2.91 

N-acetyl-glycoproteins 2.075 

5.3.3 ‘Interaction time x treatment’ submodel 

The first component of the ‘interaction time x treatment’ submodel explains 71 % 

of the variation in the data: the submodel gives a view on most of the treatment 

group-specific variation. The scores of this submodel are given in Figure 31.  

First of all, the figure shows that the scores of the vehicle and control groups are 

almost equal. The effect that corn oil has on the metabolism of the rats is 

negligible in comparison with BB and therefore in the remainder both groups will 

be collectively referred to as ‘control’. 
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Figure 30 Loadings of the three submodels: I. Time submodel, II. Interaction time x 
treatment submodel, III. Individual rat submodel 

 

Figure 31 Scores of the 'interaction time x treatment' submodel 
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The scores in Figure 31 indicate the homeostatic capacity of the rats for BB. 

Clearly the low and medium dose groups regain homeostasis within the time-

span of the experiment: their scores have returned to the range of the control 

scores at the end of the experiment. The high dose group does not regain 

homeostasis after 48 hours: a dose of 5.0 mg/kg body weight is too large for the 

homeostatic capacity of the rats. Figure 31 shows that also for the low and 

medium dose groups the response of the metabolism to the toxic insult is 

quantitative: it takes longer for the medium dose group to regain homeostasis 

than for the low dose group.  

The visual inspection of the rat livers shows that no effects of BB are visible in 

the livers of the low dose group; the livers of the medium dose group animals 

exhibit very slight BB-related effects after 24 hours that almost disappear after 48 

hours. The rats in the high dose group show significantly more severe effects in 

their livers (centrilobular necrosis) after 24 hours that do not disappear after 48 

hours. This means that these clinical measurements corroborate with the results 

of the metabolic fingerprinting.  
Figure 31 shows that a larger effect of BB on the metabolism results in a higher 

score on the ‘Interaction time x treatment’ submodel. Comparison of these scores 

to the loadings of this submodel in Figure 30 II shows that larger doses of BB 

induce an increased urinary concentration of acetic acid, N-acetyl glycoproteins, 

dimethylamine, trimethylamine and malate, as well as a decreased concentration 

of citric acid, TMAO and hippuric acid.  

5.3.4 ‘Individual rat’ submodel 

The score values of the ‘individual rat’ submodel are mainly of interest for 

statistical and diagnostic purposes. Therefore they are not shown and only very 

briefly discussed. They show that the spread between the scores of the low and 

medium dosed rats is comparable to that of the control: the variation between the 

rats within these dose groups is comparable in size to the normal biological 

variation. The high dose rats have an increased spread: higher doses of BB 

induce an increased variation between the animals within the treatment group.  
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The loadings of the ‘individual rat’ submodel are given in Figure 30 III. The 

largest peak in the loadings corresponds to TMAO. This means that the spread in 

urinary concentration of TMAO is increased between the rats of the high dose 

group. Since TMAO is also identified in the ‘interaction treatment x time’ 

submodel, it also varies between the treatment groups. Hippuric acid, which is 

large in both the loadings of the ‘time’ and of the ‘interaction time x treatment’ 

submodel and absent from the ‘individual rat’ submodel, shows variation induced 

by BB that is similar for all rats within a treatment group.  

5.4 Conclusions 
This study shows that the homeostatic capacity of an organism for a toxicant can 

be determined by the described approach. This approach consists of a 

combination of a perturbation of the metabolism of the organism, monitoring the 

time-resolved response of the metabolism by metabolic fingerprinting and finally 

visualizing this response using ASCA.  It enables monitoring of the response of 

the metabolism, as well as the identification of metabolites causing this response. 

Information about these metabolites can be used further to increase the 

mechanistic insight behind the perturbation and response. 

This systems biology-based approach is very general: the combination of an 

insult of a biological system, monitoring its response and the analysis of this 

response using a dedicated multivariate data analysis technique (like ASCA) is 

widely applicable for determining specific system properties in all fields of ‘omics’, 

as well as in many other fields of research. 
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6 ASCA: analysis of multivariate data obtained from an 
experimental design 

6.1 Introduction 
In many designed experiments multivariate data is generated.  For example, 

datasets from functional genomics (metabolomics, proteomics, transcriptomics) 

contain information about a relatively small number samples measured on a large 

number of variables. Different sources of variation are present in such datasets. 

In the analysis of this type of data the design of the experiment as well as the 

relationship between the different variables should be taken into account: both 

are interesting to understand the system underlying the variation in the data. 

Analysis of Variance (ANOVA) is generally used to analyze data from an 

experimental design (2, 3). It is a univariate method and therefore it cannot take 

the covariance between different variables into account. Principal Component 

Analysis (PCA) or Simultaneous Component Analysis (SCA) that can be seen as 

PCA for multiple matrices (4), is a widely used method that models the 

relationships between the different variables in a multivariate dataset by 

analyzing its covariance or correlation matrix (5, 6). However, SCA does not take 

the experimental design into account, which means that the different 

contributions to the variation caused by the experimental design are confounded 

in the model. This seriously hampers the interpretation of the variation in the data 

(7). Clearly both ANOVA and SCA only give a limited view.  

The idea of separating different types of variation in multivariate data analysis is 

not new. It originated in botany and pomology (8, 9). Several methods for the 

analysis of multivariate datasets with an experimental design are available. The 

classical extension of ANOVA for multivariate data is Multivariate-ANOVA 

(MANOVA) (10). However, when the number of variables exceeds the number of 

measured samples, MANOVA breaks down because it cannot handle singular 

covariance matrices (11). A proposed solution for this breakdown is using Partial 

Least Squares regression (APLSR, as proposed by Martens (12)), but the 

precise implementation of ANOVA into this method (i.e. whether the variables 
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encoding the experimental design should be used as regressors or regressands) 

remains unclear (11, 12). Another multivariate generalization of ANOVA is PC-

ANOVA. In this method, first a PCA model is constructed of a multivariate dataset 

and subsequently the fitted principal components are analyzed using ANOVA 

(13). This approach has been criticized, since the separate ANOVA's on the 

different principal components are not mutually independent. This is because in 

the constructed PCA model the different contributions to the variation by the 

experimental design are confounded (5). 

Another model that is often employed for the analysis of multivariate data from an 

experimental design is the Structural Equation Model (14). This model is capable 

of analyzing the experimental design, as well as the relationship between the 

different variables. However, a Structural Equation Model is difficult to identify 

when the data contains many variables: strict assumptions about the statistical 

distribution of the data are required (multivariate normality) and large sample 

sizes are necessary, which are often not available. 

A novel approach for the analysis of multivariate data from a designed 

experiment is ANOVA – Simultaneous Component Analysis (ASCA). In this 

method the parameter estimation aspect of ANOVA is merged with PCA, such 

that the previously mentioned drawbacks of both methods are removed. Thereby 

a data analysis method is obtained that takes both the covariance between the 

multiple variables and the design of the experiment into account. ASCA has been 

applied to data analysis problems in psychology (15) and metabolomics (1, 7, 

16). In some of these papers a special case of ASCA is used: Multilevel 

Simultaneous Component Analysis (MSCA), which is ASCA for nested designs. 

This paper focuses on the framework of the ASCA method, its mathematical 

properties and its similarities and differences with SCA and ANOVA. First ASCA 

is explained and subsequently the mathematical properties of ASCA are derived. 

Several case studies from metabolomics are presented and the relation of ASCA 

to some other methods is elucidated. Finally some possible extensions of the 

ASCA model are given.  
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6.2 Theory 

6.2.1 Analysis of Variance 

Analysis of Variance (ANOVA) is a widely used technique for univariate data and 

is one of the basic tools in many fields of research (2, 3). It is used to determine 

the effect of different experimental factors on the variation in a dataset. Apart 

from testing hypotheses, ANOVA can be used as a method for parameter 

estimation, such that the effects of the different levels of each factor can be 

quantified. 
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Figure 32 Experimental design where a two-way ANOVA without replication is relevant. 
Each combination of levels of factor α and factor β contains one measurement. 1…c…C is 
the index for the levels of factor α and 1…d…D the index for levels of factor β 

 

An example of an ANOVA equation is the ‘two-way analysis of variance without 

replication’. In a design where this ANOVA is relevant, two experimental factors 

α and β are varied over different levels and at each combination one sample is 

measured on a dependent variable. Such a design is schematically depicted in 

Figure 32. An ANOVA equation for this design is given in equation [1]. 
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[1] 
cddccd βαµx ε+++=  

 

where cdx  is the data value observed for the sample on level c and d, µ  is an 

offset term, cα  is the model parameter for factor α on level c, dβ  is the parameter 

of the ANOVA model for factor β on level d and cdε is the error; 1…c…C is the 

index for the levels of factor α and 1…d…D the index for levels of factor β. 

The ANOVA equation [1] does not have a unique solution, hence different 

(equally valid) solutions can be obtained (2). Each solution will have a different 

set of estimates of parameters µ , cα  and dβ . Which of these solutions is chosen 

is immaterial for the construction of an ANOVA table. 

