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Vibrational relaxation in the condensed phase

H. J. Bakker
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

(Received 9 July 2004; accepted 26 August 2004

A modified Landau-Teller equation for vibrational relaxation in the condensed phase is proposed.
This equation differs from previous approaches by accounting for the fluctuations of the energies of
the vibrational levels that result from the interactions with the surroundiibgsh. In the
conventional approach the effects of the bath are only included in the coupling between the relaxing
and accepting vibrational modes. It is shown that the additional inclusion of the fluctuations of the
energy levels can lead to a dramatic change of the vibrational relaxation rat200® American
Institute of Physics.[DOI: 10.1063/1.1808116

I. INTRODUCTION These fluctuations can assist in vibrational relaxation by de-
creasing the energy difference between the interacting levels.
In vibrational relaxation the energy of an excited vibra- Recently, the effects of the fluctuations of the energy levels
tion is transferred to a combination of lower-frequency vi-have been calculated for the CH stretch vibration of liquid
brations and/or other degrees of freedom. In polyatomichlorofornf and the OH stretch vibration of liquid
atomic molecules, these lower energy degrees of freedom araethanol’ In these studies, the relaxation rate was calculated
often formed by a few strongly coupled, lower-frequencyin a nonperturbative approach by numerical integration of
intramolecular vibrational modés The sum of the frequen- the time-dependent Schtimger equation. In this paper, we
cies of these strongly coupled intramolecular modes is irpropose to describe the effects of energy fluctuations on vi-
general not exactly equal to the frequency of the relaxindorational relaxation with a modified expression of the
mode. This energy difference has to be compensated, béandau-Teller equation. To this extent, we derive an alterna-
cause vibrational relaxation can only take place if the energyive form of this equation that contains terms representing
is conserved. Hence, in general the relaxation process algbe energy fluctuations of the interacting levels.
involves the excitation or deexcitation of additional low-
frequency intermolecular modes that are often denoted a$ THEORETICAL MODEL
bath modes. These bath modes thus play an essential role in o o )
the vibrational relaxation, although the energy accepted of- General description of vibrational relaxation
provided by these modes is in general very small compared For a molecule in the condensed phase the Hamiltonian
to the energy of the relaxing vibration. In the condenseds given by
phase, there are many different types of low-frequency inter-
molecular modes that can assist in the vibrational relaxation 1~ st He*VsatVss, @
process. Clearly, in the gas phase most of these modes wilith Hg the vibrational Hamiltonian of the moleculeg the
be missing, which explains why for small molecules vibra-Hamiltonian of the bathy s, the anharmonic coupling of the
tional relaxation in the gas phase is orders of magnitudenolecular vibrations, anWsg the coupling between the mo-
slower than in the condensed phase. lecular vibrations and the bath. The coupliigg depends on
The rate of bath-assisted vibrational relaxation can béoth the vibrational and the bath coordinates. The couplings
calculated in a perturbative approach using a Landau-Telle¥s, andVgg can lead to vibrational energy relaxation.
formulation of Fermi’s Golden Ruléln this description, the In the treatments of Lawrence and Skirféf and Rey
relaxation rate is proportional to the time-correlation func-and Hynes 2 the vibrational states are anharmonic eigen-
tion of the fluctuating coupling between the relaxing andstates, which implies that these states include the effect of
accepting vibrational modes. The energy mismatch betweetine anharmonic couplings,. This approach has as an im-
these modes is then compensated by the appropriate freertant consequence that vibrational relaxation can result
guency of the coupling. The fluctuations follow from the from an interaction/ggthat is only of first or second order in
dependence of the coupling on particular bath modes. Fdhe vibrational normal mode coordinates. In the treatment of
instance, they can result from changes in the solvation strud-awrence and Skinner, the Hamiltonian of the system in-
ture or in the molecular conformatioms a result, the rate cludes the average effect of the condensed phase environ-
of vibrational energy transfer can give information on con-ment on the energies of the vibrational eigenstatesi f
formational molecular dynamics. Hence, the statdgp;) and|¢;) are eigenstates of the Hamil-
The interactions with the bath not only affect the cou-tonian Ho=Hg+Vgat{Vse)y, Where (Vsg), denotes a
pling between the relaxing and the accepting modes, thepath average o¥sg. In addition, Lawrence and Skinner ac-
also lead to fluctuations of the energies of these modes ammbunt for the average effect &g in the Hamiltonian of the
thereby to pure dephasing of the vibrational transitionsbath, by includingVsg at the mean values of the coordinates
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{g} of the molecular vibrations. Hence, in this treatment

VSB({an})- with an:<¢’n|q|¢n>, is added to the bath

Hamiltonian. If the vibrational system is anharmonic, theq-1_

mean vibrational coordinatgs),,} and the bath Hamiltoni-
nan will be dependent on the occupied vibrational stétg.

