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A Journey of a Thousand Miles
begins with a single step.

(Lao Tzu)



2 Introduction and tracking framework

1.1 Introduction

1.1.1 Visual surveillance

Cameras are everywhere these days: public areas are monitored by several cam-
eras in order to increase public order and safety, private property is protected using
cameras and stores use cameras to prevent shoplifting. More Closed Circuit Tele-
Vision (CCTV) cameras are installed every day to combat the growing feeling of
unsafety. To quote New Scientist [Hogan, 2003]:

Some campaign groups see CCTV as an invasion of privacy but cus-
tomers are likely to welcome technology that makes stations safer.

However, the presence of cameras alone will have very limited effect on crime [Gill
et al., 2005], only subjective safety is increased. To make effective use of surveil-
lance cameras, an operator must look at the images and respond to suspicious
activities.

Trained and experienced human operators can do this monitoring very well, but
only for a limited number of cameras simultaneously and only for a limited amount of
time, after which concentration is diminished. Operators who are not concentrated
will not respond promptly to important events or might even miss them altogether
[Norris and Armstrong, 1999; Weitenberg et al., 2003].

For most applications, watching all camera images is not only too expensive
but also practically impossible. Hogan [Hogan, 2003] writes about technology for
automated visual surveillance:

If the technology takes off it could put an end to a longstanding problem
that has dogged CCTV almost from the beginning. It is simple: there are
too many cameras and too few pairs of eyes to keep track of them. With
more than a million CCTV cameras in the UK alone, they are becoming
increasingly difficult to manage.

In common practice, only a limited number of cameras are monitored. The images
from the remaining cameras will be either lost or stored for later reference. Storing
images does not allow immediate action and may cause problems related to privacy
[Smeets, 2004].

In order to aid operators in their task, ”intelligent” sensors can be used. These
sensors can take over tedious tasks such as monitoring forbidden areas, keeping
track of people and detecting suspicious motion patterns or behavior. On deviation
from normal behavior, the operator is alerted. He makes the final decision and takes
action upon it. Additional benefit: in principle, intelligent sensors do not invade the
privacy of people with good intentions as no images will be shown to humans as
long as nothing suspicious occurs.

Intelligent sensors are sensors that can make decisions based on the scene.
This thesis will focus on applications using a single camera which obtains its intelli-
gence from visual surveillance algorithms. The work in this thesis can be applied in
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a multi-camera setting, for increasing positional accuracy when fields of view over-
lap or for increasing the area under surveillance when objects are tracked through
multiple cameras [Kröse et al., 2004; Zajdel et al., 2004]. The results could also
be used in combination with other sensors using sensor fusion [Arora et al., 2004],
Examples are microphones [Cristani et al., 2004] to cue on specific sounds and
radar [Dorp and Groen, 2003]. Radar needs virtual models for object tracking, but
in return has high depth and velocity resolution, a perfect addition to the high an-
gular resolution of a camera. In addition, a radar can be used through walls and in
the dark.

Tracking of people

Visual surveillance seems trivial. Assuming a static camera and static background,
moving real-world objects such as a person, a car or a group of people can be de-
tected by comparing the current image to an image of the background. Differences
between these two images result from moving objects, which are now detected. In
the next frame, the objects will have moved an additional small number of pixels.
Object tracking stores these movements over time and predicts the object location
in the next frame. This results in an object trajectory. The objects shape and its
trajectory are used for object analysis: is there something suspicious going on?

In practice however, the visual surveillance task is much more complex. Prob-
lems are mostly related to accuracy and robustness. For example, the simple de-
tection approach given above will fail as soon as the background changes. This
will occur frequently, due to changes in illumination (brightness, direction, color,
shadow), background objects that change appearance (flag, waving tree, water
surface) and noise. The object tracking approach given before can track a single
object with constant speed and direction. For visual surveillance, many objects
need to be tracked simultaneously. They can occlude each other or interact with
other objects or the background scene. Often, the objects to be tracked are people.
They are deformable and often change speed and direction.

Advanced background modelling techniques are being developed for updating
changing scenes. Objects are more robustly tracked using a model of their appear-
ance. The first aspect of building a robust application is to select and incorporate
separate algorithms for different tasks such as detection and tracking. This requires
the algorithms to communicate with each other and use results of other algorithms.

The second aspect involves selection of parameters. An operator will not be able
to set tens or even hundreds of parameters such as update speeds, thresholds, tun-
ing factors and ”magic” parameters in a sufficient way. Therefore, most parameters
should be set in advance, or deducted from application dependent knowledge such
as camera field of view, indoor or outdoor application, and the costs associated
with missed detections and false alarms. The best parameter value for one situa-
tion will generally not be optimal in other situations. Therefore, setting parameters
in advance is only effective when the performance of the algorithm is not very de-
pendent on the optimal setting of the parameter.
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These two aspects of building a robust video surveillance application, algorithms
selection/integration and parameter setting, need to be re-evaluated when using the
visual surveillance algorithm in a different environment or for a different task.

1.2 Application description and central question

”Visual tracking of people in complex scenes” [Haritaoglu et al., 2000; Hu et al.,
2004b; Rosales and Sclaroff, 1999] is the theme of this thesis. This is an important
topic where a reliable algorithm for tracking people enables a variety of applications
related to security and surveillance. Examples are a car thief in a parking lot, a drug
dealer in a public area and a pickpocket in a railway station.

The object segmentation and tracking algorithms proposed in this thesis are
intended to generate input to trajectory analysis. Trajectory analysis can aid op-
erators watching surveillance cameras, allowing them to operate more cameras at
once for longer periods of time. Using trajectory analysis, only suspicious events
need to be examined by the operator. Selecting suspicious events is performed
automatically from the results of object segmentation and tracking.

The central question of this thesis is: Can we develop an algorithm for robustly
and accurately detecting and segmenting moving objects in surveillance scenes?
Robust is defined in this context as able to cope with frequent problems such as
variation in global intensity, shadows, deformable objects and objects with colors
similar to the background. Accurate in this context means that we intend to obtain
an accurate segmentation between foreground and background.

The scenes in which our application is intended to be used are typical surveil-
lance scenes, both indoor and outdoor. These scenes consist of a static back-
ground and can contain several moving objects simultaneously. A fraction of object
pixels up to a quatre is possible, divided over up to ten different real-world ob-
jects. Real-world moving objects may include trucks, cars, pedestrians, cyclists,
dogs, shopping carts, strollers, etcetera. The background in our application can
change appearance, for instance when looking at vegetation and water surfaces.
The appearance of the background is allowed to change slowly, for example due
to changing time of day. Because of intended outdoor use and widespread use of
affordable auto-gain cameras, we shall allow fast global changes in intensity.

We define a tracked object, sometimes called a foreground object, as the im-
age pixels depicting (part of) a real-world object or a group of real-world objects
that is visible separate from other real-world objects. So a human can be a tracked
object, but when a group of humans walk together, the group will be regarded as
a single tracked object. Real-world objects can also be split into several tracked
objects, for example when the lower part of the body is tracked separately from the
upper part. This has the advantage that when the person removes his jacket, and
the upper-part track is therefore lost, the lower part is still tracked. At a higher level,
these tracks can be combined, leading to a conclusion like ”The jeans removed
its jacket”. This means that there generally does not exist a one-to-one mapping
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between tracked objects in the image and real-world objects.
In the image, tracked objects can be as small as 50 pixels. On average, tracked

objects of 200 to 500 pixels are expected. The objects are deformable and can
have an arbitrary shape. Motion and shape deformation is assumed to be limited
between frames, so that the center of the tracked object can be fully retrieved in
the subsequent frame. The color distribution is assumed to change slowly and we
expect the color distribution of the center of the tracked object to be representative
for the entire object.

The scene is intended to be recorded using a static color camera. This camera
should adhere to the simplified model of a CCD camera given in Appendix A. The
proposed algorithms should be able to run in real-time at 12 frames per second in
PAL resolution on a personal computer available in 2010. The normal amount of
memory in such PC should be sufficient for the algorithms used.

All moving real-world objects should be tracked, but we allow tracked objects
to split, merge and be lost, for example during occlusion. We also should keep
track of real-world objects that have stopped moving. They should be distinguished
from changed background, such as the street that changes appearance due to the
rain, which is not considered a real-world object. Multiple trajectories of real-world
objects may correspond to one calculated trajectory and vice versa. This happens
for example when several persons walk in a group. The ground truth will describe
separate tracks, while our algorithm might generate only one track for the entire
group of people. For our application this poses no problem as we are interested in
suspicious trajectories. It is then not important how often the suspected trajectory
occurs simultaneously.

The algorithms developed should be generally applicable. They should be easy
to adapt when the environment changes. We prefer to use algorithms for which the
parameters are easy to set. This means that either the performance of the algorithm
should not rely heavily on the value of the parameter, or we should be able to deduct
the parameter value from real world variables such as camera height, expected
object density, etcetera.

The performance of the application should be good and the application should
be robust. Knowledge from higher levels of abstraction should therefore be used
for updating the lower levels. Intensity information should be exploited, for example
for the detection of black objects in front of a gray background. Shadows should be
removed from detected tracked objects.

1.3 Probabilistic framework

An application for object detection and tracking generally consists of several algo-
rithms, each operating at one or more of the levels of abstraction available in the
application. For example, Chapters 3 to 7 of this thesis each introduce one al-
gorithm for solving part of the object tracking problem described in the previous
section.
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Pixels

Blobs Tracks Objects

High level
algorithms

Classification

Plug-ins

Camera Pixel   model Blob   model Track   model Object    model

Models

Application 
knowledge

Application
knowledge

Pixel-blob Blob-Track Track-Object

Figure 1.1: Flowchart of the proposed probabilistic framework. Gray rectangles denote the
different application-specific modules and oval-shaped boxes the models. The arrows indi-
cate data flow. The dashed arrows indicate that model knowledge of the lower level models
is also available at the higher levels. Feedback is not shown in this figure.

Combining separate algorithms into one coherent application is an important,
but generally not a simple task. For the combination of the different algorithms
introduced in this thesis a probabilistic framework will be introduced here. It will
be used in Chapter 7 to compose a coherent application. Strong features of this
framework are minimum cost Bayes classification at each level of abstraction, a
structured way of using application knowledge, a flexible layout which allows easy
substitution of algorithms, and a structured communication including feedback from
high level results to the lower levels of abstraction.

The separate algorithms of the application are introduced into the framework
as application dependent plug-in algorithms, while the framework itself consists of
application independent classification algorithms and models. Two types of plug-ins
are distinguished: the correction module, working on a single level of abstraction,
and the probabilities module, bridging the gap between levels of abstraction.

Figure 1.1 shows the flowchart of a possible framework configuration. From left
to right are the different levels of abstraction used in the application: pixels, blobs,
tracks and objects. Between levels are application specific modules that take care
of the conversion between the different levels of abstraction. Figure 1.2 gives a
more detailed view of such a module. The different parts of the framework are
described in the next section.
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Figure 1.2: Correction and probabilities modules. Dotted arrows indicate feedback used to
update plug-in data, other arrows indicate dataflow in normal processing order.

1.3.1 Building blocks of the framework

An application generally consists of three or more levels of abstraction. For each
of the levels, algorithms should be chosen that are appropriate for the given appli-
cation. Including them in a probabilistic framework allows the use of uncertainties
and minimum cost classification.

This section describes the building blocks of the framework. The internal struc-
ture of the building blocks and their interface to other blocks will be discussed in
Chapter 7.

Correction modules

Data at a given level of abstraction may not be usable as-is. A correction module
solves this, see Figure 1.2. Correction modules are application dependent plug-in
algorithms that operate within one level of abstraction. Examples discussed in this
thesis are global intensity correction at the pixel level and shadow removal at the
blob level.
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Probabilities modules

Plug-in algorithms that operate between levels of abstraction are denoted proba-
bilities modules, see Figure 1.2. Probabilities modules calculate features from the
lower level model and compare these to output classes in the higher level model.
This comparison should result in probabilities for each of the output classes. Ex-
amples discussed in this thesis are calculation of pixel probabilities using models
of the background and the foreground objects, and the calculation of the probability
that a blob is in fact a shadow region.

Plug-in algorithms only interact with models at their abstraction level(s). This
approach makes it unnecessary that one plug-in algorithm, probabilities module or
correction module, knows what the other plug-in algorithms do, as long as the data
it requires is available in the models.

Classification

Between each level of abstraction minimum cost Bayes classification is performed,
see Figure 1.2. Classification is based on probabilities and classification costs,
independent of the source of these inputs and therefore independent of the the
application.

Each of the probabilities modules calculate probabilities for the association be-
tween the input features (e.g. pixel, blob or track features) at the lower level and
output classes (e.g. blob β2, track τ1, object ω0) at the higher level, see Figure 1.1.
The kind of mapping, e.g. many-to-one, one-to-one, etc., depends on the applica-
tion and the algorithms used. The classification results are communicated to the
higher level model.

Models

A model is a description of the world at a specific level of abstraction, see Fig-
ure 1.1. The model is generally independent of the application dependent plug-in
algorithms, although a change in the levels of abstractions used also leads to the
use of different models. The model is not the only point of data storage. Plug-in
algorithms have, when necessary, data storage for algorithm-specific data.

When a correction module is used for a level of abstraction, two versions of the
model at that level are available. One version of the model before and one after the
correction module, see Figure 1.2. Communication between the versions occurs
through the correction module.

Data from lower level models can be used in the higher levels plug-in algorithms.
This data is made available though the model. For example, the blob correction
module may need pixel values from the pixel model. It can obtain them through the
blob model, but it cannot alter or update them.
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Application knowledge

Visual surveillance algorithms require application knowledge about what is normal
and what suspicious, and what is important and what not. For example: Do we
want raindrops or waving leaves to be classified as moving objects or background?
A man sitting motionless on a chair for one minute, should he be classified as
foreground or background? These decisions depend on the application domain.

The framework itself is separated from application specific knowledge, data or
algorithms, see Figures 1.1 and 1.2. Application dependent knowledge is regarded
input to the framework. It is introduced using plug-in algorithms and their parame-
ters.

Besides the choice of plug-in algorithms, prior probabilities and cost matrices
introduce application knowledge in the classification process. This occurs directly
from application knowledge or through the probabilities modules, as this allows
learning of updating of these parameters.

1.3.2 Interactions in the framework

The proposed framework also defines the interaction between the levels of abstrac-
tions. Four main interactions can be distinguished in Figure 1.2:

• Through plug-in algorithms classification results from the lower levels are
used as input to the higher levels (solid arrows).

• From left to right between the models lower level model knowledge is made
available to the higher level plug-in algorithms (dashed arrows).

• From top to bottom application knowledge is made available at the different
levels (thin arrows).

• From right to left final classification results from the higher levels are made
available to the lower level models through feedback (dotted arrows).

Feedback is an important feature of the framework. It allows to update the lower
level models, update parameters or to finalize delayed multi hypothesis decisions
using the most complete information about the world. This information is available
at the high levels of abstraction.

Communication between model versions at one abstraction level occurs through
the correction module. Communication between models, so between abstraction
levels, occurs through probabilities modules and the classification algorithm.

1.4 Thesis overview

In Chapter 2 an overview of visual surveillance literature will be given. As visual
surveillance is a very broad and active research area, an overview will be given,
zooming in on topics directly related to the work in this thesis.
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An important aspect of many algorithms analyzing image sequences is the
changing global image intensity, caused by changing illumination or camera set-
tings. In Chapter 3 a number of algorithms will be introduced and compared for
correcting global changes in image intensity. The algorithms have been derived
from a camera model introduced and evaluated in Appendix A.

A model of the background will be used for object detection and tracking in this
thesis. Such a model should be updated to allow for changes in appearance. How
and when to update the model is the topic of Chapter 4. The updating technique
introduced there enables to model only the background, providing per-pixel back-
ground probabilities that can be used in the framework. The algorithm is shown to
be very robust to its parameter settings.

Objects will be tracked using an object model. In Chapter 5, a model is intro-
duced that allows the object to deform between subsequent frames. The proposed
algorithm provides foreground probabilities as well as object trajectories.

Shadows are a recurrent challenge in visual surveillance applications. In Chap-
ter 6 a shadow detection algorithm is introduced that estimates the colors of the
illumination sources. Based on this information, shadows and moving objects can
be distinguished very accurately.

Based on the framework introduced in Section 1.3, in Chapter 7 an application
will be described that incorporates the separate algorithms described in Chapters
1 to 6. This application will be evaluated there using real image sequences. The
overall performance of the application will be compared to a reference algorithm
and to the separate algorithms introduced in this thesis.

In Chapter 8, overall conclusions will be given, and the contributions of this
thesis will be discussed, together with ideas for future research.
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2.1 Introduction

Visual surveillance involves ”looking at people”, which has been a subject of re-
search for many years. Research on this topic started with Johansson’s psychol-
ogy research on moving light displays in 1973 [Johansson, 1973, 1975]. He showed
that by looking at only joint motion, humans can easily recognize a persons actions.
This raised the question wether machines could do this as well. Since then, looking
at people has been topic of research in several areas. Examples are vision-based
human-computer interaction [Quek, 1995], biomechanics (total body movement for
medical applications) [Calvert and Chapman, 1994] and choreography [Badler and
Smoliar, 1979]. Presently, looking at people and specifically visual surveillance is a
very active research area. This is not surprising, considering the growing demand
for security and homeland safety.

From a computational point of view, the state of the art of computer vision hard-
ware is approaching the level required by visual surveillance algorithms. Hardware
with sufficient computational power for relatively simple surveillance applications is
available Commercially Off The Shelf (COTS). Hardware capable of running more
complex algorithms in real-time is becoming affordable. This boosts research, as
ideas and algorithms can quickly be applied in real-world applications.

In this chapter a broad overview of the field will be given, together with a more
focussed discussion on aspects having a direct relationship to this thesis. For more
detailed surveys of literature in this area, the reader is referred to one of the fol-
lowing surveys, reviews or overviews: [Aggarwal and Cai, 1999; Buxton, 2003;
Cédras and Shah, 1995; Gavrila, 1999; Hu et al., 2004b; Moeslund and Granum,
2001; Wang et al., 2003; Wang and Singh, 2003] or one of the special issues
[Collins et al., 2000a; Gong and Buxton, 2002; Kakadiaris et al., 2003; Maybank
and Tan, 2000, 2004; Namuduri and Ramaswamy, 2004; Regazzoni and Foresti,
2001; Syeda-Mahmood et al., 2004].
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In Section 2.2 an overview is presented of available frameworks and algorithms
for video surveillance. After this, the chapter is organized according to the chain
of processing. In Section 2.3 an overview is given of image acquisition and pre-
processing techniques. Detection and segmentation of moving objects is described
in Section 2.4. Techniques for tracking and recognition are discussed in Section 2.5.
Section 2.6 considers the higher level of abstraction: behavior and pose recognition.
Finally, conclusions are given in Section 2.7.

2.2 Video surveillance frameworks and algorithms

In their general framework for visual surveillance, Hu et al [Hu et al., 2004b] divide
visual surveillance applications into five different levels of abstraction:

• Environment modelling
• Motion segmentation
• Object classification
• Tracking
• Higher level tasks like:

– Behavior understanding and description
– Personal identification
– Fusion of information between multiple sensors

For each level, many algorithms exist and are topic of active research.
A difficult problem is building an application by combining algorithms from differ-

ent levels. This should be done in such a way that good performance of each of the
different levels is combined into good overall performance. Also, it should be easy
to adapt the application, when the environment changes, or when it is applied in a
slightly different scene.

Algorithms of different levels of abstraction in changing applications and envi-
ronments can be combined using a framework allowing easy adaptation to specific
tasks. It requires a framework allowing a structured decomposition of the applica-
tion into algorithms, models and prior knowledge at different levels of abstraction. In
such a framework it is possible to replace components without altering the remain-
der of the application. Therefore, it is straightforward to re-use existing methods in
the adaptation to particular needs.

At the same time, such a framework must be designed such that good perfor-
mance is obtained, given the performance of the algorithms of each level of ab-
straction. Classification and communication between different components of the
framework should be performed in a solid statistical way. The higher the level of
abstraction, the more knowledge is available about the world. It is therefore im-
portant to make this high level knowledge available to the lower levels. Commu-
nication should not be limited to passing results from lower levels to higher level
components. Feedback enables knowledge transfer from higher to lower levels of
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abstraction. This way, all available knowledge can be used in updating lower level
models and adjusting parameters in the algorithms.

Existing frameworks

Approaches to a framework, in which algorithms for components of an application
can be combined in a probabilistically sound way, are rare. In [Ivanovic and Huang,
2004] three Bayesian networks are used for pixel classification, blob matching and
object detection. This approach is not very flexible, as the classification algorithms
are closely related to the algorithms that provide the probabilities. This makes it
difficult to use another algorithm for one of the abstraction levels. In [Spengler and
Schiele, 2002, 2003] the ”Knowledge Hierarchy” is proposed, a Bayesian formula-
tion for multi-object tracking. This framework is used mainly to incorporate prior
knowledge in a systematic way, in order to make the huge number of hypothesis in
their multiple object tracking algorithm tractable. But even with the large amount of
prior knowledge introduced, many hypothesis still need to be considered, resulting
in a computationally expensive algorithm. Different levels of processing are also
utilized in [Park and Aggarwal, 2002], but without attempting to create a versatile
framework in which components can be easily substituted by other algorithms.

None of the approaches described explicitly model feedback. This is unfortu-
nate, because feedback is an important characteristic in such a framework. It allows
the lower levels to make use of knowledge available at the higher levels. An exam-
ple of the efficient use of feedback is given in [Javed et al., 2002]. Feedback from
the higher levels is used to update the lower level models. However, the authors of
that paper do not pursue a more generally applicable framework.

Besides general frameworks, there exist some algorithms that perform all levels
of processing. These approaches will be less easy to adapt to changing envi-
ronments, but as they were developed as a whole, at least basic communication
between different levels will be available. For example, W 4 [Haritaoglu et al., 2000]
combines shape analysis and tracking using a human appearance model. This is
done using images from a static grayscale camera. Pfinder [Wren et al., 1997] uses
a 3-D approach to track single persons in a room. It can handle complex scenes as
long as there is no occlusion. A multiple camera approach for monitoring a large
area is proposed in [Lipton et al., 1998]. It connects a number of cameras, enabling
tracking of moving objects for extended periods.

Wrap-up

There is a need for a framework incorporating feedback. The framework should
combine the results of algorithms on each of the levels of abstraction in a statis-
tically correct way. Application knowledge should be incorporated in a structured
way.
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2.3 Image acquisition and pre-processing

Visual surveillance, as most computer vision algorithms, starts with a camera. For
automatic visual surveillance, the choice between a static or a moving camera
[Kruegle, 1995] is crucial as most algorithms designed for static cameras can not
directly be used on video from moving cameras, and moving cameras add motion
blur [Lagendijk and Biemond, 2005]. An equally important choice is that between
color and black-and-white. Algorithms designed for color cameras usually cannot
be used for black-and-white cameras.

Camera models

Cameras used for video surveillance are mostly Charge Coupled Device (CCD)
cameras [Castleman, 1996]. These are widely used for image processing applica-
tions, including visual surveillance. For many computer vision algorithms, including
visual surveillance, it is important to have a model of the imaging process and tem-
poral image noise. For example: a linear intensity model with gain and bias is
used to derive equations for the correction of temporal changes in intensity for im-
age compression [Kamikura et al., 1998]; a linear intensity model combined with
a model for lens distortions is used for optical flow computation [Altunbasak et al.,
2003]; a multiplicative model of the camera noise is used to set the threshold for
moving object detection [Xie et al., 2004]; and a additive noise model together with
a linear intensity model is used to derive a statistical test for object detection [Ohta,
2001].

Each author uses a model that fits his or her needs. However, little work is
performed on the questions how accurate these models are for a specific camera
and what the importance of the different components of the model are. A general
model of the CCD sensor is introduced in [Healey and Kondepudy, 1994]. Healey
models the CCD sensor, but not the post processing that is used in most modern
CCD cameras. These most often use some kind of gamma adjustment to map the
image in the available quantization range to obtain an image suitable for display
[Castleman, 1996].

Global intensity changes

CCD cameras have a limited dynamic range. Everything outside this range will be
imaged as either black or white. Therefore, constant illumination is very important
using these cameras. This is generally not available in outdoor and most indoor
scenes with windows. Many surveillance cameras are equipped with automatic
control of their apparent gain to adapt to changing illumination. The apparent gain
can be controlled by adjusting the gain, shutter time, iris or a combination of these.
Using automatic processing, both changing illumination and an automatic apparent
gain control often cause problems in the form of global changes in intensity. For
changing intensity only this is evident, but also apparent gain control can cause
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(a) Frame 220 (b) Frame 260

Figure 2.1: Two frames recorded using a camera with automatic apparent gain correction.
The scene changes when people with dark clothes enter the scene. Despite the constant
illumination, the apparent gain is changed, causing the background to appear lighter.

problems. For example, a problem occurs when a group of people with dark clothes
enter a scene with a light background, see Figure 2.1. The change in overall image
statistics will cause the apparent gain control to adapt, although the illumination of
the static background did not change. This will lead to a changed appearance of
the background, causing problems for algorithms expecting a static background.

Wrap-up

A model of the camera, if correct for the camera used, can be used for obtaining
statistically optimal algorithms. It is then important to validate the model used.

Changes in global intensity prevent many algorithms to be used in outdoor appli-
cations or together with auto-gain cameras. A robust algorithm for correcting global
changes in intensity would enable these algorithms to be used without decrease in
performance.

Algorithms having difficulties with changing intensity include object detection al-
gorithms using a background model [Priebe, 1994; Stauffer and Grimson, 2000],
stereo matching [Scharstein and Szeliski, 2002] and optical flow computation [Bab-
Hadiashar and Suter, 1998]. There is an extensive amount of literature concerning
each of these algorithms. Considering that these algorithms assume constant im-
age intensity, it is surprising how little work is done in the area of intensity correction.
Some algorithms are available, but not an algorithm that is both robust and compu-
tationally efficient. A more detailed discussion of available techniques will be given
in Chapter 3.
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2.4 Detection and segmentation

Detection of moving objects and performing segmentation between background
and moving objects is an important step in visual surveillance. Errors made at
this abstraction level are very difficult to correct at higher levels. For example, when
an object is not detected at the lowest level, it can not be tracked and classified
at the higher levels. The more accurate the segmentation at the lowest level, the
better the object shape is known and consequently, the easier the (shape based)
object recognition tasks become.

An important first division between algorithms is whether they can operate on
images from a moving camera or not. Only few algorithms can. Most algorithms
compare images over time. In that case it is important that the camera is static, or
that the images can be corrected for the motion. Correction can be performed by
creating a panorama [Shum et al., 1998] or by motion compensation [Tian et al.,
1996].

Motion detection and segmentation techniques can be divided into the four
classes described below. All but the first class need a static camera or motion
compensation.

Optical flow

Optical flow techniques can segment moving objects under camera motion, see
Figure 2.2. Flow vectors are used to divide the image in segments with equal mo-
tion. Background motion will be different from that of moving objects, so moving
objects will be segmented from the background. The advantage is that object mo-
tion is available as a by-product of segmentation. See [Barron et al., 1994] or [Dev,
1998] for a more in-depth discussion on optical flow.

The computational complexity of (dense) optical flow techniques is high. Real-
time implementation is therefore difficult or expensive. Once moving objects are
segmented, only the flow of those pixels assigned to an object is necessary. But for
the detection of new objects always a global optical flow calculation is necessary,
although this can be at a lower resolution or less frequent in time. Besides the com-
putational complexity, another important disadvantage of optical flow in surveillance
applications is that the flow is not always correct. It is undefined at object edges
because of smoothing in the calculation of optical flow. This causes inaccurate ob-
ject segmentation. The flow inside objects may also be wrong. For homogenous
regions such as parts of a car for example, flow will be zero.

Space-time continuity

Space-time continuity considers moving objects as tunnels through the 3D xyt–
space [Konrad and Ristivojevic, 2002; Niyogi and Adelson, 1994; Ricquebourg and
Bouthemy, 2000], see Figure 2.3. In [Niyogi and Adelson, 1994] a smooth spatio-
temporal surface is fit through the xyt–space. Speed is determined using the hough
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Figure 2.2: This figure shows an image with its optical flow vectors.

Figure 2.3: On the left one frame of an image sequence is shown, on the right a number of
xt–slices from the xyt–cube. The recurrent leg motion of a walking human can clearly be
seen. From [Niyogi and Adelson, 1994].

transform in an xt–slice, gait parameters are determined from the periodic motion
of the legs.

An advantage is that objects are immediately tracked through the sequence.
Also, recurrent motion like the motion of feet can easily be recognized. The draw-
backs are that such algorithms tend to be computationally complex and require
storage of many frames in memory.
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Figure 2.4: Example of the use of background modelling. On the left a frame from the input
sequence is show. The center image shows the learned background. On the right the
segmented foreground is shown.