 

Table 3 Usual Constraints for the two-way ANOVA model without replication; 
Substituting all estimates into equation [1] leads to the equality cdcd xx = . The 

value ..x  is the overall average of variable x; .cx  is the average value of all 

measurements of variable x corresponding to level c; dx.  is the average value of all 
measurements of variable x corresponding to level d. 

ANOVA factor Constraints Estimate 
µ  - ..x  

cα   
0

1
=∑

=

C

c
cα  ... xxc −  

dβ   
0

1
=∑

=

D

d
dβ  ... xx d −  

( )cdαβ  ( ) dαβ
C

c
cd ∀=∑

=

0
1

 and 

( ) cαβ
D

d
cd ∀=∑

=1
0  

.... xxxx dccd +−−  

 

To obtain a unique solution to the ANOVA model, constraints have to be imposed 

on the parameters in equation [1]. The commonly used constraints are referred to 

by Searle as the ‘usual constraints’ to the solution (2). For the two-way ANOVA 
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model without replication for the design in Figure 32, the constraints are given in 

Table 3. The specific constraints in Table 3 give the solution properties that are 

favorable for the ASCA model. These will be discussed later. The solution of the 

parameters in the ANOVA model that satisfies the usual constraints is also given 

in Table 3.  

6.2.2 Principal Component Analysis and Simultaneous Component 
Analysis 

6.2.2.1 Principal Component Analysis 

Multivariate datasets can be represented as a matrix X. Each row of this matrix 

contains the measurements of one sample n and each column contains the 

measurement of one variable j. A Principal Component Analysis (PCA) model 

can then approximate the information in X (5, 6). This is done for a matrix X1 of 

dimensions ( )JN ×1  in equation [2], where 1N  is the total number of samples in 

X1 and J is the total number of variables in matrix X1. 

 

[2] 1111 EPTX T +=  

 

where 1T  is the ( )11 RN ×  matrix containing the component scores of the model of 

1X  and 1P  is the ( )1RJ ×  matrix containing the loadings; matrix 1E  is the ( )JN ×1  

matrix containing the residuals of the model and 1R  is the number of components 

that is selected for the PCA model of 1X  

6.2.2.2 Simultaneous Component Analysis 

Quite often, multiple matrices Xq are available that each contain Nq samples on 

which the same variables J have been measured (index 1…q…Q relates to 

different sets of samples).  Then two approaches can be chosen for making a 

component model of these matrices. One approach consists of fitting separate 

PCA models for each matrix Xq, each containing a score matrix Tq and a loading 

matrix Pq, analogous to equation [2]. A serious drawback of using this approach is 
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that the scores in matrices Tq are not comparable between different q’s, as the 

loading matrix and thereby the basis on which the scores of each object is 

expressed, differs between objects. This hampers the interpretation of the model. 

Alternatively the Simultaneous Component Analysis (SCA) approach can be 

chosen, where one loading matrix is fitted for all matrices Xq, such that equation 

[3] is obtained (4, 17, 18). 
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where each matrix Xq has dimensions ( )JNq × , each matrix Tq has dimensions 

( )RNq ×  and R is the number of components fitted for the SCA model; P has 

dimensions ( )RJ ×  and Eq has dimensions equal to Xq; T is defined here as the 

vertical concatenation of all matrices T1… TQ. 

When no additional constraints are placed on the component scores Tq, the SCA 

model in equation [3] is equivalent to PCA on matrix 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

QX

X
M

1

 and is estimated using 

least-squares fitting. 

If only one matrix 1X  is analyzed, SCA in equation [3] and PCA in equation [2] 

are identical. For simplicity, the component model that is used in ASCA will be 

consistently referred to as SCA.  

6.2.2.3 ANOVA-Simultaneous Component Analysis (ASCA) 

ASCA is explained here using the design in Figure 32. However, it can be used 

for the analysis of data with any experimental design. In the description of 

ANOVA the measurements in the design given in Figure 32 were assumed to be 

univariate. However, often multivariate measurements are available from a 

designed experiment. Then each square in Figure 32 represents a measurement 
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on multiple variables indexed as 1…j…J. Each data value in a multivariate 

measurement in this experiment can be represented as cdjx . Analogous to 

equation [1], the measurements can then be decomposed using the ANOVA 

equation [4]. 

 

[4] 
( )cdjdjcjjcdj αββαµx +++=  

 

where equation [4] represents a series of J ANOVAs. In this equation the error in 

the ANOVA equation is indicated by ( )cdjαβ  instead of cdjε , which would be logical 

from equation [1]. This change in notation is chosen to avoid confusion with the 

error term of the subsequently described ASCA model.  

The terms in equation [4] can be estimated using Table 3 (with an additional 

subscript j for the variable index). Since the values cdjx  are obtained as 

multivariate measurements, they can be collected into a matrix X of dimensions 

( )JN × ; where N  is equal to the total number of samples collected in the 

experiment. In Figure 32, N is equal to CD and also to ∑
=

Q

q
qN

1
. Similarly, all 

estimates of the ANOVA parameters on the right hand side of equation [4] can be 

collected into matrices. Thereby equation [5] is obtained. 

 

[5] ( )abba
T XXX1mX +++=  

 

where 1 is a size N  column vector, Tm  is a size J row vector containing all 

estimates of jµ  ; matrices aX , bX  and ( )abX  contain the estimates of parameters 

cjα , djβ  and ( )cdjαβ  respectively. 

The rows of matrices aX  and bX  are highly structured. All rows related to one 

level c of factor α are equal in aX  and analogously all rows of bX  are equal for 

each level d of factor β. The decomposition given in equation [5] can be 
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performed using any constraints on the solution. However the ‘usual constraints’ 

and therefore the estimates in Table 3 make the column spaces of the matrices 

of the decomposition mutually orthogonal. In that case equation [6]  holds in 

addition to equation [5] (for details, see Appendix 1). 

 

[6] A ( )
2

ab
2

b
2

a
2T2 XXX1mX +++=  

 

where 2X denotes the sum-of-squares of the elements in X. Equation [6] shows 

that by imposing the constraints in Table 3, the variation in X is split into 

independent parts. Equation [6] can be used to determine the contribution of 

each factor and interaction to the total variation in the data.  

SCA component models can be used to approximate the information in matrices 

( )abba XXX ,,  in equation [5]. The ASCA model corresponding to the ANOVA 

model given in equation [1] is given by equation [7]. 

 

[7] ( ) ( ) EPTPTPT1mX T
abab

T
bb

T
aa

T ++++=  

 

where the SCA component scores of each submodel are given by the matrices 

indicated by ( )abba TTT ,,  and the submodel loadings are given by matrices 

( )abba PPP ,, ; the subscripts in equation [7] correspond to the matrices in equation 

[5]. In the remainder, the ASCA submodels in equation [7] will be indicated as 

‘submodel (a)’, ‘submodel (b)’ and ‘submodel (ab)’. Each SCA-model consists of 

a predefined number of components indicated by aR , bR  and ( )abR  respectively; E 

is a matrix in which the residuals of all submodels of the ASCA-model are 

collected: ( )abba EEEE ++= , where aE  are the residuals of submodel (a), etc.  

In the ASCA model, all contributions to the variation by the factors and 

interactions in the experimental design given in Figure 32 are disentangled: the 

model is exhaustive for this design. However, in its current definition it is not 
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unique: each SCA(-P) submodel can be rotated without a loss of fit of the model. 

To identify a unique model, each loading matrix is defined to have an orthogonal 

column space, such that for example 
a

IPP a
T
a R=  (however the column spaces of 

the different loading matrices are not mutually orthogonal, such that for example: 

a
IPP b

T
a R≠  for ba RR = ). Each subsequent component in each submodel is 

defined such that it describes as much of the variation in the data as possible that 

is not yet described by other components. and thereby a unique solution for the 

model is obtained (that is equal to the Singular Value Decomposition (SVD) 

solution of each matrix ( )abba XXX ,, ). 

By interpreting the differences between the loadings of the different submodels 

( aP , bP  and ( )abP ), the relationship between the variables can be identified for 

every contribution to the variation. The ASCA model also contains submodel 

(ab). This submodel describes the variation of the ANOVA ‘error’ term. In ASCA 

this contribution to the variation is regarded as a source of usable information 

about the experiment and the collected data.  

The column space of the scores of any SCA model lies within the column space 

of the data the model is fitted on (for details see Appendix 2). This means that by 

defining matrices ( )abba XXX ,,  that have orthogonal column spaces in equation 

[5], the column spaces of the submodels fitted on these matrices in equation [7] 

are also mutually orthogonal, which ensures that they can be interpreted 

independent of each other (15). 

Although ASCA is explained here with the two-way ANOVA without replication, 

any ANOVA equation can be used in the ASCA approach; thus ASCA is a 

general method for the analysis of multivariate data with an underlying 

experimental design. 

6.2.3 Properties of ASCA 

In this section, the properties of ASCA are compared to those of ANOVA and 

SCA. Since both ANOVA and SCA are the building blocks of ASCA, the 

properties of ASCA are very similar to those of ANOVA and SCA. This section 
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deals with the ability to merge factors and interactions into one term in ANOVA 

(which is not directly generalizable in ASCA) and with constraining the ASCA 

model such that the SCA model is obtained. Furthermore, several criteria for the 

quality of an ASCA model are defined.  

