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...a story has as many versions as it has readers. Everyone takes what
he wants or can from it and thus changes it to his measure. Some pick
out parts and reject the rest, some strain the story through their mesh of
prejudice, some paint it with their own delight.

John Steinbeck, The Winter of our Discontent
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1

Introduction

For similar reasons, the science of psychology is both a wonderful and frustrating
endeavour. The richness and complexity of its subject matter, the human mind and
behaviour, make psychology a challenging topic with relevance for a wide range of
issues. But because of the richness and complexity of psychology, it is also extremely
difficult to cover more than a microscopic aspect of it in a single scientific work. Cou-
pled with a large number of productive psychological researchers, this leads to a vast
body of highly specialised studies. With specialisation comes specialised language,
concepts and methods, which makes communication between specialities difficult.
There is little dissemination of knowledge between the many subfields of psychology.
Psychology is characterised as fragmented, and even chaotic, with ‘little more order
than a telephone book’ (Royce, 1987).

1.1 The ‘crisis’ in psychology

It is a widely held conviction that, in order to be called a science, a field of inquiry
should be paradigmatic (Staats, 1991; Denmark & Krauss, 2005). Since Kuhn (1970),
the existence of a paradigm has been the main criterion to distinguish science from
‘would-be science’. A paradigm, a disciplinary matrix of ideas, theories, examples,
practices and methods, is an overarching principle which coordinates the action of sci-
entists. Since there is no agreed on paradigm in any subfield of psychology (Eysenck,
1997), psychology can only be considered a preparadigmatic discipline. As Staats
(1991) puts it

No matter how many well-conducted experiments psychology produces,
no matter the refinements of methods of data production and analysis,
no matter how sophisticated the specialized apparatus and theory con-
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struction, as long as psychology’s products are inconsistent, unrelated and
mutually discrediting, psychology will be considered a “would-be scientific
discipline,” a tangle of knowledge rather than a clear-cut field of science
[. . .] (p.910)

For over decades, there have been calls to change the current standing of psychology
from a disunified discipline to a unified science (De Groot, 1990a; Krantz, 1987;
Royce, 1970; Staats, 1991; Sternberg & Grigorenko, 2001). Not everyone believes
such a unification is possible. For instance, S. Koch (1981) argues that psychology,
by its very nature, defies unification. Because most psychological events are multiply
determined, ambiguous in meaning and polymorphous, to name but a few of Koch’s
characterisations, different psychologists will, depending on their personal history
and characteristics, perceive them in different ways. This may be why the Grand
Theories of Yesteryear, such as behaviourism and psychoanalysis, have failed to unify
psychology; they simply weren’t for everyone.

Koch’s explicit pluralism is not for everyone either, though. While many accept
that a unifying theory is not expected in the near future, they do not take it as a prin-
cipal impossibility (e.g. Royce, 1987). In any way, unifying psychology by means of a
single, paradigmatic theory, is but one avenue to counter psychology’s fragmentation.
Proponents of unification point to methodological differences as a major source of psy-
chology’s fragmentation (Eysenck, 1997; De Groot, 1990b; Kendler, 2002; Rychlak,
2005; Staats, 1999). Kendler (2002) points to the divide between those who view psy-
chology as a natural, and those who view it as a human science. This divide has a long
history, beginning with the Methodenstreit in Germany at the turn of the 19th to 20th
century (see Nerlich, 2004, for an overview). On one side stood Dilthey, who pleaded
for a descriptive and analytical psychology, arguing that psychology requires sympa-
thetic understanding (Verstehen) on the part of the researcher, which an explanatory
psychology cannot provide. On the other side stood Ebbinghaus, who advocated a
radically empirical and experimental psychology. For a long time, the argument has
been settled in favour of Ebbinghaus, but the recent quantitative-qualitative debate
has made the issue once again a prominent one. The divide between the quantita-
tive and qualitative camps runs very deep, brought about by a different outlook on
the aims of scientific psychology. But even within the confinements of mainstream,
quantitatively oriented psychology, there is methodological disagreement. Eysenck
(1997), as Cronbach (1957) did long before him, points to the difference between two
methods of inference: experimental and correlational. Both methods have strengths
and weaknesses, and psychology would benefit from a combined approach, instead of
the mutual distrust displayed by both sides. Then there is the disagreement between
those advocating axiomatic and psychometric approaches to psychological measure-
ment (Borsboom & Mellenbergh, 2004; Cliff, 1992; Michell, 2000). And what about
the ever continuing debate regarding null-hypothesis significance testing? (Carver,
1978; Chow, 1998; Nickerson, 2000; Rozeboom, 1960)

