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Vibrational relaxation in the condensed phase
H. J. Bakker
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 9 July 2004; accepted 26 August 2004!

A modified Landau-Teller equation for vibrational relaxation in the condensed phase is proposed.
This equation differs from previous approaches by accounting for the fluctuations of the energies of
the vibrational levels that result from the interactions with the surroundings~bath!. In the
conventional approach the effects of the bath are only included in the coupling between the relaxing
and accepting vibrational modes. It is shown that the additional inclusion of the fluctuations of the
energy levels can lead to a dramatic change of the vibrational relaxation rate. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1808116#

I. INTRODUCTION

In vibrational relaxation the energy of an excited vibra-
tion is transferred to a combination of lower-frequency vi-
brations and/or other degrees of freedom. In polyatomic
atomic molecules, these lower energy degrees of freedom are
often formed by a few strongly coupled, lower-frequency
intramolecular vibrational modes.1–3 The sum of the frequen-
cies of these strongly coupled intramolecular modes is in
general not exactly equal to the frequency of the relaxing
mode. This energy difference has to be compensated, be-
cause vibrational relaxation can only take place if the energy
is conserved. Hence, in general the relaxation process also
involves the excitation or deexcitation of additional low-
frequency intermolecular modes that are often denoted as
bath modes. These bath modes thus play an essential role in
the vibrational relaxation, although the energy accepted or
provided by these modes is in general very small compared
to the energy of the relaxing vibration. In the condensed
phase, there are many different types of low-frequency inter-
molecular modes that can assist in the vibrational relaxation
process. Clearly, in the gas phase most of these modes will
be missing, which explains why for small molecules vibra-
tional relaxation in the gas phase is orders of magnitude
slower than in the condensed phase.

The rate of bath-assisted vibrational relaxation can be
calculated in a perturbative approach using a Landau-Teller
formulation of Fermi’s Golden Rule.4 In this description, the
relaxation rate is proportional to the time-correlation func-
tion of the fluctuating coupling between the relaxing and
accepting vibrational modes. The energy mismatch between
these modes is then compensated by the appropriate fre-
quency of the coupling. The fluctuations follow from the
dependence of the coupling on particular bath modes. For
instance, they can result from changes in the solvation struc-
ture or in the molecular conformation.5 As a result, the rate
of vibrational energy transfer can give information on con-
formational molecular dynamics.

The interactions with the bath not only affect the cou-
pling between the relaxing and the accepting modes, they
also lead to fluctuations of the energies of these modes and
thereby to pure dephasing of the vibrational transitions.

These fluctuations can assist in vibrational relaxation by de-
creasing the energy difference between the interacting levels.
Recently, the effects of the fluctuations of the energy levels
have been calculated for the CH stretch vibration of liquid
chloroform6 and the OH stretch vibration of liquid
methanol.7 In these studies, the relaxation rate was calculated
in a nonperturbative approach by numerical integration of
the time-dependent Schro¨dinger equation. In this paper, we
propose to describe the effects of energy fluctuations on vi-
brational relaxation with a modified expression of the
Landau-Teller equation. To this extent, we derive an alterna-
tive form of this equation that contains terms representing
the energy fluctuations of the interacting levels.

II. THEORETICAL MODEL

A. General description of vibrational relaxation

For a molecule in the condensed phase the Hamiltonian
is given by

H5HS1HB1VSA1VSB, ~1!

with HS the vibrational Hamiltonian of the molecule,HB the
Hamiltonian of the bath,VSA the anharmonic coupling of the
molecular vibrations, andVSB the coupling between the mo-
lecular vibrations and the bath. The couplingVSB depends on
both the vibrational and the bath coordinates. The couplings
VSA andVSB can lead to vibrational energy relaxation.

In the treatments of Lawrence and Skinner8–10 and Rey
and Hynes,11,12 the vibrational states are anharmonic eigen-
states, which implies that these states include the effect of
the anharmonic couplingVSA. This approach has as an im-
portant consequence that vibrational relaxation can result
from an interactionVSB that is only of first or second order in
the vibrational normal mode coordinates. In the treatment of
Lawrence and Skinner, the Hamiltonian of the system in-
cludes the average effect of the condensed phase environ-
ment on the energies of the vibrational eigenstates ofHS .
Hence, the statesuf i& anduf f& are eigenstates of the Hamil-
tonian H05HS1VSA1 ^̂ VSB&&b , where ^̂ VSB&&b denotes a
bath average ofVSB. In addition, Lawrence and Skinner ac-
count for the average effect ofVSB in the Hamiltonian of the
bath, by includingVSB at the mean values of the coordinates
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$q% of the molecular vibrations. Hence, in this treatment
VSB($qnn%), with qnn5^fnuqufn&, is added to the bath
Hamiltonian. If the vibrational system is anharmonic, the
mean vibrational coordinates$qnn% and the bath Hamiltoni-
nan will be dependent on the occupied vibrational stateufn&.
The vibrational states thus depend on the bath, because they
are eigenfunctions ofH05HS1VSA1 ^̂ VSB&&b , and the bath
in turn depends on the occupied vibrational state because the
bath Hamiltonian depends on the values of$qnn%. Therefore,
given the nature of the vibrational stateuf i&, H0 andHB are
to be determined in an iterative manner.8,9 In the present
treatment, we will follow Lawrence and Skinner in including
the bath average ofVSB in the system Hamiltonian, but we
will not include VSB($qnn%) in the Hamiltonian of the bath.
The effect of the character of the vibrational state on the bath
states and energies will be discussed in detail in Sec. II C.