Temporal differencing

Temporal differencing is a simple, and therefore computationally attractive algo-
rithm. A frame is pixel-wise compared to a previous frame and/or next frame. Ev-
erything exceeding a threshold is considered to be moving [Lipton et al., 1998].
Drawback of this technique is that in the case of uniformly colored objects, like
cars, only the edges of the moving objects will be found. Temporal differencing
also can be used as addition to other approaches such as background modelling
[Collins et al., 2000a].

Background modelling

Background modelling spans a very popular class of approaches. The current im-
age is compared to an object-free model of the background, see Figure 2.4. Usually,
this model is learned over time. Together with pixel color, other parameters like the
variance or extremes of each pixel can be learned.

Expectation Maximization (EM) [Dempster et al., 1977] is frequently used for
learning a model of the background. The EM algorithm models the background by
maintaining for each pixel a model of the probability density distribution of the color.
This model consists of one or more Gaussian kernels in a mixture model. For each
frame, the probability that a pixel is background is calculated by comparing its color
to this mixture model. The online version of the EM algorithm [Priebe, 1994] allows
a real-time implementation.

The advantage of such adaptive methods is that they learn the background from
the images. The background is usually defined as the most frequent color over time.
This means that objects that were in the scene when learning the background will
gradually be replaced by the background. This eliminates the need of initializa-
tion with an empty background scene. It also provides a background model that
automatically adapts when scene contents changes. For example when weather
changes or a parked car drives off.

An important disadvantage is the trade-off between two conflicting demands
[Toyama et al., 1999]: on the one hand updating should be performed fast to deal
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with changes in illumination and changes in the background (Time of Day, Light
Switch, Walking Person and Moved Objects problems); on the other hand, updating
should be performed slow to avoid learning slowly moving objects as background
(Bootstrapping and Sleeping Person problems). This makes algorithms using only
one model sensitive to setting the update speed.

Wrap-up

For surveillance applications, approaches based on background modelling are most
promising. Most surveillance cameras are static or have small temporal motion that
is corrected for using motion compensation, so a computationally complex optical
flow approach is not necessary. The use of space-time continuity is also compu-
tationally complex and requires a large amount of memory. Temporal differencing
is computationally attractive, but it cannot handle homogeneously colored objects.
Unfortunately, most algorithms use a shared model of foreground and background,
causing false alarms and missed detections. This will be discussed in the next
section.

2.4.1 Foreground and background models

Considering the models used for foreground/background segmentation, literature
describes three methods:

• Using a model of the background
• Using models of the objects
• Using models of the background and objects.

The first method of detection and segmentation uses only a model of the back-
ground (and as implicit model of objects: anything that does not fit the background
model). Only two output classes are available: background and foreground. Fore-
ground/background segmentation introduced by Stauffer and Grimson [Stauffer and
Grimson, 2000] is an example of this.

The second method uses only a model of the moving objects. This can be a
pixel model of the color like in mean-shift tracking [Comaniciu et al., 2000; Zivkovic
and Kröse, 2004]. Alternatively, it can be a model of the shape like in active contour
tracking [Peterfreund, 1999]. Of course, both approaches can also be combined
[Isard and Blake, 1998; Rasmussen and Hager, 2001]. Advantage of these ap-
proaches is that they can be used on imagery from a moving camera as easy as on
imagery from a static camera. Disadvantage is the lack of automatic initialization of
new tracks in such an approach.

The third and most advanced method uses models of the background and
objects [Paragios and Deriche, 2000]. This makes it possible to calculate proba-
bilities for each of the output classes. New objects can be initialized automatically
and objects can be distinguished using their features.
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The first method does not use a model of the objects for detection and seg-
mentation. Association at this level is then simple, a pixel either belongs to the
background or to a new blob. On the other hand, association on the blob-track
level becomes more difficult. At that level the decision has to be made which blob
or group of blobs associates with which track or group of tracks, so many-to-many
association.

The second and third methods both use a pixel model for the moving objects.
Such a pixel model is associated with the moving object, tracked over time. There-
fore, the models must exist at track or object level. Association between pixels and
blobs is now slightly more difficult. One pixel can be assigned to a number of avail-
able output classes. But association between blobs and tracks is given ”automati-
cally”. Blob i is always assigned to track i (with the exception of the background),
so one-to-one correspondence.

Besides complex blob-track classification, using only one model will also make
more classification errors in difficult situations. As example, consider the popular
approach for classification between foreground and background proposed by Stauf-
fer and Grimson [Grimson et al., 1998; Stauffer and Grimson, 1999, 2000]. Their
classification assumes that background colors are modelled in a limited number of
kernels with highest prior over variance, see §4.2.2. A pixel is regarded to be de-
scribed by one of these kernels when the pixel value lies within a threshold times
the variance from the kernel average. When foreground and background colors
differ only slightly, the kernels describing the actual color of the foreground and
background will partly overlap. In such a case, using the approach proposed by
Stauffer and Grimson will result in erroneously classifying more of the foreground
pixels as background than necessary.

Algorithms using separate models for foreground and background are also more
robust for setting the update speed. The models are only updated with data as-
signed to them. Slowly moving objects will therefore not automatically be learned
into the background model, even with high update speeds.

2.4.2 Shadow

An important research topic in moving object segmentation is the handling of shad-
ows. Often, shadows are detected as part of an object. This results in inaccurate
object boundaries and may cause separate objects to appear connected by their
shadows and consequently to be segmented as a combined moving object. De-
tection of shadows can be prevented by the use of intensity invariant color spaces
[Greiffenhagen et al., 2001]. However, this causes missed objects, for example
black objects in front of gray backgrounds will not be detected. Additional features
or assumptions are required to detect these objects.

An overview of shadow modelling techniques is given in [Prati et al., 2003]. A
simple approach uses the assumption that the intensity changes equally over small
image regions [Ohta, 2001]. This allows for intensity correction for this region, elimi-
nating shadows. More advanced is the use of additional features such as combining
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color and intensity [Horprasert et al., 1999; KaewTraKulPong and Bowden, 2001] or
adding gradient information [Javed et al., 2002; Javed and Shah, 2002]. In [Hsieh
et al., 2003] a course-to-fine approach is used. First the rough shadow bound-
aries are obtained using a moment-based method. The rough approximation of the
shadow region is then further refined using features such as the orientation, mean
intensity, and center position of a shadow region.

Most authors make use of the knowledge that a shadow region must have lower
intensity than the same region without shadow. For color images, each of the three
(or more [Withagen et al., 2001]) color bands will have a lower value. Shadows are
caused by the (partial) occlusion of one or more light sources. Given the color of the
occluded light sources, the color of a shadow pixel can be calculated from its color
without shadow [Nadimi and Bhanu, 2004]. This allows for a very robust shadow
detection algorithm, causing less pixels to be erroneously classified as shadow and
consequently not detected as moving object. However, not much work has been
done exploiting this knowledge.

2.5 Object tracking and classification

Detected objects can be tracked and/or classified. The order of these two tasks
depends on the application. If the objects are known beforehand, often object clas-
sification is performed first. This can be more efficient and robust. False detections
will not be classified as one of the known objects, and consequently, they will not be
tracked. Also, objects that have been split into several detections can be grouped
by the recognition process. Then only one object needs to be tracked. Finally, once
the object class is known, information about the object class can be used in the
tracking algorithm. For example, maximal speed of cars differs significantly from
that of humans. Examples of tracking known objects are tracking of hands [Isard
and Blake, 1998], rigid bodies [Lipton et al., 1998; Polat et al., 2003] and people
[Haritaoglu et al., 2000; Lipton et al., 1998; Polat et al., 2003; Wren et al., 1997].

Approaches that first do tracking and then classification are more flexible. All
moving objects can be tracked, also those not specified in one of the object classes.
This enables to initiate a track before the object is fully visible, for example when a
person enters a scene behind a static car. In this approach, better classification re-
sults can be obtained because motion information can be used in the classification
process. Some examples of doing tracking before classification are [Rosales and
Sclaroff, 1999; Stringa and Regazzoni, 2000; Theil et al., 2000].

2.5.1 Object tracking

Four approaches for object tracking are generally distinguished [Hu et al., 2004b]:
model-based, active contour-based, region-based and feature-based. Model-based
techniques usually require object classification before tracking, other approaches
can be used either before or after object classification, see also §2.5.2. Feature-
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based techniques can also be used before object segmentation, only detection of
the tracked features is needed.

Model-based

When a shape model of the tracked object is available, it can be fitted to the images
in the sequence. This gives the position and motion of the tracked object, and at the
same time an estimate of the object pose. This approach is very useful for tracking
rigid-body objects such as robots [Yesin and Nelson, 2004] and cars [Dubuisson
and Jain, 1994; Gardner and Lawton, 1996; Leuck and Nagel, 2001; Tan et al.,
1998]. However, fitting a model to image data is computationally expensive.

With respect to humans, body parts like the face [Decarlo and Metaxas, 2000],
head [Paterson and Fitzgibbon, 2003; Zhang and Kambhamettu, 2002; Zivkovic
and Heijden, 2001] and hands [Lu et al., 2003; Stenger, 2004; Stenger et al., 2001]
are often tracked. See Figure 2.5(a) for an example of a head model. However, this
is performed mainly in structured scenes where only one or two moving objects are
in the camera view. Generally, many pixels are required on the moving objects. For
full human body tracking [Leung and Yang, 1995; Wren et al., 1997] the demands
on scene composition and number of object pixels are even more strict, for example
only people walking parallel to the image plane are considered [Geurtz, 1993; Ju
et al., 1996]. Often, several cameras are used to create a 3D scene reconstruction
[Gavrila, 1996; Kakadiaris and Metaxas, 1996], see Figure 2.5(b). See also §2.5.2
for a description of the models used. As the models for humans are deformable,
computational complexity rapidly increases with the amount of details in the model.

Active contour-based

After segmentation, the outline of an object is known. The outline can be tracked
using active contours or snakes [Baumberg, 1995; Nguyen et al., 2002; Peterfreund,
1999], see Figure 2.6 for an example. Using energy minimization, the contour
is adapted to the image data. Besides tracking of the object, an accurate object
contour description is now available each frame.

At high computational cost, the active contour approach is able to describe ar-
bitrary shapes, as long as the smoothness constraint is satisfied. However, for this
approach initialization and association between frames is a problem, for example
when objects form groups and split again. Another disadvantage of active contours
is that tracking is based on the most deformable part of the object, its contour.

To overcome the limitation of association, the active contour algorithm can be
combined with an algorithm describing the color of the object [Isard and Blake,
1998; Rasmussen and Hager, 2001].
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(a) Model of a head (b) 3D multi camera tracking

Figure 2.5: Two model-based object tracking examples. On the left the model of the head
used in [Zivkovic and Heijden, 2001] is shown. On the right an example of 3D tracking using
multiple cameras is shown, from [Gavrila, 1996].

Figure 2.6: An example of active contour-based tracking. Three frames are shown with the
active contour in white. From [Nguyen et al., 2002].
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Region-based

When a moving object is segmented, a region of pixels assigned to the object is
available. This region can be tracked using approaches like cross-correlation. The
location of the region in the next frame is to be determined. A moving object usually
corresponds to one [Wren et al., 1997] or several [McKenna et al., 2000] tracked
regions. Combination of several regions to one object is then performed at a higher
level of abstraction.

Several techniques are available for modelling and tracking image regions. The
regions are often modelled using a probability density distribution of their color. This
distribution can be described using a color histogram [Agbinya and Rees, 1999;
Capellades et al., 2003], or a mixture of Gaussian kernels [McKenna et al., 1998;
Raja et al., 1998]. Instead of using one 3D probability density distribution, separate
distributions for each of the colors can be used [Gasser et al., 2004; Hu et al.,
2004a].

Probability density distributions of the color are relatively invariant to changes in
object orientation, scale, partial occlusion, viewing position and object deformation
[Swain and Ballard, 1990]. This makes them particularly interesting for tracking
nonrigid objects such as humans. However, the distributions capture only the colors
in an image and do not include any spatial correlation information. Therefore, they
have limited discriminative power. A color correlogram, on the other hand, is a co-
occurrence matrix that gives the probability that a pixel at a distance d from a given
pixel of color ~ci is of color ~cj . This way spatial information in the form of distance to
pixels of a certain color is introduced [Capellades et al., 2003; Huang et al., 1998].

Other approaches taking spatial information into account are using many small
regions [McKenna et al., 2000] and using the time average per-pixel color [Cuc-
chiara et al., 2004; Senior, 2002]. Instead of choosing one color space, automatic
selection of most discriminative features can be used [Chen et al., 2004; Collins
and Liu, 2003]. This adapts the color space used by comparing the specific tracked
region with the local background, leading to a more precise object segmentation.
However, when pixels are misclassified and consequently used for updating the
wrong model, this solution will become unstable.

Considering the low number of pixels in each tracked region, histograms will
become quite sparse. On the other hand, it also is not easy to estimate the pa-
rameters of a Gaussian mixture model from only a few data points, specially when
also the number of kernels is unknown. From the point of view of computational
complexity, the use of a histogram approach is most affordable because template
matching can be performed very efficiently.

Considering that a probability density function is available with these techniques,
it is unfortunate that object segmentation is often based on a static threshold. Cal-
culated probabilities could be used in a probabilistic foreground/background classi-
fication algorithm.

Moving objects can also be modelled using a fixed or parameterized shape, like
in the mean-shift approach [Comaniciu et al., 2000; Zivkovic and Kröse, 2004], and
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the particle filter [Nummiaro et al., 2003; Pérez et al., 2002; Spengler and Schiele,
2002]. Disadvantage of such techniques is that they are unable to describe an
arbitrary shape, changing between subsequent frames.

Feature-based

Feature-based object tracking approaches are similar to region-based approaches.
Instead of tracking the entire region, feature-based approaches extract features
from the image and track these. Examples are tracking of line segments and cor-
ners [Coifman et al., 1998] and motion of the centroid [Polana and Nelson, 1994].
Features such as moment invariant functions and aspect ratio [Withagen et al.,
1999] could also be used.

Such approaches can be implemented very efficiently and are theoretically able
to handle partial occlusions. They are used frequently for traffic surveillance. Rea-
sons they are not used often in general surveillance applications include: low recog-
nition rate of features due to nonlinear perspective transformation and the stability
of dealing with occlusions is generally poor [Hu et al., 2004b].

Wrap-up

For surveillance applications, model-based approaches are computationally com-
plex and often the amount of pixels required for an accurate fit of the model is not
available. Feature-based approaches should also not be used, because of the low
recognition rate of features and problems with occlusion.

Active contour-based approaches have the advantage of generating an accu-
rate object contour. This can be a major advantage for applications requiring pose
estimation for example. However, these approaches are generally more compu-
tational complex than region-based approaches, and require object detection by
another algorithm. Occlusion and robustness over many frames can pose prob-
lems, as tracking is based on the most unstable part of the object. If computational
complexity is not an issue, the combination of region-based tracking and active
contour-based tracking is optimal, in other cases region-based tracking is a good
choice.

The region-based approach is most popular for surveillance applications. It is
computationally fast compared to approaches based on active contours and object
models, and as region-based methods use the entire region, they are more stable
and can better cope with occlusions than feature-based approaches. This approach
will be used in this thesis.

2.5.2 Object classification

Two main categories of object classification approaches exist. Classification can
be based on either motion or static features such as shape, color and texture. A
description of both approaches will be given below.
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(a) Cardboard (b) Stick figure (c) Ellipsoid (d) Silhouette

Figure 2.7: Some models used for model-based human body tracking. The pictures are
taken from [Ju et al., 1996], [Leung and Yang, 1995], [Sminchisescu, 2002] and [Gavrila and
Philomin, 1999] respectively.

Motion-based classification

Classification after tracking the object for a few to several frames allows the use of
temporal characteristics of the object for classification. A number of researchers
utilize the periodic motion of walking people [Cutler and Davis, 2000; Lipton, 1999;
Stauffer, 1999]. For classification between humans and for example vehicles speed
and motion deviations are used [Brown, 2004].

Static feature classification

Explicit shape models are available in several flavors. For people there are card-
board [Haritaoglu et al., 2000; Ju et al., 1996], stick figure [Leung and Yang, 1995],
ellipsoid [Geurtz, 1993; Sminchisescu, 2002] and silhouette models [Gavrila, 2000],
see Figure 2.7 for some examples.

Alternatively, blob features like aspect ratio, bounding box or blob area are used
[Collins et al., 2000b; Lipton et al., 1998]. Classes that are generally used are
human, group of humans, car, bicycle and other.

Combined approach

Combining motion and static features allows to use the advantages of both ap-
proaches. Examples of a combined approach are [Haritaoglu et al., 2000; Stauffer,
1999]. The latter uses a hierarchical approach to recognize both objects and be-
havior.
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2.6 Behavior and activity recognition

After detection, segmentation and tracking of moving objects, higher level tasks
such as activity classification and behavior recognition can be performed. For
surveillance applications, two approaches are important. First, the behavior in a
short time is important. Is someone throwing something, hitting or kicking, or falling
on the ground. Detection of this kind of behavior is a result of analysis of the pose in
a short time, seconds or less [Pronk, 2004; Schelven, 2002]. Second, the behavior
during an extended time is important. Based on their motion pattern, people with
criminal intent such as car thieves, drug dealers and pickpockets can be detected.
Recognition of this kind of behavior is based on the trajectory over an extended
time, minutes or more [Ockhuysen, 2006].

A representative choice of approaches will be given below. It goes beyond the
scope of this thesis to give detailed discussion of available techniques.

2.6.1 Pose analysis

Work on activity recognition from pose can be organized into approaches either
based on state-spaces or on template matching [Aggarwal and Cai, 1999]. Ap-
proaches using a state-space assume that an action can be represented as a series
of states. These states correspond to static postures of the human body. Probabili-
ties are calculated for transitions from one state to another. An advantage of these
approaches is that variations in motion are part of the model. Disadvantages are
that the calculations are complex, the states do not necessarily correspond to phys-
ically meaningful states and that it is difficult to add another action for recognition.

Only a few body poses are sufficient to recognize an action from the motion of
the body parts [Ben-Arie et al., 2002]. These poses consist of angular and velocity
vectors for the major body parts (hands, feet and torso). To combine the individual
results from the body parts a voting approach is applied. Actions like walking,
sitting down and jumping are recognized, see Figure 2.8(a). An armed robbery is
modelled in [Dever et al., 2002] as a single pose of the arms for different people.
One person has to have an arm positioned horizontally and the other person has to
have his hands up. These poses are recognized from the silhouette.

Approaches using template matching extract features from image sequences
and compare these to stored feature patterns. The main disadvantage of these
approaches is their sensitivity to the variations in motion of different people or re-
peated performances.

The coordinates of the trajectory of the human body are also used for detecting
interaction between people [Park and Aggarwal, 2003]. In their paper the interaction
is assumed to be parallel to the camera plane, which means that there is a potential
interaction when trajectories cross (passing by), follow the same path (following or
travelling together) or stop close to each other (talking).

In [Guo et al., 1994] a Fourier analysis of the motion vector containing the po-
sition of the head, the direction, length of body parts and angles between joints
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(a) Pose analysis (b) Trajectory analysis

Figure 2.8: Two examples of high level processing. On the right an example of the jumping
action from [Ben-Arie et al., 2002] is shown. On the left a suspicious trajectory typical of a
car thieve is shown, from [Pavlidis et al., 2001].

reveals the periodicity or frequency. This is used to determine walking, running or
other periodic motion. Four coefficients of discrete Fourier transform are sufficient
to use in combination with a neural network to recognize actions.

2.6.2 Trajectory analysis

Two approaches are distinguished for the analysis of trajectories. Suspicious tra-
jectories can be explicitly defined using expert knowledge, leading to an expert sys-
tems such as hidden Markov models and decision trees. Alternatively, suspicious
behavior can be learned from examples, for example using a neural network.

An expert system has been developed for automatically recognizing dealers at
bus stops [Gasser et al., 2004] . However, this application is very simplified: if
someone lets a certain amount of busses pass by and keeps hanging around, he
is classified as a drug dealer.

DETER [Morellas et al., 2003; Pavlidis et al., 2001] is an expert system spe-
cialized in monitoring large open spaces like parking lots, plazas, crossroads, and
perimeters of large industrial structures, see Figure 2.8(b). It can detect basic acts
of behavior such as people running, cars speeding, and people walking in a strange
trajectory, taking time zones (time within the day) and hot zones (certain designated
areas within the perimeter of a building) into consideration.

Using a neural network, the system in [Sotelino et al., 1994] can find temporal
relationships independent of position in time. It is based on the time trajectory
generating the pattern instead of the static pattern itself. Learning is based on
examples and no explicit expert knowledge is necessary.
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2.7 Conclusions

In this chapter an overview of visual surveillance literature has been given. A vi-
sual surveillance application consists of different levels of abstraction. For each of
the levels, optimal algorithms are application dependent. A general framework is
required to integrate the separate algorithms in a proper way.

A framework should combine the good performance of algorithms at each of the
levels of abstraction. This framework should preferably be based on probabilities,
in order to deal with uncertainties. In the framework, it should be easy to add or
replace algorithms from one of the levels, in order to adjust the algorithm for a
different environment or task. Besides communication of the results from low to
high levels, a framework should also allow for feedback, the use of results at higher
levels to update low-level models. Such a tracking framework is not yet available, it
will be presented in this thesis.

The lowest level of abstraction in a tracking application is formed by image ac-
quisition and pre-processing. The type of camera and its placement define which
algorithms can and cannot be used. A model of the imaging process of the camera
is useful for determining the amount of noise and the effect of changing illumina-
tion. Often, changes in the global intensity are present and need to be corrected.
Robustness of computationally efficient algorithms is still an essential issue.

Many techniques are available for the detection and segmentation of moving
objects. For visual surveillance applications using a static camera the techniques
based on a background model are most useful. However, the available algorithms
are not very robust for parameter settings. Specifically, setting the update speed of
the background can have a great impact on the performance, while different settings
are optimal in different circumstances. Second problem is that most algorithms
depend on only one model. Therefore, they are subject to false alarms and missed
detections. Using separate models of the background and the objects improves
both performance and robustness to setting the update speed.

Shadow detection is necessary to avoid false alarms. Most available shadow
removal techniques do not exploit the color of the illumination. This causes unnec-
essary false alarms. This issue will be addressed in this thesis.

The choice of object tracking and classification algorithms depends on whether
a model of the tracked objects can be used. A model-free approach is more flexible
and allows tracking of partially visible objects. Region-based object tracking is then
the best choice for visual surveillance applications. However, the combination of
region-based object tracking and probability-based object-pixel classification would
improve both accuracy and robustness to partial occlusion.
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3.1 Introduction

Computer vision has proved very successful in well-constrained industrial environ-
ments (for instance when illumination, objects types, and orientations are known).
However, in many practical applications, including airborne or remote sensing, med-
ical imaging, face recognition, outdoor robotics, and surveillance applications, the
environment can hardly be controlled. Illumination changes by lights switching on
or off, or by clouds moving in front of the sun. Automatic gain control (AGC), white
balance and iris are often applied to optimally map the amount of reflected light
to the digitizer dynamic range. However, when scene content changes they cause
changing image intensity over time.

Problems then arise with many algorithms that assume Constant Image Bright-
ness (CIB) or that are based on the Brightness Constancy Constraint Equation
(BCCE). Applications where image intensity changes cause problems include back-
ground subtraction, object tracking, stereo matching, image retrieval, video coding
and optical flow computation, see Section 2.3.

In this chapter1 we introduce algorithms for correcting global intensity changes
in image sequences. The algorithms estimate and correct for global temporal in-
tensity variations. They can be applied as pre-processing step for other image
processing algorithms as mentioned above. Based on a model of a CCD cam-
era a number of algorithms are proposed. The algorithms are evaluated on both
simulated and real images.

Evaluation of the algorithms is performed on three criteria. First, the precision
of the parameter estimation is evaluated using the sum of squared differences be-
tween a reference image and the corrected image. Second, the usability of the

1This chapter is based on [Withagen et al., 2004a].
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correction is evaluated using the performance of a representative post processing
algorithm. Third, the robustness of the post processing is evaluated. For all evalu-
ation methods we will show the impact of outlier removal.

For real-world application we will focus on the foreground-background classifica-
tion problem. We use the popular online Expectation Maximization (EM) algorithm
to estimate a multi-Gaussian model of the background color for each pixel, see
Chapter 2.

This chapter is structured as follows: in Section 3.2 we discuss existing tech-
niques to handle changes in intensity. We will introduce our model of changing
intensity in Section 3.3. There we will consider the differences between changes
in intensity caused by the combination of a changing scene and automatic gain
control, and by changing illumination. In Section 3.4 the proposed methods are
described. These methods are evaluated by both simulation and experiments on
real images in Section 3.5. Finally, conclusions are presented in Section 3.6.

3.2 Previous Work

There exists an extensive amount of literature concerning applications like moving
object detection, stereo matching or optic flow calculation. Considering that these
algorithms normally expect constant image intensity, it is surprising how little work
is done in the area of intensity correction. In this section we shortly introduce the
different techniques that are available for intensity correction. We evaluate them on
accuracy, usability and computational complexity.

The intended algorithm will be used for dynamic scenes with moving objects.
These objects cause a scene change and can decrease the accuracy of the inten-
sity correction. It is therefore important to have outlier removal, as will be shown in
the experiments in Section 3.5.

The simplest way of dealing with changes in intensity is ignoring all intensity
information. Intensity invariants [Siebert, 2001] or normalized colors can be used.
Instead of intensity information other features can be used, for example color [Greif-
fenhagen et al., 2001; Horprasert et al., 1999], edges [Jabri et al., 2000; Javed and
Shah, 2002], or depth [Harville et al., 2001]. However, using these features disre-
gards the information available in the intensity.

Techniques dealing with local changes could be used to correct for global inten-
sity changes. The drawback of local techniques is that they ignore the fact that all
pixels change simultaneously. This leads to a less accurate estimate of the global
effect. These techniques will be further discussed in the context of shadow removal
in Chapter 6.

Literature reports complicated methods: dynamic histogram warping changes
image intensities such that the histograms of the two images become equal [Cox
et al., 1995], by an iteratively weighted least squares estimation, the bias, gain and
gamma of an image can be estimated and corrected for [Tsin et al., 2001], and
estimation of the gain and bias together with optic flow allows the use of optic flow
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under global intensity changes [Altunbasak et al., 2003]. Drawback of these meth-
ods is the high computational complexity. This makes real-time implementation
difficult and expensive. Also, [Cox et al., 1995] and [Altunbasak et al., 2003] do not
perform outlier removal.

Considering background modelling techniques as used in this thesis, a fre-
quently used approach for dealing with changes in image intensity is relying on the
adaptation speed of the background modelling technique [McKenna et al., 2000].
However, this adaptation will only resolve the problem for relatively slow changes
in intensity, and it is difficult to tune the update speed of the model. A high update
speed may learn slow objects into the background model (missed objects), while
a low update speed can be unable to adapt the model fast enough to cope with
changes in intensity (false alarms), see [Toyama et al., 1999]. No single update
speed guarantees acceptable results for all possible situations, see Section 3.5.

An approach, closely related to relying on the adaptation of the background
classification algorithm, is setting a limit on the fraction of allowed foreground pixels
(e.g. 70 %). When this fraction is exceeded another background model (if available)
is chosen or the background model is re-initialized [Javed and Shah, 2002; Toyama
et al., 1999]. The performance will decrease in applications where illumination or
gain changes frequently occur, because after re-initialization a new background
model must be learned. During each learning period classification results are un-
reliable.

The idea of using multiple instances of a scene taken under different illumination
conditions is also considered in [Hager and Belhumeur, 1998; Hischof et al., 2004].
They use an eigenspace method to overcome complex changes in illumination (not
only intensity but also illumination direction may change). An interesting approach
in conjunction with image retrieval is given in [Jacobs et al., 1998]. Their method
assumes that the pixel-wise image ratio of two images from the same object is
simpler than the ratio of two different objects (they define simplicity as based on
the complexity of the algebraic function needed to locally approximate the shape of
the image). This assumption allows for object comparison under complex changes
in illumination. Only one measure of similarity is calculated for the entire image.
Therefore, usability is restricted to applications like face recognition and image re-
trieval, so this is less general than the scope of our research, were we are aiming
at a generally applicable method.

A useful approach for real-time applications is the direct calculation of the in-
tensity difference between two images. This is done using the average [He et al.,
2003] or a least squares estimate [Kamikura et al., 1998]. However, these methods
are sensible to outliers.

In this chapter we develop a method for the correction of global changes in
intensity for dynamic scenes that overcomes the above limitations. The method
should be generally applicable for static cameras where moving objects are part of
the scene. These moving objects can be regarded as outliers in the estimation of
the global intensity. The method to be developed should be robust to these outliers.
Furthermore, it should have low computational cost so that it can be implemented
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in real-time.