6.2.3.1 ANOVA and ASCA 

The ANOVA given in equation [1] is not the only ANOVA model that can be 

chosen for the experimental design in Figure 32. However, it is the most 

elaborate: all contributions to the variation that can be expected from the 

experimental design are separately described by a parameter in equation [1]. In 

specific cases not all separate factors in the design are of interest. Then multiple 

factors and interactions in the ANOVA equation can be collected into one 

ANOVA parameter.  

For example, quite possibly factor β of the design in Figure 32 might not be 

independently of interest, but only in combination with ( )cdαβ . The resulting 

ANOVA equation can then be obtained from equations [1] and [4] as described in 

equation [8] (index j is again omitted for simplicity). 

 

[8] 
( )[ ] ( )cdccddccd αββαµαββαµx +++=+++=  

  

This equation shows that by collecting several terms together, an ANOVA model 

is generated in which the variation is described by a parameter αc that contains 

the variation of factor α, and a parameter ( )cdαββ +  that describes the remainder 

of the variation in xcd . For multivariate data, equation [8] can also be written in 

matrices (analogous to equation [5]) such that equation [9] is obtained. 

 

[9] ( )( ) ( )abba
T

abba
T XX1mXXX1mX +++=+++=  
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where ( )abbX +  is a matrix of dimensions equal to X that contains the estimates of 

the ANOVA parameter ( )cdαββ + . These estimates can be determined combining 

equation [8] with Table 3: ( ) ( ) ( )........ ccddccdd xxxxxxxx −=+−−+− . For notation 

see this table. 

An ASCA model can be made of the ANOVA model given in equation [9] using 

the method described in this paper. This ASCA model is given by equation [10]. 

 

[10] ( ) ( ) EPTPT1mX T
abbabb

T
aa

T +++= ++  

 

where the residuals E from equation [10] are generally different from the 

residuals E from equation [7] (the same symbol is chosen for all residuals 

because of simplicity of notation). 

The (b+(ab)) submodel in equation [10] can in general not be obtained from an 

addition of the (b) and (ab) submodels in equation [7]. Also usually no rotation 

can be defined that transforms the (b) and (ab) submodels into the (b+(ab)) 

submodel. The approximation of the variation in ( )abbX +  is generally different from 

the independent approximations of the variation in bX  and in ( )abX . The 

difference between both models is that in equation [10] the variations related to 

factor β and interaction αβ are confounded, while in equation [7] both 

contributions to the variation are disentangled and separately described by the 

two loading matrices. However, the models T
aaPT  in equations [7] and [10] are 

equal. 

6.2.3.2 SCA and ASCA 

The relationship between SCA and ASCA is described in this section. The score 

matrix T of the SCA model in equation [3] can be decomposed taking into 

account the experimental design (analogous to X in equation [5]) into multiple 

matrices: ( )abba TTTT ++= . 
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Table 4 Construction of matrices aT , bT  and ( )abT  in equation [11] from T 

in equation [3]. Each element in T can be represented as cdrt ; rct .  is the 

average score of level c for all levels d and component r; drt.  is the 

average score of level d for all levels c and component r, rt..  is the 
average score of all levels d and all levels c for component r. 

Matrix Construction 

aT   rrc tt ... −  

bT  rdr tt ... −  

( )abT  rdrrccdr tttt .... +−−  

 

For this decomposition the estimates in Table 4 can be used, which impose 

certain constraints on matrices aT , bT  and ( )abT . This is described in equation 

[11] (the data in X is assumed to be mean-centered).  

 

[11] ( )( ) ( ) EPTPTPTEPTTTX T
ab

T
b

T
a

T
abba +++=+++=  

 

The approach in equation [11] is the PC-ANOVA approach that is described in 

the introduction (5, 13). Although the scores in the different matrices reflect the 

experimental design, all factors and interactions in the design are expressed on 

the same subspace. This means that in PC-ANOVA, the relative importance of a 

measured variable cannot be attributed to any of the factors (or interactions) in 

the experimental design: all contributions to the total variation in the data are 

confounded within one loading matrix P . This hampers the amount of information 

that can be obtained from the data.  

Comparison of equation [11] to equation [7] shows that PC-ANOVA and ASCA 

differ in that the ASCA fits a separate set of loadings for each factor and 

interaction in the experimental design (although for simplicity the same symbols 

are used for the scores of both models). Comparison of these loadings will 

indicate which measured variables are important in which factor or interaction in 

the design. ASCA and PC-ANOVA (and therefore SCA) are equal to each other 
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when only one factor or interaction contributes to the variation in the data: e.g. 

when only experimental factor α causes variation in the data, score matrices bT  

and ( )abT  contain only zeros and the ASCA model consists only of submodel (a), 

such that aP  is equal to P . Also, ASCA and PC-ANOVA are equal to each other 

when the variation of each factor and interaction occurs in the same subspace, 

such that ( ) PPPP abba === . However, both situations are unlikely to occur in 

practice. 

The maximum number of components that can be fitted for an SCA model (as 

given in equation [3]) is easily determined: the rank of a mean-centered matrix X 

is equal to ( )JN ,1min − , provided that X has full row or column rank (which is 

generally the case for real data); therefore the maximum number of SCA 

components that can be fitted for X is also ( )JN ,1min − .  

The maximum number of components that can be fitted for each ASCA submodel 

is limited: the rank of each matrix ( )abba XXX ,,  and therefore the maximum 

number of components that can be fitted is given in Appendix 3, together with a 

general method to determine these ranks for any ASCA model. 

6.2.3.3 Variation in the ASCA model 

The variation of the data explained by the model is used as a quality of fit in 

ASCA, which is common in multivariate data analysis. The variation explained by 

the ASCA model can be calculated in multiple ways. Each amount of variation 

will indicate the quality of the model using a different view. The percentages of 

explained variation described in this section are all given in Table 5. The notation 

used in Table 5 is explained in Figure 33. 
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Table 5 Different criteria for the quality-of-fit (percentage of explained variation) of the 
ASCA model. The qualities of fit for each submodel are illustrated using the relevant 
criterion for submodel (ab); ( )abr  is the index for component number in submodel (ab). 

Submodel  

Total  

( )
( ) ( ) ( )

( )

%1001 ×
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−= 2

ab

2T
ababab

ab
X

PTX
ev  

Per component 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

%1001 ×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
−= 2

ab

2T
,ab,abab

,ab
X

ptX
abab

ab

rr

rev  

Per subset of 

samples  ( )
( ) ( ) ( )

( )

%1001 ×
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−= 2

,ab

2T
ab,ab,ab

,ab
X

PTX

c

cc
cev  

Per subset of 

samples per 

component 
( ) ( )

( ) ( ) ( ) ( ) ( )

( )

%1001
,,

×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
−= 2

,ab

2T
abab,ab

,ab
X

ptX
abab

ab

c

rcrc

crev  

  

Total model  

Total 
( ) ( ) %1001 ×

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−−−−
−= 2T

2T
abab

T
bb

T
aa

T

tot
1mX

PTPTPT1mX
ev  

Total per subset of 

samples 
( ) ( ) %1001 ×

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−−−−
−= 2T

2T
ab,ab

T
bb,

T
aa,

T

tot,
1mX

PTPTPT1mX

c

cccc
cev  
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X/ X(ab)

Xc / X(ab),c

( )abT

( ) c,abT

( ) ( )ab,abt r

( ) ( )ababt cr,

( ) ( )
T
ab ab

p r,( )
T
abP

X/ X(ab)

Xc / X(ab),c

( )abT

( ) c,abT

( ) ( )ab,abt r

( ) ( )ababt cr,

( ) ( )
T
ab ab

p r,( )
T
abP

 

Figure 33 Explanation of the symbols used in Table 5 

The quality of fit of submodel (ab) is given by ( )abev  in Table 5: this value is 

generally calculated to determine the quality of fit of an SCA model. Since the 

column space of each loading matrix in the ASCA model is orthogonal, ( ) ( )ab,ab rev  

can also be calculated to determine the explained variation per submodel 

component (such that ( ) ( )
( )

( )

( )ab,ab

ab

ab
ab

evev
R

r
r =∑

=1
 for submodel (ab)).  The quality of fit 

( ) cev ,ab  of submodel (ab) to a submatrix ( ) c,abX  of matrix ( )abX  (e.g. one that 

contains only a subset of the measurements, that are related to level c of factor 

α) can also be calculated. This value ( ) cev ,ab  can also be calculated per 

component, such that ( ) ( )
( )

( )

( ) c

R

r
cr evev ,ab,ab

ab

ab
ab

=∑
=1

. Note that these values can also be 

calculated for submodel (a) and submodel (b) in the ASCA model. The fit of the 

total ASCA model (for all submodel simultaneously) is given by totev . This total fit 

can also be determined for a submatrix cX  of matrix X, such that cevtot,   is 

obtained. 
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6.3 Case studies 
To give an impression of the versatility of the use of ASCA for practical 

applications, three case studies are given in this section. All studies are on data 

obtained from time-resolved metabolomics studies on mammals. In these studies 

body fluids of multiple animals are collected at different points in time. The 

chemical composition of these body fluids is monitored using Nuclear Magnetic 

Resonance (NMR) spectroscopy.  