The vibrational states thus depend on the bath, because they

are eigenfunctions dfly=Hg+Vsat+{Vsg),, and the bath

Vibrational relaxation in the condensed phase 10089

Equation(4) can be written as

>

h2z dteIAwlft
g f#i

— o0

X % <¢ib|e_HB/kTeiHBt/hV’SB,lfe_iHBt/hV,SB,fi | bin)

in turn depends on the occupied vibrational state because the

bath Hamiltonian depends on the valueq®f,}. Therefore,
given the nature of the vibrational stdi¢,), H, andHg are
to be determined in an iterative manfiérin the present
treatment, we will follow Lawrence and Skinner in including
the bath average df 5z in the system Hamiltonian, but we
will not include Vgg({q,n}) in the Hamiltonian of the bath.

1 » )
:_Zg'i JloodtelAw”t«V,SBif(t)V,SBfi(O)»b ()
with  Vggis(t) =eMe"( g |Vid prye e and (A,
=(1/2g) Tr{e Me/kTA}, with the trace taken over the bath
states. EquatioKb) is often referred to as the Landau-Teller
formula. This formulation of Fermi's Golden Rule in terms

The effect of the character of the vibrational state on the bath

states and energies will be discussed in detail in Sec. Il C.
The relaxation of an excited vibratidrs;) can be de-

scribed with Fermi's Golden Rule that is derived from first-

order time-dependent perturbation theory/df) and |¢;)
are eigenstates of the Hamiltonibky, vibrational relaxation
results from the couplind/$g=Vsg—{Vse). Using Fer-
mi's Golden Rule, the rate of transfer from the initial level
| ;) to other vibrational statelsp;) is given by

2 e*Eb/kT
= S Sl enlVed ol 4o
X 6(Eip—Ete), (2

with ¢;, and ¢, denoting bath stateZg the reservoir par-
tition function, andE;, and E;. the initial and final state
energies, corresponding to the statés;)|¢i,) and

|p1)| psc), respectively. The delta function in E) can be
Fourier transformed giving

T, 1=

5 f dt E e*Eb/kTei(Eib*EfC)t/ﬁ
heZg J-= bi#ic

X|(il{ din| Ve 1) bro)|?. 3

B. Conventional approach to the influence of the bath

The energies;, and E;, can be written a¥;,=E;,
+E,, and E;.=E;y+E., with the energieE;, and E;q
eigenenergies oHg+Vgat{Vse)p, and the energieg,
and E. eigenenergies oHg. If we define ZAw;;=E;g
—E;p, and rewrite Eq(3) in the Heisenberg representation
we obtain

dteiAwift

— oo

>

1
f#i

ZZB
X % (bil({ pinleHe/kTeMaive o)

X( el M Ve i) i) (4)

The equality of Eqs(3) and(4) can easily be seen by insert-
ing a closureX| ¢ ){ | between ¢;) and(¢¢| and using
(¢icle He'i=( ¢ |e "Bt The operatoe'"'s"" describes
the time evolution of the occupied bath
Sp( iplee =S pip|e’FoVR.

states:

of a Fourier transform of a fluctuating coupling represents a
very general approach to the description of the effect of the
bath on vibrational relaxation.

C. Extended description of the influence of the bath

The Golden Rule expression of E(®) and the subse-
quent equations are derived under the assumption that the
coupling Vg does not have diagonal matrix elements, i.e.,
(Dil{PinlVse i) din) and (el drc|Vse b1)| prc) are as-
sumed to be zero. Clearly, this assumption is not always
valid. For instance, in molecular collisioffsand non-
adiabatic electronic transitiotfsthe diagonal terms can play
an important role and the diagonal matrix elements have to
be retained in the theoretical description. In the condensed
phase, the system-bath coupling is known to lead to pure
dephasing, which implies that the coupliNgg has nonzero
diagonal matrix elements that lead to fluctuations in the en-
ergies of the vibrational states. In the following, we will
show that these fluctuations can play an important role in
vibrational relaxation, and we derive a modified Golden Rule
expression and Landau-Teller equation in which the effects
of the energy fluctuations of the vibrational levels are in-
cluded.