3.3 Model Description

In this section we present a correction algorithm for global changes in intensity.
We then introduce a simplified model of a CCD camera. This model has been
experimentally verified for a range of cameras in Appendix A. Using this model we
then introduce the apparent gain factor that needs to be estimated.

3.3.1 Global intensity correction

The goal of this chapter is to correct for global differences in intensity between two
images. Consider two images ir and it depicting an equal scene at different time
instances. There is global difference in intensity between the two images. We
intend to correct for this intensity difference by

it ,corrected =
it
a

, (3.1)

with a the apparent gain factor. it ,corrected and ir have equal global intensity. We will
give an equation for a in this chapter.

Equation 3.1 is not valid for moving objects, causing different scene content
in the two images. In estimating the apparent gain factor, pixels corresponding
to changed scene content will cause outliers. Correction for such outliers will be
discussed in §3.4.2.

For color cameras we will assume that the intensity of all color bands changes
equally. This results in one apparent gain factor for each image.

3.3.2 Model of CCD cameras

Based on a general model of CCD cameras [Healey and Kondepudy, 1994], we re-
port in Appendix A the experimental results of the different contributions in the CCD
model. The experiments show that the general model in [Healey and Kondepudy,
1994] does not hold for a typical webcam. The other cameras evaluated do adhere
to this model with added gamma correction.

For the cameras used in Appendix A that do adhere to the model, the experi-
mental results allow for simplification of the model. For sufficiently large intensity
values, both offset and additive noise can be neglected. The simplified model of
the CCD camera to be used in the remainder of this chapter is now given by

it = gγ
t

(
ht i0 + NS

)γ , (3.2)

with gt the camera gain, i0 the scene irradiance, ht a factor related to the camera
shutter time, iris size and scene illumination, NS noise and γ the value of the gamma
function. The amount of noise NS is given by σ2

NS
∼ ht i0. It depends on the amount

of light reaching the pixel and is therefore called multiplicative.
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3.3.3 The apparent gain factor

The image recorded at time t will be compared to some reference image r recorded
earlier. These images are given by

it = gγ
t

(
ht i0 + NS

)γ and (3.3)

ir = gγ
r
(
hr i0 + NS

)γ . (3.4)

Changes in image intensity can be caused by either changes in the camera gain gt
or changes in the illumination intensity, iris or shutter resulting in a changed ht . γ
is considered constant in our model. Experiments in Appendix A show that this is a
valid assumption for most cameras.

Considering equal scene, the relation between it and ir is

it = air + Ntotal , (3.5)

with a equal to that defined in Equation 3.1. As noise Ntotal is zero-mean, this shows
that Equation 3.1 can be used for global intensity correction.

The apparent gain factor a is for sufficiently large values of hr and gr given by:

a =
( gtht

gr hr

)γ . (3.6)

hr and gr are sufficiently large when the signal is dominant over the noise. The
apparent gain factor is undefined for pixels with small hr or gr . Therefore, pixels
with small intensity will not be used in the estimation of a.

Considering the noise of the two images independent gives for the variance in
Ntotal:

σ2
total ≈

(
(a2g2

r hr + g2
t ht )i0σ2

t
)γ , (3.7)

with σ2
t he variance in the noise in each of the images.

Regardless of the cause, the effect on the apparent gain factor a is the same,
see Equation 3.6. Therefore, without loss of generality we can limit ourselves to the
estimation of a in the remainder of this chapter. However, there is a difference in
effect on the image noise. When the change in intensity is caused by camera gain
the increase in noise is different than when the illumination intensity, iris or shutter
time changes2.

3.4 Proposed algorithms

To correct for changing intensity we need to estimate the apparent gain factor a
between two images ir and it defined in §3.3.1. To obtain constant intensity over

2For an equal change in intensity, the variance in the noise σ2
total,g caused by changing camera gain

is approximately σ2
total,g = 1+n

2 σ2
total,h , for γ = 0.5 and with n the amount of change n = gt

gr
or n = ht

hr
respectively.
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time we compare all images to the reference image ir . This results in the apparent
gain factor between the reference image and each other image. These apparent
gain factors will be used to correct the corresponding images.

Because of the noise in both images, this parameter estimation problem is not
trivial. Besides a theoretically optimal estimate, several alternative algorithms will
be given here. They will be compared experimentally in Section 3.5.

3.4.1 Estimation of the apparent gain factor

We intend to give an accurate non-iterative estimate of the apparent gain factor
a. The less computation an algorithm requires, the easier it can be implemented
in real-time. Therefore we also present simplifications to the theoretically optimal
algorithm. In Section 3.5 we will experimentally compare these algorithms.

As the majority of the noise contributions are multiplicative, a Weighted Least
Squares (WLS) estimate is a theoretically optimal non-iterative estimate. Minimiz-
ing the criterion

L2 =
∑
s∈S

w2
s (it − air )2 , (3.8)

for all pixels s in set S in least squares sense gives

aWLS =
∑

s∈S w2
s ir ,s it ,s∑

s∈S w2
s i2r ,s

. (3.9)

The weights w can be calculated using the inverse of the image noise, which de-
pends on the intensity. Using the common simplification of only multiplicative (shot)
noise leads to the following weights

w2
s =

ir ,s

it ,s ir ,s + i2t ,s
, (3.10)

using the approximation a = it ,s
ir ,s

in the weights. This will however increase the
influence of low intensity values. For these values the simplification used is not
valid, as the amount of additive noise will be larger than the amount of multiplicative
noise.

To reduce the influence of low intensities and at the same time reduce compu-
tational requirements, we can use equal weights. This gives us the standard Least
Squares (LS) estimate

aLS =
∑

s∈S ir ,s it ,s∑
s∈S i2r ,s

. (3.11)

Even simpler and requiring fewer computations is using only the Quotient of the
Average (QofA), related to the L1 criterion:

aQofA =
∑

s∈S it ,s∑
s∈S ir ,s

. (3.12)
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All methods given above calculate the quotient of two numbers. For statistical
outlier removal, see §3.4.2, it would be profitable to have an intensity ratio per pixel.
This can also be useful for the extension to local intensity correction, see Chapter 6.
Therefore, we also take the Average of the pixel-wise Quotient (AofQ) into account

aAofQ =
1
|S|
∑
s∈S

it ,s
ir ,s

, (3.13)

with |S| the number of pixels in the set of pixels S.
The experiments will show that it is important to perform outlier removal when

dealing with dynamic scenes. Also, the quotient between two images typically has
a positively skewed distribution where the mean would over-estimated the apparent
gain factor. For these reasons the median is also taken into account

aQofM =
Ms∈S it ,s
Ms∈S ir ,s

and (3.14)

aMofQ = Ms∈S
it ,s
ir ,s

, (3.15)

where M denotes the median of a set of numbers.

3.4.2 Outlier removal algorithm for dynamic scenes

Comparing the two images ir and it we should take into account that not all pixels
will be stationary in dynamic scenes. Pixels depicting dynamic scene violate the
assumption of equal scene introduced in §3.3.1. The equations given above are
thus only valid for pixels depicting stationary scene. Non-stationary pixels should
be excluded from the apparent gain factor estimation.

We will investigate a outlier removal based on statistics. For applications using
foreground/background classification, moving objects will cause outliers. In such
case classification between foreground and background can be used for outlier re-
moval. However, this makes the global intensity correction algorithm less general.

Statistical outlier removal is based on the observation that the majority of the
pixels depict the same scene in both images. We calculate the average µq and
standard deviation σq of the pixel-wise ratio qs between the two images. Pixels for
which |qs − µq | < Toutlierσq holds are labelled as outlier. Toutlier should be chosen
such that enough pixels remain for a statistically accurate estimate, but that only
those pixels remain that are very unlikely to be outliers. We will use Toutlier = 1. This
is a simple and easy to compute outlier removal algorithm that proves very effective.

Another set of pixels that should not be taken into account are pixels that are
close to either the upper or lower bound of the range of pixel values. For pixels
close to the lower bound the apparent gain factor is undefined and additive noise
and dark current cannot be neglected, while pixels close to the upper bound may
suffer from saturation problems. Therefore, we will ignore pixels within 10 percent
of the upper and lower bound.
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3.4.3 Creation of the Reference Image

All algorithms proposed need a reference image to compare the current image
to. In our experiments, we will use the first image of the image sequences as
reference image. This is the most general solution and requires the least amount
of computations. For most applications however, the reference image should be
updated as the scene might change. Some alternatives will be discussed below.

The reference image can be periodically renewed by selecting a new image
from the input. The image can be selected at random, or based on the amount of
background it contains. The latter is preferred as it will contain less moving objects.

When using background modelling, see Chapter 2 it is possible to use the back-
ground model as reference. With a Gaussian mixture model, the average of the
kernel with the largest weight can be used to compare the current image to, but it is
also possible to use the mean of the best fitting kernel. The latter is expected to give
better results for multi-modal backgrounds. Compared to choosing an image from
the sequence, we expect the amount of noise and the number of foreground pixels
in the EM–model reference image to be lower. An additional advantage of using the
EM–model to create the reference image is that it is always up-to-date. When the
background changes, the reference image is automatically adapted. Drawbacks
are a small amount of additional computation.

For a slowly moving camera, each image can be compared to the previous
image. If the motion is (approximately) known, only the overlapping area between
the images should be used for apparent gain factor estimation.

3.5 Experimental Evaluation

We will experimentally evaluate the proposed algorithms. We will use simulated
images to evaluate the accuracy and usability of the different intensity estimation
algorithms in §3.5.1. We compare the algorithms to each other and to ground truth.
Also, the need for outlier removal is evaluated. The effect of intensity correction in
conjunction with classification between foreground and background on real images
is demonstrated in §3.5.2. We look into the runtime of the algorithms in §3.5.3. A
discussion of experimental results is given in §3.5.4.

For the evaluation of the usability we demonstrate intensity correction in con-
junction with foreground/background classification. For each image the apparent
gain factor is calculated and the image is corrected for it. With this corrected image,
a model of the background is updated using the online Expectation Maximization
(EM) algorithm, see Section 4.2. Four kernels are used to model the background.
They are updated with an update speed uB. The classification algorithm proposed
there is used to do classification between foreground and background, see Sec-
tion 4.2.2.
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3.5.1 Comparison by simulation

We will evaluate the proposed algorithms using a simulated image sequence. For
each image the apparent gain factor a is estimated and the image is corrected ac-
cording to Equation 3.1. The corrected image is used to measure the performance
of the intensity correction algorithm and to perform foreground/background classifi-
cation.

Image generation

Images are generated based on the full model of the CCD given by Equation A.3,
so without simplifications. As scene we use the red channel of the first image from
the Intratuin image sequence. In each frame 20 % of the pixels is selected at ran-
dom and they are given a foreground value. The foreground value is drawn from a
uniform distribution between 0 and 0.5, while the distribution of the background lies
between 0 and 1 with peaks around 0.3, 0.6 and 0.8, see Figure 3.1(a) for a noise-
less example image without foreground objects and Figure 3.1(b) for its histogram.
We choose the parameter settings of the image simulation such that they approach
an average camera from the cameras characterization in Appendix A. Artificial
Gaussian distributed noise is added to the images according to Equation A.3.

The scene intensity is kept constant ht = hr and the camera gain gt is varied,
see Figure 3.2. The camera gain is 1 for images 1 to 150 for training and evaluation
of the algorithms on images without changes in intensity. The intensity linearly de-
creases from 1 at image 150 to 0.5 at image 200 for the evaluation of the algorithms
on images with a changing intensity.

Besides the image sequence it , two additional images are created. The refer-
ence image ir which is used for the estimation of the apparent gain factor together
with the current image, and the ground truth image igt. These images have equal
illumination and camera gain and do not have foreground pixels. The ground truth
image is noiseless, the reference image contains noise.

Evaluation criteria

Two criteria for evaluation are used, one for the accuracy of the apparent gain factor
and one for the usability in conjunction with foreground/background classification.

For accuracy evaluation we use the average root mean squares error between
the intensity corrected current image and the ground truth image for all pixels de-
picting background:

eaccuracy =
1
|B|
∑
b∈B

(
igt,b −

1
a

it ,b
)2 , (3.16)

with |B| the number of pixels in the set of background pixels B. Note that as we
use a realistic setting with noise in the current image, this criterion gives for perfect
intensity correction the standard deviation of the image noise.
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(a) Simulation image
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Figure 3.1: Simulation image and its histogram. The image on the left shows an example
image used for the simulation experiments. On the right the histogram of this image is given.
This image and its histogram does not contain noise or foreground pixels.
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Figure 3.2: The value of the camera gain for the simulated images.
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The usability of the intensity correction algorithm is evaluated with foreground/-
background classification. A Mixture of Gaussians model is updated using online
Expectation Maximization, see Section C.3, with an update speed uB = 0.05. With
this model, classification is performed using the algorithm of Stauffer with a thresh-
old TStauffer = 3, see Section 4.2.2. These settings were found to be optimal for the
reference method, without intensity correction, and the given evaluation criterion
for usability defined below. Evaluation is started after 100 frames, allowing the EM
background model to learn on the first 100 frames.

The impact of the intensity correction for our application is expressed in a us-
ability measure: the classification performance. It shows wether using intensity
correction gives an improvement in the results. We define the usability of the inten-
sity correction as the fraction of erroneously classified pixels

eusability =
Nerroneous

Ntotal
, (3.17)

with Nerroneous the number of erroneously classified pixels and Ntotal the total number
of pixels. This assumes equal cost for missed foreground pixels and erroneously
detected foreground pixels.

Simulation results

Besides the six proposed methods, correcting with the ground truth a (GT) and
using the uncorrected image (No) are also presented. The different algorithms for
estimating the apparent gain factor are evaluated with and without outlier removal.
For all results, the mean and standard deviation over the images were calculated
for the two sections: static and changing intensity. The results shown are averaged
over fourteen independent noise realizations.

The results for all combinations are given in Tables 3.1 and 3.2. Most important
observations are a ten times lower accuracy error and a three times lower usabil-
ity error for methods using outlier correction compared to no correction. Methods
without outlier correction perform significantly worse.

From the accuracy results we see that as long as there is some kind of outlier
removal (statistical or methods based on the median), accuracy is for most combi-
nations close to the image noise. Exception is the method QofM, which performs
slightly worse. For changing intensity, the error with correction is ten times lower
than without correction. Without outlier removal results are significantly worse, even
on the section with constant intensity. Differences between methods with outlier re-
moval are very small. Though the small standard deviation is possible given the
average was calculated from over 2 ·108 samples, the use of different images could
cause somewhat larger variation.

For usability the results are even more consistent. All combinations that do
some kind of outlier removal (statistical or median) give errors close to the error of
correcting with the ground truth. The error of 6.8% is caused by the fraction of the
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20% foreground pixels that overlap in color with the scene. This should be com-
pared to no correction, where the error triples in dynamic situations. Combinations
without outlier removal perform again worse than those with.

As could be expected the WLS method is only optimal when its assumptions
are fulfilled, in particular with respect to the probability density distributions, so
without outliers. The method is extremely sensitive to outliers, shown by the re-
sults without outlier removal. Even the few outliers remaining after outlier removal
are sufficient to decrease the performance of the WLS method. To a lesser extend,
the same holds for LS. A solution would be to use robust iterative estimators, like
M–estimators, but those are very time-consuming and difficult, if not impossible, to
use in real-time. The difference in performance between LS and WLS suggests that
an additive noise model (LS) gives in this case a better description of the data than
the multiplicative noise model used in WLS.

3.5.2 Evaluation using real image sequences

In simulation experiments optimal parameter settings for the background classifica-
tion algorithm can be used. In practical situations these optimal settings are often
unknown, and the system will operate in general at sub-optimal settings of these
parameters. So the sensitivity of the performance to suboptimal settings will play a
major role in the evaluation on real image sequences.

Table 3.1: Accuracy results for simulated data. Shown is the average of the error eaccuracy in
percentages (lower is better). The standard deviations over the frames are given between
brackets.

Static intensity Changing intensity
Outl. rem.: No Yes No Yes

Method:
No 1.261 (0.009) 13 (7)
GT 1.261 (0.009) 1.266 (0.008)
QofA 2.64 (0.09) 1.263 (0.009) 2.63 (0.08) 1.268 (0.008)
QofM 2.4 (0.2) 1.29 (0.04) 2.3 (0.2) 1.31 (0.05)
AofQ 2.36 (0.08) 1.262 (0.009) 2.36 (0.07) 1.267 (0.008)
MofQ 1.26 (0.01) 1.261 (0.009) 1.277 (0.008) 1.266 (0.008)
LS 2.9 (0.1) 1.264 (0.009) 2.87 (0.08) 1.269 (0.008)
WLS 7.5 (0.4) 1.271 (0.009) 7.2 (0.4) 1.276 (0.009)
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Image sequences

Three image sequences were used for the evaluation, see Appendix B for a more
detailed description of the data:

• Intratuin: In this sequence there is no significant variation in intensity.

• Schiphol: There are many global intensity variations due to automatic gain
control. The sequence contains relatively large objects, some of which be-
come stationary.

• PETS01-3TR1: There are large local changes in illumination intensity due to
clouds. The images contain relatively few object pixels.

All sequences are RGB color video data with eight bit per color. For each sequence,
five to eleven images were manually labeled. Each pixel was labeled: foreground,
background or any, see Figure 3.3 and Section B.2.1 for some examples.

ROC performance

We evaluate the intensity correction algorithms based on their usability in con-
junction with classification between foreground and background. The images are
corrected with each of the proposed intensity correction algorithms after which
the background model is updated and foreground/background classification is per-
formed.

Table 3.2: Usability results for simulated data. Shown is the average of the error eusability in
percentages (lower is better). The standard deviations over the frames are given between
brackets. Note that these results cannot be compared to the results on real data as only one
color has been used in the simulation.

Static intensity Changing intensity
Outl. rem.: No Yes No Yes

Method:
No 6.8 (0.7) 18 (5)
GT 6.8 (0.7) 6.7 (0.7)
QofA 8 (1) 6.8 (0.7) 6.9 (0.7) 6.7 (0.7)
QofM 8 (1) 6.9 (0.7) 6.9 (0.7) 6.8 (0.7)
AofQ 8 (1) 6.8 (0.7) 6.8 (0.7) 6.7 (0.7)
MofQ 6.8 (0.7) 6.8 (0.7) 6.7 (0.7) 6.7 (0.7)
LS 8 (1) 6.8 (0.7) 6.9 (0.7) 6.7 (0.7)
WLS 18 (6) 6.8 (0.7) 8 (1) 6.7 (0.7)
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(a) Intratuin (b) Schiphol (c) PETS01-3TR1

Figure 3.3: An images from the three sequence used. More images are given in Appendix B.

The choice of the best algorithm for foreground/background classification de-
pends on the application. In order to make a good choice, the ratio of the cost of a
false alarm and the cost of a missed detection must be known. For the experiments
on simulated images described in §3.5.1, unity cost was assumed.

When comparing different classification algorithms, the parameter settings of all
algorithms should be optimized for the chosen cost ratio. For a different application,
a different ratio might be in use and therefore a different algorithm might be optimal.
It would be efficient to compare for different cost rations at once.

Often, Receiver Operator Characteristics (ROCs) are used for this. We construct
a ROC curve by computing the convex hull of the foreground/background classifi-
cation results for a selection of parameter settings, see [Provost and Fawcett, 2001;
Scott et al., 1998]. Given a certain cost fraction, the optimal method can now easily
be found in the graph. We call this curve the total–ROC.

Before foreground/background classification, the EM model was initialized by
updating the model for images 500, 499, and so on until image 1 using a constant
update speed uB = 0.05. As the first frame on which we evaluate is frame 500, this
allows the algorithm to initialize during 1000 frames. This enables the evaluation
of very low update speeds, for which the sequences would not be long enough
to obtain a converged model of the background. The entire image sequence was
processed several times. Each time using different values for the update speed uB
and threshold TStauffer.

In Figure 3.4 total–ROC curves for a number of methods are given. This are the
convex hulls of the results of experiments in which both the update speed uB and
the classification threshold TStauffer of the background modelling and classification
algorithm are varied. As most methods coincide, we selected only a few meth-
ods: the reference method No correction, MofQ with and without outlier removal
and QofA with outlier removal. For the PETS01-3TR1 and Schiphol sequences
the improvement with any of the proposed methods is significant, for the Intratuin
sequence there is also a slight improvement.

Table 3.3 gives an overview of the surface above the ROC for all methods. For
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(c) PETS01-3TR1

Figure 3.4: Total–ROCs of the classification results on real data with different values of update
speed and threshold. Only a selection of the methods is shown as most methods coincide.

Intratuin, most methods that do some kind of outlier removal, i.e. statistical out-
lier removal or using the median, perform slightly better than without global inten-
sity correction. Only exception is QofM without outlier removal. For Schiphol and
PETS01-3TR1 the methods with outlier removal perform significantly better with an
error reduction of a factor two and three respectively. Best performance is obtained
using MofQ without statistical outlier removal.
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Parameter Invariant Performance Evaluation (PIPE)

Unfortunately, the total–ROC is in this case not a sufficient criterion. The problem
is that the effect of global intensity differences can be partially solved by faster
updating of the background, at the cost of robustness. A method might perform well
on one image sequence with a certain update speed, but this does not mean it will
perform that well with equal update speed on another set of images, recorded under
different conditions. This is a matter of robustness against setting the parameters,
specifically the update speed, that is not taken into account by comparing total–
ROCs.

We therefore propose the Parameter Invariant Performance Evaluation (PIPE)
criterion. PIPE is a measure that gives in one number the average performance
on an image sequence and the robustness against changing the parameters to the
optimal parameter settings for other image sequences. A low error can be achieved
by a method that performs well with all parameter settings, or one that has optimal
performance for one setting regardless of the image sequence. Both cases are
attractive to use in practice, where it is difficult and impractical to tune parameters
as the circumstances change.

PIPE is based on ROCs. The parameters we intend to vary are the threshold
TStauffer and the update speed uB, where the update speed is the parameter we wish
to be robust against. We first analyze the effect of this parameter. Therefore, we
create for each image sequence lseq and update speed uB a uB–ROC by varying
threshold TStauffer only. We calculate area A(lseq, uB) under this uB–ROC. This area
lies between zero and one, where one corresponds to the perfect classification
result and a value of 0.5 can be obtained by classifying at random.

Figure 3.5 shows the areas A(lseq, uB) under the uB–ROC for different update

Table 3.3: ROC results for real image sequences. Given is the average of the surface above
the total–ROC in percentages (lower is better).

Data: Intratuin Schiphol PETS01-3TR1 Average
Outlier removal: No Yes. No Yes No Yes No Yes

Method:
No 3.95 2.59 2.28 2.94
QofA 4.19 3.67 2.71 1.38 0.80 0.81 2.57 1.95
QofM 5.38 3.71 1.35 1.34 0.82 0.80 2.51 1.95
AofQ 4.21 3.68 2.03 1.35 0.82 0.79 2.35 1.94
MofQ 3.68 3.68 1.25 1.32 0.76 0.78 1.90 1.93
LS 4.44 3.69 3.01 1.42 0.81 0.80 2.75 1.97
WLS 7.67 3.68 6.08 1.60 1.16 0.80 4.97 2.03
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Figure 3.5: The area under the uB–ROC for different values of the update speed. The hori-
zontal lines indicates the area under the total–ROC. Only a selection of the methods is shown
as most methods coincide. Figure (d) shows the corresponding U(uB) histograms.

speeds for the methods selected before. This immediately shows that different im-
age sequences can require different parameter settings, but that intensity correction
makes the algorithm more robust against setting of the update speed. As a conse-
quence, intensity correction makes the algorithm more robust against changes of
the environment. The figure also shows that intensity correction cannot be substi-
tuted by faster updating of the background model. For the PETS01-3TR1 sequence
this might be a solution, but for the Intratuin and Schiphol sequences performance
significantly drops for higher update speeds due to misclassification of slowly mov-
ing objects.

We wish to obtain one error measure for each image sequence. This can be
achieved by averaging the results of the uB–ROC over the different values of the



48 Global intensity correction in dynamic scenes

update speed. In order to introduce robustness into the evaluation criterium, we
weight the different contributions. The weight is determined by the number of times
this update speed was optimal for any of the image sequences. A value of the
update speed is optimal when it lies on the convex hull of the total–ROC. U(uB)
is the average over all image sequences of the normalized histograms of the oc-
currence frequency of update speeds on the convex hulls of the total–ROCs. See
Figure 3.5(d) for some of these histograms.

Our Parameter Invariant Performance Evaluation error ePIPE is now given by one
minus this weighted average

ePIPE(l) = 1− 1
NuB

∑
uεnuB

U(uB)A(l , uB) , (3.18)

with nuB the list of NuB different values of uB that are used.

PIPE results

Full results according to ePIPE described above are given in Table 3.4. Error reduc-
tions of almost a factor two on the Schiphol sequence and almost a factor four on
the PETS01-3TR1 sequence are obtained. Below we will discuss the results for all
sequences in more detail.

For the Intratuin sequence, results of combinations that either do statistical out-
lier removal or are based on the median are slightly better then the result without
correction, except for QofM without statistical outlier removal. It is not surprising
that the results are close to that without correction as this image sequence does
not contain significant intensity variations. However, this data does show that the
use of intensity correction does not make results worse when there is no need for
correction. Methods that perform best are AofQ and QofA with statistical outlier
removal and MofQ.

The Schiphol sequence contains considerable changes in intensity due to auto-
matic gain control. The error is reduced by approximately a factor one-and-a-half
for methods that do some kind of outlier removal. Without outlier removal results
are significantly worse. Best performance is obtained using MofQ.

The PETS01-3TR1 sequence contains changes in intensity caused by moving
clouds. Therefore, these changes are not always global. Nevertheless, results
improve significantly when using any of the the proposed global intensity correction
algorithms. An error reduction of almost a factor four is obtained, the methods
based on the median perform best on this image sequence. Outlier removal does
not seem necessary for the LS method on this image sequence. This is because
compared to the other data, there are much less outliers in this image sequence
as only a small fraction of the pixels depict foreground. In this case outlier removal
still reduces the number of pixels and consequently the estimation accuracy of the
apparent gain factor.
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On average, outlier removal is essential for good results. MofQ performs best
with an average error reduction of more than a factor 1.6.

3.5.3 Runtime

Our goal is to find an intensity correction algorithm to be used as pre-processing for
real-time applications. Therefore, runtime is an important issue.

We ran all algorithms on an image of 100,000 pixels. The runtime of each algo-
rithm was averaged over 100 runs. The computations were performed on a Pentium
IV 2500 MHz processor under Windows 2000 Professional. The algorithms were
implemented in Matlab 6.1 (www.mathworks.com). The Matlab implementations for
the computation of the mean and median were used and all computations were
performed in double precision.

The results are given in Table 3.5. This table shows that when no statistical
outlier removal is necessary, QofA and AofQ are most affordable, followed by LS.
These methods are a good choice in conjunction with other ways of outlier removal
like foreground/background classification.

Otherwise statistical outlier removal should be used, except for methods based
on the median as we have shown. We therefore compare the methods with a
median without outlier removal to the other methods with statistical outlier removal.
Then MofQ is the most affordable algorithm, followed by AofQ and QofA, all very
close to each other.

It should be noted that it is not necessary to use all pixels in the image for
intensity estimation. According to the amount of processing power available and
the accuracy requested, a fraction of the available pixels can be used. Outlier
removal also reduces the number of pixels that needs to be taken into account.

Table 3.4: PIPE results for real image sequences. Given is the average of the error ePIPE in
percentages (lower is better).

Data: Intratuin Schiphol PETS01-3TR1 Average
Outlier removal: No Yes. No Yes No Yes No Yes

Method:
No 8.66 6.15 5.04 6.61
QofA 7.92 7.39 5.13 3.97 1.53 1.46 4.86 4.27
QofM 8.96 7.54 3.83 3.90 1.39 1.41 4.73 4.28
AofQ 7.94 7.39 4.92 3.83 1.48 1.47 4.78 4.23
MofQ 7.14 7.23 3.47 3.63 1.41 1.35 4.01 4.07
LS 8.50 7.67 5.38 4.16 1.45 1.45 5.11 4.43
WLS 12.32 7.90 10.17 4.44 1.76 1.49 8.08 4.61



50 Global intensity correction in dynamic scenes

Table 3.5: The runtime of the different methods. Times are in milliseconds, standard deviation
is lower than 1.0 ms for all measurements.

method: WLS LS QofA QofM AofQ MofQ
No outlier removoval 36.1 10.2 2.5 52.0 6.1 30.6
Statistical outlier removoval 73.1 46.9 39.4 89.1 38.3 62.7

3.5.4 Discussion of the experiments

According to simulation results, many algorithms seem to perform very good. Re-
sults on real images shall therefore be used to select between algorithms. We will
look at the average ROC and PIPE performance over all image sequences. We
then see that MofQ performs best. This is also the least computational complex al-
gorithm. AofQ and QofA with statistical outlier removal are slightly more expensive,
and their performance is also lower.

