
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Methodological aspects of designing induction-based applications

Verdenius, F.

Publication date
2005
Document Version
Final published version

Link to publication

Citation for published version (APA):
Verdenius, F. (2005). Methodological aspects of designing induction-based applications.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/methodological-aspects-of-designing-inductionbased-applications(68212567-3fa2-4df7-9e35-f68d0afe783f).html

METHODOLOGICAL ASPECTS OF DESIGNING
INDUCTION-BASED APPLICATIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. mr. P.F. van der Heijden
ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit
op vrijdag 28 januari 2005, te 12.00 uur door

Floor Verdenius
geboren te Heerenveen

ii

Promotiecommissie:

Promotor: prof. dr. B.J. Wielinga
Co-promotor: dr. M.W. van Someren

Overige leden:
Prof. dr. ir. J.L. Top
Prof. dr. A.P.J.M. Siebes
Prof. dr. R. de Hoog
Prof. dr. P.W. Adriaans
Dr. ir. B.J.A. Kröse

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

SIKS Dissertation Series No. 2005–1

The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch
Research School for Information and Knowledge Systems.

Methodological Aspects of Designing Induction-based Applications
ISBN 90-6754-825-1

© 2004 Floor Verdenius

iii

Voorwoord
Vijf, vier en drie jaar geleden schatte ik de benodigde tijd voor afronding van dit proefschrift
telkens op “nog maar één jaar”. Maar wie mij twee jaar geleden had voorspeld dat ik nu, in
november 2004, het dankwoord zou schrijven, had ik voor gek verklaard. Ik begon in het
najaar van 1994 met enkele ideeën voor een rationelere toepassing van machine learning
technieken. Deze ideeën sloten aan bij die van Maarten van Someren. Maarten voorzag dat er
ongeveer 10 jaar werk in zou zitten, zelf hoopte ik op een jaar of zes. Hij had duidelijk meer
ervaring. Die lange duur kwam niet alleen doordat ik bij tijd en wijle mijn aandacht elders
had, maar zeker ook door de complexiteit van het onderwerp. Elke keer als ik de draad weer
oppakte, kon ik op Maarten zijn steun rekenen, met ideeën, opmerkingen en met
enthousiasme om samen te schrijven. Maarten, er liggen nog wat open eindjes van hoofdstuk
6 en 7, en ik kijk er naar uit die samen op te pakken. Bob Wielinga zorgde er voor dat ik
onderweg niet in al te veel details verdronk, en dat ik de hoofdlijn van het werk vasthield.
Minder direct, maar niet minder belangrijk om tot een afronding te komen. Maarten en Bob,
bedankt.

Daarnaast genoot ik de steun van diverse collega’s, die vaak vrienden werden. Robert Aarts
liet mij op een andere manier kijken naar het toepassen van machine learning. Van jouw
aanpak om machine learning en domein expertise te combineren heb ik veel geleerd. Robert
Engels stond vervolgens mede aan de basis van de methodologische concepten uit de
hoofdstukken 1, 5 en 6. Onze avonturen in onder meer Karlsruhe, Nashville, Drenthe en
Wageningen zijn dierbare herinneringen. En je aanstekelijke enthousiasme werd node gemist,
de laatste tijd. Gelukkig was er toen Hans Schepers. Meer dan een schrijfmaatje: altijd bereid
mee te denken over welk onderwerp dan ook. In discussies met jou vond ik een doorbraak
voor hoofdstuk 7: prototype matching. Vele anderen droegen steentjes bij: Hans van den
Berg, Eric Boer, Thomas de Boer, Rob Broekhof, Jan Broeze (co-auteur van hoofdstuk 4),
Jacques Dunselman, Felix Herrmann, Arnold Kraakman, Patrick Oonincx, Jan Paredis,
Anneke Polderdijk, Maarten Schipper, Rob Schouten, Mark Sloof, Rob van der Spek, Toine
Timmermans, Zbigniew Struzik, Henry van de Valk en Clare Wilkinson. Bedankt, allemaal!
Reena Bakker-Dhaliwal ben ik dankbaar voor de correctie van het Engels.

Gedurende de afgelopen 10 jaar werkte ik voor Agrotechnology and Food Innovations b.v.
(het voormalige ATO). Hoewel het grootste deel van dit werk in eigen beheer is uitgevoerd,
hebben zowel individuele collega’s als het instituut mij gesteund. Op een moment dat ik zelf
twijfelde aan voltooiing waren het Jan Top en Hans Maas die me stimuleerden en ruimte
gaven nog één keer aan te zetten. En vanaf 2001 hebben Jan Top en Arjen Simons bij
herhaling gezorgd voor de financiële ruimte om ook in kantoortijd aan dit onderzoek te
werken. Mijn nogal eens schuivende planningshorizon had geen invloed op jullie steun en
vertrouwen. Mede door jullie inspanning is hoofdstuk 7 deels gefinancierd uit DLO
programma 391 van het ministerie van Landbouw, Natuurbeheer en Voedselkwaliteit.

De benodigde tijd voor dit proefschrift ging zonder enige twijfel ten koste van mijn aandacht
voor familie en vrienden. Met de afronding ervan ontstaat er meer ruimte voor jullie.

Tot slot nog enige woorden voor mijn allerliefsten. Marijn, dank je wel dat je me hielp
eindelijk eens te leren typen. De laatste hoofdstukken gingen een stuk sneller! Koen en
Hanna, de grote mensenverhalen zijn af. De kindercomputer is nu echt voor jullie drieën (als
ik hem weer aan de praat krijg). En meer tijd voor sprookjeskastelen, zwemmen, de moestuin,
fietsen, molentjes, pannekoeken, de Uiver of paardrijden. Lieve Ina, ik ben nu eindelijk
“afgestudeerd” (maar hopelijk niet uitgeleerd). Dank voor je geduld en je steun. Nu jij weer!

Wageningen, november 2004

iv

v

Contents
1. INTRODUCTION ... 1

1.1. MOTIVATION OF THIS WORK.. 1
1.2. MACHINE LEARNING APPLICATION... 2
1.3. RESEARCH QUESTIONS.. 4
1.4. METHODOLOGICAL SUPPORT... 5

1.4.1. Existing Activity Models.. 6
1.4.2. Existing Tools for Designing an ML Application.. 6
1.4.3. Existing Tools for Technique Selection ... 7

1.5. THESIS OVERVIEW .. 7

2. APPLICATIONS OF INDUCTIVE LEARNING TECHNIQUES: A SURVEY IN
THE NETHERLANDS.. 9

2.1. INTRODUCTION.. 9
2.2. INDUCTIVE LEARNING TECHNIQUES.. 9
2.3. ILT APPLICATIONS.. 11
2.4. ILT APPLICATIONS IN THE LITERATURE.. 15
2.5. A SURVEY OF ILT APPLICATIONS... 16

2.5.1. Nature of ILT applications .. 16
2.5.2. Which techniques were used on what data?.. 20
2.5.3. Success of ILT applications... 21
2.5.4. Problems and Limitations of ILT Application... 22

2.6. CONCLUSIONS AND FURTHER WORK.. 27
2.7. ADDENDUM: FOLLOW UP OF SURVEY.. 29

3. MANAGING PRODUCT INHERENT VARIANCE DURING TREATMENT 33
ABSTRACT... 33
3.1. INTRODUCTION.. 33
3.2. PRODUCT TREATMENT .. 34
3.3. SUPPORTING RECIPE DESIGN AND PROCESS MONITORING .. 35

3.3.1. Current Situation... 35
3.3.2. Problem Identification... 36
3.3.3. Functionality and Implementation of PTSS... 38

3.4. AI COMPONENTS... 39
3.4.1. Handling Variance with Inductive Learning... 39
3.4.2. Prediction of Recipe Requirement by Means of Neural Networks........................ 40
3.4.3. Constraint Satisfaction for Recipe Design .. 43
3.4.4. Example: PTSS Application Demonstrated for Tulip Bulb Forcing 45

3.5. INITIAL RESULTS... 48
3.6. FURTHER RESEARCH ... 49
3.7. CONCLUSION... 50

4. GENERALIZED AND INSTANCE-SPECIFIC MODELING FOR BIOLOGICAL
SYSTEMS ... 51

ABSTRACT... 51
4.1. INTRODUCTION.. 51
4.2. CONTEXT... 51
4.3. AI MODELING TECHNIQUES.. 53

vi

4.3.1. Compositional Modeling ... 53
4.3.2. Case-Based Reasoning .. 55

4.4. CASE STUDIES ... 56
4.4.1. Wastewater Treatment... 56
4.4.2. The WaterCIME project .. 58
4.4.3. Generalized modeling with WQSM ... 58
4.4.4. Instance-specific modeling with SCS .. 62

4.5. CONCLUSIONS ... 63

5. THE MEDIA MODEL.. 65
ABSTRACT... 65
5.1. INTRODUCTION.. 65
5.2. THE PROCESS OF ML APPLICATION IN LITERATURE.. 66
5.3. TOWARDS SUPPORT OF ML APPLICATION DESIGN ... 68
5.4. MEDIA ... 69

5.4.1. The Activity Structure.. 70
5.4.2. Results of a Development Cycle .. 71

5.5. TOOLS FOR USE WITHIN MEDIA.. 72
5.6. CONCLUSIONS ... 73

6. PLANNING THE ACQUISITION OF KNOWLEDGE BY COMBINING
MANUAL AND MACHINE LEARNING TECHNIQUES ... 75

ABSTRACT ... 75
6.1. INTRODUCTION.. 75

6.1.1. Knowledge Elicitation ... 76
6.1.2. Machine learning .. 77
6.1.3. Combining Knowledge Elicitation and Machine Learning................................... 78

6.2. COST AND QUALITY ESTIMATION... 79
6.2.1. Estimating Costs of Machine Learning and Knowledge Elicitation 79
6.2.2. Algorithmic Cost Modeling ... 81
6.2.3. Quality estimation in machine learning and knowledge acquisition 82

6.3. DECOMPOSITION OF KNOWLEDGE ELICITATION PROBLEMS.. 84
6.3.1. Acquisition planning.. 85
6.3.2. Acquisition Economy... 86
6.3.3. The Decomposition Process .. 88

6.4. EXAMPLE: THE PRODUCT TREATMENT SUPPORT SYSTEM .. 88
6.4.1. Requirement Definition and Source Identification.. 88
6.4.2. Acquisition Planning ... 90
6.4.3. Pure solutions.. 94
6.4.4. Data analysis, technique selection and application.. 95

6.5. CONCLUSION... 95
6.5.1. Discussion ... 95
6.5.2. Comparison with other methods.. 96
6.5.3. Suggestions for further work ... 98

7. GUARDED SELECTION OF INDUCTIVE TECHNIQUES 99

ABSTRACT... 99
7.1. INTRODUCTION.. 99
7.2. THE CONTEXT OF TECHNIQUE SELECTION .. 101
7.3. GUARDED TECHNIQUE SELECTION.. 104
7.4. ENTROPY BEHAVIOR AS INDICATOR FOR ORTHOGONAL CLASS BOUNDARIES 105

vii

7.4.1. Orthogonal class boundaries .. 105
7.4.2. Definition of Entropy behavior.. 107
7.4.3. Class boundaries and entropy behavior.. 107
7.4.4. Prototype matching ... 112

7.5. EXPERIMENTAL EVALUATION ... 116
7.5.1. Two dimensional data ... 116
7.5.2. Multi-dimensional data ... 122
7.5.3. Applicability beyond Assumptions... 124

7.6. CONCLUSION AND DISCUSSION ... 127
APPENDIX 1. DERIVATION OF ENTROPY PROTOTYPES.. 129
APPENDIX 2. QUEST PARAMETERS IN EXPERIMENTS OF SECTION 7.4 130
APPENDIX 3. DESCRIPTION OF DATA SETS ... 131

8. CONCLUSION.. 133
8.1. SUPPORT NEED FOR APPLYING ML TECHNIQUES.. 133
8.2. DESIGNING LEARNING APPLICATIONS... 134
8.3. SELECTING LEARNING TECHNIQUES... 135
8.4. IMPLICATIONS FOR THE APPLICATION OF MACHINE LEARNING TECHNIQUES 136

REFERENCES... 139

SUMMARY... 149

SAMENVATTING... 153

viii

1

1. Introduction

This chapter is based on: F. Verdenius, A.J.M. Timmermans & R.E. Schouten, Process Models for Neural
Network Applications in Agriculture, AI Applications, 11 (3), 1997, pp. 31-46, and on F. Verdenius & R. Engels,
A Process Model for Developing Inductive Applications, in: W. Daelemans (ed.), Proceedings of Benelearn
1997, Tilburg, pp. 119-128

1.1. Motivation of this work
This thesis considers methodological support for practical application of machine learning
techniques. The methodological support focuses on how to use these techniques in solving
real-world problems. As such, the focus lies on how to best design solutions and on technique
selection in order to make optimal use of available techniques. It is explicitly not the intention
to support technique tuning towards optimal performance on a specific data set, nor on
designing new technique variants to solve a specific new problem type.

According to many publications in the last decade, machine learning (ML) is ready for real
world application. “A sign of a science maturing is when its applications start to evolve in
number and quality. Machine learning (…) has now reached such a level of maturity.
Especially since the beginning of the nineties, ML algorithms, tools and techniques are being
used more and more extensively for solving real-world problems.” (Rudström, 1995).
“Applying machine learning techniques to solve real world problems has gained more and
more interest over the last decades.” (Engels et al, 1997b). “The ultimate test of machine
learning is its ability to produce systems that are used regularly in industry, education, and
elsewhere” (Langley & Simon, 1994). “In the last decade, we have seen an explosive growth
in our capabilities to both generate and collect data.” (Fayyad et al, 1996). But many agree
that some obstacles still have to be overcome. “Because the objects of study are intended to
have practical utility, it is essential for research activities to be focussed (in part) on the
elimination of obstacles that impede their practical application” (Provost & Kohavi, 1998).
Moreover, “it is difficult for new technologies to be accepted, particularly in fields where
well-assessed, although limited, classical software development methods exist” (Saitta & Neri,
1998).

The above citations, by various authors who have worked on the application of applying ML
techniques in practice, characterize the starting position of the research in this thesis. In the
mid-nineties, a vast amount of ML techniques was available (see Mitchell, 1997; Berthold &
Hand, 1999; and Hand et al., 2001 for overviews). The industrial application of ML
techniques has become a self-standing research subject. It was the subject of a number of
workshops, special events and publications, not only in the ML community (Aha & Riddle,
1995; Kodratoff & Moustakis, 1994; Engels et al., 1997a, 1998) but also in specific domains1.

1 Agriculture: IFAC workshops on AI in Agriculture; Lokhorst et al., 1996 ; Verdenius &
Hunter, 2001; Holmes & Smith, 2001. Medicine: special sessions on Machine Learning in
Medicine and Biology in the International Conference on Machine Learning and Applications
series. Engineering: Minton, 1993 ; Chang, 2002. Bioinformatics: Hunter, 1993; Baldi &
Brunak, 2001, conference series Intelligent Systems for Molecular Biology (ISMB); special
session Machine Learning in Bioinformatics on International Conference on Knowledge-
Based Intelligent Information & Engineering Systems 2002; Machine Learning in
Bioinformatics conferences; Computational Systems Bioinformatics Conference; IEEE
Computer Society Bioinformatics Conferences.

2

Machine learning researchers and technology developers use applications to test new
techniques, and to understand the technical opportunities and limitations in practice. The
emphasis of their work is not on industrial but on technical aspects of the application.
Industrialists, on the other hand, see in ML tools the opportunity to exploit the hidden
potential of the ever-expanding databases.

In applied research the main goal is to bring academic concepts towards industrial application.
Much of the above mentioned projects have applied ML techniques in a technology-push
setting: the developers have a technology and find a way to test the practical applicability of
the technology. From an industrial point of view however, the gap between a problem and its
solution is not so much the technology as it is the realization of specific application and
business goals. Whether it is the implementation of traceability in production and distribution
chains, the application of information and communication technology in business processes,
the adaptation of mobile communication by the public, or the (non-)use of the abundantly
available functions on consumer electronics, the critical success factor is the fit between
specific goals in the real world and the functionality of a system.

If machine learning bears the promise of solving industrial problems, there must be
instruments that translate the requirements from the real world into requirements of ML
techniques. During a number of ML application projects it was apparent that this translation is
not always straightforward. And although sometimes adaptation of techniques is required (e.g.
Verdenius, 1991; van Someren et al, 1997), technological capabilities are often not by
themselves the restrictive constraints. Therefore, this work originates from the need to
translate real world requirements into working solutions, where ML techniques play the role
of useful resources.

1.2. Machine Learning Application
With the term machine learning we refer to computer algorithms that formulate models on the
basis of experience (Mitchell, 1997). In their simplest form these programs take a data set,
and formulate some model of the data content. Figure 1.1a depicts an explorative setting that
is often encountered in data mining (DM) or knowledge discovery in databases (KDD). For a
single data set, a number of models is generated and each model provides new insights in the
domain. The interpretation of the model is left to human analysts. Figure 1.1b presents a
setting where a model is derived from data and deployed by an interpreter to regularly process
new, previously unseen, data. The goal of the learning step is to acquire a static model. Figure
1.1c presents the setup of an adaptive system. To improve predictive quality of the learned
model, the discrepancy between the factual output and the predicted output on the basis of the
learned model is used to re-learn. In this way, a learning system can continuously improve its
performance and adapt to a shifting concept. Often these application types are considered to
require different forms of methodological support. As a result of the popularity of DM and
KDD, various approaches for methodological support have been proposed (Weiss &
Kulikowski, 1991; Garner et al., 1995; Adriaans & Zantinge, 1996; Fayyad et al, 1996;
Chapman et al., 2000). Methodological support for DM considers the use of machine learning
techniques as a stand-alone process. Consequently the mapping between input and output
remains simple and singular. Some authors have proposed general approaches without
specifying the type of application (DTI, 1994; Brodley & Smyth, 1997). For the adaptive
system approaches dedicated methodologies have not been identified. In those cases
practitioners are left to combine available general-purpose ML approaches with general
software engineering (Sommerville, 1996) and knowledge engineering (Chang, 2002)
approaches. In the latter approaches some attention is paid to the definition of the embedding
system.

3

The assumption that underlies this thesis is that one approach can cover all three types of
applications. In summary, the result of a ML application project can be a set of models for
human interpretation, a static model with an accompanying interpreter, or an adaptive system.
In general, we refer to all three types of result with the term system.

Typical tasks that ML techniques support include:
• Classification: for an instance I, find a class c∈ {c1, c2, … cn} with finite n,
• Numerical prediction: for an instance I, find a real-valued attribute i∈ℜ and

Learning is the activity of providing, from data, models to support classification and
numerical prediction. Many of the considerations that are discussed in a classification context,
e.g. methodological support and technique selection, can be directly translated to techniques
for numerical prediction.

Learner Model

Input &
Output Learner ModelModelModel

Learner Model

(a)

Input &
Output Learner Model Interpreter

Input

Output’

(b)

Input &
Output Learner Model Interpreter

Input

Output’

Reward

Fact

(c)

Data
set

Software
module Model Feedback

Figure 1.1 Configurations of machine learning techniques for (a) explorative learning,
(b) one time knowledge acquisition and (c) adaptive system.

4

Apart from the basic task, classification or numerical prediction, the functionality of a ML
application is also defined by the pragmatic deployment. Kodratoff et al. (1994) for instance
distinguish between pattern detection and identification of hidden patterns as separate tasks.
In terms of Figure 1.1, the difference between classification and pattern detection is whether
the result used is the output of the interpreter (a
prediction of the class of a new, unseen case) or a
conceptual understanding of the learned model. In
other words, the application of the ML technique is a
combination of the technical functionality of the
technique and the pragmatic use of the outcome in
the real world.

The area of machine learning is a sub-field of
Artificial Intelligence with close relations to
inductive statistics and neural networks (see Figure
1.2). In this thesis we refer to machine learning
techniques as being techniques that learn
classification models and numerical prediction
models in a supervised context. Machine learning
techniques play a role in data mining, knowledge
system construction, adaptive control and robotics.

Data mining (DM) is the application of (machine
learning) algorithms for extracting patterns from
data. One of the often-encountered applications of DM is knowledge discovery in databases
(KDD), which is the process of “… identifying valid, novel, potentially useful, and ultimately
understandable patterns in data.” (Fayyad et al., 1996). Apart from mining the data in search
for meaningful patterns, KDD includes additional steps, such as incorporating prior
knowledge, data collection and interpretation of the results in the application context. Often,
this process is “… driven by goals that are defined according to a problem description
representing the needs of an (external) agent.” (Engels & Studer, 1996). Over the last decade,
DM and KDD have been very successful areas of application for ML techniques (Adriaans &
Zantinge, 1996; Fayyad et al., 1996; Hand et al., 2001).). In DM, the analyses of data that
results in a model is essentially the goal of the project as the resulting model supports
(managerial or other) decisions. Whether it is used to improve the hit rate of a commercial
mailing campaign or an identification model for craters on a photo of an extraterrestrial
surface, the generated result is handed over to a (mostly human) actor for further processing.
Knowledge system construction on the other hand results in an operational software system.
The machine learning component is deployed to acquire a knowledge model that is included
in the system. In addition the ML component may also be used to maintain and update the
knowledge model. From now on, when talking about ML application this refers to the use of
ML techniques for data mining and knowledge system construction.

1.3. Research Questions
The central goal of this work is to develop methodological support for industrial application
of machine learning. For such support to be useful, it must correspond with current practices
as well as fix some of its shortcomings. Although a number of projects generated valuable
experience with the application of ML techniques in an industrial context (e.g. Verdenius,
1991; Verdenius, 1996; Verdenius & Broeze, 1999), these were insufficient as a basis for
concrete methodological development. Nevertheless, the project experience was useful in
providing the motivation to further develop the requisite methodology. Firstly, the desire to

Machine
Learning

Symbolic
AI

Neural
Networks

Inductive
Statistics

Figure 1.2 Machine learning is
closely related to a few other
disciplines.

5

ground this research with an understanding of the problems of applying machine learning
techniques for industrial application leads us to investigate the question:

1. What are the experiences and the limitations in industrial application of machine
learning techniques?

Secondly, in order to offer the methodological support to a ML application there has to be a
methodological framework. Many of the previously defined process models focused on
technical machine learning aspects, thus ignoring the broader connection between a machine
learning module and the embedding system. Thus this leads us to investigate further the
following question:

2. Can a model be formulated that both considers the design issues for machine
learning modules as well as the integration of the machine learning module in the
embedding system?

Finally, two methodological questions persistently reappear independent of the application
domain and independent of the question whether it is a data mining or knowledge system
project as follows:

3. Given the required overall functionality of the end result, can we learn or elicit one
model to supports the whole functionality? If not, how can we identify a good
decomposition of the overall functionality in sub-tasks, and how can we identify sub-
tasks that can be realized by means of a machine learning implementation?

and,

4. Given the input data and output data for a specific sub-task, what machine learning
technique is most suitable for realizing the defined sub-task?

1.4. Methodological support
What form does methodological support take? In software and knowledge engineering a long
tradition in development methodologies exist (e.g. Sommerville, 1996; Chang, 2002). The
development of machine learning applications is in this thesis seen as a sub-discipline of
software and knowledge engineering. The support software engineering methods offer
concern two major aspects of system development (e.g. Van den Broek, 1981):

• Activity model: An activity model defines a series of development activities the outcome
of these activities being a working application. In some activity models there is a very
explicit phasing. In such a case, the transition between phases is strictly regulated, e.g. by
the delivery of specific end products (e.g. System Development Methodology; Turner et
al., 1990). In other models, the phasing is less explicit. In these cases, activities concern
aspects of the end-product that need to be considered, without prescribing a fixed order
(e.g. CommonKADS, Schreiber et al., 2000). The main approaches are the waterfall
model, the prototyping model, and the spiral model. In the waterfall model, the process of
system development is linearly organized in a series of steps that are followed one-by-one.
Typically, the consecutive steps include analysis, requirement definition, system design,
construction, implementation, evaluation and maintenance. Every phase is concluded with
the delivery of a product. In the prototyping model, the system development is cyclically
organized. Every cycle realizes a next version of a prototype. Based on feedback from
experts, the development goals are updated and a new cycle is initiated. The promise of
prototyping is to deliver applicable results as early as possible. In the spiral model, the
short, cyclic planning and control process of the prototyping approach is used. In each
cycle one can choose a more traditional analysis-design-construct approach or a

6

prototyping approach. The activity model to be developed for machine learning
application is intended to cover those machine learning aspects that are complementary to
existing approaches. As such, it will define andproducts per activity, without offering a
strict phasing.

• Development tools2: A coherent set of technical concepts and tools that support the actual
system design, construction and implementation. For different phases of the development
process, for different types of software, a large number of tools and formalisms have been
developed, examples being ISAC (Lundeberg et al., 1985), NIAM (Nijssen & Halpin,
1989), OMT (Rumbaugh et al., 1991) and UML (Fowler & Scott, 2000).

In knowledge engineering most methods link to one of the existing process approaches in
software engineering and focus on providing the technical concepts and tools that are needed
to develop knowledge systems (e.g. CommonKADS, Schreiber et al, 2000). In
CommonKADS, the spiral approach is deployed. The focus of the approach is on specifying a
set of models for all relevant aspects of the knowledge system and on providing tools to
support model development and system implementation.

For machine learning applications, the methodological support has focussed on data mining
and knowledge discovery in databases. The activity models that have been developed to
support DM and KDD (Adriaans & Zantinge, 1996; Fayyad et al., 1996) aim at the analyses
of data and the delivery of a model. The activity models are exploration oriented and typically
describe the goals and products per phase. Technical toolkits (e.g. Clementine3; WEKA,
Witten & Frank, 2000) support the activities in the model. However, the support is less for the
application of machine learning in knowledge systems. In this scenario, the ML component
operates in a complex environment that defines the development goals. In addition the
resulting product must operate in collaboration with other components.

1.4.1. Existing Activity Models
Many of the models that have been provided for DM and KDD fall into the category of
activity models (Adriaans & Zantinge, 1996; Fayyad et al, 1996; Brodley & Smyth, 1997;
Chapman et al., 2000). The models provide a subdivision of an application project together
with a definition of the results that have to be delivered. Brodley & Smyth (1997) restrict
themselves to the main steps of the process, whereas Chapman et al. (2000) provide a detailed
subdivision of the development process, with guidelines for each step guidelines of the
results. Most of the approaches however do not provide actual tools or knowledge models in
order to derive that result. Adriaans & Zantinge, for instance, provide a comprehensive set of
activities of the KDD process (1996, pg. 38). In this list of activities they distinguish a data-
mining step that results in a learned model and subsequently they provide an overview of the
data mining algorithms. However, support in how to select the algorithms, how to select the
models, and how to identify the task to mine for is not provided. Apart from the general-
purpose activity models there are also activity models that focus on one type of technology,
for example the neural network approach of DTI (1994).

1.4.2. Existing Tools for Designing an ML Application
Activity models support the ML user in what to do without necessarily providing support on
how to do it. There are also tools that support system design. Such approaches give guidelines

2 We consider a tool to be a set of detailed guidelines on how to carry out design, analysis or
implementation activities. These guidelines may or may not be implemented in software.
3 www.spss.com/clementine

7

and tools for defining system functionality. OMT (Rumbaugh et al, 1991), CommonKADS
(Schreiber et al., 2000), MLT (Kodratoff et al, 1994) and UGM (Engels, 1999) are examples
of design methods, the latter two in the area of machine learning. And although many of these
approaches consider control of the design process, their main orientation is the technical
support of the design process (Kroese et al, 1994).

1.4.3. Existing Tools for Technique Selection
In contrast with the design tools, technique selection tools focus on the actual operation of
techniques within a given definition of the functionality. Straightforward approaches include
the use of (a few) preferred techniques and brute force comparison. In the former case, a small
set of techniques is used where new problems are reformulated and transformed in order to
achieve the best possible result on the data set at hand. In the latter case, a problem is
processed by a large number of techniques. The quality of the results is assessed according to
some measure, and consequently the best technique is selected. Both approaches use ML
workbenches such as Clementine4 or WEKA (Witten & Frank, 2000). These tools facilitate
the exploration of various data configurations, techniques and technique settings. Performance
comparison on the basis of cross validation (Schaffer, 1993) allows for the identification of
the best-operating set-ups.

In the literature, the subject of technique selection has generated much debate (e.g. Salzberg,
1995), because how we decided what constitute best is relative. For example, what techniques
perform ‘best’ is contextual dependant on whether the focus is on predictive accuracy, the
cost-effective classification accuracy, the number of attributes to achieve classification, or the
most comprehensive model. An obvious and often applied choice is to focus on predictive
classification accuracy. Abundant comparative studies are available, but the results do not
give a clear picture on the relation between problem definition and technique (Lim et al, 2000;
Kiang, 2002; Michie et al., 1994, MetaL 2004). It is generally accepted in the ML community
that cross validation (Schaffer, 1993) gives a reliable impression of the predictive accuracy of
a technique on a data set.

Many projects, for instance the MLT (Kodratoff et al. 1994), Statlog (Michie et al., 1994) and
MetaL (MetaL, 2004) projects, have tried more principal approaches to support technique
selection. MLT heuristically relates a number of factors to preferred techniques. StatLog and
MetaL try to generalize from the performance that a group of techniques scores on a number
of data sets. One of the problems with these approaches is that the techniques and data sets
that are used in these approaches do not give a total overview over the space of possible
techniques and data sets (e.g. Kanters & Wets, 1997). Consequently it is unclear how the
results of these projects can be generalized to other data sets.

1.5. Thesis Overview
The aim of this work is to support system developers in using learning techniques in their
daily practice by offering principled tools that find their motivation in practical problems in
the application process. Therefore, the starting point of this study is a survey of application
projects using ML techniques (Chapter 2). What problems do the workers experience when
applying ML techniques in their daily practice? What are the strengths and weaknesses in
such conditions? Chapter 2 identifies two areas where further support is needed:
• Identification of potential tasks for using machine learning during decomposition of

complex tasks; and

4 http://www.spss.com/clementine

8

• Selection of the most appropriate machine learning technique for a specific problem.
This corresponds to the research questions 3 and 4 of section 1.3.

Chapter 3 and 4 provide practical experience in applying both learning and knowledge based
components. Chapter 3 describes the design and implementation of a system for the planning
of fruit treatment. The system combines machine learning and knowledge based components.
Chapter 4 discusses the design and deployment of modeling approaches in wastewater. In
modeling microbiological processes, a knowledge-based approach for compositional
modeling is followed. In a control application with little human expertise, an adaptive
learning solution is deployed. Both chapters discuss the resulting systems, and point to some
of the design problems.

Chapter 5 presents a hierarchical activity model, the MEDIA model. The model distinguishes
three levels of design activities, focussing on the application, the acquisition method and the
acquisition technique respectively. For each level, design tools are required. At the lowest
level the development of this tools is identified as the task for the technique developers. In the
next two chapters, approaches and accompanying tools for the two remaining problems are
developed.

Chapter 6 integrates the inductive approach in task decomposition. Given the available
knowledge and data sources, the best mix to realize the required functionality is designed. In
this case, ‘best’ is defined as the most optimal balance between costs and the quality of the
end-result. Chapter 7 deals with a new approach to technique selection. Most existing
approaches use a comparative analysis to find the best technique. By selecting techniques on
the basis properties of data, a better understanding of the results is achieved. Chapter 8
discusses the contribution of this research.

9

2. Applications of Inductive Learning Techniques: A Survey
in the Netherlands

This chapter has been published as F. Verdenius & M.W. van Someren, Applications of Inductive Learning
Techniques: A Survey in the Netherlands, AI Communications 10, nr. 1, pp. 3-20 (1997). It is a revised and
extended combination of Verdenius (1995) and Verdenius & van Someren (1995).

Abstract
Interest for machine learning techniques has increased over the last decade. In spite of this the
application practice of these techniques has never been systematically analysed. This paper
analyses the practical application of Inductive Learning Techniques in the Netherlands by
means of a survey. Results of this survey are assessed in terms of introduction of
(information) technological innovation. The application practice for these techniques finds
itself in an initial stage. Current practice is dominated by technical issues and there is little
attention for methodological issues associated with analysis of the problem and data
collection. In the paper we propose a four-level model for describing the methodological
aspects of ILT application. The current practice of application concentrates on the two
lowermost layers. Tools for developing applications concentrate mainly on the lowest,
technical level.

2.1. Introduction
The proof of a technology is in the usage. Machine Learning (ML) research has delivered a
large set of interesting learning techniques. Inductive Learning Techniques5 (ILTs) are a
subset that since long is considered to be promising for practical applications. Recently this
promise is reinforced by applications of machine learning techniques under the heading of
Knowledge Discovery in Databases (KDD) or Data Mining (DM). Applying ILTs for solving
practical problems however is not a trivial task. This chapter describes a survey of the current
practices of learning technique applications in the Netherlands. The goal of this study is to
obtain an overview of practical applications of ILTs, to assess the stage of development of
this technology, to assess the success of these applications, and to identify major bottlenecks
in ILT application.

This chapter is organized as follows. Section 2.2 presents the field of interest, Inductive
Learning Techniques. Section 2.3 presents a model of the ILT application process. Section
2.4 briefly reviews the literature on ILT applications. Section 2.5 presents and discusses the
results of the survey, focusing on a description of the state of the art, the degree of success
and problems of the application projects, and limitations in ILT application. Section 2.6
concludes. In an addendum in Section 2.7, an update of the survey with data from the online
KDDNuggets forum is given.

2.2. Inductive Learning Techniques
What are Inductive Learning Techniques? The notion of Inductive Learning is not uniquely
defined in literature (a good overview from an application viewpoint is given by Weiss &

5 The term inductive learning techniques is a heritage from early work. It is used as a
synonym for the term machine learning techniques in the other chapters.

10

Kulikowski (1991)). In our survey we use the term Inductive Learning Techniques for those
techniques that extract models as generalisations from input data. Some important classes of
ILTs are:

1) Induction of Decision Trees or Rules (RI)

 An overview of the relevant techniques can be found in Bratko et al (1996).
Frequently used examples are CN2 (Clark & Niblett, 1989) for generating rules from
data, and C4.5 (Quinlan, 1993) for generating decision trees and extracting decision
rules from data.

2) Neural Network learning algorithms (NN)

 An overview of neural network techniques is given in Simpson (1990). Examples are
error back propagation for multi-layered perceptrons (Rumelhart et al., 1986), and
self-organising maps (Kohonen, 1984). These techniques represent models in the form
of networks of processing units, interconnected by weighed links. These models can
be executed directly.

3) Case Based Reasoning (CBR),

 An overview is given by Aamodt & Plaza (1994). By CBR we mean both instance
and exemplar based reasoning (Aha et al., 1991; Kibler & Aha, 1987) and case based
reasoning (Kolodner, 1993). Note that for these techniques the model consists in part
of the data that is the input for the learning process.

4) Genetic and Evolutionary Algorithms (GA)

 A review of GAs can be found in Giordana & Neri (1996), and an introduction is
given in Goldberg (1989). GAs are general purpose optimisation algorithms that can
be used to construct models according to criteria like simplicity and explanatory
power. Models may use any representation.

5) Inductive Statistics (Stat)

 There are many handbooks for statistical techniques. Examples of such techniques are
bayesian classifiers, statistical regression, and nearest neighbour techniques. A brief
introduction is found in Weiss & Kulikowski (1991).

Although these techniques all perform a kind of inductive inference on data, they may serve
several different purposes. An important distinction is that between data analysis and
inductive programming6. In the case of data analysis, the primary goal is to construct a model
that describes and explains a set of data (usually observations). ILTs open up the possibility
to generate knowledge in domains where detailed domain knowledge is lacking but where
data can easily be collected. The goal of inductive programming applications is the design
and construction of computer systems that can automatically apply generated knowledge. In
other words, if used for inductive programming, the ILT is used as a knowledge acquisition
tool. The induction result takes the form of a runnable model (e.g. decision trees/rules,
multi-layer perceptron and others). These runnable models can be constructed in one pass
through a data set or induction can continue during application of the model in an adaptive
computer system. In inductive programming applications, ILTs reduce the laborious and
expensive phases of knowledge elicitation and knowledge maintenance for tasks for which
real-world data become available. In CBR, knowledge is not extracted from a set of examples

6 This concept was refered to as knowledge acquisition in Verdenius (1995) and Verdenius &
van Someren (1995)

11

to be stored as an explicitly learned model. Instead knowledge is stored implicitly in the form
of a set of (selected, indexed) cases. Only at performance time, when a previously unseen
case has to be processed, similar cases are examined, and a classification or prediction is
extracted on the basis of similarity and possibly background knowledge. This inference is
(partially) inductive (Michalski, 1994). As a result it is commonly considered to fall outside
the group of ILTs. At performance time however, the functionality is not different from that
of, for instance, a decision tree classifier: in both cases knowledge structures extracted from
input data are used to infer an unknown feature of a new entity.

Traditionally within Machine Learning inductive learning comprises techniques that generate
symbolic models from data (Holland et al., 1986). Our definition is substantially broader.
Moreover, it is more application oriented, and emphasises the strong functional equivalence
that exists between these techniques in their practical application: different ILTs according to
this definition play similar roles in applications. In a survey it is obviously not possible to
include all applications of inductive statistics. Therefore we only incorporate projects that
include at least one of the ML based ILTs and report on the use of inductive statistics only in
that context.

2.3. ILT Applications
Having defined the techniques of interest, the next step is to define when a project is
considered to be an ILT application. To understand when and how ILTs are applied we must
take a broader view than strict application of an ILT to a data set. Applying an ILT is done to
solve some problem. We define an ILT application as follows:

An ILT application is a project where an Inductive Learning Technique is
used to solve a problem, either owned by one involved party or being a

Clean Data

Raw Data
Useful Data

Pre-
processing

Data
provider

Attribute
Analysis

Experiments
with ML

techniques

Anomalies

Clarification

Research
goals

Derived
attributes

Results

Analysis of
results

Figure 2.1. WEKA Process Model for Machine Learning Application, according to Garner et
al. (1995).

12

common, well known problem. The result of the project is either a system
that (in principal) can be used to support the problem owner in solving the
problem, or a body of knowledge that enables the problem owner himself to
solve the problem.

The first important aspect of ILT application is the decision/development path that has been
followed to realise the application. Several methods exist that prescribe the development of
machine learning applications in process models with intermediate decisions and milestones.
We discuss three different process models and extract general method features to evaluate our
survey results.

The first process model has been formulated in the framework of WEKA (Garner et al.,
1995), a workbench that is intended to acquire knowledge for classification tasks from large
databases. The intended application domain is agriculture; the intended project purpose is
data analysis. The WEKA approach assumes that experts in this domain know very little
about data analysis or machine learning. Consequently, ILT experts play an important role in
applying WEKA. Domain experts are intensively consulted, but WEKA is not primarily an
end-user tool. Garner et al. (1995) describe a process model for applying the system (Figure
2.1). This process model concentrates on pre-processing of data, attribute analysis and
experiments with ML techniques, all being tasks where ILT experts heavily interact with
domain experts. Data pre-processing guarantees the presence of a complete and usable data
set. This includes data extraction from structured databases into flat table format and anomaly
repair, as well as transformation of data to suit technical requirements. Attribute analysis
aims at minimising the size of the attribute set, under conservation of the interesting
information. Experiments with ML techniques consist of processing the data set with
available techniques (by means of brute force experimentation), experiment evaluation and
post-processing of results.

The WEKA process focuses on those process steps that directly relate to the operation of the
ILT techniques. WEKA directs towards data-analysis and does not address possible fielding
of ILT application results. Consequently, the WEKA process model does not contain ILT
application definition and design or data definition activities that analyze user requirements.

 1. Analysis of Domain Specific Factors
• Application Factors
• Data Factors
• Human Factors

 2. Model/Algorithm Selection
• Model Representation
• Estimation Criteria
• Search Method

 3. Test and Validation

 4. Operational Use

Figure 2.2 The application development process for machine learning techniques
according to Brodley & Smyth (1995).

13

Furthermore the model does not concern any aspect relating to the management of the
project. Finally it is striking that WEKA relies on brute force experimentation for identifying
the optimal ILT (configuration).

The other process models aim for inductive programming projects. Brodley and Smyth
(1995) present a four-step approach that aims at developing a fielded ILT application for
classification tasks (Figure 2.2). The approach they present consists of four phases: (1)
analysis of domain specific factors, (2) model/algorithm selection, (3) test and validation, and
(4) operational use. The first phase analyses factors arising from the environment of the
application. The second phase uses the outcome of this analysis to select a learning algorithm.
The third phase focuses on the development of the ILT model. When completed, the model
can be used.

The main emphasis of this approach lies in the first two phases. The domain factors to be
analyzed are extensively described, and the aspects of models/algorithms to consider are
moulded in three components: (1) model representation, (2) estimation criteria, and (3) search
method. How the domain factor analysis is used in algorithm selection is partially described,
but not fully formalized. Under test and validation of the model reside the processes of
deriving the classification model and of refining it for improvement on the basis of the

Application
Identification

Maintenance

Implement
Deliverable System

Validate Prototype

Optimize Prototype

Train & Test

Build Prototype

Design

Feasibility Study

Data
Collection

Application
Identification
and Feasibility

Development &
Validation of
Prototype

Conversion of
Prototype into
Deliverable
System

Figure 2.3 Process Model for NN application development according to DTI (1994).

14

quality of the model. Moreover, iteration based on feedback from operational use is also
included here. This phase is only briefly described.

The approach primarily aims at stand-alone usage of the resulting system/model. Integration
with other system components is not foreseen. For optimal results, model selection requires
detailed expertise of the available techniques. Detailed guidance in taking design and
development decisions is not presented. Summarized, Brodley & Smyth present an approach
that elaborates the process of requirement definition and model selection. They pay less
attention to data preparation, the actual usage of the algorithm, and the structure that is
necessary to manage learning projects.

This last point is one of the main focuses in yet another approach as presented by the UK
Department of Trade and Industry (DTI, 1994; see Figure 2.3. for the proposed project life
cycle). DTI presents a detailed approach for developing NN applications, which covers all
relevant levels of project realization. On the project management level a combination of the
waterfall approach and the Boehms spiral model for system development is used
(Sommerville, 1996). At this level it is tentatively described which (type of) decisions have to
be derived in each phase and which type of documents/products should be delivered. A very
important aspect at this level is to gain and keep the confidence of clients that the use of
neural technology is economically justified. On application design level, the approach
specifies the type of analysis to perform and design decisions to take, e.g. discrimination of
functionalities that can be encountered. On the technique level, the method is focused
towards neural networks, providing heuristics on technique capabilities, and selection criteria.
In general, the formal aspect of DTI is not very well developed. The main focus is to provide
an overview of the development process in addition to monitoring and control possibilities
for the management of the application development.

Therefore we can conclude that there is no uniform project approach. These three approaches
do however implicitly define the process of ILT application on three levels and one control
component:

1) Application level: This consists of analyzing a problem encountered in the real world,
defining the scope of the solution, identifying resources (such as data, or sources of data,
human experts, existing knowledge systems) for solving the problem, and constructing a
conceptual model of the problem, often in the form of a decomposition of a problem into
sub-problems. ILTs are a class of techniques that can be used to solve an entire problem
or a sub-problem. Other possibilities are knowledge elicitation from human experts,
formalized knowledge from textbooks, etc. A plan is made for solving the problem. This
can include also final stages in the project such as fielding the result of ILT application.
The results of this level are requirements of the target knowledge and descriptions of the
resources that can be used for acquiring it. An ILT application can be a data analysis or an
inductive programming problem. This difference will lead to different requirements,
resources, and plans.

2) Analysis level: Once the requirements are defined, existing knowledge and data are
acquired and an appropriate ILT must be selected. If a data set was given at the start of
the project, data must be selected and transformed to allow the ILT to be applied.
Additionally, data pre-processing is an important issue. Variables must be re-coded or
deleted in order to reduce the size of the data space. Errors in the data must be detected
and repaired. Finally, this is the level where the learning techniques must be selected. The
bias of the selected techniques need to fit the problem and the characteristics of the data
set. After all, a technique that prefers simple generalizations to complex generalizations

15

may miss complex hypotheses. And some techniques favor linear relations when non-
linear relations may be preferable for certain variables.

3) Technique level: This concerns the operation of a specific ILT. The operation of an ILT
concerns all aspects that are related to a specific technique. Once one or more techniques
have been selected, there are additional choices about parameters of the systems and their
application (e.g. cross validation methods).

4) Project Management: This concerns the control of the other three levels in relation to
financial and operational constraints that are imposed on the project. Given requirements
produce a sequence of actions, decisions, resource allocations on all three levels that
ensure realization of project goals for maximum user/client satisfaction.

This structure can describe any ILT application project and is further elaborated in chapter 5.
A particular ILT project may not have a pure data analysis or inductive programming goal.
Some other goals with different project structures are:

• Proof of concept: Primary goal is to prove the practical feasibility of an ILT
application without primary worries about the practical feasibility of the tool. All three
development levels may be included, but focus is on all technical activities within the
levels.

• Technique comparison: primary goal is to compare performances of several ILTs on
one or several tasks in order to solve a specific problem. Main focus is on technique
operation and the technique related activities within the ILT development level.

Earlier we indicated our research interest for this survey. The question that we want to answer
with this survey concerns ILT application projects. Specifically our research questions on
practical ILT applications are as follows::

1) What are the characteristics of ILT projects such as duration and number of people?
Who applies which technique and for what kind of application? Although ILT research
has a long history, ILT is new technology from the application perspective. Therefore,
we consider it from the perspective of information technology applications.

2) Which ILT techniques are used in applications? How successful are the applications
and can we identify key factors for success?

3) Can we identify problems and limitations that hinder applying ILTs? Can we relate
them to application aspects? Can we identify research topics to facilitate future ILT
applications?

2.4. ILT Applications in the Literature
In the literature, many reports on ILT applications can be found. Reports on ILT applications
in literature fall in several categories: description of individual projects (e.g. Evans & Fischer,
1994; Simoudis et al, 1995; Timmermans & Hulzebosch, 1996; Verdenius, 1991; Giordana et
al., 1993), overviews of projects (Kodratoff & Moustakis 1994; Langley, 1993; Langley &
Simon, 1996; Rudström, 1995) and application tool descriptions (MLT: Kodratoff et al.,
1994; Sleeman, 1994; WEKA: Garner et al., 1995; Clementine: Shearer & Khabaza, 1995).
Kodratoff et al (1994) give a classification of ILT techniques by their function along various
dimensions of learning problems, such as the skills of the ML user, the application goals and
the learning task.