Starting point of the derivation is the time-dependent
Schralinger equation i72dW¥ (t)/gt=HW¥(t), with W(t)

2 bCipPidip . Following the renormalized treatment of
Lawrence and Skinner, thg, states are the eigenfunctions of
the HamiltonianHo=Hg+Vgat+{(Vsp)y, With eigenener-
giesE;y. This implies that the perturbation mixing the states
is Vsg=Vsg—{Vse)p. Substitution of the wave function
W(t) in the Schrdinger equation, and multiplication from
the left with ( ¢¢|( 1| gives

(9Cfc(t)
at

= 2 (dil{ Picl Vsl di)] pin) Cin(t)
+(Dil(DrclHl pr)| dre)Crc(t) (6)

Substitution ofc(t) = by (t)e "B’ and multiplication of
both sides withe'Eic!” gives
(?bfc(t)

ifi = 2 (il sl Vse &)l dib)

>< blb(t)el(EfC*Elb)t/ﬁ

+{(Dil{ PrclVse &)l Drc)bre(). (7)
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In many cases, the last term is assumed to be zero, and the 1 o

replacement of the coefficients,(t) by the amplitudes of T 1= 5 J dt

the occupied vibrational/bath states eventually leads to the hZg -

Fermi’'s Golden Rule expression of E). Here we will .

retain the matrix element(¢|(pic|Vsd 1) dre) in X Y, e Eo/kTgi(EipErethdoip=hiow)t/h
deriving a modified version of Fermi's Golden b,f#i,c

Rule (FGR) using first-order perturbation theory. We de- X |( bil{ bin| VSd ds)| dred | (12)

fine b:.(t)=a te*i<¢f|<¢fc|véd¢f>|¢fc>t/h and b;.(t

o _if<cdf_|<)¢_ |Vf,°§¢)_>|¢_ A 0 (1) _If we now use thatE,=E;q+E, and E;;=E;,+E.,
=g e \"il?ilVse /%)M “whereay, represents the ampli- and that (¢l sy | € Eint howip) T
tude of an occupied vibrational/bath states. Substitution of (Eig+ Hi (i [Visg di)) TR Eq(11
these expressions and multiplication of both sides with= (#il(inle S , we can write Eq(11) as

ei<‘/’f|<¢fc‘vrsd¢f>‘¢’fc>t/h gives 1 -
T*l: f dtz e*Eb/kTeiAwift
! fLZZB —® b
. dag(t) , i(Hg+ (i Vg i)Wy 7
'ﬁT:i;b<¢f|<¢fC|VSB|¢i>|¢ib> X(dil(pinle s ®/M MV g g
X ape!(Bre™ Eip)t/A T durct = duipt, 8) Xf;ic | )| bre){ brcl( ple ' (Het (ilVsgdn)tih
X Vg din) bi)- (12

with  hdwc=(di|(drclVsel dp)|dre)  and  hidwy,
=(¢il{pi|Vsd B} din). If we integrate overt, multiply — The functions(¢;|Vsg ¢i) and (é¢|Vid ;) represent po-
as(t) with its complex conjugate, and neglect all crosstential energy terms in the bath coordinates. In an adiabatic
terms of different statefsp;,), we obtain picture, the energies of the states) and| ;) depend para-
metrically on the bath coordinates, thus determining the de-
pendence of ¢;|Vsg ¢i) and (p:|Vsg é¢) on the bath. It

1 , should be noted that these terms represent a different contri-
|af°(t)|2:ﬁi;ﬁb [(bil{ brelVael £}l dio) |libl” bution to the bath Hamiltonian thgn the interactivig
evaluated at the mean value of the vibrational coordinates
|1—el(A@rcipt dwic—dwip)t|2 that was included in the renormalized bath Hamiltonian in
X the treatment of Lawrence and Skinfiéfor instance, if the

Awieipt Swic— dwip)? :
(Awtept dwie™ dwip) states |¢;) and |¢;) would be harmonic, the terms

1 , Y o Vsa({( 1] 41)}) andVse({(b|al b1)}) would be the same,
N [(#il{ brc|Vsd i) din) | “|ain] while the terms ¢;| Vg ¢i) and{ ¢ Vg ¢¢) can still have
' a strongly different dependence on the bath coordinates.