The use of WLS or LS is expensive and these methods are sensitive to remain-
ing outliers. They are therefore not a good choice if perfect outlier removal cannot
be guaranteed. Even though their average performance is good.

Both AofQ or MofQ use a per-pixel estimate of the gain factor. This allows for
easy extension to local intensity correction. On the other hand, QofA and QofM
have the advantage that they can also be used when the images cannot be com-
pared pixel-wise, like in stereo vision, or when there is a small movement of the
camera between the current image and the reference image.

In practice, the application requiring intensity correction should be considered
before choosing a method. Considerations are the required precision, the available
computing power, whether or not the camera is static and whether or not there is an
outlier removal algorithm available. If images can be compared pixel-wise, MofQ is
the best choice.

3.6 Conclusions

3.6.1 Comparison to previous work

Using simulation we have shown that the proposed intensity correction algorithms
perform equally well as can be obtained using ground truth correction. Thus, under
the assumptions of constant gamma and only global changes in intensity, there is no
need to use more expensive algorithms like dynamic histogram warping [Cox et al.,
1995], iterative weighted least squares estimation of the bias, gain and gamma [Tsin
et al., 2001] and estimation of the gain and bias together with optic flow estimation
[Altunbasak et al., 2003]. Also, [Cox et al., 1995] and [Altunbasak et al., 2003] do
not perform outlier removal. We have shown in this chapter that not using outlier
removal significantly reduces accuracy and usability.
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Our experiments on real data clearly show that only relying on the adaptation
of the background modelling technique [McKenna et al., 2000; Toyama et al., 1999]
is not an option. Tweaking the update speed to reach acceptable classification
performance on one sequence immediately degrades the performance on other
image sequences.

[He et al., 2003] and [Kamikura et al., 1998] estimate the intensity change be-
tween two images using the average and a least squares estimate respectively.
However, these methods do not consider the effect of outliers, reducing accuracy
and usability.

3.6.2 Experimental evaluation

For the simulated images the RMS error between the corrected image and the
ground truth image evaluates the accuracy. Results show that methods that use
some kind of outlier removal (either statistical or using the median) performed very
close to the noise level for image sequences without and with changes in intensity.
This indicates that these methods are sufficiently accurate to be used in practical
applications.

Usability of the different methods is demonstrated using background classifica-
tion on the corrected image sequences. With constant image intensity, all methods
with outlier removal obtained equal performance compared to using no correction.
For image sequences with changing intensity these methods perform a factor ten
better compared to no correction. This is similar to correcting with ground truth
values.

ROC and PETS results on real images without temporal intensity changes show
that most methods performing outlier removal have slightly better classification
performance as without intensity correction. Two image sequences with intensity
changes show that the proposed methods cause significant improvement to the
classification performance. Even with local intensity changes, significant improve-
ments are shown. Error reduction of almost a factor two on the Schiphol sequence
and more than a factor three on the PETS01-3TR1 sequence are obtained.

Using the proposed Parameter Invariant Performance Evaluation PIPE we have
further shown that our proposed intensity correction introduces robustness against
varying the update speed of the adaptive background modelling algorithm. It allows
lower update speed to be used, preventing slowly moving objects to be incorporated
in the background model.

3.6.3 General conclusions

In this chapter is shown that using global intensity correction based on the ratio of
pixels in conjunction with outlier removal significantly improves background classifi-
cation results. For image sequences not needing intensity correction, no decrease
of performance is seen.
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For the evaluation on real images the Parameter Invariant Performance Eval-
uation (PIPE) error measure, based on the ROC, is proposed. It combines both
classification error and robustness against changes in parameter settings in one
number.



C
ha

pt
er4 Dynamic background

estimation

4.1 Introduction

This chapter1 introduces a novel background updating algorithm for obtaining back-
ground probabilities in the lowest level of abstraction, the pixel level. It was dis-
cussed in Chapter 2 that for surveillance applications, object detection and tracking
can best be performed using an adaptive background model. The Mixture of Gaus-
sians (MoG) model is most popular. Stauffer and Grimson [Stauffer and Grimson,
2000] were one of the first to use a MoG for background modelling. Many authors
adopted their basic algorithm, although improvements were made in the update and
classification process, see for example [Pavlidis et al., 2001].

The background model proposed by Stauffer updates all pixels each frame, re-
gardless of wether the pixel depicts foreground or background. Classification is
performed by labelling the kernels in the MoG as either background or foreground.
This way of background modelling performs well for a standard case, but fails in
cases like complex backgrounds and many or slow objects, because in that case
moving objects will be learned into the background model causing classification
errors, as will be discussed in §4.2.2. In this chapter EMswitch is introduced, an
algorithm that updates the background model only when a pixel is classified as
background. To make it robust for errors a multiple hypothesis approach is used.
The EMswitch algorithm produces background probabilities which are input for the
probabilistic tracking framework introduced in Section 1.3.

Our approach differs from most others using a MoG in that we will use separate
models for the background and foreground. Therefore, our background model only
models the background. Most other approaches update the model every frame for
every pixel, resulting in a mixed model of both background and foreground. The
use of such shared model has two important drawbacks. First, there is the need

1This chapter is based on [Withagen et al., 2003].
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to classify kernels in the MoG between foreground and background. The second
drawback is the way the classification result changes for changed background, for
example when rain gives the road a different appearance, as well as for foreground
objects that stopped moving. At pixel level this is a sudden change, one frame the
pixel is classified as foreground, the next as background. At blob level however,
each pixel will change from foreground to background at another instance in time.

EMswitch separates the background and foreground modelling. The model of
the background is updated only for those pixels depicting background, while a dif-
ferent model is used for the foreground, see Chapter 5. Therefore, it circumvents
the drawbacks mentioned above. All kernels in the model are used to model back-
ground only and objects that become static, or background that changes, do not
automatically become part of the background. Additional advantage is that EM-
switch is more robust for setting the update speed parameter.

To be able to obtain a model of the background only, two conditions need to be
satisfied. First, pixels that are erroneously classified as foreground, for example
due to a large noise realization in a certain frame, should still be updated. If this is
not done, as is the case when only background pixels would be updated, the kernel
variances will be underestimated, resulting in more and more background pixels
being misclassified. Second, moving objects that become static or background that
changes should at some time be updated in the background model, to prevent an
unstable algorithm that will eventually classify the entire image as foreground.

The outline of this chapter is as follows: In Section 4.2 the EM algorithm and
its use for background modelling is shortly discussed. In Section 4.3 the EMswitch
update algorithm will be introduced. This is an affordable solution for deciding when
to update the background model. It is inspired by a multiple hypothesis approach.
In Section 4.4 results from the EMswitch update algorithm will be compared to the
EM algorithm with classification according to [Stauffer and Grimson, 2000]. Finally,
conclusions will be given in Section 4.5.

4.2 Background modelling

A MoG is used to model the the Probability Density Function (PDF) of the back-
ground. The PDF models the occurrence frequency of colors over time for each
pixel using a number of Gaussian kernels. We will give the equations used to de-
scribe and update the PDF. Then the Stauffer approach to pixel classification will
be given, followed by a short explanation of the amount of kernels used to describe
the background. After that, the problems encountered when updating a model of
only the background will be described.
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4.2.1 The mixture of Gaussians model

The PDF of a MoG of data ~x is given by:

P(~x |β0) =
Nk∑
k=1

πk f (~x |~µk , Vk ) , (4.1)

with β0 the background class, Nk the number of kernels in the MoG and πk the prior
probability for the k th kernel, with

Nk∑
k=1

πk = 1, πk ≥ 0 . (4.2)

f (~x |~µk , Vk ) is the value of a Gaussian distribution for the pixels feature vector ~x of
length Nc . The kernel is described by its mean vector ~µk and covariance matrix Vk :

f (~x |~µk , Vk ) =
1√

(2π)Nc |Vk |
exp

(
− 1

2
(~x − ~µk )ᵀV−1

k (~x − ~µk )
)

. (4.3)

Color space and kernel shape

The pixel feature used in this thesis is the pixel color. The following effect cause
changes in the pixel value:

• camera noise

• intensity changes

• variable scene such as water surface and tree leaves

• camera vibrations

The most robust model is that model that has the least amount of parameters while
being able to describe all effects given above.

The camera noise of a CCD camera at a given intensity can be approximated
using a Gaussian distribution [Healey and Kondepudy, 1994], which is best mod-
elled in RGB color space. Intensity changes are better represented in a color space
that separates intensity, such as Irg. As we use a correction algorithm for global in-
tensities, the latter is less important. So we will use RGB color space, Nc = 3.

The number of parameters in the Gaussian distribution depends on the covari-
ance matrix used. Six parameters describe a full covariance matrix, three parame-
ters limits the orientation of the Gaussian kernels to the three main axes R, G and
B. A diagonal covariance matrix with equal variances requires only one parameter,
resulting in spherical Gaussian kernels.

The camera noise can be modelled using a zero or one parameter model, given
that the noise characteristics of the camera are known. If no prior noise model is
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available, three parameters are necessary, as the camera noise will be different in
each of the color bands because of its multiplicative nature.

For constant scene, small scene variations can be modelled using three pa-
rameters are sufficient. A model with six parameters can also be used, but is not
necessary.

For changing scene such as leaves or water surface the effective distribution
will have multiple modes. Then the a single Gaussian distribution does not give an
accurate description of the probability density distribution. For this scene, multiple
kernels are available, describing the probability density distribution together. The
three parameters can be estimated more efficient and more robust than the six
parameter in the full covariance matrix.

At color edges, camera vibrations can results in distributions along an arbitrary
axes. This is best modelled by a full covariance matrix. However, only a small
fraction of the pixels will be on color edges. For these pixels, two or more kernels
with a diagonal covariance matrix will also be sufficient. For all other pixels, less
parameters leads to a more robust estimate. Therefore, we will use the diagonal
covariance matrix given by:

Vk =

 σ2
k ,R 0 0
0 σ2

k ,G 0
0 0 σ2

k ,B

 . (4.4)

Update equations

The PDF in Equation 4.1 is used to model the histogram in time for each separate
pixel. A separate MoG has to be estimated for each (spatial) pixel. It is updated for
each new frame. The online EM equations [Priebe, 1994] are used for updating the
parameters for each kernel k and each color c:

πk := πk + u
(
P(k |~x)− πk

)
“Prior” (4.5)

µk ,c := µk ,c +
u
πk

P(k |~x)(xc − µk ,c) “Mean” (4.6)

σ2
k ,c := σ2

k ,c +
u
πk

P(k |~xi )
(
(xc − µk ,c)2 − σ2

k ,c
)

, “Variance” (4.7)

with

P(k |~xi ) =
πk f (~xi |~µk , Vk )

P(~xi |β0)
. “Posterior” (4.8)

uB represents the update speed of the algorithm. See Appendix C for a detailed
explanation.
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4.2.2 Stauffer classification

The pixels of each frame are classified between foreground and background by
comparing the pixel color to the model. Contrary to the EMswitch approach pro-
posed in this thesis, usually only one model is available. This model is updated
each frame, also when the pixel in a frame depicts foreground. Therefore, the
model will be a mixed model of foreground and background.

A frequently used classification approach is that of Stauffer [Stauffer and Grim-
son, 2000]. They assume that the background and foreground colors will be mod-
elled by different kernels. Therefore, the kernels need to be classified before a
pixel can be classified. They argue that the frequency of occurrence will be higher
for the background, and that kernels modelling foreground color will have a higher
variance. Hence, background kernels have a large prior and a small variance.

First the kernels are ordered in descending order by their value of πk/σk , with
πk the prior probability and σk the standard deviation of kernel k . The first b kernels
are then chosen as the background model, where

B = arg min
b

(
b∑

k=1

πk > TPriorsum

)
, (4.9)

with TPriorsum a constant threshold. Classification is done by checking whether for
color ~x

| ~x − ~µk |< TStauffer|Vk | , (4.10)

for any of the kernels labelled as background. TStauffer is a threshold.

Disadvantages of the Stauffer classification

The classification method proposed by Stauffer and Grimson performs well for static
backgrounds. Using it for non-static backgrounds causes problems deciding which
kernel describes background when there are long occlusions. For example, if the
background has value ~b1 in 60% of the time, and value ~b2 the remaining 40%,
but is occluded for 30% of the time by one or more objects with a value ~o, that
would give the following prior probabilities: πb1 = 42%, πb2 = 28% and πo = 30%.
Using the prior probabilities only (this example is simplified by taking equal standard
deviation for all kernels, TPriorsum = 50% is used) will result in background when
either value ~b1 or ~o is measured, and foreground when value ~b2 is measured. This
is not the desired result of the algorithm. This problem could be solved by updating
the background model slower, but that would lead to problems with illumination
changes.

Also situations where the background and foreground color distributions are not
distinct can cause problems. In these situations the foreground and background will
not be modelled in separate kernels, so labelling of the kernels is senseless.

When foreground and background colors differ only slightly, the kernels describ-
ing the actual color of the foreground and background will partly overlap. In such
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a case, using the approach proposed by Stauffer and Grimson will result in erro-
neously classifying more of the foreground pixels as background than necessary.

Another disadvantage is that all pixels are updated, even those depicting fore-
ground. This is necessary for a correct estimate of the variance, see §4.2.4. As
a consequence, objects that move slow compared to the update speed could be
learned into the background model in such a way that their modelling kernel is as-
signed to the background.

4.2.3 The number of kernels in the MoG

Only one kernel is needed to model a static background, but backgrounds are not
always static. Examples of non-static backgrounds are:

• Water
• Moving trees and vegetation
• Computer screens and TVs

A MoG models such backgrounds by using more kernels. Generally said: the
more complex the background is, the more kernels are needed. On the other hand,
the more kernels are used, the more data is necessary for the model to converge to
an accurate description of the background. Using more kernels also requires more
computations and memory.

An additional reason to add kernels is when, for example in the Stauffer ap-
proach, the MoG is used not only to describe the background but also the fore-
ground. The model is updated for each frame, regardless whether a pixel depicts
foreground or background. Using the assumption that the color of foreground ob-
jects and the background are distinct, they will be modelled in the PDF by different
kernels, see §4.2.2. Classification is done by labelling kernels background or fore-
ground. When there are not sufficient kernels to model all occurring foreground
colors, kernels describing the background will be disturbed when a foreground ob-
ject passes.

4.2.4 Updating the model

We will use separate models for the background and foreground. They need to
be estimated from the data, and updated to allow for gradual changes. However,
it is not trivial to decide which model to update. A naive approach is to update
them according to the classification result, but this results in underestimating the
standard deviation of the background kernels. Assuming to draw from a Gaussian
distribution, background samples with values in the tail of the background distribu-
tion will be wrongly classified as foreground. As this does not happen frequently, it
will not cause problems for the classification. However, it will cause problems when
the background is not updated due to the classification error. The standard devia-
tion will be underestimated and subsequently more pixels will be misclassified as
foreground. This problem increases over time, see figure 4.1.
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Figure 4.1: When only updating a kernel if the new value is between an interval given by the
mean and standard variation (dotted lines), the tail of the distribution is not updated, see the
figure on the left. Only using this part of the distribution (drawn curve in the center figure),
a new Gaussian kernel is estimated with a lower standard deviation (dashed curve). Again,
only samples within the dotted lines are used to update the kernel, so in the next frame this
kernel will have an even smaller standard deviation, see the figure on the right.

A second problem is that when a pixel represents foreground, but the color is
described well enough by the background model to be classified as background,
the background model will be updated with its foreground colors, leading to a bad
representation of the real background and subsequently bad classification results.
Therefore, updates of the background model shall not be allowed when a pixel
shows foreground.

Summarizing: on the one hand updates for values in the tail of the Gaussian dis-
tribution should not be missed, and on the other hand updates of the background
model are not allowed when the pixel might depict foreground. To meet these con-
tradicting demands, the update strategy for the models needs to be considered.

4.3 EMswitch, the proposed update algorithm

To decide when and when not to update a model, time, and especially the behavior
of possible objects over time, will be considered. As the goal is to classify between
steady background and moving foreground, the behavior of the foreground objects
can help to decide when to update.

In the following section a multiple hypothesis approach is considered. It will be
shown that it solves the problem, but at a huge cost. Then the EMswitch update
strategy, which incorporates many of the advantages of the multiple hypothesis
approach with a minimum of computations and necessary memory, is proposed.



60 Dynamic background estimation

4.3.1 Multiple hypothesis approach

The multiple hypothesis approach [Blackman and Popoli, 1999; Reid, 1979] is an
approach used frequently in (radar) tracking problems. The general idea is that
when there is evidence for two or more conflicting assignments, all hypothesis are
propagated, expecting that future data will resolve the problem.

Applied to background modelling, this means that when we are not sure which
model to assign the pixel to (background, object 1, object i), we create several ver-
sions of the models, called branches. In each of the branches we update the model
according to the hypothesis. In the next frame, each of branches is evaluated, re-
sulting in a number of different classifications for a single pixel. Most probable there
will be uncertainty in the classification, leading to sub-branches. This process con-
tinues, leading to a tree of hypothesis. In Figure 4.2(a) an example of such tree is
given in the case that there are only two possible classifications: background and
foreground. When allowing classification between different objects, as is the case
in this thesis, the tree will become more complex.

To avoid an explosion of hypothesis and the corresponding demand on mem-
ory and computational power, the multiple hypothesis tree should be pruned. This
means that unlikely hypothesis are removed from the tree, see [Blackman and
Popoli, 1999]. The amount of hypothesis that need to be kept depends on the
problem that needs to be combatted with multiple hypothesis.

We propose to use a multiple hypothesis approach to solve the following two
problems:

• When values in the tail of the distribution are not used for updates, the stan-
dard deviation will be underestimated.

• When an object stays at a certain location, it should be regarded as changed
background instead of an object.

This can be obtained by inducing demands on the time that objects are visible.
A foreground object should be visible in a certain pixel location during NF frames,
where

NFmin < NF < NFmax , (4.11)

with NFmin small, a few frames and NFmax large, seconds or more. These numbers
depend on the expected size and speed of objects.

Objects depicted shorter than NFmin frames by a pixel will be ignored. When
a pixel depicts foreground longer than NFmax frames it is assumed that it depicts
changed background or a false detection, and a model of this new background
should be available. Between each object (or group of objects) it is expected to see
the background for at least NBmin frames, otherwise it is considered to be a single
object and the background shall not be updated in between the sub-objects. NBmin
can be small, a few frames. Typically, NBmin = NFmin. As NFmin and NBmin are small
and NFmax is large, these assumptions are not too tight for surveillance applications.
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Figure 4.2: The possible state transitions using multiple hypothesis with a memory of three
frames and EMswitch for which both NFmin and NBmin are equal to two, so after three se-
quential classifications other than the initial state, the state is changed from B to F or vice
versa. The number of frames the pixel has been in a switch state is given by the subscript,
so SF2 means that the pixel has been in switch state SF for two frames. Only along bold
bi-directional arrows data can be recovered. The states B3, F2, F3 and F4 from multiple hy-
pothesis can not be obtained in EMswitch because only two background models are kept in
memory simultaneously, one for the stable state B and one for the switch states SF or SB.
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Figure 4.3: The possible transitions in EMswitch between each state. Conditions are printed
in fold face, actions in italics. β0 depicts background, β∗

0 the copy of the background and βi

depicts the i th foreground blob.

So after a number of frames NMH (at least the maximum of NBmin and NFmin, but
preferably as much as NFmax), the most probable branch from the multiple hypoth-
esis tree is selected using the knowledge about the life-time of the objects given
above. The other branches are removed (pruned).

This solves both problems, but at a huge cost. The complexity of this algorithm
is O(NNMH

clas ) with Nclas the number of possible classes. The amount of data scales
accordingly.

Another problem is that the final pixel classification is only available after NMH
frames. This means that all higher level processing either has to wait, resulting in a
delay, or has to be able to work with multiple hypothesis. For updating the models
a small delay is not a big disadvantage, as slow changes in the background are
expected. For object detection in a real-time application it would pose a problem.
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Simplifications to multiple hypothesis

Some simplifications can be made to overcome the problems of complexity and
delay.

First, multiple hypothesis will not be used for classification. This is not a big
disadvantage, because misclassifications are caused by values in the tail of the
Gaussian distributions, so they will not occur frequently, and if they occur it will be
mostly isolated pixels, that can easily be filtered out and ignored. So the instanta-
neous classification result is good enough for higher level processing. This solves
the delay and need to use multiple hypothesis at the higher levels.

Second, multi hypothesis is only used to update the background model. Consid-
ering the differences between the foreground and background model, it can be seen
that as the foreground model is shared by all pixels in a blob, it poses less problems
when it is not always updated. There are enough pixels to base the model statistics
on, assuming that the spatial distribution of colors over the object is not too distinct.
Therefore, this model can be updated only when it is certain that the pixel depicts
foreground. When in doubt the model will not be updated.

These two simplifications reduce the complexity to O(2NMH ) and does not require
multiple hypothesis approaches at higher levels. However, this still demands a huge
memory and computation power.

4.3.2 The EMswitch update strategy

The EMswitch update strategy is derived from the (simplified) multiple hypothesis
approach described above, but uses only two simultaneous background models,
P(~x |β0) and a copy P(~x |β∗0 ), and one foreground model P(~x |βi ) for each foreground
blob βi with i > 0. For the foreground model of each blob, a single PDF of the
color of all pixels belonging to the blob will be used. It will be further described in
Chapter 5.

The initial reason for introducing multiple hypothesis was that the background
model should always be updated to prevent underestimation of the variance. In
case of doubt a copy P(~x |β∗0 ) of the current model P(~x |β0) will be made before up-
dating. When at a later time it is concluded that the update was wrongly performed,
the original model is restored using the copy that was made.

EMswitch uses four states: background B, foreground F, switch to background
SB and switch to foreground SF. As long as the state of a pixel is B or F and
the classification result, through feedback, is the same, the state remains and the
corresponding model is updated. In these stable states no competing hypotheses
are considered. When the classification result differs from the state of a pixel, the
state of that pixel is changed to an intermediate state, from B to SF and from F to
SB, indicating that there is a possible switch, see also figures 4.3 and 4.4.

When the state of a pixel was B and the pixel is in the current frame classified
as foreground a copy of the background model is made, the foreground counter CF
is reset and the state is changed to SF. In this state counter CF and the copy of
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Figure 4.4: The state transitions in EMswitch for one pixel in an example sequence. Five
graphs are shown, from top to bottom: ground truth classification, instantaneous (EM) clas-
sification, current state of EMswitch, models which are updated in EMswitch, and counters
which are updated in EMswitch. Arrows indicate the copy or restore of a model. The four
vertical dashed lines indicate a counter reaching a threshold: for t1 and t3 CF = NFmin, for t2
Cb = NBmin and for t4 CF = NFmax.

the background model P(~x |β∗0 ) are updated for each frame. The state of the pixel is
not changed until either the counter CF reaches NFmin, in which case the new state
becomes F, or when a pixel is classified as background, the state transfers back to
B and the model of the background is replaced with the copy.

For a pixel of which the state transfers to SB the counter CB is reset. In state SB
counter CB is updated for each frame. The state of the pixel remains SB until the
counter CB reaches NBmin, in which case the state transfers to B, or until the pixel
is classified as foreground. Then, the state returns to F.

The rules given above solve the problem of values in the tail of a distribution.
To cope with a possible change of background, counter CF and the copy of the
background model P(~x |β∗0 ) are updated in states F and SB. When the counter CF
reaches NFmax the background is considered changed, see time instance t4 in Fig-
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ure 4.4. The background model is overwritten with the updated copy and the state
transfers to B. In this way, as soon as a change of background is assumed, the
new background model is available. Transition to background can be performed per
pixel, but using feedback we will perform it for the entire blob at once.

Comparison to multiple hypothesis

As can be seen in figure 4.2(b), the algorithm introduced can be seen as a partial
multiple hypothesis algorithm. When the state of a pixel is SB for the second frame
(denoted by SB2) the state can transfer to F, but it is not possible to go one step
back to SB1. The same holds for state SF. In other words: each time the state
changes from a switch to a stable state, all other tree branches are pruned.

A problem that remains with EMswitch occurs when a pixel depicts foreground,
and while its state is still SF, the pixel is erroneous classified as background for one
frame. The foreground color will be updated in the background model. However,
this will only occur when the object closely resembles the background, in which
case the effect of an erroneous update is negligible.

Using feedback from higher levels

The proposed background modelling algorithm is intended to be used in an object
tracking application, together with other algorithms such as those introduced in this
thesis. The framework, introduced in Section 1.3 and further described in Chap-
ter 7 is used for the integration. A strong feature of this framework is the use of
feedback from higher levels of abstraction to update lower level models. This has
the advantage that higher level knowledge can be exploited for updating the model
of the background.

Instead of the instantaneous classification, the pixel class from feedback will be
used as input for EMswitch. So in Figure 4.3, the classification results FG and BG
given by the higher levels will be used in the state diagram. Pixels assigned to the
background will be treated as such, while pixels assigned to either foreground or
shadow will be treated as foreground.

4.3.3 EMswitch initialization

The MoG describing only the background has to be initialized, it cannot be decided
whether or not a pixel belongs to the background when there is no background
model. This is solved by starting with Stauffer classification, and use this classifica-
tion to initialize the background model.

A state I (Initialization) and a counter CI are introduced. All pixels start with state
I. The initialization is as follows:

• Initialize two MoG models P(~x) and P(~x |β0) by distributing the kernels evenly
over the parameter space. Priors are equal, variances are equal and relatively
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large.

• Use the first frames (until CI > NI1) only to update an additional model P(~x).
This model will contain both background and foreground information.

• Until CI > NI2, i.e. the next number of updates, use P(~x) to classify be-
tween foreground and background using Stauffer classification. Update CI
and P(~x |β0) only for frames for which the classification result of the pixel is
background to obtain a model of only the background and update P(~x) for all
frames.

• To reduce the impact of foreground information that might erroneously be
used to update the background model we set the highest prior probability
to 0.99 and all others to 0.01

Nk−1 , with Nk the number of kernels in the MoG. This
assumes that the background consist of only one color.

• End of initialization. Start using the combination of P(~x |βi ) and P(~x |β0) for
classification.

In the initialization phase the Stauffer classification is used as it can handle a
mixed model of foreground and background.

4.4 Experimental evaluation

In this Section the results on some real-life image sequences will be shown. The
three image sequences given in Chapter 3 will be used for evaluation, see also
Appendix B. The results of two methods are compared:

• EMStauffer + GIC, always update the model, classify using Stauffer classi-
fication described in §4.2.2. Global Intensity Correction (GIC) is performed
using MofQ with statistical outlier removal described in Chapter 3.

• EMswitch + GIC, update using the EMswitch algorithm, classify using proba-
bilities described below. The same GIC algorithm is used.

Evaluation will be based on both the (total) ROC and on PIPE results, see Chap-
ter 3. Additionally, some examples of classification results will be given.

4.4.1 Implementation details

Stauffer only updates kernels for which the new data lies within 2.5 standard devia-
tions from the kernel mean [Stauffer and Grimson, 2000]. This leads to an underes-
timate of the standard deviation, see Figure 4.1 or [Pavlidis et al., 2001]. Therefore,
we use the online EM update equations given in §4.2.1 for both algorithms.
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The MoG models provides us with posterior probabilities P(~x |β0). Using Bayes,
conditional probabilities P(β0|~x) are obtained:

P(β0|~x) =
P(β0)P(~x |β0)

P(~x)
, (4.12)

with P(β0) the prior probability for background and P(~x) the marginal probability of
~x . As only a model of the background is available, P(~x) is generally unknown. We
assume a uniform distribution, which makes P(~x) a constant. Choosing it P(~x) =
P(β0) gives for Equation 4.12:

P(β0|~x) = P(~x |β0) . (4.13)

For classification, a static threshold is used. Pixels are assigned background when

P(β0|~x) > TEMswitch . (4.14)

In all experiments the following parameters settings were used as defaults:

• Number of kernels: Nk = 5.

• Threshold for EMStauffer: Tpriorsum = 0.5, TStauffer =
√

5.

• The threshold for EMswitch classification is TEMswitch = 0.05/2563

• N’s: NI1 = 100, NI2 = 200, NFmax = 350, NFmin = 3, NBmin = 3.

• Update speed of the EM algorithm uB = 0.01 (the higher this value, the faster
the model reacts on the data).

These settings were obtained by optimization on the Intratuin sequence. For the
numerical results in Table 4.1 and the ROC and PIPE results in Figures 4.7 and 4.8
respectively the update speed and threshold have been varied.

4.4.2 Classification results

Results for both algorithms on the PETS01-3TR1 and Intratuin sequences are
shown in figure 4.5. It can be seen that both algorithms perform comparably well on
the PETS01-3TR1 sequence. On the Intratuin sequence EMswitch performs bet-
ter. When using EMStauffer there are large holes in the objects caused by earlier
passing cars. As the model was updated when the cars passed by, the background
model was disturbed.