What can we learn from these reports on the above posed questions? Most publications are
triggered by positive project results thereby indicating that it is possible to use ILTs to solve

16

complex problems. Many of the reports in the literature however stem from research oriented
projects. This results in a specific bias on an overview extracted only from literature
references. Consequently the state of the art in ILT application (i.e. an answer to question 1)
cannot be obtained from literature. Moreover, data that can provide the answer to the second
question will also be interpreted with a positive bias. Thus, the existing literature seems a
poor basis for answering the questions. A survey among real world practitioners seems the
only way to obtain more detailed insight. Such a survey has, until now, neer been initiated.

Technique selection is handled in different ways in ILT application projects. Mostly, the
whole problem of technique selection is ignored, especially in case descriptions. Apparently,
in many projects an a priori selection of techniques has been made. And although the
motivations for these projects are hardly ever explicit, plausible motivations include:
technique driven projects, (lack of) availability of knowledge on alternative techniques and
(lack of) availability of tools. Technique selection is a major issue for the workbenches. In
the MLT project a special tool is constructed to guide the user towards a set of techniques
that is most suited for solving his problem. The knowledge used in this system is
concentrated around technical considerations. However, an outcome of the StatLog project
(Michie et al., 1994) is that it is difficult to foresee, purely on technical grounds, which
technique is most preferable for a specific problem. WEKA comes with a fundamentally
different approach to technique selection in the form of brute force induction. In the approach
presented by Brodley & Smyth (1995) pragmatic arguments are presented, such as
availability of tools, availability of knowledge, and availability of application requirements.
We use the survey to get a better understanding of how practitioners select techniques and
how they use the various inconsistent guidelines and approaches that are found in the
literature.

2.5. A Survey of ILT Applications
Until now, no large-scale study has assessed the questions of Section 2.3 for real-world
application projects. Therefore we have initiated a survey for applications of ILTs. For
reasons of practical feasibility, we have restricted ourselves to assessing the situation in the
Netherlands. The set of addressees for our survey include commercial companies, research
institutes and universities in the Netherlands. The initial address base was collected on the
basis of foreknowledge on the current practice of ILT application. Additional addresses were
gathered on the basis of received responses. To further increase the number of surveys, we
placed a call for ILT applications in the magazine of the Dutch association for AI (NVKI).
Lastly a user association for NN, the VANN, have made their database of members available
for sending the survey.

The questionnaire we have applied consists of three sections. Section 1 focuses on general
company data. Section 2 collects superficial data for specific projects. Section 3 collects
detailed project information. Each respondent could provide information on a maximum of 3
different projects. Section 3 is not completed for several reported projects by their
respondents. Between end of May and beginning of September 1994, 177 forms were sent
off. Out of 59 returned forms, 56 contained useful data. After data entry and initial pre-
processing of the data, analysis took place on the basis of cross tabulation. Statistical signifi-
cance is measured on the basis of Fisher's exact test, Likelihood ratio and Mantel Hearzel. In
this text totaled results are presented.

2.5.1. Nature of ILT applications
All non-technical characteristics of the projects were considered within the classification
nature of application. The results of this area are subdivided into the following sub-fields:

17

application area, application domain, company type, project size in throughput time, project
size in labour time, project focus, importance of ILT and miscellaneous application aspects.

Figure 2.4 shows an overview of ILT application areas and company types. The major
application areas include government, industry, research, agriculture, finance, medicine plus
hardware and software companies among others. The types of companiers that constitute the
primary users of OLT applications classify themselves as (hard- &) software company or as
research organization. It is notable that several specialized companies in the field of ILTs
consider themselves to be research organizations despite their independent commercial status.

Figure 2.5 presents an overview of the project size. The vast majority of the projects are
scheduled for a period shorter than 4 years. In fact, almost half of the projects are scheduled
for less than one year. This is further evident when focusing on projects that had already been
realized. In that case the ratio between projects < 1 year and > 1 year is even more skewed.
These results do not correlate with the technique that is used. The fact that the majority of the
ILT projects had a research focus is clearly illustrated by Figure 2.6. The importance of the
ILT-part to the project is expressed in Figure 2.7. In ILT application projects most time is
spent on the ILT system application. Slight differences occur per technique; Genetic
algorithms (GA) show high percentages over all, while neural networks for financial
applications showed a relatively small share of the ILT share.

We have extracted from the textual responses several application aspects, i.e. task, function
and domain of the ILTs (Figure 2.8). Classification is the dominant task where ILTs are used.
However, the most important functional domain is application of ILTs in industrial process

Application Area & Company Type

15

13

12

11

8

6

5

5

1

1

0

0

37

32

12

7

6

0

0

14

0 5 10 15 20 25 30 35 40

Government

Chemical Industry

Research

Agriculture

Finance

Discrete Industry

Other

Continuous Industry

Medicine

Craftsmanship

Soft & Hardware

Graphical

Commerce

Research Institute

Software Company

Service Company

Engineering Company

Other Organization

Production Company

Administrative Organization

Number of Projects

Application Area
Company Type

Figure 2.4 Application area and company type applying ILT (per project)

18

environments. For these applications, process modeling is of major importance. Another
important functional domain is found in database related applications, where in marketing
databases particularly play a significant role.

A major differentiation (for the functional domain) is between product oriented and
scientific/methodological projects. In addition, some applications are not exclusively directed
with learning as a goal or an end, but involve a comparison between different techniques or
tools for other purposes than mere application oriented technique selection. Within these
particular applications, there appears to be a category of proof-of-principle projects where a
technique is experimentally evaluated. From the survey a typology of projects emerges:

Data analysis (DA): In these projects, given a specific analysis question, a pre-defined data
set is given and a technique and tool is selected. The technique and tool is further fine-tuned
to derive the best data analyses. We call such a project product oriented.

Inductive programming (IP): In these projects the goal is to construct a software system to
perform a certain task. Domain analysis, data
collection and technique and tool selection and
technique tuning are all part of the project. Such
projects are also considered to be product oriented.

Technique oriented (TO): Projects in this category
concentrate on exploring one or more techniques.
Data-set and task may also be given. Such projects
were classified as scientific/methodological, where

Usage Type Freq.
Data Modelling 25
Inductive programming 41
Unknown 13

Table 2.1. Frequencies of purposes
for applying ILTs.

Project Size
(Scheduled Labour and Throughput Time; Realised Throughput Time)

36
34

5

2 2

27

31

8

1

12

27

7 7

0

4

1

32

0

5

10

15

20

25

30

35

40

<1 year

1-4 year

5-9 year

>10 year

M
issing

<1 year

1-2 year

2-3 year

3-4 year

4-5 year

>5 year

M
issing or

U
nknow

n

N
um

be
r o

f P
ro

je
ct

s

Scheduled Labour Scheduled Throughput Time Realized Throughput Time

 Figure 2.5 Project size. The left side depicts the scheduled size (labor + throughput time).
The right part shows the throughput time for projects that have already been realized.

19

exploration, development, and build-up of experience are important motivators.

Not all responses can be classified in one of these three groups due to incomprehensible
information. Moreover a few respondents give information on the domain functions realized
by applying ILTs, without describing how they are realized.

Another important aspect of ILT applications is the purpose of application, application area
and analytical task. The differentiation between data analysis and inductive programming as
the purpose, as reported by respondents, is presented in Table 2.17.

Finally, it is interesting to see what roles the respondents play in the project. Especially the
ratio between internal roles (developer for own risk or internal client) versus external roles
(client, developer for external client) is informative, because it gives an impression of how far
the application of ML techniques have penetrated into industrial practice. From Table 2.2 it
can be concluded that purely commercial projects (i.e. projects where external clients are

7 The high number for Inductive programming (IP) might be inaccurate due to definition
problems. Within TP, we have further distinguished four IP subtypes: one-time TP, initially
and manual update, initial with automatic update, permanent. For many respondents that
report application of ILT for one-time IP or IP with manual update, it seems the case that they
really apply Data analysis, in the sense that the output of the ILT is not used for performing
specific reasoning tasks in a (human or computer) KBS. The frequencies for one-time, initial
manual, initial + automatic and permanent IP was: 8, 9, 9, 15.

Project Focus

21

23

25

8

16

0 5 10 15 20 25 30

Research

Applied Research

Feasibility Assessment

Private Risk

Commercial Project

Number of Projects

Figure 2.6 Application focus of the project.

20

involved) play an important role as more than 50% of the projects concern developments for
commercial clients.

2.5.2. Which techniques were used on what data?
If we focus on the applied ILTs (Figure 2.9), it is evident that NN are the most frequently
utilized. RI and GA are equally popular and are the second most employed ILTs. It was
noticed both for NN and for RI that one specific technique variant dominates (NN: error back
propagation: Rumelhart et al., 1986; RI: C4.5/ID3: Quinlan, 1986 & 1993 respectively).
Users of inductive statistics on the other hand
indicate names of various specific techniques
that are used in their projects. For GA and
CBR, respondents hardly give any further
specification of the applied variant of the
technique, though some tools are mentioned in
the case of GA. Probably, the older tradition of
inductive statistics, with a longer history of
development and application, plays a role. All
reported applications were purely inductive “batch mode” applications and did not involve
interaction with domain experts or the use of expert knowledge in addition to the data.

Table 2.3 shows the relationship between technique and characteristics of the data set. Neural
nets and statistical techniques are used for larger data sets than symbolic techniques. It is

Role Freq.
Client 3
Developer for own risk 19
Developer for internal client 7
Developer for external client 41
Other 16

Table 2.2. Roles in projects (more than
one answer per project).

ILT Part of Projects

16
14

11

31

7

13

18

11

35

2

0

5

10

15

20

25

30

35

40

<25% 25-50% 50-75% 75-100% Unknown

N
um

be
r o

f P
ro

je
ct

s

Finance Labour

Figure 2.7 ILT part of the project (Finance and Labor).

21

difficult to explain this choice since respondents rarely clarify their motivation for the chosen
technique.

2.5.3. Success of ILT applications
A first indication for success is the number of (pre-)operational systems. Of the 79 projects,
25 projects delivered results that became operational, either as an independent system, or in
the form of a knowledge model, and 11 projects have their results in a pre-operational phase.
When systems become operational, the user/client satisfaction with the practical performance
of the system is a major indicator for success. The vast majority of respondents indicate to be
satisfaction with the accomplished ILT result. Very few projects (5) report unsatisfactory
results with an ILT and no project reports to have a very unsatisfying result. On the other
hand 16 project report very satisfying results and 22 projects report the results as satisfying
(see Figure 2.10). However, for 36 projects this question is not answered because the ILT
application is not yet in operation. Mostly this is due to ongoing work at the time of the
survey. Of this last category 6 projects are cancelled. Main reasons for canceling projects
reside outside the ILTs (mainly difficulties in getting the proper data) or in the ILT results
(insufficient prediction/classification results). This illustrates the importance of data pre-
processing, such as attribute selection, as well as getting good clues for project risks as a
result of technique capabilities. This can be found as separate issues in the process models
discussed in Section 2.3.

We hoped to gain insights into the successfulness of the projects, and to be able to relate this
to critical factors for project application. The profile of responses we have received makes it
impossible to obtain clear insight as there is little variation in answers. There may be several
causes for this lack of variation in responses. First, there may be a commercial or public
relations bias within companies. Such a bias might, in spite of the earlier signaled openness,
prevent to admission of disappointing experiences. A second reason may be that many
applications are not completed so that successfulness is not yet assessable. Projects that are
likely not to succeed are not completed (e.g. if performance is low). By applying other
techniques to resolve a problem, the resulting application may not be considered an ILT
application any more. Therefore, we are not able to analyze success factors directly due to a
deficiency in response variation.

Technique #Records #Attributes #Binary Attributes
Used Not Used Used Not Used Used Not Used

NN 9645 2371 605 23 202 47
RI 5207 7396 173 483 23 131
GA 7798 6715 839 303 1 130
Stat 21866 3486 275 431 406 35

#Categorial Attributes %Unknown #Classes
Used Not Used Used Not Used Used Not Used

NN 14 17 10 8 7 7
RI 24 12 10 7 8 6
GA 25 19 0 10 2 8
Stat 8 17 10 9 7 7
Table 2.3. Relation between technique and several aspects of the applied data set

22

2.5.4. Problems and Limitations of ILT Application
To assess the state of application of ILTs, we consider the introduction of ILTs in practical
applications to be a process of technical innovation. Models for assessing the state of
innovation have been proposed, both for information technology (Nolan, 1979) and for new
technologies in general (Bemelmans, 1994). Both authors assume that the introduction of a
technology develops phase-wise, where phases can be recognized on typical application
characteristics. Nolan decomposes companies into 4 aspects (Systems, Resources,
Management and Users). The characteristics of these aspects develop according to 6 phases
(Initiation, Contagion, Control, Integration, Data Administration and Maturity). The model
is descriptive; it describes often-encountered practice. The model is also normative: it states
that companies ought to experience all phases to optimally cope with information technology.
Bemelmans' model is more general and also less normative. It describes 4 phases (Initiation,
Diffusion, Consolidation and Integration) that a company cyclically goes through in coping
with new technology. Both models give lists of characteristics per state that can be verified in
practice, thus enabling the assessment of the companies’ phases.

If we look at the technical-, project- and organizational characteristics of the applications we
see that projects are relatively small, in many cases stand-alone data analysis applications.
Several respondents indicate that getting acquainted with learning technology is a major
reason for performing projects. Moreover, organization of the projects is signaled to be
difficult. Guidelines on how to efficiently organize ILT projects are hardly encountered in the

Aspects of ILT Applications

34

21

16

13

11

11

8

7

6

12

5

2

0 5 10 15 20 25 30 35 40

Classification

Modeling

Process

Database

Optical

Analytical

Signal Processing

Knowledge Acquisition

Language

Marketing

Tool Development

Human Resources

Number of Projects

Figure 2.8 Aspects of ILT applications. The first group of items refers to tasks as performed
by the ILT, the second group describes functional aspects and the last group details domain
areas indicated in Figure 2.4

23

professional literature. All these points coincide with characteristics that both Nolan and
Bemelmans attach to the Initiation phase. Also, most activities concentrate on the Technique
operation level and the ILT development level.

The proliferation of ILTs to several areas within companies (administrative, process,
marketing) on first glance seems a sign of diffusion (Bemelmans) and contagion (Nolan), but
in this case appearances may be deceptive. Application in these areas is a result of the non-
administrative origin of the technique, and not of proliferation across domains.

Positioning ILT practice in the initial phase is consistent with the fact that respondents report
a lack of a clear method for ILT application, i.e. a set of clearly defined activities to design
and implement a working ILT application for a given problem. Together with the usage of
ILT tools (software tools that support the design and development of applications for a
specific ILTs), we call this the formalization of ILT application. Figure 2.11 presents an over-
view of method and tool usage. It shows that of all projects using ILTs, 32% used no specific
method at all, while 56% applied a company specific method. Moreover, the majority of
these company specific methods is evolutionary in nature. Combined with information based
on the development steps there is reason to assume that the evolutionary exploration mostly
boils down to a train-and-test approach (e.g. Michie et al., 1994, pg. 108).

The other aspect of formalization is tool usage, indicated in the same figure. ILT tools are
applied in 36% of the projects. The other 64% use tools for the learning part that were
constructed as part of the project. Moreover, usage of other than ILT tools can also be viewed

Applied Techniques

0

10

20

30

40

50

60

70

NN RI GA Stat CBR Other

Figure 2.9 Overview of the applied ILT (NN = Neural Networks, RI = Symbolic Rule
Induction, GA = Genetic Algorithm, CBR = Case Based Reasoning, Stat = Inductive
statistics, Other = Other Techniques)

24

in Figure 2.11. A related point is the low usage of tools, especially ILT tools8. It is
remarkable to notice that almost half of the respondents use no ILT tools. As many
applications utilize standard techniques that are available off the shelf (both on commercial
and non-commercial basis), such as C4.5 (Quinlan, 1993) and back propagation neural
networks (Rumelhart et al., 1986), the usage of standard tools seems obvious. For these
techniques there are a large range of tools available for reasonable prices. In spite thereof,
people prefer to develop the code in the project. A remarkable pattern here is that neural
network users apply more tools than normally expected, while a majority of GA users apply
no tools at all. For techniques such as GAs or CBR there may be less tools available to a
broad audience. Tools that are available through the Internet are oriented more to the research
community and apparently not to practitioners.

A reason for the self-coding behaviour may originate in a technical orientation of projects and
their performers. People may be fascinated by a particular technique and probably unaware of
available tools. The same factor may also explain the large number of respondents implying
technique fixed in advance or technique is suitable justifications for the applied ILTs.
Moreover, self-coding may serve an educational purpose (learning by doing).

8 As we have seen in earlier sections, the projects are mostly limited to ILT implementation,
which indicates that the tools to support design and implementation of large systems are not
likely to be of use.

Satisfaction on System and ILT Component

14

25

3

37

16

22

5

36

0 5 10 15 20 25 30 35 40

Very Satisfied

Satisfied

Unsatisfied

Unfinished Project or
Missing Data

Total System
ILT Component

Figure 2.10 Satisfaction on system and ILT component as perceived by respondent.

25

Two specific subparts of the ILT application method are the justification arguments of ILT
selection/rejection and the consideration of alternative techniques in selecting the ILTs. The
first item, the justification arguments of ILT selection or rejection, is considered by asking for
the reasons why the applied techniques are chosen. An overview of the grouped answers
(grouping performed by the authors) can be found in Figure 2.12. The justification that was
used most often is suitability of a technique for the task. This “justification” is found sig-
nificantly more frequently for neural network projects. For GAs the reasons fixed in advance
and provides insight in results are often mentioned. Apart from projects applying GA, several
other projects had also fixed the technique to be applied. (Low) Costs and learning speed are
arguments mentioned for applying inductive statistics.

From additional textual responses it can be concluded that most projects focus on activities in
the ILT development and ILT operation layers of the model in Section 2.3. Moreover these
responses show the need for a comprehensive methodological approach of ILT application.
The presented framework may be seen as a first step towards such an approach.

The second item, the consideration of alternative techniques in selecting the ILTs, has also
been included. Of all respondents 60% indicate that alternative techniques were considered.
The distribution of considered alternative techniques can be seen in Figure 2.13.

Respondents indicate several types of problems and limitations. Two questions in the inquiry
explicitly address the problems that may arise in applying ILTs. Respondents were asked to
indicate whether, in general, the applied approach of development and the applied ILTs fit,
and to indicate shortcomings in the approach. Of the respondents 90% confirms that the
approach and the method fit. Several respondents indicated that applying the ILTs was the
entire project; one respondent indicated application of a project approach that was specifi-

Formalisation of ILT Application Development

0 5 10 15 20 25 30 35 40 45 50

Private Method

No Method

Standard Method

Not Available

Evolutionary

Other

System generation

Prototyping

Waterfall

No Tool

ILT Tool

Other Tool

Design Tool

Number of Projects

Method Used?
Method Type
Tools

Figure 2.11 The degree of formalization during ILT application development.

26

cally designed for ILT application. Moreover, it is signaled that ILTs fit well in a data
analysis project. Problems that are mentioned relate to the misfit between the approach for
applying a specific ILT and the waterfall approach; the latter is indicated to not support the
empirical search conducted with the ILT. Furthermore, some projects were cancelled due to
practical problems (lack of data, lack of reproducibility of results, problems making an ILT
application operational, and integration between ILTs and embedding system). Finally,
problems are reported on ILT issues such as lack of training and operation guidelines, and
lack of insight in technique and performance characteristic.

One general problem mentioned is the difficulty with predicting the outcome of ILT
applications early in the project. Ideally one would like to decide early in a project if an ILT
approach is likely to be successful and what it will cost to implement it as a working solution.
However, With these issues being unknown, this uncertainty is an obstacle for industrial
applications. A related type of problem occurs mainly in data analysis projects. In this case
key tasks are selecting a technique and subsequently finding the best parameter settings for
the data set. From the survey we get the impression that selection of an ILT and a tool that
implements that ILT is either not done at all, because the technique or tool is fixed from the
start, or that it is done empirically. In the latter case available tools are tested to find the
optimal parameter settings. Moreover, in these testing, train-and-test approaches dominate.
Little use is made of theoretical understanding of these techniques or experience by others
(e.g. Weiss & Kulikowski, 1991; Kodratoff et al., 1994; Michie et al., 1994). Because ILTs
often have several parameters with a range of possible values and because these parameters
interact, many experiments are necessary. Therefore acquiring and applying knowledge,

Reasons (grouped) for applying a specific ILT

34

13

11

8

6

6

5

5

5

4

3

2

1

0 5 10 15 20 25 30 35 40

Technique is suitable

Fixed in advance

Insight representation

Experience present

Robustness

No alternatives

Speed

Availability

Best tested for task

Simplicity

Best on similar tasks

Costs

Flexibility

Number of Projects

Figure 2.12 Reasons (grouped) for applying a specific ILT

27

procedures, and tools to support the search for the best technique, tool, and parameter settings
is a significant problem.

2.6. Conclusions and Further work
Our results show that companies are actually applying ILTs in practice. Concern about
modest numbers of practical applications appears to be unjustified by this data. In our limited
attempt we identified 79 practical applications, a substantial part of which has lead to
operational applications. Moreover, more than half of the projects involved commercial
clients.

The character of the applications however is often exploratory and technology-driven. We
cannot speak of established application practice and routine use of ILT tools. This is
confirmed when looking at the technical-, project- and organizational characteristics of the
applications, from which we conclude that ILT application is in its initial phase. This is
illustrated by comparing project characteristics with models for (information) technique
proliferation in organizations as provided by Nolan and Bemelmans. The proliferation of
ILTs to several areas on first glance seems a sign of diffusion (Bemelmans) and
popularization (Nolan), but in this case appearances may be deceptive. Application in these
areas may very well be the result of the non-administrative origin of the technique, and not of
proliferation across domains. The user/client satisfaction for the reported projects is
promising, and initial successes have been reported. Technical and methodological problems
however still block a wide breakthrough. The solution to these problems is not yet within
sight. Therefore transition to a next phase on short notice seems unlikely.

Considered Alternatives

0

2

4

6

8

10

12

14

16

18

20

NN RI GA Stat Other
Applied Technique

N
um

be
r o

f P
ro

je
ct

s

AltOther
AltStat
AltRI
AltGA
AltNN

Figure 2.13 Alternatives that have been considered for applied techniques.

28

The techniques that are actually used in practice only cover a small part of the possibilities
that are offered by ML research. Most applications concern NN techniques and tools.
Apparently those who apply ILTs are not acquainted with the state of the art of ILT
technology. The result is that a large number of available techniques are not found in
practical applications. The practical experiences as reported in our survey however are in
general positive.

The developments in research do not completely correspond with the applications as current-
ly realized. The emphasis in research is on refinement of algorithms, multi-strategy
approaches and the role of ML in general AI themes, such as knowledge level learning. In
applying ILTs important issues are technique selection, pragmatism and efficient production
of a working application.

With reference to the application project model, most projects seem to apply an approach
focusing on the last 2 levels of the model. Techniques are selected by experimentation from a
small pool of techniques. An explication of the steps that are followed in the process is
completely absent, so is a full consideration of all relevant factors. An approach like the one
developed by DTI, which tries to cover for such shortcomings, is only referred to once as
developed by a company for their own research and development activities.

Several methodological problems are signaled that need to be solved. Most projects seem to
lack planning and control of the ILT application process. Data selection and transformation,
technique selection, and parameter setting are either not done at all, done experimentally, or
are done in an unsystematic way. This is probably due to a lack of knowledge about these
aspects of ILT techniques and also to a lack of comprehensive tools that make a wide range
of techniques practically available.

Our inquiry gives clues as to where to look for solutions to some of these problems. We are
now studying several projects that involve the full process of identifying the problem, finding
the right approach, selecting a technique and a tool, collecting the data and applying a tool in
more detail to better understand the problems and limitations that hinder ILT applications. In
addition, we will further detail the scenario-based process model for applying ILTs in
practice, based on the four level structure. The final goal of this work is to provide a general
framework for ILT application.

29

2.7. Addendum: Follow up of survey
How has the situation evolved since 1994? Systematic follow up of this study has not taken
place. But since early 2000, KDNuggets9 organizes user polls on that may give a glimpse into
the current state. In these user polls site visitors enter their opinions and experiences on a
specific subject. The poll results are published on the KDNuggets web site. It is very hard to
draw firm conclusions about these figures, as data collection circumstances differ
fundamentally10. In our survey we individually addressed respondents, after a focused search
for potential users, whereas the KDNuggets polls are open to any site visitor. However, some
trends may be inferred. The Figures 2.14-2.16 provide material for comparison between the
situation in the Netherlands in 1994 and the KDD Nugget respondents in the past years.
Concerning technique usage over the last years, Figure 2.14 shows the application of a large
number of techniques. This contrasts with the results in 1994 (Figure 2.9 of this chapter),
where a strong dominance of neural networks appeared. First, neural networks were very
fashionable in the early nineties, especially in the research environments. Second, the number
of toolkits, allowing the experimental evaluation of many approaches, was limited in 1994.

Figure 2.15 shows a substantial penetration of standard methods in the application of data
mining techniques. Especially CRISP-DM and SEMMA11 are mentioned. Compared to
Figure 2.11 of this chapter, the changes in method application are obvious. CRISP-DM and
SEMMA were non-existent in 1994, and alternative approaches were not available to the
common users. However, as signaled earlier, many of the non-standard, company specific
methods may boil down to basic technical issues as deploying a train-and-test approach and
technique selection by cross validation. Nevertheless, approximately half of the respondents
use a non-standard method or no method at all.

Figure 2.16 shows the increasing response to the KDD Nugget survey, as well as the growth
in (KDD) tools. This illustrates that at least in the area of data mining and KDD, machine
learning kept the promise of being close to a breakthrough that it had 10 years ago.
Unfortunately, figures on the use of ML in knowledge based systems are not available.

From these results it appears that the conclusions of 1994 still hold. Methodological support
through CRISP and SEMMA focuses on structuring the explorative search for applicable
techniques. They provide no support in the combining of ML solutions with other techniques.
Problems are considered to be pure ML or DM problems per se. Moreover, over time the
technique selection problem has become even more urgent, as the number of available
techniques has expanded over time, and several toolkits are available that collect numerous
techniques. Straightforward technique selection approaches, such as train-and-test and cross
validation have not been improved, leaving them with the same drawbacks as before.

9 www.kdnuggets.com
10 KDNuggets provides a footnote on their poll webpage, stating: While this is not a scientific
poll, and some vendors have been quite active in asking their staff or clients to vote, there are
several safeguards in the poll mechanism to prevent visitors from voting twice.
11 SEMMA is indicated in the KDNuggets poll as a method. The developers of SEMMA
(www.sas.com) however indicate that SEMMA is not so much a method as well as a logical
organization of the functional toolset they provide. SEMMA stands for Sample, Explore,
Modify, Model and Assess. In content, it is close to the steps defined by Adriaans & Zantinge
(1996), Fayyad et al (1996), Engels (1999) and CRISP-DM (Chapman et al., 2000).

30

0 5 10 15 20 25

Decision Trees/Rules

Clustering

Statistics

Neural Networks

Logistic regression

Visualization

Association rules

Nearest Neighbour

Text mining

Web mining

Bayesian nets/Naive Bayes

Sequence analysis

SVM

Hybrid Methods

Genetic Algorithms

Other

% of respondents

Nov-03
Oct-02
Aug-01

Figure 2.14. The evolution of technique usage according to KDD Nuggets in the period
August 2001-November 2003.

October 02

51

12

7

23

4 4

CRISP-DM
SEMMA
My organizations
My Own
Other
None

November 03

42

106

28

6
7

CRISP-DM
SEMMA
My organizations
My Own
Other
None

Figure 2.15. Method usage in October 2002 and November 2003.

31

0

200

400

600

800

1000

1200

1400

aug-99 mrt-00 okt-00 apr-01 nov-01 mei-02 dec-02 jun-03 jan-04 aug-04
0

5

10

15

20

25

30

#of
repondents

#of
reported
software
packages

Figure 2.16. The evolution of the number of respondents and the number of different
software packages that is reported for data mining and KDD in the period of 2000-2004.

32

33

3. Managing Product Inherent Variance During Treatment

This chapter has been published as Verdenius, F., (1996), Managing Product Inherent Variance During
Treatment, Computers and Electronics in Agriculture 15, pp. 245-265. It is a revised and extended version of
the paper that was presented on the IFAC/IFIP/EurAgEng workshop AI in Agriculture, Wageningen, May 29-
31, 1995

Abstract
The natural variance of agricultural product parameters complicates recipe planning for product
treatment, i.e. the process of transforming a product batch from its initial state to a pre-specified
final state. For a specific product P, recipes are currently composed by human experts on the
basis of heuristic matches between product state and recipe features. This approach makes use
of standard recipes, that do not sufficiently reflect inherent differences between batches.
Improvement of the recipe design process requires three problems to be solved: (1) assessment
of the initial product state, (2) fixation of the recipe requirements and (3) design of a treatment
recipe. To objectively assess the initial product state, additional measurement of a specific
parameter is required. This parameter varies substantially between batches, requiring large
measurement samples. Without objective assessment however, automated determination of the
recipe requirements and recipe design is not possible. This paper describes a procedure to get
an objective initial state assessment, and presents a Product Treatment Support System that
takes an initial state assessment, and performs the process of recipe design. AI techniques are
applied at three points in the process. Induction of decision trees is used to determine rules that
are understandable to experts and that select products that are most suitable for state
assessment. Neural networks are applied to transform the assessment of the initial state into the
overall requirements of the recipe. Finally, the actual recipe is derived by means of constraint
satisfaction.

3.1. Introduction
An important focus of agricultural research is the handling of quality variances in raw produce.
The characteristics of agricultural products are represented by intrinsic product properties
(Sloof et al., 1996). The set of values for all relevant intrinsic properties for a product at one
time instant is called the product state, the average product state for a batch is called the batch
state. In general there is a large inherent variance for these intrinsic properties within one batch
of agricultural products, as well as between several batches. The impact of these variances
depends on the destination of the product (batches). For some processing industries this impact
may be minimized (e.g. by mixing or pre-processing). After possible leveling, these industries
apply normal industrial quality standards. Products for direct consumption are sorted in quality
classes. Each class definition encompasses boundary values for the product state. The class
definition may vary over time, depending on season, technical improvements etc. Consumers
select products from certain classes, meeting their quality and economic preference.

This contrasts with standard industrial quality systems, where end product quality is defined in
terms of product specifications. For relevant quality parameters, these specifications define
target values. From these target values, in turn, specifications for raw materials are derived.
This standard industrial approach to quality is connected to the application of established
procedures and recipes in production processes.

34

The state variances of agricultural products make it difficult for human experts to assess the
actual state of a batch, even when detailed information on batch origin and history is available.
This is the case for many agricultural products, both at harvest time and in the post-harvest life,
e.g. in the case of melon (problem: assessing the best harvest time concerning internal fruit
development; Larrigaudiere et al., 1995), pears (problem: assessing internal deterioration;
Wang & Worthington, 1979) and apples (problem: assessing the ripeness stage at harvest
time and in the post-harvest life; Streif, 1989). In this chapter the Product Treatment Support
System (PTSS) is described, a system that provides support to experts in treating the
agricultural product P12. The batch state variances hinder experts in designing flexible treatment
recipes that take the actual batch state into account. The PTSS is developed in an applied
research project for a client and delivered as a prototype. It supports the treatment expert in
designing recipes that account for the variances in the initial batch state and for different final
product specifications. The system is based on existing product treatment methods, but relies on
a new measurement technique derived from product research and on techniques from Artificial
Intelligence (AI).

The structure of the chapter is as follows. Section 3.2 presents the context of product treatment.
Section 3.3 sketches the expert task, the PTSS and its role in the process. Section 3.4 discusses
the AI elements in the PTSS: two learning modules, one for batch state assessment and one for
recipe requirement prediction, and a constraint satisfaction module for recipe design. Section
3.5 presents the results. Section 3.6 presents the short and long term plans for further research.
Section 3.7 concludes the chapter.

3.2. Product Treatment
Product treatment is the active process of directing the internal physiology of a product towards
a pre-specified product state in a pre-specified time span (Verdenius et al., 1994). Product
treatment is for example applied to products that are harvested in an immature state, and that
are either transported over long distances or stored for some time (tropical fruits, oranges,
tomatoes). Moreover, some products need different treatments for different target applications.
When forcing tulip bulbs for example, the targeted flowering date may vary from early
December until early May (and in case of freezing techniques even year-round). The exact
flowering period is controlled by applying different treatment recipes (DeHertogh et al., 1983).
Treatment recipes mainly consist of temperature regimes.

Product storage, on the other hand, is a conservative process. During product storage the aim is
to control the product conditions in such a way that the natural development of a product is
impeded. A typical example is the long-term storage of hard fruits such as apples and pears.
Harvested in a short period in the autumn, fruits may be stored under Ultra Low Oxygen
conditions for up to 8-10 months with minimal changes of product quality.

12 We product details of product P for commercial reasons. We use example products to
illustrate the main concepts. Main examples are drawn from tulip bulb forcing practice.

35

Product treatment and product storage share properties in process set-up (Verdenius et al.,
1994). The general structure of treatment and storage processes (TS-processes) is shown in
Figure 3.1. The product arrives in a TS-facility, where the initial batch state is assessed. The
assessment normally includes both subjective assessments such as a color class and objective
measurements such as temperature or biochemical analysis. The information from the state
assessment may be completed with information on batch characteristics (origin, transport
details, growing details etc.). Based on the initial state assessment, market information (sales
volume per period, foreseen destination like client or usage) and a required final product state, a
recipe is composed. In the case of standard recipes this final state is a fixed quality that does not
depend on batch state or the destination of the batch. The actual TS-process starts, and is
monitored on the basis of a state development and possibly other factors such as market
development. At finalization of the process the product state is assessed, and the product is
delivered.

3.3. Supporting Recipe Design and Process Monitoring

3.3.1. Current Situation
Human expertise and craftsmanship play a central role in the main activities for the treatment
of P. The expertise is empirical in nature, and treatment companies all apply their own
heuristics. In spite of the differences in detailed content of the expertise however, the
structure of both the task and the expertise are similar. At reception of the batches, experts
have little information about batch characteristics (exact origin, cultivar, etc.) and history
(age at harvest, transport phases, transport durations, transport conditions, etc.). They get a
provisional impression of the product quality during the initial state assessment, based merely
on outer appearance. This assessment is, with the exception of product temperature,
subjective.

MonitorPlanning

Assessment
of Quality

Initial
Assessment

of Quality

Inspection
at Arrival

Control

Treatment

Batch Data

Market Info

Plan

Diagnose

Initial
Quality Deviation Process

Quality

Action Sub-
process

Information
Flow

Material
Flow

Final Product State Market Development

Figure 3.1. Schematic set-up of a treatment and storage processes.

36

Experts use this assessment in combination with a marketing prognosis to design an initial
recipe. The basis for the recipe is one out of a set of standard recipes. Recipe design starts with
the formulation of deviating characteristics. These characteristics are transformed into
adaptations of the standard recipe. This adaptation process is not subject to an explicit
reasoning process, but a sort of ‘direct mapping’, based on experience. Acquiring explicit
recipe design knowledge from experts therefore requires substantial effort.

This situation for P is comparable with the situation for tulip bulb forcing. A treatment in this
case consists of a series of temperature and residence time combinations. Dependent on the
desired flowering date, a standardized treatment recipe is selected that optimizes the bulb
quality with respect to that date (DeHertogh et al., 1983; pp. 58-59). The recipes however
contain variable boundaries for both residence time and temperature values for each step. These
ranges constitute the freedom to calibrate recipes for observed or suspected differences in batch
states.

In the course of the P-treatment process intermediate inspections gradually reveal more about
the real product quality. The recipe is revised iteratively based on this additional information.
During the second half of the process the development of the outer appearance accelerates,
leading to an increased number of control actions. The physiology of P, and thus the
development of the quality of P during the treatment process, is very much dependent on its
history. Differences in treatment recipes explain differences in shelf life duration of up to
20% to 25%. As a result, control actions often come too late to prevent substantial quality
losses.

An additional complication in the case of P is the complexity of the product chain. Suppliers
deliver various product qualities to treatment companies. Differences between the treatment
companies further enlarge quality variation. The product chain is very diverse as well in the
after-treatment phase, leading to further divergent product quality.

3.3.2. Problem Identification
During the analysis of the treatment system and of the expert activities, two main problems
were identified in the treatment process: the initial state assessment and recipe design.

3.3.2.1. Initial State Assessment
At the start of the project there were no objective measurement techniques available for the
assessment of the product state of P. Experts had to rely on outer appearance to assess the
product state. There was little difference between experts with respect to this assessment, but
the applied assessment scale was not accurate enough to distinguish products and batches with
substantially different states. The inner state of the product can be objectively assessed with
various direct (and destructive) and indirect measurement techniques. Examples of indirect
techniques are respiration characteristics and temperature balance. These techniques however
require high quality facilities and accurate measurement equipment. It is questionable whether
it is economically justifiable to include such equipment in treatment facilities. An alternative
option was to search for more feasible means for identifying the product state.

We found a significant correlation between specific texture characteristics in the initial
treatment phase and a single parameter that we will refer to as the A-value, measured by means
of excitational vibration (Peleg, 1989). A measurement method was developed that combines
this new parameter with one of the more traditional outer parameters that together cover
product quality during the entire treatment process. The combination of these two parameters
facilitates an objective assessment of the product state, and allows monitoring of the
development of product quality.

37

The problematic aspect of initial state assessment now lies in the large variance that dominates
(almost all) product parameters, including the two parameters that are needed for product state
measurement. For the A-value variance exists on different levels. Primarily it appears to be
correlated with the variance of product dimensions (thickness, weight, etc.). Secondary sources
of variance are the product origin, seasonal and yearly differences, variances in harvest-to-
treatment time, variances in transport conditions etc. All but the product dimension related
sources of variance can be considered constant for an entire batch of products. For the
measurement method to be reliable, a selection procedure had to be designed that ensures the
selection of a sample that is representative for the batch.

3.3.2.2. Recipe Design
Recipes are composed of time slices of a standardized duration (typically 0.5 or 1 day). A
recipe prescribes the values for all relevant conditions. Normally, these conditions are
temperature and gas composition. Some treatment facilities also have the opportunity to
measure or control other parameters, such as the relative humidity, but this is not standard. The
general format of treatment recipes is as follows:

A recipe unit Ut for product P for time-slice t is {T G [RH]}, where T is temperature, G is gas
composition and (optionally) RH is the relative humidity. A complete recipe consists of a series
of units Ut for each time slice of the recipe duration.

Detailed knowledge of the relation between treatment conditions and product development is
required for designing a treatment recipe. Expertise is foremost empirical, and not based on
theoretical insight into product behavior. Moreover, a complete theoretical understanding of
product behavior does not yet exist. Our initial approach was therefore to mimic expert
behavior in this respect. The resulting recipe generator applied a static set of base recipes, and
generated deviating factors that were transformed into adaptations of the recipe. Though this

Monitor
Facility

Monitor
Batch

Update
Data

Inspect
History

Load New
Batch

Diagnose

Change
Due Data

Design
Recipe

Module Control
Flow

Figure 3.2. The functionality of PTSS in terms of modules and control flow

38

approach seemed to work for one expert, problems arose when taking knowledge from
different experts into account. Experts from different treatment companies created different and
incompatible models. We had to solve this problem by conducting experiments revealing actual
product behavior to generate our own models.

The solution was found in developing a new approach for recipe design. Recipe design now
consists of two steps. The first step is to assign recipe requirements to a batch on the basis of
initial state measurements, batch data, the foreseen due date and final product specifications. A
recipe requirement is a global specification of a recipe that quantifies relevant condition values
of that recipe, without specifying how this requirement is realized in Ut. An example of such a
specification is the temperature sum factor that is used in growth models. It is calculated by
adding the daily temperature difference where the temperature remains below or exceeds a
specific temperature threshold. Recipe requirements can be composed of several values for e.g.
temperature, relative humidity, ethylene concentration, O2/CO2 ratio etc.

Because a detailed mechanistic understanding of the behavior of P during treatment is not
available, a model of product behavior is derived from experiments in our pilot facilities.

The second step derives the actual recipe from the recipe requirements. This derivation applies
empirical knowledge acquired from experts for those aspects where inter-expert agreement
exists, and solves inter-expert disagreements by applying knowledge of the product and the
treatment process as acquired from literature and from experiments.

3.3.3. Functionality and Implementation of PTSS
An important effect of the PTSS is that it structures human expertise and solves inter-expert
inconsistencies. Moreover, it provides experts with tools and models to assess product state and
represent product behavior. Dedicated physiological research is combined with system analysis

Action System
Component

Information
Flow

PTSS

Measurement

Product
Selection:

TDIDT

Treatment
Demand:

NN

Recipe
Generator:
Constraint

Propagation

Static
Selection

Rules

Measured
Data

Recipe
Requirement

Historic
Data

Due
Date

Batch
Data

Constraint
Model

Recipe

Figure 3.3. Connectivity of AI modules in PTSS

39

and system development. This research resulted in additional knowledge and a new method for
state assessment as indicated previously.

The general functionality of PTSS is shown in Figure 3.2. A treatment facility is equipped with
several treatment rooms where the actual treatment of the batches takes place. The basic
function is the Monitor Facility. This provides the expert with state information of all batches
under treatment. Based on regular (possibly on-line) measurement and comparison of actual
and foreseen development, the expert receives early warnings in case of possible problems.
From the Monitor Facility, the expert may decide to Load a New Batch, or to Monitor a Batch
already under treatment. The latter enables the analysis of the actual batch development as
compared to the expected development. Once in this module, the expert can Update the
inspection data (if not automated), and Inspect the Batch History. Deviation of the actual from
the expected development may lead to execution of the Diagnose module, supporting the
expert in problem solving. Diagnosis uses predictive models, allowing deviations in product
development to be corrected in an early stage. If required, a treatment Recipe can be Designed.

The PTSS-prototype has been implemented as a stand-alone system in KAPPA-PC™ version
2.3.2, by IntelliCorp. Linking to treatment facilities is foreseen on the design level, but
currently the system functions off-line. The prototype has been developed on a 486 66 MHz
PC under MS-Windows 3.1™.

3.4. AI Components
Three specific AI techniques have been applied in developing the new treatment approach. A
technique for Top Down Induction of Decision Trees (TDIDT) is used to handle the variance
during the initial state assessment. Neural Networks (NN) transform the initial state assessment
into the recipe requirements, and constraint satisfaction is applied to derive the treatment
recipe. Figure 3.3 shows the set-up and connections between these AI components.

3.4.1. Handling Variance with Inductive Learning

3.4.1.1. Function
PTSS requires the measurement by means of vibrational excitation (Peleg, 1989) of the A-value
to reveal the inner state of product P for a batch. Measurement across multiple individual
products shows product inherent variance. If a reliable estimate for the A-value of a batch has
to be obtained, a large sample size is needed (depending on the accepted chance of calculating a
false estimate and the threshold for relevant differences, the sample size is about 60 to 200
samples). Measurement of A in practice is only feasible if the sample size is reasonably small.
Currently, experts take about 3 measurements.

We design a selection procedure that enables sampling with reduced variance. The procedure
consists of two steps, the first step being a selection on externally observable characteristics
such as size and shape. The second step requires measurement of a few, easy to obtain,
attributes related to product appearance and dimensions such as objective product color and
exact product dimensions. The measured values are used to decide whether or not the product is
suitable for A-measurement. As experts do not typically handle complex directives,
comprehensibility of the criteria is a major concern. The delivered sampling directives ensure
reliable A-value estimation for the entire batch on the basis of reasonably small samples.

3.4.1.2. Method
The necessary decision rules are derived by means of an inductive learning technique. To
achieve this, we use the distribution of the A-values, which is a normal distribution. Products

40

are classified on the basis of their deviation from the mean A value for a batch. Classes were
established for 105 products from 8 batches from 3 growing locations, transported under two
different conditions. For all products, product related attributes were measured. Batch
characteristics were not included in the data set.

Our aim is to find a classification function that is able to identify near_batch_mean classes for
unseen cases. Typical intra-batch standard deviation σbatch for A is in the range of σbatch ≤ 3 on a
scale of 0 to 30. Products are classified as near_batch_mean if their A-value falls in the range

Aproduct ∈ [µbatch - tnear_batch σbatch, µbatch + tnear_batch σbatch],
where µbatch is the batch mean value for A, and tnear_batch is a threshold parameter that defines the
width of the interval in terms of σbatch . Good results were obtained for tnear_batch = 0.75.

The classification rules were derived using a TDIDT technique. TDIDT is a group of Machine
Learning techniques that extract a tree-shaped knowledge structure for classification from pre-
classified data sets (see Figure 3.4). Each splitting branch in the tree represents a test on an
attribute value. Leaf nodes indicate the class that is expected for a product if the consecutive
tests have been successfully passed. TDIDT is known for the good comprehensibility of the
output for domain experts, either in tree-form or in the form of IF .. THEN .. rules.

We use C4.5 (Quinlan, 1993), a well-known TDIDT technique, to construct 15 decision trees
by means of a windowing technique. This is a technique where a decision tree is iteratively
trained with more and more examples until a satisfying classification result is obtained. From
the derived decision trees, rules were derived by application of c45rules, a rule derivation
program accompanying C4.5. Rules that identify near_batch_mean classes, were tested on
their quality. From the initial 41 rules selecting the near_batch_mean class, a set of 7 rules
remained that were applicable in practice, an example being:

IF Colour <= 10 AND
Shape_Class = C AND
Weight <= 175

THEN Class = Near_Batch_Mean

All these rules require 3 or 4 attributes to be checked. The standard deviation of measured
products on A is now reduced to about 0.3 σbatch. Applying these rules, a sample size of 5
products suffices to obtain an estimate for the A value. This sample size is sufficiently small to
be convenient for the normal process monitoring cycle.