X F(t,Awip jc+ Swip— Swic), (9) An important characteristic of Eq12) is that the bath

Hamiltonians contained in the exponential factors

el (M (¢ilVsg U gnde=i(He+(biVsdeDUh differ, whereas
with Azwfmb:(EfC_Eib)/ﬁ and F(t,w)=_sm2(—_wt/2)/ in all previous treatments these bath Hamiltonians are the
(-wl2) i5The long time limit of the functionF is @ &  gamefsee Eq(5)]. We will show that the difference between
function=> lim_.. F(t,w)=2mhtd(hw). If we consider ihq path Hamiltonians contained in the exponential factors of

only one occupied initial vibrational state, replace the func—Eq. (12) can have a strong effect on the vibrational relaxation
tion F by the & function andaf}|? by e %/<T/Z,, and ifwe 4o

sum over all possible final statefs, we obtain Dropping the closur&.| éc)( sl in Eq. (12 gives
1 w .
dla.(t 2 T—1: dtelAw”t e_Eb/kT
TIl:E | fc( )| 1 ﬁZZB gi e %
f,c &t
20 e Ep/kT X ( ip|!He T (AilVSA UL g |V o] )

:72

b,f#i,c

il (din| Ve ol? . ;
Zs (il biv| Vsel pr)| brc)] KoM VeI IV B by, (13

X O(Ejp—Efc+ i dwip—h dwyc). (100 Equation(13) can be written as

1 * . . /
This equation is similar to the Golden Rule expression of Eq.'l'[l=—22 f dtedeirt(el (et (4ilVsd di)Uh
(2), but differs in the energies contained in tAdunction. RETF ) e

The § function now contains additional energy terfm8ws. , Ci(Hg+ (b Ve )t ,
and7 dw;, that were absent before. X (| Vgl prye Met (ilVse b g [VE ol )y,

Equation(10), can be Fourier transformed giving (14)
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with (A),=(1/Zg) Tr{e H8/kTA}, with the trace taken over 4.} are the same aparticular valuesof the bath coordi-

the bath states. 617 nates. The difference in average kinetic energy serves to
Using the relatiort” compensate the energy mismafch w;; .
(Mgt VI _ o iH gt o1 Fhdt et MiygiHot Tz 15 The importance of including the fluctuations of the en-
e —¢€ € (19 ergies of the vibrational levels in vibrational relaxation can
we can transform Eq14) into be illustrated in the following way. If there are only two

eigenstates¢;o) and |¢¢o) of the vibrational Hamiltonian
without anharmonic coupling, theib;)=| ;o) +a| b1o) and
|p1)=|dr0)—albio), With a=(bio|Vsd b0/ (Eio—Ero)-
If the couplingVgg only has diagonal elements in the zero-
et iy ’ . .
VL (t)e ot Vet gy 16 order stateg ;o) and |¢;o), the coupling matrix element
saif(U saii(O)s 19 V&g of Egs.(5) and(16) takes the form

1 *® . N T
Tl_l:ﬁf;i f_ dteIAa)ift<<e|0fodt Vggi(t/h

where Vig (1) =€e8"( ¢, [VEg p)e e and e, de- ) )
notes a time-ordered exponential. Vit ={(diotadio|Vse pro—adio)

(diol Vsa o)
=g —g. <W¢nlVsdo
D. Interpretation Eio—Efo (#rolVsd bro)

In Eq. (16) the two different fluctuations induced by the —{iolVsd dio))- (17)
bath can easily be recognized. In the first place, the interag; . , ;
tions with the bath lead to fluctuations of the anharmoniéﬁ/hen the couplingVsg leads to a compensation of
. : . : e energy differenceE;o—Eso, then (¢go|Vsg dio)
coupling characterized by the correlation functlon_<¢. IVid dio)=Eig—E and (BilVinilb0)
V&gt (1) Vg (0). This term represents the usual approach_, ' SB 7100 0 =f0:, oSBT
to the description of bath mediated vibrational relaxation. (10l Vsd $ro). This implies that the coupling/sg has

Second, the interactions with the bath lead to fluctuations Oﬁned the stateg; and ¢; into resonance, thereby making

the eneraies of the vibrational levels. expressed by the termae anharmonic interaction effective in making the transition.
) ,g , , » EXp y rTﬁence, a large transition rate is expected. However, in the
Vggii(t") andVgg(t').

The fluctuations of the enerav levels and the fluctuation conventional formulation of Eq5), the relaxation rate will
uetial ; gy leve's uctualionge main small, because this equation contains a fagfstit
of the coupling(¢;|Vsg ¢¢) represent different matrix ele-

. ) . representing the original energy difference between the two
ments of the coupliny/sg. The fluctuations of the coupling b 9 9 9y

: states in the absence of the couplii§g. In contrast, the
are the result of matrix elements;|{ di,|Vsd &1)| bsc), %6 St Vg (1)

t
with b+#c andi # f. This implies that the transition between additional time-dependent exponential terﬁ@
the stateg¢;) and|¢s) is accompanied by the excitation or g4pq e;idet’V'sB,ff(t’)/ﬁ of Eq. (16) will largely compensate
deexcitation of quanta in the bath modes. This excitation of, tarmeiteirt
deexcitation can lead to a compensation of the energy mi
match betweene;) and| ;) that enables the transition.