The description of these case studies is largely limited to the selection of an 

ASCA model using the design of the experiment. The results of analyses of these 

datasets with ASCA have been reported elsewhere (1, 7, 16, 19). 

6.3.1 Time-resolved metabolomics data 

Time-resolved metabolomics experiments are generally performed to monitor the 

variation in response of the metabolism to an exogenous perturbation. The two 

factors related to this are the factor ‘time’ that is given the symbol α and index 

KkKK1  and the factor ‘treatment’ that has symbol β and index HhKK1 . 

In these experiments, generally the factors α and β are crossed, such that each 

treatment is measured at each time-point. To be able to distinguish the 

interaction between α and β from the contribution of individual animals, the 

experiment is generally repeated on multiple animals for each combination of h 

and k. These animals are indicated by factor γ and index ( IiKK1 ).The multiple 

variables in the data are the different NMR channels in the data ( JjKK1 ). 

Before, α and β were used to indicate experimental factors that were not 

specified. In the current and the next section, α and β will be used exclusively for 

‘time’ and ‘treatment group’ respectively. 
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6.3.2 Normal variation 

The first case study deals with an experiment where no external influences are 

imposed on the metabolism. Urine is collected from I different monkeys at K 

points in time. The monkeys are not divided into treatment groups, therefore 

design factor β is not present in this design. This design is schematically depicted 

in Figure 34. 
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Figure 34 Design of the normality experiment. Each square corresponds to a sample in the 
design and therefore to an NMR spectrum. 

There is no common starting time in the design, since the data values of different 

animals are unrelated at each time point (the only variation in the data is ‘normal’ 

biological variation that is different for each monkey). The factor ‘time’ (α) can not 

be usefully analyzed in this particular design and therefore the total variation in 

the data can be separated into variation between the monkeys that is constant in 

time and variation in time that is unique for each monkey. The one-way ANOVA 

in equation [12] is selected for the analysis of this dataset. 

 

[12] 
( )ikjijjikjx αγγµ ++=  
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The ASCA model obtained from equation [12] is given in equation [13]. 

 

[13] ( ) ( ) EPTPT1mX T
agag

T
gg

T +++=  

 

where submodel (g) describes the variation of factor ‘individual animal’ and 

submodel (ag) describes the dynamic variation of all monkeys. The scores gT  

are highly structured and vary only between the animals and not between time-

points.  

The analysis of this dataset using the ASCA model in equation [13] (which is also 

known as Multilevel Simultaneous Component Analysis, or MSCA) has been 

described previously (7). It has been demonstrated that disentangling the 

variation between the monkeys from the dynamic variation of each individual 

monkey greatly increases the amount of information that can be extracted. 

6.3.3 Bromobenzene 

The next case deals with a toxic insult of the metabolism by bromobenzene. In 

this study groups of rats are treated with different doses of this toxic compound. 

At different measurement time-points, three rats are randomly selected from each 

treatment group. Urine is collected from these rats and they are subsequently 

removed from the experiment. This design is illustrated in Figure 35. The figure 

shows that the animals are nested within factors time-point and treatment group; 

hence they are indicated by index ihk. To analyze this experimental design, a two-

way ANOVA with replication is chosen. This model is given in equation [14]. 

 

[14] 
( ) ( ) kjhihkjhjkjjkjhi hkhk

x αβγαββαµ ++++=  

 

Because each individual animal is measured only once during the BB study, the 

individual related variation cannot be divided into a part that is constant in time 
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and a dynamic part: both are expressed by one parameter ( ) kjhihk
αβγ . The ASCA 

model corresponding to ANOVA equation [14] is given in equation [15]. 

 

[15] ( ) ( ) ( ) ( ) EPTPTPTPT1mX T
abgabg

T
abab

T
bb

T
aa

T +++++=  

 

where submodel (a) describes the variation of factor ‘time’ , submodel (b) 

describes the variation of the factor ‘treatment group’,  submodel (ab) describes 

the interaction between ‘time’ and ‘treatment group’ and submodel (abg) 

describes the biological variation in the data. 
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Figure 35 Design of the bromobenzene experiment for one treatment group. Each square 
corresponds to a sample in the design and therefore to an NMR spectrum. This figure 
represents the design of one treatment group h. 

 

In the ASCA model given in equation [15] the variations related to all factors and 

interactions that are present in the data are disentangled: this ASCA model is 

most comprehensive for this design, because each contribution to the variation is 

expressed in a different subspace spanned by the different loading matrices.  
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Alternatively, the contributions by the two ANOVA parameters corresponding to 

the treatment groups ( hjβ  and ( )hkjαβ ) can be expressed in one submodel, such 

that these contributions to the variation are confounded. In this specific case, the 

advantage of confounding is that the treatment group-specific variation can be 

analyzed by interpreting only one figure. When the decision for this combination 

is made, the ASCA model in equation [16] is obtained. 

 

[16] ( ) ( ) ( ) ( ) EPTPTPT1mX T
abgabg

T
abbabb

T
aa

T ++++= ++  

 

where submodel (b+ab) describes the variation of the collected parameters 

( )hkjαββ + , which in this experiment contains all variation related to the treatment 

groups.  

The dataset contains four treatment groups: one group is administered no toxin, 

the other three groups are given a low, medium and high dose of bromobenzene 

respectively. The scores of submodel (b+ab) in equation [16] are given in Figure 

36. These scores are focused on describing the different reactions in time of the 

treatment groups. The scores indicate a quantitative effect of bromobenzene. 

The scores increase for an increasing dose of toxin. The scores also show that 

the metabolism of the low and medium dosed rats return to the range of the 

scores of the rats that are administered no Bromobenzene (the low dosed rats 

after 24 hours and the medium dosed rats after 48 hours). The metabolism of the 

high dosed rats however, remains influenced by Bromobenzene throughout the 

experiment: the high dose of Bromobenzene is higher than the homeostatic 

capacity of the rats. More results of the ASCA analysis on the Bromobenzene 

dataset have been described elsewhere (19). 
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Figure 36 submodel (b+(ab)) scores for the bromobenzene data 

6.3.4 Osteoarthritis and Vitamin C 

The third case study deals with disease development. A control group is 

compared to a selected strain of guinea pigs that develops osteoarthritis (OA). 

The latter group of guinea pigs is subdivided into different treatment groups to 

which different doses of vitamin C are administered. Urine is collected from the 

same guinea pigs at multiple time-points. Vitamin C is expected to have an effect 

on the development of OA in these guinea pigs. 
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Figure 37 Design of the Osteoarthritis experiment for one treatment group. Each square 
corresponds to a sample in the design and therefore to an NMR spectrum. This figure 
represents the design of one treatment group h. 
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This experimental design is schematically depicted in Figure 37 and the 

exhaustive ANOVA model for this design is given in equation [17]. In this 

equation the index for the individual animal i only contains a subscript h, because 

in this design the animals are crossed with the measurement time-points, which 

is also shown in the figure.  

 

[17] 
( ) ( ) ( ) kjhijhihkjhjkjjkqhi hhhk

x αβγβγαββαµ +++++=  

 

where ( ) jhih
βγ  is parameter for the interaction of the factor ‘individual animal’  with 

‘treatment group’ that is constrained as ( ) jh
h

h

h

I

i
jhi ,0

1
  ∀=∑

=

βγ  and ( ) kjhih
αβγ  is the 

parameter for the contribution of the biological variation that is constrained both 

as ( ) jkh
h

h

h

I

i
kjhi ,,0

1
  ∀=∑

=

αβγ  and ( ) jih

K

k
kjhih

,0
1

  ∀=∑
=

αβγ : this split-up of the 

individual-specific variation into two contributions cannot be performed  in the 

Bromobenzene experiment, since each rat is removed from that experiment after 

its urine is collected.  

When ANOVA is used for inference, ( ) jhih
βγ  and ( ) kjhih

αβγ  are usually added into 

one ‘error’ term (analogous to equation [8]). In ASCA this leads to the 

confounding of the variation related to both terms and therefore, unless it is 

explicitly decided to do otherwise, they are separated from each other.  

From equation [17] an ASCA model can be made using the procedure described 

before. This model, in which all contributions to the variation of kjhihk
x  are 

disentangled, is given in equation [18]. 

 

[18] ( ) ( ) ( ) ( ) ( ) ( ) EPTPTPTPTPT1mX T
abgabg

T
bgbg

T
abab

T
bb

T
aa

T ++++++=  

 

Also, analogous to the bromobenzene experiment the ASCA model in equation 

[16] can be selected (again, despite the fact that different contributions to the 
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variation are confounded within the submodels). The results of an analysis of the 

Osteoarthritis dataset with the model in equation [16] can be found in (1). 

6.4 Relationship of ASCA to other methods 
Several methods to use the experimental design in multivariate data analysis 

have been proposed in the literature. In the introduction MANOVA and APLSR 

were already mentioned, but these are not further discussed here. 