3.4.2. Prediction of Recipe Requirement by Means of Neural Networks

3.4.2.1. Function
A recipe is a prescription of attribute values for the relevant process conditions for all time-
slices in a treatment. In the current practice for P-treatment, standard recipes are available for
(fixed) treatment durations. Such recipes are adapted by the expert on the basis of a perceived
product state. If the foreseen treatment duration changes as a result of rescheduling, or if the
product development lags behind the desired development, recipes are changed according to
the insight of the expert.

In the PTSS recipe, design starts with establishing the treatment requirements for a batch.
Treatment requirements are expressed as the thresholded temperature sum, eventually
supplemented by other conditions, such as gas conditions or humidity. For this a regression
model is required that predicts the treatment requirements on the basis of available batch data
and required treatment result. Relevant batch data include categorial information (e.g. cultivar,
origin, shape) as well as numerical information (e.g. product dimensions, A-value). Actually,
humans are very good at solving prediction problems based on such heterogeneous data

41

attributes. Good mathematical models to derive the requirements from batch data for P are not
available.

Neural networks (NN), a family of self-learning techniques, function analogously to the human
nervous system. They process information in a network of interconnected layers of neuron-like
elements (see Figure 3.5). One specific NN technique, error back propagation (Rumelhart et al.,
1986) is very well suited for our kind of problem, being able to process numerical and
categorial data simultaneously.

After training, the neural network contains a model of the experimental data. The network takes
batch characteristics and initial state information as input and delivers a prediction of the recipe
requirements. Ongoing experience in designing recipes and the accompanying treatment
results, can be used to refine this model.

3.4.2.2. Method
Data was gathered by treating the batches as mentioned in Section 3.4.1.2 with two recipes
under laboratory conditions. We use a data set of 105 products complying with the selection
criterion as developed under Section 3.4.1.2 for deriving the regression model. The data
include 21 relevant attributes, including several measurements. From these attributes, we
derive a linear regression model as a starting point for further work. The linear regression
result in a model incorporating 4 variables, obtaining a fit R2 of 0.57. To model the treatment
behavior, one can now choose between two viewpoints: 1) fitting a number of (non-linear)
regression functions, hoping to obtain a good fit (black box modeling), or 2) deriving from a
thorough understanding of fundamental processes a regression function, that can be fitted to

Colour <= 10

Yes No

Class: Other

Shape_Class
= ?

A B C

Class: Other

Class: Other

Class:
Near_Batch_Mean

Weight <=
175

Yes No

Class: Other

Attr_Val <=
Value

Yes No

Decision
Node Class: Other Classification

Node

Figure 3.4. A decision tree for product selection. Decision nodes represent tests on
attribute values (two numerical and one categorial test are depicted in this example tree).
Nodes may contain additional data on classification quality, significance etc. (Feigned
example, real trees are more complex)

42

the experimental data (domain modeling). As we do not have a complete understanding of the
problem domain, we are bound to follow the first option. Neural networks are well-suited to
searching for a model in this manner.

Data from experiments are used to train an error back propagation neural network (Rumelhart
et al., 1986). We experiment with several data set-ups. First, we vary the number of records
offered to the network. This is done by artificially extracting a multitude of mini-treatments
from one treatment record. A mini-treatment is generated by taking any combination of two
time-slices in the data set to be a new treatment. In this way, we are able to generate data sets
with about 7000 descriptions of mini-treatments. Due to the non-linear process, information on
treatment history has to be included in mini-treatment descriptions. Second, we vary the
number of attributes to be included in the data set. Attributes are added in order of the
correlation to the treatment requirement. Finally, we experiment with the network topology, the
number of nodes used in the hidden layer. The learning rate is set to 1.0, and the momentum is
set to 0.9. The training tolerance (the deviation of a real valued prediction from the real value
under which a record is classified as correct) is initially set to 0.1, and is step-wise reduced
down to 0.01 if more than 80% of the records are classified correctly. Testing tolerance is set
to 0.05.

The network that performed best is a small network, with the fewest number of attributes and
trains on the smallest data set (not containing the mini-treatments). We explain the small
network size by assuming that generalization by a small network filters the remaining noise
in input characteristics. The fact that mini-treatments hinder performance may be understood
as follows. The behavior of P under treatment is suspected to have a logistic trend. Little
noise in the initial product condition is amplified during the treatment, and extinguishes again
when the treatment comes to an end. When creating mini-treatments, data is generated about
the section in the treatment that is very noise sensitive. Where the initial data set suffers from

Neural NetworkCultivar

Origin

Size

Weight

A-Value

Recipe
Requirement

Processing
Element

Data In-
and Output

Network
Connection

Figure 3.5. A 3-layer feed-forward neural network. The network mimics a regression
function transforming data on the input layer (left) into output data (right). The two nodes
with no inputs are bias nodes.

43

relatively little noise, generating mini-treatments emphasizes the importance of noise in the
data set.

We set up an intensified training procedure to assess the actual value with the two most
promising network configurations, using 3 and 6 hidden nodes. Via random sub-sampling the
data set is divided into 5 train-test set combinations, which, for both 3 and 6 hidden nodes,
are presented to networks with different initial settings. The networks are trained for 5000
cycles. The network that tests with the highest R2 on the test-set is designated as the result of
that run.

The final selection for a network is made on basis of the generalization performance on a
validation data set (see Section 3.5), resulting in the network with only 3 hidden nodes being
used in the PTSS. Execution of the neural network is controlled by the PTSS. Some typical
results for the 3 and 6 hidden node network are presented in Table 3.1.

3.4.3. Constraint Satisfaction for Recipe Design

3.4.3.1. Function
The next (and last) step in recipe design is the transformation of the recipe requirement into a
recipe. Not all recipes that fulfil the requirement are allowed. To be of a good quality, the
recipe has to fulfil a number of constraints. Constraints either originate from domain experts,
from their heuristics, or result from research (both literature and dedicated research).
Constraints may limit minimum and maximum values (e.g. temperature, humidity, gas
concentrations), consecutive differences (e.g. temperature for 2 successive time slots may not
differ more than x degrees) or batch parameters (e.g. a product from origin X needs a lower
temperature during the first half of the treatment).

Constraint satisfaction is used for this transformation. Constraint satisfaction has been applied
elsewhere for recipe design (e.g. Aarts 1992). In PTSS all aspects of a recipe are formulated as
constraints, being conditions between attributes that have to be satisfied in a good recipe.

3.4.3.2. Method
Recipe design by means of constraint satisfaction is a search process. The search problem is
formulated as a tuple <V, C, H>, where V is a set of variables, C is the set of constraints and H
is the set of search heuristics that may be applied in the search process. The value of each
variable vx in V is limited to a finite domain. Typical members of V are temperatures Ti, relative
humidities RHi, and concentration of gas component j Gji, all to the ith time interval of the
recipe. A good recipe consists of an assignment of values to all members of V, such that all
constraints in C are satisfied.

A constraint set C for the recipe of P-treatment contains unary, binary and n-ary constraints.
Unary constraints are immediately translated into domain restrictions on variables. Binary and

3 hidden nodes 6 hidden nodes
train test train test

Average R2 .9877 .9400 .9968 .9861
Best R2 .9949 .9971
Best validated prediction .075671 .107319

Table 3.1 Performance of neural network in four settings. The settings differ in the number
and kind of attributes that are included (see text).

44

n-ary constraints can link variables of the same dimension (e.g. two consecutive temperatures)
or variables of different dimensions (e.g. a temperature and a gas condition).

After obtaining the recipe requirements from the neural network, a constraint satisfaction
formulation for the recipe is derived automatically. Constraint propagation, to reduce the search
space, and back-tracked search (Meseguer 1989; Kumar, 1992) are iterated until a recipe is
derived. A module for constraint satisfaction, including these two steps, has been implemented
in KAPPA-PC™.

As recipe design in PTSS is normally an under-constrained problem, different search heuristics
may result in good, but different recipes. Set H contains search heuristics that are applied in
practice. Each search heuristic concentrates on specific operational aspects of recipes. Typical
members of H are start as high as possible (reason: to optimize utilization of resources the
recipe is as short as possible) and start as low as possible (reason: optimal control over batch,
and retains opportunity to speed up later). The choice between heuristics depends on external
(e.g. market) circumstances as well as personal preferences of the expert. By using heuristics to
guide the search, a find-first strategy can be applied: the first recipe that is generated according
to the heuristic and that satisfies all constraints is proposed to the expert.

T1 T2 T3 T4

Gj1 Gj2 Gj3 Gj4

RH1 RH2 RH3 RH4

Tn

Gjn

D1 D2 D3 D4

Ba

Bb

SC
RR

BC Batch Constant BV Batch Variable Binary Constraintn-ary ConstraintCn

Figure 3.6. A (simplified) example of the constraint set that is used to generate the recipe.
The network consists of both binary constraints (ellipse + solid lines) and n-ary constraints
(dashed lines). Batch Constants are attributes that are constant during a treatment. Batch
variables represent the recipe components to be planned. T = temperature, G = gas
concentration, RH = relative humidity, SC = start constraint on initial conditions, RR =
recipe requirement and D = Condition constraint for one day

45

The recipe design process for product P as such is not very complex (see Figure 3.6). Typically,
a problem counts 15 to 48 variables and 22 to 72 constraints, resulting in a moderate sized
search space. An important reason to apply constraint satisfaction together with a heuristic
search strategy is that the expertise is presented by experts in terms of constraints (“the
treatment temperature must be in the range of m°C to M°C”, or “if origin is C then decrease the
temperature”). Moreover, research results can also easily be expressed as constraints.
Therefore, a constraint model is a representation close to the current practice, and also easy to
maintain. Alternative representations include instances or augmented cases. Both
representations facilitate a case-based approach (Aamodt & Plaza, 1994): knowledge-poor
(instances) and knowledge-intensive (augmented cases). The latter has been used in recent
systems by Aarts (1995). Instances are not suitable as a representation in the PTSS as they
constitute a non-inspectable knowledge base (due to the lazy generalizations used in instance
based techniques). Augmented cases are only suitable if a model exists to augment actual cases.
Moreover, they share the problem of inaccessibility of the knowledge. This is very crucial in
the PTSS as the knowledge base is compiled from knowledge elements that are obtained from
different sources (expert heuristics, literature, experimental results).

3.4.4. Example: PTSS Application Demonstrated for Tulip Bulb Forcing
How can the PTSS be used in practice? The following example is situated in the domain of
tulip bulb forcing, covering all aspects of the real PTSS domain. We start with a very short
introduction in tulip bulb forcing.

3.4.4.1. Tulip Bulb Forcing
Bulb forcing is by definition, “... the flowering of a bulb using other than naturally occurring
conditions” (DeHertogh et al., 1983) and is used for the production of cut-flowers. The
forcing of tulip bulbs (Visser, 1993) consists of consecutive (1) preparation of the bulbs in
special facilities and (2) flowering in a greenhouse. During the preparation phase bulbs are
exposed to conditions (mainly temperature) which program the time of flowering and flower
quality. This phase is divided into three steps:
1. G-initiation (treatment until bulb development stage G, i.e. flower initiation completed):

flower development in 20°C conditions, preceded by a 34° ‘initiation period’ in case of
early harvest,

2. intermediate treatment (from stage G to the cold period): 17-20°C storage to minimize
flower abortion,

3. cold period (low temperature mobilization): to ensure sufficient scape length and growth
rate.

Commercial bulb forcing needs optimal control of the flowering period to schedule activities
and optimize resource allocation. The recipe for these steps should ensure a predictable
flowering period. Moreover, the number of days the bulbs need to be located in the
greenhouse before cutting the flowers must be minimized. In other words: the bulbs require a
pre-specified change of the product state in a pre-specified period of time. In the current
situation standard preparation recipes are used. These recipes are based on the average
behavior of products and desired flowering date (Boerma & VanRijbroek 1992). They
neglect environmental differences (DeHertogh et al., 1983; pg. 82) between batches, such as
differences in soil or weather conditions during growth. Differences between expected and
observed product state development, resulting from inter-batch differences and inaccurate
state assessment, are compensated by small adjustments of preparation recipes. The content
of these adjustments depends on the expertise of individual forcing experts. This expertise is
a non-documented part of forcing craft.

46

3.4.4.2. PTSS for Tulip Bulb Forcing
The PTSS for tulip bulb forcing follows the process flow as depicted in Figure 3.3:
1. Product selection13

2. State Measurement
3. Treatment Requirement
4. Cold Storage Recipe Design
Below we detail each phase. The content of the example is fictitious and does not reflect any
relation with the current practice in tulip bulb forcing.

Step 1: Bulb Selection
At the start of a cold treatment the initial quality of a batch has to be assessed by inspection
and measurement. The PTSS requires a (qualitative or quantitative) development label for the
bulbs that are contained in the batch. In the current practice, this label is assigned after
measuring a random sample. Large sample sizes may be required to obtain a reliable result.
The PTSS uses a non-random sample of reduced size, that ensures that the batch state
assessment be as close to the real batch state as possible. The new sampling procedure is
implemented in the form of easy to apply selection rules as illustrated below. Measurements
from practice can be used to generate these rules. Product experts are equipped with charts
containing the selection rules.

Batch:
Growing soil type = Dune Sand and
Bulb size >= 12 and

Bulbs:
beyond stage G and
tunic colour RGB of [128 64 0] and
Root length > 0.5 cm

will have:
State measurement values close to the batch average.

Step 2: State Measurement
The second step is not typical to the PTSS: batch state measurement. Depending on the
parameters to measure, this measurement may be off-line or on-line. Such measurements
could include outer dimensions, internal development stages and concentrations of certain
compounds (e.g. starch, sugar, biochemicals). The current PTSS prototype supports off line
measurement, which enables the entry of measurement data into the PTSS either by hand or
by an electronic link from measurement equipment.

Step 3: Treatment Requirement
As the third step in applying the PTSS the recipe requirements are established. After entering
the measurement data the operator is presented with the treatment requirement as derived by
the system. This requirement is used to generate a recipe. For this example it is assumed that
cold treatments are specified by a coldsum C that is supplied to the bulbs. C is defined as:

C Ti
i

= −∑ τ

13 This may be a very theoretical step for bulb forcing, and may not be relevant in practice.
Such a step is necessary for many products however.

47

with Ti being the realized temperature for day i, and τ being a known temperature (probably
cultivar dependent). Treatment requirement prediction requires a regression function

().OtherDatata,CultivarDaBatchData,ata,DnPreparatio,OriginDatafC =

OriginData contains specifications such as growing soil and climate. PreparationData
contains information such as process conditions during G-initiation and intermediate
treatment. BatchData contains information on batch measurements (e.g. state assessment)
and assortment. CultivarData contains information on the cultivar or mutant represented in
the batch. And OtherData contains relevant miscellaneous information.

This function has been implemented as the neural network in the PTSS for product P. The
model is trained on the basis of examples, obtained from observed batches. Alternative model
formulations (expertise model, (non-)linear regression model) can be considered if
sufficiently detailed knowledge about relevant processes is available to allow hypothesis
specification.

Step 4: Cold Storage Recipe Design
As the final step, the detailed recipe has to be designed on the basis of the global recipe
specification. A recipe is a prescription of all relevant conditions over time. When the
relevant time slice is a week, and temperature is the relevant condition, the following holds
for recipe design.

{ }R T T Ti= 1 2, ,K

R is a recipe for i weeks. For now, we assume that the following assumptions hold:
• Optimal temperature for stalk elongation effects: 9°C (Visser, 1993),
• Bulb physiological processes cease at temperatures below 2°C. In this case, no additional

cold sum points are counted,
• Required C translates into a (small) interval of calculable size, with a tolerance δ%.

Minimum C values are required to guarantee sufficient cold treatment for acceptable
flower quality and a minimal number of greenhouse days, while a very large C is too
costly: () ()[]C C Cplanned required required∈ − +1 1δ δ, ,

• During cold treatments, temperatures may not increase.

This leads to the following constraint model:
1. Ti ≥ Ti+1
2. Cplanned ∈ [(1-δ)C, (1+δ)C]
3. C = ()max 2,T ti

i
−∑

4. t1 = 9°C
Suppose that for a batch of bulbs the predicted Crequired value is 86.5, and tolerance d = 1%
(i.e. the Cplanned ∈ [85.64, 87.37] , that the recipe duration is 20 weeks, and that the τ has a
value of 10°C, then a recipe of 8 weeks 9°C , 6 weeks 5°C and 6 days 2°C satisfies the listed
constraint set.

Some additional remarks
The above example is made as simple as possible without losing validity. First of all, cold
treatment is not a stand-alone activity. Instead, all bulb treatment phases may be planned into
one preparation recipe. In this case, separate phase specifications may be required for each
sub-phase. Also, the constraint model for recipe design should either be partitioned in several

48

sections, or a constraint model should be formulated to cover all three phases. It is obvious
that such a model would be far more complex, covering both interactions between phases and
fine tuning of the conditions in each phase. But even the cold treatment process is more
complex than indicated. Especially the phase of recipe design may profit from insights into
the physiological processes in tulip bulbs. A more realistic model would detail the effects of
endogenous growth regulators. In our example, we assume a black box design for stalk
elongation. The cold sum serves as an input to that model. In reality more complex processes
responsible for the stalk elongation could be specified in the constraint model. This could
include the activity of gibberelin (Rees, 1969), accumulated carbohydrate metabolism (Moe
and Wickstrom, 1973) and others (DeHertogh et al., 1983).

3.5. Initial Results
We tested recipe planning for product P on 10 batches with known treatment history, using the
start as low as possible heuristic (which mimics the strategy used for planning the recipes that
were applied to the batches). The test results are shown in Table 3.2. The quality of PTSS
generated recipes is evaluated in two ways. First, the quality of the NN prediction of the recipe
requirements is assessed. This is done on the basis of the relative performance of the prediction
as a deviation of the real value. A deviation of 10% is considered acceptable. The results of the
NN requirement model are depicted under the column Requirement Model Error (RME) in
Table 3.2.

RME = |Prediction – Realized|/Realized

Second, the quality of the derived recipe has to be established. This is done by comparing the
derived and realized recipe on the basis of the recipe specification. The specification of the
planned recipe never exactly matches the specification of the real recipe, due to rounding
errors. The total deviation, Relative Deviation Requirement vs. Recipe (RDRR), should stay
within acceptable limits.

RDRR = |requirement - recipe specification|/requirement

It is further noted that the specifications of the realized recipes differ substantially from the
(now applied) standard recipes. The global specifications of standard recipes have values that
are 13% to 35% smaller than the global specifications of the realized recipes.

How should we interpret these results? First, one has to be careful to interpret the results of the
PTSS on the basis of so few samples. A thorough assessment of its performance is only
possible after extensive testing at real sites. Second, it can be concluded from Table 3.2 that
predictions of the recipe requirements are quite good in most cases, though substantial errors
may still occur. However, compared with the current situation, it is an improvement to offer
experts objective tools with this accuracy, instead of leaving them to adapt standard recipes
which are themselves inaccurate. Moreover, the PTSS supports an iterative process, where
experts inspect and measure the products regularly, facilitating identification of errors that may
be corrected earlier than before. Third, it is shown that the deviation of the realized and planned
recipe is limited for most batches, i.e. the planned process complies with the real requirements.

49

These results are encouraging enough to apply PTSS in real treatment facilities. Parallel to
these validations, improvement and refinements have to be developed for all system
components, at least for the regression model. As both the selection criterion and the recipe
requirement module are implemented as learning techniques, it can be expected that ongoing
experience with the system will cause the performance of these modules to be improved.

3.6. Further Research
The PTSS can now be used to plan recipes for P treatment in our pilot treatment facilities.
Currently, the project is awaiting approval for the next stage of validation, which is the
experimental deployment of the PTSS in one or more commercial treatment facilities. Initial
tests will focus on describing the differences between the PTSS approach and the expert. After
fine tuning the PTSS, its ability to support expert tasks can be tested.

Several extensions of the PTSS can be considered. First, it is noticed that the PTSS in its
current form hardly uses fundamental understanding of physiological processes in product P.
Instead, associative models have been used. Product research may reveal a more fundamental
understanding of the low level processes occurring in P. This understanding may enable
detailed reasoning steps on treatment aspects to be included in the composition of the recipes.

Second, process monitoring and diagnosis of unwanted treatment developments is now
supported in a primitive way. This deserves further attention. Process monitoring can be
supported by applying a model similar to the current model for determining treatment
requirements, but in reverse order. With such a model, a prediction of the product state can be
derived for all time slices of the recipe, using the initial state of the product and the treatment
recipe. If, during the treatment, deviations from the predictions appear, re-planning of the
recipe can be considered. The PTSS will generate alarms to alert the treatment expert. With this
system the expert should be able to observe problems in the treatment process, enabling timely
correction. The main obstacle is related to the problem of noisy mini-treatments as discussed in
Section 3.4. Further analysis of our experimental data, and possibly additional experiments, are
required to improve the neural net models for monitoring.

Another interesting extension concerns the scope of the PTSS. In its current design, product
treatment is considered as an isolated process for one specific product. Converting the system

Batch RME Recipe Planner
Relative Deviation

Requirement vs. Recipe
1 .0061 .0330
2 .2997 .2633
3 .0746 .0533
4 .0370 .0667
5 .0174 .0067
6 .0072 .0214
7 .0783 .0842
8 .0463 .0397
9 .0039 .0024
10 .1006 .1204

Table 3.2 Relative performance of PTSS recipe planning.

50

to other products is relatively easy. Product and process knowledge is stored in a few product
specific sections of the program: the neural network for initial state assessment, the module to
derive the constraint satisfaction formulation for the recipe planning, and the characteristics of
the treatment facilities are represented in the user interface section. Including information of
product history and product destination may be more complicated. It may however be
worthwhile to consider detailed information about the product history when designing a recipe.
Similarly, information on the destination of the product, in terms of conditions and required
quality at certain time points, may be used to design the recipe. We are currently involved in a
project that for a large set of products studies the possibilities to include such additional
information about logistic history and destination in the planning of the recipes. This project
concerns a large number of products. As in the PTSS, the knowledge base will be a
combination of knowledge from literature, knowledge obtained from experiments and human
expertise.

The PTSS does contain generic properties, as can be concluded after comparison with other
systems. In particular Aarts (1992) describes an approach of planning mashing profiles which
supports a similar process structure. The main rational for his approach, as in the case of the
PTSS, is to solve problems caused by variable quality of raw materials, in an environment
where standard recipes are normally applied. His system, however, profits from the engineered
production system in that domain. As a result, his planner has a detailed analysis of raw
materials available at planning time, and profits from deep process knowledge in composing
the recipe. This has led to the use of case-based techniques in later work (Aarts 1995).

3.7. Conclusion
This chapter presents the PTSS, a system that supports experts in planning treatment processes.
The PTSS introduces opportunistic recipe planning in a domain that previously had to rely on
standard recipes. Moreover, it comes with a method to objectively assess the initial state of the
products. This helps experts to cope with inherent (intra- and inter-batch) variances in product
attributes, thereby obtaining a predictable and more constant quality. The system is based on
task analyses of experts, and uses learning and constraint satisfaction modules for handling the
variances. The applied C4.5 learning module provides experts with a comprehensible procedure
for selecting representative products. The neural network module is used to transform batch
characteristics and state measurements into a recipe specification. The constraint satisfaction
module contains a combination of current expertise and results form physiological research.

The first results with the PTSS are encouraging. Moreover, several options for improvement
and extension of the system will be pursued in the near future. The most interesting option is to
formulate a generic framework for recipe planning in domains with product-inherent quality
variances.

51

4. Generalized and Instance-Specific Modeling For
Biological Systems

This chapter has been published as F. Verdenius & J. Broeze, Generalized And Instance Specific Modeling For
Biological Systems, Environmental Modeling & Software, 14, 1999, 339-348

Abstract
Biological, ecological and environmental systems are difficult to model. Due to the
complexity of the relevant entities their behavior is hard to capture. Moreover, due to the
evolutionary behavior of the biological entities and assumption-dependent non-linearities,
models are valid in only a limited condition range and time frame. This chapter introduces the
concepts of generalized and instance-specific models, and their relevance for biological,
ecological and environmental systems. For each concept, a modeling approach from the field
of AI is introduced. The concepts are illustrated in two modeling applications in the
wastewater domain, one for opportunistic modeling and one for resource allocation.

4.1. Introduction
Biological, ecological and environmental (BEE) processes are becoming more and more
important in policy– and decision making. The Kyoto summit has defined strategic targets to
be realized by countries world-wide. On a smaller scale, regional officials have to predict,
monitor and control environmental phenomena such as smog, manure, eutrophication and
acid rain on local ecosystems, while on micro-scale, such as waste- and surface water
systems, operators have to maintain operational set-points by controlling complex processes.
Moreover, biological processes are more and more applied on an industrial scale.

Decision- and policy quality strongly depend on model validity. The complexity of BEE
systems complicates the development of reliable models for use in the real world. This often
leads to the deployment of models that are simplified and stripped versions of the models that
would be required. Artificial Intelligence techniques can be used to improve the modeling of
BEE processes.

In section 4.2 we explore problems in traditional modeling approaches for the complex
systems that are found in natural and artificial biological systems. Then, in Section 4.3, we
discuss differences between generalized and instance-specific models, and present two
Artificial Intelligence approaches for this kind of problems. Section 4.4 presents for both
types of approaches an example, as implemented in an activated sludge wastewater system.
Section 4.5 concludes by discussing these approaches, and generalizing the concepts to
biological, ecological and environmental systems in general.

4.2. Context
Modeling BEE systems introduces a number of specific problems. A model is a
representation of a (real-world) entity that mimics some aspects of the behavior of the
referent entity. Realistic systems consist of many individual entities of different kinds, each
with their own behavior. Growth, decline and extinction behavior of organisms, as well as the
behavior of large numbers of biological processes, depend on many variables that show
autonomous dynamics. Even for describing simple behavioral aspects of such systems,

52

complex (sets of) differential equations are required. An illustration of this can be found in
the modeling of the keeping quality of agricultural produce (Tijskens & Polderdijk, 1996).

The community of entities in compound systems shows substantial interaction and
interdependence. The compound behavior of such systems is more than the sum of the
behaviors of the contributing sub-systems. A simple example of such a system is the daisy
world (Lovelock, 1988). In the realm of agriculture, the problems of controlling the keeping
quality of mixed loads of produce are the result of this phenomenon (e.g. Paull, 1993). An
additional problem is that many systems are not constant over time.

The standard approach to modeling of systems is to map system behavior on (partial) theories
that are available for the domain. The first step is to decompose the complex systems into a
number of relevant processes in the system, where relevance is expressed in terms of the
modeling goals. For the identified processes, sub-models should be available. For describing
behavioral aspects of biological systems, generalized theories that give a global description of
the dynamical behavior may often be available. Alternatively, sub-models should be
developed. In the second step, these sub-models are grouped into a model that represents the
entire system. Finally, these sub-models are calibrated, to fit observed behavior of the system.

In practice, modelers often make use of a library of parameterized sub-models that, under the
assumption that the pre-conditions of these sub-models are satisfied, represent the behavior of
sub-systems. The modeling process is divided in two steps: (1) designing a configuration of
sub-models that corresponds as best as is possible with the actual configuration of the system
of concern and (2) fitting this model on observed (or assumed) system behavior by means of
parameter calibration. Formulating and maintaining such models is both time- and labor
consuming. As a result, a model is generated once and applied over a substantial period of
time, and for a number of different aspects.

This modeling approach aims to deliver valid models to be delivered. However, the modeling
approach suffers from at least four problems:
1. Expertise requirement: deployment of the modeling approach does not only assume

profound expertise in the biological domain, but it also requires a thorough understanding
of modeling tools and approaches. Often model builders are experts in the referent
domain, but the modeling expertise is lacking.

2. Model focus: different application goals may require different models. Application goals
may include yield optimization, diagnosis, etc.

3. Assumption violation: the sub-models in the libraries are valid under the assumption that
pre-conditions hold. Mostly, these sub-models are only valid under normal operational
conditions. Models for extreme conditions are sparsely available. When pre-conditions are
violated, a model looses validity.

4. System drift: due to autonomous drift of the processes, calibrated model parameters lose
validity over time.

Problem number 2 indicates that different models would be needed for studying different
aspects of the same process. The last two problems make clear that models should be updated
regularly to keep them up-to-date with the actual system. However, if recognized at all, the
four points above are considered impossible to address in practice. The result is that many
models that are used for decision and policy making are not accurate representations of the
systems they are supposed to model.

Consequently, we signal two problems in the use of BEE models. First, for many problems,
models are applied that are not well suited for that particular problem. Second, due to the
inflexibility of modeling approaches, a number of problems that could be modeled on

53

theoretical grounds, are not modeled because of practical limitations. This situation
immediately undermines the quality of decision making on both macro and micro level.

4.3. AI Modeling Techniques
Models help to optimize the decision quality in policy and decision making. The models are
typically used for simulation and optimization. Models may play different roles, depending
on the way they are modeled. For this chapter, the difference between a generalized model
and an instance-specific model is important. The former employs techniques known as
compositional modeling (Section 4.3.1), the latter employs case-based reasoning (Section
4.3.2).

4.3.1. Compositional Modeling
The goal of the compositional modeling approach (Falkenhainer & Forbus, 1991; Sloof &
Simons, 1994) is to compose a model for a given dynamic system using a library of pre-
defined model fragments, which is based on a generalized theory. Such a model is dedicated
to user-defined queries about that system. Model libraries with pre-defined model-fragments
are quite common, usually dedicated to one application domain. An example of such a model
library, in the area of wastewater treatment, is the SIMBA14 system. In this library, model
fragments represent the behavior of specific plant components.

Classical versions of such model libraries are static; they do not support user-modification of
the prototype sub-models or definition of new sub-models. Hence, in each model generated
from the library, the user should define appropriate parameter settings. More recent model
libraries allow for a more flexible management of reusable models. Breunese et al. (1998)
present a concept in which the user can define new model fragments and make them available
for reuse in other applications. Through the introduction of these tools, the model generation
task has become more flexible: model fragments can simply be replaced by other (more or
less detailed) models in accordance with functional requirements.

Compositional modeling makes use of this flexible approach in the form of a dynamic
modeling approach. No unique model for the considered system is developed. A query
represents a specific viewpoint on a system. The generated model satisfies the viewpoint
issued by the user. As such, the method is very suitable for complex systems that cannot be
properly represented with one unique and complete model. Thus, compositional modeling
uses knowledge from theory as well as information on the process status, as represented in
Figure 4.1. The following four stages are distinguished in compositional modeling:

1. Query analysis - The query about the system is analyzed to find a set of relevant objects
and attributes as found in the physical system that have to be included in the model.

2. Object expansion - The smallest physical system is identified that contains all objects
found in the query.

14 SIMBA is a trademark of the Institut für Automation und Kommunikation Magdeburg,
Barleben, Germany.

54

3. Candidate completion - Here, it is decided how to model each object in the system
identified during object expansion. In this stage, one or more candidate models may be
found for the given query.

4. Candidate evaluation and selection - The simplest model is selected from the set of
candidate models.

The compositional modeling task is a generic task and has been implemented for amongst
others quality change models of agricultural produce (Sloof & Simons, 1994).

components

system

Process status Model Simulation

Scenario

Compositional
Modelling

model
behaviour

validate

Models of
component
behaviour

THEORY

USER QUERY

Figure 4.1. The role of compositional modeling in generalized modeling

Case retrieval

Case Base

Propose
ballpark

Adapt

Evaluate

Use

Compose and
Store

Problem
description

Figure 4.2. Overview of case-based reasoning process

55

4.3.2. Case-Based Reasoning
Case-Based reasoning (Kolodner, 1993) is a problem solving strategy originally stemming
from psychology. The original observation is that humans solve new problems by recalling
one or more similar situations from the past. From this historic situation, the applied solutions
are transferred to the new problem, and modified to compensate for the differences between
the historic and the current situation.

In case-based reasoning, this psychological strategy is translated into a problem solving
strategy for use in computer software. Problems to solve are described as cases in a
standardized format. The system memory is implemented in the case base, which is a
database containing historic problems, solutions and their realized performance.

The problem solving process (Figure 4.2) starts with a well-defined problem description. This
leads to a search in the case base for a historic case that resembles as much as possible the
current problem. From this historic case the solution is retrieved, and copied as a ballpark
solution into the new case. Then, a detailed comparison between the historic case and the
problem description is made, leading to (potential) changes in the proposed solution.
Potentially, the new solution is evaluated, and re-adapted on the basis of the evaluation
results. Eventually, the adapted case is used as problem solution. This leads to new
information on system behavior, which is added to the case base as a new case, incorporating
both the proposed solution and the achieved result.

When realizing a case-based reasoning system, a number of implementation decisions have to
be made. Kolodner (1993) and Aamodt & Plaza (1994) identify a number of issues to
consider:

1. Case representation and case indexing - what information is needed in a case, and how are
cases organized in such a way that effective and meaningful retrieval is achieved?

2. Case adaptation - what knowledge is used to adapt the ballpark solution?

Best match Adaptation new
schedule

apply

Models of
system

behaviour:
Cases

THEORY

Distance
metric

Adaptation
rules

components

system

Process status

Figure 4.3. The role of case-based reasoning in instance specific modeling

56

3. Case evaluation and critique - what evaluation criteria can be used, and how to process
the evaluation result?

4. Retain methods - how to store cases, and which cases are stored?

As illustrated with Figure 4.3, the role of case-based reasoning shows some similarities with
compositional modeling (Figure 4.1). Differences are the role of the domain theory and the
level of abstraction of the delivered solution: case-based reasoning delivers a system specific
solution.

4.4. Case Studies
This section presents two case studies in the domain of wastewater treatment. In Section 4.4.1
we give a short introduction of this domain. Section 4.4.2 presents an overview of the
WaterCIME project. In this project, the modeling concepts presented in this chapter have
been developed and field-tested in two applications. These applications are presented in
Sections 4.4.3 and 4.4.4.

4.4.1. Wastewater Treatment
Wastewater treatment, the purification of industrial and communal wastewater has become a
major industrial activity. Large wastewater producing industries operate dedicated plants that
implement processes dedicated to the wastewater delivered in that industry. Communal
systems aim at processing the mix of wastewater produced by households and industries.

Biological treatment is commonly used for wastewater plants, mostly complemented with
physical and chemical purifying components. Biological systems deploy micro-organisms
that adsorb and convert complex biological and chemical waste components such as
phosphates, nitrates and carbon-hydrates into environmentally less harmful substances, e.g.
CO2, H2O and bio-mass. A major technique for biological wastewater treatment is the
activated sludge process. In this process the biomass consists of oxygen consuming (aerobic)
micro-organisms. The required oxygenous conditions are realized by injecting large amounts
of air into the wastewater. A typical example of a biological treatment system is displayed in

O2

O2O2

Fixed

Influent Effluent

Overflow
Sludge

A-tank
B-tank

Figure 4.4. Part of the configuration of the BEB Seehausen plant

57

Figure 4.4. This figure represents an A-B reactor type, where A stands for Adsorption and B
for Belebung (= aeration). In this system, commonly encountered in Germany, net-shaped
organisms filter the coarse waste particles out of the water in the A-phase. Then dissolved
waste is transformed by smaller micro-organisms in the B-phase.

Activated sludge plants are operated semi-automatically. Controlling the plant under normal
conditions may apply three controls: aeration capacity, return sludge, and sludge removal.
Standard configurations in current situations include SCADA systems for real-time
monitoring of process conditions. However, these data prove insufficient for optimal control.
Real-time measurement of oxygen demand is not possible. Reliable prediction of oxygen
demand is required to optimize aeration. Aeration management therefore relies on the
availability of reliable prediction of oxygen demand.

Under abnormal conditions, the major problems are to correctly diagnose the problems, and
to identify the proper repair strategy for restoring the normal operating conditions. Faulty
process states can originate from many different reasons: toxification of biomass, insufficient
aeration capacity, malfunctioning of sensors, mechanical problems in the plant and many
more. Fast and correct diagnosis is essential to ensure optimal process operation. However,
process control systems only give partial information on the process state. Characterizing
influent, even at a simple level, is a time-consuming process, let alone a full chemical and
biological analysis. Advanced tools are being developed to support both operational control
and process diagnosis.

PLC's EXISTING SYSTEMS
DCS

CIMWORK Management Gateway

Pictures
Calculations

Reports
Trends

Historics

Perf. Analysis
Deep Diag.

Plant Diag.
Functional Diag.

CIMVIEW
Process Gateway

GIS
Maintenance Customers

Maintenance Control room Production Environment Lab Automation

Distribution Production

Management host

Assets
RDBMS

STANDARD
FUNCTIONS

Water Quality

EXT. APPLIC.
SOFTWARE
EXT. APPLIC.
SOFTWARE

A
T
O

A
T
OD

A
S
A

A
T
A

A
T
A

D
A
S
A EXT. APPLIC.

SOFTWARE

Hydraulic Simul.
Demand Pred..

Network Schedul.
Process Schedul.

Functional Diag. D
M
U

D
A
S
A

D
M
U

A
T
O

Desktop stations

Figure 4.5. General Overview of the WaterCIME architecture. Data from the primary
processes are linked to the process gateway. Aggregated data is managed at the
Management gateway. Both process data and aggregated data can be accesses by all
applications, on the basis of transparent data definition. Both layers are open for other
modules to exchange data.

58

Mathematical models of the wastewater processes have gained popularity. Over several
years, a number of separate model libraries have been developed. Under co-ordination of the
International Association on Water Quality (IAWQ) a unified library of mathematical models
has been developed. This library is now widely accepted, and contains sub-models for many
components that can occur in activated sludge plants. It is also the basis of the SIMBA model
library.

A major goal of application of mathematical models is to support system design. Proper plant
dimensions can be determined by performing simulations based on influent requirements
(volume and characterization of waste components). Moreover, models are used for
educational and research purposes, and for studying control strategies (e.g. PID controllers).
As yet, operational exploitation of these models remains limited. Main reasons for this are
long response times for real-time usage, model calibration and the required effort to keep
models up-to-date.

4.4.2. The WaterCIME project
The case studies in this chapter are drawn from the WaterCIME project (ESPRIT project no.
8399). WaterCIME aims to improve water management information systems by developing
an open software framework, covering both wastewater and clean water treatment, transport
and storage. It adapts Computer Integrated Manufacturing and Engineering (CIME) concepts,
which were originally developed for manufacturing industries. They provide techniques for
looking at a company’s information, decision-making and engineering systems, and planning
their close relation.

An overview of the WaterCIME system is given in Figure 4.5. The resulting architecture can
be subdivided in four sub-systems:
• The process sub-system consists of all sensors, actuators, PLC’s and process computers

that together provide operational control functionality (depicted below the process
gateway in Figure 4.5).

• The CIME layer consists of a process gateway, collecting data from and to the process,
and a management gateway, providing aggregated data several levels of management
applications. The layer provides open and transparent access to all data available in the
system. The concept eliminates multiple versions of databases, reducing the maintenance
effort and improving data quality.

• Nine WaterCIME modules, which are modules that realize operational, tactical and
strategic functions (depicted between process gateway and management gateway in
Figure 4.5).

• Modules provided by other suppliers, e.g. GIS, simulation software, Maintenance
modules, financial and customer administration (depicted above the management gateway
in Figure 4.5).

Several advanced modules are developed that make use of the open structure of the
framework to illustrate the added value of such a platform. The modules presented here were
both installed and tested at the Seehausen wastewater plant of the Bremer Entsörgungs
Betriebe, in Bremen, Germany. The systems proved their functionality during the tests.

4.4.3. Generalized modeling with WQSM
The Water Quality Simulation Module (WQSM) serves as a prototype system for problem-
specific model generation. It creates generalized models for the wastewater treatment plant
under consideration. In the current setting, the generalized theory defined by IAWQ is
deployed (Henze et al., 1995). Models are generated in a format suitable for existing

59

simulation software (such as SIMBA or EnviroPro15). The modeling technique implemented
in WQSM (Broeze et al., 1997) is based on the compositional modeling approach (Section
4.3.2).

WQSM largely utilizes data already available in the WaterCIME environment. One of the
databases in the WaterCIME environment is the configuration database, describing the up-to-
date plant and process configuration. In case of a reconfiguration or maintenance, the
configuration database is updated by a maintenance manager. By using these data, WQSM
automatically creates a backbone structure for the model to be created. This largely facilitates
the modeling task.

Furthermore, historic and recent process data are available. WQSM has direct access to these
data, thus largely facilitating practical simulation.

The modeling task in WQSM consists of the following sub-tasks (see also Figure 4.3):

15 EnviroPro is a trademark of Intelligen.

plant configuration retrieval

user-specification of attributes of interest

formal problem-specific model
generation

Configuration
Base

Process
Base

Model
Baseselection of model library

extension of the formal model to a
complete model for the selected library

generation of model description in terms
of the selected model tool

retrieval of process data

start simulation software; and load the
generated model

pr
ob

le
m

 d
ef

in
iti

on
m

od
el

 g
en

er
at

io
n

Figure 4.6 Subtasks in WQSM

60

1. Plant configuration retrieval. WQSM uses a pre-defined plant configuration, here
available in the configuration database within the WaterCIME environment. The plant
layout, as described in the configuration database, serves as a backbone for the considered
system during the modeling task.

2. Specification of a problem of interest. Queries about the system include a user-selection
of processes and variables in components of interest.

3. Formal model generation. WQSM defines a formal model that includes all attributes of
interest and the processes that influence those processes and variables.

4. Selection of model library. WQSM selects the simplest model library that can represent

Figure 4.7. User Interface of WQSM

 Generated by WQSM 1997 (c) WaterCIME

Influent AddRain
(no_rain)

Vorklaerung
(pc)

DividerOldNew
(Divider)

0.5
DividerOldNew

Const1

M

MixerRetS_C
(Mixer)

Anoxic1_C
(deni)

Anaerob1_C
(anaerob)

M

Mixer_Circ_C
(Mixer)

Circ_Anoxic_C
(deni)

Circ_Aerob_C
(nitri_p)

14000.0
Circ_Aerob_C

Const1

Zehrungszone_C
(deni)

P

Pump_Circ_C
(Pump)

1000
Pump_Circ_C

Const1

NachklaerungC
(sc-ideal)

10000
NachklaerungC

Const1

IAWQ 1
y1

BypassA
(Divider)

M

MixerRetS_AB
(Mixer)

M

MixerA
(Mixer)

NitiA_Compa1
(nitri_p)

7000
NitiA_Compa1

Const1

NitiA_Compa2
(nitri_p)

7000
NitiA_Compa2

Const1

DeniA
(deni)

CircPumpA
(Divider)

0.5
CircPumpA

Const1

M

MixerBypass
(Mixer)

M

MixerB
(Mixer)

NitriB
(nitri_p)

14000.0
NitriB
Const1

DeniB
(deni)

CircPumpB
(Divider)

0.5
CircPumpB

Const1

NachklaerungAB
(sc-ideal)

10000
NachklaerungAB

Const1

IAWQ 1
y2

0.5
BypassA
Const1

 WWT Plant model generated by WQSM
(BEB, Seehausen)

Figure 4.8. SIMBA model generated by WQSM for the Seehausen wastewater plant.

61

all attributes gathered this way (in the present version of WQSM the SIMBA libraries
ASM-1 and ASM-2 can be addressed).

5. Extension of the model to a complete model for the selected model library.
6. Translation of the model to a format suitable for the selected model library. The final

modeling step is the representation of each component by one or more sub-models from
the model library. WQSM chooses the simplest sub-model (the sub-model that is least
expensive from a computational point of view) that features the attributes.

7. Retrieval of process data. WQSM has access to process data through the WaterCIME
environment.. These data are used for calibration and actual influent (load) descriptions.
Recent developments in the applied simulation environment allow for automatic
calibration of the model with these data.

8. Start the simulation software.

Sub-tasks 1 and 2 represent stage 1 in the compositional modeling process (Section 4.3.1).
Sub-task 3 stands for stages 2 and 3, whereas sub-task 4 reflects stage 4 of the compositional
modeling process. In sub-tasks 5, 6 and 7 stages 3 and 4 are reapplied to a larger system.

The sub-tasks in WQSM are accessed through the prototype user-interface (Figure 4.7). The
buttons in the left and middle column are used for user-specification of attributes of interest.
The buttons in the right column start the model composition, retrieval of process data from
the WaterCIME process database, and starting the simulation tool SIMBA.

In comparison to classical modeling approaches, WQSM largely simplifies modeling of
wastewater treatment systems. The task of manually creating a model structure and
appropriate flowsheets, with components that correctly represent processes and variables of
interest, is taken over from the user. Furthermore, realistic process data can be easily

Figure 4.9. User-interface of the SCS.

62

accessed. As a result, creating problem-specific simulation models is largely simplified;
modeling becomes available for more purposes and for a larger group of users.

Tests have shown that with WQSM adequate simulation models can be generated within a
few minutes. This is in large contrast with the current practice; usually a number of months
are required for creating an appropriate model structure, selecting suitable sub-models from a
model library, data acquisition and calibration. During the tests, we have generated models
with WQSM in SIMBA that are functionally equivalent to expert engineered SIMBA models.
An example plant model is shown in Figure 4.8.

WQSM can typically be used for analyzing
• unexpected plant behavior, such as a change in process conditions in a reactor tank

(aerobic, anoxic or anaerobic), and
• a varying degree of refinement of representation of reactor tanks with a prop flow

(choosing a varying number of compartments in the model).

In future, links to model-based diagnosis tools are foreseen.

4.4.4. Instance-specific modeling with SCS
The Super-Charger Scheduler (SCS; Verdenius & Broeze, 1997) is a prototype system for
process scheduling in the water domain. The system has been tested in a section of the
wastewater plant Seehausen of the Bremer Entsörgungs Betriebe (BEB). The wastewater
process is of the activated sludge type. It is aerated by three super-chargers (15,000 to 35,000
m3), that operate in a closed control loop on the basis of measured oxygen level in the tanks.

In controlling the aeration system, two typical problems occur:

1. Small fluctuations in the Chemical Oxygen Demand (COD) may result in an oscillatory
on-and-off switching of superchargers. This is energy inefficient, and may generate
additional maintenance needs.

Demand
Prediction

Super-charger
Scheduler

Water Quality
Simulation

WaterCIME Infrastructure

Process
Database

Configuration
Database

PLC

Sensors O2

1

3
2

Figure 4.10. Overview of the WaterCIME subsystem. A demand prediction module
delivers a short-term load prediction. The SCS module converts this to a 2-hour schedule
for the aeration system.