The fluctuations of the energy levels follow from the
dependence of the potential energy tertgs|Vsg ¢;) and

(#1|Vse ¢1) on the bath coordinates. If the addition of these e viprational relaxation is described using states that

potential energy terms to the bath Hamiltonildg would not - 5o aigenstates of the system Hamiltonian without anhar-
lead t(_) a change of the wave functions of the bath, theSﬁ1oniC coupling® Then the statess, and ¢; are product
potential energy terms WOUId_ con_1mute withy and the only o165 of normal mode wave functions. In that case, the states
effect.of these terms is a time-independent chang_e of hEan pe coupled both by the anharmonic interaction and by
energies of the stateship)|b;) and| )| ér). Th_ese time- the fluctuating part of the system-bath coupling. In the con-
independent changes of the energy can help in making thg,piigng| description of Eq5), this means that the anhar-

energy transfgr re§onant, b_Ut it clearly dogs not rep_reserht]onic coupling must be dependent on the bath coordinates to
energy matching via fluctuations. However, if the matrix el'compensate for the energy mismateh w;; . Since the an-
if -

, . o
ements (¢n|(be|Vsd én)| ¢n) (With b#c and n=i or n harmonic coupling is an intramolecular interaction, its de-

=f), where|¢y) and| ) are eigiﬁns;lates dﬂﬁik" are Non- pendence on the bath coordinates is expected to be small. In
zero, the iLuggtlonsV§%ﬁi(ts)h=e *"Vsgiie e and g4 (16) the energy mismatchA w;; can be compensated by
Vsgi(t)=€"e"Vsg e e are time dgf;})enderr]\t. fllf the ihe fluctuations of the energies #f and ¢, , which implies
time dependence 0fsgi(t) andVsg(t) differs, the fluc- o4 following this equation, vibrational relaxation can result

tuations of these functions can lead to a cancellation of thqgrorn the relatively large time-independent part of the anhar-
energy mismatchi A w;; , and thus enable the relaxation. An monic coupling

equivalent way of describing this effect is as follows. Due to
the presence of the ternig;| Vg ¢i) and({ ¢ Vsg #+), the ) , )
sets of bath state$¢;,)} and{| )} wil differ. As a result, E. Calc_ulatl_on of Fhe relaxation rate using molecular
. dynamics simulations
the stated ¢¢.) and ¢;,) can have nonzero overlap while
their average kinetic energies differ. Nonzero overlap, The vibrational relaxation raté’l‘l is the sum of the
namely, only requires that the kinetic energied #f.) and  ratesk;; where f denotes all possible final staté¢g;) to

in case the shifts of the energy levels @f
Snd ¢ induced byVg are sufficiently slow and long living.
Therefore, Eq(16) indeed accounts for the expected increase
in relaxation rate when the levels; and ¢; are tuned into
resonance by/gg.
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which the initial statg ¢;) can relax. In most molecular dy- and (16) have to be rewritten in the form of a time-
namics simulations, the ratés are calculated using a clas- symmetrized anticommutator in order to connect it with a
sical description of the bath. Hence, the quantum correlatioelassical correlation function. This results @p(w)=2(1
functions of Eqs(5) and(16) are to be replaced by classical +e~"“/KT)~1 A more detailed calculation assuming the bath
correlation functions that can be evaluated with moleculato be harmonic yields a so-called harmonic QQF;(w)
dynamics simulations. However, a classical correlation func= (Zw/kT)(1—e #“/*T)~1 |n case the bath frequencies are
tion is a symmetric function in time, whereas the quantumvery low and many quanta are dissipated or absorbed from
correlation functions of Eqg5) and(16) are not symmetric. the bath, the QCF follows from the so-called Schofield ap-
This has two important consequences. First, the relaxatioproximation: Qg(w)=e"“*T, In Ref. 16 a hybrid form of
rates no longer fulfill detailed balanck;j;=kie "¢t/ the harmonic and the Schofield QCF was proposed:
Second, the use of classical correlation functions in generdys(») =e"*T(Aw/kT)Y3(1—e "/kT)"2 " This QCF
leads to an underestimation of the relaxation rate, especialljurns out to give a good description in the case where the
at high frequencie¥’ Hence, the replacement of the quantumfluctuation force depends exponentially on the coordinates of
correlation function by a classical function should be accomharmonic bath degrees of freedom. This QCF was used suc-
panied by the addition of a so-called quantum correctiorcessfully to describe the vibrational relaxation of wats.
factor (QCP), as a result of which the relaxation rakg
fulfills detailed balance and acquires the correct value at high
frequencies. The precise form of the QCF depends on the
physics of the relaxation process. I1l. DISCUSSION