Figure 4.7 gives the ROC curves of the three image sequences. They show that
performance is better for lower background ratios (approximately below 0.97). The
performance is worse for low foreground ratios. This is assumed to be caused by
shadows. As a result of the more accurate background model (lower variances),
causing less (shadow) pixels to be classified as background, the EMswitch algo-
rithm is slightly more sensitive to shadows. On average, the area above the ROC
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Table 4.1: Surface above the ROC and PIPE results for the two algorithms. All numbers are
percentages where lower is better.

Data: Intratuin Schiphol PETS01-3TR1 Average

ROC EMStauffer + GIC 3.68 1.32 0.78 1.93
ROC EMswitch + GIC 2.81 0.99 0.79 1.53

PIPE EMStauffer + GIC 7.23 3.63 1.35 4.07
PIPE EMswitch + GIC 4.24 2.22 1.71 2.72

is still significantly smaller for EMswitch, see Table 4.1. Only for PETS01-3TR1 the
results are practically the same. This is because this sequences has large shaded
regions caused by clouds moving in front of the sun.

The EMswitch algorithm is more robust for setting the update speed than EM-
Stauffer. This is caused by foreground objects not being updated in the background
model, so their colors will not become part of this model. Only when objects are at
a certain location for such a long time that it can be assumed that the background
must have changed (longer than NFmax frames), the background model is renewed.

Because the background model is not updated for foreground objects, the up-
date speed can be chosen to be relatively high, which is an advantage when there
are fast illumination changes or slow objects. In figure 4.6 the results are shown of
processing the Intratuin sequence with a ten times higher update speed. As can be
seen, most objects are lost when using EMStauffer.

The robustness to setting the update speed is evaluated using the Parameter
Independent Performance Evaluation (PIPE) described in §3.5.2. Results are given
in Table 4.1 and plots of the results per update speed in Figure 4.8. Again, re-
sults improve significantly except for the PETS-1=3TR1 sequence. This is again
assumed to be caused by shadows.

4.5 Conclusions

In this chapter a novel method has been introduced for updating a Mixture of Gaus-
sians (MoG) background model using Expectation Maximization (EM). It was ar-
gued that for obtaining separate models for background and foreground, some sort
of reasoning is necessary to update the background model, because the standard
deviation is otherwise not estimated correctly. The proposed algorithm, EMswitch,
is an update strategy based on multiple hypothesis using life-time knowledge about
the expected objects.

Because of the model of only the background, foreground/background classifi-
cation can be based on probabilities. This allows the use of the proposed algorithm
as plug-in in the probabilistic tracking framework.
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Input image Stauffer result EMswitch result

(a) PETS2001 frame 300

(b) PETS2001 frame 2200

(c) PETS2001 frame 4900

(d) Intratuin frame 500

(e) Intratuin frame 800

(f) Intratuin frame 1100

Figure 4.5: Classification results. For each frame the input frame, the results of EMStaufer
and EMswitch are shown respectively. White pixels depict background, black pixels fore-
ground.
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Input image Stauffer result EMswitch result

(a) frame 500

(b) frame 800

(c) frame 1100

Figure 4.6: Results on the Intratuin sequence with a ten times higher update speed.

ROC and PIPE results show that the EMswitch algorithm performs better and
is less sensitive to update speed selection than the EMStauffer reference method.
EMswitch does have some more problems with shadows, causing it to perform
worse on one on the image sequences.
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Figure 4.7: The ROC for each of the image sequences. The algorithms EMStauffer + GIC
and EMswitch + GIC are compared.
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Figure 4.8: The area under the uB–ROC for different values of the update speed. The hori-
zontal lines indicate the area under the total–ROC. Only a selection of the methods is shown
as most methods coincide. Figure (d) shows the corresponding U(uB) histograms.
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5.1 Introduction

In Chapter 2 an overview of object tracking techniques has been presented. It
was concluded that an approach without explicit models of objects to be tracked is
most flexible. It allows tracking of any moving object and even partial objects and
groups of objects. Two approaches can be used: active contour and region-based
approaches. The active contour approach can track an arbitrary shape, as long as
the smoothness constraint is satisfied. However, there are a number of drawbacks,
such as its computationally complexity and, more seriously, its robustness. Active
contour approaches track the object boundary, which is the part of the object that
changes most, specially for deformable objects as we intend to track.

Region based approaches usually have less complex algorithms and therefore
lower computational complexity. They track the entire object region, which is more
robust than using only its contour. For these approaches, the ability to track arbitrary
shaped deformable objects is unusual. Template matching approaches track an ar-
bitrary shape that is not assumed to change between subsequent frames [McKenna
et al., 2000; Zhou and Tao, 2003]. Approaches based on the mean-shift algorithm
[Comaniciu et al., 2000; Zivkovic and Kröse, 2004] or a particle filter [Nummiaro
et al., 2003; Pérez et al., 2002] can allow a shape change between frames, but they
need a parametric representation of the object shape. Often a rectangle or ellipse
is used, both very rough simplifications of the shape of a walking human, let alone
a bicyclist.

The approach presented in this chapter1 combines advantages of both active
contour-based and region-based object tracking. The main assumption is that we
can split the object in a rigid part, its core, and a deformable part around the core,
its shell, see Figure 5.1. This results in the Core and Shell Object Model (CaSOM).

1This chapter is based on [Withagen et al., 2002a,b, 2004b].
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(a) Blob (b) Core (c) Shell (d) Core and Shell

Figure 5.1: The tracked blob (a) is split in a core (b) and a shell (c). (d) shows the core in
black and the shell in gray.

The rigid object core is localized in a new frame using region-based tracking, while
the deformable object shell is updated each frame in a probabilistic way.

The validity of CaSOMs main assumption is quite good if we allow holes in the
object core and if we only allow small displacements of the core. It allows the object
to deform between subsequent frames, but only to a limited amount. The amount
of deformation is limited by the shell width.

This chapter is structured as follows. Locating the blob core will be described
in Section 5.2. Once the location of the blob core is known, the probability that a
pixel should be assigned to a specific blob for each of the blobs are calculated as
described in Section 5.3. Initialization and updating of the models is discussed in
Section 5.4 and in Section 5.5 prior probabilities for all classes are determined using
an occlusion model. Finally experimental evaluation is described in Section 5.6 and
conclusions are presented in Section 5.7.

5.2 Histogram based tracking of the blob core

Recall from Section 2.5 that the order between object tracking and classification can
be chosen. We will use the most flexible order: first tracking and then classification.
As a result, real-life moving objects can be split into a number of tracked blobs,
or a tracked blob can correspond to a number of real-life objects. Without loss of
generality, we will assume that a (tracked) blob corresponds to one real-life object.
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CaSOM assumes a maximum speed of object motion and deformation. There-
fore, the center of the blob, the core, can be fully retrieved in the subsequent frame.
I.e. no part of the core will be occluded, outside the field of view or no longer visi-
ble due to shape deformation. Location of the core is obtained using region-based
tracking based on the object color.

Several approaches are available for region-based tracking, see §2.5.1. The
main difference is how much spatial information is used. Template matching retains
all spacial information. A correlogram stores combinations of pixel colors of nearby
pixels, retaining less spatial information. Even less spatial information is used when
the object core is modelled using a number models without spatial information, for
example using a Probability Density Functions (PDFs) of the color distribution in the
core. For example, the core could be modelled using three color distributions, one
for the head, one for the upper body and one for the lower body.

The advantage of not using spatial information is that it is computationally ef-
ficient and invariant to limited deformations of the blob itself. Describing different
parts of the core with separate PDFs demands object knowledge and makes the
algorithm less generally usable. Therefore, we will use a single PDF for the whole
core.

Modelling this PDF using a normalized histogram allows for an efficient algo-
rithm. Histogram-matching does not compare the image and a template, but only
their two histograms. So when the region of interest is shifted over the image, for
each new shift position, only the pixels which “shift in” and those that‘ “shift out”
need to be processed to find the new match-error at that position.

A color histogram of the blob core is maintained as part of the blob model. In
the new frame in a certain region around the old position of the blob, histogram
matching is performed, finding the location l with minimal match error el given by

el =
∑

all bins

|Hl − C| , (5.1)

with C the blob-core histogram and Hl the histogram of a shifted version of the blob
core at location l .

This histogram matching can be implemented efficiently by keeping the differ-
ence histogram in memory. At the first position we calculate:

D1 = H1 − C , (5.2)

with D1 the difference histogram at the first matching position, H1 the histogram at
the first position and C the histogram of the blob core.

For all subsequent positions, only those pixels that are added or removed by
shifting to the next position need to be considered. The difference histogram is
updated:

Dn+1 = Dn − Hremoved + Hadded , (5.3)

with Hremoved and Hadded the histograms of the removed and added pixels. The error
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at this position is calculated by

en+1 = en +
∑

added

sign(Dn)−
∑

removed

sign(Dn) , (5.4)

with

sign(x) =

{
−1 for x ≤ 0
1 for x > 1 .

(5.5)

5.3 Probability calculation

For each pixel xi with feature vector ~xi , we need to calculate the probability density
distribution P(~xi |βj ) for blob βj . We assume that the core can be fully retrieved in the
next frame. Therefore, pixels in the core are assigned unit probability. The pixels
in a layer around this core, the shell, belong to the blob, to another blob, or to the
background. For these pixels, foreground-blob probabilities are given by the joint
probability distribution of pixel location and color:

P(~xi |βj ) = P(~ci , d |βj ) , (5.6)

with d the distance to the core of the blob βj , defined by the smallest number of
pixels between the pixel and the edge of the core. ~ci is the color vector of the pixel.

We assume the the distance and the color distribution independent. This sim-
plifies Equation 5.6 to

P(~xi |βj ) = P(d |βj )P(~ci |βj ) . (5.7)

Assuming the color PDF independent of location assumes the color distribution over
the entire object is equal. Under this assumption, the color distribution of the core
must be equal to that of the entire blob. Therefore, the color probability of belonging
to a certain blob is given by the color of the pixel compared to the color distribution
of the core blob. P(~ci |βj ) is the value in the bin corresponding to ~ci of the normalized
color histogram of blob βj .

We further assume small a deformation of the object shape. The probability of
pixels close to the core will be high, while the probability of pixels at a distance from
the core will be smaller. We assume that the blob displacement and deformation
between subsequent frames is bounded by an upper value. Existing blobs therefore
have a limited ”extent”, outside which the probability for these blobs is zero. The
PDF of pixels lying outside the core and inside the maximal extend of the blob can
be assumed or learned from the data. For example, edge information could be
used, resulting in steps in the PDF at the location of edges. For simplicity, we will
assume a uniformly decreasing probability.

Depending on the distance to the core of the blob, P(d |βj ) is calculated. The
uniformly decreasing probability gives:

P(d |βj ) =

{
0 for d > dmax

1− d
dmax

for 0 ≤ d ≤ dmax ,
(5.8)



5.4 Model initialization and updating 77

0

0.5

1

 P
(d

|β
j)

 d
 d

max
 d

max
/2 0  d

max
 d

max
/2 0

Old object width

Core widthShell width Shell width

Erosion Erosion

Figure 5.2: Probability P(d |βj ) as function of distance d to the core. The object core has unity
probability, the core is constructed from the object in the previous frame by an erosion of size
dmax/2. At a distance dmax the probability is zero.

with dmax a parameter specifying the distance to the core in which the blob is rele-
vant. This parameter depends on the maximum speed of the object and the amount
it can deform between subsequent frames. Figure 5.2 shows a plot of P(d |βj ) as a
function of d .

We define ”relevant” blobs as those blobs for which the pixel under classification
is within its maximal extend. As such Nβ , the number of relevant blobs, will depend
on the location in the image. Given the location of all blob cores, we know which
blobs are relevant for each pixel.

5.4 Model initialization and updating

New blobs are detected using a constant new blob probability P(~x |βNβ+1). The ex-
pected maximal displacement and deformation between subsequent frames define
the width dmax of the shell. In turn, this defines the minimal blob-size Nmin: blobs for
which the core reduces to a few pixels cannot be tracked reliably. Blobs which are
too small are re-labelled as background.

Once a blob has been tracked for a number of frames it is possible to use infor-
mation of its motion in the past to reduce the width of the shell. Assumptions on
limited deformation results in a thinner shell. Knowledge about the direction and
speed of motion reduces the shell thickness at the ”back” of the blob, because it
is less likely that the object will be occluded there. Feedback enables the use of
knowledge such as speed and direction. For simplicity, in this thesis a constant
shell width is used.

After feedback, a new blob core is constructed by eroding the blob such that a
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region with the shell width is removed. We choose this width equal to dmax/2, see
Figure 5.2. During feedback, the histogram of the blob core Ct is updated using

Ct+1 = (1− uF)Ct + uFC′ , (5.9)

with C′ the histogram of the new blob core and uF a parameter which regulates the
update speed. All histograms used are normalized by letting the sum over all bins
equal one.

CaSOM describes the color of a number of pixels. Together, these pixels form
one, shared, model. Because several pixels contribute to the model, erroneously
missing an update from a few pixels will not automatically lead to an underestimated
variance. It is therefore less important to update each pixel every frame. That is
why we do not use a multiple hypothesis approach as was used for updating the
background in Chapter 4 for updating the blob models.

5.5 Occlusion modelling

After locating the cores of all blobs, we know which blobs are relevant to each pixel.
If a pixel can be assigned to several blobs, all with a certain probability, we need
to take into account the probability that the pixel belongs to the other blobs. We
do this by calculating the prior probability P(βj ) for each blob and each pixel. Prior
probabilities are calculated using an occlusion modelling introduced below.

Consider a scene with multiple blobs (for simplicity we will assume each blob
corresponds to one real-world object). We assume the blobs cannot be inside each
other. Therefore, if multiple blobs overlap in view, one must be in front of the other.
We have to deal with the occlusion problem. Assume that the ordering ~Ω of blobs is
known. The first element in this ordering Ω(0) denotes the relevant blob closest to
the camera and the last element denotes the blob with the largest distance to the
camera, typically the background. Background and new blobs are treated here as
all other blobs.

The prior probability that we observe a blob in a given pixel is first of all related
to its size. We define a probability based on the blobs size

P∗(βj ) =
Npixels(βj )

Npixels
, (5.10)

with Npixels(βj ) the number of pixels in blob βj and Npixels the number of pixels in
the image. For the background we have Npixels(β0) = Npixels so P∗(β0) = 1. Note
that these probabilities are not independent. They assume that the current object
is the only object in the scene. Therefore, their sum is always larger than one. For
a new blob the size has to be defined beforehand or estimated based on the size
of other blobs and the position in the image. Additionally, spatial information about
the scene could be introduces here. For example, the probability of observing an
object on the road is higher than on a building or in the air.
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Besides its size, the probability that we observe blob βΩ(i) in a certain pixel is
given by the probability that we do not observe any blob in front of this blob i.e.
blobs βΩ(0), · · · , βΩ(i−1). These probabilities are regarded independent, which leads
to the following equation for calculating the prior blob probability

P(βΩ(i)|~Ω) = P∗(βΩ(i))
i−1∏
n=0

(1− P∗(βΩ(n))) . (5.11)

Equation 5.11 assumed a known ordering of the blobs. For the general case we
should sum over all possible orderings NΩ:

P(βj ) =
NΩ∑
o=1

P(~Ωo)P(βj |~Ωo) , (5.12)

with P(~Ωo) the probability that ordering ~Ωo is correct. These prior probabilities sum
to one:

Nβ+1∑
j=0

P(βj ) = 1 . (5.13)

5.5.1 Computational complexity

As more blobs become relevant, equation 5.12 becomes expensive to compute. Its
complexity increases with (Nβ +2)!. For real-time implementations this is prohibitive.
Fortunately, there exist two situations where the complexity is lower. The first sit-
uation occurs when the ordering is known. In this case equation 5.12 has to be
computed for one ordering only.

The other situation for which equation 5.12 simplifies occurs when all orderings
are assumed equally probable. No information is used about the ordering of blobs.
For only background, one, two, or three relevant foreground blobs, equation 5.12
simplifies to

P(β0) =P∗(β0) , (5.14)

P(β0) =P∗(β0)(1− 1
2

P∗(β1)) , (5.15)

P(β0) =P∗(β0)(1− 1
2

(P∗(β1) + P∗(β2)) +
1
3

(P∗(β1)P∗(β2))) , (5.16)

P(β0) =P∗(β0)(1− 1
2

(P∗(β1) + P∗(β2) + P∗(β3))+

1
3

(P∗(β1)P∗(β2) + P∗(β1)P∗(β3) + P∗(β2)P∗(β3))−

1
4

P∗(β1)P∗(β2)P∗(β3)) , (5.17)

respectively. Simplified equations for more blobs also exist, but the higher order
terms quickly become negligible.
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5.6 Experimental evaluation

Evaluation of the CaSOM foreground model will be performed in conjunction with
the EMswitch background model proposed in Chapter 4 and Global Intensity Cor-
rection (GIC) using the Median of the Quotient (MofQ) with statistical outlier re-
moval, see Chapter 3.

The three image sequences given in Chapter 3 will be used for evaluation, see
also Appendix B. The algorithm will be compared two reference algorithms: EM-
Stauffer+GIC (§4.2.2) and EMswitch+GIC (Chapter 4) based on the (full) ROC and
the surface above the ROC.

5.6.1 Implementation details

Images are corrected using global intensity correction. After an EMswitch initializa-
tion period of 200 frames, pixels are classified by comparing three probabilities for
each pixel: background probability P(~x |β0) given by EMswitch, existing track proba-
bility P(~x |βj ) for each of the tracks given by CaSOM and new track probability using
a constant value P(~x |βNβ+1 ) = 0.1.

The Bayes decision rule is used to perform minimum cost classification:

E(xi ) = min
n

( Nβ+1∑
j=0

Cβ(βn, βj )P(βj |~xi )
)

, (5.18)

with E the total classification cost and Cβ the cost matrix for classifying object βn
as object βj .

Conditional probabilities P(βm|~xi ) are calculated using Bayes’ rule

P(βj |~xi ) =
P(βj )P(~xi |βj )

P(~xi )
, (5.19)

with P(~xi ) =
∑

j P(βj )P(~xi |βj ) a normalization factor. As this factor is equal for all
output classes, it is omitted.

Prior probabilities P(βj ) are calculated using occlusion modelling without using
ordering knowledge and an expected blob size of Npixels = 200 pixels.

The following parameter settings have been used for the CaSOM algorithm in
conjunction with EMswitch and GIC:

• EMswitch parameters have not been changed from those given in Chapter 4.

• Cost The cost for missing an object are chosen unity Cβ(βj , β0) = 1. The cost
for false alarm Cβ(β0, βj ) and track confusion Cβ(βj , βn) are varied to create
an ROC. Cost of correct classification are zero Cβ(βj , βj ) = 0.

• For histogram matching a search area of 11 × 11 is used. The histograms
have 163 bins in RGB.
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• Sizes used are dmax = 6 and Nmin = 50 pixels.

• The background update speed was fixed at uB = 0.001 and the foreground
update speed at uF = 0.1.

5.6.2 Classification results

In Figure 5.3 the ROCs for each of the image sequences are given. For all image
sequences the classification result is better than the reference methods for lower
percentages of correct background (e.g. 90%). For higher percentages of correct
background classification, using CaSOM causes the correct foreground percent-
age to drop more quickly than the reference methods. This is caused by shadows.
Shadow pixels are classified to an object, causing the color of the (shaded) back-
ground to be learned into the object model. Correcting for shadows (Chapter 6)
solves this, see also the classification results in Section 7.4.

The areas above the ROCs are given in Table 5.1. The Intratuin and Schiphol
sequences show a significant improvement to both reference methods. For these
sequences, the problem caused by shadow is less important than the improvement
due to the model. The PETS01-TR1 sequence show an improvement compared
to EMStauffer+GIC and a worsening to EMswitch+GIC. This is caused by large
shadow areas caused by moving clouds. Once detected, these areas are continued
to being tracked and cause a lot of false alarms.

Besides shadows, Two of our assumptions were not always valid, leading to
suboptimal results. First, the CaSOM method assumes relatively large objects, and
indeed, we saw that small objects cause problems. The PDF of the color, the color
histogram, becomes very sparse for small objects, leading to a bad representation
of the true PDF. Second, the color PDF of the core is assumed to be equal to that of
the entire object. This is generally not true for humans. For example, the hair and
shoes of people often caused problems. Such region is then assigned to a new,
very small object, which then suffers from the first problem. These two problems
are, together with shadow, the main cause of less than perfect results.

Table 5.1: Results for CaSOM. Given is the surface above the ROC in percentages (lower is
better).

Data: Intratuin Schiphol PETS01-3TR1 Average

EMStauffer+GIC 3.68 1.32 0.78 1.93
EMswitch+GIC 2.81 0.99 0.79 1.53
CaSOM+EMswitch+GIC 1.69 0.80 0.76 1.08
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Figure 5.3: The ROC for each of the image sequences. The different algorithms compared
are EMStauffer with global intensity correction, EMswitch with global intensity correction and
CaSOM in conjunction with EMswitch and global intensity correction.

5.7 Conclusions

In this chapter we introduces the Core and Shell Object Model (CaSOM). It is based
on the assumption that the deformable objects to be tracked can be split in a rigid
core and a deformable shell.

The blob core is tracked using histogram matching. This is computationally
efficient and relatively invariant to object deformations.
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For pixels in the shell, near the blob boundary, blob probabilities are calculated
to be used in the probabilistic tracking framework. Probabilities are based on pixel
color and distance to the blob core.

Prior probabilities are determined using an occlusion model. A computationally
efficient implementation can be obtained when either the order of blobs is known
exactly or not known at all.

Experimental evaluation shows a significant error reduction for the Intratuin and
Schiphol sequences. The PETS01-TR1 sequences suffers from large shadow ar-
eas. For this image sequence the results are worse, specially for low background
errors (< 10%). This is caused by shaded background colors being incorporated
in the foreground model. An other reason for less than perfect results are two
assumption which were not always valid. The color distribution of the core is not al-
ways representative for that of the entire object and for small objects the histogram
description used to model the color PDF was not a sufficient description of the true
PDF.
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6.1 Introduction

Shadow classification1 is an important aspect of most object detection and tracking
algorithms. Practically any scene, both indoor and outdoor, contains shadows. Ob-
ject detection algorithms that do not rely solely on intensity-invariant features detect
these shadows as foreground. This alone is a problem, as object segmentation will
be inaccurate and objects can become connected by their shadows.

A more severe problem occurs for object tracking algorithms that use a model of
the moving object, as we do with our CaSOM foreground model described in Chap-
ter 5. Shadow is labelled part of a moving object, leading to updating the model
with a shaded version of the background. The color model of the moving objects is
often less sensitive than that of the background, as it should describe several ob-
ject colors using less training data. Therefore, after updating the model with shaded
background, the unshaded background can also give a high object probability. This
may lead to situations where large parts of the background are misclassified as
objects. Therefore, specifically for this kind of algorithms it is important to remove
shadows from foreground objects, i.e. to reassign shadow pixels that were initially
classified as foreground to the background.

Many shadow detection algorithms exist. The most simple solution is to ignore
intensity information altogether by using an intensity invariant color space such as
[Greiffenhagen et al., 2001]. This assumes that shadow causes the intensity to
change, while leaving the color information unchanged. An important drawback of
this approach is that almost black and almost white pixels are treated equal to other
pixels, while for these pixels the color information is highly unreliable.

A better choice is to combine color and intensity information like [Horprasert
et al., 1999; KaewTraKulPong and Bowden, 2001]. These authors allow distortions

1This chapter is based on [Withagen et al., 2005c].
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on the pixel value: the intensity and the color. This is equivalent to assuming a
cylinder in RGB–space through (0, 0, 0) and the old background RGB value. A
pixel located inside this cylinder is classified as (shaded or highlighted) background,
while pixels outside the cylinder are classified as foreground. This approach allows
to assign pixels with high or low intensity to the foreground in the case additional
noise is assumed. When the image noise is multiplicative, a cone should be used
instead of a cylinder.

Both the normalized intensity approach and the cylinder approach assume that
under shadow the color change is small and equally probable in each direction. This
is only true when all light sources have the same color. However, this is generally
not the case. For example: an outdoor scene usually has two light sources, direct
sunlight and blue ambient sky illumination. Shadows will cause a color shift of which
the direction can be predicted.

Generally, the colors of the illumination sources will be relatively constant over
time. They can therefore be learned. When the colors of the illumination sources
are known, the color shift caused by occluding one or more of the light sources can
be predicted. A known color shift allows a smaller color area to be classified as
shadow, leading to less missed objects.

In this chapter we analyze the physical aspects of the color change caused by
shadow. We propose the q–space and an algorithm to predict the color change
caused by shadow. This leads to an algorithm for accurate shadow classification by
taking into account the predicted color shift. The proposed algorithm is evaluated
using real image sequences.

Our approach is most similar to [Nadimi and Bhanu, 2004]. However, instead
of using a constant, predefined color-shift towards blue, we learn the color shift
from the images. In addition, our approach is not limited to pre-defined background
materials with large enough homogenous areas and we allow highlights, which may
be caused by shadow of the background image.

6.2 Physics of shadow

The amount of light reaching the CCD sensor Cc(p) of sensor band c ∈ {R, G, B}
at position p is given by [Forsyth and Ponce, 2002]

Cc(p) =
∫

λ

e(λ, p) · ρ(λ, p) · fc(λ) dλ , (6.1)

with e(λ, p) the illumination spectrum, ρ(λ, p) the surface reflection (surface albedo),
fc(λ) the sensor response function and λ the wavelength. ρ(λ, p) will generally de-
pend on the direction of the incoming light and the direction of the camera. We will
assume only diffuse reflections.

The illumination spectrum can be modelled as a sum of all contributing, inde-
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pendent, light sources e1 · · ·eNl :

e(λ, p) =
Nl∑
l=1

el (λ, p) , (6.2)

where el (λ, p) depends on the direction of the light and the camera.
Due to changing (partial) occlusion, the illumination of each of the light sources

can change over time. Under the assumption that this only affects the intensity and
not the spectral composition of the light sources, this can be modelled by

e(λ, p, t) =
Nl∑
l=1

αl (p, t) · el (λ, p) , (6.3)

with αl (p, t) a time and position dependent factor accounting for a changing illumi-
nation intensity over time.

In a local area, where the illumination spectrum of each light source can be
considered spatially constant, the illumination spectrum no longer depends on the
pixel location el (λ, p) = el (λ). This results in a sensor illumination Cc(p, t) at time t
of

Cc(p, t) =
Nl∑
l=1

αl (p, t)
∫

λ

el (λ) · ρ(λ, p) · fc(λ) dλ , (6.4)

under the assumption that the scene is static and the location and spectral features
of the illumination and camera are constant over time.

When either the illumination spectrum or the reflectance spectrum can be con-
sidered constant over the spectral range of each of the camera bands2 this equation
can be further simplified. In this case, the term that may be considered constant
can be put in front of the integral. We can then split the sensor illumination in a
part that depends on time and light source αl (p, t), a part that depends on the light
source and camera band Lc,l and a part that depends on the location and camera
band Rc,p:

Cc(p, t) = Rc,p ·
Nl∑
l=1

αl (p, t) · Lc,l , (6.5)

with

Lc,l =
∫

λ

el (λ) · fc(λ) dλ and (6.6)

Rc,p =

∫
λ

ρ(λ, p) · fc(λ) dλ∫
λ

fc(λ) dλ
. (6.7)

2So there are no peaks in both illumination and reflection spectra This assumption holds for smooth
light spectra such as that of the sun and normal light bulbs. Fluorescent light in combination with peaked
reflection spectra may cause problems.
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Adding the CCD model

We show in Appendix A that for sufficiently large pixel values the CCD sensor can
be modelled by

ic(p, t) = g(t)γ
(
h(t)Cc(p, t) + NS

)γ , (6.8)

with Cc(p, t) equal to the scene intensity it in Equation A.5, but now for each color
channel c ∈ {R, G, B}. g(t) denotes the camera gain, h(t) is a factor related to the
shutter time and iris setting. γ is the gamma-correction of the camera. The noise
term NS is described in Appendix A.

Two light sources

Let us consider one pixel at location p0 at times t0 and t1. There are two light
sources with colors ~L1 and ~L2. The reflectivity of the scene depicted in this pixel is
given by ~R(p0). This gives for the (noise free) pixel intensity in the two frames:

ic(p0, t0) = gγ(t0) (Rc(p0)h(t0)(α1(p0, t0)Lc,1 + α2(p0, t0)Lc,2))γ and (6.9)
ic(p0, t1) = gγ(t1) (Rc(p0)h(t1)(α1(p0, t1)Lc,1 + α2(p0, t1)Lc,2))γ , (6.10)

With α a factor depicting the brightness of the light sources. We assume that the
reflectivity is equal in both images, e.g. constant scene.