63

2. COD peaks or falls may result in a lack or overflow of aeration capacity.

Traditionally, the system is controlled in a closed control setting, where the resources are
automatically allocated on the basis of oxygen measurements in the process. The introduction
of the WaterCIME environment, with a demand prediction module, enables active scheduling
of the resources in an open control system (Figure 4.10). Existing mathematical models are
inadequate to solve this type of control problem. Moreover, as controlling the aeration is a
new feature, experts have no knowledge on how to perform this task. Case-based reasoning is
introduced as a solution to this allocation problem. A schematic overview of the scheduling
system is provided in Figure 4.11.

Locating cases in a case base that stores more than 100,000 cases a year can only work when
cases are properly indexed. Good index features can not be identified in advance, due to the
novelty of the scheduling task. Moreover, over time the set of index features may change due
to system drift. This introduces the need for an indexing technique that extracts without
supervision adequate indexing features. A self organising map (SOM; Kohonen, 1995) is
used as indexing mechanism. Regularly, the case base is re-processed by the SOM training
algorithm (the calibrate-arrow in Figure 4.11). All cases are projected on a 2 dimensional
grid. Case distance is measured with a weighted Euclidean measure. The SOM index delivers
a number of potential matches. A detailed comparison on key features, indicated by experts,
determines the ultimate best match.

Cases are represented as a grouped list of features. Feature groups concern
• Case identification – containing time, date, weather, day status (weekend, holiday, normal

working day).
• Plant status - containing the actual status of the plant, including oxygen level, pH, influent

flow, etc.
• COD demand – containing the expected (new case to schedule) or encountered (historic

case) COD demand in the time frame that the schedule covers.
• Schedule- containing the super-charger setting over time.
• Schedule result – containing the development over time of the schedule performance

features (historic schedule) or the required performance (new case to schedule).

This best matching case serves as the ballpark solution. It is adapted on the basis of
differences between the historic problem and the newly encountered problem. The
adaptations are inspired by the IAWQ model for activated sludge processes (Henze et al.,
1995). In the current system cases are not subject to a critique during the planning phase. The
inclusion of the solution results in the case base serves as a means to learn the behavior of the
system.

4.5. Conclusions
Ecological systems require flexible approaches for modeling and control to cope with typical
aspects of biological processes:
• complexity,
• process dynamics,
• process evolution, and
• the possibility to have different views on one process.

Existing modeling and control technology is not optimally suited to cope with the typical
problems in this domain. Two typical problems where AI technology can improve the
functionality of existing software are discussed in this chapter: modeling of biological

64

processes by means of compositional modeling and on line scheduling for resource allocation
with case-based reasoning. The result of the compositional modeling approach is a model that
describes the behavior of a system as represented in process data and that is based on
theoretical domain models. Case-based reasoning employs extensive descriptions of previous
situations, in terms of process data, in order to justify operational decisions. This approach
does not rely on theoretical domain knowledge. Instead, the system improves its behavior
over time by acquiring new data on process behavior. Moreover, case-based reasoning can
learn from its own past behavior in order to fine-tune its case adaptation knowledge. Two
applications in wastewater management form an illustration of the approaches. These
approaches are applicable in many related domains. The principles that play a role in
wastewater treatment also occur in many other systems.

A remaining drawback with both approaches is that they pose some constraints on the
application. In order to successfully compose a model, a reliable model library covering the
relevant system components and behavior types is required. In many biological domains
such a model base is not, or only partially, available. On the other hand, in case-based
reasoning the available domain knowledge is only implicitly reflected in the resulting
solution. An option is to combine these two approaches. Verdenius & Top (1998) suggest to
match, in a case-based approach, system behavior onto the behavior of known models. Based
on theoretical insight and system behavior, the best matching model structure can be adapted
to optimally fit the perceived behavior, probably resulting in a new model. In this matching,
cross-domain borders (e.g. mechanical, biochemical, electromechanical) can be overcome by
representing models on the level of their structure (i.e. bond graph), abstracting from the
actual domain.

We aim to further refine and apply the cases presented in this chapter. The development of a
tool combining compositional modeling with automatic diagnosis is foreseen. The results of
the examples are encouraging for these new developments.

Compose Case

Retrieve Case

Revise Case

Apply Case
Case Base

SOM
SchedulingStoring

Compose Case

Calculate Index

Store Case

Case

IndexIndex

Case

CaseCase +
Index

Index
Calibrate

Figure 4.11. Role of Case-based Reasoning and Self Organising Maps in the Super-charger
Scheduler.

65

5. The MEDIA Model

This chapter is based on: F. Verdenius & R. Engels, A Process Model for Developing Inductive Applications,
in: W. Daelemans (ed.), Proceedings of Benelearn 1997, Tilburg, pp. 119-128

Abstract
A growing interest in real-world applications of ML techniques brings the need for
methodological support for applying them. A number of methodologies for applying machine
learning techniques that are available in the literature have been discussed in previous
chapters. After shortly summarizing these approaches, we propose a model for structuring
projects that use ML techniques as an add-on to existing approaches. The model is part of a
comprehensive approach to support the application of machine learning techniques in various
settings, and helps to plan projects where such techniques are involved. Chapter 2 divided the
ML application process in three levels: designing the functionality of the total application,
selection of a machine learning technique for indicated sub-tasks, and optimal configuration
of the selected technique. In this chapter, the three levels of the ML application process are
organized in three separate activities, and the interaction between the three levels is
structured.

5.1. Introduction
Machine Learning techniques have become popular tools for solving real world problems. In
Chapter 2, a number of references to studies were made that surveyed real world applications.
These studies report successful applications, mainly in an applied research context. Some
studies, including our own survey, also reveal the degree of use of machine learning
techniques to solve industrial problems. With the transition of these techniques from a
research environment to industry, the research interest shifts from developing technical
improvements towards the structure of the design and the implementation process. An
important outcome of the Chapter 2 survey is that practitioners are asking for methodological
support. In the literature, this development is reflected in the growing number of reports on
process models and methods for Machine Learning (ML) application. Chapter 3 and 4 discuss
some problems in industrial problem solving. In both chapters, complex tasks are
decomposed into sub-tasks, some of which are implemented in ML components, while others
are implemented using knowledge system components that integrate background knowledge.
Existing process models do not support these activities.

This chapter develops a model for applying ML applications that is complementary to
existing approaches for system development. Section 5.2 briefly summarizes the process of
ML development and the process models as proposed in the literature. Much of the existing
work in this direction focuses on the technical details of applying the technique, thereby
ignoring the design aspects of an ML application. As a result, ML users are mainly supported
in solving their problems when they have already completed the major problem-solving step
of designing the functionality of the solution. Section 5.3 discusses major problems in the
process of ML application and evaluates some of its solutions.

Section 5.4 introduces the Method for Designing Inductive Applications (MEDIA), a model
that structures the process of ML application. The application process according to MEDIA
starts with the problem statement. It structures the activities upto the level of the individual
techniques. Section 5.5 concludes. The goal of this chapter is to present the model as a

66

structure for the development of ML applications. Specific technical support in activities for
system design and technique selection is elaborated in the Chapters 6 and 7.

5.2. The process of ML Application in Literature
Over the years, learning techniques for standard tasks such as classification and clustering
have been improved and refined (e.g. Mitchell, 1997). More complex tasks, such as cost
sensitive classification (Turney, 1995), have been covered by newly developed techniques.
As in many technical disciplines in early stages of development, the machine learning (ML)
society progressed by technically improving existing ML techniques.

Consequently, practitioners are nowadays equipped with a multitude of learning techniques,
many of them focussed on specific problem types, data set characteristics and application
types. Several tool sets (e.g. SPSS Clementine16; SAS Enterprise Miner17; WEKA, Witten &
Frank 2000) provide comprehensive sets of techniques with an interface to open up these
techniques for exploration. These tool sets also incorporate non-ML inductive techniques,
such as inductive statistics and neural networks, with a similar functionality as the available
ML technique.

A number of studies have considered the process of ML application. In its most basic form, it
supports a systematic selection of techniques. Weiss & Kulikowski (1991) present an
approach for the classification task with the knowledge acquisition aim of extracting a model
from data, an application we nowadays would consider data mining. The requirement for this
approach is to provide a model to be used for classification. Problem analysis, data collection,
operational use nor model maintenance are covered by their approach. The problem is seen as
the problem of selecting a suitable technique for providing a specific knowledge model. Their
technical toolbox contains four complexity levels of techniques. The levels are processed in
order of ascending complexity until a technique is encountered that satisfies the quality
requirements. Satisfaction is primarily assessed in terms of model accuracy. The application
order of the various techniques is a combination of increasing expressive power and
decreasing comprehensibility of the resulting model, which serves as a secondary criterion
for satisfaction: the best model performs accurate enough, and is as expressive and
comprehensible as required.

With the increasing interest in data mining, knowledge discovery in databases and the
application of machine learning in complex software systems, an increasing number of design
approaches have been proposed. Some of them have been discussed in the previous chapters.
Table 5.1 generalizes these approaches in terms of the project phases that they cover, and
overviews the support that these approaches provide per phase.

MLT stands for Machine Learning Toolbox, ESPRIT II project P2154. The toolbox contains
about 40 inductive techniques for classification. Craw et al. (1992) and Kodratoff et al.
(1994) provide an approach and a tool to support the application of these techniques. The
approach, meant for implementation in the MLT Consultant tool, was designed to support
users in selecting the proper technique for their problem. Support is offered in decision-tree
shaped taxonomies, each taxonomy aiming at a specific design question. Taxonomies exist
for items such as ML application goals (learning for similarity detection, acquiring
knowledge or classifying instances), Nature of available data (Incremental, in Batch), Nature
of available background knowledge (background knowledge is usable, background

16 http://www.spss.com/clementine
17 http://www.sas.com/technologies/analytics/datamining/miner/

67

Phase MLT WEKA B&S DTI Fea A&Z CRISP
Application analysis P B B
Feasibility analysis B
Application design B
Data collection P P B
Preprocessing, Feature Selection P P P P
Technique selection T P P B P P P
Running technique T P B P P P
Operational use P B B
Table 5.1. The support provided by various approaches. T stands for technical support, P for
phasing, and B for both technical and phasing support. The approaches are explained in the
text.

knowledge must be used). Every decision structure is used to select a sub-set of potentially
suitable techniques.

Garner et al. (1995) describe another approach that is closely connected to the WEKA
workbench. Similar to MLT, WEKA contains a number of classification techniques to be
used in a data mining process. In comparison with the former approach, the WEKA approach
is more oriented towards the process phases, and gives less support in actually taking design
and analysis decisions. Moreover, the WEKA approach emphasizes the importance of
interaction between the ML analyst and the data providers, who are normally the domain
experts. Using WEKA, especially when exploring the data space, influences the requirements
of the data provider, and may generate new questions. The requirements actively change in
the course of the ML application process. In order to manage the explorative redefinition of
the project goals, WEKA foresees intensive interaction between the ML analyst and the data
provider.

The approach of Brodley & Smyth (1997), listed as B&S in Table 5.1, is not limited to
explorative data mining purposes. Their approach extends the scope of the process for
applying ML techniques to the process of analyzing the problem environment, not only in
terms of data, but also in terms of (what they call) domain specific factors such as application
specific and human factors. In the description of their approach, the authors explicitly discuss
the important aspects to be analyzed. This method is, as the ones discussed before, specific
for classification tasks. Like the WEKA approach, B&S indicate the phases of the process,
without providing elaborated design and analysis guidelines.

Such guidelines are included in the DTI approach for realizing neural network applications
(DTI, 1994). Problem solving starts with the definition of the application. Neural networks
are suitable for a broad range of tasks, amongst others classification, optimization, and
prediction of continuous values. The scope of the DTI starts as early as the application
analysis. Furthermore, the phases as well as the contents of the design steps are provided in
more detail than most methods that were discussed earlier. The organization of the total
approach is similar to classical waterfall approaches for software development, with clearly
indicated phases and milestone products. Some of these phases are extremely detailed, others
are more globally defined.

In the area of data mining and knowledge discovery three approaches have been proposed by
Adriaans & Zantinge (1996; A&Z in Table 5.1), Fayyad et al (1996; Fea in Table 5.1), and
CRISP-DM (Chapman et al., 2000; CRISP in Table 5.1), respectively. Adriaans & Zantinge
and Fayyad et al. provide a fairly similar phasing of the data mining and KDD process. Both
indicate the steps to take, and justify these steps. Informally, input and output results per

68

phase are given. Adriaans & Zantinge provide additional descriptions of techniques, and for
some of the activities examples of how they can be realized.

A more comprehensive model is developed in the CRISP-DM project (Chapman et al., 2000;
CRISP in Table 5.1). Compared to the former two approaches, it also covers the broader
context of the application. The CRISP process model distinguishes 6 phases: Business
Understanding, Data Understanding, Data Preparation, Modeling, Evaluation and
Deployment. For each of the phases, the detailed contents are described in terms of the tasks
within each phase, their goals and the contents of the project documentation. For some of the
tasks, guidelines are provided in the form of heuristics (e.g. technique selection is supported
with selection lists of techniques per problem type).

The available approaches can provide support on 3 different aspects of a project:

• Technique orientation: Process models can be oriented towards (a group of) techniques
or tools (e.g. DTI, MLT, WEKA), or they can be technique independent (e.g. B&S, Fea,
A&Z, CRISP-DM).

• Application orientation: Process models can be oriented towards a specific type of
application, such as data mining (e.g. Fea, A&S, CRISP-DM), or they can support any
application type (e.g. B&S, DTI). In the latter case, analysis and design of the application
becomes a more dominant phase.

• Management orientation: Process models can focus on phasing and project management
(Fea, A&Z), they can provide detailed technical support on how to make design and
development decisions of the product life cycle (MLT), or they can combine the two
(DTI, CRISP-DM).

5.3. Towards support of ML application design
The previous section described a number of process models for designing ML applications.
As can be observed in Table 5.1, none of the available models covers the entire design and
implementation process. Only three of the mentioned models provide some technical support
in how to take better design decisions. The Chapters 2, 3 and 4 have given indications on the
type of improvement that practitioners need. In Chapter 2, survey respondents indicate that
they need methodological support: what to do and in which order to end up efficiently and
effectively with a working application. Existing approaches, primarily dedicated to data
mining, provide process steps and their dependencies. The three application types
(explorative data analysis, one-time knowledge acquisition and adaptive system
development) face ML experts with similar challenges and problems, as can be seen in Figure
1.1. Approaches that focus on a specific type of application overlook the commonalties.
Chapter 3 and 4 illustrate that designing a working system also includes the decomposition of
complex tasks into sub-tasks. To each sub-task a knowledge-based method or a induction-
based method is assigned.

Another requirement for methodological support that is revealed in Chapter 2 is the need for
instruments for technique selection. In many of the reported projects techniques are selected
on the basis of improper arguments: custom, personal preference or availability often plays a
role.

Consequently, the starting point for the development is the need for a process model that
covers the important ML application phases, that explicitly pays attention to the integration of
knowledge-based and induction-based system components, and that offers support in design
and technique selection. On the other hand, given the availability of existing process models

69

and the link with software development, the need for general-purpose phasing and project
management support can be omitted, as it can be covered within existing approaches.

5.4. MEDIA
As a methodological contribution of designing induction-based applications we propose the
MEDIA model, which provides an application independent activity structure. This model, that
can be seen as a ML-design add-on to existing approaches, consists of the three activity levels
that are introduced in Chapter 2: the application level, the analysis level and the technique
level. These levels and the information flows that connect them are as relevant to an
exploratory data mining or knowledge discovery project as they are for the development of a
learning software module or an adaptive software system. The model covers the design and
development of learning application. Based on specific functional and non-functional
requirements that the application/employer imposes on a project and the results of other
project activities, a precise list of actions is compiled; Welke et al. (1991) call such a flexible
approach Methodology Engineering. The MEDIA model is meant to offer support for the
development of applications of machine learning techniques. As such, it aspires to overcome
the limitations mentioned in the previous sections.

In Figure 5.1 the major properties of the MEDIA model are shown. The actual design and
analysis work is covered in three activity levels: the application level, the analysis level and
the technique level. Each level covers a major aspect of ML application design, in ascending
order of detail. In the center of each level, the activity structure of the model is depicted. On
the left hand side, specific knowledge bases for each level are listed. The knowledge bases

Functional
Requirements

Domain data
definition

Non-functional
Requirements

Task
decomposition

Model
definition

Data
definition Data set Technique

Selection
Design

Constraints

Technique level

Basic
task

knowledge

Task-
technique
knowledge

Technique
tuning

knowledge

Task
Control

Data pre- and
postprocessing

Tuned Tech-
nique, Model

Analysis level

Acquirable
data

definition

Application Level

Knowledge
Base

Project
document

Activity
level

Project
result

Figure 5.1 An overview of the MEDIA model

70

contain specific design and analysis knowledge that is used to perform the design and
analysis tasks. On the right hand side, the results of the activities are listed. The outcomes are
in the form of models, control algorithms, parameter settings, and software components,
which are eventually included in the final application.

The main idea behind this structure is the desire to separate the three stages of application
design, task analysis and technique operation. The justification for the use of these levels is
similar to the justification for the use of structured knowledge engineering methods such as in
CommonKADS (Schreiber et al., 2000), which is primarily separating the why, the what and
the how. The why is defined as the overall application functionality, its task decomposition
and the control structure. The what is defined as a detailed study of the mapping between
data, and the assignment of suitable techniques based on an understanding of the underlying
data patterns, and the how is defined as the specification of the low-level technique settings
that implement the required functionality.

5.4.1. The Activity Structure
The heart of the MEDIA model is formed by the activity structure as depicted centrally in
Figure 5.1. The structure of the model is preliminary introduced in Chapter 2. The main
activities performed in the MEDIA model are ordered in three levels. At the very top of the
activity model the input into the ML design activities are depicted. The input consists of the
functional requirements, the non-functional requirements, and the domain data definition of
the embedding application. The functional requirements define the operational task that has
to be realized in the learning application. In many cases, this operational task will be more
complex than just a learning task. Often a ML project is started with the goal of employing
certain knowledge, which is supposed to be implicitly present in the data. Making this
knowledge explicit (e.g. in the form of a generated model) forms a sub-task in the overall task
decomposition. In the case of the PTSS as described in Chapter 3, the functional requirement
is to deliver a prescription for the keeping conditions of a batch of exotic fruits. The recipe
takes information on a batch of fruits arriving from abroad as the input, and the resulting
recipe should lead the fruit to be in a predefined quality at the end of the storage period.
Moreover, the performance of the system in terms of the number of unacceptable fruit
batches should be comparable to the performance of human experts.

Non-functional requirements define the constraints the application has to satisfy (e.g.
response time, memory resources, and interpretability of the resulting model). For the PTSS,
an important restriction is that it operates in interaction with a human expert. Fruit selection
and quality measurement is a manual process. Especially the fruit selection criterion has to be
comprehensible and sensible for an expert to accept it.

The domain data definition defines the concepts as defined in the embedding application. In
the PTSS fruit planning domain, available data includes:

• Batch data, such as origin, cultivar etc.
• Commercial data, mainly the required due date of the product treatment and the

required quality after the treatment. It is further assumed that a fixed final quality is
delivered for all recipes. Consequently, required quality will not be used.

• Product data, being a number of measured values for individual product attributes such
as color, shape, firmness, weight etc, describing per individual product in a batch various
quality aspects at the start of a recipe.

• Batch history, such as storage temperature or the concentration of relevant gases such as
ethylene, O2 or CO2

71

• Treatment Recipe, being setpoints for storage conditions, inlcuding storage
temperature, concentrations ethylene, O2 or CO2.

Next in hierarchy is the Application level where the why question is answered. The
application level deals with identification of knowledge and data sources, task decomposition
and acquisition method assessment. These results in the following:

• Task decomposition - tasks are broken down into sub-tasks until a set of simple, formally
described tasks is derived. The model acquisition tasks are also part of the task
decomposition, if inductive techniques if inductive techniques are available (Engels,
1996). Additionally, the task decomposition describes all steps that are necessary in order
to perform the operational task. For the recipe planning process of the PTSS, the task
decomposition can be found in Figure 3.3.

• Knowledge source definition - describes the models that are introduced in the task
decomposition. It connects domain data as input-output relation to sub-tasks. It also links
the relations and functions of the task decomposition to the models to the extent that they
aa relevant to sub-tasks that involve learning. More formal aspects, such as representation
and model contents, are defined at lower levels.

• Definition of acquirable data - offers an overview of meta-data (or data characteristics),
describing the data that is available for induction in as much detail as possible.

The definitions of knowledge sources and acquirable data are further elaborated in Chapter 6.

At the Analysis level, the how question is considered. For each task in the task decomposition,
a selection of one or more techniques is established that can be expected to perform well on
the task at hand. Components are only elaborated when they can be realized with machine
learning techniques. For this reason the definition of domain data and the functional as well
as the nonfunctional requirements are carefully analyzed and interpreted (see also Engels et
al, 1997c). The interpretation combines heuristic and formalizable aspects of learning
techniques and their function. In Chapter 7 we develop a tool that performs this selection
task. Output at this level includes:

• Data Definition – that defines the sub-set of acquirable data items that are used for the
inductive step,

• the accompanying Data-set containing the data for inducing models,

• the Technique Selection, containing a definition of the technique and the input-output
design,

• and finally the Design Constraints. These are a direct translation of some of the non-
functional requirements.

At the Technique level, the what question is answered. This last level delivers the actual
results of the learning process, and generates a model and accompanying software, This level
also involves technique design, where exploration of the optimal technique configuration,
parameter settings and training set-up are determined.

5.4.2. Results of a Development Cycle
As discussed previously, activities are linked by shared input/output sets. Moreover, each
level produces specific results such as parameter settings, software components and control
algorithms. The output structures are found in the right hand section of Figure 5.1. At the
application level, the main result is a control structure for the sub-tasks: how are the sub-tasks
run to implement the required functionality? This task control takes the form of an algorithm

72

or flow chart, defining which tasks have to be performed in what order to obtain the best
result. A control flow defines the order of execution and defines iterations and their stop
conditions in the sub-tasks that comprise the task decomposition. Figure 3.2. for instance
defines the control flow of the PTSS modules. Additionally a control algorithm could be
added, if it were not the case that the user is a major control agent in this specific example.

At the analysis level, data pre- and post processing are defined, so that the selected
techniques can actually be run. For instance, a projection function van be delivered that
transforms the data-space to a space of lower dimensionality. Also, feature selection, data
filters and error correction mechanisms are positioned at the analysis layer.

Finally the technique level may deliver, according to the specific needs of the application
only a learned model, possibly complemented by a fully tuned technique (including the set of
calibrated technique parameters, a model interpreter and eventually an adaptive learning
module).

5.5. Tools for use within MEDIA
The MEDIA model offers a three level structure for designing induction-based applications.
Within the model, design concepts and tools on the three development levels are needed that
are dedicated to the application of machine learning. Apart from standard software
development tools and software methodology, learning systems require additional tools for
defining induction-based applications. Historically, there are abundant toolkits offering
various machine learning techniques, some prominent examples include MLT (ESPRIT
project P2154), Clementine18 and WEKA (Witten & Frank, 2000). Furthermore, tools for user
guidance in DM/KDD (Engels, 1999) and technique selection (e.g. MLT: Craw et al., 1992;
Metal: Metal, 2004) have been proposed. In previous chapters the need for additional support
on the following aspects has been identified:

1. How to recognize, in an early stage of problem solving, application potential for ML
techniques, and how to provide the design concepts for the development process as
adequately as possible?

2. How to integrate, from the design phase onwards, an ML solution within an embedding
system (i.e. realizing a learning function in a large complex software system, or
integrating an adaptive knowledge base in a manually operated process)?

3. How to select a good, if not the optimal, technique to solve a specific problem?

4. How to configure a technique for optimal performance?

All these subjects have been mentioned in at least one or two of the approaches discussed in
section 5.2.. In most cases it was brought forward as a subject to pay attention to in a
development phase, for instance as the expected content of a project document. However, the
actual support in taking design decisions is insufficiently offered. How to identify ML
application potential? Or how to select the best technique for a job?

However, within the MEDIA model, support tools are offered in taking design decisions. In
Chapter 6 we develop an approach for supporting the first two problems listed above. Based
on the overall functional requirements and an analysis of the available data, application
potential for ML techniques is identified, and the total system functionality is defined in a
task structure that makes effective use of both available data and available knowledge.

18 http://www.spss.com/clementine

73

Next, in Chapter 7 we develop an approach to select, for a learning task with available data,
the techniques that can expect a good quality model. The approach deploys technique specific
knowledge on the relationship between data set characteristics and technique performance.

The tools for task decomposition and technique selection complete the tool sets for the
Application level and the Analysis level of the MEDIA model. Problem 4, configuration of a
machine learning technique, is not so much a design problem as it is a parameter-tuning
problem. As such, it falls outside the scope of this work, although it is reckoned as a major
obstacle in delivering an application. Fayyad et al. 1996 refer to this tuning process as the
search method. For various techniques, there exist a wide range of technique specific
methods (e.g. Error back propagation for multi-layer perceptrons, Rumelhart et al, 1986) and
general purpose methods (e.g. genetic parameter search and simulated annealing; Chalmers,
1990; Hand et al., 2001) to find the best parameter setting.

5.6. Conclusions
The MEDIA model provides a methodological structure for designing machine learning
applications. The design steps it defines are independent of the type of application, such as
data mining/knowledge discovery, knowledge acquisition, or the construction of an adaptive
system. The MEDIA model serves as a machine learning add-on to existing project
management and system design approaches to ensure proper project progress and successful
system implementation. To further complement the MEDIA approach at the technique level,
knowledge on the configuration of specific techniques and on the tuning of technique specific
parameters must be applied. The important contribution of the MEDIA model to the
application of machine learning is that it fills the gap between the very low level design
support provided by technique developers, and the phasing support provided by the numerous
available approaches.

For practitioners, the MEDIA model helps to solve some major problems in efficiently
designing systems with learning components. MEDIA helps, at the application level, to
integrate a learning component in the embedding functionality. Moreover, it explicitly
supports the identification of techniques with and without prospects for implementing the
required functionality. In addition, MEDIA separates these two design activities from the
actual technique configuration. By distinguishing these levels of design, MEDIA helps
system designers to shift focus in the course of the project from the rationale behind the use
of it (the why) via the selection of techniques (the what) towards the technicalities of running
a learning technique (the how).

74

75

6. Planning the Acquisition of Knowledge by Combining
Manual and Machine Learning Techniques

This chapter is an updated and extended version of: F. Verdenius & M.W. van Someren (1999), Top-Down
Design and Construction of Knowledge-Based Systems with Manual and Inductive Techniques, in: B.R. Gaines,
R. Kremer & M. Musen (eds), Proceedings of the 12th KAW Workshop, Banff, Canada

ABSTRACT
This chapter presents an approach to the planning of knowledge acquisition for knowledge-
based systems. A knowledge-based system is an information system with a separate
reasoning mechanism that processes specific domain knowledge in order to provide high-
level problem solving performance. The approach combines task decomposition as
commonly applied in software engineering and knowledge acquisition with the use of
inductive techniques. The decomposition of a compound problem into sub-problems is
guided by the expected acquisition effort and resulting quality of the acquired knowledge.
The concepts effort and quality are commonly encountered as control parameters in project
management. Based on the Cocomo software-engineering model for cost estimation, we
propose models for cost and effort estimation of knowledge elicitation and machine learning.
The method is illustrated with a rational reconstruction of the design process for the
application for the planning of fruit treatment that was introduced in Chapter 3. A combined
elicitation/machine learning solution is compared with pure elicitation and machine learning
solutions.

6.1. Introduction
Knowledge acquisition involves the formalization of (human) knowledge that is required to
perform a certain task. The implicit assumption is that if humans would perform this task it
would require (expert) knowledge. The aim of knowledge acquisition is to provide the
knowledge to a knowledge-based system that performs comparable to a human expert.
Knowledge acquisition can be considered to consist of two sub-processes: the structuring of
knowledge in a knowledge base in order to facilitate problem solving behavior, and the
elicitation of knowledge from sources such as human experts, documents or exemplary data
(De Boer, 1994). It is the knowledge base that is seen as the distinguishing component
between an information system and a knowledge-based system.

An information system performs relatively simple information processing functions that are
unambiguously defined. The total functionality is incorporated in the code. In contrast, the
main predefined functionality of a knowledge-based system is the inference engine. The
facts, rules and common sense patterns that are evaluated by the inference engine are
collected in the knowledge base. It contains specific domain knowledge that is required by
the inference engine to exhibit the high-level problem solving performance (cf. Guida &
Tasso 1994).

Software engineering is concerned with the theories, methods and tools which are needed to
develop software for computers (Sommerville, 1996). It is the discipline of providing
effective software efficiently. Within software engineering a multitude of tools has been
developed to specify the requirements of software, to design and implement software, to
perform software maintenance, and to manage the process of software development.

76

As stated earlier, knowledge-based systems add a layer on top of information systems.
Knowledge engineering is the process of constructing knowledge-based systems, including
the selection of applications, organizational modeling and acquisition of knowledge models
(Schreiber et al., 1993). When the function of an application has been defined, the knowledge
bases have been specified and the knowledge has been acquired, the problem changes from a
knowledge acquisition problem into an software engineering problem: How to build the
system effectively and efficiently?

The required knowledge can be obtained in different ways. The classical way is to elicit
knowledge from one or more sources, human experts or documents, and to formalize this
knowledge in an operational language, e.g. using an expert system shell (e.g. De Boer, 1994;
Guida & Tasso 1994). In model-based knowledge acquisition, as in CommonKADS,
knowledge is modeled independent of the actual implementation, in dedicated knowledge
modeling languages (Schreiber et al, 1993; Schreiber et al, 2000; Aben, 1995). In the
CommonKADS view, engineering of knowledge-based systems comes on top of the software
engineering.

Apart from eliciting knowledge from experts, knowledge can also be obtained from data by
means of machine learning. Machine learning techniques generalize patterns in data sources
that contain examples of the input and output of the problem solving process. A database of
relevant facts is collected. For example a bank could collect data on mortgage payment
behavior in order to relate the personal financial history of a client to the payment reliability.
In a medical application one could relate test results to diagnoses. And in an agricultural
application one could relate an expert assessment of external product features to the internal
physiological state. Inductive methods extract a knowledge model to classify instances or to
predict a numerical value.

Both knowledge elicitation and machine learning have their strengths and weaknesses when it
comes to applicability, costs and quality of their results. Knowledge elicitation requires the
availability of at least one human expert or documented knowledge source. Expert
disagreement reduces the chances for successful elicitation of expertise, and increases the
costs. And a clear, well-defined and structured expert task increases the quality of the
acquired knowledge. Machine learning, on the other hand, is limited to a number of well
defined task types. It requires a database design that contains the data that is necessary to
extract the knowledge model for the required task. The size of the database has to correspond
to the complexity of the underlying pattern in the data. Given the strength and weaknesses of
the two approaches, for many practical problems a pure approach is not optimal. Here we
briefly review the two approaches and then discuss an approach that combines knowledge
elicitation and machine learning.

6.1.1. Knowledge Elicitation
Many design problems in the construction of knowledge-based systems are characterized by
the availability of different types of knowledge sources. Examples of knowledge sources are
human expertise, electronic and paper documents, publications, manuals, collections of
observations, existing digital knowledge bases, and, increasingly, electronic sources such as
the internet.

If a domain involves a complex relation between problem data and solutions, then direct
elicitation knowledge to map problem data into solutions is not effective. It leads to questions
to a domain expert that are too global and will therefore not result in useful knowledge. For
example, if in a planning problem only the planning goals, initial system state and the format
of a required plan are known, a knowledge engineer can only ask general questions like:

77

Given the planning goals G and initial state I, how do you find a plan P?

Such general questions involving a complex domain are hard to answer for a human expert. A
planning expert would not formulate a planning rule that explicitly links the input planning
goals and input information to a detailed plan. Instead, a planning expert would most likely
come up with a number of intermediate results and a number of steps that link these
intermediate results (e.g. a further classification of problem types, draft plan refinement).
More specific questions can be asked if additional knowledge, for instance in the form of
such intermediate conclusions, is available.

Research in knowledge acquisition has resulted in the formulation of a typology of
predefined reasoning tasks (c.f. the task templates in CommonKADS, Schreiber et al 2000)
and formalisms that support the formulation, reuse and deployment of reasoning knowledge
(e.g. Terpstra et al, 1992). If a task template and a knowledge formalism are found to fit a
particular knowledge acquisition problem, they act as a basis for the dialogue between
knowledge engineer and expert. Task templates and knowledge formalisms serve two
important functions. First, they provide a common language that can be used to phrase more
specific questions to the expert. Second, they make it possible to decompose the knowledge
acquisition problem into sub-problems, a form of divide-and-conquer.

One difficulty with this approach is the selection of appropriate task templates and
knowledge formalisms. The range of templates and formalisms is likely to be large, and
without tools, the task of selecting an appropriate concept is far from trivial. Specific tools
have been developed to support the user in this approach (Schreiber et al, 2000). In this
approach, the formulation of the template is leading in acquiring the knowledge; (economic)
feasibility is of minor importance. Once a task template is selected, however, it may turn out
to be technically infeasible or too expensive to acquire the knowledge for each component of
the template.

6.1.2. Machine learning
Machine learning technology gives the prospect of (partially) automating the elicitation of
knowledge and the construction of knowledge-based systems (Brodley, 1992). There are
several ways to apply machine learning techniques for knowledge elicitation (Shapiro, 1987;
Michie, 1995; Wiegerinck & Heskes, 2002). A direct approach is to collect a set of problem-
solution pairs that are provided or approved by a human expert and to apply a machine
learning technique to automatically construct a knowledge base. With a suitable reasoning
engine, such a knowledge base can be used as a module in a knowledge-based system.

If a concept to be learned is complex it may be hard to induce it at one go. Complexity may
be expressed as the number of required attributes involved, or in the functional definition of
the mapping between input and output data. The size of the required data set depends on the
complexity of the concept to learn. Existing heuristics, many undocumented but well-known
among practical experts, link the size of the database to the number of input and output
attributes. Typically, such heuristics are connected with specific task types, or with
techniques. Examples of such heuristics are:
- For classification:

- #instances ≥ 5*#attributes (Eilers et al., 2001)
- #instances ≥ 25 * #attributes * #classes

- For neural networks:
- #instances ≥ k * #connections, k ∈ [10, 100]

A large data set, consisting of many instances with many attributes, may be needed to acquire
adequate knowledge for a complex concept. The exact size of a data set further depends on

78

problem space characteristics such as noise (measurement noise, classification noise), the
(non-) probabilistic nature of the domain and the distribution of the data over the date space.

Acquiring data with the required quality and content may be problematic. In some industrial
environments, operational data may be abundantly available and virtually free of costs. In
research environments research data management systems are introduced to make data
available for consultation and analysis (e.g. Koenderink et al, 2003; Faneyte & Top 2004).
Frequently, obtaining data is complex and costly (e.g. when dedicated experiments have to
generate the data).

6.1.3. Combining Knowledge Elicitation and Machine Learning
Several authors have presented approaches and techniques for combining inductive
techniques and knowledge acquisition. We distinguish two possible approaches to combining
machine learning and knowledge elicitation: integrative (or strong) and complementary (or
weak). The two approaches address two key issues in acquiring knowledge: optimizing the
quality of the acquired knowledge and decomposing a complex task in a number of smaller
tasks.

The integrative approach combines knowledge elicitation and machine learning in one tool
for eliciting the knowledge for one task. Alternately or simultaneously machine learning and
knowledge acquisition are used to formulate, review and refine one single knowledge base.
One of the early examples of this approach was developed by Shapiro (1987) and folowed by
several others. Morik et al. (1993) introduce balanced co-operation: divide the knowledge
acquisition tasks between human and computer to optimize the knowledge acquisition
process. This was elaborated in the MOBAL system that allowed the system developer access
to all data, generalizations and the included meta-rules as constraints on possible
generalizations. It also supports automated refinement of knowledge that was explicitly
entered by the user (see also Craw and Sleeman, 1990, Ginsburg, 1988; Aben and van
Someren, 1990). Overviews are given amongst others by Michie (1995) and Webb et al,
(1998).

The complementary approach addresses another key issue in designing knowledge systems:
decomposing a complex acquisition problem into a number of smaller problems where
knowledge models can be acquired more easily. For each of the sub-problems either
knowledge elicitation or machine learning is used to provide the knowledge model. Although
in principle any problem can be formulated as one single mapping of input data on output
data, for many realistic problems a better solution can be found when it is decomposed into
smaller sub-problems: the divide-and-conquer approach. Weak approaches assume
acquisition problems that may be large in terms of the number of variables but that, at the
lowest level of decomposition, can be provided with a knowledge model of satisfactory
quality in terms of task performance. Potentially, every sub-problem may use a different
elicitation method (Terpstra et al., 1993). When a system, at least in one subsystem, either
contains knowledge obtained by machine learning, or maintains during run-time a knowledge
base by means of machine learning, we call the system an induction-based application. To
efficiently build effective induction-based applications requires both machine learning skills
and knowledge acquisition expertise.

Complex learning tasks that involve large numbers of variables and complex, noisy patterns
need many data. In many cases there exists prior knowledge about the domain that can be
exploited to simplify the learning task. Consequently, there is a need for a structured and
economic approach to the decomposition of the acquisition problem into singular tasks.

79

Decomposing the problem and separately acquiring the data for individual components
reduces the required number of examples for successful learning (e.g. Shapiro, 1987).

This paper develops a method for planning the knowledge acquisition process and designing
the structure of the resulting system. This method is designed to enable optimal use of
knowledge elicitation and inductive learning for available sources of knowledge. It covers the
task decomposition functionality at the application level of the MEDIA model of Chapter 5.
The approach is based on the divide-and-conquer principle that underlies many design
approaches, with special attention to acquisition economy and the quality of the resulting
system. We integrate the elicitation-based approach (including the use of predefined methods
and ontologies) with the inductive approach, and we show how optimal use can be made of
available sources of knowledge using systematic decomposition of the learning task.

The remainder of this section is organized as follows: Section 6.2 specifies cost estimation
methods for knowledge acquisition and inductive learning. We propose models for estimating
costs of knowledge elicitation and inductive learning approaches, translating the principles
that underlie the Cocomo model used in software engineering (Boehm, 1981) to knowledge
elicitation and machine learning. Section 6.2 also discusses the estimation of the resulting
quality of elicited and learned models. These trends are translated into a model for estimating
the quality of knowledge elicitation. In Section 6.3 we introduce and approach for designing
induction-based applications utilizing the models discussed in Section 6.2. The presented
weak approach to designing induction-based applications is a central component in the
Method for the Design of Inductive Applications (MEDIA) as introduced in Chapter 1 (see
also Verdenius & Engels, 1997). Section 6.4 illustrates the application of the approach by
detailing the design process of a fruit treatment planning system, and contrasting the resulting
design with both a pure inductive and a pure elicitation-based solution. In Section 6.5 we
discuss the implications and applicability of this method, and present some directions for
further work.

6.2. Cost and quality estimation
In order to decide between knowledge elicitation, machine learning or further decomposition,
we need to be able to estimate ex ante the cost and quality of the different options. Two
important dimensions in project management are the effort (normally considered in the form
of money, or project resource costs) that is invested and the quality of the final result (e.g.
Bos & Harting, 1998). The two dimensions behave like communicating vessels. If the project
costs become too high, they can be reduced by offering less quality. And if the quality is not
at the required level, additional investments in effort may be required.

6.2.1. Estimating Costs of Machine Learning and Knowledge Elicitation
Cost estimation of a knowledge elicitation effort has not been a prominent research subject.
Scott et al. (1991) indicate that “… making time estimates for an expert-system project (…) is
more an art than it is a science.” Schreiber et al. (2000) indicate that planning experience is
needed, and refers to cost models that are used in the software engineering. There exist rules
of thumb that provide indications for project size (the number of entries in a knowledge base,
with its strong dependence of the development language), but explicit guidelines to estimate
elicitation costs are hard to find. There are only a few documented attempts that provide
detailed estimate methods for the development costs of a knowledge acquisition activity
during an early project phase. Lethbridge & Skuce (1994) introduce size measures that are
closely related to the object oriented knowledge representation in their tool CODE4: The total
number of CODE4 concepts and the number of main subjects. They state that these quantities
can be estimated early in a development phase. They use these metrics, among many others,

80

to assess the success of their tool in informal use. A relation between their metrics and
development costs however has not been formulated. Menzies (1999) made a cost-benefit
analysis of using ontologies, extending Cocomo results. However, it is a discussion on large
scale cost effects of applying ontologies, by generalizing the investments in the development
of ontologies over various projects. The expected benefits come from the reduction of
development time when gaining experience over time. Our concern however is to assess the
costs of knowledge acquisition in a single project.

We consulted knowledge acquisition practitioners, both academic and industrial, to get an
impression of how knowledge acquisition stages are actually planned in practice. They
indicate a number of heuristics, the more prominent fitting in the classes expert judgement,
case-wise experience, price-to-win, and Parkinsons law, as defined by Sommerville (1996).
One variant of the expert judgement approach is to build a prototype with limited
functionality, and to ask an expert to estimate the coverage of the total required functionality.
The total cost estimate for elicitation is the extrapolation of the prototype to the total
functionality (De Boer, personal communication, 2004). Casuistry can be combined with an
expert estimate for planning (Van der Spek, personal communication, 2004). In this
approach, a planner with knowledge engineering expertise collects information on the case to
plan, and weighs this information with previous experience to come to a cost estimate.
Weight allocation can be on the basis of implicit experience, but in principle it may also be
implemented in a case based system. Typical information includes the number of experts to
consult, whether or not experts reach consensus on solutions, and the applied elicitation
techniques. Another factor is the type of result that is required. Possible types include a
knowledge base for an automated system, but also several knowledge management
instruments such as a manual, a list of do’s and don’ts, or the documentation of a working
process. In a commercial setting, price-to-win is an often-encountered approach (amongst
others reported by Dunselman, personal communication, 2004). In this approach an estimated
or negotiated budget serves as the planning constraint, and knowledge acquisition is
accommodated to fit the budget. In order to control this, knowledge acquisition may be set up
as in iterative process, where each iteration allows for a further refinement of the results, and
iteration stops either when the budget is exhausted, or the quality of the result cannot be
improved. All these approaches have in common that the planning strategies, and especially
the heuristics that are deployed, remain implicit.

The situation is not much different for machine learning. Although machine learning
techniques have been applied abundantly in software engineering to estimate software
development costs (Porter & Selby, 1989, In ‘t Veld, 1992; Menzies, 2001; Menzies & Kiper,
2001, Boetticher, 2001), little effort has been spent on planning the required resources for a
machine learning project. Moreover, systematic data on development costs and quality seem
unavailable at this time. In our survey of ML applications in the Netherlands (chapter 2), the
(perceived) low costs is an argument for only a few organisations to use ML techniques.
Documented cost estimation models for ML application could not be identified.

It is our conviction that cost estimation models should be available for machine learning and
knowledge elicitation are to become standard tools in system development projects. The fact
that such models do not yet exist may be an indication of immaturity of the technology. In
information technology, cost estimation models have been developed over time
(Sommerville, 1996). We borrow and adapt one of their approaches to make it plausible that
cost estimation is a sensible development. A cost estimation model for machine learning and
one for knowledge elicitation, without a complete specification and calibration of such a
model, are developed. The resulting models are input to the design approach.

81

6.2.2. Algorithmic Cost Modeling
In software engineering, algorithmic cost modelling has become popular, for example in the
form of function point analysis and Cocomo (Boehm, 1981; Boehm et al, 1997). Algorithmic
models are built on the basis of historic information on project costs. These costs are related
to factors such as project size, staffing, complexity and time constraints. Cocomo has been
the basis for cost estimation in several software engineering approaches. We use Cocomo as a
basis to develop a qualitative knowledge acquisition (KA) costing approach. The general
form of the Cocomo model is:

Effort = C . PMS . M,

With Effort as the number of person months to be invested, C a complexity measure, PM is a
size-related product metric, S is a measure for the relation between size and effort and M a
complexity multiplier. C strongly depends on the kind of software product to deliver. In
software engineering environments it typically varies in value from 2.4 to 3.6. Mostly, PM is
expressed as the number of thousands of source code instructions (KDSI), it serves as an
estimate for the size of the project; in the case of high level specification languages (e.g.
Levy, 1987), the number of lines coded in this language may become the production factor.
M can incorporate a number of relevant costing factors, that are grouped in Product
attributes, Computer attributes, Human attributes and Project attributes.

Due to the complex, involved and repetitive nature of specifying and calibrating the dedicated
CocomoKE, CocomoML and CocomoDecomposition model versions for knowledge elicitation,
machine learning and decomposition respectively, the original Cocomo model is used as an
initial basis to explore each of the knowledge elicitation costs.

6.2.2.1. CocomoKE

A CocomoKE model should predict the amount of Effort to invest in the elicitation of
expertise from experts and documents. The first step is to define the meaning of PM. A
simple measure to aim for, that is closely related to the software engineering conception of
PM, is the number of lines of code in the knowledge model. Lethbridge and Skuce (1994)
propose the number of concepts or the number of subjects as a knowledge acquisition size
measure for a given formalism and development tool.