The relaxation of an excited vibrationuf i& can be de-
scribed with Fermi’s Golden Rule that is derived from first-
order time-dependent perturbation theory. Ifuf i& and uf f&
are eigenstates of the HamiltonianH0 , vibrational relaxation
results from the couplingVSB8 5VSB2 ^̂ VSB&&b . Using Fer-
mi’s Golden Rule, the rate of transfer from the initial level
uf i& to other vibrational statesuf f& is given by

T1
215

2p

\ (
b, f Þ i ,c

e2Eb /kT

ZB
u^f i u^f ibuVSB8 uf f&uf f c&u2

3d~Eib2Ef c!, ~2!

with f ib andf f c denoting bath states,ZB the reservoir par-
tition function, andEib and Ef c the initial and final state
energies, corresponding to the statesuf i&uf ib& and
uf f&uf f c&, respectively. The delta function in Eq.~2! can be
Fourier transformed giving

T1
215

1

\2ZB
E

2`

`

dt (
b, f Þ i ,c

e2Eb /kTei ~Eib2Ef c!t/\

3u^f i u^f ibuVSB8 uf f&uf f c&u2. ~3!

B. Conventional approach to the influence of the bath

The energiesEib and Ef c can be written asEib5Ei0

1Eb , and Ef c5Ef 01Ec , with the energiesEi0 and Ef 0

eigenenergies ofHS1VSA1 ^̂ VSB&&b , and the energiesEb

and Ec eigenenergies ofHB . If we define \Dv i f 5Ei0

2Ef 0 , and rewrite Eq.~3! in the Heisenberg representation
we obtain

T1
215

1

\2ZB
(
f Þ i

E
2`

`

dteiDv i f t

3(
b

^f i u^f ibue2HB /kTeiH Bt/\VSB8 uf f&

3^f f ue2 iH Bt/\VSB8 uf i&uf ib&. ~4!

The equality of Eqs.~3! and~4! can easily be seen by insert-
ing a closure(uf f c&^f f cu betweenuf f& and^f f u and using
^f f cue2 iH Bt/\5^f f cue2 iEct/\. The operatoreiH Bt/\ describes
the time evolution of the occupied bath states:
(b^f ibueiH Bt/\5(b^f ibueiEbt/\.

Equation~4! can be written as

T1
215

1

\2ZB
(
f Þ i

E
2`

`

dteiDv i f t

3(
b

^f ibue2HB /kTeiH Bt/\VSB,i f8 e2 iH Bt/\VSB, f i8 uf ib&

5
1

\2 (f Þ i
E

2`

`

dteiDv i f t ^̂ VSB,i f8 ~ t !VSB, f i8 ~0!&&b ~5!

with VSB,i f8 (t)5eiH Bt/\^f i uVSB8 uf f&e
2 iH Bt/\ and ^̂ A&&b

5(1/ZB)Tr$e2HB /kTA%, with the trace taken over the bath
states. Equation~5! is often referred to as the Landau-Teller
formula. This formulation of Fermi’s Golden Rule in terms
of a Fourier transform of a fluctuating coupling represents a
very general approach to the description of the effect of the
bath on vibrational relaxation.

C. Extended description of the influence of the bath

The Golden Rule expression of Eq.~2! and the subse-
quent equations are derived under the assumption that the
coupling VSB8 does not have diagonal matrix elements, i.e.,
^f i u^f ibuVSB8 uf i&uf ib& and ^f f u^f f cuVSB8 uf f&uf f c& are as-
sumed to be zero. Clearly, this assumption is not always
valid. For instance, in molecular collisions13 and non-
adiabatic electronic transitions14 the diagonal terms can play
an important role and the diagonal matrix elements have to
be retained in the theoretical description. In the condensed
phase, the system-bath coupling is known to lead to pure
dephasing, which implies that the couplingVSB8 has nonzero
diagonal matrix elements that lead to fluctuations in the en-
ergies of the vibrational states. In the following, we will
show that these fluctuations can play an important role in
vibrational relaxation, and we derive a modified Golden Rule
expression and Landau-Teller equation in which the effects
of the energy fluctuations of the vibrational levels are in-
cluded.