Another consequence of the evaluation of the correlation
functions with classical molecular dynamics simulations is  The exponential functions representing the fluctuations
that the time evolution of the bath states, as expressed bgf the energy levels will have no effect on the relaxation
e Mel" is assumed not to be affected by the termswhen the frequency fluctuationggg;i(t’) and Vgg(t')
eiofﬁ,dt'vgg,n(t’)/h i[5t Vg (LA would be completely correlated. Then, the term

and e, . This implies that LUV ()= Ve ()] .
these terms now commute with the correlation function of€ "% = S8 sarrt "/ vanishes and Eq16) reduces to

the couplingV4g, () Via(0). Moreover, since the fluctua- Eq. (5). However, in general the frequency fluctuations of the

tions are assumed not to affect the time evolution of the batiibrational levels will not be correlated and can even be an-
states, the time-ordered exponential can be replaced by di¢orrelated. For instance, fluctuations in hydrogen-bond in-
ordinary exponential. By substituting the quantum Corre|a_t.err:1ct|on strength have an opposite effect on stretching vibra-

tion functions for classical functions and a QCF, and by writ-ionS and bending vibrations. Hence if the stdig;)
ing the time-ordered exponential functions as one ordinarJ€PreSents the excited state of an O—H stretch vibration and

exponential, the following expression for the relaxation rate #1) the overtone of a bending mode involving the same
is obtained: O—H group, fluctuations in the hydrogen bond interaction
with the O—H group will have a very strong effect on the
TS Q(Awif)J'w dtedent frequency difference/gg;; (t') —Vsge(t').
1 72 Y A comparison of the relative importance of the correla-
tion function{(Vgg it (t) Vs £i(0)))s and the exponential term
><<<eif5dt’[V'san<t’>*Véan<t’>]/ﬁvé3”(t)v'saﬁ(o)»_ can be made by describing the time-dependent functions
as independent Gaussian processes. This implies that the
(18) frequency fluctuations of the levelg;) and |¢;) are as-
Different forms of the QCF have been discussed in Refs. 18umed to be uncorrelated. Using cumulant expanétons
and 20. Oxtoby proposed that expressions such as (Bgs. obtain

f#i

1

2 fw dteiAw”t«e_ﬁizfgdtlfz’ldtzmvéa”(tl)véaii(t2)>>b+<<V,SEff(tl)véaff(t2)>>b]<<véBif(t)VéBfi(0)>>b- (19
f£i h —o ' '

Often it is assumed that the correlation function decays as correlation function: the correlation function of EQO) only
depends on the time differente—t,, and not on the abso-
1 i -
_2«VSan(tl)VSB,nm(tZ)»b: Dﬁme—nl—tzufc,mn' (20) !ute values ot; andt,. It should_ be noted that this Markov.
h ian treatment can only be applied when the bath correlation

: . . . . time constantr, is shorter tharil';. If the bath fluctuations
with 7. ,, @ correlation time constant expressing the time

scale of the fluctuations. The paramefey,,,, represents the would be extremely slow#;>T,), the system is inhomoge-

range over which the energy is modulated. The use of EQI€OUS ON the time scale of the relaxation. This meansTthat
(20) implies that there are no memory effects in the bathdePends on the phase relation between the bath $taigs
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because this phase relation determines where the relaxirgpntrast, if7.<T, the relaxing system samples all positions
system resides in the inhomogeneous distribution at the man the inhomogeneous distribution before relaxation occurs,
ment of relaxation. Hence, far.>T,, the cross terms of the with the result that the relaxation no longer depends on the
bath stateg¢;,) can no longer be neglected in E@) and initialphase relation of the bath states. Substitution of Eqg.
T, will depend on bath correlation functions that have(20) in Eq. (19) and solving the integrals in the exponent
memory for the initial phase relation of the bath states. Ingives

_ * ; 2.2 ot 2 2 ot
T1 1_ ; J’ dte'Awifte_DiiTc,ii[e C’”+t/TC,ii_1]e_foTc'ff[e Cv”‘*'t/'fc,ff_1]e_t/7c,if_ (21)
i J-—=