The factors that the consulted knowledge elicitation experts contribute are mapped onto the
attribute categories as defined for software engineering. Categorizing relevant factors for
knowledge elicitation according to the Cocomo attribute groups that are considered in
software economics models (Boehm, 1981), we distinguish:

- Product attributes: type of expertise in the system (procedural, schematic, heuristics,
formalised models, et cetera), type of result (manual, dos-and-dont list, top 5 of things to
do, automated system, flow chart, et cetera), critical role of expertise (operational in
process vs. knowledge on marketing, et cetera), knowledge base complexity (e.g.,
Lethbridge & Skuce, 1994), et cetera

- Computer attributes: testing tools, programming environment, programming language,
et cetera

- Human attributes: the number of experts, inter-expert consensus, partial or total
expertise, KA analyst capability, application experience, KA tool experience, et cetera

- Project attributes: used elicitation techniques (interviews, think aloud sessions, et
cetera), testability, development risk, number of project collaborators, et cetera

82

6.2.2.2. CocomoML

A CocomoML model should predict the amount of Effort to invest in the elicitation knowledge
for the application of machine learning techniques. Again, the first step to define is the
meaning of PM. It is tempting to define the size of the generated code as the PM parameter,
but caution is needed here. In software engineering, as in knowledge engineering, the end
product, lines of code, are literally handcrafted: the knowledge engineer produces the code by
typing the result. The lines of code in ML solutions are not generated by the ML operator, but
by the ML technique. Consequently, another product size metric for machine learning has to
be defined, a metric that determines the size of a project in terms of workload. We did not
identify any literature source on estimating project size in the current data mining
community. At present, the PM factor is predominantly confined to the size of the data set
and an expert’s estimate on the complexity of the patterns to learn. The size of a data set can
be expressed in data-points, e.g. in terms of #records*#attributes. It is noted that pattern
complexity may be a misleading measure. Michie (1995) shows how a proper formulation of
the problem (by means of constructing additional attributes) can dramatically reduce the size
(as well as the learning complexity) of the problem solution, even though the size of the data
set increases. Therefore extensive empirical research on the relation between problem
characteristics and project workload is required for improving the PM metric. Although
indispensable and necessary, such a project goes beyond the scope of this thesis.

Now, typical attribute groups become:

- Product Attributes: complexity estimate, data size, required reliability, et cetera

- Computer Attributes: learning time constraints, size limitations result, execution time
constraints, et cetera

- Human Attributes: ML analyst capability, application experience, learning algorithm
experience, et cetera

- Project Attributes: use of software tools , integration application - inductive application,
et cetera

Further study and calibration are needed to make adapted Cocomo variants useful tools for
estimating costs of knowledge elicitation and machine learning projects.

6.2.2.3. CocomoDecomposition

A CocomoDecomposition model should predict the amount of Effort to invest in the elicitation
knowledge when decomposing the functionality. When functionality is decomposed, the
effort of the total system is the sum of the effort of the decomposed components.
Consequently, a CocomoDecomposition consists of adding the costs of knowledge elicitation for
the constituing sub-tasks. Therefore a separate Cocomo model for decomposition is not
required.

6.2.3. Quality estimation in machine learning and knowledge acquisition
We want to weigh the estimated costs against the estimated benefits in our decomposition
approach.. however, in information system development practice, this way of weighing
alternatives during the system development is not common. In the IT world, the potential
benefits of a system with specified functionality are estimated in the business case. Based on
these potential benefits, the budget for development and implementation is estimated with a
budgeting model that links aspects such as size and complexity to the estimated development
effort. And in the next step, a development plan is established, based on the (now fixed)
specification of the functionality. The functionality to deliver may be re-negotiated in case of

83

budgeting problems, but to a large extent the functionality is fixed when planning the
development. The quality is a binary attribute of the module: the component complies, or it
complies not. In software engineering, the quality of the end result is normally expressed as a
combination of the realisation of the functional requirements, combined with maintenance
characteristics.

The (pre-fixed) functionality is a major difference between software engineering and
knowledge acquisition. Knowledge systems split the system functionality in two. The
inference structure, consisting of the task control and underlying inference mechanisms, can
be compared to a traditional IT system. The acquisition of the knowledge base requires
adifferent kind of assessment. In knowledge elicitation, the quality aim is not primarily to
develop a model with predetermined functionality. An additional factor is the performance
quality of the resulting knowledge component, that is to say does the model exhibit a
predictive capability that is substantial? The best way to assess that is by answering the
question to what amount the module performs with a comparable predictive accuracy as the
human expert the model was obtained from.

Numerous quality attributes can be found in the literature for machine learning. Initially, the
are interest is in the accuracy. For some straightforward knowledge elicitation tasks, such as
classification and prediction, similar measures can be handled. Before actually running a ML
technique or knowledge elicitation task, a priori quality estimates are needed to balance the
development costs against the benefits. However, a priori quality estimation is a seldom
explored terrain, even more so than in the case of cost estimation. It is hard to predict whether
a fixed quality measure can be set at the start of knowledge elicitation or machine learning.
Consequently, planning the effort to realize the pre-defined quality is difficult. Often,
requirements are formulated comparative to expert performance, e.g. obtain 90% of the
accuracy a domain expert achieves. Alternatively, real world performance targets are set, e.g.
obtain an accuracy that leads to less then 10% fruit deterioration. .

Ex ante quality estimation tools are being developed for machine learning. One of the results
of the MetaL project (Metal 2004) is a web site that takes a data set as input, analyses the data
characteristics, and produces a ranking of algorithms as a result. MetaL uses empirical data
on the performance of the learning algorithms on a multitude of data sets. The descriptors of
a new data set are used to identify similar data sets, and the performance of the algorithms on
the adjacent data sets are used to estimate the performance on the new, unseen set. There is
experimental evidence that that this approach offers a usable prediction of ML performance
(Soares & Brazdil, 2000). Moreover, the algorithms can be actually run on the data to assess
the actual performance on the data. Another, related approach is landmarking (Pfahringer et
al., 2000) that uses prediction quality of a number of simple ML techniques to predict the
estimated quality of more complex techniques. Although these approaches were developed
with the goal of ranking machine learning technique, in order to identify the most suitable
technique, they can also be used as a prediction of the accuracy.

However, estimating the quality of a solution in terms of predicted behaviour has not yet been
explored extensively for knowledge elicitation. Currently, as indicated by domain experts,
quality estimation for knowledge elicitation is a realm of informal rules. Apparent differences
of opinions among experts, or the fact that an expert needs more than 10 minutes to solve a
problem are seen as indications that domain knowledge may not be elicitable. The complexity
of an elicitation problem may be indicated by the number of problem features, by the number
of possible solutions, by the time it takes a novice to become an expert, or by the existence of
a general accepted handbook.

84

In the case of MetaL quality estimates are based on descriptors of the data set (Bensusan &
Alexandros, 2001). We propose to do the same for knowledge elicitation: Collect systematic
data on the performance of knowledge elicitation problems and elicitation approaches, and
formulate a parametric model to relate problem characteristics to the quality of the delivered
solution. The availability of solutions in the areas of software engineering and machine
learning provide reason to be confident on the feasibility of such an approach. However, the
required effort to derive such a model is considerable. As such, the derivation of such a
model falls outside the scope of this work. For the moment, we assume the availability of a
model that takes problem descriptors as input, and provides a numeric quality estimate on the
same accuracy scale as is available for machine learning techniques.

6.3. Decomposition of Knowledge Elicitation Problems
This section describes the decomposition of knowledge elicitation problems. The choice
between alternative decompositions is motivated by the possibility to elicit an adequate
knowledge component against reasonable costs. Two main differences with standard
approaches for the development of knowledge systems are that:
1. cost and accuracy estimates of three alternative acquisition options, direct machine

learning, direct elicitation and problem decomposition, are considered and evaluated at
the design level, without actually building the components, and that

2. the decomposition process is directed by the availability of knowledge and data sources
and economic considerations rather than by a priori template knowledge models.

The machine learning and data mining community mostly considers the decomposition of
data mining problems in terms of the phases in the process of data mining (Adriaans &
Zantinge, 1996; Fayyad et al, 1996; Chapman et al., 2000) rather then in decomposing the
system functionality (Engels, 1999). Typical phases include data selection, data cleaning and
data conversion (see for example Garner et al, 1995; Fayyad et al., 1996; Brodley & Smyth,
1997; Engels et al., 1997; Chapman et al., 2000). This section considers decomposition of the
required functionality in a number of functionalities of reduced size and complexity (cf.
Engels, 1999, ch 6). The aim is to minimize the acquisition costs. It is, in that sense, more
related to stepwise refinement as defined in software engineering (e.g. Wirth, 1976) and to
task decomposition in knowledge engineering (e.g. Schreiber et al, 2000) than to the earlier
mentioned data mining methodologies.

The main difference between the approach presented here and the approach presented by
Engels (1999) is that in the latter work task types are defined top-down on the basis of
knowledge acquisition sources, whereas in the approach presented here, a bottom-up survey
of sources in the domain guides the decomposition.

Our approach offers three extensions compared to most other knowledge acquisition
methods. First, it considers data as a potential source for acquiring knowledge. Human
experts are normally considered the main source of knowledge in knowledge acquisition, and
many tools and techniques focus on extracting knowledge from human experts (Schreiber et
al, 2000). Second, our approach explicitly takes the costs and accuracy of acquisition into
account. Decomposition of a task into sub-tasks can take place if the resulting task structure
scores better on the cost-benefit scale. Finally, we explicitly consider machine learning as
acquisition method when decomposing tasks19. Decomposition of a task into sub-tasks can

19 Terpstra et al. (1993) offer an approach where machine learning is integrated in a
knowledge acquisition context. However, the choice for machine learning is motivated by the
task structure, and not by the availability of data sources to learn from.

85

take place if in the domain ontology data-types are available that can serve as input and
output to sub-tasks. Moreover, the sum of input and output of the sub-tasks decomposition
needs to have the same input- or output-structure as the task that is decomposed. When this is
not possible, or the resulting decomposition is not preferred by the knowledge engineer,
additional sub-tasks have to be defined by the user in order to allow decomposition.

The starting point of the decomposition process is the definition of the functional
requirements: the input-output mapping of the problem to be solved. This is typically a
(formal or verbal) definition of available and demanded data items and their semantics. The
domain ontology provides the relevant concepts that are available to express problems and
solutions. In CommonKADS (Schreiber et al. 2000) the domain ontology (or domain
knowledge) is further defined as a combination of a domain schema and a knowledge base.
The domain schema contains type definitions of the static information and knowledge
structure of the application domain. The knowledge base contains the instances of the types.
We interpret a domain schema to consist of:

Data types: An overview of the data sets that are available in the domain (record name,
fields, field types, constraints, relations)

Knowledge types: Existing or obtainable mappings between data types.

Examples of data types in the fruit domain are:
• Batch Id: numerical, e.g. ddmmyynnnn with ddmmyy a date and nnnn a 4-digit serial

number,
• Weight: numerical,
• Cultivar: a string value from a set of potential cultivars,
• Country of origin: a string value from a set of potential countries, and
• Orchard: CCcccc with CC the EAN country code, and cccc the EAN company

identification.
An example of a knowledge type in the fruit domain would be the definition of an expert
product selection:

SampleSelected = fClassification(expert selection criteria) (product data),
indicating that for some product, described in product data, the attribute SampleSelected is
attached to product data in a classification function that takes expert selection criteria as
knowledge model.

6.3.1. Acquisition planning
The next step is to plan the use of the available resources for the actual knowledge
acquisition. The result of this step is a plan that specifies which resources are to be used to
acquire the knowledge for the components of a target system. The structure in which these
components are connected to form the final system is also produced as output.

A knowledge acquisition problem can be solved in two ways:
• by direct elicitation of the knowledge from a source, e.g. a human expert or a document,

or
• by learning from observations.
If a problem is not solvable as a whole, it may very well be solvable by reduction:
decomposition into sub-problems that are solved recursively. Moreover, decomposition may
lead to a more cost-effective solution. Decomposition continues until the sub-problems can
be mapped onto acquirable knowledge resources,that is to say that a set of resources is found,
connectable in a data-flow structure, from which knowledge can be acquired to perform the
task of the target system. When a task is directly mapped onto a source that can not further be
decomposed it is referred to as a primitive task. Our notions of task and primitive task are

86

adjacent to the notions of task and inference as used in knowledge acquisition (e.g.
CommonKADS, Schreiber et al. 2000).

Each of the options direct elicitation, learning from observations and decomposition,
involves further choices. The main criterion for these choices is acquisition economy: the
balance between the expected costs of implementing the option and the expected accuracy of
the resulting knowledge (O'Hara and Shadbolt, 1996). In case of direct elicitation by manual
acquisition methods, the accuracy depends on the quality of the sources (e.g. human experts),
the knowledge engineers, and of the communication process. In case of learning from
observation the accuracy of the result will depend on the availability of reliable data, the
complexity of the actual relations, and on knowledge about the type of relation that is to be
induced. If many reliable data are available, if the underlying relation is not very complex
and if the type of function is known, then machine learning is likely to be successful.
Otherwise there is a risk of constructing knowledge that is incorrect.

The idea of decomposition into sub-problems is based on the top-down approach of stepwise
refinement (e.g. Wirth, 1976) and divide-and-conquer strategies (Michie, 1995). In
decomposing complex tasks, one aims at a minimal coupling between components, and a
maximal internal coherence. The main difference is that in software engineering the main
principle that guides decomposition is minimizing the complexity of the resulting systems
and thereby supporting activities like debugging, quality management, system maintenance
and re-using the system. In the construction of knowledge-based systems, knowledge
acquisition is a main factor to determine the total project costs and benefits. Additional to the
software engineering arguments, decomposition in a knowledge acquisition context is useful
if (cheap and accurate) sources of knowledge are available for sub-tasks of the overall
knowledge acquisition task but not for the overall task. For example, there may be abundant
data for one sub-problem and a communicative expert for another sub-problem but no
sources for the problem as a whole. This is a reason to split the knowledge acquisition
problem into sub-problems that are then acquired separately. Another situation where
decomposition can be cheaper and give more accurate results than a single step inductive
approach is when there is no prior knowledge to bias machine learning on the overall
problem.

6.3.2. Acquisition Economy20

To decide if decomposition is a good idea, we compare the expected costs and benefits of
elicitation, machine learning and decomposition. The benefit of an acquisition operation
(elicitation based or machine learning based) is the accuracy of the resulting knowledge21.
The costs of the acquisition process depend on the selected acquisition approach. In case of
elicitation, these include time of the expert and of the knowledge engineer, equipment, etc. In
case of an inductive approach, these include the costs of collecting and cleaning data and of

20 We focus here on acquisition economy, not on implementation economy or on operations
economy. To asses the total strategy, the costs of implementing and operating PSM’s should
be included; this comes close to the cost assessment that is applied in software engineering
approaches (Sommerville, 1996); this falls outside the scope of our work. Decomposition
costs, the costs associated to the design, only matter if there is a large cost difference in
design effort between design alternatives. This has to be assessed, and is not yet included in
this paper.
21 Ultimately the benefit may be expressed in terms of financial benefits but these are often
even more difficult to estimate than the accuracy and the acquisition costs.

87

applying a machine learning system to the result. If we decompose the acquisition problem,
the costs and benefits are the sum of those associated with the sub-problems. So we get for
elicitation/machine learning:

EGe/ml = w * EAe/ml - ECe/ml – ECimplementation-ECoperation (6.1)

and for decomposition:

EGcompound=Πj (wj * EAj) - Σj ECe/ml_of_KB_j - Σj ECimplementation_ j-Σj ECoperation_j (6.2)

With:
• 1..j modules
• EG = expected gain in manmonth effort
• EC = expected costs in manmonth effort
• EA = expected accuracy in percentage

Here the weight parameters wj, with unit manmonth/% accuracy, indicate the importance of
accuracy relative to costs of acquisition; they give, per module, a relative economic
importance to accuracy. As such, they can be seen as a measure for return on investment in
accuracy. The expected accuracy of a compound acquisition is the product of the accuracy of
its components, which is a pessimistic estimate. In case of reuse or combination of
knowledge bases, the actual acquisition costs will decrease. As we argued above, in some
cases direct elicitation is almost impossible because the expert cannot answer very global
questions. This means that the costs are high and the accuracy of the knowledge is low. In
machine learning applications the costs of actually running a system are usually rather small
compared to other costs, such as designing the target system, collecting data and tuning the
machine learning tool. Thus this costs of running a system could be left out. The formulas
specify, as part of the expected gains, the implementation costs. In the rest of the chapter, this
subject is ignored; it is considered the area of software engineering.

KA(ka-problem, sources, w):
1) IF a source is available for goal

THEN use this source,
estimate costs & accuracy
compute gain

ENDIF
2) REPEAT: use sources to decompose ka-problem into ka-sub-problem
3) estimate expected gain of elicitation/induction(ka-problem,

sources, w):
a) estimate costs(elicitation/induction, sources, w)
b) estimate accuracy of resulting

knowledge(elicitation/induction, sources, w)
c) expected gain(elicitation/induction) = (w * estimated

accuracy) - estimated costs
4) estimate acquisition costs and accuracy and compute gain
5) UNTIL no more decompositions
6) select the option (elicitation, induction or a decomposition)

that has the highest expected gain.
7) IF the result of the last step is a compound ka-problem THEN

FOR EACH ka-sub-problem DO KA (ka-sub-problem, sources, w)

Algorithm 6.1 Decomposition method for knowledge acquisition problems

88

6.3.3. The Decomposition Process
Decomposition is visualized in data flow diagrams (DFD; Sommerville, 1996). DFD’s offer
an intuitive notation to show how data is processed by a system. A DFD represents processes,
data stores and data movements between processes. Examples later in this text apply a
DFD-like representation, where intermediate data sources are omitted to improve the
comprehensibility. A decomposition is constructed by

• inserting a source description (input output description; see Table 6.2) that is connected to
one or more types of data in the current goal;

• adding or deleting a connection in the data-flow structure; and
• inserting a method (a sub-procedure) for a component in the data-flow structure.

The method for decomposing a knowledge acquisition problem is based on the idea that the
reasons for decomposing a knowledge acquisition problem are applied in the order given
above. The method is a form of best-first search that uses expected costs and benefits to
evaluate candidate decompositions.

In case of further decomposition, the method is applied recursively to the sub-problems. The
algorithm is listed as Algorithm 6.1. If costs and accuracies cannot be estimated the
alternative is to perform a pilot study to assess the costs and expected accuracy as indicated
by de Boer (personal communication, 2004). In the context of elicitation it amounts to
performing elicitation on part of the task and evaluating the result. In the context of machine
learning it amounts to comparative studies by cross validation. Main goal of such studies is to
assess, in terms of costs and accuracy, the complexity of the learning task at hand. As a side-
effect of such pilot studies, information on the best performing machine learning techniques
may be collected for further use in the next phase.

6.4. Example: The Product Treatment Support System
We illustrate the method with the
example on planning systematic
treatments for fruit ripening
(Verdenius, 1996) that is
introduced in Chapter 2. The
developed PTSS system involves
both knowledge elicitation and
machine learning components. And
although the project has been
realised before the existence of a
systematic design approach, this
section can be viewed as a post hoc
design rationale of knowledge acquisition process for the PTSS. In this reconstruction, the
focus is on finding the structure of the knowledge sources.

The initial acquisition goal for the PTSS is:

Construct a system that transforms input information on a batch of fruit that arrives
from abroad into a recipe for storing and ripening the fruit, such that the final fruit
quality matches the predefined requirements.

6.4.1. Requirement Definition and Source Identification
Figure 6.1 shows the overall learning problem. Figure 6.2 illustrates part of the domain
model. The outcome of the task, i.e. the solution to the planning problem, is a treatment

Product data

Batch data

Batch history

Commercial data

PTSS Treatment Recipe

Figure 6.1. Description of the input and output that
defines the learning problem

89

recipe. A recipe is a prescription of
the values of control variables for a
set of relevant treatment conditions in
a specific time interval. A treatment
recipe is a prescription of external
conditions that are to be imposed onto
the product in order to generate a
specific quality transition. The time
interval is subdivided in fixed-
duration time-slices. Storage
conditions may include attributes like
temperature, relative humidity and
ethylene concentration; the product
type determines the actual relevance
of conditions.

The first step is to identify available
sources of knowledge for this task.
This should be read as a schema that
can be instantiated with specific
knowledge. The following data about
a batch of fruit are available:
• Batch data, such as origin, cultivar etc.
• Commercial data, mainly the required due date of the product treatment and the

required quality after the treatment. It is further assumed that a fixed final quality is
delivered for all recipes. Consequently, required quality will not be used.

• Product data, being a number of measured values for individual product attributes such
as color, shape, firmness, weight etc, describing per individual product in a batch various
quality aspects at the start of a recipe.

• Exposed conditions, such as storage temperature or the concentration of relevant gases
such as ethylene, O2 or CO2

Some values are provided with a timestamp; examples are firmness and storage temperature.
By taking a vector of values with successive timestamps, a historic development of a feature
is obtained.

Table 6.2 lists knowledge sources that are available in this domain. These knowledge sources
cover the application of machine learning and the elicitation of knowledge from experts and
documents. In this stage of the design process, the resources are identified and the basic
method (elicitation or machine learning) for acquiring knowledge from the resource is
established, but no effort is made to extract the actual knowledge. Costs and accuracy are
estimated according to the guidelines given in Section 6.2. Actual acquisition of the
knowledge is postponed until a complete plan is available. Only when a complete plan is
available a specific machine learning technique or elicitation approach will be determined.

Acquisition of knowledge for commercial applications should be guided by economic
principles. To be able to do so, the expected costs and the expected accuracy of the
knowledge that can be acquired from a resource should be estimated at the moment of
acquisition planning and based on the best possible implementation of the acquisition
process. That is, such an estimate should give technique independent estimate of effort and
quality, based on the problem complexity. It is then up to the knowledge acquisition
specialists to execute the knowledge acquisition process within the effort and quality
constraints.

Batch

Product Product
Data

Batch
Data

Exposed
Condition

Commercial
Data

Timestamp

value

valuevalue

Timestamp value

Treatment
Recipe

Timestampvalue

Relevant External
Condition

Figure 6.2. Part of the domain ontology en the
form of an entity relation diagram

90

Some sources may have no costs, e.g. if the required knowledge already exists in an
executable format. Moreover, note that for a (sub)problem and (sub)solution combination,
there may be more than one way to acquire the knowledge. For example, it may be possible
to directly acquire knowledge that relates External Conditions and Planning Destination to a
Detailed Recipe.

In Table 6.2, the costs of using these resources and the expected accuracies were estimated
using rules of thumb. More sophisticated methods are becoming available. Pilot runs of
machine learning techniques may help to predict the performance for an inductive approach
(cf. the landmarking approach discussed earlier). For knowledge elicitation, a similar
approach may be developed, based on the concepts proposed in Section 6.2. For example,
Specify Requirements involves finding a detailed recipe specification from product data,
batch data and the required due date of the batch. The cost for this task is estimated from the
availability of resources and the complexity of the task. The size of the space defined by the
properties in Specify Requirements gives an indication of the number of data that must be
acquired to obtain certain accuracy in case of an inductive approach. This in turn gives an
estimate of the costs. In this case a cost of 0.7 and an accuracy of 0.95. The relation is likely
to be complex and this suggests that many cases are needed. Costs and accuracy of an
elicitation approach are estimated from the time that it takes to acquire the expertise for a
task. If this is unknown then a rough estimate is made based on the complexity, similar to the
inductive approach. The accuracy is estimated from a pilot experiment.

Estimated costs and accuracies are not always available. Obtaining these estimates may
require a more detailed study, for instance in the form of initial experiments. This in itself
may induce additional costs.

6.4.2. Acquisition Planning
Figure 6.1 shows the overall learning problem and Table 6.3 gives an overview of the sources
and techniques that were actually used to acquire knowledge for the various components.
Below we reconstruct the process that leads to this decomposition and the choice of
acquisition methods.

The estimated costs of acquiring the complete system by elicitation are relatively low because
it is based on a set of standard recipes that are already available. The costs for machine
learning on the other hand are high because of the amount of data that is required to enable
successful machine learning. There are about 15-40 input variables and between 12 and 52
output variables (depending on the due date of the batch and thus the duration of the storage).
The relation is therefore likely to be very complex and it would take a large data set to find an
initial model, if possible at all. We estimate costs and accuracies of single step acquisition
(elicitation or machine learning). The estimates are presentedin Table 6.4. The last column
gives the expected gain using the value 3 for weight values wi as a reasonable value, when
interpreted as the return on investment.

91

Source ID Input Output Cost Acc Acquisition
Method

Estimate method

Expert Select
Product

[Product Data]n,
Selection Criteria

[Product Sample
Data]m

0.2 0.3 Knowledge
elicitation

Cost & accuracy estimated by
piloting

Design Recipe Recipe Specification, Due Date,
Planning Strategy, Design
Model

Recipe 0.4 0.9 Knowledge
elicitation

Costs estimated from problem
complexity. Accuracy estimated

Postulate
Recipe 1

Due Date, Standard Recipes Recipe 0.2 0.2 Knowledge
elicitation

Cost and accuracy follow from
existing situation

Select
Standard
Recipe

Due Date, Standard Recipes Standard Recipe 0.1 0.6 Knowledge
elicitation

Cost and accuracy follow from
existing situation

Adapt
Standard
Recipe

Standard Recipe, Adaptation
model, Batch History, Cultivar,
Batch Origin

Recipe 0.8 0.3 Knowledge
elicitation

Costs and accuracy estimated,
based on existing situation and
expert indication on complexity

Estimate
Quality 1

[Product Data]n, Batch Origin,
Cultivar, Batch History

Quality
Assessment

0.8 0.85 Machine
learning

Cost obtained from expert
assessment. Accuracy calculated

Estimate
Quality 2

[Product Data]m m<< n Quality
Assessment
Sample

0.4 0.92 Machine
learning

Cost obtained from expert
assessment. Accuracy calculated

Select Product [Product Data]n [Product Sample
Data]m

0.3 0.98 Machine
learning

Cost estimated. Accuracy obtained
from experiments

Specify
Requirements

Quality Assessment (Sample),
Due Date, Batch Origin, Cultivar

Recipe
Specification

0.4 0.95 Machine
learning

Costs estimated from experiments.
Accuracy estimated

Postulate
Requirements

Product Data, Batch History,
Batch Origin, Cultivar, Due Date

Recipe
Specification

0.8 0.8 Machine
learning

Cost and accuracy estimated

Postulate
Recipe 2

Quality Assessment, Batch
Origin, Cultivar, Batch History

Recipe 0.9 0.15 Machine
learning

Costs estimated from problem
complexity. Accuracy estimated
from experiments

Postulate
Recipe 3

Quality Estimate, Batch Origin,
Cultivar, Batch History

Recipe 0.4 0.25 Machine
learning

Costs estimated from problem
complexity. Accuracy estimated
from experiments

92

Table 6.2. Sources of knowledge for the example of fruit storage planning (Chapter 3). The
source ID is a label to identify the knowledge source; labels indicate the functionality that the
source supports. The Determined by and Conclusions indicate the types(s) of in- and output
that are covered by the source. E.g. Estimate Quality 1 is a source that transforms the vector
of n descriptions of products into a statistical estimate of the quality of a batch. Acquisition
method indicates how the content of the source is obtained. Statistical estimate and machine
learning obtain knowledge from exemplary data, where expert, oracle, fixed strategy and
random selection are considered ‘elicitated’ models.

Subtask Acquisition means

Select products Induction (Decision tree)
Estimate Quality 2 Standard Math (Average)
Specify recipe Induction (Neural Networks)
Detail recipe Elicitation (Constraint network)

Method Accuracy Costs Gain
Postulate Recipe 1
(elicitation using standard recipes)

0.2 0.2 0.4

Postulate Recipe 2
(inducing a recipe planning model from data)

0.15 0.9 -0.45

Table 6.4 Estimated cost and accuracy of single step acquisition(wI= 3)

Table 6.3 Acquisition methods and sources for components

93

We now consider decomposition. The available sources plus the causal and temporal
structures define a number of possible decompositions of the initial knowledge acquisition
problem. There are many possibilities. Here we describe some of them with estimates of the
expected accuracy and acquisition costs.

6.4.2.1. Decomposition 1
From the initial problem of Figure 6.1, the first decomposition step is to abstract from the
quality data on individual products to the quality of the batch. This requires a number of
measurements. Taking the average of a number of measurements requires a large product
sample (see Verdenius 1996). In Figure 6.3, the resulting decomposition is depicted. The
expected gain of this decomposition is: 3 * 0.21 - 1.2 = -0.56.

6.4.2.2. Decomposition 2
The next step in the decomposition aims at overcoming the weakest point in decomposition 1.
Postulate Recipe 3 has a poor cost/accuracy ratio. It can be replaced by a two step approach,
where recipe specification is followed by a recipe design. The resulting decomposition is
shown in Figure 6.4. The expected gain of this option is: 3 * 0.73 – 1.8 = 0.58. Already a
non-negative outcome, but still worse then the original problem formulation (over the ROI).

6.4.2.3. Final Decomposition
The final decomposition again is advocated by first identifying the weakest point in the best-
so-far, and identifying a task combination with a better pay-off. Here, it appears that
estimating the product quality can be optimized by first drawing a small sample from the total
data set, and using these data to estimate the quality. Due to sample reduction the benefit
increases. The resulting decomposition is shown in Figure 6.5. The expected gain of this is: 3
* 0.77 - 1.5 = 0.81

Product data [pi,x]n

Batch data (origin, cultivar, …)

Batch history [ci]n

Commercial data (due date)

Estimate
Quality 1

Postulate
Recipe 3

Treatment
Recipe ci,j

Figure 6.3 Decomposition 1

Product data [pi,x]n

Batch data (origin, cultivar, …)

Batch history [ci]n

Commercial data (due date)

Estimate
Quality 2

Specify
Recipe

Design
Recipe

Treatment
Recipe ci,j

Figure 6.4 Decomposition 2

94

6.4.3. Pure solutions
Expert technicians have a tendency to transform any problem to suit there specific
techniques. As illustrated in Chapter 2, this is a problem in machine learning, as the expertise
to rationally consider specific machine learning techniques against alternatives is lacking.
This makes it reasonable to assume that ML-experts would come up with a learning solution
for the entire problem. From the available knowledge sources in Table 6.2 it is easy to
determine the best performing solution that exclusively uses ML-techniques. Figure 6.6
shows the resulting decomposition. The expected gain of this solution is 3*0.14-1.6=-1.19.
This is mainly due to the cost-quality ratio of the Postulate Recipe 2 source.

Alternatively one can imagine a solution with the exclusive use of knowledge elicitation.
Figure 6.7 shows the best potential decomposition that exclusively deploys knowledge
elicitation sources. The expected gain of this solution is 3*0.77-1.50 =0.30.

With these examples we illustrate that pure solutions may be attractive from the point of view
of a human designer, but that in terms of operational quality, they are non-optimal.

Product data [pi,x]n

Batch data (origin, cultivar, …)

Batch history [ci]n

Commercial data (due date)

Select
Product

Estimate
Quality 2

Postulate
Recipe 2

Treatment
Recipe ci,j

Figure 6.6. Pure inductive solution

Product data [pi,x]n

Batch data (origin, cultivar, …)

Batch history [ci]n

Commercial data (due date)
Select
Standard Recipe

Adapt
Standard Recipe

Treatment
Recipe ci,j

Figure 6.7 Pure elicitation solution

Product data [pi,x]n

Batch data (origin, cultivar, …)

Batch history [ci]n

Commercial data (due date)

Select
Product

Estimate
Quality 2

Specify
Recipe

Design
Recipe

Treatment
Recipe ci,j

Figure 6.5 Final decomposition of the knowledge acquisition problem (intermediate data
sources have been omitted)

95

6.4.4. Data analysis, technique selection and application
Following the acquisition plan as detailed in the earlier sextions, it is now possible to focus
on the actual knowledge acquisition for the components. The first component, Select
Products implements a sampling procedure. For each product, a number of easy-to-assess
data items are available. Based on these items, the product is classified as being either
near_batch_mean or far_from_batch_mean. This is a classification task. Historic data on the
relation between product descriptors and batch mean are available. On the other hand,
looking at this relation is fairly uncommon for human experts. Consequently, elicitation of
knowledge from human experts is not an option (low accuracy vs. high costs). Data analysis
may discover that the underlying type of function is relatively comprehensible. And
interpretability is a major (non-functional) requirement, if this reasoning step in order to
select fruits has to be performed by human experts. In the actual planner, acquisition has been
implemented by means of a decision rule learner. The rules are extracted, and handed over to
a human expert to perform the actual selection on location.

The next component is the actual assessment of the batch quality. This is simply the
averaging of the measurements. The main difference between the two available Estimate
Quality sources can be found in the number of (expensive) measurements that is required in
the case of unselected and selected estimation. The unselected estimation requires between 60
and 200 expensive measurements. The selected measurements require only 5-10. This does
not dramatically affect the accuracy, but dramatically reduces the costs.

The two options of elicitation or machine learning must be evaluated for the acquisition of
recipe specification. Human experts are not used to Specify Requirements on batch level; i.e.
expertise is not available. Historic data are available for machine learning of the required
knowledge. Twenty-one attributes may be taken as input, while the size of the output is
limited (only 1 parameter was output in the fruit planning system). Based on a comparison
between linear and non-linear models, a preference was developed for non-linear models. An
error back propagation neural network (Rumelhart et al., 1986) was selected, and trained to
classify the new, unseen cases. The best performing network was established in an
experimental setup (see Chapter 3).

6.5. Conclusion

6.5.1. Discussion
Applying machine learning for knowledge acquisition is more than running an appropriate
machine learning technique. In general, both knowledge and data will only be available for
acquiring parts of the total required body of knowledge. In order to cover the total required
functionality, knowledge-based and induction-based components should collaborate, and
decisions must be taken on how to combine them to acquire the required knowledge. In this
chapter we have presented a rational approach to combining machine learning techniques and
elicitation of human expertise in a knowledge acquisition context. It offers a mixed approach
to planning of knowledge acquisition. Based on the availability of elementary knowledge
sources in the problem domain (bottom-up), the overall problem is decomposed in feasible
components (top-down). The decomposition process balances acquisition costs and expected
benefits, offering an explicit rationale to make the choice even when the estimates of costs
and accuracies are not yet firm. This was illustrated for the PTSS system of Chapter 3.

The approach gives better solutions than if pure elicitation or pure machine learning would be
deployed. The pure approaches ignore valuable sources of knowledge that lead to better,
more cost-effective solutions.

96

The quality of a solution formulation currently incorporates development costs and predictive
quality. In practical situations however, other factors may become relevant, e.g.
implementation and operation costs, comprehensibility, acceptance by staff or consumers and
compatibility with other solutions. In such cases, the expected gain criteria (1) and (2) of
Sub-section 6.3.2 may become more complex, and incorporate various quality attributes. This
would generate the need for a multi-criteria decision approach (Saaty, 1980).

6.5.2. Comparison with other methods
Many existing knowledge acquisition methods deploy problem decomposition (e.g. Marcus,
1988, Terpstra at al., 1993; Schreiber, 1993). However, many of these methods focus on
modeling languages and rarely make the underlying principles explicit, especially in regards
to how to apply (problem decomposition) rationally. These methods also do not cover the use
of inductive techniques. Necertheless, some decomposition approaches are proposed within
the ML domain. Engels’ User Guidance approach (UGM; Engels, 1999) starts to reason from
the functionality of machine learning techniques. The main difference between the UGM
view on simple tasks and the CommonKADS view on knowledge acquisition of primitive
inferences is that the former has a close binding with the techniques, whereas the latter has
binding with the inference layer, that is technique independent.

In contrast, we reconstruct the rationale behind the knowledge acquisition methods and
extend them towards the use of machine learning methods. We presented criteria and a
method for decomposing knowledge acquisition problems into simpler sub-problems and
illustrated this with a reconstruction of a real world application. This process can be applied
to inductive methods, knowledge elicitation and other manual acquisition methods.

In modern approaches for knowledge acquisition, especially in CommonKADS, the starting
point for divide-and-conquer approaches is identified from libraries of standard models. For
example, suppose that the acquisition problem is to construct a system that can design storage
recipes for fruits. The knowledge engineer may decide to adopt a model from a library of
problem solving methods (McDermott, 1988; Breuker and VandeVelde, 1994). First, the
problem is specified as before:

Input: Fruits Characteristics, Current Quality, Required Quality, and Recipe Duration

Output: Storage Recipe, i.e. condition set-points for a series of time-slices

The KADS library now offers a number of models (see Table 6.5).

Name Input Output

Design Needs and desires Design solution

Configuration Components, required structure,

constraints, requirements

Configuration

Planning Initial state, goal state, world description,

plan description, plan model

Plan

Assignment, scheduling Components, resources Assignment

Table 6.5. Candidate models for fruit storage planning task

It is not a priori obvious which of models can be appropriately employed here. Recipe
Duration can be viewed as needs and desires, constraints, requirements, and plan
descriptions. Fruits Characteristics and Product Quality do not have an immediate

97

counterpart in the terminology above. The Storage Recipe corresponds most closely to an
assignment, although it can also be viewed as a plan, a design solution, or a configuration.
Although assignment and scheduling sound like a good choice, the models for this type of
task concern allocation of resources to tasks in a schedule. This does not correspond to our
task. Planning is a better term. The inputs of the most general model for planning (Valente,
1994) are: initial state, goal state, world description, plan description and plan model. A plan
is an ordered set of actions that starts in the initial state and ends with a state that satisfies the
requirements of a goal state. The world knowledge describes general information about the
world in which the actions will take place.

In our example, Fruits Characteristics and Product Quality can be viewed as "initial state''.
However, the storage recipe does not involve discrete states and therefore a planning process
is problematic. Even when the process is somehow made discrete, there are many
possibilities and the goal state provides little guidance for the evaluation of intermediate
states. Another problem is that if we compare this to the available resources in Table 6.2, we
see that the resulting model is not coherent. The Fruits Characteristics and Current Quality
are not the description of the initial state parameter of the planning operators. The approach
outlined in Breuker and VandeVelde (1994) does not tell us what to do in this situation. An
obvious step is to apply the whole approach recursively to the task of finding the input of the
planning operators from Fruits Characteristics and Current Quality. We shall not pursue this
here. It is noted that the planning model cannot actually be applied because of the continuous
character of the operators and the process, which is not mentioned in the description of the
planning model as a prerequisite. Moreover, the analysis process is about the same as that of
our approach. This is because the data-flow structure of the available knowledge is of much
more importance at this stage than the structure of the data and the knowledge. Our approach
postpones the choice between discrete models and continuous models until later and only
then selects a modeling technique.

The situation would be more complicated if the available resources do not map well onto
functional components in the solution to the acquisition problem. Suppose that for the fruit
storage problem a human expert would have been the only resource. Direct elicitation without
decomposition would then probably be impossible but there would be nothing on which
decomposition could be based. This would make it necessary to either somehow elicit the
data-flow structure or to alternate the construction of the data-flow structure with the
acquisition of the components.

Compared with inductive engineering methods our methodology has a broader scope.
MEDIA includes the identification of resources, then accounting economic factors, and the
structuring of the acquisition problem. Machine learning technology plays a specific role in
the overall method. A straightforward inductive approach to the fruit storage problem would
probably have been more expensive and less successful. The reason is in the complexity of
the relation between the "raw'' data about a batch of fruits, its destination, the recipe and the
data collection costs.

The presented approach requires information about available expertise and data sources.
Dependent on the actual process and the complexity of the system, the information on
available sources can be obtained step-by-step during the planning process or entirely
beforehand. In the former case the information is always dedicated to the processes at hand,
but the planning process is limited to a greedy strategy. If the information is obtained
beforehand, an exhaustive search for the potentially best available global plan is possible, but
the disadvantage is that not all information collected may be useful. Whether the information
is obtained during or before the planning process, these two options represent a less

98

expensive planning process with the chance for sub-optimal results, compared to a more
(time consuming and extensive) planning process that guarantees better and/or cheaper
results.

The method outlined in this chapter can be extended to include the expected gain of having
the resulting system. This inclusion would generate a more comprehensive model that
includes both the costs of knowledge acquisition and the cost of maintaining and operating
the resulting application. See Van Someren et al. (1997) for a model of machine learning
methods that include costs of measurements and costs of errors, in the context of learning
decision trees. These two models can be integrated into a single model, see for example
DesJardins (1995) for a similar model for robot exploration.

6.5.3. Suggestions for further work
The main point for further research is to have a better understanding of the relation between
knowledge resources as listed in Table 6.2, acquisition costs, and accuracy. This requires cost
and accuracy metrics to be defined for both knowledge elicitation and machine learning
methods. In software engineering, several of these measures have been developed
(Sommerville, 1996). To the best of our knowledge comparable metrics are not yet available
for knowledge elicitation. Chapter 7 introduces an approach to support selection of inductive
techniques based on the estimated suitability of inductive techniques for a data set. For
knowledge elicitation a similar approach can be envisaged. Recent work in machine learning
has resulted in quality estimators for machine learning performance on specific tasks. Costing
models for both inductive and knowledge elicitation components are in their infancy. Some
work on predicting effort of software development projects has been reported, even with the
use of machine learning approaches (e.g. Boetticher, 2001; Menzies, 2001). The translation
and extension to machine learning and knowledge elicitation methods however still has to be
made. This would require substantial amounts of project data.

Without the availability of empirical models for cost and quality forecasts, we have to rely on
estimated accuracy and cost data as used in this chapter. In practice, these estimates are based
on the experiences of the knowledge engineers and machine learning analysts. A first attempt
to adjust the existing software engineering practice of Cocomo (Boehm, 1981; Boehm et al.,
1997) has been presented in the form of qualitative models for ML and KA component
development. Further empirical studies are required to calibrate available parameters.

99

7. Guarded Selection of Inductive Techniques

Material of this chapter has been published as F. Verdenius, Entropy Behaviour for Selection of Machine
Learning Techniques, in: H. Blockeel & L. Dehaspe (eds.), Proceedings of Benelearn 1999, Maastricht, 113-
120, and as F. Verdenius & M.W. van Someren, Detecting orthogonal class boundaries in entropy behaviour, M.
Wiering (ed.), Proceedings of Benelearn 2002, Utrecht. Important difference between these publications and
this chapter is the use of prototype matching as analysis technique instead of wavelets.

People can have the Model T in any color--so long as it's black.
Henry Ford (1863 - 1947)

Abstract
Machine learning techniques construct models of a particular model class, each with its own
bias. One of the important issues in machine learning is technique selection: finding a
technique that performs best on a given data set. For any new data set appropriate techniques
have to be identified as there exists no universal learning technique that performs optimally
for all data sets. Available approaches for technique selection apply heuristic expert rules,
meta-learning from previous experiences, or default techniques. Meta-learning (Giraud &
Keller, 2002) selects techniques based on data characteristics, by empirically relating data
characteristics to the performance of machine learning techniques.

This paper introduces guarded technique selection, a principled approach to technique
selection. Every technique is supervised by its own dedicated guard. A guard checks for
compliance of patterns in the data with the requirements of its technique. If a guard ascertains
compliance, the technique is indicated for application and the model can be applied.

We define a guard for techniques that perform best on data with orthogonal class boundaries.
An orthogonal class boundary can be detected in the entropy behavior of attributes of the data
set as a sharp cusp. The proposed guard detects these cusps by matching prototypical curves
onto the entropy behavior of attributes. The fit per attribute is summed over all attributes of a
data set to get a global cuspiness measure. Using generated data, we show that the cuspiness
of entropy behavior can be used to assess the relative suitability of techniques for orthogonal
decision nodes. The approach leads to improved selection of concept learners.

Our measure can enhance existing advisers for machine learning techniques, such as the
MetaL toolbox. Moreover, it may help to solve existing questions in the machine learning
domain. Testing the method on a number of UCI data sets teaches that, apart from concept
type, data distribution is a crucial feature for the algorithm. This results in a check on data
distribution as an extension of the algorithm. Instead of using a standard prototype definition,
the prototype should be formulated to match the actual distribution of data points in the data
set at hand. In the end the principle of guarded technique selection requires that for every
class of machine learning techniques, the underlying principles are formulated in feasible
guards.

7.1. Introduction
An important step in designing real world machine learning applications is technique
selection. It is the main subject of the Analysis level of the MEDIA model introduced in
Chapter 5. Schaffer (1994a) has shown that there can not exist a universal learning technique

100

that performs optimal for all data sets, and consequently for any new data set appropriate
techniques have to be identified. Machine learning techniques construct models of data. The
quality of a learned model depends on the appropriateness of the model class of the machine
learning technique for representing the patterns in the data set (Brodley, 1992). For many
years the credo of machine learning users appeared to mimic Henry Fords attitude towards
the color of a T-Ford: “I can learn any pattern in the data, so long as I can make it fit the
model class of my technique”. A survey in the mid-nineties identified a limited number of
strategies for model class selection (Verdenius & van Someren 1997). The most widely
accepted approach was to rely on a limited number (mostly 1 or 2) of default techniques. The
problem solving strategy was to adapt, transform or reformulate the problem (i.e. the data set
and/or the classification task at hand) to squeeze the best possible performance out of the
technique-data combination. Van Someren (2001) refers to this as the Procrustean approach.
A minority of the identified applications used a comparative explorative strategy. In this
approach, a number of available techniques is applied to the same problem, evaluated and the
best performing technique is actually used in the application. Comparison of the performance
is based on cross validation (Schaffer, 1994b).

A data set is a sample of the underlying distribution. The classification model which the
machine learning technique has to learn is a partial estimate of the underlying class
distribution that is normally unknown, and can not be used to support technique selection.
Consequently, the desire to apply machine learning techniques leads to a deadlock situation.
To select suitable techniques, one needs to know the class distribution, but to estimate the
underlying class distribution one needs a suitable technique.

It is broadly reckoned that a machine learning technique performs best on data sets that meet
specific characteristics of that technique. One of the conclusions that came out of the StatLog
project (Michie et al., 1994) was that for specific (groups of) data sets specific techniques
performed best. One example is the relative strong performance of nearest neighbor
techniques on image data sets. The principles that underlie the nearest neighbor approach
however have not been related to the apparent success of this approach to image analysis, and
even within the image analysis data sets of StatLog there are a few examples where nearest
neighbor performs poor.

This paper explores guarded technique selection as a method for technique selection based on
the link between data characteristics and technique constraints. It focuses on the relation
between the technique representation and the class distribution to learn. The assumption of
this work is that differences in learning performance between machine learning algorithms on
a single data set should be analyzed in terms of the assumptions that the algorithms make on
the underlying class distributions in the data. This is amongst others expressed in the work of
Langley (1996) when he distinguishes technique families for the induction of several types of
concepts, such as logical conjunctions, threshold concepts, competitive concepts, decision
lists, inference networks and concept hierarchies. These concept types primarily refer to the
representation languages for machine learning techniques. In distinguishing them the
relations to the underlying class distributions are obvious. The concept types are not mutually
exclusive, the members of one technique family induce concepts from data sets based on the
same mapping principles; all univariate decision trees, for example, recursively partition data
sets on single attribute tests of the type ai < cj (with ai is an attribute, and cj an attribute value
for ai). In the next section, we discuss existing approaches for technique selection, and
identify some of their limitations. Section 7.3 introduces guarded technique selection as an
approach that may overcome existing limitations in technique selection. Section 7.4 describes
the effect of the type of class boundaries on entropy behavior, and how this can be used to
assess the type of underlying concept. In addition prototype matching is introduced as the

101

instrument to analyze entropy behavior. Section 7.5 presents experimental evaluation of the
approach. Section 7.6 draws conclusions, and discusses potential applications of the tool in
the various machine learning approaches and technique selection.