Starting point of the derivation is the time-dependent
Schrödinger equation i\]C(t)/]t5HC(t), with C(t)
5( i ,bcibf if ib . Following the renormalized treatment of
Lawrence and Skinner, thef i states are the eigenfunctions of
the HamiltonianH05HS1VSA1 ^̂ VSB&&b , with eigenener-
giesEi0 . This implies that the perturbation mixing the states
is VSB8 5VSB2 ^̂ VSB&&b . Substitution of the wave function
C(t) in the Schro¨dinger equation, and multiplication from
the left with ^f f u^f f cu gives

i\
]cf c~ t !

]t
5 (

iÞ f ,b
^f f u^f f cuVSB8 uf i&uf ib&cib~ t !

1^f f u^f f cuHuf f&uf f c&cf c~ t !. ~6!

Substitution ofcf c(t)5bf c(t)e
2 iE f ct/\ and multiplication of

both sides witheiE f ct/\ gives

i\
]bf c~ t !

]t
5 (

iÞ f ,b
^f f u^f f cuVSB8 uf i&uf ib&

3bib~ t !ei ~Ef c2Eib!t/\

1^f f u^f f cuVSB8 uf f&uf f c&bf c~ t !. ~7!
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In many cases, the last term is assumed to be zero, and the
replacement of the coefficientsbib(t) by the amplitudes of
the occupied vibrational/bath states eventually leads to the
Fermi’s Golden Rule expression of Eq.~2!. Here we will
retain the matrix element ^f f u^f f cuVSB8 uf f&uf f c& in
deriving a modified version of Fermi’s Golden
Rule ~FGR! using first-order perturbation theory. We de-

fine bf c(t)5af c(t)e
2 i ^f f u^f f cuVSB8 uf f &uf f c&t/\ and bib(t)

5aib
0 e2 i ^f i u^f ibuVSB8 uf i &uf ib&t/\, whereaib

0 represents the ampli-
tude of an occupied vibrational/bath states. Substitution of
these expressions and multiplication of both sides with

ei ^f f u^f f cuVSB8 uf f &uf f c&t/\ gives

i\
]af c~ t !

]t
5 (

iÞ f ,b
^f f u^f f cuVSB8 uf i&uf ib&

3aib
0 ei ~Ef c2Eib!t/\1dv f ct2dv ibt, ~8!

with \dv f c5^f f u^f f cuVSB8 uf f&uf f c& and \dv ib

5^f i u^f ibuVSB8 uf i&uf ib&. If we integrate overt, multiply
af c(t) with its complex conjugate, and neglect all cross
terms of different statesuf ib&, we obtain

uaf c~ t !u25
1

\2 (
iÞ f ,b

u^f f u^f f cuVSB8 uf i&uf ib&u2uaib
0 u2

3
u12ei ~Dv f c,ib1dv f c2dv ib!tu2

~Dv f c,ib1dv f c2dv ib!2

5
1

\2 (
iÞ f ,b

u^f f u^f f cuVSB8 uf i&uf ib&u2uaib
0 u2

3F~ t,Dv ib, f c1dv ib2dv f c!, ~9!

with Dv f c,ib5(Ef c2Eib)/\ and F(t,v)5sin2(2vt/2)/
(2v/2)2. The long time limit of the functionF is a d
function:15 limt→` F(t,v)52p\td(\v). If we consider
only one occupied initial vibrational state, replace the func-
tion F by thed function anduaib

0 u2 by e2Eb /kT/Zb , and if we
sum over all possible final statesf f , we obtain

T1
215(

f ,c

]uaf c~ t !u2

]t

5
2p

\ (
b, f Þ i ,c

e2Eb /kT

ZB
u^f i u^f ibuVSB8 uf f&uf f c&u2

3d~Eib2Ef c1\dv ib2\dv f c!. ~10!

This equation is similar to the Golden Rule expression of Eq.
~2!, but differs in the energies contained in thed function.
The d function now contains additional energy terms\dv f c

and\dv ib that were absent before.
Equation~10!, can be Fourier transformed giving

T1
215

1

\2ZB
E

2`

`

dt

3 (
b, f Þ i ,c

e2Eb /kTei ~Eib2Ef c1\dv ib2\dv f c!t/\

3u^f i u^f ibuVSB8 uf f&uf f c&u2. ~11!

If we now use that Eib5Ei01Eb and Ef c5Ef 01Ec ,
and that ^f i u^f ibuei (Eib1\dv ib)t/\

5^f i u^f ibuei (Ei01HB1^f i uVSB8 uf i &)t/\, we can write Eq.~11! as

T1
215

1

\2ZB
E

2`

`

dt(
b

e2Eb /kTeiDv i f t

3^f i u^f ibuei ~HB1^f i uVSB8 uf i &!t/\VSB8

3 (
f Þ i ,c

uf f&uf f c&^f f cu^f f ue2 i ~HB1^f f uVSB8 uf f &!t/\

3VSB8 uf ib&f i&. ~12!