It follows from Eg. (21) that the relative importance of As a result, the broadening induced by the fluctuations is
the fluctuations in the energies and in the coupling will benegligible compared to the width of the Fourier transform of
determined by the relative magnitudes of the bath correlatiothe correlation function. Hence, the fluctuations do not con-
time constantsr. i, 7. ¢, and 7. ¢, the frequency ranges tribute to the vibrational relaxation rate, and the compensa-
Dji, D¢s, andDj¢, and the detuninddws. In Fig. 1, the tion of the detuningA w;; has to result from the correlation
relaxation rate is shown as a function of the deturing; at ~ function (V¢ (t)Vsg1i(0))y . For D7.~1 [Figs. Xb) and
four different values of the produdDd 7., with D; =Dy 1(c)], there is a clear difference between the solid and the
=Dj;=D and 7 jj =17 1= 7,1 = 7 (Solid curvey, andDj;  dashed curves. In this case, the broadening of the energies of
=D, D;j=D=0, and 7 ji=7.=7cit=7c (dashed the leveld ¢;) and|¢;) due to the fluctuations is comparable
curves. The dashed curves thus represent the conventiong the spectral width of(Vsgif (1) Vg1 (0))y . As a result,
description of vibrational relaxation of Eg5), where the the broadening of the energy levels leads to a strong accel-
effect of the fluctuations of the energy levels is absent.  eration of the vibrational relaxation if the detuning is larger

WhenD 7.<1, the difference between the solid and thethan the spectral widt®. For detunings smaller tha, the
dashed curve vanishgBig. 1(a)]. In this limit, Eq.(21) sim-  proadening of the levels of energies has an adverse effect,

plifies to since then the fluctuations rather lead to an increase of the
0 average(absolute detuning betweeng;) and|¢;), instead
Tl_l=f2 f dteAeite VTai ~UTasrg ™ Vreir, (220 of a decrease. Fobr.>1 [Fig. 1(d)], the solid and the
| —

dashed curve strongly differ at detuningdso;;<<10D. At
with szmmz(A,anrc,mnfl. WhenD 7.<1, the fluctuations detuningsAw;;~3D, the fluctuations of the energy levels
of the energy levels are in the limit of motional narrowing. lead to an increase of the relaxation rate by a factor of 10.

3102 3102
102 (a) 102 (c)
. D102 P, D=
103 _ 10 \

1/(DTy)
3

1(PTy)
3

=] F N ] FIG. 1. Calculated _V|brat|onal rela_x-
oy ation rate as a function of the detuning
A wj; between the initial statgp;) and

105 10° . -
i ] T the final state|¢;) for four different
characteristics of the fluctuations of
6 X
10%5 3 s m is 2 106 + s m T % the bath. The fluctuations are modeled
A A as Gauss-Markov processes using a
;D /D spectral widthD and a bath correlation
3102 3102 time 7.. The solid curve is calculated
102 | 102 b4 using Eq.(21) including both the fluc-
3 Dt.=1 1 ] Di=10 ] tuations of the coupling and the fluc-
\ ¢ ‘,\ tuations of the energy levelgcorre-
103 | 103 v ] sponding to Eq.(16)]. The dashed
’[_?- N E [, \ curve is calculated using EQR1), but
8 el D 8 el without the fluctuations of the energy
= [ e - - levels[corresponding to Eq5)].
108 10°% .\.T\\\
1040 4 8 12 16 20 ]0.60 4 8 12 16 20
AwydD Aay/D
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Even forD 7> 1 the difference between the dashed and~2000 cm®. The effect of the energy fluctuations on the
the solid curves vanishes fadrw;;—0c°. The origin of this relaxation rate can be estimated for these systems, assuming
effect is that forD 7.>1 the spectral broadening of the en- that the fluctuations of the coupling have a similar spectral
ergy levels has a Gaussian shape, whereas the spectrumrahge and correlation time constant. For the relaxation of the
{Vsgif(t)Vsgri(0))p has a Lorentzian shape. Because aOH stretch vibration of HDO:BO to the overtone of the OH
Gaussian decays much faster as a function of frequency tharending modeenergy gap~600 cm b, the fluctuations of
a Lorentzian, the spectral amplitude of the fluctuations of théhe OH stretch vibrational frequency are thus expected to
energy levels is negligibly small for largew;; compared to lead to an increase of the relaxation rate by a factor of 10.
the spectral amplitude of(Vgg;(t)Vsgsi(0)),. Hence, For the relaxation of the OH stretch vibration of HDQD
very large detuningsXw;;>10D) can only be compensated to the OD stretch vibratiorienergy gap~900 cnit), an
by fluctuations of the coupling, and not by fluctuations of theincrease by a factor of 3 is expected.
energy levels. It should be noted, however, that this effect is
a consequence of the description of the bath-induced fluctua-
tions as Gaussian processes. If this description is not validy. CONCLUSIONS
the fluctuations of the energy levels may also affect the vi-
brational relaxation rate at large values of the detuning.