7.2. The Context of Technique Selection
Automated technique and model selection has been for a long time a research subject for
machine learning scientists. The goal is to remove human designers from the learning
process, and to enable automatic technique selection and operation (e.g. Brodley, 1992). In
search of automated technique selection, different lines of research have been described in the
literature:

• Heuristic expert rules. The EU project Machine Learning Toolbox (MLT, ESPRIT II
P2154; Kodratoff et al., 1994) aimed at delivering a suite of machine learning techniques.
A suite of 48 techniques is developed within the MLT project. The toolbox is
accompanied by an advisory tool, CONSULTANT (Craw et al. 1992), containing expert
heuristics to support designers in selecting, calibrating and applying 10 of the techniques
in the suite to a wide range of learning tasks. A typical rule to generate an advice for
applying C4.5 (Quinlan, 1993) would be (Kodratoff et al., 1994):

IF ML application goal = classify AND
There are several classes in parallel

THEN
Use c4.5

The heuristics formalize the reasoning strategy of a human expert of that day. They offer
grip and structure to novices in analyzing new machine learning problems. The
knowledge base of CONSULTANT is obtained by analyzing human expertise, and filling
a rule based expert system with the resulting knowledge. That knowledge focuses on two
aspects of machine learning application. On the one hand there is the qualitative relation
between the task and descriptive data characteristics, e.g. ML application goals, data
availability, data format, data quality (Kodratoff et al. 1994). On the other hand there are
technique characteristics such as the way a technique uses background knowledge or
post-learning user interaction (Kodratoff et al., 1994). Consequently, a typical
CONSULTANT advice does not take into account the more fundamental data
characteristics, neither does it exploits the relation between technique performance and
the actual data.

• Meta-learning. Meta-learning uses experimental experience on the relation between data
characteristics and technique performance to derive empirical strategies for technique
selection. In meta-learning the performance of machine learning techniques on data sets is
generalized into technique selection knowledge. Two European research projects, StatLog
(Michie et al., 1994) and MetaL (MetaL, 2004) have contributed substantially to the
development of meta-learning. The StatLog project surveys the performance of a broad
spectrum of classification techniques from statistics, machine learning and neural
networks on a variety of data sets. The aim is to develop knowledge on the relation
between data set characteristics and technique performance. Meta-learning, using learning
techniques to generalize from technique performance data to applicable heuristics, is one
of the instruments to interpret the experimental results (Brazdil et al., 1994). The resulting
heuristics enable users to select techniques. The MetaL project has further explored the
meta-learning approach, bringing it to on-line support. The heuristics form the basis for a
ranking tool (MetaL, 2004). The MetaL ranking tool predicts the prospective ranks of
various commonly used machine learning techniques and their potential performance.

102

Data-sets are characterized by a large number of descriptors.
Typical descriptors used in both the StatLog and the MetaL project include:
- Descriptive measures: e.g. the number of records in the data set, the number of

attributes,
- Statistical measures: e.g. test statistic for uniformity of covariances, mean absolute

correlation coefficients,
- Information theoretic measures: e.g. entropy of classes, joint entropy of class and

attribute.
By running 22 techniques on 29 data sets, and relating the performance of these techniques
to the data descriptors, StatLog aims to deliver technique selection knowledge. Although
the resulting rules have some predictive value, there are at least two issues that affect its
applicability. First, the rationale of the delivered rules is questionable. An example of a
resulting rule given by Brazdil et al. (1994):

CART-Appl N ≤ 6435, skew > 0.57
CART-Non-Appl N > 6435
CART-Non-Appl N ≤ 6435, skew ≤ 0.57

Here, N is the number of records in the data set, and skew is the mean skewness of the
attributes in the data set. This rule is a generalization of the 22 specific techniques on 29
specific data sets. It is, however, not a universal rule for applying machine learning
techniques to real world data sets. After all, the boundary of 6435 strongly depends on the
(accidental) composition of the data set collection that is applied here. It is obvious that
another composition of the data set collection would result in other rules. It is, however,
not obvious what the composition of the collection of data sets should be in order to derive
generally applicable heuristics. The population Ŋ of possible data sets is infinitely large.
Variables such as the number of records n, the number of attributes k, the distribution of
attribute types (discrete, continuous) and many more would span a huge space. First, Even
when it would be possible to draw a sample from Ŋ that is representative for the data sets
that can be expected in practice, N might appear not be a determinant in selecting
techniques. And in itself, the idea of ‘drawing a representative sample from Ŋ’ is already
problematic, because one first has to define the characteristics of Ŋ. Second, and more
fundamental, the relation between the techniques applied in MetaL (the dependent
attributes) and data descriptors (the independent attributes) used in MetaL is unclear. The
set of descriptors that is used is large and contains very different types of measures. In
other words, a data set with a large number of attributes sparsely covers the data space.
The resulting model has the risk of being overfitted and of representing spurious patterns.
The appearance of N in the mentioned rule illustrates this risk.

Various researchers have proposed other, more relevant data descriptors (e.g. Engels &
Theusinger, 1998; Lindner & Studer, 1999). Although some of these descriptors partially
meet the above objections, it remains a principal point that meta-learning approaches aim
to generalize over an unknown space spanned by technique and data set that is only
sparsely covered by the available technique and data set instances.

• Landmarking. Another way of using previous experience on technique performance is
landmarking, as described by Pfahringer et al. (2000). In landmarking, the performance of
a limited group of simple and efficient learners (the so-called landmarks) on the target data
set is used to predict the performance of a broader suite of machine learning techniques on
that data. This offers both drawbacks and advantages compared to meta-learning. The
major advantage lies in the chance to select landmarks that exploit the same underlying
principles that are used by the learning techniques one wants to select from. On the other

103

hand, when the suite of techniques covers various underlying principles, for instance by
containing techniques that exploit specific types of class boundaries, nearest neighbor
techniques, multilayer perceptrons or bayesian learners, one may need a larger number of
landmarks. And this would require substantial pre-analysis in order to determine the
necessary set of landmarks. Moreover, as in meta-learning, landmarking does not result in
insight on how the universe of data sets maps onto the universe of learning techniques.

A common factor of these approaches is that they use a selection criterion that is based on
general-purpose data descriptors. In MLT, the cornerstone is that the expertise of human
analysts can be transferred into a knowledge base. StatLog and MetaL apply empirical
knowledge on technique performance, based on descriptive data characteristics and a
distance-based comparison of data sets, respectively. Historically, the approaches represent
the main steps in the methodological thinking in the application of machine learning
techniques. Initially, designers use one technique in the Procrustean way. Next, technique
selection heuristics were formulated based on increasing experience. And finally large scale
experimentation is used to extensively explore, complete and refine the heuristic approach.
Each of the approaches makes a contribution to automatic model selection. There is however
one last step to be taken. As suggested by Brodley (1992), the quality of a learned model
depends on how appropriate the model class of the used learning technique is able to
represent the patterns in the data set. If this statement is true, and many researchers consider it
as such, a further goal for research on technique selection can be derived from it:

Ascertain that the model class of the used technique fits the patterns that are to be learned.

This requires for each group of machine learning technique(s):

DS

MLGd

Req

MLGd

Req

MLGd

Req

MLGd

Req

Multi-layer perceptrons

Techniques with strict
univariate class boundaries

Techniques with multivariate
class boundaries

Instance based techniques

Figure 7.1. Guarded technique selection. A data set (DS) has to be analyzed. Each technique
guard (Gd) assesses the applicability of ‘their’ technique (ML) for the data set by assessing
the degree of compliance with the technique requirements (Req). Guards use a definition of
the required underlying class distributions (hexagonal) that is dedicated to one technique.

104

• A description of the model class it delivers, in terms of data set requirements. In other
words, one needs to know the patterns in a data set for which the technique is or is not
applicable.

• An instrument to assess whether a data set complies with the requirements of that
technique group. The instrument should take the data set as input and deliver the degree
of compliance.

Preferably, there is a norm on compliance/non-compliance on this degree of compliance, to
enable the selection of techniques for a data set on the basis of 'best compliance.' This would
imply an absolute guard that predicts which technique gives the best results.

7.3. Guarded Technique Selection
Figure 7.1 gives an overview of guarded technique selection (GTS). A guard contains
dedicated knowledge on the requirements that a specific class of learning technique(s) poses
on data for it to be applicable. Every technique class has its own guard that checks the
requirements that the technique class poses to data in order to be successfully applied. As a
consequence, only those techniques are applied that one can expect to have an acceptable
result.

Figure 7.2 schematically illustrates how a guard serves as an outpost for the ML technique.
The requirements are extracted from a technique class and formulated as a check on data. In
the ideal case, developers of a new technique provide these requirements as part of their
technique. The guard is constructed in order to check for these requirements, resulting in a
relative suitability measure for that technique. To illustrate the functioning of guarded
technique selection, we develop in this paper one such guard for techniques that learn by
applying univariate partitions on data. The guards will have to be developed for other groups
of techniques.

Guarded technique selection is logically connected to our opening statement that the quality
of a learned model depends on how appropriate the model class of the used machine learning
technique is able to represent the patterns in the data set. After all, if this statement is true, the
next step is to check, given a specific technique and the data set to analyze, whether the
patterns in the data set fit the model class of that technique.

Machine
Learning

Technique

Data
set

Rejected
Data set

Approved
Data set

Data requirements for
Machine Learning Technique

Learned
Model

MLT
Guard

Figure 7.2. A schematic overview of a guard as an outpost for the ML technique and the
accompanying data flows. The guard (triangle) expresses the degree of compliance of the
data set with the requirements (hexagonal) for the technique that it guards. If the degree
of compliance is high enough, the learning technique is applicable, and a model is derived
from the data.

105

Guarded technique selection takes the view that every technique class has its own guard. This
raises questions on feasibility: Is it possible to define a guard for every technique? And
doesn’t this approach threaten the overall efficiency? The efficiency of learning may be
influenced when guards become very computationally intensive. It is then requisite to keep
guards as simple as possible. On the other hand, there is also a gain in efficiency when guards
prevent a number of techniques to be applied. Nevertheless in return for a decrease in
computational efficiency, there may be an increase in comprehensibility of the performance
of a technique: a technique can be expected to perform well if its requirements are met. GTS
can be compared with the existing statistical practice, where tests and techniques are
appropriate only within a specific context (e.g. the PMC correlation presupposes a linear
context; it can be obtained for non-linear data, but the value is limited). GTS tests
combinations of data sets and machine learning techniques on appropriateness by testing
whether requirements of specific techniques are met in the data set.

7.4. Entropy Behavior as Indicator for Orthogonal Class
Boundaries

7.4.1. Orthogonal class boundaries
Our goal is to propose a guard for those techniques that perform best when orthogonal class
boundaries are present in the data. An orthogonal boundary is described by a constant value
for one attribute. In other words, an orthogonal boundary in ℜn is defined as Xi=c for exactly
one i, i.e. a boundary that stands orthogonal to one axis. An orthogonal subspace can be
bound by a conjunction of orthogonal boundaries (X1 = c1 & X2 = c2 etc.). It is important to
understand that the concept of orthogonality of a class boundary is something else than the
predictive capacity of a class boundary. In Figure 7.3a, the dark gray plane is defined by
X=xi and is orthogonal. The light gray plane is a linear combination of two attributes.
Suppose that both planes serve as a class boundary (in two different data spaces). Then the
orthogonality of the light gray plane is much lower than the orthogonality of the dark gray
plane, but their predictive capacity for class membership is the same. Furthermore, class
boundaries may be combinations of a number of bundaries. In Figure 7.3b, the dark gray
subspace can be described as a logical combination of univariate class boundaries, for
instance in the form of a decision tree (Mitchell, 1997); concequently, it can be described as a
combination of orthogonal boundaries, and thereby is an orthogonal class boundary. And the
flat section of the half sphere in Figure 7.3c can be described as a univariate boundary
orthogonal Xi=yk. We call techniques that perform best on orthogonal class boundaries in

xi xj

yj

zj

yk

(a) (b) (c)

Figure 7.3. Orthogonal (dark) and non-orthogonal class boundaries (light) in R3. Simple
separating planes (a) 3-D sub-spaces (b) and complex subspaces (half elliptical sphere) (c).

106

data sets orthogonal techniques. Examples of orthogonal techniques are the univariate
concept hierarchies (Langley, 1996) and rule post-pruning on decision trees (Mitchell, 1997).
The guard we aim for should identify orthogonal class boundaries in a data set. The guard
should detect all dark gray planes in Figure 7.3 as orthogonal, and the light gray boundaries
(linear (a) or nonlinear (b&c) multivariate combinations of attributes) as non-orthogonal.
Consequently, the six planes of the cube in Figure 7.3b represent 6 separate class boundaries,
that are all orthogonal.

This is based on a classification of class boundaries (Figure 7.4). Orthogonal class boundaries
are class boundaries that can be described as (combinations of) univariate descriptors. Many
machine learning techniques learn concepts by combining orthogonal class boundaries. This
includes techniques that learn univariate
logical conjunctions and univariate decision
trees. Successful application of techniques
from this group requires the data set to have
underlying class boundaries that are (close to)
orthogonal to attribute axis.

We call all other class distributions non-
orthogonal because they suggest a class
boundary to be some combination of attributes.
Non-orthogonal class boundaries can be further
separated into linear and non-linear class
boundaries. We call techniques that perform
well on non-orthogonal class boundaries non-orthogonal techniques. In the rest of this paper,
we will distinguish orthogonal class boundaries from linear non-orthogonal class boundaries.
This work focuses on data sets with continuous valued numeric attributes. Other data types
fall outside the scope of this work. For each attribute, many different values are assumed to
be present; in practice, this means that we need larger data sets with more records. Later in
this text we define a lowerbound for the number of values per attribute that is required.

Running Example: Quételet’s Body
Mass Index
Throughout the chapter the concepts of
GTS are illustrated with a running
example: the Quételet ratio for the body
mass index. Physicians use the Body Mass
Index (BMI) as a measure for overweight
(Consumed, 2004). BMI is also known as
Quételet index Qp, named after the
statistician Adolphe Quételet (1796-1874).
The Quételet index Qp of a person p is the
ratio between the mass mp and squared
length lp of that person:

2
p

p
p l

m
Q = , (7.3)

It is generally accepted to call people

Orthogonal
(univariate)

Linear Non-linear

Non-orthogonal
(multi-variate)

Class Boundary

Figure 7.4. Taxonomy of class
boundaries

O v e r w e i g h e d

N o r m a l

Figure 7.5. The Qp=25 class boundary.
Length-weight combinations above the solid
line represent overweighted individuals.

107

“overweighted” when their Qp ≥ 2522. Figure 7.5 shows the 2-dimensional length-weight
plane, with the separator at Qp = 25. Suppose that, without knowing the BMI concept and the
formal classification, we are interested in classifying people as overweighed, based on only a
few attributes, and that we have 2 data sets, each containing the data of 1000 persons. Cases
are uniformly distributed over each attribute. Both sets contain three attributes. In data set 1
this is a random variable with no relation to Qp. In data set 2 the third attribute is the Qp
value. For each case, we have the judgement of a physician, Normal or Overweighed,
available. Consequently, data set 1 has no orthogonal class boundaries, while the attributes
lenth and weight define a non-orthogonal class boundary. Additional to the length-weight
class boundary of data set 1, data set 2 also has an orthogonal class boundary for data set 2 at
Qp=25.

7.4.2. Definition of Entropy behavior
The entropy H(X) of a discrete random attribute X is defined as

)(log)()(ii
Xx

xpxpXH
i

∑
∈

−= (7.4)

with the log to the base 2, and p(xi) being the probability of X=xi:. The entropy over the class
distribution of a data set is often used in machine learning techniques to estimate the
predictive value of a "split" of an attribute into intervals, for instance in decision tree learning
(Mitchell, 1997, ch. 3, e.g. C4.5: Quinlan, 1993) and rule learning (Clark & Niblett, 1989).
The attribute-value combination that gives the highest reduction of entropy is considered
most predictive (it gains most information), and is selected as decision node in a decision
tree.

Suppose we have a data set D, consisting of pre-classified records r = [a1, an, c]. Attribute
values ai∈ℜ, and the class label c being one of k class labels: c∈{c1, …, ck}. Now the class
distribution of data set D with k elements serves as a random attribute. Let Htot be the entropy
over the class distribution of the total data set with kD instances. When partitioned at A = ai,
the data set falls apart in two subsets DA≤ai and DA>ai. For these subsets, the partial entropies
are H(DA≤ai) and H(DA>ai). The distribution of information gain over the entire range of an
attribute is analyzed to distinguish orthogonal class boundaries from non-orthogonal class
boundaries. If the number of instances in the data sets is kA≤ai and kA>ai respectively, the
entropy behavior BA at a potential partition point A = ai is defined as:

+−= >

>
≤

≤)()()(
i

i

i

i
aA

D

aA
aA

D

aA
totiA DH

k
k

DH
k

k
HaB (7.5)

Entropy behavior of an attribute, i.e. the course of information gain over an attribute axis, is a
by-product of information-gain based decision tree learners. In the greedy process of finding
the most suitable partition point, a decision tree learner calculates the information gain for all
attributes and for all potential partition points. Entropy behavior of an attribute is the function
that couples an attribute value to the information gain when partitioning the data set at that
value.

7.4.3. Class boundaries and entropy behavior

22 The formal classification over Qp includes four classes: underweight: Qp < 20, normal
weight: 20 ≤ Qp < 25, overweight: 25 ≤ Qp < 30, obese: Qp ≥ 30. Sometimes the lowerbound
is set to 18.5

108

The guard has to identify class boundaries of the form Ai = ac. In other words, if a constant
value of an attribute in a data set (at least over part of its range) coincides with a class
boundary, the guard should signal that. Typical representations that are suited for such class
boundaries include univariate decision trees and univariate decision rules.

Figure 7.7 shows the class boundaries, class density functions, entropy behaviors and
decision trees for an orthogonal class boundary at Ai = ac and for a linear non-orthogonal
class boundary over the interval Ai = [ai,1, ai,2], with different combinations of ai,1 and ai,2.
Figure 7.8a shows the expected entropy behavior for ac=0.5 for three different noise levels.
The analytical derivation of these functions is given in the appendix 1. If we assume a noise-
free orthogonal class distribution with the class boundary at ac=0.5 and a uniform data

(a) (b)

(c) (d)

Figure 7.6. Entropy behaviors of length (a), weight (b), the random attribute (c) and Qp (d)
respectively. Note the differences in the scaling of the entropy value (vertical axis,
representing the BA).

109

bmin

bmax

Class = + Class = - Class = + Class = -

0

1

0

1

amin ai1 ac ai2 amax

bmin

bmax

amin ai1 ac ai2 amax

amin ai1 ac ai2 amax

amin ai1 ac ai2 amax

(a) (b)

 0

1

0

1

amin ai1 ac ai2 amax amin ai1 ac ai2 amax

(c) (d)

A<ac

Class = + Class = -

y-αx>β

Class = + Class = -

True False True False

(e) (f)

Figure 7.7. The relation between class boundary, entropy behavior and concept type
for an orthogonal and a linear concept (a) the density of the class distribution for an
orthogonal class boundary and (b) a non-orthogonal class boundary (c) the entropy
behavior for the orthogonal class boundary (d) the entropy behavior of the linear
class distribution (e) the decision tree for the orthogonal class boundary (f) the
decision tree for the linear class boundary.
The orthogonal concept of (a) leads to a strict class boundary for the A attribute, the
linear concept of (b) leads to a non-strict boundary.

110

distribution, we have complete class information at that point, and consequently H(AI=ac) =
0. The minimum entropy value increases for increasing noise levels, but there is a sharp
minimum at the class boundary for all noise levels. Figure 7.8b shows the entropy behavior
for the linear class boundary of Figure 7.7b, over three different transition intervals [ai,1, ai,2].
There is never total class information for a linear class boundary, and consequently the
minimum entropy value does not reach as low a value as in the orthogonal case. The actual
minimum entropy value depends on the size of the transition interval. As in the case of an
orthogonal class boundary, there is a minimum value at ai,1+½(ai,2- ai,1), and again the actual
minimum value depends of the noise level. There is, however, no sharp cusp at the minimum.
Verdenius (1999) already note that other non-orthogonal class boundaries (for instance where
the class boundary is described by a sigmoid function of the attributes, a=1/(1+e(1+b) in a
two-dimensional data space) produce entropy behavior that is quite similar to that of the
linear class distributions. In the rest of this paper, linear class boundaries are therefore taken
as the standard to compare with orthogonal class boundaries.

Orthogonal class boundaries are characterized by convex shoulders and a steep cusp in the
entropy behavior at the position of the orthogonal class boundary. The cusp is characterized
by a discontinuity in the first derivative. Linear class boundaries (and other gradual class
boundaries) result in an entropy behavior that is concave, and lacks a sharply marked
minimum.

For new, previously unseen data with an unknown underlying class distribution, the
analytical form of BA is unknown. However, it can be approximated in case an attribute
contains sufficient potential partition points A=ai, that is, if the attribute counts a substantial
number of different values. An approximation of the entropy behavior for an attribute Ai in a
data set is obtained by dividing the value range for Ai in a large number of equidistant values
ai. For each ai the corresponding BAi(ai) is calculated. In this paper we generate entropy
behavior in 128 data points. In case of an uneven distribution over the axis, percentile points
can be used as partition points instead of attribute values to create uniform behavior.

(a) (b)

Figure 7.8. Theoretical entropy behavior at noise levels 0%, 10% and 25% on the interval
[0, 1] and ac=0,5. (a) For the orthogonal class boundary of Figure 7.3a, and (b) for linear
non-orthogonal class boundary of Figure 7.3b. The transition area [ai,1, ai,2] has been taken
to be the intervals [0.45, 0.55] (red dotted lines), [0.25, 0.75] (blue dashed lines) and [0,1]
(green line) respectively. The curves are based on the derivations in the appendix.

111

Entropy behavior BA(ai) results in a curve with potentially many local extremes. At finer
scales (s → 0) these local extremes reflect sampling noise: random variations that contain no
information. The smaller the data set, the more effect this sampling noise has on the entropy
behavior. An illustration is given in Figure 7.9, where for orthogonal (a) and linear (b) class
boundaries the entropy behavior is shown for sample sizes of 50, 100, 500, 1000 and 5000
records. A small sample size results in a bumpy entropy behavior, a large sample size results
in much smoother curves, where the noise induced local extremes have shrinked into small
wrinkles. By comparing the expected entropy behavior (Figure 7.8) with the apparent entropy
behavior that is derived from a data sample (Figure 7.9), the effect of this sampling noise can
be assessed.

Running Example: Quételet’s Body Mass Index

The entropy behaviors of Figure 7.6 are based on 128 entropy values, with an equidistant
subdivision of the attribute space. The entropy behavior for the length attribute, for instance,
is derived by taking the minimum and maximum length in the data set (1.42m and 2.05m
respectively) and partitioning that interval in 128 equidistant steps.

The entropy behaviors for the attributes length, weight, the random attribute and Quételet are
given in Figures 7.6a, 7.6b, 7.6c and 7.6d respectively. Length and weight reach their
minimum entropy values at approx 1.75m and 75 kg, respectively. The information gain at
that point is approximately 16 and 24.5 % respectively. The random attribute of data set 1
shows a maximum entropy reduction of 0.2%, and the Quételet attribute of data set 2 gives a
maximal information gain of approx 91%.

The entropy behaviors of length (Figure 7.6a) and weight (Figure 7.6b) show a more or less
gradual course towards their respective minima. The entropy behavior of the random attribute
(Figure 7.6c) shows random variation with no significant minimum. The Qp attribute exhibits
a cusp-shaped minimum at Qp=25.

(a) (b)

Figure 7.9. Effect of data sample size on smoothness of entropy behavior (a) for an
orthogonal class boundary (b) for a linear class boundary. In all cases entropy behavior is
determined as a 128-point entropy sample. A small data sample size (black and blue
curves, sample size ∈ [50,100]) results in a bumpy entropy behavior, a large data sample
size (red and pink curves, sample size ∈ [1000,5000]) results in smooth curves that
approximate the theoretical curves of Figure 7.8.

112

7.4.4. Prototype matching
We now know that orthogonal and non-orthogonal class boundaries are reflected in entropy
behavior BA. As illustrated in Figures 7.7, 7.8 and 7.9, there is an intuitive understanding of
the relation between patterns of entropy behavior and the underlying class distribution. The
task at hand now is to define indicators of orthogonal class boundaries and of non-orthogonal
class boundaries in the entropy behavior of real world data sets. It is our hypothesis that
indications for orthogonal and non-orthogonal class boundaries can be combined to allow an
assessment of whether or not orthogonal techniques are appropriate for a particular data set.

We use the entropy behavior of orthogonal and non-orthogonal class distributions as entropy
prototypes, and compare them with the actual entropy behavior of a data set. The degree of
similarity between entropy behavior and entropy prototypes is determined per attribute to
serve as indicators for orthogonal and non-orthogonal class boundaries, respectively. Next,
the degrees of similarities for orthogonal and non-orthogonal similarity are summed, and
correlated with the performance of orthogonal and non-orthogonal machine learning
techniques respectively. In other words, class boundaries are classified on the basis of their
orthogonality/non-orthogonality. Based on these norms, the data sets are classified as
appropriate or not-appropriate for orthogonal machine learning techniques, without actually
running specific machine learning techniques.

In pseudo code, the procedure of prototype matching goes as follows:
Given: Prototypes Eo and El for orthogonal and linear class boundaries

A data set with n attributes ai
Do

For each attribute ai
Calculate entropy behavior Bai
For every scale s

Calculate local discrepancies δl(ai,s) and δo(ai,s) between Bai and El and Eo
respectively

Calculate relative weighted orthogonality/linearity per attribute per attribute, by
summing δl(ai,s) and δo(ai,s) with weight factors per scale, and relating it to the
information gain of the attribute.

OR is the ratio between the relative weighted orthogonality and relative weighted
linearity, summed over all attributes

End

7.4.4.1. Prototype Matching Basics
We construct prototypes of entropy behavior for both orthogonal and non-orthogonal class
boundaries and match them locally with the entropy behavior. As indicated earlier in Section
7.4.3, we take the entropy behavior of a linear class boundary to stand for other non-
orthogonal class boundaries.

The entropy behavior is characterized in terms of discrepancy between prototypes and actual
behavior. If the entropy behavior in an environment of a local minimum reflects similarities
with the orthogonal entropy prototype, an orthogonal class boundary can be hypothesized. If
the local entropy behavior shows similarities with the non-orthogonal entropy prototype, a
non-orthogonal class boundary can be hypothesized. The entropy behavior for an attribute
can reflect, at one attribute value, both characteristics of orthogonal and non-orthogonal
behavior (non-exclusive). By deriving a characterization of entropy behavior as orthogonal or
non-orthogonal for all attributes of a data set, the data set is characterized as orthogonal or
non-orthogonal.

113

The actual prototype analysis is performed by analogy with wavelet analysis (Mallat, 1999).
In an earlier stage, wavelet analysis has been tested as technology for cusp detection
(Verdenius, 1999; Verdenius & van Someren, 2002), but a lack of resolution of wavelet
analysis to distinguish between orthogonal and non-orthogonal class boundaries in entropy
behavior made it necessary to develop protoype matching as an alternative tool. As in
wavelet analysis, we take scale effects into account. Iteratively a prototype is dilated to finer
and finer scales s of comparison. By dilating the prototype, local class boundaries (cf. Figure
7.3b) can be detected. Next, the dilated prototype is translated over all attribute values in the
entropy behavior in order to cover the entire attribute value range, and scaled to the range of
the sub-segment of the entropy behavior to be matched (see Figure 7.10). The translation
guarantees that class boundaries are located independent of their location at the attribute axis.
Then, the discrepancy with the local entropy behavior is determined (the yellow shaded area
of Figure 7.10). The derivation of orthogonal and non-orthogonal prototypes that we used is
presented in the appendix 1.

The discrepancy δ(ai) between an entropy behavior BA(ai) and an orthogonal or non –
orthogongal entropy prototype E in the range [0, 1]is calculated as follows23. First E has to
be dilated and translated onto the local entropy behavior (see Figure 7.10). Dilating E at a
scale s results in Es with signal length ls. Fitting it to BA(ai) requires two steps. First, Es is
translated over a distance ai, to be centered around the entropy behavior at the partition point
ai. Next, the entropy behavior is scaled to fit the minimum minB=min(BA([ai-ls/2, ai+ls/2])
and maximum maxB=max(BA([ai-ls/2, ai+ls/2]) of the entropy behavior BA over the range [ai-
ls/2, ai+ls/2]:

() () B
BB

is
sa

axExE
i

min
minmax

)(
, +

−
−

= (7.6)

() ()∫ −=
max

min

)(, ,

a

a
Asai daaBaEsa

i
δ , (7.7)

with amin and amax the minimum and maximum attribute value in the data set, respectively. A
data set is a discrete sample of the continuous class distribution that leads to (Equation 7.3).
Therefore, we apply a discrete form of E and BA. This leads to a formulation of a discrete
discrepancy:

()
()()

()minmax

,)(

aa

xBxE
a a

Asa

i

i

−

−
=

∑
δ (7.8)

7.4.4.2. Analyzing Entropy Minima
The discrepancy δ(ai,s) between entropy behavior and prototype is the integrated difference
between the entropy behavior and the entropy prototype, as illustrated in (Equations 7.5 &
7.6). By translating the prototype along the attribute axis A to any value ai, a discrepancy
profile for every (discrete) point of the entropy behavior is obtained. By dilating the entropy
prototype with a scale factor s the local behavior is obtained. The result of the discrepancy

23 E here indicates any entropy behavior prototype. If we specifically refer to a linear
prototype or orthogonal prototype, this is indicated by a subscript : El and Eo refer to a
linear and orthogonal prototype respectively. These subscripts will be used in other symbols
as well.

114

analysis is a two-dimensional discrepancy
matrix, fl(A) or fo(A), that gives a measure
of discrepancy for every attribute value ai at
any scale s with the linear or orthogonal
prototype, respectively.

We now define the orthogonality matrix
Mol(A) = 1 if fo(A)<fl(A), and 0 otherwise,
so that it is 1 where the entropy behavior
shows a dominant similarity with the
orthogonal prototype (the index ol indicates
the orthogonal similarity being smaller than
the linear). The linearity matrix Mlo(A) is
defined analogously, so that it is 1 where
the entropy behavior shows a dominant
similarity with linear behavior (the index lo
indicates the linear similarity being smaller
than the orthogonal). By summing Mol and
Mlo per scale, we get the
orthogonality/linearity of an attribute per
scale, sMol and sMlo, respectively:

() ∑

=

i
iolol saMssM , ,

() ()∑=
i

ilolo saMssM , (7.9)

Orthogonality at coarse scales represents a
global similarity of entropy behavior with
the orthogonal prototype. Orthogonality at
finer scale represents similarity of parts of
the entropy behavior. Similarity at the finest scales represents noise wrinkles. Consequently,
in the global assessment of class boundaries, Mol at coarse scales should receive a higher
weight than at fine scales. This leads to a weighted orthogonality wsMol and weighted
linearity wsMlo:

() ()
∑=

j
s

jol
iol j

ssM
AwsM

2
, () ()

∑=
j

s
jlo

ilo j

ssM
AwsM

2
(7.10)

The measures wsMol and wsMlo apply to individual attributes Ai. For attributes with a high
entropy reduction, the orthogonality represents a more relevant characteristic than for an
attribute with only a minor entropy reduction (e.g. a random attribute, which only provides
noise). In this way, the contribution of wsM are adjusted according to the predictive ability of
the attributes. For all attributes Ai we define rH to be the relevance of entropy reduction rH
of that attribute:

Scale 1

Scale 2 Scale 3

(a)

Scale 1

Scale 2 Scale 3

(b)

Figure 7.10. Matching prototypes (dashed
curves) on entropy behavior (black curve)
(a) 3 scaled prototypes for orthogonal class
boundary (b) 3 scaled prototypes for non-
orthogonal class boundary. The shaded
area represents the mismatch, in (a) over
the full scale, in (b) over a sub-scale

115

Attribute sMol sMlo rH wsMol wsMlo
Length 1850.1 183.5 0.16 297.6 29.5
Weight 1909.3 130.8 0.25 468.0 32.1
Random 2024.0 10.0 0.00 4.7 0.0

Summed: 770.3 61.6
OR 12.5

Table 7.1. Orthogonality measures for Quételet data set with random attribute

Attribute sMol sMlo rH wsMol wsMlo
(See Length & Weight attributes of Table 7.1)

Quételet 2029.6 15.5 0.91 1848.4 14.1

Summed:
2614.0 75.7

 OR 34.5
Table 7.2. Orthogonality measures for Quételet data set with Quételet attribute

()
tot

aAaA
i H

DH
ArH

i
i

)(min === (7.11)

Now the relative weighted orthogonality of an attribute Ai is defined as

() () ()iioliol ArHAwsMArwsM .= (7.12)

The relative linearity for Ai is defined analogously. By now summing the relative
orthogonality and linearity over all attributes leads to the orthogonality and linearity of the
data set. It is obvious that the derived measures are scaled in relation to the number of
attributes, and the sampling size of the entropy behavior. To obtain a more absolute measure,
we introduce, as the final step, the orthogonality ratio OR:

()

()∑
∑

=

i

i

A
ilo

A
iol

ArwsM

ArwsM
OR (7.13)

The orthogonality ratio OR is the parameter that we will use as the indication of orthogonality
of a data set.

Running Example: Quételet’s Body Mass Index
In Table 7.1 and 7.2, the values of the orthogonality measures (Equations 7.7, 7.9 and 7.10)
are given for the two data sets. The entropy behavior of attribute length (see Figure 7.6a) has
an orthogonality ratio of sMol=1850.1. Due to a relative entropy gain rH of 0.16 the relative
orthogonality is 297.6; the linearity of the same entropy behavior is 183.5, with a relative
linearity of 29.5. For the attribute weight (see Figure 7.6b), the same calculations lead to a
relative orthogonality of 468.0 and a relative linearity of 32.1. For the random attribute (see
Figure 7.6c), the relative entropy gain is 0.00 (0.002308, to be more precise), reducing the
high absolute orthogonality of 2024.0 to a mere 4.7. For data set 1 this leads to a summed
orthogonality of 770.3, a linearity of 61.6 and an OR of 12.5. For data set 2, with the (very
relevant) attribute Quételet instead of the random variable, the OR is much higher. First,
Quételet scores an orthogonality of 2029.6, which contributes 1848.4 to the relative
orthogonality due to a relative entropy gain of 0.91. Consequently, the summed orthogonality

116

of data set 2 is 2614.0, and the ratio OR is 34.5. The following conclusions can be drawn
from these results:
• The random attribute in data set 1 scores high on orthogonality sMol, but due to its low

relevance of entropy reduction rH, it does not contribute to the summed orthogonality and
OR.

• The orthogonal attribute Quételet contributes to the summed orthogonality OR because it
is very orthogonal (sMol)and very relevant (rH).

• The orthogonality ratio OR offers a measure for orthogonality that is independent of the
number of attributes in the data set.

These results illustrate how the OR measure is influenced by the presence of orthogonal class
boundaries in a data set. The logical next step, presented in the next section, is to develop a
criterion on how OR relates to the type of class boundary, and to correlate this to technique
performance.

7.5. Experimental Evaluation
With OR it is possible to express the orthogonality of a data set. In order to use OR as a guard
for orthogonal techniques, we need a decision criterion on OR, i.e. in what OR-value range
can we use orthogonal techniques and in what range non-orthogonal techniques? In this
section, we experimentally evaluate the prototype matching method, and determine the
threshold value(s) of OR for deciding between orthogonal and non-orthogonal techniques.
This is done in three steps. First, we study the influence on the orthogonality ratio OR of the
angle that a linear class boundary makes with attribute axes on a 2-dimensional data set
(Section 7.5.1). The class boundary is either orthogonal, or a linear combination of the two
attributes, with varying slope-intercept combinations. Moreover the noise level varies from 0
to 25%. Second, we test on more complex data how sensitive our approach is to class
boundaries that occur in partial subspaces of a multivariate data set (Section 7.5.2). The data
in this experiment is either a hierarchical combination of orthogonal class boundaries or a
hierarchical combination of linear class boundaries. In this second experiment, we use class
boundaries in 3 angles, and 3 noise levels per data set. For these two experiments, we use the
performance of the Quest tool for learning univariate and multivariate decision trees (Loh &
Shih, 1997) as validation. Moreover, we use the MetaL ranking tool and the performance of
orthogonal and linear machine learning techniques in the MetaL toolbox (MetaL, 2004).
Finally, in Section 7.5.3, we test the applicability of the approach beyond its assumptions on
five ‘real world’ data sets to learn the influence of the data distribution on the sensitivity of
the approach.

7.5.1. Two dimensional data
Goal: The first experiment studies two effects. First the correlation of OR with the
orthogonality of the underlying class distribution is assessed. The hypothesis is that OR
correlates with the slope class boundary: the more orthogonal the class boundary, the higher
the value of OR. For the measure to be practically useful, the correlation with the noise level
should be minimal. Second, the correlation with the performance of orthogonal and non-
orthogonal techniques is assessed. Here it is the expectation that orthogonal techniques
perform good for orthogonal class boundaries and poor for non-orthogonal class boundaries,
while non-orthogonal techniques are expected to perform reasonably well overall. Based on
the outcome a decision criterion on OR for appropriateness of (non-)orthogonal techniques is
formulated.

117

Method: In the first experiment 110
data sets are generated. Every data set
contains 2000 points from a 2-
dimensional data space with attributes
A1 and A2 from the continuous interval
[0,1] (see Figure 7.11). Points are
uniformly distributed over the data
space. All cases belong to one of two
classes {c1, c2}. The data space is split
by a class boundary, dividing the space
into two areas, I and II. The data sets
vary in slope of the class boundary (the
angle of the class boundary with the
A1–axis varies from 45° to 90° in 10
equal steps, giving a slope ∈ {1, 1.19,
1.43, 1.73, 2.14, 2.75, 3.73, 5.67, 11.43,
∞}) and in noise level n (n runs from
0% to 25% in steps of 2.5%).
Consequently, the probability that a
record (a1, a2) is of class c1 in areas I
and II are p(C=c1\(a1,a2) IN area I) =
1-n and p(C=c1\(a1,a2) IN area II) = n respectively, and the probabilities for class c2 are
p(C=c2\(a1,a2) IN area I) = n and p(C=c2\(a1,a2) IN area II) = 1-n. In other words, the noise
level n defines the probability that a record is classified incorrectly. The noise level is
uniformly applied on the entire data space. For every combination of slope and noise-level,
10 random data sets are drawn. The outcomes of the prototype analysis and Quest are
averaged over these 10 sets.

The entropy behavior is derived over both attributes of the data sets. The number of entropy
values per attribute, f, is set to 128; in our experiments this value proved adequate and it
ensures feasible computational complexity without posing too rigid constraints on the number
of records in the data set. Every interval boundary A=ai , i = {1, 2, ….128} is used to
calculate H(DA=ai).

For all data sets multivariate and univariate decision trees are generated using Quest (Loh &
Shih, 1997). The performance of the decision trees is measured in the number of
misclassified cases. The Quest parameters that are used can be found in the appendix 2. Each
Quest-run is performed using 10-fold cross validation. For 10 individual data sets, with
slope∈ {1, 1.19, 1.43, 1.73, 2.14, 2.75, 3.73, 5.67, 11.43, ∞} and 0% noise, we have obtained
a MetaL ranking.

Results: Figure 7.12a shows the relation between the slope of the class boundary, the noise
level in the data set, and the OR. The OR gradually increases from [0.5, 2] to [4-8] as the
slope increases from 1 to 3.73. The OR values increase steeply to ranges of [95, 130] as the
slope increases further. This trend occurs over all noise levels. Figure 7.12b gives the
difference in misclassifications between univariate and multivariate trees. Overall
multivariate trees score substantially less misclassifications than univariate. But when the
slope increases (approx. > 3.73), this difference vanishes.

0 1

1

A1

A2

Class = c1

Class = c2

slope = ∞ slope = 1...

Figure 7.11. Class boundaries for artificial 2-
dimensional data with slope ∈ {1, 1.19, 1.43,
1.73, 2.14, 2.75, 3.73, 5.67, 11.43, ∞})

118

0

0.
05

0.
1

0.
15

0.
2

0.
25

1
1.

19 1.
43 1.
73 2.

14 2.
75 3.

73 5.
67

11
.4

3 in
f.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

OR

Noise
Slope

Ratio Relative Orthogonality/Relative Linearity

120.00-140.00
100.00-120.00
80.00-100.00
60.00-80.00
40.00-60.00
20.00-40.00
0.00-20.00

(a)

0

0.
02

5

0.
05

0.
07

5

0.
1

0.
12

5

0.
15

0.
17

5

0.
2

0.
22

5

0.
25

1
1.43

2.14
3.73

11.43

-20

0

20

40

60

80

100

120

140

Difference in
misclassification

(#records)

Noise

Slope

Difference between multivariate and univariate misclassification

120-140

100-120

80-100

60-80

40-60

20-40

0-20

-20-0

 (b)

Figure 7.12. (a) The relation between noise and angle of the class boundary and the OR
value and (b) the difference in misclassification of orthogonal and non-orthogonal
techniques.

Note that for presentation purposes the axis orientation between the two figures has been
changed.

119

A verage B ehav io r o ve r A ng le

-10 .0 0

10 .0 0

30 .0 0

50 .0 0

70 .0 0

90 .0 0

1 10 .0 0

1 1 .19 1 .4 3 1 .73 2 .14 2 .75 3 .73 5 .67 11 .43 inf .

S lo p e

R e lo rth o /R e llin
D e lta m isc la ss .

(a)

Average OR over Noise Level

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

Noise

Relortho/Rellin
Delta Misclass.

(b)

Figure 7.13. The tendencies of Figure 7.12, but now averaged over Angle (a) and noise level
(b).

120

Figure 7.13 provides another view on both results. Figure 7.13a, gives the projection of
Figure 7.12a and Figure 7.12b on the slope axis, averaging OR and relative misclassifications
over all noise levels. An opposite trend for both curves can be observed in Figure 7.13a.
Where the OR curve increases vastly, i.e. the slope rises to values > 3.73, the relative
misclassifications gradually decreases. Figure 7.13b contains the similar projection on the
noise axis, averaging over all slope values. The dependency between the orthogonality ratio
and the difference in misclassifications between linear and orthogonal trees is confirmed, and
the dependency between the noise level and the difference in misclassifications between
linear and orthogonal trees proves less clear.

Figure 7.14 gives the MetaL rankings as function of slope for 3 orthogonal techniques
(C50rules, C50tree; Rulequest, 2004; and Ripper; Cohen, 1996) and 3 non-orthogonal
techniques (linear discriminant, naive Bayes and instance-based learning). For trend
comparison the figure also contains the OR value over slope and the performance of
univariate and multivariate classification with Quest. The latter two use their own scaling on
the righthand side of the chart. The MetaL predicted score, based on descriptive statistics of
the data set, shows little variation over slope. OR, as discussed before, correlates with slope.
The actual performance difference of a univariate and a multivariate technique shows a
correlation with OR of -0.66, whereas the (absolute value of the) correlation of OR with any
of the MetaL predicted scores range from 0.19 to 0.22.

MetaL Predicted score for 10 2D data sets (0%noise)

0.8

0.85

0.9

0.95

1

1.05

1.1

1 1.19 1.43 1.73 2.14 2.75 3.73 5.67 11.43 inf
Slope

M
et

aL
 s

co
re

-20

0

20

40

60

80

100

120

140

lindiscr
NB

IB
c50tree

c50rule
ripper
OR

D

Figure 7.14. Comparison of MetaL ranking for three non-orthogonal machine learning
techniques (lindiscr, NB and IB), three orthogonal machine learning techniques (C50tree,
C50rules and Ripper) with OR and performance D. OR and D are expressed in the secundary
scale on the right hand side of the chart. Results are based on one data sample per slope-
value.

121

Conclusions: As assumed in the case of an orthogonal class boundary (slope = inf),
univariate decision trees outperform the multivariate trees, while the multivariate decision
trees perform better in the case that the class boundary would be a linear combination (slope
→ 1). Figure 7.12 shows the OR plane as function of angle and noise level (a), and the plane
of relative misclassifications: #multivariate misclassifications-#univariate misclassifications
(b). The value of OR in Figure 7.12a raises as the angle increases. The increase of the slope
of OR increases when the angle increases. Figure 7.12b shows the difference between
multivariate and univariate classifier performance, expressed as difference in
misclassification (multivariate – univariate). Here, we see a global downward tendency when
the angle increases. The correlation coefficient of the two matrices of Figure 7.12 is -0,72 (t-
test P < 0.001).

We also look at the correlation of OR with relative misclassifications, averaged over angle
and noise level, respectively (Figure 7.13). There appears to be a high, and highly significant,
correlation between angle and the average OR values for all noise levels (correlation of -0,79;
t-test P < 0.005). The correlation between noise level and the average OR values for all angles
is much lower, and less significant (correlation of 0,50; t-test P < 0.4). Figure 7.13a, confirms
the tendencies of Figure 7.8. The correlation coefficient between OR and the performance is -
0.79 (t-test P<0.005). In Figure 7.13b the OR shows to be hardly dependent on the noise
level, where the differences in misclassifications decrease when the noise level increases.
Both techniques seem equally hindered in noisy data sets. While in noise free environments,
the multivariate classifier performs better than the univariate one. Here, the correlation
coefficient is 0.50, (t-test P< 0.4).
From these results we extract the following decision criterion:
• When OR > 15, take the model to be orthogonal.
• When OR ≤ 4, take the model to be non-orthogonal.
• When 4 < OR ≤ 15, apply both orthogonal and non-orthogonal models.
We put this heuristic to the test in the next experiment.