The functions^f i uVSB8 uf i& and ^f f uVSB8 uf f& represent po-
tential energy terms in the bath coordinates. In an adiabatic
picture, the energies of the statesuf i& anduf f& depend para-
metrically on the bath coordinates, thus determining the de-
pendence of̂ f i uVSB8 uf i& and ^f f uVSB8 uf f& on the bath. It
should be noted that these terms represent a different contri-
bution to the bath Hamiltonian than the interactionVSB

evaluated at the mean value of the vibrational coordinates
that was included in the renormalized bath Hamiltonian in
the treatment of Lawrence and Skinner.8,9 For instance, if the
states uf i& and uf f& would be harmonic, the terms
VSB($^f i uquf i&%) andVSB($^f f uquf f&%) would be the same,
while the termŝ f i uVSB8 uf i& and^f f uVSB8 uf f& can still have
a strongly different dependence on the bath coordinates.

An important characteristic of Eq.~12! is that the bath
Hamiltonians contained in the exponential factors

ei (HB1^f i uVSB8 uf i &)t/\ ande2 i (HB1^f f uVSB8 uf f &)t/\ differ, whereas
in all previous treatments these bath Hamiltonians are the
same@see Eq.~5!#. We will show that the difference between
the bath Hamiltonians contained in the exponential factors of
Eq. ~12! can have a strong effect on the vibrational relaxation
rate.

Dropping the closure(cuf f c&^f f cu in Eq. ~12! gives

T1
215

1

\2ZB
(
f Þ i

E
2`

`

dteiDv i f t(
b

e2Eb /kT

3^f ibuei ~HB1^f i uVSB8 uf i &!t/\^f i uVSB8 uf f&

3e2 i ~HB1^f f uVSB8 uf f &!t/\^f f uVSB8 uf i&uf ib&. ~13!

Equation~13! can be written as

T1
215

1

\2 (f Þ i
E

2`

`

dteiDv i f t ^̂ ei ~HB1^f i uVSB8 uf i &!t/\

3^f i uVSB8 uf f&e
2 i ~HB1^f f uVSB8 uf f &!t/\^f f uVSB8 uf i&&&b ,

~14!
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with ^̂ A&&b5(1/ZB)Tr$e2HB /kTA%, with the trace taken over
the bath states.

Using the relation,16,17

e2 i ~H01V!t/\5e2 iH 0t/\e
0
2 i *0

t dt8eiH 0t8/\Ve2 iH 0t8/\/\
, ~15!

we can transform Eq.~14! into

T1
215

1

\2 (f Þ i
E

2`

`

dteiDv i f t ^̂ e
0
i *0

t dt8VSB,i i8 ~ t8!/\

3VSB,i f8 ~ t !e0
2 i *0

t dt8VSB, f f8 ~ t8!/\
VSB, f i8 ~0!&&b , ~16!

where VSB,mn8 (t)5eiH Bt/\^fmuVSB8 ufn&e
2 iH Bt/\ and e0 de-

notes a time-ordered exponential.

D. Interpretation

In Eq. ~16! the two different fluctuations induced by the
bath can easily be recognized. In the first place, the interac-
tions with the bath lead to fluctuations of the anharmonic
coupling characterized by the correlation function
VSB,i f8 (t)VSB, f i8 (0). This term represents the usual approach
to the description of bath mediated vibrational relaxation.
Second, the interactions with the bath lead to fluctuations of
the energies of the vibrational levels, expressed by the terms
VSB,i i8 (t8) andVSB, f f8 (t8).

The fluctuations of the energy levels and the fluctuations
of the coupling^f i uVSB8 uf f& represent different matrix ele-
ments of the couplingVSB8 . The fluctuations of the coupling
are the result of matrix elementŝf i u^f ibuVSB8 uf f&uf f c&,
with bÞc and iÞ f . This implies that the transition between
the statesuf i& and uf f& is accompanied by the excitation or
deexcitation of quanta in the bath modes. This excitation or
deexcitation can lead to a compensation of the energy mis-
match betweenuf i& and uf f& that enables the transition.