Figure 1 shows that the relaxation rate becomes large f
A w;;—0, especially foD 7.>1 [Fig. 1(d)]. However, in the
limit of small detuning, the perturbative approach that is

Vibrational relaxation strongly depends on the presence
o?f interactions between the relaxing molecule and its sur-
roundings, because these interactions lead to fluctuations that
compensate the energy mismatch between the interacting vi-
used in deriving Eqs(5) and (16) will be no longer valid. pratlonal stat.es. In the conyentlonal de.scrlptlo.n of vibra-
. ) . S Ponal relaxation, the fluctuations enter via the time depen-
For small detuning, the relaxing and accepting vibrationa : . . .
. : . dence of the coupling connecting the relaxing and accepting
states will become strongly mixed, and the relaxation process.

has to be calculated with a nonperturbative approach, fo\r/lbratlonal states. Here we propose an extension of the influ-

instance, by numerical integration of the time-dependen . . .
Schrialinger equatiofi”*°Recently, this approach has been he fluctuations of the energy levels of the vibrational states.
' ' This results in the modified Landau-Teller expression shown

used to calculate the effects of energy-level fluctuations on

. oo o in Eq. (16). The fluctuations of the energy levels can lead to
the relaxation of the OH stretch vibration of liquid methdnol X ! . )
and the CH stretch vibration of liquid chloroforfor liquid a strong increase of the relaxation rate by tuning the relaxing

methanol. it was found that the energv-level fluctuation rI1evel in resonance with the accepting level.
ethanol, as fou atthe energy-ievel fluctuations ca The Landau-Teller equatiofi6) contains both the fluc-

!ndeed _Iead _to sFrong mixing and av0|d_ed crossings of th(?uating coupling and terms representing the fluctuations of
interacting vibrational levels, thus leading to state-to-stati

nce of the interactions with the bath by incorporating also

laxat tes that st v differ f the rat dict he energies of the initial and the final states of the relaxation
relaxation rates that strongly ditier irom _7e rates predicteq, ocess. This equation can be transformed into(E§). that
by the conventional Landau-Teller equatioimterestingly,

. contains classical correlation functions and can be evaluated
for chloroform the energy-level fluctuations do not lead to ausing molecular dynamics simulations

strong mixing of the CH stretgh vibration and its accepting The relative importance of the fluctuations of the energy
modes, beca_use_ the_ fluctuations are strongly corre?atedl.evels and the coupling strongly depend on the time scale
Hence, for this vibration the nonperturbative approach and,,y ampjitude of the fluctuations. If the fluctuations are fast,
the conventional Landau-Teller expression gave similar rég i jimplies that the correlation time of the bath is short,

sults. The method of numerically integrating the time-yo f,ctuations of the energy levels are in the motional nar-

dependent Schdinger equation has as a clear advantagging imit and the effect of these fluctuations on the relax-

over the perturbative Landau-Teller approach that it can detion hecomes negligible. If the fluctuations are slow, they

scribe vibrational relaxation in the limit that the interacting 5.6 a strong effect on the relaxation rate, leading to a de-
levels become strongly mixed. _D|sadvantag§/%§f this metho@ease of this rate if the detuning is smaller than the spectral
are that the detailed balance is not conserved,that the a6 of the fluctuations, and an increase of the vibrational

quantum correction factor cannot be included, and that thes|axation rate if the detuning is larger than this range. We

(classical bath cannot respond to a change in the vibrationaling that the fluctuations of the energy levels can lead to a

state of the relaxmg.molecufe. _ tenfold increase of the vibrational relaxation rate, if the fluc-
It follows from Fig. 1 that energy-level fluctuations can {,ations of the coupling and the energy levels are Gauss-

affect vibrational relaxation over a wide range of detunings:\;5rkov processes with the same spectral width and correla-
the effects remain significant up to ten times the spectrgfiyn time.

range of the fluctuations. Especially for hydrogen-bonded

systems the spectral range of the fluctuations can be quite
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