The MetaL scores are not grounded on the relation between data characteristics and technique
performance, but are based on general descriptive characteristics of the data set. As a
consequence, the MetaL score predictions over the various data sets in this experiment do not
vary much; the statistical characteristics of the data sets are identical, but the underlying
classification concepts differ. The prototype matching analysis of entropy behavior does
exploit this relation, and thus reflects in the OR value the internal structure; in this case the
orthogonality.

Running Example: Quételet’s Body Mass Index

The OR-values of Tables 7.1 and 7.2 for the analyses of the Quételet data are interpreted as
follows. Applying the criterion to set 1, with an OR value of 12.5, the conclusion is that both
an orthogonal and a non-orthogonal technique could be appropriate. For set 2, with an OR
value of 34.5, an orthogonal technique is indicated. When analyzing the two data sets with
the MetaL ranking tool, the predicted ranking of the two data sets is identical. However, the
actual results when applying linear and orthogonal techniques to the data indicate otherwise.
Table 7.3 shows the learning results as obtained with the learning techniques that are
included in MetaL. The table shows both the predicted score and the actual performance for
the non-orthogonal techniques (Lindiscr, IB and NB) and the orthogonal techniques (C50rule,
C50tree and Ripper). It is noted that the MetaL scores do not differ for both data sets, while
the underlying concept has substantially changed. This shows in the OR scores in Tables 7.1
and 7.2. The OR score accurately predicts the best performing technique class when using the
criterion as derived in the above section.

122

Lindisc IB NB C50rul C50tree Ripper
Set 1 Predicted 1.02 0.978 0.94 1.003 0.987 1.001

Performance 1.02 0.994 0.984 0.997 0.997 0.991
Set 2 Predicted 1.02 0.978 0.94 1.003 0.987 1.001

Performance 0.977 0.991 1.003 1.008 1.008 -
Table 7.3. MetaL ARR scores (Soares & Brazdil, 2000) for Quételet data sets. Predicted
(dark rows) gives the prediction according to the MetaL tool, Performance (light rows)gives
the actual results as obtained with the indicated technique applied through the MetaL
workbench (MetaL 2004). In italics the best prediction and performance are indicated.

7.5.2. Multi-dimensional data
Goal: In the former experiment, we have confirmed the relation between OR and the slope of
the underlying class boundary, and between OR and the performance of orthogonal and non-
orthogonal techniques. This experiment aims to discover the relation between OR and the
orthogonality of class boundaries in more complex concepts, especially if class boundaries
are hierarchically organized over a larger number of attributes. Moreover, we wish to
establish if the OR value is a better indicator for the orthogonality of class boundaries than
MetaL ranking.

Method: In this experiment data sets with 5 attributes [A1..A5] ∈ [0,1] are generated. Class
labels are assigned according to a strict univariate concept:

Class C1:
A1> 0.5 AND A2≤0.3, OR
A1> 0.5 AND A3>0.7, OR
A1≤ 0.5 AND A4≤0.3, OR
A1≤ 0.5 AND A5>0.7

Class C2:
Otherwise

or according to multivariate variants:
Class C1:

A1> 0.5 AND A2 > α A2_+ β OR
A1≤ 0.5 AND A4 ≤ α A5_+ β

Class C2:
Otherwise

The α value is the slope of the class distribution, and determines the degree of
(non)orthogonality of the class distribution. Values for α are varied to create multivariate
class boundaries with angles of 90°, 75°, 67.5° and 45° (slope of ∞, 3.73, 2.41 and 1
respectively). The β stands for the intercept, and controls the proportion of the classes in the
data set; β-values are set such that the chances for records class 0 and 1 are equal. Uniform
class noise of 0, 10 and 25 % is applied, so that in total 12 parameter settings are used. Data-
sets are generated with 2000 records, and the total experiment was repeated for 10 different
samples. The reported results are the averages over these samples. For all parameter
combinations in this experiment, we also obtained, for one data set per parameter setting, the
MetaL rankings over linear and non-linear techniques.

123

Attr. sdol sdlo rH wsdol wsdlo
A1 1978.0 53.3 0.001644 3.25 0.09
A2 1992.1 37.8 0.084298 167.93 3.18
A3 1903.4 128.8 0.05873 111.79 7.57
A4 1978.1 51.1 0.086066 170.25 4.40
A5 1970.6 59.5 0.082242 162.06 4.89

 Summed 615.29 20.13
 OR 30.57

Table 7.4. Analysis results of one of a 5-variable data set for orthogonal class boundaries
with 0% noise.

Results: The class distribution over A1 is constant and consequently, exhibits no significant
entropy behavior. It does, however, show a high ratio between wsdol and wsdlo. The other
attributes show, for orthogonal class boundaries listed in Table 7.4, clear cusps in entropy
behavior. Compared to the entropy behavior of Section 7.5.1, the attributes show a reduced
relative entropy gain (see Figure 7.16) due to the hierarchical nature of the class boundaries
(attribute A2 is decisive for only half of the data set; for the other half it behaves as a random
attribute). Figure 7.17 presents the A2 attribute in case all attributes have a slope of 1, i.e. the
class boundaries are multivariate. Table 7.4 gives the analysis of the prototype matching
results for one orthogonal data set. It clearly indicates the orthogonal character of the class
boundaries. Given the OR value, there is little doubt about the prevalent orthogonal character
of the data set. The overall results (Table 7.5) show a clear difference in OR in the cases
where orthogonal class boundaries occur in the data.

The MetaL rankings appear to be insensitive for the actual parameter combination. The score
predictions for the non-orthogonal techniques (linear discriminant, naive Bayes and instance
based learning) and the orthogonal techniques (C50tree, C50rules and Ripper) were 1.071,
0.997, 0.892, 0.943, 0.963, 0.979, respectively. In other words, the MetaL ranking proved
insensitive to variations in concept types. Again, as can be concluded from Tables 7.4 and 7.5

inf
3.73

2.41
1

0

10

25

OR

Slope

noise

5-level results

40-45
35-40
30-35
25-30
20-25
15-20
10-15
5-10
0-5

Figure 7.15. OR values for 5-variable data sets, aggregated over 10 runs. Linear class
boundaries (slope<= 3.73) results in low OR values. When slope→∞, OR values increase
disproportional. In noisy data sets, the effect is tempered, but still substantial.

124

and Figure 7.15, the OR-value distinguishes the parameter settings, and correlates with the
orthogonality of the underlying class boundaries.

Conclusions: The main conclusion of this experiment is that the OR-value is a good indicator
for the underlying class boundary. The MetaL toolbox, in contrast, ignores differences in
class boundaries. Figure 7.15 justifies the conclusion that OR enables differentiating
orthogonal and non-orthogonal class boundaries, and that the criterion formulated in the
former experiment is confirmed.

Noise
level Slope

∞ 3.73 2.41 1
0 42.96 5.97 3.86 1.42
10 35.38 6.62 4.09 1.69
25 18.76 8.41 4.76 2.86
Table 7.5. OR results on 5 variable data set, for various angles and noise levels as described
in the text. The given OR values are average values out of 10 repeats.

7.5.3. Applicability beyond Assumptions
Goal: The experiments in Sections 7.5.1 and 7.5.2 concern data sets where the data samples
are uniformly distributed over the data space. This is in line with the assumptions underlying
the formulation of the prototypes (see Appendix 1) as being for uniformly distributed data. In
this last experiment, the prototype matching method is tested on (slightly modified) UCI data
sets and a data set from our own practice (see appendix 3 for a description of the data sets).
These data sets are characterized by non-homogeneous data distributions. As such, these sets
do not contain data with the exact characteristics for which the prototypes were actually
defined. The goal of this experiment is to test the sensitivity of the prototype matching
method against this uniformity assumption, and to relate its performance to the accuracy of
MetaL on these data sets.

Method: For each data set the orthogonality ratio OR is calculated. The OR values are
compared with the MetaL rankings and the performance of orthogonal and linear machine
learning techniques in the MetaL toolbox (MetaL 2004).

Results: Table 7.6 shows the OR results. According to the heuristic developed earlier, OR is
expected to give an indication of the applicability of orthogonal machine learning techniques
for learning the classification in the data set. The data sets are ordered by increasing OR
value. If OR is a robust predictor for orthogonality, one expects that the PHA data are non-
orthogonal, Wdbc and Spam to be orthogonal, and GI2 and Abalone2 to be either of the two.

As in the earlier experiments, the MetaL tool is used to obtain a ranking of the 6 available
learning algorithms (C50rules, C50tree, Ripper, linear discriminant analysis, instance-based
learning and naive Bayes). Moreover, we let MetaL apply these 6 learning approaches to the
data and assess the performance in terms of the adjusted ratio of ratios (ARR, Soares &
Brazdil, 2000) of these techniques. Table 7.7 shows the MetaL results, with indications of the
best-predicted technique (italic) and the actual best performing technique (bold). The left half
of the table contains the MetaL prediction and performance for non-orthogonal techniques;
the right half contains the MetaL prediction and performance for orthogonal techniques. If the
MetaL ranking is a robust predictor for orthogonality, one expects the predicted-best and
actual best technique to be positioned in the same color segment.

125

Data-set wsdol wsdlo OR
PHA 5082.1 1504.7 3.4
GI2 3490.7 846.6 4.1
Abalone2 2065.2 243.0 8.5
WDBC 15256.4 1012.8 15.1
Spam 7273.3 411.2 17.7

Table 7.6. Prototype Matching Results on UCI and real world data sets.

Conclusions: Both MetaL and prototype matching score poor on these data sets. MetaL
correctly predicts 2 out of 5 non-orthogonality predictions (PHA, Spam). Prototype matching
correctly predicts 1 out of 5. However, the performance of MetaL is not significantly better
than that of the OR score(s) given the 5 data sets and the small differences in predictive
accuracy between the various techniques.

(a) (b)

(c) (d)

Figure 7.16. Entropy behavior of attributes in the experiment of Section 7.4.2 for the
orthogonal class distribution. Attribute A1 (a) shows random behavior. Attributes A2 (b) and
A3 (d) show cuspy behavior, which is potentially blurred when classification noise is
imposed (c). Note that the (vertical) entropy axis differs in scaling for the different charts.

126

Technique
Data-set Lindiscr NB IB C50rules C50tree Ripper
PHA Rank 1.00 0.89 1.03 1.05 1.04 1.04

Performance 0.96 0.77 1.03 1.07 1.07 1.06
GI2 Rank 1.00 0.91 1.02 1.03 1.03 1.03

Performance 0.99 0.97 1.02 1.02 1.02 0.98
Abalone2 Rank 1.07 1.00 0.89 0.96 0.94 0.98

Performance 1.02 0.95 0.94 1.02 1.02 1.02
WDBC Rank 1.00 0.89 1.03 1.05 1.04 1.04

Performance 1.01 0.98 1.00 1.00 1.00 0.98
Spam Rank 0.91 0.78 1.01 1.07 1.05 1.07

Performance 0.98 0.89 0.98 1.04 1.03 1.02
Table 7.7. MetaL ARR scores for real-world data sets. The numbers indicate the predicted
score of MetaL (dark rows) and the actual score based on the MetaL toolbox (light rows).
The italic numbers indicate the highest scores. The three techniques in the left part of the
table are non-orthogonal techniques, the three techniques to the right are orthogonal.

As the data sets are violating a major assumption underlying the validity of the prototype
matching approach these scores for OR are not surprising. When analyzing these data sets,
they appear to have a highly non-uniform data distribution. In terms of density of data points
along the attribute axis, normal distributions dominate flanked by a number of extremely
skewed distribution functions (e.g. in the Spam database, where attributes reflect highly
skewed appearance frequencies of specific words in e-mails). Because the prototypes used in
the current version are based on uniform data distributions, it is hard to draw conclusions.

This leads to the definition of a future extension of the method. Before applying the prototype
matching approach, the type of data distribution of each attribute has to be assessed. The
prototypes E (Equation 4) need to be extended with a qualifier d for the type of data
distribution: Et,d, with t stands for l (linear) or o (orthogonal) as specified in footnote 2.
Consequently, the attributes are matched using the appropriate prototype, e.g. normal
distribution, uniform distribution or other continuous distributions.

Figure 7.17. Entropy behavior for attribute A2 with slope=1, for 0 % noise (left) and 25%
noise (right). Note that the (vertical) entropy axis differs in scaling for the different charts.

127

7.6. Conclusion and Discussion
Existing technique selection approaches such as meta-learning are based on fairly ‘arbitrary’
selections of data sets and techniques. As such, they give no other explanation than “it
worked well on a number of similar data sets,” thus ignoring in their evaluation, the
principles of the techniques, and the way that these connect to patterns in a data set.
Moreover, it is debatable whether the simple, statistical and information theoretic data set
measures that are most commonly used in deriving the technique selection bear a
fundamental relation with technique performance.

Technique dependent guards offer a more fundamental way of technique selection. The
guards test per technique or technique class for a specific data set if the assumptions
underlying the technique hold. Or, phrased differently, whether it can be expected that the
data set complies with the specific bias of the technique.

For orthogonal techniques prototype matching is a guard that assesses the amount of
orthogonal class boundaries in data sets, without actually running the technique. The applied
prototypes outperform MetaL on data sets that comply with the assumption of uniform data
distribution that underlies the used prototypes. Beyond these assumptions, both approaches
perform equally poor.

Selecting the appropriate machine learning technique for a specific data set is a critical
success factor in applying machine learning techniques. This chapter discusses guarded
technique selection (GTS) as a principled approach to technique selection. In GTS, every
technique (group) is ‘protected’ by a proprietary guard that fires when a data set meets the
specific preconditions for that technique. The proof of concept is given for orthogonal
machine learning techniques, i.e. techniques that build classifiers by recognizing (partial)
orthogonal class boundaries. Orthogonal class boundaries declare themselves as cusps in the
entropy behavior of attributes. Non-orthogonal class boundaries show a more gradual,
entropy behavior. Analysis of entropy behavior resulted in entropy prototypes for orthogonal
and non-orthogonal class boundaries. Prototype matching, making a quantifiable comparison
between the respective similarities of these prototypes with the entropy behavior of a new
data set, enables the choice between orthogonal or non-orthogonal machine learning
techniques.

Within the assumption of uniform data distribution that underlie the tested prototypes, this
approach proves more accurate then the existing approach of meta-learning, implemented in
the MetaL tools. Meta-learning explores the empirical relation between data characteristics
and technique performance. The set of data characteristics used by MetaL however is broad,
and not specifically focused on those aspects of machine learning techniques that make the
difference. As illustrated for the two-dimensional, the five-dimensional and the qQuételet
data sets, MetaL misses crucial aspects of the underlying class boundaries in its analysis.

The importance of operating within the assumptions has been illustrated. When the
characteristics of the data set do not meet the assumptions that underlie the prototypes, the
performance of GTS drops to the level of the MetaL tools. Explicit testing of data
characteristics per attribute, and calibration of prototypes for each attribute according to these
characteristics, is an extension of the GTS approach that follows from this result. Relevant
features that may influence prototype formulation are data distribution (assumed to be
uniform) and noise distribution (ditto).

The prototypes used in this work are modeled on the basis of one single class boundary on
the attribute axis. Multiple class boundaries are reflected as numerous cuspy minima in the
entropy behavior, at a finer scale than would one global class boundary. Only matching the

128

prototype with the entire entropy behavior would overlook these local cusps. The calculation
of a local match, by combining scaling and translating of the prototype signal, makes the
analysis sensitive for these ‘hidden cusps’. This approach is inspired by the wavelet analysis
approaches, and guarantees that multiple class boundaries will be reflected in the OR-value.

In this chapter, we use the prototype matching approach as a cornerstone for guarded
technique selection. The prototype matching principle may also be deployed in local selection
of a learning method, data discretization and meta-learning. Technique selection as studied
here presupposes the monolithic application of one machine learning technique to the entire
problem space as covered by the data set. Alternatively, one can choose to locally optimize
the model by hierarchically combining machine learning techniques (e.g. perceptron trees,
Utgoff, 1988). GTS can be used to select techniques in sub-spaces of data sets, e.g. in
hierarchical model structures. Van der Ham (2002) explores this line during earlier stages of
this work (cf. Brodley, 1995b). Although this may lead to more accurate models, especially in
problem domains with composite class distributions with different underlying types of class
boundaries, it does not change the problem of technique selection. It merely transforms the
problem of model selection to a smaller subspace of the total data set.

Discretization support makes use of the hierarchical and local analysis of date. Fayyad and
Irani (1993) show that, if local minima in entropy behavior exist, these local minima can be
used for discretization, and that iterative detection does not decrease the quality of the
identified minima. With the prototype matching approach, local minima are identified in
parallel, and local discretization points can be easily detected.

Finally, the OR measure may be included in the MetaL toolbox as a meaningful descriptor of
data sets. To complete the prototype matching approach, future work has to aim for
complementary prototypes for other data distributions and noise effects. To complete the
GTS approach, guards for additional groups of techniques need to be developed.

In conclusion, this chapter introduces guarded technique selection based on relevant criteria,
with a verifiable rationale. The orthogonality ratio, OR, is a fundamental property of a data
set that matches one-to-one the assumptions that a class of machine learning technique makes
about class distributions in data sets.

129

Appendix 1. Derivation of entropy prototypes
For a strict class boundary (Figure 7.18) with 2 classes, a uniform data distribution and a
probability for one class of p if ai ≤ ac and (1-p) if ai>ac, the entropy behavior as function of
partition point ai , Ho(ai) is expressed by:

() () ()ihigh
i

ilow
i

io ae
aa
aa

ae
aa

aa
aH

minmax

max

minmax

min

−
−

+
−

−
= (7.14)

with elow and ehigh defined as:

() () ()() () ()()()iiiiilow ayayayayae 2
2

21
2

1 loglog +−= (7.15)

() () ()() () ()()()iiiiihigh ayayayayae 4
2

43
2

3 loglog +−= (7.16)

where y1, y2, y3 and y4 are defined as:

() ()() ()()()
min

min
1

1,max,min
aa

paaapaaa
ay

i

ccici
i −

−−+−
= (7.17)

() ()()() ()()
min

min
2

,max1,min
aa

paaapaaa
ay

i

ccici
i −

−+−−
= (7.18)

() ()() ()()()
i

cicic
i aa

paaapaaa
ay

−
−−+−

=
max

max
3

1,max,min
(7.19)

() ()()() ()()()
i

ccicic
i aa

paaaapaaa
ay

−
−−−+−−

=
max

max
4

1,max1,min
(7.20)

For a non-strict class boundary (Figure 7.18) with 2 classes, a uniform data distribution and a
probability for one class of p if ai ≤ a1 and (1-p) if ai>a2, and a gradual decrease for
a1<ai≤a2,the entropy behavior as function of partition point ai Hl(ai)is expressed analogous to
(9)-(11), but now with y1, y2, y3 and y4 defined as:

() ()
()

()()
()

()
()

()
()

()
() ()p

aa
aaa

aa
aaa

p
aa

aaa
aa

aaaa

p
aa

aa
ay

i

iii

ii

iii

ii

iii

i

iiii

i

ii
i

−
−

−
+

−
−

+

−

−
−

−
−

+

−
=

1
,max

*2
,min,min

1*
,max,min

,min

min

22

12

12

12

12

min

112

min

1
1

(7.21)

0

1

0

1

amin ai1 ac ai2 amaxamin ac amax

Figure 7.18. The density of the class distribution for (a) a strict class boundary that comes
with an orthogonal concept and (b) a non-strict class boundary that belongs to a linear class
boundary.

130

() ()
() ()

()()
()

()
() () ()

()
()

() p
aa

aaa

aa
aaa

p
aa

aaa
aa

aaaa

p
aa

aa
ay

i

iii

ii

iii

ii

iii

i

iiii

i

ii
i

min

22

12

12

12

12

min

112

min

1
2

,max

*2
,min

1
,min

1*
,max,min

1
,min

−
−

+

−
−

+−

−

−
−

−
−

+

−
−

=

(7.22)

() ()
()

()()
()

()
() () ()

()
()

() ()p
aa

aaa

aa
aaai

p
aa

aaa
aa

aaaa

p
aa

aaa
ay

i

ii

ii

ii

ii

iii

i

iiii

i

iii
i

−
−

−
+

−
−

+−

−

−
−

−
−

+

−
−

=

1
,max

*2
,max2

1
,max

1*
,max,min

,min

max

2max

12

1

12

12

max

122

max

11
3

(7.23)

() ()
() ()

()()
()

()
()

()
()

()
() p

aa
aaa

aa
aaai

p
aa

aaa
aa

aaaa

p
aa

aaa
ay

i

ii

ii

ii

ii

iii

i

iiii

i

iii
i

−
−

+

−
−

+

−

−
−

−
−

+

−
−

−
=

max

2max

12

1

12

12

max

122

max

11
4

,max

*2
,max2,max

1*
,max,min

1
,min

(7.24)

Note that the equations 7.15-7.18 are special cases of 7.19-7.22, with ai1 = ai2.

Appendix 2. Quest parameters in experiments of Section 7.4
The Quest tool (Loh & Shih, 1997) was used in a batch version for automatic comparison.
Below the standard parameter values are represented for the experiments in Section 7.4. The
Q-numbers refer to the Quest manual (Shih, 2002). If text and a number (in brackets) is
given, the text is the choice text, and the number is the value in the batch set.

Q1-Q3 Depend on data set
Q4 Input Priors: Estimated from data (1)
Q5 Misclassification costs: Equal (1)
Q6 Minimal Node size: 100
Q7 Input splitting method: univariate (1) linear (2) *
Q8 Input variable selection method: unbiased statistical tests (1)
Q9 Alpha value: 0.05
Q10 Input method of split point selection discriminant analysis (1)
Q11 Input number of SEs for pruning: 1.00
Q12 Prune by: CV (1)
Q13 Number of CV-fold: 10
Q14 No test sample: (1)
Q15 Details for CV trees wanted: yes (2)
Q16 NO Pstricks LaTeX code TreeTeX LaTeX code or allCLEAR code wanted (1, 1, 1)
Q17 No indication for class label and terminal node id wanted (1)

131

Appendix 3. Description of data sets
In our experiments we use 4 slightly adapted versions of commonly known data sets from the
UCI data repository: Abalone, Glass Identification, Spam and the Wisconsin Breast Cancer
data set. Additionally, a data set from A&F is used, that relates to PHA production, a
microbiological process.

Abalone2
Abalone2 is a 2-class continuous version of the UCI Abalone data set. In Abalone2, all non-
continuous attributes were removed, and the task was changed from predicting the exact
number o rings (29 classes in the original data set) to predicting whether an individual has
less than or equal to 9 rings, or more.
- #records: 4177
- #attributes: 7 continuous attributes (Length, Diameter, Height, WholWght, ShckWght,

ViscWght, ShllWght)
- #class 1: 2096 (number of rings <= 9)
- #class 2: 2081 (number of rings > 9)

GI2

Our GI2 data set is identical to the UCI Glass Identification data set, with one exception: the
class label indicates whether the glass sample comes from window glass or not. In the
original data set, the class to predict has

- #records: 214
- #attributes: 9 continuous attributes (RI, Na, Mg, Al, Si, K, Ca, Ba, Fe)
- #class 1: 163 (window glass)
- #class 2: 51 (window glass)

Spam
The standard UCI version.

- #records: 4601
- #attributes: 57
- #class 1: 1813 (spam)
- #class 2: 2788 (no spam)

WDBC
The standard UCI version of the Wisconsin Database on Breast Cancer is used, but records
with missing values are removed.

- #records: 569
- #attributes: 30 (10 attributes radius, texture, perimeter, area, smoothness, compactness,

concavity, concave points, symmetry, fractal dimension, as mean, standard error and
“worst”)

- #class 1: 212 (Malignant)
- #class 2: 357 (Benign)

PHA

The PHA data set contains process control data for a microbiological reactor. The process
yield is the dependent attribute. The process is considered to result in a sigmoid yield curve,
representing a production phase, a growth phase and a lag phase. The lag phase in th is
specific process is commercially not interesting. Process operators should stop the process as
soon as the lag phase is reached, if they would be able to detect the phase transition from

132

growth phase to lag phase. Process yield however is not an on-line measurement. The process
is sampled, and the resulting samples are analyzed off-line in a laboratory. The class indicates
whether the process is in its growth phase, predicted from on-line process variables. If a
reliable prediction can be made of yield, based on the process parameters, process efficiency
may increase. In that case, a software sensor can be used to indicate to operators that the lag
phase has begon.
- #records: 8144
- #attributes: 18
- #class 1: 3801 (growth phase)
- #class 2: 4343 (other phase)

133

8. Conclusion
Methodological aspects of applying machine learning for practical problem solving area
studied in this thesis. Machine learning is one area of AI research that has made, in the form
of data mining applications, a more or less independent entrance into the market of industrial
application. Apart from its application in data mining, machine learning techniques can also
be deployed as instruments for acquiring models for knowledge based systems. In this role
they offer the prospects for making systems fully adaptive, that is systems that are able to
accommodate their knowledge models to changing environments.

A system development method can comprise an activity model and a coherent set of
development tools. Existing methodological research in machine learning has focused on
operating the technology. Given the ability to master the explorative operation of techniques
the need arises to bind requirements from the business application environment to the design
and operation parameters of the technology. The work in this thesis addresses these two
critical factors by subdividing the related issues into four questions of interest as extensively
detailed in Chapter 1, and offering for each suggestion, answers and/or tools as summarized
below:

1. The need for support in the practical application of machine learning techniques have
been identified on the basis of both a survey among practitioners and the analysis of two
application projects.

2. A model has been formulated that both considers the integration of the machine learning
module in the embedding system as well as the design issues for machine learning modules.

3. A decomposition approach to design a knowledge system that efficiently deploys available
data and knowledge resources.

4. An approach has been developed to select machine learning techniques for a given
problem based on the types of models that techniques construct from data.

The results of the survey in Chapter 2 reveal a gap between the methodological concepts for
practical application that were provided by machine learning scientists and the
methodological needs that were experienced in practice. This thesis has focused on the needs
that are identified in this survey: efficient application design and technique selection support.

8.1. Support Need for Applying ML Techniques
The goal of the survey reported in Chapter 2 is to assess the status of current ML application
and to learn from practitioners the research items that need further attention in order to
facilitate ML application in practice. The main findings are that practitioners apply a highly
explorative working style. When an opportunity for applying machine learning techniques is
suspected, available techniques are tested in search of a satisfying solution. Although tools
are available, respondents report the regular development of their own machine learning
software. This is partly due to the technological focus of much of the available research.

An important finding of the survey is that methodological and technical shortcomings block a
wide breakthrough of machine learning techniques in practical applications. Another
conclusion of the survey is that the main methodological shortcoming is due to the fact that
there is no design approach that values the deployment of machine learning techniques
against alternative choices, such as knowledge systems. Consequently, there is poor
justification for design decisions on the deployment of machine learning techniques. The
main technological shortcomings are in the areas of technique selection and parameter tuning.

134

First, the dissemination of knowledge on available techniques is poor. Many of the developed
techniques that are reported in the research community simply never reach practitioners.
Although modern tools offer a multitude of available techniques, hardly any support is
offered to select amongst these techniques, apart from brute force comparative exploration.

Furthermore, respondents report the lack of an established or standard application practice.
The application of machine learning techniques is not a standard option when developing
software or knowledge systems. And this lack of machine learning techniques as a standard
option, as is revealed in the survey, is what is most changed over the last few years. The rise
of DM/KDD, amongst others in the form of Business Intelligence solutions, is substantial. In
spite of this development, according to fairly recent KDNuggets survey results reported in the
Chapter 2 addendum, the offered options have not resulted in widely accepted solutions for
the methodological and technique selection problems that are originally reported in the 1994
survey.

Chapter 3 and 4 discuss two illustrations from practical application that support the existence
of methodological support and technique selection as two major research issues. In Chapter
3, a planning system is developed that combines machine learning techniques with expert
knowledge components. Although the results of deploying the system are encouraging,
methodologically the project experienced the problems as sketched above. Combining
machine learning and expert knowledge components is an experimental process, with little
guidance and a lot common sense. The same is relevant for the selection and configuration of
ML techniques, which, amongst others, is apparent in the way the NN module is designed.
The PTSS system that is described in Chapter 3 served as a test case for the design approach
in Chapter 6.

Chapter 4 presents two separate systems in the context of waste water treatment. The issue
that these systems illustrate is that for the design, both at a functional as well as on a technical
level, it is crucial to consider the availability of background knowledge. In the case of the
WQSM, explicability of the results is a crucial (non-functional) requirement. Moreover, a
substantial body of background knowledge is available in the form of a database of
components. In the SCS on the other hand, time is the critical success factor, and knowledge
on proper decisions is scarce.

The integration of expert knowledge and induction can take two forms. The most common
form, where knowledge system components collaborate with inductive components, is
illustrated in Chapter 3. This approach is elaborated in Chapter 6. In Chapter 4, an alternative
way of integration is suggested where explicit knowledge and learning from experience are
combined in one module. That path has not yet been explored.

8.2. Designing Learning Applications
One issue that is raised in Chapter 2 is the need for efficient design support, that balances the
use of machine learning components versus the use of a traditional knowledge component.
Chapter 5 introduces the MEDIA model as a general structure that supports the effective
design of machine learning applications. The leading principle of this approach is the
separation between system functionality (the ‘mappings of input on output data’ that, when
connected and controlled in the right way, produce the desired system behavior), the
deployment of specific learning techniques for the functional modules, and the configuration
of technique specific parameters. Consequently, the design process is cut into three levels:
designing the functionality, selecting techniques, and configuring the techniques. At the
application level the functional decomposition is designed based on an early identification of
potential knowledge sources in the form of data, expertise, models, documentation or any

135

other form. Next, for the machine learning components, appropriate techniques are identified
based on the characteristics of specific mapping, the match between the underlying
assumptions of techniques, and the actual patterns in the data set. Finally, the optimal
parameter settings have to be identified for individual techniques. This last step at the
technique level applies knowledge that is very technique specific, and falls outside the scope
of this work.

Chapter 6 provides an approach for designing the system functionality. In this approach
designing functionality is presented as a planning problem. Based on an analysis of the
domain, potential components are listed, with for each component the potential acquisition
type (elicitation vs. learning), estimates for acquisition costs and estimates for the quality of
the mapping the component can provide. The planning problem consists of finding a
particular structure of components that is able to provide a sufficient output quality against
acceptable costs. It offers a mixed top-down and bottom-up approach to planning of
knowledge acquisition. The overall problem is decomposed into feasible components based
on the availability of elementary knowledge sources in the problem domain. The driving
force behind the decomposition balances acquisition costs and expected benefits.

8.3. Selecting learning techniques
The second most prominent need in ML application support identified in Chapter 2 is
technique selection. In Chapter 7, Guarded Technique Selection (GTS) is presented as a new
approach to technique selection. A guard is a software agent that checks whether a data set
complies with the assumptions that underlie the technique. The compliance is expressed as a
numeric value that indicates whether a technique is expected to come up with a model of
reasonable predictive accuracy. The outcome of running guards of various techniques or
technique groups to a data set is to obtain a selection of techniques for which the data set
complies with the underlying assumptions.

As an example, a guard is developed for orthogonal machine learning techniques in Chapter
7. These techniques (recursively) partition a data set, where the partition-border is univariate.
Data-sets with class boundaries that do not comply with orthogonal character, will result in
either non-optimal predictive accuracy, or in a huge concept definition that might be fairly
simple in terms of other techniques.

The entropy behavior of an attribute, i.e. the potential entropy gain as a function of the
attribute value to partition on, appears to contain information on the nature of class
boundaries. Orthogonal boundaries, even when composed of a combination of univariate
boundaries, reflect in entropy behavior as sharp-edged, cuspy, minima. Other types of class
boundaries reflect a more gradual, non-cuspy minima. Prototype matching, i.e. matching
entropy behavior with hypothetical entropy behavior for orthogonal and non-orthogonal class
boundaries, gives a good indication for the orthogonality of the patterns in a data set. The
orthogonality, expressed in the OR ratio, can be used to assess whether orthogonal techniques
or linear techniques perform best on a data set. In Chapter 7, the applied prototype is
developed for uniform data distributions. Within this assumption, prototype matching proves
superior to the MetaL approach in predicting the concept class that performs best. Beyond
this assumption of uniform data distribution, the superiority of prototype matching vanishes.
The availability of prototypes from the same type of data distribution appears necessary for a
satisfying outcome.

Given our results we could argue that guarded technique selection leads to the definition of a
new guard: assess the type of data distribution to determine the type of guard to be selected.
However, there is a clear complexity reduction, from assessing the type of entropy behavior

136

from a noisy entropy behavior curve to assessing the type of data distribution in a data set.
Consequently, selecting a prototype for a data distribution is much more feasible than
selecting a technique for a data set.

8.4. Implications for the Application of Machine Learning
Techniques

The MEDIA model, which combines knowledge acquisition, machine learning, and the
technique selection tool as described within the dissertation, helps to improve the process of
designing industrial applications of ML techniques. The MEDIA model structures the design
process in increasing levels of technical detail. The decomposition of a complex problem in
sub-tasks is reducible to explicit considerations based on rational criteria with the planning
approach, especially when complemented with empirically founded costing models.
Technique selection with GTS removes the arbitrariness of technique selection in many
applications. Moreover, the motivation of design decisions can be unambiguously
documented when the MEDIA model and the other presented tools are applied.

Somerville (1996) defines software engineering as being “… concerned with methods, tools
and techniques for developing and managing the process of creating and evolving software
products.”. In parallel, knowledge engineering can be conceived as being concerned with
theories, methods and techniques for analyzing and building knowledge systems (cf.
Schreiber et al., 2000). In doing so, knowledge engineering uses concepts of software
engineering, and extends it with specific analysis and design tools, in addition to techniques
to analyze and build knowledge components.

Many of the models that have been proposed for applying ML techniques focus on technical
aspects of the technology, and consider it as stand alone technology. Like the next layer of a
Russian matruška puppet the MEDIA model, the design approach and the GTS extend
knowledge engineering methods with the instruments to handle machine learning techniques.

How does the availability of these concepts influence the application practice? The
development of the systems in Chapter 3 and 4 would have gained goal orientation if a
MEDIA-like approach would have been available. The collection of data and knowledge
sources, the decomposition of the functionality and the selection of techniques could have
been more efficient. Whether or not the resulting systems would have been different is
debatable. We show in Chapter 6 how the system design process for the PTSS in Chapter 3
could have been approached. Moreover, redesign, adaptation and maintenance of the systems,
when required, would have become much more effective.

The justification for the ML technique selection, which in the current situation is based
primarily on an assumed it works best for this data set, can be replaced by a directed strategy
of asking: does the data set still comply with the criteria of the technique? If so, application of
the same technique is justified. And if not, a technique that better fits the underlying concept
type must be identified.

The work that is reported in this thesis raises a number of supplementary research questions.
First, the connection between the MEDIA model and existing software and knowledge
engineering approaches can be formalized. The interaction between the MEDIA application
level and the embedding system has not been considered. Second, better cost and quality
estimation methods are needed to support the planning method of Chapter 6. The empirically
grounded methods are especially promising. However, a large research effort is needed in
order to generate a reliable method, which means the input of data from a large number of
practical projects. And third, the instrument of guards for technique selection needs further

137

extension. The guard for orthogonal techniques needs to be extended to cover the interesting
data distributions, and guards for the most frequently used techniques need to be formulated.
This, in return, requires that the fundamental properties of machine learning techniques need
to be formulated in terms of data characteristics.

Finally, we emphasize the point that for a broader application of ML technology, it is not
only the technical excellence that matters, but also the extent to which the technical capacity
can be used by relatively general software and knowledge engineers to solve practical
problems. The application potential for ML techniques is massive, especially in an era when
data is increasingly routinely generated. Mobile communications, Internet, medical
techniques, industrial monitoring systems, customer loyalty programs, tracking and tracing
information of product flows, and bioinformatics, to name a few, generate terabytes of data.
To effectively manage all these data sets, applicability of technology is as important as their
technical competence. This is only possible if the technological development of machine
learning is accompanied by the development of methodological concepts. This thesis has
made some steps in this direction.

138

139

References
Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches, AI Communications 7, Nr. 1, 39-59

Aarts, R.J. (1992). Knowledge-based planning of mashing profiles, in: M. Nazmul Karim &
G. Stephanopoulos (eds), Modelling and Control of Biotechnical Processes 1992, Oxford
(UK): Pergamon Press, 387-390.

Aarts, R.J. (1995). Computer Planned Recipes for Effective Production Management, in:
Proc. Eur. Brew. Conv. 25th Congress, Brussels, Oxford (UK): Oxford University Press,
695-703.

Aben, M., & Van Someren, M.W. van (1990). Heuristic Refinement of Logic Programs, in:
L.C. Aiello (ed): Proceedings ECAI--90, London (UK), Pitman, 7-12.

Aben, M.W.M.M. (1995). Formal Methods in Knowledge Engineering, PhD thesis,
University of Amsterdam

Adriaans, P. & Zantinge, D. (1996). Data Mining, Harlow (UK), Addison-Wesley

Aha, D, Kibler, D. & Albert, M.K.,(1991). Instance Based Learning Algorithms, Machine
Learning, 6(1), 37-66

Aha, D. & Riddle, P.J. (eds) (1995). Working notes for applying machine learning in
practice: a workshop at the twelfth international machine learning conference, technical
report AIC-95-023, Washington DC: Naval Research Laboratory, Navy Center for
Applied Research in Artificial Intelligence

Baldi, P. & Brunak, S. (2001), Bioinformatics: the Machine Learning Approach (2nd ed),
Cambridge (MA): MIT Press

Bemelmans, T.M.A. (1994). Bestuurlijke informatiesystemen en Automatisering (6th ed,
Management Information Systems and Automation, in Dutch), Deventer (NL), Kluwer
Bedrijfswetenschappen

Bensusan, H., & Alexandros, K. (2001). Estimating the Predictive Accuracy of a Classifier,
in: De Raedt, L. & Flach, P. (eds), Proceedings of ECML 2001, LNAI 2167, Berlin (GE):
Springer, 25-36

Berthold, M. & Hand, D.J. (1999). Intelligent Data Analysis, An Introduction, berlin (GE):
Springer

Boehm, B. (1981). Software Engineering Economics, Engelwood Cliffs (NJ): Prentice-Hall

Boehm, B.W., Abts, C., Clark, B., and Devnani-Chulani. S. (1997). COCOMO II Model
Definition Manual. The University of Southern California.

Boerma, T.M. & Van Rijbroek, P.C.L. (1992). 3rd Descriptive Cultivar List For Ornamental
Plants (3e Beschrijvende Rassenlijst voor Siergewassen, in Dutch), Wageningen (NL):
CPRO-DLO

Boetticher, G. (2001). "Using Machine Learning to Predict Project Effort: Empirical Case
Studies in Data-Starved Domains", in: Proceedings of Model Based Requirements
Workshop, San Diego, 17 - 24

Bos, J. & Harting, E. (eds) (1998). Creating in Projects (Projectmatig creëren, in Dutch),
Schiedam (NL): Scriptum Management

140

Bratko, I., Cestnik, B. & Kononenko, I. (1996). Attribute-based Learning, AI
Communications 9 (1), 27-32

Brazdil, P., Gama, J. & Henery, B. (1994). Characterising the applicability of Classification
Algorithms Using Meta-Level Learning, in: Bergadano, F. & Raedt, L. de (eds.),
Proceedings of ECML-94, Berlin (GE): Springer-Verlag, 83-102

Breuker, J., & VandeVelde, W. (1994). CommonKADS Library for Expertise Modelling,
Amsterdam (NL): IOS Press

Breunese, A.P.J., Top, J.L., Broenink, J.F. & Akkermans, J.M. (1998 Library of Reusable
models: Theory and Application, Simulation 71 (1), July 1998, 7-21

Brodley, C.E. (1992). Dynamic Automatic Model selection, COINS Technical Report 92-30,
University of Massachusetts

Brodley, C.E. (1995a) Recursive bias selection for classifier construction. Machine Learning,
20, 63-94.

Brodley, C.E. (1995b). Automatic Selection of Split Criterion during Tree Growing Based on
Node Location, in: Prieditis, A. & Russell, S. (eds), Machine Learning: Proceedings of the
Twelfth International Conference, San Mateo (CA): Morgan Kaufman, 73-80

Brodley, C.E.& Smyth, P. (1995). The Process of Applying Machine Learning Algorithms, in:
Aha, D.W. & Riddel, P.J. (1995), 7-13

Brodley, C.E., & Smyth, P. (1997). Applying Classification Algorithms in Practice, Statistics
and Computing 7, 45-56

Broeze, J., Verdenius, F., Sloof, M., Rekswinkel, E. & van der Sluis, H. (1997). Advanced
Modelling of Wastewater Treatment Systems, In: Kaylan, A.R. & Lehman, A. (eds)
Proceedings of the European Simulation Multi-conference ESM ’97 Istanbul (Tu), 670-
674

Chalmers, D.J., (1990), The Evolution of Learning, an Experiment in Genetic Connectionism,
in: Touretsky, D.S., Elman, J.L., Sejnowski, T.J. & Hinton, G.E., Proceedings of the 1990
Connectionist Summer School, San Mateo (CA): Morgan Kaufmann, 81-90

Chang, S.K. (ed) (2002), Handbook of Software Engineering and Knowledge Engineering,
Singapore: World-Scientific

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R.
(2000). CRISP-DM 1.0, Step-by-step data mining guide, from the CRISP –DM Web site:
www.crisp-dm.org

Clark, P. & T. Niblett (1989). The CN2 Induction Algorithm. Machine Learning, 3(4):261-
283

Cohen, W.W. (1996). Learning Trees and Rules with Set-Valued Features, in: Proceedings of
the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference (AAAI 96, IAAI 96), Volume 1,
Portland (OR): AAAI Press / The MIT Press, 709-716

Consumed (2004). www.consumed.nl, version May 2004, Lemma “Body-mass-index”(in
Dutch)

Craw, S., & Sleeman, D. (1990) Automating the refinement of knowledge-based systems. in:
Aiello, L. C. (ed.), Proceedings ECAI--90, London (UK): Pitman, 167-172

141

Craw, S., Sleeman, D., Graner, N., Rissakis, M. & Sharma, S. (1992). CONSULTANT:
Providing Advice for the Machine Learning Toolbox, in: Bramer, M.A. & Milne, R.W.,
Research and Development in Expert Systems IX, London, 6-23

De Boer, T.W. (1994). Modelleren van expertise in expertsystemen (Modeling expertise in
expert systems, in Dutch), PhD thesis, Groningen

DeHertogh, A., Aung, L. & Benschop, M. (1983). The Tulip: Botany, Usage, Growth, and
Development, in: Janick, J. (ed), The Tulip: Botany, Usage, Growth, and Development,
Westport (Conn.): AVI Publishing Company, 45-125

DesJardins, M. (1995) Goal-directed learning: a decision-theoretic model for deciding what
to learn next. in: Leake, D. & Ram, A. (eds), Goal-Driven Learning, MIT Press, pp. 241-
250

DTI (1994). Neural Computing, Learning Solutions, London (UK): Department of Trade and
Industry

Eilers, P.H., Boer, J.M., Van Ommen, G.J., Van Houwelingen, H.C. (2001). Classification of
microarray data with penalized logistic regression, in: Proceedings of SPIE, 4266: 187-
198

Engels, R. (1996). Planning Tasks for Knowledge Discovery in Databases; Performing Task-
oriented User-Guidance, in: Simoudis, E., Han, J. & Fayyad, U.M. (eds), Proceedings of
the 2nd Int. Conference on Knowledge Discovery and Data Mining, AAAI Press, 170-175

Engels, R. (1999). Component-Based User Guidance in Knowledge Discovery and Data
Mining, PhD thesis, University of Karlsruhe

Engels, R., Aha, D., & Verdenius, F. (eds) (1998). Proceedings of the ICML’98 workshop
“The Methodology of Applying Machine Learning: Problem Definition, Task
Decomposition and Technique Selection, AAAI Press, Technical Report WS-98-16

Engels, R., Evans, B., Herrmann, J. & Verdenius, F. (1997a), Proceedings of the ICML’97
workshop “Machine Learning Applications in the real world: Methodological Aspects and
Implications”, Nashville (TN)

Engels, R., Evans, B., Herrmann, J. & Verdenius, F. (1997b). Preface, in: Engels et al.,
1997a, 2-3

Engels, R., Lindner, G. & Studer, R. (1997c). A Guided Tour Through the Data Mining
Jungle, in: Preigibon, D., Heckermann, D. & Mannila, H. (eds), Proceedings of the 3nd
Int. Conference on Knowledge Discovery and Data Mining, AAAI Press, 170-175

Engels, R. & Studer, R. (1996), User Guidance for Clementine; Towards implementation of a
User Guidance Module, Technical report AIFB, University of Karlsruhe

Engels, R., & Theusinger, C. (1998). Using a Data Metric for Offering Preprocessing Advice
in Data-mining Applications, in: Prade, H. (ed), Proceedings of the Thirteenth European
Conference on Artificial Intelligence (ECAI-98), 430-434

Evans, B. & Fischer, D. (1994). Overcoming Process Delays with Decision Tree Induction,
IEEE Expert, February 1994, 60-66

Falkenhainer, B. & Forbus, K. (1991). Compositional Modelling: finding the right model for
the job, Artificial Intelligence 51:95-143

Faneyte, D. & Top, J.L. (2004). Reseach Question decomposition: a way to organise research
output, in: Nase, A., Van Grootel, G. (eds), Proceedings of CRIS 2004, Leuven: 193-194

142

Fayyad, U.M & Irani, K.B. (1993). Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning, in: Proceedings of IJCAI-93, San Mateo (CA):
Morgan Kaufmann: 1022-1027.