The fluctuations of the energy levels follow from the
dependence of the potential energy terms^f i uVSB8 uf i& and
^f f uVSB8 uf f& on the bath coordinates. If the addition of these
potential energy terms to the bath HamiltonianHB would not
lead to a change of the wave functions of the bath, these
potential energy terms would commute withHB and the only
effect of these terms is a time-independent change of the
energies of the statesuf ib&uf i& and uf f c&uf f&. These time-
independent changes of the energy can help in making the
energy transfer resonant, but it clearly does not represent
energy matching via fluctuations. However, if the matrix el-
ements ^fnu^fcuVSB8 ufn&ufb& ~with bÞc and n5 i or n
5 f ), whereufb& and ufc& are eigenstates ofHB , are non-
zero, the functions VSB,i i (t)5eiH Bt/\VSB,i i e

2 iH Bt/\ and
VSB, f f(t)5eiH Bt/\VSB, f fe

2 iH Bt/\ are time dependent. If the
time dependence ofVSB,i i (t) andVSB, f f(t) differs, the fluc-
tuations of these functions can lead to a cancellation of the
energy mismatch\Dv i f , and thus enable the relaxation. An
equivalent way of describing this effect is as follows. Due to
the presence of the terms^f i uVSB8 uf i& and^f f uVSB8 uf f&, the
sets of bath states$uf ib&% and$uf f c&% will differ. As a result,
the statesuf f c& and f ib& can have nonzero overlap while
their average kinetic energies differ. Nonzero overlap,
namely, only requires that the kinetic energies ofuf f c& and

f ib& are the same atparticular valuesof the bath coordi-
nates. The difference in average kinetic energy serves to
compensate the energy mismatch\Dv i f .

The importance of including the fluctuations of the en-
ergies of the vibrational levels in vibrational relaxation can
be illustrated in the following way. If there are only two
eigenstatesuf i0& and uf f 0& of the vibrational Hamiltonian
without anharmonic coupling, thenuf i&5uf i0&1auf f 0& and
uf f&5uf f 0&2auf i0&, with a5^f i0uVSAuf f 0&/(Ei02Ef 0).
If the couplingVSB8 only has diagonal elements in the zero-
order statesuf i0& and uf f 0&, the coupling matrix element
VSB,i f8 of Eqs.~5! and ~16! takes the form

VSB,i f8 5^f i01af f 0uVSB8 uf f 02af i0&

5
^f i0uVSAuf f 0&

Ei02Ef 0
3~^f f 0uVSB8 uf f 0&

2^f i0uVSB8 uf i0&!. ~17!

When the coupling VSB8 leads to a compensation of
the energy differenceEi02Ef 0 , then ^f f 0uVSB8 uf f 0&
2^f i0uVSB8 uf i0&5Ei02Ef 0 , and ^f i uVSB,i f8 uf f&
5^f i0uVSAuf f 0&. This implies that the couplingVSB8 has
tuned the statesf i and f f into resonance, thereby making
the anharmonic interaction effective in making the transition.
Hence, a large transition rate is expected. However, in the
conventional formulation of Eq.~5!, the relaxation rate will
remain small, because this equation contains a factoreiDv i f t

representing the original energy difference between the two
states in the absence of the couplingVSB8 . In contrast, the

additional time-dependent exponential termse
0
i *0

t dt8VSB,i i8 (t8)/\

and e
0
2 i *0

t dt8VSB, f f8 (t8)/\
of Eq. ~16! will largely compensate

the termeiDv i f t in case the shifts of the energy levels off i

andf f induced byVSB8 are sufficiently slow and long living.
Therefore, Eq.~16! indeed accounts for the expected increase
in relaxation rate when the levelsf i and f f are tuned into
resonance byVSB8 .

Often vibrational relaxation is described using states that
are eigenstates of the system Hamiltonian without anhar-
monic coupling.18 Then the statesf i and f f are product
states of normal mode wave functions. In that case, the states
can be coupled both by the anharmonic interaction and by
the fluctuating part of the system-bath coupling. In the con-
ventional description of Eq.~5!, this means that the anhar-
monic coupling must be dependent on the bath coordinates to
compensate for the energy mismatch\Dv i f . Since the an-
harmonic coupling is an intramolecular interaction, its de-
pendence on the bath coordinates is expected to be small. In
Eq. ~16! the energy mismatch\Dv i f can be compensated by
the fluctuations of the energies off i andf f , which implies
that following this equation, vibrational relaxation can result
from the relatively large time-independent part of the anhar-
monic coupling.

E. Calculation of the relaxation rate using molecular
dynamics simulations

The vibrational relaxation rateT1
21 is the sum of the

rates ki f where f denotes all possible final statesuf f& to
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which the initial stateuf i& can relax. In most molecular dy-
namics simulations, the rateski f are calculated using a clas-
sical description of the bath. Hence, the quantum correlation
functions of Eqs.~5! and~16! are to be replaced by classical
correlation functions that can be evaluated with molecular
dynamics simulations. However, a classical correlation func-
tion is a symmetric function in time, whereas the quantum
correlation functions of Eqs.~5! and~16! are not symmetric.
This has two important consequences. First, the relaxation
rates no longer fulfill detailed balance:kf i5ki f e

2\Dv i f /kT.
Second, the use of classical correlation functions in general
leads to an underestimation of the relaxation rate, especially
at high frequencies.19 Hence, the replacement of the quantum
correlation function by a classical function should be accom-
panied by the addition of a so-called quantum correction
factor ~QCF!, as a result of which the relaxation rateki f

fulfills detailed balance and acquires the correct value at high
frequencies. The precise form of the QCF depends on the
physics of the relaxation process.