In this section two of these methods, SMART analysis (20) and Principal 

Response Curves (21), are discussed together with their similarities and 

differences to ASCA. 

Both methods employ a specific problem-based parameterization of the available 

data, to focus its analysis on the variation that is of interest to the experimenter 

and discard unwanted variation from the fitted component model. The notation 

used in this section is equal to that used in the ‘case studies’ section. Both 

methods are tailor-made for the analysis of data that has the same structure as a 

time-resolved metabolomics dataset (e.g. the Osteoarthritis data that was 

described before).  

6.4.1 SMART Analysis 

SMART is a method that has been developed specifically for the analysis of time-

resolved metabolomics data. There is often biological variation present between 

the animals prior to the start of the experiment. The aspect of SMART that is 

discussed here is that each treatment-specific trajectory is expressed as a 

deviation from the average pre-dose spectrum of each treatment. The 

parametrization chosen in SMART analysis is given in equation [19].  

 

[19] 
( ) ( ) kjhihkjhjkjhi hh

γααββx β++=  

 

In SMART, specific constraints are chosen for the parameters in equation [19] 

that are different from the ‘usual constraints’: hjβ  is constrained as the average 

pre-dose value (k=1) of variable j for treatment group h; parameter ( )hkjαβ  is 
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constrained as ( ) jhαβ jh ,01   ∀=  and parameter ( ) kjhih
γαβ  is constrained as 

( ) jkhγα
h

h
h

I

i
kjhi ,,0

1
  ∀=∑

=

β . The estimates of the terms in equation [19] (in 

combination with the constraints defined on the parameters) are given in 

equation [20]. 

 

[20] 
( ) ( )kjhkjhijhkjhjhkjhi xxxxxx

hh .1..1. −+−+=  

 

where jhx 1.  is the average value of variable j for treatment group h at the 

beginning of the experiment (k=1); kjhx .  is the value of variable j for treatment 

group h at time-point k, averaged over all animals within the treatment group.  

Equation [20] shows that in SMART the estimates of ( )hkjαβ  are zero at k=1 and 

that hjβ  contains the average pre-dose spectrum for each group. Matrices that are 

constructed from the estimates in equation [20] do not have orthogonal column 

spaces (such that the relation between equations [5] and [6] does not hold for 

SMART). Keun et al. only use the estimates of ( )hkjαβ  given in equation [20] to 

construct a component model. 

6.4.2 Principal Response Curves 

Another method that uses a problem–specific parameterization to remove 

undesired variation from the model is Principal Response Curves (PRC) Analysis 

(21). Although PRC is developed in ecology, the design of the experiments for 

which the method is tailor-made can be generalized to time-resolved 

metabolomics experiments.  

PRC models the treatment groups as a deviation from the control group, to 

enable a better view on the treatment-group related variation in the data. The 

ANOVA-parameterization used in PRC is given in equation [21].  
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[21] 
( ) ( ) kjhihkjkjkjhi hh

γααβαx β++=  

 

where kjα  is the parameter of factor ‘time’ for variable j and is constrained in PRC 

to describe the variation of the control group (h=1); ( )hkjαβ  is the parameter for 

the interaction between treatment group h and time-point k for variable j and is 

constrained as ( ) jkαβ kj ,01   ∀= ; ( ) kjhih
γαβ  is the parameter for the error of animal 

ih at measurement time-point k for variable j and constrained as 

( ) h,k,jγα
h

h
h

I

i
kjhi   ∀=∑

=

0
1

β  .  

The terms in equation [21] (in combination with the defined constraints on the 

parameters) can be estimated using equation [22]. 

 

[22] 
( ) ( )kjhkjhikjkjhkjkjhi xxxxxx

hh ..1..1 −+−+=  

 

where kjx .1  is the value of variable j for the control group (h=1) at time-point k; 

kjhx .  is the value of variable j for treatment group h at time-point k, averaged over 

all animals within the  treatment group. 

The estimates in equation [22] impose the constraints defined for the parameters, 

but will not lead to orthogonality of the column spaces of matrices constructed 

from these estimates (viz. equations [5] and [6]), which means that the variation 

of each estimate cannot be individually interpreted. Only the estimates of ( )hkjαβ  

are used in PRC and the variation of parameters kjα  and ( ) kjhih
γαβ  is discarded 

from the model. The PRC model consists of an SCA model on the matrix (of 

dimensions equal to X) constructed from the estimates of ( )hkjαβ . 

6.5 Extensions of the ASCA model 
Thus far ASCA has been presented as an extension of the PCA model. However, 

the idea behind ASCA can be used in many more applications of multivariate 

data analysis. ASCA should therefore not only be seen as a novel data analysis 
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method as such, but also as a framework for the analysis of multivariate data 

originating from an experimental design.  

First of all, the SCA methodology can be used more exhaustively in ASCA. The 

SCA-P model used here has properties that are identical to PCA. Aside from 

SCA-P multiple alternative versions have been proposed (4). The increasingly 

constrained SCA-PARAFAC2 (SCA-PF2), SCA-IND and SCA-ECP models can 

replace the SCA-P submodels straightforwardly when desired.  

6.5.1 Multiway-ASCA 

Some ANOVA parameters vary for levels of multiple factors in the experimental 

design: e.g. ( )cdjαβ  in equation [4] varies both for levels c of factor α and for 

levels d of factor β. In ASCA the variation of ( )cdjαβ  is modeled by the component 

scores that describe the variation of factors α and β (with levels c and d)  and the 

loadings that describe the original variables j. An elementwise expression of 

submodel (ab) from equation [7] is given in equation [23]. 

 

[23] ( ) ( ) ( )
( )

( )

( ) cdj

R

r
jrcdrcdj eptx ,

1
,,, abababab

ab

ab
abab

+= ∑
=

 

 

where ( ) cdjx ,ab  is the (cd x j)’th element of matrix ( )abX , the term ( ) ( )∑
=

ab

ab
abab abab

R

r
jrcdr pt

1
,,  

is the SCA estimate of this element and  ( ) cdje ,ab  are the residuals of the model.  

In equation [23] the scores 
abab cdrt ,  can vary freely for each c and d. As an 

alternative for SCA, a more constrained three-way model (e.g. PARAFAC (22-24) 

can be selected for the analysis of ( )abX (26). Then instead of equation [23], 

equation [24] is obtained.  

 

[24] ( ) ( ) ( ) ( )
( )

( )

( ) cdj

R

r
jrdrcrcdj epttx ,

1
,,,, abab2ab1abab

ab

ab
ababab

+= ∑
=
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where the component scores in ( ) ab1ab crt ,  vary with factor α, the component scores 

( ) ab2ab drt ,  vary with factor β, and ( ) abab jrp ,  varies with variable j; all three vary also 

between components r(ab); ( ) abab jrp ,  and ( ) cdje ,ab  are generally different between 

equations [23] and [24]. 

Aside from increasing the insight in the mechanisms beneath the variation in the 

data, this approach can be applied to estimate the interaction between α and β in 

the absence of replicate measurements. It can be seen as a multivariate 

extension of the approach proposed by Goodman and Haberman (25). 

When appropriate, the generalization of the two-way model in equation [23] to the 

three-way model in [24] can be extended to any multiway model as well. Which 

multiway model (e.g. PARAFAC, Tucker3) is used in ASCA is left to the 

preference of the user (26).  

6.5.2 Regression-ASCA 

The use of ASCA is not limited to unsupervised data analysis: multivariate 

regression models can also be used as submodels in ASCA, such that a 

Regression-ASCA model is obtained. Thereby the different contributions to the 

variation in X can be regressed on another variable y (or a set of variables Y) 

such that quantitative external information that is not present in X can be used in 

the data analysis (27). When Principal Component Regression models are 

selected for each submodel, the model in equation [25] is obtained for the two-

way analysis of variance without replication. 

 

[25] ( ) ( ) EbTbTbT1my ababbbaa
T ++++=  

 

Where y is the size N vector of regressor variables and ab , bb , ( )abb  are the 

regression coefficients for each submodel in equation [4]; aT , bT  and ( )abT  are 

the ASCA scores as obtained from equation [7]. 
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 Using ASCA in a regression context, like in equation [25] can extend the amount 

of information that can be obtained from a multivariate data analysis. ASCA can 

be extended (analogous to equation [25]) by any regression method that has 

component scores on which the ‘usual constraints’ are valid such that the 

theorem in Appendix 2 applies. 

Regression methods can also be used for discriminant analysis (e.g. Partial 

Least Squares – Discriminant Analysis (28)). In general this is done by 

regressing the data on design variables. Such a regression can be 

straightforwardly implemented in a Regression-ASCA model, such that a 

Discrimination-ASCA is obtained that discriminates the samples in the data 

based on one or a few experimental design factors. 

The preceding shows that any multivariate data analysis model can be used 

within the ASCA framework. The only prerequisite is that the column spaces of 

the different submodels (e.g. the scores of the SCA models as described in 

Appendices 1 and 2) are mutually orthogonal. Also, different types of models can 

be selected for each ASCA submodel. 