6.3 The q–space for shadow

We will assume γ = 1 and g and h constant for shadow detection. Alternatively,
images can be corrected for gamma before shadow detection. The quotient of one
pixel at two instances in time is given by:

qc(p0, t1,0) =
ic(p0, t1)
ic(p0, t0)

=
α1(p0, t1)Lc,1 + α2(p0, t1)Lc,2

α1(p0, t0)Lc,1 + α2(p0, t0)Lc,2
. (6.11)

This quotient is independent of the scene reflectivity. When the two images have
equal illumination, so there is no shadow, qc = 1 for all color bands. We now
assume that non-unity values of qc are due to shadows or highlights.

We consider a region S in the image with equal reference illumination, for which
the L’s and α’s are assumed equal for each pixel at t0. We define this illumination
~L0:

~L0(pi ∈ S) = α1(pi , t0)~L1 + α2(pi , t0)~L2 , (6.12)

for all pi ∈ S.
For different α values at time t1, the ~q–values for each pixel pi ∈ S lie on a flat

surface in the 3D q–space. This surface is defined by the two vectors ~v1 and ~v2

with elements v1,c(pi , t1) = α1(pi ,t1)Lc,1
Lc,0(pi )

and v2,c(pi , t1) = α2(pi ,t1)Lc,2
Lc,0(pi )

respectively. This
surface has the shape of a triangle with one corner at (0, 0, 0) and two sides given
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Figure 6.1: Analysis of a 2D projection of the q–space. A surface is spawn by two vectors
~v1 and ~v2. A shaded pixel falls inside the double-hatched parallelogram, a highlighted pixel
in the horizontally hatched area. When only one illumination source is (partly) occluded a
pixels moves along the corresponding dotted line. The two diagonally hatched areas depict
areas that cannot be reached. Some areas are hatched more dense, indicating the higher
density of the q–space for a typical image.

by the two vectors. Point (1, 1, 1) always lies on this surface. See Figure 6.1 for a
2D plot of the q–space. The q–space is divided in three volumes:

• Values outside the triangle with its top at (0, 0, 0) cannot occur when the as-
sumptions of constant scene and constant illumination are valid.

• The triangle defines all possible q’s. It is divided in two 2D surfaces:

– Inside a parallelogram with corners at (0, 0, 0) and (1, 1, 1) and sides in
the direction of ~v1 and ~v2 are all pixels that are under shadow.

– Outside this parallelogram, but inside the triangle are all pixels that are
highlighted, i.e. their illumination intensity is higher than that of the ref-
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erence image for at least one of the light sources. This occurs when the
reference image contains shadows.

Due to noise, the flat surface will in reality have a certain thickness.

6.3.1 Online estimation of the q–space parameters

For known colors of illumination sources, the vectors ~v1 and ~v2 can be calculated
and used for shadow correction. However, in general this information is not avail-
able. The relative color of the illumination sources should then be estimated from
the image sequence.

We consider the case that only one light source is (partially) occluded. The
shadow area in q–space is now formed by a straight line through (1, 1, 1). Assuming
the second light source is occluded, ~q is given by

~q(p0, t1,0) = 1 + (
α2(p0, t1)
α2(p0, t0)

− 1)~v2 . (6.13)

This is a straight line through (1, 1, 1) with the direction given by ~v2. In Figure 6.1
these values of ~q are densely hashed for both light sources. Occluding only the
second light source generates the line form the end of vector ~v1 to (1, 1, 1).

We project the q–space such that different points in the q–space that lie on a
straight line through (1, 1, 1) are projected on the same point. The following projec-
tion enables this:(

b1

b2

)
=

1
F (~q)

(
0 cos(30◦) − cos(30◦)
1 − sin(30◦) − sin(30◦)

) qR

qG

qB

 , (6.14)

with the normalization factor F (~q)

F (~q) =
qR + qG + qB

3
. (6.15)

From the values b1 and b2 for all pixels in S (defined in Equation 6.12) we esti-
mate the parameters b1 and b2 using the mean or median. These estimates define
the color shift caused by partial occlusion of one light source for image region S.

Generally, different pixels will have a different ratio of α2(p0, t1) and α2(p0, t0)
in Equation 6.13. For example, close to an object a larger part of the sky will be
occluded than at some distance, while direct sunlight can be fully occluded for both
pixels. So we need to estimate a line-segment in the b–space. This line segment
will have certain thickness. It spans the V-shaped plane in the q–space, also with
certain thickness. The line segment is estimated using an ellipse, where the two
foci are assumed to be the endpoints the line segment, so the coordinates of the
vectors ~v1 and ~v2.

The length of the line segment with respect to the width of the line is determined
by:
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• The amount of color saturation in the images.
• The difference in color of the two illumination sources.
• The amount of variation in the ratio of α’s between pixels.
• The amount of shadow pixels.
• The amount of image noise.

6.3.2 Demonstration of the b–space

Figures 6.2 and 6.3 show four examples of color shifts due to shadow and object.
For one pixel over a number of frames the q–values are calculated by dividing the
value of one pixel for a number of frames by the pixel value without shadow/object.
From these q–vales, b–values are calculated and using the median over all frames.
The color shift is calculated. The estimated value of b defines the dashed line in
the q–space.

In Figure 6.2 two examples are shown from the Intratuin sequence. Figure 6.2(a)
is an example of shadow. The plot of the b–space shows that the b–values for the
different frames are clustered away from the center, in the direction of red. This
means that the shadow causes a color shift towards red. It gives in the q–space
a line through (1, 1, 1) away from the line through (0, 0, 0) and (1, 1, 1), which is
the orientation of the cylinder in the reference algorithm. It is worth mentioning
that most shadows in our experiments did not cause values of qc below 0.5, lower
values were caused by objects.

The distance to the origin in the b–plot gives the amount of color shift. The
larger this distance, the better the proposed approach will perform compared to the
approach using a cylinder or cone.

In Figure 6.2(b) an example of a blue object is given. It can be seen that the
values in the b–plot are much less clustered. The direction of the color shift is now
opposite to that in the case of shadow.

Figure 6.3 shows two examples for the PETS01-3TR1 image sequence. Again,
one example of shadow and one example of an object. The color shift due to
shadow is here towards blue. The example of an object in Figure 6.3(b) shows a
white object passing the pixel. The b–values are again much less clustered.

6.4 Experimental evaluation

In order to quantitatively evaluate the proposed algorithm it will be used to remove
shadow in a foreground/background classification task on real image sequences.
The EMswitch classification results given in Chapter 4 will be used as initial fore-
ground/background segmentation. Pixels classified as background are used to esti-
mate an ellipse in the b–space, assuming that the background region also contains
shadow pixels. This ellipse is them used to classify the foreground pixels. Eval-
uation is performed by comparing the classification result to that of a reference
algorithm.
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Figure 6.2: Examples of the b–space. Top left shows the location of the pixel. The q–values
relative to a frame without shadow are plotted in the figure on the top-right. The bottom left
figure shows a plot of q for two dimensions. The b–space is given in the bottom right figure.
A circle in this plot depicts the median of all data points. This value of b defines the dashed
line in the bottom-left plot.
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Figure 6.3: Examples of the b–space. Top left shows the location of the pixel. The q–values
relative to a frame without shadow are plotted in the figure on the top-right. The bottom left
figure shows a plot of q for two dimensions. The b–space is given in the bottom right figure.
A circle in this plot depicts the median of all data points. This value of b defines the dashed
line in the bottom-left plot.
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6.4.1 Implementation details

The value of fixed parameters will be given below. The other parameters were
varied for parameter optimization.

Reference algorithm

The reference method classifies pixels based on their change in color. This is equiv-
alent to using a cylinder in the q–space with its axis through points (0, 0, 0) and
(1, 1, 1). The cylinder has a width Tcylinder. Pixels with a value within the cylinder are
classified as shadow, pixels outside the cylinder as foreground.

Upper and lower bounds

Pixels with a component of ~q below Tqmin or above Tqmax are not considered to be
shadow. The same yields for pixels for which one of the components of ~q is closer
to one than Tqone. These three parameters are used for both the proposed and the
reference algorithm.

Threshold

The proposed algorithm iteratively estimates the smallest ellipse containing the
fraction Tellipse pixels on the background pixels in the b–space.

Post-processing

In order to prevent missing objects, prior knowledge is used in a post-processing
stage. We know that a shadow is cast by an object. It can be either connected to
that object or not. We assume that a foreground region is an unconnected shadow
region when more than a fraction Ttotal of the pixels in the region are classified as
shadow based on their color.

Shadows are in most cases cast on the ground. When a shadow region is
connected (at least one pixel is 4–connected) to a moving object, we assume that
the shadow starts near the lowest point of the object. Therefore, shadow regions
that do not have shadow pixels in the lowest Tconnected fraction of the blob are re-
labelled object.

We used for both the reference and the proposed algorithm Ttotal = 0.8 and
Tconnected = 0.2.

6.4.2 Evaluation criterion

The shadow detection is intended to be used in conjunction with foreground/back-
ground classification. The performance of shadow detection will be evaluated with
this application in mind.
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As shadow pixels will be considered background, there is no sense in perform-
ing shadow classification on pixels classified as background. So only pixels clas-
sified as foreground by the foreground/background classification algorithm will be
considered.

The set of pixels classified as foreground contains two sub-sets: true foreground
FT , those pixels correctly classified as foreground, and false foreground FF , those
pixels that are actually background. Pixels in set S of pixels classified as shadow
belong to either of these subsets. We propose two fractions

rbad =
N(S ∈ FT )

N(FT )
and (6.16)

rgood =
N(S ∈ FF )

N(FF )
, (6.17)

with N(S) the number of pixels in (sub)set S. Perfect shadow classification gives
rgood = 1 and rbad = 0. To evaluate different settings of the algorithm, a plot will be
made of rbad against rgood for different parameter settings. This plot will be called
the good/bad–plot. It looks like an ROC curve. As with the ROC curve, only points
on its convex hull will be drawn.

To demonstrate the contribution of shadow removal to foreground/background
classification, also the ROC before and after shadow removal will be given.

6.4.3 Experimental results

In Figure 6.4 the convex hull of the good/bad–plot is given for the proposed and the
reference method. Except for the PETS01-3TR1 image sequence, the proposed
algorithm performs better than the reference method based on a cylinder. Numeri-
cal results in Table 6.1 show an average error reduction of a factor two. The results
for the PETS01-3TR1 sequence are almost identical for both the proposed and the
reference algorithm. This is probably caused by the lack of color saturation or the
equal color of illumination sources in this image sequence. This causes very small
color shifts, reducing the results of the proposed algorithm to be similar to that of
the reference algorithm.

In order to see the effect of shadow removal, the total–ROCs (see §3.5.2) before
and after shadow removal are shown in Figure 6.5. The difference between using
and not using shadow removal is considerable, except for the PETS01-3TR1 image
sequence. Both shadow removal techniques have little effect on the classification
result for this image sequence. The shadows that occur in this sequence are large
areas of shadow caused by moving clouds. The post processing used allows these
regions to be classified as shadow area only when more than 80 percent of the
pixels in the blob are classified as shadow. It seems that this is not obtained in
most cases. This can be solved using information of all pixels in the shadow blob
as will be proposed in Chapter 7.

The difference between the proposed shadow removal algorithm and the ref-
erence method seems small in the ROC’s. Most of the improvement is seen for



96 Shadow detection using a physical basis

Table 6.1: Surface above the total–ROCs and the good/bad–plots. All numbers are percent-
ages where lower is better.

Data: Intratuin Schiphol PETS01-3TR1 Average

Good/bad–plot Cylinder 20.9 36.6 10.63 22.7
Good/bad–plot Proposed 10.1 12.6 11.07 11.3

total–ROC none 2.81 0.99 0.79 1.53
total–ROC Cylinder 2.23 0.51 0.79 1.18
total–ROC Proposed 1.87 0.43 0.67 0.99

very high values of the correct background ratio, see the different cut-out in Fig-
ure 6.5(d). It is not surprising that there is less improvement for lower values of
the correct background ratio as for these values the number of pixels classified as
background is relatively small. This means that most shadow pixels will be classi-
fied as foreground and not used to estimate the direction of the color shift. The color
shift is then estimated solely on the noise in the q–space of unshaded background
pixels. This will in most cases lead to a shadow region which is very similar to that
of the reference algorithm. The solution for this is the use of different thresholds for
foreground classification and for the estimation of the color of illumination.

Table 6.1 gives the numerical results. On average, an error reduction of 35
percent is obtained with the proposed shadow removal algorithm. For the cylinder-
based reference algorithm this is only 23 percent.

6.5 Conclusions

In this chapter a new shadow detection algorithm has been introduced. It was
argued that for scenes with two or more illumination sources with different colors,
shadow causes not only the intensity but also the color to change.

We have demonstrated that the color shift depends linearly on the change in
intensity. The direction of the shift in color depends on the difference in color of the
light sources. It has been shown that the shift direction can be estimated and used
for shadow detection.

Experiments on real images with our proposed error measure show for the pro-
posed shadow removal method an error reduction of 50 percent compared to a
reference algorithm. For foreground/background classification, an error reduction
of 35 percent is obtained compared to no shadow removal.
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Figure 6.4: Good/bad–plots. Shown is the convex hull of results with different parameter
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Figure 6.5: Total–ROCs to show the effect of using shadow removal.
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7.1 Introduction

Chapters 3 to 6 of this thesis introduce algorithms for parts of the object tracking
application introduced in Section 1.2. In this chapter1 these algorithms will be con-
nected to form one coherent application. It will be experimentally evaluated using
real image sequences.

For connecting the separate algorithms, the probabilistic framework introduced
in Section 1.3 will be used. It integrates the separate (plug-in) algorithms for each
of the levels of abstraction into a coherent visual surveillance application. Between
levels of abstraction, minimum cost classification based on probabilities is used.
Feedback is available to communicate higher level results to the lower levels of
abstraction.

First, the framework introduced in Section 1.3 will be detailed in Section 7.2.
Then in Section 7.3 our tracking application will be discussed. It will be evaluated
in Section 7.4 and then conclusions will be presented in Section 7.5.

7.2 Components of the framework

The framework consists of a generic classification algorithm, application indepen-
dent models, application knowledge and application dependent plug-in algorithms.
First, the order of the different parts of the framework will be given. Then all com-
ponents will be discussed. Their interactions will be described according to the
flowchart for the blob and track levels of abstraction given in Figure 7.1.

In theory, the proposed framework is optimal, given that minimum cost classifica-
tion is considered optimal, and the tracking application can be split in independent

1This chapter is based on [Withagen et al., 2005d].
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Figure 7.1: Internal structure of modules. All communication with the models occurs through
interface algorithms. Dotted arrows depict feedback, drawn arrows data.

levels of abstraction. In practice however, classification costs are estimates, mod-
els are simplifications of the world and the division between levels of abstraction is
sometimes difficult to determine.

7.2.1 Processing order

Figure 7.1 depicts one layer of abstraction of the framework. It will be used to
describe the processing order of the framework. From the lower level of abstraction
(or directly from the camera), data arrives in the left part of the lower level model
(the blob model in the figure). The interface of the correction plug-in collects the
data from the model and sends it to the correction algorithm, where the data is
corrected. If necessary, data from the local data storage is used. The interface
stores the data in the right side of the lower level model, see the figure.

The interface of the classification algorithm collects the corrected data from the
model and sends it to the probabilities algorithm. This algorithm calculates proba-
bilities, making use of local data if necessary. Probabilities are send to the classifi-
cation algorithms, which calculates the lowest cost classification result. The classi-
fication result is used by the interface to update the higher level model.

After all levels of abstraction have processed the frame as described above,
feedback is initiated. The higher level model (the track model in the figure) obtains
the new description of the world from the higher level algorithms. The interface
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Figure 7.2: Classification algorithm for blob-track classification. Based on the inputs: prior
probabilities P(τl ), conditional probabilities P(~βj |τl ) and costs Cτ posterior probabilities are
calculated and minimum cost Bayes classification is performed.

function of the probabilities plug-in gets this description of the world and sends
it to the probabilities algorithm, which uses it to update the local data. Then the
interface propagates the results to the lower level model. The interface of the lower
level model gets the updated description at this level and makes it available for the
correction algorithm. This algorithm updates its local data. Finally the left hand side
of the model is updated.

7.2.2 Classification

As mentioned before, the framework uses minimum cost classification. This is
based on three inputs. Posterior probabilities of the output classes calculated
by the plug-in algorithm. Prior probabilities for the different output classes, which
can be learned or given by the application. Cost matrices given by the application,
defining the cost of a (wrong) classification to an output class. These inputs are
provided by the probabilities module (for learned or calculated inputs) or by appli-
cation knowledge (for user knowledge). Output of the classification algorithm is a
new description of the world at the higher level. The interface to the model updates
the higher level model with this knowledge. Figure 7.2 shows a flowchart of the
classification algorithm.

For the blob-track example, all input blobs βj are assigned to one of the following
output track classes τl :

• τ0 Background

• τ1 · · · τNτ
Any of the Nτ current tracks

• τNτ +1 A new track
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The Bayes decision rule is used to perform minimum cost classification:

E(βj ) = min
n

( Nτ +1∑
l=0

Cτ (τn, τl )P(τl |~βj )
)

, (7.1)

with E the total classification cost2, ~βj the feature vector of blob βj and Cτ the cost
matrix for classifying object τn as object τl .

Posterior probabilities P(τl |~βj ) are calculated using Bayes’ rule

P(τl |~βj ) =
P(τl )P(~βj |τl )

P(~βj )
, (7.2)

with P(~βj ) =
∑

l P(τl )P(~βj |τl ). As the denominator is equal for all output classes, it
can be omitted for solving Equation 7.1.

The sum of prior probabilities P(τl ) over all output classes must equal one

Nτ +1∑
l=0

P(τl ) = 1 . (7.3)

Cτ and P(τl ) depend on the application and are regarded input to the probabilistic
framework. They can be given or learned during a training period.

7.2.3 Models

Models are a description of the state of the world at a given level of abstraction. The
model stores data such as pixel values, blob location and shape and track history.
This data is used by the plug-in algorithms.

Algorithm specific data, such as a mixture model for the background or a core
histogram updated over time are stored in the plug-in.

7.2.4 Correction modules

Correction modules operate on one level of abstraction, so on one model. The use
of such a plug-in requires to store two copies of the model, one before and one
after correction. Interaction between these models is performed by the correction
module.

The correction algorithms obtain their data from a single model. Interaction
with the models occurs through an interface function. This function takes care of
(simple) feature extraction, for example conversion of color space occurs here. The
algorithm has its own data storage for algorithm specific data. This data is updated
using feedback from the higher level models.

2Most pixel variables we use depend on time and image location. For clarity, we will omit these
indices t , (x , y ) throughout the chapter.
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7.2.5 Probabilities modules

Probabilities modules operate between two models at different levels of abstraction.
Input features are obtained from the lower level model and output classes from the
higher level model. Output of this module are probabilities for the classification
algorithm. After classification, the classification result is used to adapt the models
description of the world.

The probabilities algorithms obtain their data from two models. Interaction with
the models occurs through interface functions, similar to the correction modules.
The algorithm also has its own data storage for algorithm specific data. This data
is updated using feedback from the higher level models.

7.2.6 Application knowledge

The application defines what plug-in algorithms and models are used. It also pro-
vides values for parameters that cannot be learned and initial values for parameters
that are learned. Because of the minimum cost classifier used, application knowl-
edge can be introduced through prior probabilities and classification costs. These
have a strong link to the real world, which makes them relatively easy to determine.

7.2.7 Updating and feedback

All models, whether it is a model of the background or a moving object, need to be
updated to be robust to changes in the environment and the object such as weather
changes or a changed view of a moving object. The classification result gives the
class the data is assigned to, so also which model is updated with a given new
measurement. For example, immediately after pixel-blob classification, the pixel-
wise models of the background and the blobs could be updated. Alternatively, the
updating can be performed after all levels of abstraction have been evaluated using
the high level information available there. This latter approach is called feedback in
this thesis.

The use of feedback allows for updating the models using higher order knowl-
edge. However, it also introduces the risk of instability. Like every closed-loop
system, stability requires attention. Stability is obtained using the following mecha-
nisms

• High level knowledge: At a higher level more robust classifications can be
obtained, because more independent measurements and features are avail-
able and it is easier to add application knowledge. Therefore, updating is
postponed until a decision has been made at the higher level. This informa-
tion from the higher levels is then used to update the models used in the lower
level classification.

• Multiple hypothesis: It is important to realize that errors are inevitable. Early
in the process, not all information is available to make error-free decisions.
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Figure 7.3: Flowchart of our application. Numbers correspond to chapters in this thesis. As
the CaSOM algorithm performs both calculation of pixel-blob probabilities and blob tracking,
it is mentioned in both probabilities modules.

Later in time, information of more frames will be available to obtain better
classification. It is therefore important to be able to reconsider earlier deci-
sions. Keeping track of multiple competing hypothesis facilitates this.

• Slow updating: Models are not simply replaced by new measurements. The
new models are a mixture of the old model and the new measurement. An
update speed defines how fast old measurements are forgotten.

7.3 Our tracking application

In this section we describe the plug-in algorithms used in our application: visual
tracking of people in complex scenes, introduced in Section 1.2.

The application requires all objects to be tracked, and allows tracks to be split
and merged. This is most efficiently solved using object tracking before object
classification, see Chapter 2. This leads to the framework given in Figure 7.3. The
different algorithms described in this thesis are used as plug-ins. The framework
contains the following models:

• Pixel model: The initial pixel model contains for each pixel its RGB color
value. The corrected pixel model contains for each pixel its RGB color value
corrected for global intensity changes.
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• Blob model: The initial blob model contains for each blob a set of pixels
that belong to that blob. The corrected blob model contains for each blob
a connected set of pixels that belong to that blob. An additional blob class
”shadow” is available for shadow pixels. All pixels are assigned to exactly one
blob.

• Track model: The track model contains for each track a history of bounding
box locations.

and the following modules:

• Pixel correction module: Global intensity correction described in Chapter 3.

• Pixel-blob probabilities module: EMswitch described in Chapter 4 for the
background probabilities and CaSOM described in Chapter 5 for foreground
probabilities.

• Blob correction module: Shadow correction described in Chapter 6.

• Blob-track probabilities module: Removal of shadow regions which will be
described in Section 7.3.5. Track information is obtained from CaSOM in the
Pixel-blob probabilities module.

Below the plug-in algorithms of this application will be described in detail.
Track correction and the track-object probabilities module are highly application

dependent. For our application, these high levels are not important as we are only
interested in suspicious trajectories. It is therefore not important that each track
corresponds to a single real-world object. Our lower level plug-ins do not expect
feedback from these levels. They will not be used in our application.

7.3.1 Application knowledge

The application not only defines which levels of abstraction and plug-in algorithms
should be used, it also determines the classification costs. The cost matrices can
become large when many output classes are possible. However, the number of
unique numbers in these matrixes is often not that large. For most practical appli-
cations, the matrix given in Table 7.1 is sufficient. This matrix contains only three
parameters: the cost of a missed detection aω, the cost of a false alarm bω and
the cost of object confusion cω. That is nine parameters for a framework with three
probabilities modules.

The costs between different levels of abstraction are often not independent.
When these dependencies are exploited, even less parameters are needed. Clas-
sification costs depend on how easy errors from the lower level can be repaired at
the higher level. We will use one-to-one correspondence between blobs and tracks,
leading to equal costs for misclassifying a track τ and misclassifying a blob β. This
cost is set equal to the total cost of misclassifying all pixels in the blob. We use
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Table 7.1: The cost matrix Cτ for blob-track classification. The cost matrix has vertically the
ground truth classification and horizontally the used classification. aτ denotes the cost of a
missed detection, bτ the cost of false alarm and cτ the cost of confusing two tracks.

C(τn, τl ) τ0 τi τj τNτ +1

τ0 0 bτ bτ bτ

τi aτ 0 cτ cτ

τj aτ cτ 0 cτ

τNτ +1 aτ cτ cτ 0

Npixels for the number of pixels in the blob, assuming that each blob corresponds to
one track and each track to one object. The relations between parameters for the
different levels of abstraction then become:

1aω = 1aτ = Npixelsaβ (7.4)
1bω = 1bτ = Npixelsbβ (7.5)
1cω = 1cτ = Npixelscβ , (7.6)

with aβ the cost of missed detection, bβ the cost of a false alarm, cβ the cost of
a confusion between two blobs and ω an object. Actually, only the ratio between
these parameters will suffice. We can therefore remove Npixels and set one of the
parameters equal to unity. So using this approach we only need to set two param-
eters. The value of these parameters should be given by the application, set by an
operator or learned using training data.

Another option would be to set the costs for each blob equal, leading to lower
costs for pixels that are part of large blobs. This favors classification to large blobs,
resulting in less tracks. However, it is easier to combine tracks for obtaining one a
real-live object than it is to split tracks to several separate real-live objects. There-
fore, we prefer (more) smaller blobs, which is obtained using equal per-pixel costs.

7.3.2 Pixel correction module

Our application allows a static camera and a background that changes slowly com-
pared to the motion of objects, similar to [Haritaoglu et al., 2000; Kim et al., 2003;
Stauffer and Grimson, 2000]. Because of intended outdoor use and widespread
use of affordable auto-gain cameras, we shall allow fast global changes in inten-
sity. These are corrected in the pixel model using our global intensity correction
described in Chapter 3.
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7.3.3 Pixel-blob probabilities module

Pixels are the smallest building blocks of an object. Pixel xi at position ~pi has at
time t a certain color ~ci . Additional features like depth, edge information etc. might
also be available. We combine all features in the pixel feature vector ~xi .

Pixel-blob classification assigns all pixels to one of the possible blob classes
βj . A blob is defined as a group of connected pixels that have been classified to
the same foreground class. The background is considered a special case here,
because it can exist of multiple parts.

We will use separate models for the foreground and background, yielding sepa-
rate probabilities for foreground and background for each pixel. These are used for
minimum cost Bayes classification in the probabilistic framework.

The application allows us to use the slow change of both the background color
(per pixel) and the color of moving objects (its color distribution). They both are
modelled using an adaptive model.

The background is considered a special kind of blob, treated different from the
other blobs. The background in our application can have several modes, for exam-
ple when looking at vegetation and water surfaces. A multi-modal adaptive model
of the background color sufficiently models such a background. With this model,
background probabilities are calculated based on the pixel color. The multi hypoth-
esis EMswitch approach introduced in Chapter 4 is utilized to update the model of
the background. This allows the use of feedback and reconsidering decisions at
later stages when more information is available.

For blob modelling our Core and Shell Object Model (CaSOM) given in Chap-
ter 5 will be used. This object model allows arbitrary object shape as well as
changes between subsequent frames. It is based on the assumption that the center
of the object, the core, can be fully retrieved in the subsequent frame. This is the
most stable part of the object and therefore used for tracking. A layer around this
core, the shell, will be probabilistically classified based on pixel color, distance to
the core and occlusion.

The CaSOM model is shared between blob level and track level. Therefore, for
existing tracks, pixel-blob classification assigns pixels not only to a blob, but also to
a track.

Probability calculation: Background probabilities P(~x |β0) are calculated from
the Gaussian mixture model using Equation 4.1. Foreground probabilities P(~x |βj )
are calculated from the CaSOM object models using Equation 5.6. Prior probabili-
ties P(βj ) are given by occlusion modelling, using Equation 5.12.

Updating the model: After feedback, EMswitch is used to update the back-
ground model for pixels classified as background. Pixels classified as shadow are
regarded foreground in EMswitch. The object models will be updated in the blob-
track probabilities module. These models are also not updated with shadow pixels.
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7.3.4 Blob correction module

The blob correction module corrects for shadow pixels. When a pixel is shaded, it
initially will be classified as foreground. It is important to remove it from the object
before updating the object model. Falsely updating the object model with (shaded)
background colors will eventually cause more background pixels to be assigned
to this object, leading to inaccurate foreground/background segmentation. On the
other hand, the background model should also not be updated, to prevent the back-
ground distribution from becoming very wide. The shadow detection algorithm de-
scribed in Chapter 6 is used to remove shadow pixels.

A second task of the blob correction module is to make make sure all pixels are
assigned to exactly one blob, and that all pixels assigned to one blob are connected.
When a blob is split in several parts only the largest part is kept. All other parts of
the blob are re-labelled background.

7.3.5 Blob-track probabilities module

Blob-track classification assigns blobs βj to tracks τl , i.e. blobs tracked over time.
The feature vector of the blob ~βj contains the pixel features of all belonging pixels
and additional information of the blob like shape and size.

The blob model and track model are shared, it was already discussed in the
previous section. It consists of a color histogram and the CaSOM shape model.
There is a one-to-one correspondence between blobs and tracks. Therefore, only
two classifications are possible for each blob. It is either assigned to the background
or to a track. When assigned to a track, a new blob will start a new track. An existing
blob, i.e. a blob of which the pixels were assigned to an existing track, is assigned
to the track the pixels were assigned to.