Another consequence of the evaluation of the correlation
functions with classical molecular dynamics simulations is
that the time evolution of the bath states, as expressed by
e2 iH Bt/\, is assumed not to be affected by the terms

e
0
i *0

t dt8VSB,i i8 (t8)/\
and e

0
2 i *0

t dt8VSB, f f8 (t8)/\
. This implies that

these terms now commute with the correlation function of
the couplingVSB,i f8 (t)VSB, f i8 (0). Moreover, since the fluctua-
tions are assumed not to affect the time evolution of the bath
states, the time-ordered exponential can be replaced by an
ordinary exponential. By substituting the quantum correla-
tion functions for classical functions and a QCF, and by writ-
ing the time-ordered exponential functions as one ordinary
exponential, the following expression for the relaxation rate
is obtained:

T1
215(

f Þ i

Q~Dv i f !

\2 E
2`

`

dteiDv i f t

3 ^̂ ei *0
t dt8@VSB,i i8 ~ t8!2VSB, f f8 ~ t8!#/\VSB,i f8 ~ t !VSB, f i8 ~0!&&.

~18!

Different forms of the QCF have been discussed in Refs. 19
and 20. Oxtoby proposed that expressions such as Eqs.~5!

and ~16! have to be rewritten in the form of a time-
symmetrized anticommutator in order to connect it with a
classical correlation function. This results inQO(v)52(1
1e2\v/kT)21. A more detailed calculation assuming the bath
to be harmonic yields a so-called harmonic QCF:QH(v)
5(\v/kT)(12e2\v/kT)21. In case the bath frequencies are
very low and many quanta are dissipated or absorbed from
the bath, the QCF follows from the so-called Schofield ap-
proximation:QS(v)5e\v/2kT. In Ref. 16 a hybrid form of
the harmonic and the Schofield QCF was proposed:
QHS(v)5e\v/4kT(\v/kT)1/2(12e2\v/kT)21/2. This QCF
turns out to give a good description in the case where the
fluctuation force depends exponentially on the coordinates of
harmonic bath degrees of freedom. This QCF was used suc-
cessfully to describe the vibrational relaxation of water.9,10

III. DISCUSSION

The exponential functions representing the fluctuations
of the energy levels will have no effect on the relaxation
when the frequency fluctuationsVSB,i i8 (t8) and VSB, f f8 (t8)
would be completely correlated. Then, the term

ei *0
t dt8@VSB,i i8 (t8)2VSB, f f8 (t8)#/\ vanishes and Eq.~16! reduces to

Eq. ~5!. However, in general the frequency fluctuations of the
vibrational levels will not be correlated and can even be an-
ticorrelated. For instance, fluctuations in hydrogen-bond in-
teraction strength have an opposite effect on stretching vibra-
tions and bending vibrations. Hence if the stateuf i&
represents the excited state of an O–H stretch vibration and
uf f& the overtone of a bending mode involving the same
O–H group, fluctuations in the hydrogen bond interaction
with the O–H group will have a very strong effect on the
frequency differenceVSB,i i8 (t8)2VSB, f f8 (t8).

A comparison of the relative importance of the correla-
tion function^̂ VSB,i f8 (t)VSB, f i8 (0)&&b and the exponential term
can be made by describing the time-dependent functions
as independent Gaussian processes. This implies that the
frequency fluctuations of the levelsuf i& and uf f& are as-
sumed to be uncorrelated. Using cumulant expansions21 we
obtain

T1
215(

f Þ i

1

\2 E2`

`

dteiDv i f t ^̂ e2\22*0
t dt1*

0

t1dt2@ ^̂ VSB,i i8 ~ t1!VSB,i i8 ~ t2!&&b1 ^̂ VSB, f f8 ~ t1!VSB, f f8 ~ t2!&&b#^̂ VSB,i f8 ~ t !VSB, f i8 ~0!&&b . ~19!

Often it is assumed that the correlation function decays as

1

\2
^̂ VSB,mn~ t1!VSB,nm~ t2!&&b5Dmn

2 e2ut12t2u/tc,mn, ~20!