6.6 Current limitations of ASCA 
ASCA as it is presented in this paper is a data analysis method for parameter 

estimation. Therefore it should be seen as a more information rich alternative for 

SCA that can be used when the analyzed multivariate data is obtained from a 

designed experiment. Currently ASCA cannot be used for inferential purposes 

and therefore significance testing of the different experimental design factors and 

interactions is not yet possible within the current methodology: it remains a 

subject for further research. Also, currently a method for estimating the 

confidence intervals of the estimated model parameters is lacking. For this 

resampling methods are under study with which these intervals can be 

determined. 

6.7 Conclusions 
By merging SCA and ANOVA into ASCA, a method is obtained that combines the 

advantages of both methods and removes their disadvantages. The properties of 

ASCA are easy to derive from the properties of SCA and ANOVA. In limiting 
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cases, ASCA is either equal to SCA or to ANOVA. ASCA is a method that can be 

straightforwardly implemented by the data analyst and can be used to obtain 

more information from a multivariate dataset from a designed experiment than 

with existing methods. 

In this paper some case studies are presented. All case studies deal with time-

resolved metabolomics experiments. However, ASCA is a general data analysis 

method that can be applied in many scientific disciplines. The focus of these case 

studies is on the selection of a proper model and the considerations for merging 

or separating different design factors and interactions in the ASCA model. 

It is shown that PRC and SMART can be seen as methods that use a specific 

ANOVA parametrization of multivariate data that is different from that used in 

ASCA. Finally, ASCA can be extended to include more constrained component 

submodels and multiway submodels and to include multivariate regression or 

discrimination analysis. Especially this last section shows that although ASCA is 

presented as a novel data analysis method, it is in fact the basis of a framework 

for the analysis of multivariate data obtained from any experimental design. 

6.8 Appendices 

6.8.1 Appendix 1: Orthogonality between the column spaces of the 
matrices in equation [5] 

To prove the orthogonality of their column spaces, the structure of the matrices 

aX , bX  and ( )abX  needs to be determined. Matrix X is built up from size J row 

vectors Tx cd  that contain the measurement on level c of factor α and level d of 

factor β. 

The matrix structure is chosen as follows: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T

T

T

T

x

x

x

x

X

CD

D

C

M

M

M

1

1

11

 . 



134 

Matrices aX , bX  and ( )abX  are then structured as follows: 
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From the preceding, together with the constraints in Table 3 it can be concluded 

that I., II. and III. hold: 
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I, II and III ensure that the column spaces of aX , bX  and ( )abX  are orthogonal to 

1mT. The mutual orthogonality between the column spaces of matrices aX , bX  

and ( )abX  is demonstrated in the remainder of this appendix.  
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Submodels (a) and (ab) (using III.): 
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Submodels (b) and (ab) (using III.): 
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The proof in this appendix ensures that equation [6] holds for this model, 

because: 
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6.8.2 Appendix 2: Proof that the least-squares minimization of a 
constrained model is equal to the least-squares minimization of 
an unconstrained model of projected data on the space where 
the constraint is valid. 

In this Appendix, proof is given that the results of a constrained SCA-P model 

can also be obtained by constraining the data on which the analysis is performed.  

J is a projection matrix (JJ = J and JT = J), I is the identity matrix. 

The minimization of a linearly constrained PCA model is given by: 

( )
( )

2

,
minarg T

PJT
TP-XPT,

ℜ∈
=  where IPPT = , TTT  is a diagonal matrix in which the 

elements are sorted from large to small and JTT = . 

The minimization of a PCA model on constrained data is given by: 

( ) 2
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~~  and TTT ~~  is a diagonal matrix in which 

the elements are sorted from large to small. 
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hence: 
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This means that: 
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Note that the constraint that T should be in the range of J becomes redundant 

when it is estimated from JX. 

Since all submodels in the ASCA models are based on centering in certain 

directions and every such centering is a projection step, every submodel can be 

estimated by an unconstrained SCA-P model on properly centered data. A similar 

proof of this equality is used in CANDELINC (29). 

6.8.3  Appendix 3: Maximal number of components for each 
submodel 

The maximum number of components that can be fitted for each ASCA submodel 

can be determined from the rank of each of the matrices on the right hand side of 

equation [5]. For each submodel, J is assumed to be larger than the number of 

rows of each matrix T1m , aX , bX  and ( )abX . 

T1m : µq 

All rows of T1m are equal, therefore ( ) 1=ℜ T1m  

Submodel (a): ( )jjc xx .... −  

Matrix aX  contains C distinct rows. Due to the centering with respect to the 

overall mean the row rank of aX  is decreased with 1. 

This means that ( ) ( ) 1max
1

−==ℜ
>−

CR
JC

aaX  

Submodel (b): ( )jdj xx .... −  

bX  contains D distinct rows of length J. Due to the centering with respect to the 

overall mean the row rank of bX  is decreased with 1. 

 This means that ( ) ( ) 1max
1

−==ℜ
<−

DR
JD

bbX  
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Submodel (ab): ( )jdjjccdj xxxx .... +−−  

The rank of ( )abX  can be established by determining the number of linearly 

independent rows in the matrix. This can be done from the estimates contained in 

( )abX : ( )jdjjccdj xxxx .... +−− . The number of independent rows of matrix ( )abX  is 

then: ( )1+−− DCCD . 

This means that ( )( ) ( )( ) 1max
1

+−−==ℜ
<+−−

DCCDR
JDCCD

ababX . 

When J is larger than any of the ranks of T1m , aX , bX  and ( )abX , the maximum 

row rank aggregated for all submodels is equal to the row rank of the original 

data X, which is CD  (assuming that X is of full row rank): 

( ) ( ) ( ) CDDCCDDC =+−−+−+−+ 1111  

Elimination of all terms on the left hand side of this equation shows that this 

equality indeed holds. This means that the total aggregated maximum rank of all 

ASCA submodels (and therefore the maximum total number of components that 

can be fitted) is equal to the maximum rank of an SCA model and therefore to the 

rank of the data matrix X for a large J.  

6.9  Symbol List 
Vectors and 

Matrices 

 

X  Data  

T  Scores 

P  Loading  

E  Residuals 
Tx  Row vector containing a multivariate measurement 

X* Partition of matrix X (used in Appendix 1) 

1 Vector of ones 

m  Vector containing the means of each j 
pt,  Score, loading vector 

b  Regression Coefficients for an ASCA regression model 
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J  Projection Matrix 

Indices  

1…c…C  Index for the levels of factor α 

1…d…D  Index for the levels of factor β 

1…r…R  Index for the components 

1…n…N Index for the samples 

1…q…Q Index for the sets of samples 

1…j…J Index for the variables 

1…i…I Index for individual animals 

1…h…H Index for treatment groups 

1…k…K Index for measurement time-points 

Scalars  

x  Data value  

µ, α, β, (αβ),… ANOVA parameters 

t , p , e  Score, loading and residual values 

ev  Explained variation 

Labels  

α,β,γ… Experimental factors 

a,b,(ab),(abg),… Submodel labels 

1,2 Subscripts for the PARAFAC model scores 
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7 Future Work 
None of the work in this thesis is ‘finished’. As in every scientific endeavor, each 

step towards an answer returns a whole array of new questions that demand an 

answer. This ‘future work’ section is subdivided into two sections, where the first 

deals with Weighted PCA and the second with ASCA. 

7.1 WPCA 
An important aspect of WPCA that is not yet developed is the selection of the 

number of model components. The total variation in the data can be separated 

into a contribution of biologically induced variation occurring from the subjects 

under investigation and instrumentally induced variation, caused by the 

measurement of the system. in Chapter 2, the WPCA weights are determined 

based on the instrumentally induced variation. Since the model residuals are 

weighted with this information, they should be representative of the instrumentally 

induced error. Consequently sufficient components should be chosen for the 

model such that the model mainly contains the (larger) biological variation and 

the residuals contain the (smaller) instrumental variation. 

Unfortunately, certainly in problems of high-dimensional biology like 

metabolomics the ‘true’ underlying dimensionality of a problem is often not known 

(or even non-existing).  Therefore alternative methods to determine the required 

number of components for a WPCA model need to be developed.  

 

Another point of improvement for WPCA is the algorithm. The PCAW algorithm 

presented in Chapter 2 uses majorization iterations that are notoriously time-

consuming. The MILES algorithm also uses this type of iterations. The alternating 

regression approach chosen for the MLPCA algorithm generally converges much 

faster. Modifying the MLPCA algorithm to include the comprehensive offset 

estimation described in the chapter will greatly increase the computational 

efficiency of Weighted PCA. 
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Already several applications of WPCA other than the analysis of data with a 

homoscedastic error were mentioned in Chapter 2 (autoscaling, data with 

missing values). The applicability of WPCA can be extended by devising 

weighting schemes to introduce other types of a priori information into a data 

analysis.  

7.2 ASCA 
Although in the final chapter of the thesis a framework for the ASCA model is 

presented, work in the method development of ASCA is far from complete. 

One of the specific problems for which there is no answer yet is scaling. 

Specifically autoscaling poses a problem. It is performed in PCA to give every 

variable an equal variance and thereby an equal importance in the model. In 

more technical terms, PCA on unscaled data models the covariance matrix of the 

data while PCA on the autoscaled data models its correlation matrix. 