At this level, we reconsider pixel-blob classification of all new blobs, making
use of features from all pixels assigned to the blob. We intend to remove shadow
or highlight regions and other regions that depict background but are erroneously
detected as foreground blob.

We base the track probability on comparing the blob histogram to that of an
intensity-corrected version of the background. A more advanced method would
be the approach of [Horprasert et al., 1999] based on color or to add gradient
information [Javed and Shah, 2002]. However, this also would make the algorithm
more computationally expensive.

Probability calculation: The probability that a blob is classified as background
is based on the normalized blob histogram Hβ

j and the histogram H0
j of an intensity-

corrected version of the background image at the position of the blob. This back-
ground image is created from the pixel-wise EM model, using for each pixel the
mean of the kernel with the highest prior probability. The background color of the
pixels assigned to the blob are corrected such that the average intensity per color
band is equal to the average intensity per color band of the blob. After correction,
both histograms will be similar for shadow regions, resulting in a high background
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probability. The prior probability that an outlier occurs is given by Poutlier and is
assumed uniformly distributed over the histogram.

The histograms of the blob Hβ
j and the intensity-corrected background H0

j are
compared using the Resistor distance [Johnson and Sinanovic, 2001], which is a
symmetrical version of the Kullback-Leibler distance [Gray, 1990; Guiasu, 1977]
and is given by

R(H0
j , Hβ

j ) =
1

1
KL(H0

j ,Hβ
j )

+ 1
KL(Hβ

j ,H0
j )

, (7.7)

with KL the Kullback-Leibler distance for two discrete probability density distribu-
tions:

KL(Hβ
j , H0

j ) =
Nbin∑
n=1

hβ
j (n) log2

hβ
j (n)

h0
j (n)

, (7.8)

with h0
j (n) and hβ

j (n) the nth bin of histograms H0
j and Hβ

j respectively. Each bin has
a value h0

j (n) ≥ Poutlier.
The Resistor distance is mapped to a probability using the half-normal distribu-

tion [Weisstein, 2005]:

P(~βj |τ0) = exp(−R(H0
j , Hβ

j )2θ2/π) , (7.9)

with θ a tuning parameter. A blob can only be assigned to a single track. Because
the models for blob and track are shared, we will use for the track probabilities:

P(~βj |τl ) =

{
1 for j = l
0 otherwise .

(7.10)

Updating the model: Using feedback, the track models are updated. The track
model stores the position of the track, the shape of the blob and a color histogram,
of which updating is described in Chapter 5.

7.4 Experimental evaluation

We will evaluate the proposed application using real image sequences. We will
primarily focus on the pixel-blob classification. As it is the lowest level, it is essential
to get it right. Errors at the lowest level, specifically missed detections, cannot be
corrected at higher levels. Particularly, we investigate the results after feedback in
the blob model using evaluation criteria given in §7.4.1. To demonstrate the other
modules, results in the track model will also be given.

In §7.4.2 the image sequences used for evaluation and the used parameter
settings are given. Then in §7.4.3 the experimental results are given and they are
discussed in §7.4.4.
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7.4.1 Evaluation criteria

Evaluation will be performed at two points in the framework. Namely, on the output
of the blob correction module and on the output of blob-track classification, both
after feedback has been performed. This way, the first four modules are evaluated,
and at the same time the application as a whole is evaluated. The four evaluated
modules are pixel correction, pixel-blob probabilities, blob correction and blob-track
probabilities. These modules are generally applicable, while the track-object prob-
abilities module is more application-specific. The evaluation criteria are defined in
relation to our application but are widely applicable in this domain.

Blob evaluation

Pixel-blob classification and blob correction are evaluated using the ROC and the
surface above the ROC as was described in Chapter 3.

Track evaluation

In order to demonstrate the entire application, a second evaluation criterion is used.
This criterion is the number of false alarm and missed tracks.

The tracks consist of a number of trajectory points, each with the image coor-
dinates at a certain frame number. For evaluation we use an ROC of the ratios of
false and missed trajectory points.

Calculation of the ratios of false and missed trajectory points is performed in
two steps. First, we calculate the overlap in time between each combination of
experimental and ground truth trajectories:

tbegin
overlap(m, n) = max(tGT,m(first), tEXP,n(first)) and (7.11)

tend
overlap(m, n) = min(tGT,m(last), tEXP,n(last)) , (7.12)

where tGT,m(last) is the last frame the mth ground truth track exists and tEXP,n(first) is
the first frame the nth experimental track exists. For this overlap period we calculate
the average city-block distance Dmatch between the two tracks

Dmatch(m, n) =
1

tend
overlap(m, n) + 1− tbegin

overlap(m, n)

tend
overlap(m,n)∑

t=tbegin
overlap(m,n)

|xEXP,n(t)− xGT,m(t)| + |yEXP,n(t)− yGT,m(t)| , (7.13)

with yEXP,n(t) the y -location of the nth experimental trajectory point at time t .
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A combination of trajectories with a distance Dmatch(m, n) < Dmax is called a
match. In the remainder of the evaluation only matching combinations are consid-
ered. Note that multiple ground truth trajectories may correspond to one experi-
mental trajectory and vice versa. This happens for example when several persons
walk in a group. The ground truth will describe separate tracks, while our algorithm
might generate only one track, for the entire group of people. For our application
this poses no problem as we are interested in suspicious trajectories. Therefore,
an experimental trajectory is allowed to match with several ground truth trajectories
and vice versa.

Second step of the blob-track evaluation is the actual calculation of the ratios
of missed and false trajectory points. We define the ratio rno false alarm as the num-
ber of trajectory points MEXP of all experimental trajectories that match to one of
the ground truth trajectories divided by the total number of experimental trajectory
points TEXP:

rno false alarm =
MEXP

TEXP
. (7.14)

For the fraction rnot missed of trajectory points we calculate the number of ground
truth trajectory points corresponding to any of the experimental trajectory points.
We divide by the total length of all ground truth trajectories:

rnot missed =
MGT

TGT
. (7.15)

The numbers of total trajectory points are given by

TGT =
NGT∑
m=1

(1 + tGT,m(last)− tGT,m(first)) and (7.16)

TEXP =
NEXP∑
n=1

(1 + tEXP,n(last)− tEXP,n(first)) , (7.17)

for the ground truth and experimental trajectories respectively. NGT and NEXP are
the number of experimental and ground truth trajectories.

The numbers of matching trajectory points are given by

MGT =
NGT∑
m=1

max
n∈nmatch(m)

(tend
overlap(m, n) + 1− tbegin

overlap(m, n)) and (7.18)

MEXP =
NEXP∑
n=1

max
m∈mmatch(n)

(tend
overlap(m, n) + 1− tbegin

overlap(m, n)) , (7.19)

with nmatch(m) and mmatch(n) the sets of matching trajectories.
When an object is missed in one frame and re-detected in the next, the tra-

jectory of the object is described by two separate tracks. These tracks should be
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(a) PETS01-1TE1 1000 (b) PETS04 750

Figure 7.4: A frame of each of the sequences used for track evaluation.

connected using track-object classification. As we currently do not use track-object
classification, tracks will be connected in the evaluation algorithm. Before calcula-
tion of MEXP the set of experimental trajectories is extended by adding combinations
of trajectories. Tracks are combined when either the first or last position lies within
Dmax pixels and within Dmax frames from another experimental trajectory point, us-
ing the city-block distance metric as in Equation 7.13. This way, tracks that were
missed for a few frames are also taken into account.

Choosing Dmax: The value of Dmax has a strong influence on the results. The
larger this value, the lower the error ratio be, but it will also be less selective. It
is therefore important to determine its value with the application in mind. For our
application, the trajectory of people walking next to each other should match to the
trajectory of all people together. For example, consider the PETS01-1TE1 image
sequence used for track evaluation. The city-block distance between the center of
two people walking next to each other (frame 825) is approximately 34 pixels. We
use a four times sub-sampled version for our experiments. Therefore, a value of
Dmax = 10 seems a very reasonable value to be used for this image sequence.

7.4.2 Test data and parameter settings

The three image sequences given in Chapter 3 will be used for blob evaluation, see
also Appendix B. For track evaluation, two image sequences for which ground truth
trajectory was available were used: PETS01-TE1 and PETS04, see also Figure 7.4
and Appendix B.
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Parameter settings

Several parameters can be adjusted, both in the model and in the plug-in algo-
rithms. In this subsection, values used for the experiments will be provided. The
parameters can be divided into three classes:

• Parameters that are easy to determine from physical parameters.

• Parameters for which the application is not sensitive.

• Parameters that should be tuned.

Examples from the first class of parameters are the blob size Npixels, the time
an object may be static NFmax and the maximum distance between corresponding
tracks Dmax. The second class includes the outlier removal threshold Toutlier, the
background update speed uB and the number of kernels Nk . Only small improve-
ment is expected by tuning these parameters. Equal values were used for all image
sequences, indicating that the algorithms are not very sensitive to these parame-
ters. These parameters were set to a suitable value for the image sequences used
and not further optimized or tuned. Below, all parameter values for parameters that
are not tuned will be given.

Tuning of the remaining parameters has been performed by evaluating the total
application at different combinations of parameter settings. The result of each set of
parameter settings is a point in the ROC graph. Choosing the parameter values to
be evaluated has been performed manually, based on the performance of previous
parameter setting a new setting was selected.

In the models: Adjustable parameters are cost matrices and prior probabilities.
To set the prior probabilities and cost matrices we will take the approach given in
§7.3.1. We chose aβ = 1 and varied bβ and cβ . All prior probabilities were set
equal, as they will be multiplied by the costs, which are varied for creating an ROC.

In the pixel model: The images are corrected for global intensity differences
by the MofQ algorithm proposed in Chapter 3. The first frame is used as reference
image and outliers are removed on a statistical basis.

In the pixel-blob probabilities module: We do not use order information, so
we assume all orderings equally probable, see Chapter 4. For the background
model we used the RGB color channels. We used an update speed of uB = 0.001
and Nk = 5 kernels. For occlusion modelling, a blob size of Npixels = 200 pixels was
used. Other parameters are equal to those used in Chapter 4.

The background model uses 163 RGB histogram bins, a core distance dmax = 6
pixels, and a search area for the core object of 11 × 11 pixels. The histogram is
updated with an update speed uF = 0.1. Other parameters are equal to those used
in Chapter 5

Shadow was removed using the same parameter settings as those used in
Chapter 6.

In the blob-track probabilities module: Two parameters are used: Poutlier =
0.001 for each bin was fixed and θ was optimized.
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Table 7.2: Results for blob evaluation. Given is the surface above the ROC in percentages
(lower is better).

Data: Intratuin Schiphol PETS01-3TR1 Average

EMStauffer 3.95 2.59 2.28 2.94
EMStauffer+GIC 3.68 1.32 0.78 1.93
EMswitch+GIC 2.81 0.99 0.79 1.53
CaSOM+EMswitch+GIC 1.69 0.80 0.76 1.08
Framework 0.19 0.40 0.20 0.26

In the experimental evaluation: For evaluation, one parameter needs to be
specified. The maximal average distance between two tracks is set to Dmax = 10.

7.4.3 Experimental results

Results will be given for:

• EMStauffer from §4.2.2
• EMStauffer+GIC from Chapter 3
• EMswitch+GIC from Chapter 4
• CaSOM+EMswitch+GIC from Chapter 5
• Framework: the entire application with feedback, shadow removal, CaSOM,

EMswitch and GIC, proposed in this chapter

The framework adds shadow removal, blob-track classification and feedback to Ca-
SOM+EMswitch+GIC. The feedback used contains shadow pixels and shadow re-
gions.

Results will be compared to the EMStauffer reference algorithm. For a descrip-
tion of the other results see the corresponding chapters.

Blob evaluation

In Figure 7.5 the ROC curves for blob evaluation are shown. It is evident that
for each of the sequences used the framework results are significantly better than
those of the reference method. Even though considerable effort is used to find op-
timal settings of the two parameters of the reference method. The two parameters
tuned for the reference method are the threshold and update speed.

Table 7.2 shows the surface above the ROC as percentage of the total area
of the ROC. These results show the amount of error reduction compared to the
reference algorithm. On average, a factor 11 is obtained.
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Figure 7.5: Framework pixel-blob results.

Track evaluation

For the track evaluation we do not have a reference method. We do however use
two publicly available image sequences that are often used for performance eval-
uation of tracking algorithms. Also, ground truth is publicly available for these se-
quences.

In Figure 7.6 the results for track evaluation are given. The results for the
PETS04 data is perfect, all track-points were detected without false alarms.

The results from the PETS01-1TE1 data are not perfect. But then, this is quite
a difficult image sequence for object tracking. People walk together and later split,
cars stop moving, and later start moving in the opposite direction. Also, a lot of
occlusions are present in the image sequence.
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Figure 7.6: Framework blob-track results.

Even for this data, 90% detection with little more then 10% false alarms is ob-
tained. We consider this not a bad result as we use a very simple plug-in algo-
rithm for blob-track classification and no track-object classification. Results are ex-
pected to improve by feedback from a track-object classification. Note also that the
PETS01-1TE1 image sequence was processed at one fourth of the original resolu-
tion. This probably has a negative impact on the results.

7.4.4 Discussion

In Figure 7.5 and Table 7.2 five algorithms for foreground/background segmentation
are compared. Each consecutive algorithm increases in complexity and should
increase performance.

The first improvement is obtained by adding global intensity correction to the
EMStauffer reference algorithm. This significantly increases performance for the
Schiphol and PETS01-3TR1 sequences. As expected, the performance increase
for the Intratuin sequence is small, as no changes in intensity are present there.
Besides the classification results, also the robustness for setting the update speed
increases, see the PIPE results in Chapter 3.

Using the EMswitch model of the background gives the second improvement.
The improvement is a shift up of the ROC. This algorithm is more sensitive to shad-
ows, resulting in a small shift of the ROC to the right. Only for the PETS01-3TR1
sequence the overall result is not improved.

Adding the CaSOM foreground model improves results even further, although
marginally for PETS01-3TR1. This algorithm again causes a shift up of the ROC.

The final improvement, that is denoted framework, is caused by three effects:
the use of feedback, adding shadow removal, and adding blob-track classification,
which essentially removes shadow regions not connected to moving objects.
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Shadow causes the performance increase on the Intratuin and Schiphol se-
quences. Overall, the framework performs best for the Schiphol sequence. How-
ever, at most locations of the ROC one of our other methods locally performs bet-
ter. This expected to be caused by still insufficient shadow removal for this image
sequence. Main difference with the other sequences is the indoor (fluorescent) il-
lumination. Knowing the application allows to choose the best algorithm from the
ROC.

For the PETS01-3TR1 sequence blob-track classification in conjunction with
feedback plays an important role. Moving clouds cause large shadow regions,
which are effectively removed by this algorithm.

7.5 Conclusions

In this chapter, we composed a complete example application for visual surveil-
lance using the separate algorithms introduced in this thesis. Integrations has been
performed using our probabilistic framework. We demonstrated the application for
segmenting and tracking people in a complex scene. The application has been
evaluated on four individual modules inside the framework. Results therefore de-
pend on both the plug-in algorithms and the integration of the framework.

Evaluation of the first three modules, used to perform pixel correction, pixel
classification and blob correction, shows an average decrease in error of more than
a factor eleven compared to the Stauffer reference algorithm. Only for the Schiphol
image sequence the framework is not always the best method. This is assumed to
be caused by the indoor setting with fluorescent lighting.

The fourth module demonstrated perfect results on a PETS 2004 sequence and
good results on a PETS 2001 sequence.
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This thesis discusses detection and tracking algorithms for visual surveillance
applications. The results obtained in the thesis are discussed in this chapter. It
ends with an answer to the central questing given in Chapter 1.

Global intensity correction in dynamic scenes

Changing global intensity is a real problem in algorithms that model a static back-
ground. The proposed MofQ algorithm is both effective and computationally effi-
cient. It effectively corrects for global intensity differences in dynamic scenes. An
accuracy improvement of a factor ten is obtained on simulated images with changes
in intensity. Used as pre-processing for background modelling, an error reduction
of a factor two to three is obtained on real image sequences. An important result
is that the use of global intensity correction makes the background modelling al-
gorithm more robust for setting the update speed parameter. Using the introduced
Parameter Invariant Performance Evaluation (PIPE) measure, an error reduction of
two to four is demonstrated.

The MofQ algorithm performs significantly better than a weighted least squares
algorithm. The weighted least squares algorithm is only optimal when its assump-
tions are fulfilled in practice. The neglection of additive noise and the presence
of outliers violate this in real life. On the other hand, experiments on simulated
images show a correction accuracy that is almost optimal. The limitation of the
MofQ algorithm lies in the percentage of background pixels. The assumed quatre
of foreground pixels lies well within its working conditions.

The approach proposed assumes that the intensity of all color bands changes
equally. This is not always true, for example in the case of cameras with automatic
white balance.

Instead of using a correction algorithm for differences in global intensity, the use
of normalized color or an adaptive background model is often used. The first has
the important disadvantage that the discrimination based on intensity is lost, leading
do missed object. The use of an adaptive background model is recommended, but
using it for global changes in intensity requires a high update speed. This causes
slowly moving objects to be lost.

Although used here for global intensity differences, the MofQ algorithm can also
be used for more local intensity effects. For example, the quotient image calculated
by MofQ is also the first step towards shadow detection, discussed later in this
chapter. Effects of moving clouds, resulting in a partly brighter and partly darker
scene, are not addressed in this thesis. Using a grouping algorithm on this quotient
image before calculating the median allows estimating different intensity changes
within the image.

Many algorithms besides background modelling are based on constant image
brightness. For applications that use images recorded with a camera described by
the camera model used, and providing images for which the scene content is equal
for a large part of the image, the algorithm is also useful. As this is beyond the
scope of this thesis, it has not been evaluated, but good performance is expected.
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Shadow detection using a physical basis

Shadow detection is an important challenge in object tracking applications. This
thesis introduces a shadow detection algorithm based on the quotient image calcu-
lated by global intensity correction. The proposed algorithm predicts the color shift
caused by unequally colored light sources.

We introduce a performance measure designed to measure shadow correction
accuracy in conjunction with foreground/background classification. The proposed
algorithm gives an average improvement of this measure of a factor ten compared
to a cylinder approach from literature. In conjunction with foreground/background
classification the improvement is smaller, a factor 1.5 compared to no shadow re-
moval and a factor 1.2 compared to the cylinder approach.

The shadow correction algorithm has more potential than is exploited in this the-
sis. The proposed algorithm has been evaluated on a per-frame basis. It would be
better to learn the color of the light sources over time, leading to a less computa-
tionally complex and a more stable algorithm.

Dynamic background estimation

The EMswitch background modelling algorithm proposed in this thesis shows an
increase in both classification accuracy and robustness to parameter settings com-
pared to a standard approach. Slowly moving real-world objects are no longer
unintendedly updated into the background model and foreground/background clas-
sification is based on probabilities.

The background has been modelled by a mixture of Gaussian kernels with di-
agonal covariance matrices. This is a trade-off between model complexity and prior
knowledge on the one hand and computational efficiency and training time on the
other. The Gaussian kernel with diagonal covariance matrix is able to describe a
limited amount of scene deviation using only three variables.

More prior knowledge or assuming a more simple model of the background
would allow one or even zero parameters to describe the kernel. This is compu-
tationally efficient and the number of frames necessary to train the model is mini-
mized, but only when the background can be described by a single kernel. In many
cases the kernel will not accurately describe the background and several kernels
are required to model the background. More kernels are necessary in the mixture,
leading to more computations and longer training times.

The use of more complex kernels allows to describe more complex situations
using a single kernel. But more computations and a longer training period are
necessary. In many practical situations such a water surface, leaves moving in
the wind and color edges in combination with a slightly shaking camera, multiple
kernels are still necessary.

Instead of Gaussian kernels, other models such as a particle filter or a his-
togram could be used. However, the Gaussian mixture model is efficient in both
computational complexity and memory compared to these alternatives.
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EMswitch allows the update of a Gaussian mixture model of only the background
using a multi-state approach. A number of consecutive frames with equal classifica-
tion are necessary before a pixels state is changed from background to foreground
or vice versa. This leads to a small delay in model updates. The use of feedback
from the higher levels would allow the use of all pixels in a blob, resulting in faster
decisions. This could be exploited by allowing higher level algorithms to adapt the
internal state and the internal counters of EMswitch. On the other hand, EMswitch
is used as a safety measure to prevent wrong updates to the background. As also
higher level algorithms make errors, we choose for the extra robustness to classi-
fication errors, with the small disadvantage of a few frames delay in background
updating.

Probabilistic model of non-rigid objects

The EMswitch background model can be fully exploited using a model of tracked
objects from which foreground probabilities are obtained. The CaSOM model intro-
duced in this thesis is such a model. The combination of EMswitch and CaSOM
realises an average error reduction of almost a factor two.

An important feature of CaSOM is that once real-world objects are detected,
they are not easily lost. A higher level algorithm is used in our application to prevent
accumulating falsely detected objects.

There are some problems with the CaSOM model. Small tracked objects are
difficult to track, as there are not enough pixels to learn the probability density dis-
tribution of the object color, and the core becomes small, making template matching
inaccurate. For larger tracked objects, the assumption that the color distribution of
the core is representative for the entire tracked object is not always valid. This can
cause the hair and shoes of pedestrians to be undetected. On the other hand, no
alternative approach is available solving both these problems. Small objects re-
quire a simple model that can be trained using a small amount of data. In order to
introduce spatial information, a model such as a correlogram can be used, which
is more complex. Alternative models such as a mixture model and a particle filter
have approximately the same complexity. These alternatives will therefore have the
same problems

Small tracked objects could be modelled by learning the color model over time,
or using a different algorithm specifically designed for small tracked objects. When
they grow, the object model can be converted to the CaSOM model. The use
of feedback from object classification can aid in preventing small tracked objects.
Tracked objects belonging to one real-world object can be combined, resulting in
larger tracked objects. On the other hand, it could also be an approach to limit
tracked objects to regions with equal color or color pattern. A person will then be
described by a combination of separate tracked objects for his head, shirt, hands,
trousers and shoes. Combination of object parts can be done at the track level or
at a higher level of abstraction.
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Tracking framework including feedback

In order to create a consistent, robust application from the individual algorithms
proposed in this thesis, a framework is given. The application created with this
framework achieved an average foreground/background classification error reduc-
tion of a factor eleven compared to a popular foreground/background classification
algorithm. Partly, this reduction is obtained by MofQ, EMswitch and CaSOM. To-
gether, they obtain an error reduction of almost a factor three. Integrating them in
the framework, adding shadow removal and adding higher level removal of false
detections gives errors that are again a factor four lower.

An important addition of the framework is feedback. This allows to update lower
level models using the best available description of the world, which exists at the
highest level of abstraction. The application we used has only two levels of ab-
straction, with at the highest level a simple algorithm. Limited qualitative evaluation
shows the use of feedback significantly improves performance.

The framework has been designed to be flexible. The use of a structured inte-
gration of plug-in algorithms with shared models and minimum cost classification
should allow to replace one plug-in algorithm without altering the remainder of the
application. This reduces the effort of adapting an application to a changed envi-
ronment or task by replacing one or more plug-ins with a plug-in for the same level
of abstraction. Due to time limitations, this aspect of the framework has not been
evaluated.

Answer to the central question

The central question of this thesis was: Can we develop an algorithm for robustly
and accurately detecting and segmenting moving objects in surveillance scenes?
Below, the different aspects of the question will be discussed.

First of all, we can ”develop an algorithm for detecting and segmenting mov-
ing objects”. Several algorithms existed even before our research started. It is
the second aspect: ”surveillance scenes”, that makes the problem difficult. Im-
ages from typical surveillance scenes often contain slowly moving people, parking
cars, changing illumination conditions and shadows. For such scenes, our research
added to the state of the art, for example by introducing an algorithm for global in-
tensity correction.

Third aspect of the question was ”robust”. This is again connected to the real-
world scenes. The use of separate background and foreground models solves the
problem of slowly moving people and parking cars. Feedback in the framework
allows the higher level processing to be integrated efficiently, taking care of false
alarms.

Fourth and last aspect of the question was ”accurate”. Our experiments show
a significant accuracy improvement, specifically due to separate models in combi-
nation with minimum cost classification and accurate shadow detection. Whether
this makes it accurate enough is a more difficult question. It probably is accu-
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rate enough in the less difficult surveillance scenes, where not too many real-world
objects appear simultaneously. Difficult scenes, with high people densities for ex-
ample, need more effort on higher level algorithms such as object tracking and
classification.

Future research

The work described in this thesis is a step in the direction of an application aiding
operators in their visual surveillance tasks. However, the problem is certainly not
solved. The work gives a solid basis of a tracking application. The next step would
be the higher level algorithms for object tracking and recognition of suspicious be-
havior. Occlusion, object classification and re-appearance of real-world objects are
important subjects, as are activity recognition and trajectory analysis.

The next major step would be the use of more and different sensors. Several
cameras can be used to expand the area under surveillance, microphones can give
valuable cues of suspicious events and stereo cameras or radar can be used to
increase depth resolution and aid with pose estimation. Drawback is the increase
in cost and complexity.

The algorithms proposed in this thesis are limited to the use in areas with low
or average people densities. As people start to form a crowd, other techniques
should be used. Crowds are a typical scene for criminal behavior, therefore a visual
surveillance application should be equipped with algorithms that can aid operators
in monitoring crowds.
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A.1 Introduction

CCD cameras are widely used for computer vision and image processing applica-
tions. For many applications it is important to have a model of the imaging process
and temporal image noise. For example for the correction of temporal changes
in intensity [Kamikura et al., 1998], illumination-invariant optical flow computation
[Altunbasak et al., 2003] or object detection [Ohta, 2001; Xie et al., 2004].

Often a model is used that fits the applications needs. However, little work is
reported on the accuracy of these models for a specific camera, and the importance
of the different components of the model. In this appendix1 we evaluate a general
camera model for different camera types, ranging from a high end 10–bit digital
camera to a consumer webcam.

To model all possible effects of the CCD, we use the general model of a CCD
camera introduced in [Healey and Kondepudy, 1994]. In addition to that model,
most modern cameras use some kind of gamma adjustment to map the image in the
available quantization range for obtaining a better looking image. Therefore we add
gamma correction to this model. We describe experiments to evaluate this model.
The experiments presented verify the model and determine the model parameters
for all cameras. The experiments are repeated for different scene contents to verify
the model at different settings of camera gain and shutter time.

Besides verification of the model we show the effect of the individual contribu-
tions in the model to allow for simplifications. In particular, we evaluate:

• whether the gamma function in the camera is sufficiently accurately described
by our model,

• what the effect of the dark current is,

1This appendix is based on [Withagen et al., 2005a,b].
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• what the noise distribution is.

In the remainder of this appendix, first, a (theoretical) model of a CCD camera
is discussed in Section A.2. In Section A.3 we describe the measurement setup
and give the results. These results lead to simplifications of the model given in
Section A.4. Finally, conclusions are presented in Section A.5.

A.2 Theoretical model of a CCD camera

Healey [Healey and Kondepudy, 1994] describes the following model for a single
pixel recorded at time t using a CCD camera:

it = gt (i0 + µDC + NS + NR) + NQ , (A.1)

with gt the camera gain, i0 the true scene intensity and it the measured image
intensity for a given color band. The following noise contributions are present2:
the dark current µDC is an offset, constant over time. The shot noise NS has a
Poisson distribution with µS = 0 and σS depending on i0. The readout noise NR
has a Gaussian distribution: µR = 0, σR constant. The quantization noise NQ has a
uniform distribution U(− q

2 , q
2 ) with q the smallest step in pixel value.

There are three ways to control the global image intensity, we will use the term
apparent gain for their joint effect. It can be controlled using the camera gain,
camera shutter time or lens iris. All can be fixed (manual control) or automatically
adapted to the scene (automatic gain/shutter/iris control). For the CCD, iris or shut-
ter control causes a change of image intensity i0 in Equation A.1. We model this by
parameter ht :

it = gt (ht (i0 + µDC) + NS + NR) + NQ . (A.2)

Additionally, most cameras apply a gamma adjustment to map the range of
intensity values from the CCD to the available output range. Assuming it is im-
plemented in the camera electronics just before digitization, Equation A.2 changes
to

it = gγ
t

(
ht (i0 + µDC) + NS + NR

)γ + NQ , (A.3)

with γ the gamma value which is assumed to be time constant and equal for all
pixels.

A.3 Measurements

For verification of the model given above, measurements were performed with a
range of different camera types. The cameras used are listed in Table A.1. The
following measurements will be described. For each camera the gamma will be
estimated using a log-log plot of the pixel value against the true (photon-counted)

2We use µx for the mean of x and σx for its standard deviation.
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Table A.1: The cameras used to verify the CCD model.