with tc,mn a correlation time constant expressing the time
scale of the fluctuations. The parameter\Dmn represents the
range over which the energy is modulated. The use of Eq.
~20! implies that there are no memory effects in the bath

correlation function: the correlation function of Eq.~20! only
depends on the time differencet12t2 , and not on the abso-
lute values oft1 andt2 . It should be noted that this Markov-
ian treatment can only be applied when the bath correlation
time constanttc is shorter thanT1 . If the bath fluctuations
would be extremely slow (tc.T1), the system is inhomoge-
neous on the time scale of the relaxation. This means thatT1

depends on the phase relation between the bath statesuf ib&,
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because this phase relation determines where the relaxing
system resides in the inhomogeneous distribution at the mo-
ment of relaxation. Hence, fortc.T1 , the cross terms of the
bath statesuf ib& can no longer be neglected in Eq.~9! and
T1 will depend on bath correlation functions that have
memory for the initial phase relation of the bath states. In

contrast, iftc,T1 , the relaxing system samples all positions
in the inhomogeneous distribution before relaxation occurs,
with the result that the relaxation no longer depends on the
initialphase relation of the bath states. Substitution of Eq.
~20! in Eq. ~19! and solving the integrals in the exponent
gives

T1
215(

f Þ i
E

2`

`

dteiDv i f te2Dii
2 tc,i i

2
@e2t/tc,i i 1t/tc,i i 21#e2D f f

2 tc, f f
2

@e2t/tc, f f1t/tc, f f21#e2t/tc,i f . ~21!

It follows from Eq. ~21! that the relative importance of
the fluctuations in the energies and in the coupling will be
determined by the relative magnitudes of the bath correlation
time constantstc,i i , tc, f f , and tc,i f , the frequency ranges
Dii , D f f , and Di f , and the detuningDv i f . In Fig. 1, the
relaxation rate is shown as a function of the detuningDv i f at
four different values of the productDtc , with Dii 5D f f

5Di f 5D andtc,i i 5tc, f f5tc,i f 5tc ~solid curves!, andDi f

5D, Dii 5D f f50, and tc,i i 5tc, f f5tc,i f 5tc ~dashed
curves!. The dashed curves thus represent the conventional
description of vibrational relaxation of Eq.~5!, where the
effect of the fluctuations of the energy levels is absent.

WhenDtc!1, the difference between the solid and the
dashed curve vanishes@Fig. 1~a!#. In this limit, Eq.~21! sim-
plifies to

T1
215(

f Þ i
E

2`

`

dteiDv i f te2t/T2,i i 2t/T2,f fe2t/tc,i f , ~22!

with T2,mm5(Dmm
2 tc,mm)21. WhenDtc!1, the fluctuations

of the energy levels are in the limit of motional narrowing.

As a result, the broadening induced by the fluctuations is
negligible compared to the width of the Fourier transform of
the correlation function. Hence, the fluctuations do not con-
tribute to the vibrational relaxation rate, and the compensa-
tion of the detuningDv i f has to result from the correlation
function ^̂ VSB,i f8 (t)VSB, f i8 (0)&&b . For Dtc;1 @Figs. 1~b! and
1~c!#, there is a clear difference between the solid and the
dashed curves. In this case, the broadening of the energies of
the levelsuf i& anduf f& due to the fluctuations is comparable
to the spectral width of̂̂ VSB,i f8 (t)VSB, f i8 (0)&&b . As a result,
the broadening of the energy levels leads to a strong accel-
eration of the vibrational relaxation if the detuning is larger
than the spectral widthD. For detunings smaller thanD, the
broadening of the levels of energies has an adverse effect,
since then the fluctuations rather lead to an increase of the
average~absolute! detuning betweenuf i& and uf f&, instead
of a decrease. ForDtc@1 @Fig. 1~d!#, the solid and the
dashed curve strongly differ at detuningsDv i f ,10D. At
detuningsDv i f ;3D, the fluctuations of the energy levels
lead to an increase of the relaxation rate by a factor of 10.

FIG. 1. Calculated vibrational relax-
ation rate as a function of the detuning
Dv i f between the initial stateuf i& and
the final stateuf f& for four different
characteristics of the fluctuations of
the bath. The fluctuations are modeled
as Gauss-Markov processes using a
spectral widthD and a bath correlation
time tc . The solid curve is calculated
using Eq.~21! including both the fluc-
tuations of the coupling and the fluc-
tuations of the energy levels@corre-
sponding to Eq.~16!#. The dashed
curve is calculated using Eq.~21!, but
without the fluctuations of the energy
levels @corresponding to Eq.~5!#.
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Even forDtc@1 the difference between the dashed and
the solid curves vanishes forDv i f →`. The origin of this
effect is that forDtc@1 the spectral broadening of the en-
ergy levels has a Gaussian shape, whereas the spectrum of
^̂ VSB,i f8 (t)VSB, f i8 (0)&&b has a Lorentzian shape. Because a
Gaussian decays much faster as a function of frequency than
a Lorentzian, the spectral amplitude of the fluctuations of the
energy levels is negligibly small for largeDv i f compared to
the spectral amplitude of̂^VSB,i f8 (t)VSB, f i8 (0)&&b . Hence,
very large detunings (Dv i f .10D) can only be compensated
by fluctuations of the coupling, and not by fluctuations of the
energy levels. It should be noted, however, that this effect is
a consequence of the description of the bath-induced fluctua-
tions as Gaussian processes. If this description is not valid,
the fluctuations of the energy levels may also affect the vi-
brational relaxation rate at large values of the detuning.