In ASCA, there are two possibilities for scaling that will be illustrated using the 

decomposition of the data matrix X into different contributions, e.g. Xa, Xb and 

X(ab) in Chapter 6. The two available options for scaling are: 
 

1. First autoscaling X and subsequently decomposing it into Xa, Xb and X(ab) 

2. First decomposing X and subsequently individually scaling Xa, Xb and X(ab) 

 

Both methods have drawbacks: When option 1 is used, the SCA models of Xa, Xb 

and X(ab) will not describe the correlation between the variables of each 

contribution, because in Xa, Xb and X(ab) the individual variables do not have a 

variance equal to one. When option 2 is used, the ASCA model does focus on 

the correlation between the variables within each contribution. However, the 

individually autoscaled matrices Xa, Xb and X(ab) do not add up to the autoscaled 

matrix X (disregarding the mean T1m ). Therefore the SCA submodels of 

autoscaled matrices Xa, Xb and X(ab) and their residuals do also not add up to 

autoscaled X and therefore when option 2 is chosen for scaling the data, the 

model does not describe the original data anymore.  
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Clearly both options for scaling each have their own problems and scaling in 

ASCA requires further research. A possible solution might lie in scaling back the 

SCA submodels of autoscaled Xa, Xb and X(ab) such that they describe the 

original data matrix X. 

Another topic that remains subject of debate is the selection of an ANOVA model 

for metabolomics datasets such as the guinea pig dataset in Chapter 4 and the 

bromobenzene dataset in Chapter 5.  

The purpose of ANOVA (and ASCA) is disentangling all contributions to the 

variation in a dataset. However, in the model given in Chapters 4 and 5, the 

variation of factor ‘treatment group’ (indicated by β) is not separated from the 

interaction between ‘treatment group’ and ‘time point’: both design parameters 

are confounded within one ANOVA term, which is indicated by (αβ) in these 

chapters.  

The rationale behind merging these two contributions is that the meaning of the 

factor ‘treatment group’ is not easy to interpret by itself. This contribution is an 

‘effect of each treatment averaged over all time-points’, while the focus of the 

experiment is on the evolving behavior of the urine composition, such that this 

factor ‘treatment group’ is not primarily of interest.   

The separation of the variation into a contribution equal for all animals, one for 

each treatment group and one for each individual as described in Chapters 4 and 

5 leads to model parameters whose meaning is very intuitive, even though 

multiple contributions to the variation in the data are confounded within the 

treatment group-specific submodel. In ANOVA there is no dimension reduction 

and this problem does not exist, as described in paragraph 6.2.3.1. 

A topic that is mostly untouched in this thesis is the statistical background of the 

ASCA method. The ASCA model requires a statistical background for two 

purposes. The quality of the scores and loadings fitted for the submodels has to 

be validated. Currently there is no method available to do this: work should be 

done in the development of methods for the determination of confidence intervals 

for the fitted model parameters (e.g. bootstrapping and other resampling 

methods).  
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Also the significance of the factors and interactions in the experimental design 

should be tested, analogous to significance testing in ANOVA. At present there is 

no method available for significance testing in ASCA. Significance testing in 

ASCA can greatly enhance its functionality. 

Other promising work lies in the merger of ASCA with other data analysis 

methods. In Chapter 6 the use of multiway and regression models as ASCA 

submodels was already proposed. The SCA submodels  of ASCA can also be 

replaced by Weighted PCA models. However, the choice of WPCA weights for 

the different submodels remains a subject of further research. Instead of other 

data analysis methods, also additionally constrained component models (e.g. in 

which explicit time-constraints are imposed for kinetics, smoothness etc.) can be 

used in ASCA, as long as the column spaces of the scores of the different 

submodels remain orthogonal. 

Finally, the application of ASCA in various fields of data analysis (other than 

psychometrics and metabolomics) will be very challenging. Only the application 

of ASCA to a broad spectrum of scientific problems will show its added value with 

respect to the data analysis tools that are already available. 

The use of other grey models for the analysis of time-resolved metabolomics 

data forms a promising subject of novel research. Aside from WPCA that uses 

information about the error and ASCA that uses the relationship between 

samples, another very promising model for metabolomics data analysis is the 

Network Component Analysis model (NCA) (1). In NCA, a partially known 

network structure is used as a priori information. Thereby the importance of the 

metabolites in the remainder of the metabolic network can be determined from 

the model.  

7.3 References 
(1) Liao, J.C., Boscolo, R., Yang, Y.L., Tran, L.M., Sabatti, C. and Roychowdhury, V.P., Network 
component analysis: reconstruction of regulatory signals in biological systems. Proceedings of 
the National Academy of Sciences, 2003; 100: 1552-1557 
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8 Samenvatting 
In dit proefschrift worden twee multivariate data-analyse methoden beschreven: 

Weighted PCA (WPCA) en ANOVA-Simultaneous Component Analysis (ASCA). 

Het gebruik van deze methoden wordt gedemonstreerd aan de hand van 

verschillende experimenten op het gebied van metabolomics. 

Metabolomics is het vakgebied in de systeembiologie dat zich bezig houdt met 

het metabolisme van een organisme. Metabolomics wordt ondermeer vaak 

toegepast in farmacologische en toxicologische experimenten. In deze context, 

waarbij meestal modelorganismen als muizen, ratten of cavia’s worden gebruikt, 

worden er lichaamsvloeistoffen van deze dieren afgenomen. Een vaak in 

metabolomics gebruikte lichaamsvloeistof is urine, aangezien het non-invasief en 

in redelijk grote hoeveelheden verkregen kan worden. De chemische 

(metaboliet)samenstelling van de verkregen urinesamples kan worden 

geanalyseerd met geavanceerde analytisch chemische technieken. Een vaak 

gebruikte techniek hiervoor is 1H-Nuclear Magnetic Resonance (NMR) 

spectroscopie. Ook al is NMR spectroscopie niet erg gevoelig, waardoor slechts 

de metabolieten met de hoogste concentraties geanalyseerd kunnen worden, de 

zeer beperkte monstervoorbewerking maakt het een aantrekkelijke techniek voor 

het verkrijgen van een globaal overzicht van het metabolisme. 

Lichaamsvloeistoffen als urine hebben een erg gecompliceerde chemische 

samenstelling en bovendien is de concentratie van nagenoeg elke metaboliet 

afhankelijk van de concentraties van andere metabolieten. Om uit deze grote 

hoeveelheid informatie de relevante en interessante fenomenen te extraheren 

worden multivariate data-analyse methoden gebruikt. Deze methoden geven een 

versimpeld en daardoor interpreteerbaar beeld van een dergelijke 

gecompliceerde metabolomics dataset. 

Een vaak gebruikte methode voor de analyse van metabolomics datasets is 

Principal Component Analysis (PCA): een krachtige methode die de relatie 

tussen de concentraties van verschillende metabolieten gebruikt om de grootste 

variatie in een metabolomics dataset weer te geven. Echter, PCA heeft ook enige 
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tekortkomingen die door het gebruik van de methoden beschreven in dit 

proefschrift verholpen kunnen worden. 

In hoofdstuk 2 van het proefschrift wordt de analyse van een metabolomics 

dataset met WPCA geïllustreerd. In dit hoofdstuk laat een analyse van de fout in 

de data geïntroduceerd door de NMR-metingen zien, dat deze afhankelijk is van 

de grootte van het signaal (dus van de concentratie van een metaboliet): de 

meetfout is ‘heteroscedastisch’. Wanneer PCA voor de analyse van deze data 

wordt gebruikt, zijn de metabolieten met de hoogste concentraties relatief het 

meest belangrijk. Echter, de concentratiemetingen van deze metabolieten 

hebben dus ook de grootste fout. WPCA weegt iedere meting in de dataset met 

de eerder bepaalde meetfout. Deze methode maakt daardoor de metingen met 

een grote meetfout relatief minder belangrijk dan de metingen met een kleine 

meetfout. Hierdoor heeft de heteroscedastische meetfout geen invloed op de 

resultaten van het WPCA model. 

In de andere hoofdstukken wordt een andere tekortkoming van PCA onder de 

loep genomen: deze methode kijkt namelijk naar de variatie in een dataset, maar 

het houdt geen rekening met de origine van deze variatie. Voor een goed begrip 

van de fenomenen die ten grondslag liggen aan de variatie in zo een dataset is 

het echter van groot belang dat de totale variatie in een dataset onderscheiden 

wordt naar verschillende types die toegeschreven kunnen worden aan 

verschillende origines. 

Het experiment dat besproken wordt in hoofdstuk 3 bestaat uit metingen van de 

normale variatie in de urinecompositie van 10 verschillende apen. De 

metabolietcompositie van de urine zal variëren in de tijd. Er zullen echter ook 

verschillen zijn tussen de urinecompositie van de verschillende apen die constant 

zijn in de tijd. In dit hoofdstuk wordt Multilevel Simultaneous Component Analysis 

(MSCA) geïntroduceerd: een methode die onderscheid maakt tussen deze types 

variatie en een interpreteerbaar beeld geeft van beide. Met het gebruik van 

MSCA kunnen metabolieten die alleen maar in de tijd of alleen maar tussen de 

apen variëren geïdentificeerd worden, zodat het begrip van de chemische 

achtergrond van de variatie in metabolietcompositie duidelijk verbeterd wordt. 
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MSCA is een specifieke versie van ASCA, dat in de volgende hoofdstukken 

besproken wordt. 