Camera Description Intensity control

JAI CV-M7+CL High end 10-bit digital camera Fixed
with Bayer filter

Siemens C810 Digital computer vision color camera Automatic
JVC GR-DVL-157 Digital consumer color camcorder Automatic
Philips PCVC680K Color webcam Automatic

intensity value. We measure the dark current by plotting the gamma-corrected pixel
intensity against the true intensity. This gives a straight line that intersects the pixel
intensity axes at the dark current. The multiplicative noise, i.e. the amount of noise
depends on the amount of light reaching the CCD, and additive noise are estimated
from a plot of the per-pixel variance against its mean. This gives a straight line of
which the offset and the slope give the additive and multiplicative noise respectively.
Difference in the slope of this line for different illumination conditions shows the kind
of apparent gain correction used by the camera.

As measurement object we used a half-transparent plate which is homoge-
neously back-illuminated. In front of this plate are layers of gray and brown fil-
ters, see Figure A.1(a). There are eighteen different sections, zero to five layers of
the gray filter on the top row and zero to thirteen layers of the brown filter on the
center and bottom row. The illumination from each of the thirteen brown sections
decreases according to 1/n, with n the number of layers. This has been verified
using a photon counter.

Imagery depicting this object was recorded with all cameras. To estimate the
temporal mean and variance, sequences of 100 images were recorded. For inves-
tigating the automatic apparent gain control, we recorded the measurement object
with different brighter parts of the object covered. This changed the covered part of
the scene to black, while leaving the remainder of the scene unchanged, see Fig-
ure A.1. This will activate the automatic apparent gain control while leaving some
sections to measure on.

A.3.1 Gamma estimation

For each sequence of 100 images the standard deviation and average of one (the
red color) channel were calculated, both per pixel, and for the sections with equal
intensity as a whole. To ignore saturation effects pixel with a value in the top 10%
and bottom 10% of the intensity range are not taken into account.

The gamma is estimated from a log-log plot of the average intensity per section
against the true (photon counter measured) intensity of that section. All data points
should lie on a straight line (at least for points with intensity much greater than the
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(a) Back-illumination off (b) Full (c) top5

(d) top2 (e) low6 (f) low3

Figure A.1: Different sets of data are created by covering part the measurement object.
Shown are the measuring object and a frame from each data set from the Siemens camera.
The sets are: Full, the entire object is visible; Top5, the five darkest sections of the middle
row and the entire bottom row are visible; Top2, the two darkest sections of the middle row
and the entire bottom row are visible; Low6, only the six sections at the bottom are visible;
Low3, only the darkest three sections are visible.

dark current) with a slope equal to gamma. For the actual results see the figures on
the top in Figures A.2 and A.3. The estimated gammas for all cameras are given
in Table A.2. As expected, all cameras have a gamma smaller than one and for
most cameras the individual data points are close to a straight line, and the lines
for different measurements are approximately parallel, demonstrating that gamma
is a constant. Therefore we conclude that our model of the gamma is sufficient.
However, this does not hold for the webcam. The error in the fit is larger as can be
explained by the measurement error. Additionally, Figure A.3(b) shows that the data
is not accurately modelled by the exponential model and the gamma differs between
measurements. The estimated value of gamma differs with intensity between 0.53
and 0.72.

A.3.2 Dark current estimation

Using the gamma estimated above, we correct the image sequences and recalcu-
late the average intensity for each section. Plotting these against the true intensity
of the sections now should give a straight line which intersects the section-intensity
axes at a value related to the dark current, see the figures in the center of Fig-
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Table A.2: Results of the camera characterization for each of the cameras. All estimates are
least squares estimates of the data available. Between brackets are the standard deviations
of the estimates. The amount of multiplicative noise is given for the highest pixel value (one
in our case). The additive and multiplicative noise are averaged over all sequences.

Camera JAI Siemens JVC Philips

Gamma 0.66 (0.02) 0.53 (0.02) 0.72 (0.06) 0.70 (0.10)
Dark Current gthtµDC -0.003 (0.005) -0.0005 (0.009) 0.005 (0.016) 0.005 (0.03)
Add. noise gtNR 0.003 0.003 0.005 0.012
Multipl. noise gtNS 0.021 0.021 0.019 0.011
Quant. noise NQ 0.0003 0.001 0.001 0.001

ures A.2 and A.3.
The dark current is independent of apparent gain. Before fitting a line, the data

from all sequences is scaled such that their apparent gain is equal to the lowest
of the sequences for that camera. Then one line is fitted in least squares through
all data. The estimated dark current and the error of the estimate are given in Ta-
ble A.2. The dark current we estimated is for all cameras smaller then the standard
deviation of the estimate, so we cannot conclude that it is unequal to zero. The
dark current is for all cameras lower than the additive noise, so we conclude that for
pixels with a sufficiently large intensity we can neglect the dark current.

A.3.3 Noise estimation

The distribution of the noise in the CCD model contains both additive and multi-
plicative noise. We plot the standard deviation over the gamma-corrected images
against its average for a number of pixels to see the effect of both contributions,
see the figures on the bottom in Figures A.2 and A.3. The intersection of a straight
line fitted to this data with the standard deviation axes gives the contribution of the
additive noise and the slope of the line gives the amount of multiplicative noise.
Estimates of the amount of additive and multiplicative noise are given in Table A.2.
We conclude that the amount of multiplicative noise exceeds the amount of
additive noise at intensities above 10 to 30% of the intensity range.

For the webcam the additive part of the noise is more important than the multi-
plicative part over the entire intensity range, see Figure A.3(f).

We observe that for most cameras, the fitted lines through the noise are almost
parallel. This indicates that these cameras control the intensity by changing their
iris of shutter time. For the Siemens camera this does not hold, see Figure A.2(f).
For this camera the noise changes with a changing image intensity, but not with the
same amount as the slope of the intensity in Figure A.2(d). This is caused by the
combination of automatic gain and automatic shutter control.
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(d) Siemens, gamma-corrected
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Figure A.2: Results from the CCD verification experiments (1), continued in Figure A.3. The
top shows a log-log plot of the image intensity per section against the true intensity of the
section. The center graphs show a plot of gamma-corrected image intensity per section
against the true section intensitiy. The lowest graphs show the standard deviation over time
plot against the average over time.
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(d) Philips webcam, gamma-corrected
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Figure A.3: Results from the CCD verification experiments (2), continued from Figure A.2.
The different sets of data are recorded with different parts of the measurement object, see
the legend in subfigure (a), explained in Figure A.1.
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A.3.4 Artifacts

The Philips webcam seems to have some artifacts, see Figure A.3 on the right.
Among others its gamma changes with intensity and is insufficiently modelled by
the exponential. Therefore, this camera violates the general model given in Equa-
tion A.3.

A.4 Simplifications to the CCD model

Our experimental validation concludes that we can neglect the contribution of the
dark current as the measured value lies within one standard deviation from zero
and is smaller than the additive noise. This simplifies Equation A.3 to

it = gγ
t

(
ht i0 + NS + NR

)γ + NQ . (A.4)

The remaining noise terms are all zero-mean. The shot noise NS is multiplicative
and both the readout noise NR and the quantization noise NQ are additive.

Our experiments also show that the additive noise contributions (NR and NQ)
are equal to or smaller than the multiplicative noise contribution for sufficiently large
intensity values (larger than 10 to 30 % of the intensity range). For sufficiently large
intensity this simplifies the equation above to

it = gγ
t

(
ht i0 + NS

)γ . (A.5)

A.5 Conclusions

A model of a CCD model was introduced and experimentally evaluated using a
range of different cameras. Experiments show that the model of the CCD is suffi-
cient for all cameras, except the low-end Philips webcam. The gamma correction in
these cameras is sufficiently accurately described by an exponential gamma model.

Experiments further demonstrate that for sufficiently large pixel intensities the
model can be simplified. Specifically, the dark current can be neglected and the
additive noise is exceeded by the multiplicative noise at intensities over 10 to 30%
of the intensity range.

Using this model, all cameras except for the webcam can be used for accurate
measurements. Using the webcam for computer vision can be expected to give
problems as its response cannot be predicted using a common CCD model. The
gamma is not accurately modelled by the general model and depends on the image
intensity.

Results on the webcam show that it is dangerous to pick a general camera
model and assume its validity. It is important to validate the model for the specific
camera used.

Automatic correction to intensity changes is performed differently by the different
cameras. The JAI camera has no automatic intensity adjustment, the JVC camera
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changes shutter time, the Siemens camera changes both shutter time and gain and
the Philips camera seems to change the value of gamma. This has an effect on the
image noise. For the JAI and JVC camera the amount of noise for a certain pixel
intensity is independent of the apparent gain, whereas for the Philips and Siemens
camera this is not true.
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B.1 Introduction

Throughout this thesis, five image sequences were used for evaluation of the pro-
posed algorithms. In this appendix, those image sequences will be discussed.
Example images will be given, together with their manually labelled ground truth.

B.2 Images for pixel classification

Three image sequences were used for the evaluating the pixel classification, see
also Figures B.1,B.2 and B.3:

• Intratuin: Parking lot with waving tree branches. The sequence contains cars
and pedestrians, moving both slowly and fast. This sequence has 150x350
pixels and 1250 frames.

• Schiphol: Main hall of Schiphol airport. The sequence contains relatively
large objects, some of which become stationary. This sequence has 90x120
pixels and 1750 frames.

• PETS01-3TR1: A for computational efficiency sub-sampled cut-out of the im-
ages of dataset 3, training, camera 1 from the IEEE International Workshop
on Performance Evaluation of Tracking and Surveillance 2001 (PETS), [Fer-
ryman, 2001]. The images contain relatively few object pixels. The part of
the image used is that between rows 300 and 520, skipping the odd rows and
between columns 350 and 750, skipping the odd columns. This sequence
has 120x200 pixels and 5500 frames.

All sequences are RGB color video data with eight bit per color. The Intratuin and
Schiphol sequences are recorded by us. The PETS 2001 data has been obtained
from pets2001.visualsurveillance.org.
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(a) Intratuin 500 (b) Ground truth 500 (c) Intratuin 750 (d) Ground truth 750

(e) Intratuin 1000 (f) Ground truth 1000 (g) Intratuin 1250 (h) Ground truth 1250

Figure B.1: Some frames from the Intratuin sequence with associated ground truth. Ground
truth labelling: black is background, gray is foreground and white is any.

(a) Schiphol 500 (b) Ground truth 500 (c) Schiphol 750 (d) Ground truth 750

(e) Schiphol 1000 (f) Ground truth 1000 (g) Schiphol 1250 (h) Ground truth 1250

(i) Schiphol 1500 (j) Ground truth 1500 (k) Schiphol 1750 (l) Ground truth 1750

Figure B.2: Some frames from the Schiphol sequence. Ground truth labelling: black is back-
ground, dark gray is foreground, light gray is shadow and white is any.
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(a) PETS01-3TR1 500 (b) Ground truth 500 (c) PETS01-3TR1 1000 (d) Ground truth 1000

(e) PETS01-3TR1 1500 (f) Ground truth 1500 (g) PETS01-3TR1 2000 (h) Ground truth 2000

(i) PETS01-3TR1 2500 (j) Ground truth 2500 (k) PETS01-3TR1 3000 (l) Ground truth 3000

(m) PETS01-3TR1 3500 (n) Ground truth 3500 (o) PETS01-3TR1 4000 (p) Ground truth 4000

(q) PETS01-3TR1 4500 (r) Ground truth 4500 (s) PETS01-3TR1 5000 (t) Ground truth 5000

(u) PETS01-3TR1 5500 (v) Ground truth 5500

Figure B.3: Some frames of the PETS01-3TR1 sequence. Ground truth labelling: black is
background, gray is foreground and white is any.
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B.2.1 Ground truth labelling

For each sequence, four to eleven frames were manually labelled. Each pixel was
labelled as: foreground, background or any. The label any is used for the edges
of objects, where it is difficult (for a human) to decide whether this pixel should be
labelled as either foreground or background.

Labelling was done by defining an inner contour and an outer contour of all
(groups of) moving objects. All pixels inside the inner contour are labelled ground
truth foreground and all pixels outside the outer contour ground truth background.
Pixels between the two contours are labelled any. These pixels are not used for
evaluation.

For some frames in the Schiphol sequence, objects have become static. These
objects are also labelled any. In the Schiphol sequence a third class has been la-
belled: ground truth shadow. Pixels inside this contour, and not inside any other
contour are used only for the evaluation of the shadow detection algorithm in Chap-
ter 6 . In all other chapters these pixels are not used.

All manually labelled images are given next to the corresponding frame in Fig-
ures B.1, B.2 and B.3.

B.3 Images for trajectory evaluation

For track evaluation, two image sequences were used, see also Figure B.4:

• PETS01-1TE1: We used a for computational efficiency sub-sampled version
of dataset 1, testing, camera 1 from the IEEE International Workshop on Per-
formance Evaluation of Tracking and Surveillance 2001 (PETS), [Ferryman,
2001]. The images contain relatively few object pixels. We use only every
fourth row and column. This sequence has 144x192 pixels and 2688 frames.

• PETS04: We used a for computational efficiency sub-sampled version of the
Rest-FallOnFloor data from the IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance 2004 (PETS) [Crowley et al., 2004]
provided by the EC Funded CAVIAR project/IST 2001 37540. The images
contain amongst others a person falling on the floor and lying there for some
time. We use only the odd rows and columns. This sequence has 144x192
pixels and 1006 frames.

Both sequences are RGB color video data with eight bit per color. For each se-
quence, ground truth and data was available from the PETS workshops. We ob-
tained it from pets2001.visualsurveillance.org and pets2004.visualsurveillance.org
respectively. From the ground truth we used for each track and each frame the
center location of the region of interest.
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(a) PETS01-1TE1 1000 (b) PETS01-1TE1 1500 (c) PETS01-1TE1 2000 (d) PETS01-1TE1 2500

(e) PETS04 250 (f) PETS04 500 (g) PETS04 750 (h) PETS04 1000

Figure B.4: Some frames of the images sequences used for blob-track evaluation.
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C Online EM and Stauffer
classification

C.1 Introduction

For several applications it is necessary to distinguish between foreground and back-
ground objects, for example for detection and tracking of moving objects. This can
be done by making a model of the background, and then checking for each pixel
in a new frame whether or not their values can be explained by the background
model. If a pixel-value can be explained by the model, it is classified background in
that frame, otherwise foreground.

A very popular background model is the Mixture of Gaussians (MoG) model.
The color Probability Density Function (PDF) over time is modelled using Nk gaus-
sian kernels. Such a model can be estimated from the data using Maximum like-
lihood (ML) parameter estimation. Unfortunately, an analytical expression for ML
estimation of a MoG model is not available. The Expectation Maximization (EM)
algorithm [Dempster et al., 1977; Neal and Hinton, 1998] is a technique for ML es-
timation for incomplete data. With this technique simple equations can be obtained
for mixture density estimation. This will be discussed in Section C.2.

In the case of image data, the online EM algorithm [Priebe, 1994] adds exponen-
tial forgetting and enables a real-time implementation. This is the algorithm used
throughout this thesis for updating the model of the background. In Section C.3 its
equations will be derived.

C.2 Maximum Likelihood and Expectation Maximization

We will follow the reasoning given in [Bilmes, 1997], see that paper or one of the
other papers regarding Expectation Maximization (EM) mentioned below for a more
in-depth discussion.
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C.2.1 Maximum Likelihood estimation

Maximum Likelihood estimation [Duda and Hart, 1973] is a technique for estimation
of the parameters Θ of a PDF p(~x |Θ). The parameters are estimated from a set of
Nsample data points X = {~x1, · · · ,~xNsample} drawn independently from that distribution.
The likelihood function to be maximized is given by

p(X |Θ) =
Nsample∏

i=1

p(~xi |Θ) = L(Θ|X ) . (C.1)

The function L(Θ|X ) is called the likelihood function. Maximizing this function
gives the optimal parameters Θ∗:

Θ∗ = arg max
Θ

(L(Θ|X )) . (C.2)

Usually the logarithm of this function, the log-likelihood, is optimized for ease of
computation.

The level of difficulty of this maximization depends on the PDF p(~x |Θ). If it
is a simple Gaussian distribution, the minimization has an analytical form. The
derivatives can be set to zero and the standard equations for µ and σ2 can be found
easily. However, for a MoG such analytical equations are not available.

C.2.2 Expectation Maximization

Expectation Maximization (EM) enables to obtain a ML solution when an analyti-
cal equation is not available or is very complex. The EM algorithm [Bishop, 1995;
Dempster et al., 1977; Ghahramani and Jordan, 1994; Jordan and Jacobs, 1994;
Neal and Hinton, 1998; Redner and Walker, 1984; Verbeek, 2004; Wu, 1983] allows
finding a ML estimate for incomplete data. It is used for finding the ML estimate
when the data has missing values due to the observation process or when optimiz-
ing the likelihood is computationally intractable, but can be simplified by assuming
the existence of additional but missing variables.

The EM algorithm solves the ML problem iteratively. Two steps can be identified.
In the E–step values for the hidden variables are assumed. These values are used
in the M–step to estimate the parameters that are not hidden. Each iteration the
likelihood increases. It is guaranteed that the solution converges to a local maxi-
mum of the likelihood function. For prove and discussion of the rate of convergence
see [Dempster et al., 1977; Jordan and Xu, 1995; Redner and Walker, 1984; Wu,
1983; Xu and Jordan, 1996].

EM for a MoG

In §4.2.1 the PDF of a MoG model is given. ML parameter estimation for a MoG
model can be simplified by adding a hidden variables which specifies from which
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kernel each observation was drawn. All parameters, both hidden and observed,
can now be estimated using EM.

Given a sequence of Nsample independent samples xi ,c , the parameters πk , µk ,c
and σk ,c with c ∈ {R, G, B}, must be estimated for each kernel k .

EM gives analytical equations for estimating the parameters iteratively. A deriva-
tion of these equations can be found, amongst others, in [Bilmes, 1997].

The E–step is given by the likelihood that value ~x is part of kernel k :

P(k |~xi ) =
πk f (~xi |~µk , Vk )

P(~xi |β0)
. “Posterior” (C.3)

The term P(~xi |β0) in the nominator is the likelihood of the entire MoG for this mea-
surement, so this introduces knowledge of the likelihood of the other kernels in the
model.

The M–step updates the individual Gaussian kernels:

πk =
1

Nsample

Nsample∑
i=1

P(k |~xi ) ”Prior” (C.4)

µk ,c =
1

Nsampleπk

Nsample∑
i=1

P(k |~xi )xi ,c ”Mean” (C.5)

σ2
k ,c =

1
Nsampleπk

Nsample∑
i=1

P(k |~xi )(xi ,c − µk ,c)2 . ”Variance” (C.6)

This solution has two drawbacks. First, the entire model has to be re-estimated
each new frame. Second, the oldest frame has the same influence as the newest,
so this does not model the effect of slowly varying lightning conditions very well.
The online updating strategy described in the next section solves both drawbacks.

C.3 Online EM

To enable a real-time application we need to calculate the parameters recursively.
In algebraic notation1:

πk := πk +
1
n
(
P(k |~x)− πk

)
(C.7)

µk := µk +
1

nπk
P(k |~x)(x − µk ) (C.8)

σ2
k := σ2

k +
1

nπk
P(k |~xi )

(
(xi − µk )2 − σ2

k
)

. (C.9)

1For clarity we will omit the index c ∈ {R, G, B} in xk ,c , µk ,c and σ2
k ,c
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Derivation of these equations is given below.
To weight newer frames heavier than older frames, we can replace 1

n with a
“forgetting term” u, also referred to as “update speed”. This gives:

πk := πk + u
(
P(k |~x)− πk

)
(C.10)

µk := µk +
u
πk

P(k |~x)(x − µk ) (C.11)

σ2
k := σ2

k +
u
πk

P(k |~xi )
(
(xi − µk )2 − σ2

k
)

. (C.12)

This is especially useful for slow changes in illumination.
[Neal and Hinton, 1998; Titterington, 1984] prove that the online version of EM

converges to a local likelihood maximum for infinite data points. This cannot be said
for the variant with exponential forgetting. However, [Neal and Hinton, 1998] shows
by experiment that the use of exponential forgetting results in a log-likelihood very
close to that obtained with EM and online EM. It obtains this estimate faster than the
standard EM algorithm and the online EM algorithm, and has a lower computational
complexity.

C.3.1 Derivation for the online EM formulas

The online EM equations can easily be derived from the standard EM equations,
we use the derivation given in [Zwarthoed, 2002]. Note that the order of updating
the different parameters is fixed. First the posterior probability should be calculated
for the new measurement, then the prior, mean and standard deviation are updated
respectively. In each parameter the updated versions of the previous parameters
are used.

Prior

EM gives for the prior after update n:

πk ,n =
1
n

n∑
i=1

P(k |~xi ) . (C.4′)

Adding measurement n + 1, we obtain

πk ,n+1 =
1

n + 1

n+1∑
i=1

P(k |~xi ) .

The new measurement is split-off from the sum

πk ,n+1 =
1

n + 1

( n∑
i=1

P(k |~xi ) + P(k |~xn+1)
)

.
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Assume the posterior probabilities of the old data are frozen. They do not need to
be re-estimated, so the sum can replaced by the old estimate

πk ,n+1 '
1

n + 1
(
nπk ,n + P(k |~xn+1)

)
.

Rearranging gives

πk ,n+1 '
1

n + 1
(
(n + 1)πk ,n − πk ,n + P(k |~xn+1)

)
,

and then

πk ,n+1 ' πk ,n +
1

n + 1
(
P(k |~xn+1)− πk ,n

)
. (C.13)

Mean

EM gives for each element of the mean vector ~µk ,n after update n:

µk ,n =
1

nπk ,n

n∑
i=1

P(k |~xi )xi . (C.5′)

Adding measurement n + 1, we obtain

µk ,n+1 =
1

(n + 1)πk ,n+1

n+1∑
i=1

P(k |~xi )xi .

The new measurement is split-off from the sum

µk ,n+1 =
1

(n + 1)πk ,n+1

( n∑
i=1

P(k |~xi )xi + P(k |~xn+1)xn+1

)
.

As for the prior, assume the posterior probabilities of the old data are frozen. They
do not need to be re-estimated, so the sum can replaced by the old estimate

µk ,n+1 '
1

(n + 1)πk ,n+1

(
nπk ,nµk ,n + P(k |~xn+1)xn+1

)
.

The prior πk ,n is replaced by the new prior πk ,n+1

µk ,n+1 '
1

(n + 1)πk ,n+1

(
n
(n + 1

n
πk ,n+1 −

1
n

P(k |~xn+1)
)
µk ,n + P(k |~xn+1)xn+1

)
.

Rearranging gives

µk ,n+1 '
1

(n + 1)πk ,n+1

(
(n + 1)πk ,n+1µk ,n − P(k |~xn+1)µk ,n + P(k |~xn+1)xn+1

)
,

and

µk ,n+1 = µk ,n +
1

(n + 1)πk ,n+1
P(k |~xn+1)(xn+1 − µk ,n) . (C.14)
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variance

Derivation for the online update equation of the variance the reader is referred to
that of the mean. The mean µ is substituted by the variance σ2 and the measure-
ment x is replaced by (x − µ)2. The derivation is exactly the same.
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Samenvatting∗

Voor het bewaken van de veiligheid op straat en in publieke ruimten wordt de laatste
jaren steeds vaker gebruik gemaakt van beveiligingscamera’s. Het aantal camera’s
dat een beveiligingsmedewerker tegelijkertijd effectief kan bekijken is echter zeer
beperkt. Het is onbetaalbaar om alle camera beelden te laten bekijken. De meeste
beelden worden daarom opgeslagen en eventueel achteraf geraadpleegd indien
zich een incident heeft voorgedaan. Hierdoor is directe actie niet mogelijk, wat de
effectiviteit van de camera’s sterk vermindert.

Met behulp van beeldverwerking algoritmes kunnen wel alle beelden geanaly-
seerd worden. Een computer algoritme maakt dan een selectie van mogelijk ver-
dachte situaties, waarna de beveiligingsmedewerker alleen deze beelden hoeft te
bekijken. Deze combinatie van camera en automatische verwerking van de beelden
wordt ook wel een intelligente camera genoemd.

Dit proefschrift behandelt het automatisch vinden en volgen van mensen in cam-
era beelden. Dit zijn de basis stappen voor een intelligente camera. De drie
belangrijkste wetenschappelijke bijdragen van dit proefschrift betreffen een algo-
ritme voor de correctie van verschillen in gemiddelde (belichtings-) intensiteit tussen
beelden, het herkennen van schaduw op basis van de kleurverandering veroorzaakt
door de schaduw en het op statistische wijze onderscheid maken tussen voorgrond
en achtergrond.

Programmatuur voor intelligente camera’s, maar ook veel andere programma’s
binnen en buiten de beeldverwerking, bestaan uit deelalgoritmen op verschillende
abstractie niveaus. De verschillende delen zijn veelal beschikbaar in de literatuur,
probleem is de onderlinge koppeling. In dit proefschrift wordt een flexibel raamwerk
geı̈ntroduceerd voor deze koppeling. Het raamwerk is gebaseerd op waarschijn-
lijkheden en zorgt voor een optimale classificatie op elk abstractie niveau. Een
belangrijke toevoeging van het raamwerk is terugkoppeling, wat er voor zorgt dat
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het meest complete wereldbeeld, beschikbaar op het hoogste abstractie niveau,
wordt gebruikt voor het bijwerken van de modellen op de lagere niveaus.

Bij veel toepassingen van beeldverwerking, waaronder intelligente camera toe-
passingen, kan men weinig invloed uitoefenen op de belichting van de scène. Het
gebeurd dan regelmatig dat de intensiteit tussen verschillende beelden niet het-
zelfde is. Bijvoorbeeld door een wolk die voor de zon schuift of een camera die
automatisch zijn versterking regelt als er mensen met lichte of donkere kleding in
beeld komen. Dit geeft problemen met het vergelijken van beelden, onder anderen
voor de detectie van bewegende objecten voor een achtergrond. In dit proefschrift
wordt een algoritme beschreven waarmee voor zulke verschillen in intensiteit gecor-
rigeerd kan worden. Het betreft een dermate simpel algoritme dat het direct toepas-
baar is met de huidige snelheid van computer hardware. Experimenten op echte
beeldsequenties tonen aan dat dit algoritme een enorme verbetering geeft van de
resultaten van object detectie en segmentatie.

Ook schaduwen vormen een uitdaging, en zijn niet te verwaarlozen in situaties
waar geen invloed uitgeoefend kan worden op de verlichting. Schaduwen zorgen
voor een lagere intensiteit, dit kan gebruikt worden voor het herkennen ervan. In
veel gevallen echter, zorgt schaduw ook voor een kleurverschuiving. Dit wordt
veroorzaakt doordat lichtbronnen met een verschillende kleur niet in de zelfde mate
tegengehouden worden door een object. In dit proefschrift wordt een methode
beschreven die uit de beelden het kleurverschil van de verlichting kan bepalen, en
kan voorspellen wat de kleurverschuiving van schaduw zal zijn. Hierdoor kan een
beter onderscheid worden gemaakt tussen voorgrond, achtergrond en schaduw.

Het modelleren van de achtergrond is een belangrijke eerste stap in het vin-
den van objecten. Bestaande aanpakken gebruiken daarbij een model dat gedeeld
wordt door voor- en achtergrond. Dit leidt tot imperfecte classificatie resultaten.
Bovendien zijn de parameters van het algoritme erg moeilijk instelbaar. In dit proef-
schrift wordt een aanpak gepresenteerd waarbij gescheiden modellen voor voor-
en achtergrond gebruikt worden. Hierdoor is dit algoritme veel eenvoudiger in te
stellen. Doordat de keuze tussen voor- en achtergrond is gebaseerd op waarschijn-
lijkheden zijn de classificatie resultaten beter, vooral in complexe situaties.

Een applicatie voor het vinden en volgen van objecten is ontwikkeld, op basis
van het voorgestelde raamwerk. Naast de correctie voor verschillen in intensiteit en
schaduwen wordt gebruik gemaakt van het verbeterde model van de achtergrond
en een nieuw model van de voorgrond. De prestaties van dit algoritme zijn voor een
aantal beeldreeksen vergeleken met de prestaties van een veelgebruikt referentie
algoritme. Gemiddeld wordt de fout hierbij gereduceerd tot minder dan een tiende
van de originele fout. Er wordt dus veel nauwkeuriger onderscheid gemaakt tussen
bewegende objecten en achtergrond. Hierdoor wordt het mogelijk om ook in com-
plexere situaties met meer bewegende objecten gebruik te maken van intelligente
beveiligingscameras

De in dit proefschrift beschreven technieken vormen samen de basis voor een
intelligente camera. Ze zijn echter ook op zichzelf bruikbaar in een breder toepas-
singsgebied.
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