Figure 1 shows that the relaxation rate becomes large for
Dv i f →0, especially forDtc@1 @Fig. 1~d!#. However, in the
limit of small detuning, the perturbative approach that is
used in deriving Eqs.~5! and ~16! will be no longer valid.
For small detuning, the relaxing and accepting vibrational
states will become strongly mixed, and the relaxation process
has to be calculated with a nonperturbative approach, for
instance, by numerical integration of the time-dependent
Schrödinger equation.6,7,9,10Recently, this approach has been
used to calculate the effects of energy-level fluctuations on
the relaxation of the OH stretch vibration of liquid methanol7

and the CH stretch vibration of liquid chloroform.6 For liquid
methanol, it was found that the energy-level fluctuations can
indeed lead to strong mixing and avoided crossings of the
interacting vibrational levels, thus leading to state-to-state
relaxation rates that strongly differ from the rates predicted
by the conventional Landau-Teller equation.7 Interestingly,
for chloroform the energy-level fluctuations do not lead to a
strong mixing of the CH stretch vibration and its accepting
modes, because the fluctuations are strongly correlated.6

Hence, for this vibration the nonperturbative approach and
the conventional Landau-Teller expression gave similar re-
sults. The method of numerically integrating the time-
dependent Schro¨dinger equation has as a clear advantage
over the perturbative Landau-Teller approach that it can de-
scribe vibrational relaxation in the limit that the interacting
levels become strongly mixed. Disadvantages of this method
are that the detailed balance is not conserved,6,9,10 that the
quantum correction factor cannot be included, and that the
~classical! bath cannot respond to a change in the vibrational
state of the relaxing molecule.7

It follows from Fig. 1 that energy-level fluctuations can
affect vibrational relaxation over a wide range of detunings:
the effects remain significant up to ten times the spectral
range of the fluctuations. Especially for hydrogen-bonded
systems the spectral range of the fluctuations can be quite
large. For instance, for H2O and HDO:D2O, the fluctuations
in the hydrogen-bond length lead to a spectral range of the
OH-stretch vibration of;200 cm21 and a frequency corre-
lation function with a dominant time constant of;500
fs.22,23 This implies thatDtc@1, so that the energy fluctua-
tions are expected to play an important role for relaxation
channels of the OH stretch vibration with energy gaps up to

;2000 cm21. The effect of the energy fluctuations on the
relaxation rate can be estimated for these systems, assuming
that the fluctuations of the coupling have a similar spectral
range and correlation time constant. For the relaxation of the
OH stretch vibration of HDO:D2O to the overtone of the OH
bending mode~energy gap;600 cm21!, the fluctuations of
the OH stretch vibrational frequency are thus expected to
lead to an increase of the relaxation rate by a factor of 10.
For the relaxation of the OH stretch vibration of HDO:D2O
to the OD stretch vibration~energy gap;900 cm21!, an
increase by a factor of 3 is expected.

IV. CONCLUSIONS

Vibrational relaxation strongly depends on the presence
of interactions between the relaxing molecule and its sur-
roundings, because these interactions lead to fluctuations that
compensate the energy mismatch between the interacting vi-
brational states. In the conventional description of vibra-
tional relaxation, the fluctuations enter via the time depen-
dence of the coupling connecting the relaxing and accepting
vibrational states. Here we propose an extension of the influ-
ence of the interactions with the bath by incorporating also
the fluctuations of the energy levels of the vibrational states.
This results in the modified Landau-Teller expression shown
in Eq. ~16!. The fluctuations of the energy levels can lead to
a strong increase of the relaxation rate by tuning the relaxing
level in resonance with the accepting level.

The Landau-Teller equation~16! contains both the fluc-
tuating coupling and terms representing the fluctuations of
the energies of the initial and the final states of the relaxation
process. This equation can be transformed into Eq.~18! that
contains classical correlation functions and can be evaluated
using molecular dynamics simulations.

The relative importance of the fluctuations of the energy
levels and the coupling strongly depend on the time scale
and amplitude of the fluctuations. If the fluctuations are fast,
which implies that the correlation time of the bath is short,
the fluctuations of the energy levels are in the motional nar-
rowing limit and the effect of these fluctuations on the relax-
ation becomes negligible. If the fluctuations are slow, they
have a strong effect on the relaxation rate, leading to a de-
crease of this rate if the detuning is smaller than the spectral
range of the fluctuations, and an increase of the vibrational
relaxation rate if the detuning is larger than this range. We
find that the fluctuations of the energy levels can lead to a
tenfold increase of the vibrational relaxation rate, if the fluc-
tuations of the coupling and the energy levels are Gauss-
Markov processes with the same spectral width and correla-
tion time.
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