Fayyad, U.M., Piatesky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge
Discovery: An Overview, in: Fayyad U.M., Piatetsko-Shapiro, G., Smyth, P. &
Uthurusamy, R. (eds.). Advances in Knowledge Discovery and Data Mining, Menlo Park
(Ca): AAAI-Press, 1-37

Fowler, M., & Scott, K. (2000), UML distilled, a brief guide to the Standard Object Modeling
Language (4th ed.), Reading (Ma): Addison-Wesley.,

Garner, S.R., Cunningham, S.J., Homes, G., Nevill-Manning, C.G., & Witten, I. (1995),
Applying a Machine Learning Workbench: Experience with Agricultural Databases, in:
Aha & Riddle (1995): 14-21

Ginsberg, A. (1988). Refinement of Expert System Knowledge Bases: A Metalinguistic
FrameWork for Heuristic Analysis. Pitman

Giordana, A. & Neri, F. (1996). Genetic Algorithms in Machine Learning, AI
Communications 9 (1), 21-26

Giordana, A., Saitta, L., Bergadano, F., Brancadori, F. & De Marchi, D. (1993). Enigma: A
system that learns diagnostic knowledge, IEEE Transactions on Knowledge and Data
Engineering 5 (1), February, 15-28

Giraud-Carrier, C. & Keller, J. (2002). Meta-learning, in: Meij, J. (ed). Dealing with the Data
Flood: Mining Data, Text and Multimedia, The Hague (NL): STW, 832-844

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
Reading (Ma): Addison & Wesley

Guida, G. & Tasso, C. (1994). Design and Development of knowledge-based systems,
Cichester (UK): John Wiley & Sons

Hand, D.J., Mannila, H. & Smyth, P. (2001). Principles of Data Mining, Cambridge (MA):
MIT Press

Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C. & Marais, G.V.R. (1995).
Activated Sludge Model No.2., IAWPRC Scientific and Technical Report No.3, London
(UK): IAWQ, ISSN 1025-0913

Holland, J.H., Holyoak, K.J., Nisbett, R.E. &. Thagard, P.R. (1986). Induction, Processes of
Inference, Learning and Discovery, Cambridge (MA): MIT Press

Holmes, G., & Smith, T.C. (2001), Data Mining, in: Tijskens, L.M.M., Hertog, M.L.A.T.M.
& Nicolaï, B.M., Food Process Modelling, Cambridge (UK): Woodhead Publising Ltd.,
137-155

Hunter, L., (1993), Planning to learn about protein structure, in: Hunter, L., Artificial
Intelligence and Molecular Biology, AAAI Press / The MIT Press, 259-288

In ‘t Veld, L.J., Koppelaar, H. & Pelikaan, R. (1992). Neurale Begrotingsmodellen (Neural
Budgeting Models, in Dutch), Informatie34 (6), 349-355

Kanters, E. & Wets, G. (1997). ‘A mine is a dark, uninviting and sometimes dangerous place’
(in Dutch), Interview with U.M. Fayyad, Informatie 39 (9), 29-36

Kiang, M.Y. (2003), A Comparative Assessment of Classification Methods, Decision
Support Systems 35 (4), 441-454

143

Kibler, D. & Aha, D. (1987). Learning representative exemplars of concepts; An initial study,
in: Proceedings of the Fourth International Workshop on Machine Learning, UC-Irvine,
24-29

Kodratoff, Y. & Moustakis, V. (1994). Managing Machine Learning Application
Development And Organizational Implementation, Tutorial notes, ECAI 1994

Kodratoff, Y., Moustakis, V. & Graner, N. (1994). Can Machine Learning Solve My
Problem, Applied Artificial Intelligence 8 (1), 1-31

Koenderink, N.J.J.P., Hulzebos, J.L., Roller, S., Egan, B. & Top, J.L. (2003). Antimicrobials
Online: Concept And Application Of Multidisciplinary Knowledge Exchange In The Food
Domain, paper presented at AfoT-2003, Barcelona

Kohonen, T. (1984). Self-organisation and Associative Memory, Berlin (Ge): Springer-
Verlag

Kohonen, T. (1995). Self-Organizing Maps, Berlin (Ge): Springer-Verlag

Kolodner, J. (1993). Case Based Reasoning, San Mateo (Ca): Morgan Kaufmann

Kroese, M., P.M. Wognum, A.M.C. van Rijn, S.M.M. Joosten en N.J.I. Mars (1994) Methods
for the development of knowledge systems (Methoden voor het ontwikkelen van
kennissystemen, In Dutch), Informatie 36 (11), 696-706

Kumar, V. (1992). Algorithms for Constraint-Satisfaction Problems, A Survey, AI Magazine,
Spring 1992, 32-44

Langley, P. (1993). Workshop on Fielded Applications of Machine Learning, Final report on
ONR grant No N00014-93-1-0209

Langley, P. (1996). Elements of Machine Learning, San Fransisco (CA): Morgan Kaufmann

Langley, P., & Simon, H.A. (1994). Applications of Machine Learning and Rule Induction,
Communications of the ACM, 38(11): 54-64

Larrigaudiere, C., Guillen, P. & Vendrell, M. (1995). Harvest maturity related changes in the
content of endogenous phytohormones and quality parameters of melon, Postharvest
Biology and Technology 6 (1/2), 73-80

Lethbridge, T.C. & Skuce, D. (1994). Knowledge base metrics and informality: user studies
with CODE4, in: Proceedings of KAW 1994, Banff, Alberta, Canada

Levy, L.S. (1987). Taming the Tiger, software engineering and software economics, New
York (NJ): Springer-Verlag

Lim, T-S, Loh, W-Y. & Shih, Y-S. (2000). A Comparison of Prediction Accuracy,
Complexity, and Training Time of Thirty-three Old, and New Classification Algorithms,
Machine Learning 40 (3): 203 - 228

Lindner, G. & Studer, R. (1999). Algorithm Selection Support for Classification, in: Decker,
R. & Gaul, W. (eds), Classification and Information Processing at the Turn of the
Millennium: 162-169

Loh, W.L. & Shih, Y-S (1997). Split Selection Methods for Classification Trees, Statistica
Sinica, Vol. 7, 815-840

Lokhorst, C., Udink ten Cate, A.J. & Dijkhuizen, A.A. (eds.) (1996). Proceedings of the 6th
International Congress for Computer Technology in Agriculture (ICTTA ’96),
Wageningen (NL): Agro-Informaticareeks nr. 10

144

Lovelock, J.(1988). The ages of Gaia, Oxford (UK): Oxford University Press

Lundeberg, M., Goldkuhl, G. & Nilsson, A. (1985). System Development According to ISAC,
The ISAC methodology (Systeemontwikkeling volgens ISAC, De ISAC Methodiek, in
Dutch), 2nd edition, Alphen a/d Rijn (NL): Samson Uitgeverij

Mallat, S. (1999). A wavelet tour of signal processing (2nd edition), San Diego (CA):
Academic Press

Marcus, S. (ed) (1988). Automatic knowledge acquisition for expert systems. Boston (MA):
Kluwer

McDermott, J., (1988). Preliminary Steps Toward a Taxonomy of Problem Solving Methods,
in: Marcus, S. (ed), Automating Knowledge Acquisition for Expert Systems; Dordrecht
(NL): Kluwer Academic Publishers

Menzies, T. (1999). Cost-Benefits of Ontologies, www.menzies.com

Menzies, T. (2001). Practical Machine Learning for Software Engineering and Knowledge
Engineering, in: Chang, S.K., Handbook of Software Engineering and Knowledge
Engineering, vol 1, 981-02-4973-X; World-Scientific; Available from
http://menzies.us/pdf/00ml.pdf

Menzies, T. & Kiper, J.D. (2001). Better reasoning about software engineering activities, in:
Proceedings of ASE 2001, San Diego(CA), IEEE Computer Society: 391-394

Meseguer, P. (1989). Constraint Satisfaction Problems, An Overview, AI Communications 2
(1), 3-17.

MetaL (2004). www.metal-kdd.org, version of February 20, 2004

Michalski, R.S. (1994). Inferential Theory of Learning: Developing Foundations for
Multistrategy Learning, in: R.S. Michalski & G. Tecuci (eds): Machine Learning IV; A
Multistrategy Approach, San Francisco (Ca): Morgan Kauffman, 3-61

Michie D. (1995). Problem decomposition and the learning of skills, in N. Lavrac & S.
Wrobel (eds), Machine Learning: ECML-95, Notes in Artificial Inteligence 912, Berlin
(Ge): Springer-Verlag, 17-31.

Michie, D., Spiegelhalter, D.J. & Taylor, C.C. (1994). Machine Learning, Neural and
Statistical Classification, New York (NJ): Ellis Horwood

Minton, S. (ed), (1993), Machine Learning Methods for Planning, San Mateo (CA): Morgan
Kaufmann

Mitchell, T.M., (1997). Machine Learning, New York (NJ): McGraw-Hill

Moe, R.& Wickstrom, A. (1973). The effect of storage temperature on shoot growth,
flowering and carbohydrate metabolism in tulip bulbs. Physiol. Plant. 28, 81-87

Morik, K., Wrobel, S., Kietz, J.-U. & Emde, W. (1993) Knowledge acquisition and machine
learning, London (UK): Academic Press.

Nijssen, G.M. & Halpin, T.A. (1989), Conceptual schema and relational database design,
Englewood Cliffs (NJ): Prentice-Hall

Nolan, R.L. (1979). Managing the Crisis in Data Processing, Harvard Business Review,
March-April, 115-126

145

O'Hara, K., & Shadbolt, N. (1996). The thin end of the wedge: Efficiency and the generalised
directive model methodology. In Shadbolt, N.; O'Hara, K.; & Schreiber, G., eds.,
Advances in Knowledge Acquisition. Berlin (Ge): Springer-Verlag. 33--47.

Paull, R.E. (1993). Tropical fruit physiology and storage potential, in: B.R. Champ, E.
Highley & G.I. Johnson (eds.), Postharvest handling of tropical fruits, 198-204

Peleg, K. (1989). Method and apparatus for automatically inspecting and classifying different
objects, US Patent 4884696

Pfahringer, B., Bensusan, H. & Diraud-Carrier, C. (2000). Meta-learning by landmarking
various learning algorithms, in: P.Langley (ed), Proceedings of the Seventeenth
International Conference of Machine Learning (ICML 2000). Stanford (CA): 743-750

Porter, A.A. & Selby, R.W. (1990). Empirically-Guided Software Development Using
Metric-Based Classification Trees, IEEE Software archive 7 (2), University of California,
Irvine, October 1989: 46 - 54

Provost, F. & Kohavi, R. (1998). On applied research in machine learning, Machine learning
30, n.2/3, p. 127-32

Quinlan, J.R. (1986). Induction of Decision Trees, Machine Learning, 1, 81-106

Quinlan, J.R. (1993). C4.5, Programs for Machine Learning, San Mateo (CA): Morgan
Kaufmann

Rees, A. (1969). Effects of duration of cold treatment on subsequent flowering of tulips. J.
Hort. Sci. 44, 27-36

Rudström, Å (1995). Applications of Machine Learning, Technical report No. 95-018,
Department of computer and Systems Sciences, Stockholm Universitet ISSN 1101-8525

Rulequest (2004). www.rulequest.com, version of May, 2004

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991). Object-oriented
modelling and design, Englewood Cliffs (NJ): Prentice-Hall,

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning Internal Representations by
Error Propagation, in: Rumelhart, D.E. & McClelland, J.L., Parallel Distributed
Processing 1, Cambridge (MA): MIT-Press, 318-362.

Saaty, T.L. (1980). The Analytic Hierarchy Process, Planning, Priority Setting, Resource
Allocation, New York (NJ): McGraw-Hill

Saitta, L. & Neri, F. (1998), Learning in the “Real World”, Machine learning 30 (2-3): 133-
163

Salzberg, S.L. (1999). On Comparing Classifiers: A Critique of Current Research and
Methods, Data Mining and Knowledge Discovery 1, 1-12

Schaffer, C., (1993). Selecting a Classification Method by Cross-Validation. Machine
Learning 13: 135-143

Schaffer, C. (1994a). A Conservation Law for Generalization Performance, in: Proceedings
of the Eleventh International Conference of Machine Learning, 259-265

Schaffer, C. (1994b). Cross validation, Stacking and Bi-Level Stacking: Meta-Methods for
Classification Learning, in: Cheeseman, P. & Oldford, R.W. (eds), Selecting Models from
Data: AI and Statistics IV, Berlin (Ge): Springer-Verlag, 51-59

146

Schreiber, A.Th.; Wielinga, B.J.; & Breuker, J.A., (eds.) (1993). KADS: A Principled
Approach to Knowledge-Based System Development, London (UK): Academic Press.

Schreiber, A.Th.; Akkermans, J.M., Anjewierden, A.A., de Hoog, R., VandeVelde, W. &
Wielinga, B.J. (2000). Engineering of knowledge; The CommonKADS: Methodology,
Cambridge (MA): MIT Press

Scott, A.C., Clayton, J.E. & Gibson, E.L. (1991). A Practical Guide to Knowledge
Acquisition, Boston (MA): Addison-Wesley

Shapiro, A. (1987) Structured induction in expert systems, Wokingham: Addison Wesley.

Shearer, C. & Khabaza, T. (1995). Data Mining by Data Owners- Presenting Advanced
Technology to Non-Technologists through the Clementine System, in: G.E. Lasker & X.
Liu (eds), Advances in Intelligent Data Analysis, Volume 1, 167-171

Shih, Y-S., (2002). QUEST User Manual, http://www.stat.wisc.edu/p/stat/ftp/pub/loh/
treeprogs/quest/questman.pdf, version of April 17, 2002

Simoudis, E., John, G., Kerber, R., Livezey, B. & Miller, P. (1995). Developing Customer
Vulnerability Modles using Data Mining Techniques, in: G. Lasker & X. Liu (eds),
Advances in Intelligent Data Analysis, Volume 1,, 181-185

Simpson, P.K. (1990). Artificial Neural Systems, Foundations, Applications and
Implementations, New York (NJ): Pergamon Press

Sleeman, D. (1994). Towards a Technology and a Science of Machine Learning, AI
Communications 7 (1), 29-38

Sloof, M. & Simons, A.E. (1994). Towards a task model for the design of simulation models,
in: Proceedings of the Conference on Modelling and Simulation, 721-725

Sloof, M., Tijskens, L.M.M. & Wilkinson, E.C. (1996). Concepts for Modelling Quality of
Perishable Products, Trends in Food Science & Technology 7, 165-171

Soares, C. & Brazdil, P. (2000). Zoomed ranking: Selection of classification algorithms based
on relevant performance information. In: Zighed, D.A., Komorowski, J., & Zytkow, J.
(eds), Proceedings of the Fourth European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD2000), Berlin (Ge): Springer-Verlag, 126-135

Sommerville, I., (1996). Software Engineering, 5th edition, Wokingham (UK): Addison and
Wesley, UK

Streif, J. (1989). Ripening behavior of apples with different harvest time (Reifeverhalten von
Äpfeln mit Unterschiedlichen Erntetermin, in German), in: Proceedings of CA-
Lagersymposium für Obstffrüchte, Elbingnode, 72-80

Terpstra, P., van Heijst, G., Wielinga, B., & Shadbolt, N. (1993). Knowledge Acquisition
Support Through Generalised Directive Models. In David, J.-M., Krivine, J.-P., &
Simmons, R. (eds.), Second Generation Expert Systems. Berlin-Heidelberg (Ge): Springer-
Verlag. 428-455.

Tijskens, L.M.M. & Polderdijk, J.J. (1996). A generic model for keeping quality of vegetable
produce during storage and distribution, Agricultural Systems 51 (4), 431-452

Timmermans, T., & Hulzebosch, A.A. (1996). Computer vision system for on-line sorting of
pot plants using an artificial neural network classifier, Computers and Electronics in
Agriculture (15), 41-55

147

Turner, W.S., R.P. Langerhorst, G.F. Hice, H.B. Eilers en A.A. Uijttenbroek (1990), SDM
System Development Methodology (5th printing), Rijswijk (NL): Cap Gemini Publishing

Turney P.D. (1995). Cost-Sensitive Classification: Empeirical Evaluation of a Hybrid
Genetic Decision Tree Induction Algorithm, JAIR 2, 369-409

Utgoff, P.E. (1988). Perceptron Trees: A Case Study in Hybrid Concept Representations, in:
Proceedings of the Seventh National Conference of Artificial Intelligence, 601-606

Valente, A. (1994) Planning, in: Breuker, J. & VandeVelde, W. (1994). CommonKADS
Library for Expertise Modelling, Amsterdam (NL): IOS Press

Van den Broek, J.G.A. (1981). The evaluation of methods for system development (Het
evalueren van methoden voor systeemontwikkeling: In Dutch), in: NGI (1983),
Methodieken voor systeemontwikkeling, NGI bundel 3A, 14-23, overgenomen uit:
Informatie 23 (2)

Van der Ham, F. (2002). Induction of multivariate decision trees based on orthogonal class
boundaries (Inductie van multivariate beslisbomen gebaseerd op orthogonale
klassegrenzen, in Dutch), MSc thesis, Amsterdam

Van Someren, M. (2001). Model class Selection and construction: beyond the Procrustean
approach to Machine Learning Applications, in: Paliouras, G., Karkaletsis, V., &
Spyropoulos, C.D. (eds), Machine Learning and Its Applications, Berlin (Ge): Springer-
Verlag, 196-217

Van Someren, M.W., Torres, C. & Verdenius, F. (1997). A Systematic Description of Greedy
Optimization Algorithms for Cost Sensitive Generalisation, in: Liu, X. & Cohen, P. (eds),
Proceedings of IDA-97, Berlin (Ge): Springer-Verlag, 247-258.

Verdenius, F. (1991). A Method of Inductive Cost Optimization, in: Y. Kodratoff (ed),
Proceedings of the Fifth European Working Session on Learning, EWSL-91, Berlin (Ge):
Springer-Verlag, 179-191

Verdenius, F. (1995). Applications of Inductive Learning Techniques: State of the Art, in:
Bioch, J.C., Tan, Y.-H. (eds.), Proceedings of the 7th Dutch Conference on Artificial
Intelligence, Rotterdam (NL), 231-239

Verdenius, F., (1996). Managing Product Inherent Variance During Treatment, Computers
and Electronics in Agriculture 15, 245-265

Verdenius, F. (1999). Assessing Suitability of Orthogonality Assuming Techniques by
Analyzing Entropy Behavior of Numeric Data, in: H. Blockeel, L. Dehaspe, Proceedings
of the ninth Belgian-Dutch Conference on Machine Learning, 113-120

Verdenius, F. & J. Broeze (1997). Resource Allocation in Wastewater Plants: The Super-
Charger Scheduler, in: Proceedings of ESIT ‘97, Aachen (GE), 55-59

Verdenius, F. & J. Broeze (1999). Generalised And Instance Specific Modelling For
Biological Systems, Environmental Modelling & Software 14, 1999, 339-348

Verdenius, F., & Engels, R. (1997). A Process Model for Developing Inductive Applications,
in: Daelemans, W., Flach, P., & Van den Bosch, A., Proceedings of Benelearn-97, Tilburg
University (NL), 119-127

Verdenius, F., & Hunter, L. (2001), The power and pitfalls of inductive modelling, in:
Tijskens, L.M.M., Hertog, M.L.A.T.M. & Nicolaï, B.M., Food Process Modelling,
Cambridge (UK): Woodhead Publising Ltd., 105-136

148

Verdenius, F., A.P.H. Seadt, K. Pleijsier & W.A. Vedder (1994). Towards Generic Tools for
Managing Treatment and Storage of Fruits and Vegetables, in: Pala , M. (ed), The
Proceedings of the International Symposium on New Applications of Refrigeration to Fruit
and Vegetable Processing, Istanbul, June 8-10, 1994, IIR, 127-134

Verdenius, F. & J.L. Top (1998). Case Based Modelling of Dynamic Systems, in: L.M.M.
Tijskens & M.L.A.M. Hertog, Proceedings of the first international symposium MODEL-
IT, Wageningen 1998, Acta horticultura 476, pp. 279-288

Verdenius, F. & Van Someren, M.W. (1995). Applications of Inductive Learning
Techniques: Methodological Issues, in: G.E. Lasker, X. Lui (eds.), Advances in Intelligent
Data Analysis, Volume 1, Windsor Ontario, Ca, 206-210

Verdenius, F. & Van Someren, M.W. (1997). Applications of Inductive Learning
Techniques: A Survey in the Netherlands, AI Communications 10, nr. 1, 3-20

Verdenius, F. & Van Someren, M.W. (2002). Detecting Orthogonal Class Boundaries in
Entropy Behaviour, paper presented at the twelfth Belgian-Dutch Conference on Machine
Learning

Visser, R.G (1993). Forcing tulips on crates (De trek van tulpen op kisten, in Dutch),
Informatie en Kennis Centrum Akker en Tuinbouw, Lisse (NL), 105 pg.

Wang, C. & Worthington, I. (1979). A non-destructive method for measuring ripeness and
detecting core breakdown in 'Bartlett' pears, Journal of the America Society for
Horticultural Science 104 (5), 629-631

Webb, G.L., Wells, J. & Z. Zheng (1998), An experimental Evaluation of Integrating
Machine Learning with Knowledge Acquisition, Machine Learning 35, 5-21

Weiss, S.M. & Kulikowski, C.A. (1991). Computer Systems that Learn from Data, San
Mateo (CA): Morgan Kaufmann

Welke, R.J., Kumar, K. & Van Dissel, H.G. (1991). Methodology Engineering (in Dutch),
Informatie 33 (5), 322-328

Wiegerinck, W. & Heskes, T. (2002). Belief Networks/Bayesian Networks, in: Meij, J. (ed).
Dealing with the Data Flood: Mining Data, Text and Multimedia, The Hague (NL): STW,
660-660

Wirth, N., (1973). Systematic Programming, An introduction, Englewood Cliffs (NJ):
Prentice-Hall

Wirth, N. (1976). Algorithms + Data Structures = Programs, Engelwood Cliffs (NJ):
Prentice-Hall

Witten, I.H. & Frank, E. (2000). Data Mining: practical machine learning tools and
techniques with Java implementations, San Francisco (Ca): Morgan Kaufmann

149

Summary
This thesis considers methodological support for industrial application of machine learning
techniques. Machine learning (ML) research has delivered a large number of promising
techniques for tasks such as classification and numerical prediction. Since the mid-eighties,
application of ML techniques has gained much interest, both from academic researchers and
from industrial workers. ML techniques that build models from exemplary data are considered
ready for real-world application, at least from the technical point of view.

The models that result from ML application can be incorporated within knowledge based
systems. In this mode, ML techniques perform knowledge acquisition and knowledge
maintenance for specific inferences. Alternatively, to obtain the same knowledge models,
human expertise is elicited by knowledge engineers. When the models are also automatically
updated, enabling the system to function in a changing environment, the system becomes
adaptive. Another mode of ML application is as data analysis tool. The goal then is to detect
patterns in data. The resulting models are exploited for exploring regularities in a domain and,
after validation of the models, also for human problem solving. This application has become
known under the headings of Data Mining and Knowledge Discovery in Databases.

As the research focus to date has mainly focused on technological issues, the need arises to
rationally integrate the resulting techniques in real world applications, and to select, given a
specific task, the best technique to perform that task. This thesis starts with a discussion of
properties of process models that support the application of machine learning techniques.
Numerous process models are available that support the development of information- and
knowledge systems in software engineering and knowledge engineering. Typical process
models consist of an activity structure and tools that support analysis and design steps.

A number of ML design and analysis process models are proposed in literature. The existing
process models focus on the mere application of learning techniques in an exploratory data
mining context, sometimes related to one specific technique group, such as neural networks.
All these approaches start from the assumption that the final application consists of learning
techniques. In real-world situations however, functional (and financial) considerations
dominate. Unfortunately, there is no process model available that considers the application of
learning techniques in the design process of a complex embedded system, where the
deployment of learning techniques has to be considered against alternatives.

In spite of a growing number of reported learning applications in literature, the current
application practice is unknown at the beginning of this work. To identify bottlenecks in the
application practice and to determine the application requirements of industrial practitioners, a
survey of ML applications is organized in 1994. The survey addresses industrial companies,
research companies and research institutes in the Netherlands.

The survey results show that ML techniques are often exploratory, and driven by
technological availability. The application practice is ad hoc, and makes hardly any use of
existing ML tools. Moreover, only a fraction of the available techniques is actually used in
practice. Respondents indicate a need for pragmatic support in technique selection and
efficient production of working solutions. To update our 1994 results with more recent data,
the survey is complemented with recent results of a poll on the KDNuggets Internet site.
These results suggest that, though the scale of application has changed (especially due to the
success of data mining and knowledge discovery over the last decade), the main results of the
1994 survey still hold, except that tool usage has increased substantially.

150

Three main questions arise from the results of the survey:

- Overall: Can a process model be formulated that both considers the design issues for
machine learning modules as well as the integration of the machine learning module in
the embedding system?

- Top Down: How to decompose a complex functional requirement so that the potential use
of ML techniques is recognized and they are properly integrated in the ultimate design?

- Bottom Up: How to select, as a part of the design process, an appropriate ML technique
for realizing the learning behavior as specified in the design?

Two cases illustrate these issues. The Product Treatment Support System (PTSS) is a
planning aid for warehouse and quality managers that store and treat agricultural produce over
a long period of time. The system helps them to design batch specific treatment condition
recipes (temperature, relative humidity, and gas conditions). In the system, statistical
estimation, decision trees, neural networks and constraint satisfaction modules co-operate to
match the performance of human experts in the domain.

In the wastewater domain two systems are discussed that represent different ways of
incorporating knowledge and ML techniques. The Super Charger Scheduler combines a case-
based reasoning approach with an indexing mechanism based on self organizing maps. The
system, offering a new, previously non-existent functionality, could not exploit existing
knowledge. Moreover, a fast response time and reliable output is more important than fully
comprehensible results. The Water Quality Simulation Module on the other hand assembles
complex simulation models from partial sub-models on the basis of a high-level model
specification. Sub-models, with strict pre- and post-conditions, have to be handled properly.
In the assembling process, knowledge on the actual configuration of the plant and on the
functionality of the sub-models is used. For this domain, comprehensibility is a crucial factor
for acceptance by domain experts. Moreover, the body of available knowledge for this system
has been substantial.

The survey results and the experiences with these two systems illustrate the need for an
explicit activity to support the mastering of the two signaled design problems: handling
available data- and knowledge sources properly, and identifying, from the functional
perspective, the opportunities for applying ML techniques. The Method for Designing
Induction-based Applications (MEDIA) makes the required functionality foremost in
designing machine learning applications.

In the MEDIA model the design process of complex systems is subdivided in three ‘levels.’
At the application level, the system functionality is decomposed. Potential inductive
components are identified based on available knowledge and data sources. These inductive
components are further designed and implemented in the next two levels. For the design of
the knowledge intensive modules, MEDIA relies on existing tools and approaches that have
been developed in the knowledge engineering framework, e.g. within CommonKADS. At the
Data Analysis level, selection of appropriate techniques is supported. At the Technique level,
tuning of the technique design and technique parameters optimizes the performance of the
selected learning technique. Technique optimization guidelines are normally provided by the
developer of specific techniques, and not in the MEDIA framework.

The task decomposition that is assumed in the application layer of the MEDIA model can be
put into practice with the approach that is developed in Chapter 6. ML components are
combined with knowledge-based components dependent on the available data and knowledge
sources in the domain. The cost and the potential quality of the components guide the

151

decomposition of the high level task. At any step in the decomposition, the basic
consideration is whether it is worth while to build the component as a learning module, as a
knowledge-based module, or to decompose it further, making use of available sources. With
the PTSS system, the method is illustrated to derive a solution that balances cost and quality.
The resulting decomposition also has a better cost-quality ratio than a pure ML solution or a
pure knowledge-based solution. The approach makes use of estimated cost- and quality
figures for both knowledge-based and machine learning components. Although an outline of
estimators is sketched as an extension of existing software engineering process models,
further work is required in this area.

The second tool that is developed within the MEDIA framework supports technique selection,
to be used at the data analysis level. One of the outcomes of the survey is that in practice
techniques are not selected on ‘technical’ criteria, but on the basis of availability and other
non-functional arguments. The general framework of guarded technique selection implies a
fundamental shift in how technique selection is conceived. Guarded technique selection
(GTS) assumes that techniques (or groups of functionally closely related techniques) are
‘supervised’ by dedicated software components, the guards. A guard checks whether a data
set matches with the type of patterns that is suited for its master technique. The result is a
degree of suitability. Collecting all degrees of suitability gives a selection of techniques that
are ‘most suitable’ for constructing a model from the data set.

This concept is illustrated by constructing the guard for orthogonal techniques. Orthogonal
techniques are those learning techniques that construct concept descriptions based on class
boundaries orthogonal to one attribute axis. This group of techniques includes some of the
more commonly applied ML techniques such as univariate decision tree learners. By
analyzing the types of class boundaries, and matching these with typical patterns in the
entropy behavior of data sets, it is found that opportunities to apply orthogonal techniques can
be identified without exhaustive comparative analysis of the data set with all available ML
techniques. Within the assumptions that underlie the used prototypes, the identification of
orthogonal concept types functions substantially better than the meta-learning alternative of
MetaL. Combined with other analytical instruments, prototype matching can help to
rationalize the process of technique selection in the near future.

With the MEDIA model, the rational decomposition approach and the guarded technique
selection, this thesis delivers a set of coherent tools to support the industrial application of
machine learning techniques. The MEDIA model helps practitioners to structure the
development process. It changes the commonly applied explorative approach to a more goal-
oriented approach, and at the same time offers the opportunity to integrate, in the design
phase, knowledge-based and learning components. Finally, this work leads to a more
comprehensible selection of ML techniques for a task. The proposed guarded technique
selection provides a sound theoretical foundation for technique selection where it formerly
was based on more arbitrary considerations. Moreover the maintenance and re-engineering of
learning components is facilitated by this approach.

152

153

Samenvatting
Dit proefschrift beschrijft onderzoek naar hoe de industriële toepassing van machinaal lerende
technieken methodologisch kan worden ondersteund. Onderzoek naar machinaal lerende
(vanaf nu: ML) technieken heeft geresulteerd in een groot aantal veelbelovende technieken
voor taken zoals classificatie en numerieke voorspelling. Sinds het midden van de tachtiger
jaren heeft de toepassing van ML technieken de belangstelling getrokken van zowel
academici als praktijkmensen. ML technieken die modellen induceren uit voorbeeld data, de
zogenaamde inductief lerende technieken, werden technisch als klaar voor toepassing in de
praktijk beschouwd.

De modellen die bij toepassing van ML technieken worden verkregen kunnen worden
toegepast in combinatie met kennis gebaseerde componenten. ML technieken worden dan als
het ware gebruikt voor kennis acquisitie en onderhoud van kennis voor specifieke
componenten. Een alternatieve manier om die kennis te verkrijgen is het eliciteren van
expertkennis door kennis analisten. Als de ML technieken worden gebruikt om de modellen
ook automatisch op basis van nieuwe ervaring te actualiseren, worden de systemen adaptief.
Ze kunnen behouden dan hun geldigheid, bijvoorbeeld als de omgeving verandert.

Een andere manier om ML technieken in te zetten is als data analyse instrument. Het doel is
dan om patronen in data te ontdekken. De resulterende modellen worden gebruikt om
patronen te identificeren, en eventueel door mensen te laten gebruiken bij het nemen van
beslissingen of het maken van keuzes. Dit staat bekend als Data Mining of Knowledge
Discovery in Databases.

Nadat de onderzoeksaandacht in eerste instantie is uitgegaan naar het ontwikkelen van nieuwe
technieken, is er nu ook behoefte de functionaliteit die ML technieken bieden te integreren in
complexere praktijktoepassingen, en om gegeven een specifieke taak een geschikte ML
techniek te kunnen selecteren. Daarbij is het van belang dat de ontwerpbeslissingen op
rationele gronden worden genomen. Dit proefschrift begint met een discussie van
procesmodellen die de toepassing van ML technieken ondersteunen. In software engineering
en knowledge engineering zijn diverse procesmodellen bekend voor respectievelijk informatie
en kennis-systemen. Dergelijke procesmodellen kunnen bestaan uit een activiteitenstructuur
en gereedschappen om analyse en ontwerpstappen te kunnen maken.

In de literatuur zijn verschillende procesmodellen voorgesteld voor het ontwerpen en
analyseren van ML problemen. De bestaande procesmodellen richten zich met name op de
toepassing van ML technieken in een op exploratie gerichte data mining context, soms
gekoppeld aan en specifieke techniek klasse, zoals neurale netwerken. Al deze
procesmodellen starten vanuit de aanname dat de uiteindelijke oplossing exclusief bestaat uit
lerende technieken. In de praktijk echter, tellen functionele (en financiële) overwegingen
zwaar, en is het combineren van lerende technieken en expert systemen vaak interessant. Er is
echter nog geen procesmodel dat ontwerpers ondersteunt in het beantwoorden van de vraag of
een lerende oplossing onderdeel moet worden van een complexe toepassing, waarbij het
gebruik van lerende technieken moet worden afgewogen tegen alternatieven.

In weerwil van het groeiende aantal gerapporteerde praktijktoepassingen, was bij het begin
van deze studie weinig bekend over hoe ML technieken werden toegepast. Om zicht te krijgen
op beperkingen bij het realiseren van praktijktoepassingen, en om de behoefte aan
ondersteuning bij toepassers te bepalen, is in 1994 een enquête gehouden naar de stand van
zaken bij toepassing van ML technieken. De doelgroep van de enquête waren industriële

154

bedrijven, onderzoeksbedrijven en kennisinstellingen die gebruik maakten van ML
technieken.

Uit deze enquête blijkt dat ML technieken vaak exploratief werden gebruikt, en sterk
gedreven door de beschikbaarheid van technieken. Het toepassingsproces werd ad hoc
ingericht, en het gebruik van bestaande ML hulpmiddelen was gering. Bovendien werd
slechts een klein deel van de beschikbare technieken ook daadwerkelijk in de praktijk
gebruikt. Respondenten gaven aan behoefte te hebben aan pragmatische ondersteuning in
techniek selectie en het efficiënt ontwerpen van werkende oplossingen. Om de resultaten uit
1994 te actualiseren zijn gegevens gebruikt uit recente internet polls van KDNuggets. Deze
gegevens geven aan dat, hoewel de schaal van toepassing veranderd is (met name door het
succes van data mining en knowledge discovery in het laatste decennium), de belangrijkste
resultaten uit 1994 nog overeind staan. De enige verandering is dat het gebruik van ML tools
substantieel lijkt te zijn toegenomen.

De belangrijkste onderzoeksvragen die uit de enquête naar boven komen zijn:

• Algemeen: Is er een procesmodel te formuleren dat zowel de ontwerpvragen voor lerende
modules in ogenschouw neemt als de integratie van lerende modules als subsysteem in een
complexere toepassing?

• Top-down: Hoe kan een complexe functionaliteit zo worden gedecomponeerd dat de
toepassingsmogelijkheden voor ML technieken worden herkend, en ML toepassingen
worden ingebed in het totale systeemontwerp?

• Bottom up: Hoe kan, als deel van het ontwerpproces, een geschikte ML techniek worden
geselecteerd voor het realiseren van het leergedrag dat in het ontwerp wordt
gespecificeerd?

Twee praktijkvoorbeelden illustreren deze punten. Het Product Treatment Support System
(PTSS) is een planningshulp voor magazijn- en kwaliteitsmanagers die verantwoordelijk zijn
voor de opslag en behandeling van agrarische producten over een langere tijdsperiode. Het
systeem helpt bij het ontwerpen van een batchspecifiek recept voor behandelcondities zoals
temperatuur, relatieve vochtigheid en gas condities. In het systeem werken statistische
schatters, beslisbomen, neurale netwerken en constraint satisfaction modules samen om een
kwaliteit te bereiken die vergelijkbaar is met een menselijke domeinexpert.

Op het gebied van afvalwaterverwerking worden twee systemen besproken die ieder een
verschillende benadering geven voor het integreren van kennis-gebaseerde en ML technieken.
De Super-Charger Scheduler combineert een case-based reasoning benadering met een
indexeermechanisme gebaseerd op self-organizing maps. Het systeem, gebouwd voor een
nieuwe, niet eerder bestaande, functionaliteit, kon geen gebruik maken van reeds bekende
expertise. Omdat het bovendien een procestaak betreft, zijn snelle respons en betrouwbaarheid
belangrijker dan de inzichtelijkheid van de geproduceerde planningen. Bij de Water Quality
Simulation Module aan de andere kant, stelt op basis van een algemene modelspecificatie
complexe modellen van het zuiveringsproces samen uit deelmodellen. Submodellen, met
strikte pre- en postcondities moeten op de juiste manier worden ingepast in het totale model.
Tijdens het bouwen van het model wordt kennis gebruikt over de actuele configuratie van het
zuiveringsproces en over de functionaliteit van de sub-modules. Voor dit domein is
inzichtelijkheid van het eindresultaat, en de weg daar naar toe essentieel voor acceptatie door
domeinexperts. Bovendien is er in ruime mate kennis aanwezig over dit domein.

De enquête resultaten en de ervaring met deze twee systemen laten zien dat er behoefte is aan
een activiteitenmodel om twee problemen de baas te worden: het slim combineren van
bestaande kennis- en databronnen, en het identificeren, vanuit het oogpunt van

155

systeemfunctionaliteit, van mogelijkheden om ML technieken toe te passen. De MEDIA
methode voor het ontwerpen van inductiegebaseerde technieken ontwerpt ML toepassingen
waarvoor de gevraagde functionaliteit leidend is.

In het MEDIA model is het ontwerpproces voor complexe systemen opgedeeld in drie
niveaus. Op het Toepassingsniveau wordt de totale systeemfunctionaliteit gedecomponeerd in
sub-functies. Op basis van beschikbare kennis- en databronnen binnen het domein worden
potentiële inductieve systeemcomponenten geïdentificeerd Deze inductieve
systeemcomponenten worden verder ontworpen en geïmplementeerd op de volgende twee
niveaus. Voor het ontwerpen van de kennisgebaseerde componenten zijn bestaande tools en
benaderingen vanuit de knowledge engineering voorhanden, zoals CommonKADS. Het Data
Analyse Niveau ondersteunt selectie van geschikte technieken voor een sub-taak. En op het
Techniek Niveau worden de ontwerp en optimalisatie parameters van de gekozen techniek zo
ingesteld dat de prestatie van de ML techniek zo goed mogelijk wordt. Aanwijzingen voor
optimalisatie van de techniek worden idealiter door de ontwikkelaars van de techniek
verstrekt.

De taak decompositie die in de toepassingslaag wordt uitgevoerd kan gebruik maken van de
benadering die in hoofdstuk 6 wordt voorgesteld. Afhankelijk van de beschikbare data- en
kennisbronnen in het domein worden ML componenten gecombineerd met kennisgebaseerde
componenten. In het ontwerp worden de componenten zo bij elkaar gebracht dat de kosten en
opbrengsten geoptimaliseerd worden. Tijdens elke stap in het decompositieproces is de
afweging of het de moeite waard is om een component als ML module te bouwen, als
kennisgebaseerde module, of om verder te gaan met her decomponeren. Het PTSS dient als
voorbeeld om de aanpak te illustreren, waarbij naar de balans tussen kosten en opbrengsten
wordt gezocht. De gevonden oplossing is van betere kwaliteit van pure ML of pure
kennisgabaseerde oplossingen. De benadering maakt gebruik van geschatte kosten- en
kwaliteitsgetallen voor zowel kennisgebaseerde als ML componenten. De contouren van
dergelijke schatters zijn wel beschreven, maar daar moet nog meer werk aan gebeuren.

Het tweede instrument binnen het MEDIA raamwerk ondersteunt techniek selectie, en wordt
op het analyse niveau ingezet. Een van de uitkomsten van de enquête was dat in de praktijk
technieken niet werden geselecteerd op technisch inhoudelijke grond, maar om redenen van
‘beschikbaarheid’ en andere niet-functionele criteria. Het instrument van guarded technique
selection betekent wel een fundamentele verandering in de wijze waarop techniek selectie
wordt uitgevoerd. Guarded techniek selectie (GTS) gaat er van uit dat technieken (of groepen
technieken die functioneel van de zelfde principes uitgaan) worden ‘bewaakt’ door specifieke
software componenten, de guards. Een guard controleert of een data set die kenmerken bezit
waar de bewaakte techniek geschikt voor is. Het resultaat van zo een inspectie is een graad
van geschiktheid. Door al deze graden van geschiktheid gezamenlijk te beoordelen wordt het
mogelijk die technieken die het ‘geschiktst’ zijn te selecteren voor het maken van een model
uit die dataset.

Dit concept wordt geïllustreerd door een guard voor orthogonale technieken te ontwikkelen.
Orthogonale technieken zijn die lerende technieken die concept beschrijvingen maken met
klassegrenzen die orthogonaal staan op één attribuut as. Deze techniekgroep bevat enkele van
de regelmatig toegepaste ML technieken, zoals univariate beslisbomen. Door de types
klassegrenzen te analyseren, en te vergelijken met het entropie gedrag van datasets is ontdekt
dat de mogelijkheden om orthogonale technieken succesvol toe te passen kan worden
vastgesteld zonder uitputtende vergelijkende analyse van de data ste met alle beschikbare ML
technieken. Onder de aannames die gemaakt zijn bij het opstellen van de prototypes is de
identificatie van orthogonale concept types substantieel beter dan het beschikbare alternatief
meta learning in MetaL. Gecombineerd met andere analytische instrumenten kan prototype

156

matching helpen om het proces van techniek selectie in de nabije toekomst op rationele
gronden uit te voeren.

Met het MEDIA model, de rationele taak decompositie en de guarded techniek selectie levert
dit proefschrift een verzameling coherente gereedschappen om de industriële toepassing van
machine learning technieken te ondersteunen. Het MEDIA model helpt toepassers het
ontwikkelproces te structureren. Het verandert de exploratieve benadering in een meer
doelgerichte. Tegelijkertijd biedt het de kans om in de ontwerpfase kennisgebaseerde en
lerende componenten te combineren. Bovendien leidt dit werk tot een inzichtelijker selectie
van ML technieken voor een taak. De voorgestelde guarded techniek selectie geeft aan
techniekselectie een gezonde theoretische basis, waar deze voorheen gebaseerd was op meer
willekeurige argumenten. Ten slotte worden met de instrumenten uit het MEDIA raamwerk
het onderhoud en herontwerp van inductiegebaseerde toepassingen beter ondersteund.

157

158

Volumes that appeared in the series SIKS dissertations:

1998

1998-1 Johan van den Akker (CWI) - DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM) - Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD) - A Contribution to the Linguistic Analysis of Business Conversations within the
Language/Action Perspective

1998-4 Dennis Breuker (UM) - Memory versus Search in Games

1998-5 E.W. Oskamp (RUL) - Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU) - Physiology of Quality Change Modelling; Automated modelling of Quality Change
of Agricultural Products

1999-2 Rob Potharst (EUR) - Classification using decision trees and neural nets

1999-3 Don Beal (UM) - The Nature of Minimax Search

1999-4 Jacques Penders (UM) - The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB) - Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU) - Re-design of compositional systems

1999-7 David Spelt (UT) - Verification support for object database design

1999-8 Jacques H.J. Lenting (UM) - Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation

2000

2000-1 Frank Niessink (VU) - Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE) - Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA) - Sociaal-organisatorische gevolgen van kennistechnologie; een
procesbenadering en actorperspectief

2000-4 Geert de Haan (VU) - ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM) - Knowledge-based Query Formulation in Information Retrieval

2000-6 Rogier van Eijk (UU) - Programming Languages for Agent Communication

2000-7 Niels Peek (UU) - Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coupé (EUR) - Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI) - Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI) - Image Database Management System Design Considerations, Algorithms and
Architecture

2000-11 Jonas Karlsson (CWI) - Scalable Distributed Data Structures for Database Management

2001

2001-1 Silja Renooij (UU) - Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU) - Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA) - Learning as problem solving

2001-4 Evgueni Smirnov (UM) - Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary
Sets

2001-5 Jacco van Ossenbruggen (VU) - Processing Structured Hypermedia: A Matter of Style

159

2001-6 Martijn van Welie (VU) - Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU) - Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU) - A Compositional Semantic Structure for Multi-Agent Systems Dynamics

2001-9 Pieter Jan 't Hoen (RUL) - Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA) - Modeling and Simulating Work Practice BRAHMS: a multiagent modeling
and simulation language for work practice analysis and design

2001-11 Tom M. van Engers (VUA) - Knowledge Management: The Role of Mental Models in Business
Systems Design

2002

2002-01 Nico Lassing (VU) - Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT) - Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT) - Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU) - The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU) - The Private Cyberspace Modeling Electronic Environments inhabited by
Privacy-concerned Agents

2002-06 Laurens Mommers (UL) - Applied legal epistemology; Building a knowledge-based ontology of the
legal domain

2002-07 Peter Boncz (CWI) - Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU) - Value Based Requirements Engineering: Exploring Innovative E-Commerce
Ideas

2002-09 Willem-Jan van den Heuvel(KUB) - Integrating Modern Business Applications with Objectified
Legacy Systems

2002-10 Brian Sheppard (UM) - Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU) - Agent Based Modelling of Dynamics: Biological and Organisational
Applications

2002-12 Albrecht Schmidt (Uva) - Processing XML in Database Systems

2002-13 Hongjing Wu (TUE) - A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU) - Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT) - Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU) - The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA) - Understanding, Modeling, and Improving Main-Memory Database
Performance

2003

2003-01 Heiner Stuckenschmidt (VU) - Ontology-Based Information Sharing in Weakly Structured
Environments

2003-02 Jan Broersen (VU) - Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD) - Human-Computer Interaction and Presence in Virtual Reality Exposure
Therapy

2003-04 Milan Petkovic (UT) - Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA) - Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT) - Development and specification of virtual environments

160

2003-07 Machiel Jansen (UvA) - Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM) - Repair Based Scheduling

2003-09 Rens Kortmann (UM) - The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT) - Electronic Business Negotiation: Some experimental studies on the
interaction between medium, innovation context and culture

2003-11 Simon Keizer (UT) - Reasoning under Uncertainty in Natural Language Dialogue using Bayesian
Networks

2003-12 Roeland Ordelman (UT) - Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM) - Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN) - Freezing Language: Conceptualisation Processes across ICT-
Supported Organisations

2003-15 Mathijs de Weerdt (TUD) - Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI) - Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT) - Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM) - Learning Search Decisions

2004

2004-01 Virginia Dignum (UU) - A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT) - Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU) - A Theoretical and Empirical Analysis of Approximation in Symbolic Problem
Solving

2004-04 Chris van Aart (UVA) - Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR) - Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD) - The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM) - Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar abstract
denken, vooral voor meisjes

2004-08 Joop Verbeek(UM) - Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU) - For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA) - Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU) - Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT) - Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT) - Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU) - Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU) - Multi-Relational Data Mining

2004-16 Federico Divina (VU) - Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM) - Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA) - Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT) - Using generative probabilistic models for multimedia retrieval