In hoofdstuk 4 wordt het onderscheid naar verschillende origines van variatie in 

een metabolomics experiment uitgebreid: de dataset die in dit hoofdstuk 

geanalyseerd wordt is afkomstig van een experiment waarin een bepaald type 

genetisch gemodificeerde cavia’s osteoarthritis, een ziekte aan de gewrichten, 

krijgt. Door middel van het toedienen van verschillende doses Vitamine C aan 

deze cavia’s wordt bekeken of het een invloed op de ontwikkeling van 

osteoarthritis in de tijd heeft. In dit experiment is er dus een bijdrage in de variatie 

die gelijk is voor alle cavia’s, er is een bijdrage in de variatie die verschilt tussen 

de verschillende dosisgroepen maar gelijk is voor alle cavia’s binnen een 

dosisgroep en er is een bijdrage die uniek is voor iedere cavia. Met ASCA wordt 

de totale variatie in deze dataset opgedeeld in deze verschillende bijdragen en 

iedere bijdrage wordt onafhankelijk geanalyseerd. Uit deze analyse blijkt dat er 

geen verschil is tussen de verschillende doses Vitamine C en dat deze stof geen 

invloed heeft op de ontwikkeling van osteoarthritis in de tijd. 

In hoofdstuk 5 wordt ASCA gebruikt voor de analyse van de ‘homeostatic 

capacity’: een begrip uit de systeembiologie dat aangeeft of een bepaald dier 

binnen een bepaald tijdsbestek in staat is om een verstoring van het 

metabolisme (bijvoorbeeld geïnduceerd door het toedienen van een vergif) te 

verwerken en terug te komen tot het ‘normale’ niveau van het metabolisme. Dit 

wordt geïllustreerd aan de hand van een experiment met ratten waaraan 

verschillende hoeveelheden broombenzeen, een stof die ontstekingen 

veroorzaakt in de lever, toegediend wordt. Met behulp van ASCA blijkt de 

‘homeostatic capacity’ van ratten voor broombenzeen goed vastgesteld te 

kunnen worden. 

In hoofdstuk 6 wordt de theoretische achtergrond van ASCA uitgelegd. Met de 

informatie in dit hoofdstuk kan de onderzoeker de data verkregen uit zijn eigen 

experiment analyseren met behulp van een zelf geconstrueerd ASCA model, 

gebaseerd op de gedefinieerde types van variatie in de data. Allereerst wordt 

ASCA uitgelegd, daarna worden de eigenschappen van ASCA vergeleken met 
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die van PCA en ANOVA (de twee bouwstenen van ASCA). Er wordt aangegeven 

hoe de kwaliteit van een ASCA model voor een bepaalde dataset bepaald kan 

worden en het gebruik van ASCA voor de analyse van de data van verschillende 

types experimenten wordt geïllustreerd. Verder wordt ASCA vergeleken met 

verschillende gerelateerde multivariate data-analyse methoden. Als laatste wordt 

ASCA in een breder perspectief geplaatst: ANOVA kan niet alleen met PCA 

gecombineerd worden tot ASCA, maar ook met andere data-analyse methoden 

(zoals de multiway-methode PARAFAC of de multivariate regressiemethode 

PLS) om andere multivariate data-analysemethoden te maken waarin 

verschillende contributies gedefinieerd worden. 
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9 Summary 
In this thesis two different multivariate data-analysis methods are described: 

Weighted PCA (WPCA) and ANOVA-Simultaneous Component Analysis (ASCA). 

The use of these methods is demonstrated using different experiments from the 

field of metabolomics. 

Metabolomics is the field of Systems Biology that deals with the metabolism of an 

organism. Metabolomics is a widely used method in pharmacology and 

toxicology. In this context, in which most often laboratory model-animals like rats, 

mice or guinea pigs are used, body fluids of these animals are collected. A body 

fluid that is often used in metabolomics is urine, since it can be collected non-

invasively and in reasonably large amounts. The chemical (metabolite) 

composition of the collected urine samples can be analyzed by advanced 

analytical chemical methods. An often used technique for this is 1H-Nuclear 

Magnetic Resonance (NMR) spectroscopy. Although NMR spectroscopy is not 

very sensitive, such that only the metabolites with relatively large concentrations 

can be analyzed, the very simple sample preprocessing makes it a very attractive 

technique for obtaining a global overview of the metabolism. 

Body fluids like urine have a very complex chemical composition; furthermore the 

concentration of basically every metabolite dependent on the concentrations of 

other metabolites. To extract the relevant and interesting phenomena from this 

large amount of information, multivariate data-analysis methods are used. These 

methods give a simplified and therefore interpretable view on these complicated 

metabolomics datasets. 

An often used method for the analysis of metabolomics datasets is Principal 

Component Analysis (PCA): a powerful method that uses the relationship 

between the concentrations of different metabolites to describe the largest 

variation in a metabolomics dataset. However, PCA also has some drawbacks 

that can be countered by using the alternative methods described in this thesis. 

In chapter 2 of the thesis the analysis of a metabolomics dataset using WPCA is 

illustrated. In this chapter the analysis of the error introduced by performing the 
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measurements using NMR spectroscopy shows that it is dependent on the size 

of the NMR signal (and therefore on the concentration of a metabolite): the 

measurement error is ‘heteroscedastic’. When PCA is used for the analysis of 

this data, the metabolites that have the highest concentration are relatively most 

important. However, the measurement of the concentration of these metabolites 

also has the largest measurement error. WPCA weighs each measurement in the 

dataset with the measurement error that was determined earlier. Thereby this 

method makes the measurements with the highest error less important and the 

measurements with the smallest error more important. This removes the 

influence of the heteroscedastic measurement error on the results of the WPCA 

model. 

In the other chapters of the thesis the focus is on another shortcoming of PCA: 

this method focuses on the variation in a dataset, but it does not distinguish 

different origins of the variation. For a thorough understanding of the phenomena 

underlying this variation it is important that the total variation in a dataset is 

distinguished into different contributions that can be assigned to different origins 

of variation.  

The experiment that is discussed in chapter 3 consists of measurements of the 

normal variation in time of the urine composition collected from 10 different 

monkeys. The metabolite composition of the urine will vary in time, but there will 

be also differences between the urine compositions of the different monkeys. In 

this chapter Multilevel Simultaneous Component Analysis (MSCA) is introduced: 

a method that distinguishes between these types of variation and gives an 

interpretable view on both. By using MSCA metabolites that vary only between 

the monkeys and not in time (or vice versa) can be identified, to increase the 

understanding of the chemical background of the variation in urine composition. 

MSCA is a specific version of ASCA: the method that is described in the 

subsequent chapters. 

In chapter 4 the distinction between different origins of variation in a 

metabolomics experiment is extended: the dataset described in this chapter is 

collected from a metabolomics experiment in which a specific type of genetically 
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modified guinea pigs develops osteoarthritis: a disease of the joints. By 

administering different doses of Vitamin C, the influence of this compound on the 

development of the disease is determined. In this experiment a contribution to the 

variation that is equal for all guinea pigs, a contribution that is equal for all guinea 

pigs within a dose group and a contribution that is unique to each guinea pig can 

be distinguished. Using ASCA the total variation in the dataset is divided into 

these contributions, such that each contribution can be individually analyzed. 

From this analysis the conclusion is drawn that there are no differences between 

the different Vitamin C dose groups, such that the compound has no influence on 

the development of osteoarthritis. 

In chapter 5 ASCA is used for the analysis of the ‘homeostatic capacity’: an entity 

from systems biology that indicates the ability of a specific animal to regain a 

‘normal’ metabolism (homeostasis) within a predefined time-span after a 

perturbation of the metabolism, for example induced by a toxic compound. This is 

illustrated using an experiment performed on rats. To these rats different doses 

of bromobenzene, a liver toxic compound, is administered. Using ASCA the 

homestatic capacity of rats for bromobenzene can be well determined. 

In chapter 6 the theoretical background of ASCA is explained. Using the 

information in this chapter, the researcher can analyze his/her data using a self-

constructed ASCA model, based on the defined contributions to the variation in 

the data. First the principles behind ASCA are explained; subsequently the 

properties of ASCA are compared to those of PCA and ANOVA (its building 

blocks). A method to determine the quality of a constructed ASCA model for 

describing a specific dataset is given and the use of ASCA for the analysis of 

data collected from different types of experiments is indicated. Also ASCA is 

compared to different related multivariate data-analysis methods. Finally, ASCA 

is put into a broader perspective: ANOVA can not only be combined with PCA to 

ASCA, but also with other multivariate data-analysis methods (like the multiway-

method PARAFAC or the multivariate regression method PLS) to make other 

novel multivariate data-analysis methods based on multiple contributions to the 

total variation in a dataset. 
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