If methodological differences are the source of psychology’s fragmentation, unifying
psychological methodology may be its remedy. Since method is such a primary factor
in any science, it certainly seems plausible that consensus on the best approach to
study the human mind will bring together the disparate theories under investigation.
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This stance is taken by De Groot (1990b), who proposed to achieve methodological
unification by organised consensus meetings. Such consensus meetings or conferences
are used widely in medicine (Kalberer, 1985; Klazinga, Everdingen, & Casparie, 1989),
and with success, as the sheer number of consensus conferences indicates. The objec-
tive is to bring together experts in a scientific field in order to evaluate the current
evidence and to put forward a consensus statement concerning best practice. But
before implementing measures to arrive at consensus, it should be clear what is to be
expected from methodological consensus. Are the products arising out of a consen-
sually based methodology better than those arising out of different methodologies?
Is the epistemic standing of unanimously held convictions firmer than that of convic-
tions which differ to those held by others? Will methodological consensus result in
theoretical consensus? Questions such as these are the topic of this thesis.

1.2 Science and consensus

The role of consensus in science is not unique to issues of unification. Consensus is
at the core of Western scientific thinking, which takes science to be a superior path
to knowledge and truth, because it is objective, and ‘the hallmark of its objectiv-
ity is the ability to coerce rational inter-subjective agreement’ (Bjerring & Hooker,
1980). Hence the definition of N. Campbell (1921): ‘Science is the study of those
judgments concerning which universal agreement can be obtained’ (p.27). While this
is apparently the first statement that explicitly connects science and consensus (Zi-
man, 1968), ideas concerning the relation between consensus and knowledge are much
older. Classically, consensus was taken to be a direct consequence of the Scientific
Method, which, upon its adoption, demands unanimous assent from those who adopt
it (Baigrie & Hattiangadi, 1992; Laudan, 1984). Such a firm belief in the scientific
method is also found in Peirce (1878), who went so far as to propose that truth is the
opinion which is fated to be ultimately agreed to by the scientific community at the
limit of inquiry.

Over the years, the epistemic standing of the scientific method has been relativised.
The hope of a universal scientific method has waned with the demise of Logical Posi-
tivism and Logical Empiricism. In contrast to these schools, which viewed science as
a cumulative enterprise, Kuhn (1970) painted a radically different picture of science.
According to Kuhn, science moves from paradigm to paradigm, from scientific revolu-
tion to scientific revolution. Each scientific revolution results in a radical break from
the preceding consensus. A switch in paradigm is essentially a switch in world-view.
Changes in paradigm do not result from a comparison of competing paradigms on a
common scientific criterion. Since paradigms are incommensurable, there simply is
no way that they can be objectively compared on a common criterion of evidential
support. The fate of a paradigm is not decided by a universal scientific method, but
by the assent of the scientific community. In breaking with the idea that scientific
consensus is a consequence of the scientific method, Kuhn has assigned consensus a
pivotal role in the dynamics of scientific knowledge. As Ziman (1968) puts it: ‘[Con-
sensus] is not a subsidiary consequence of the “Scientific Method”, it is the scientific
method itself’ (p.9). Essentially the same stance is taken by sociologists of science
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such as Merton, who refer to shared norms and values to explain the occurrence of
scientific consensus (Laudan, 1984). Perhaps the strongest weight is given to consen-
sus by social constructivists such as Latour and Woolgar. While the former parties
take scientific consensus to be a rational reflection of the best of current knowledge,
this latter party denies that scientific theories, whether consensual or not, can be
reflections of an objective reality. According to this view, scientists construct a ‘re-
ality’ through social exchange and negotiation. Consensus is not a proxy for truth
otherwise defined, it defines truth itself.

To be sure, there are not only proponents of the consensus ideal. Consensus has
connotations of harmony and unity, but also of totalitarianism and dogmatism. For
instance, Feyerabend (1975) argued that

Unanimity of opinion may be fitting for a church, for the frightened victims
of some (ancient, or modern) myth, or for the weak and willing follow-
ers of some tyrant; variety of opinion is a feature necessary for objective
knowledge [. . . ] (p.33).

In turn, Agassi (1975) warns that the desideratum of consensus turns science into
a ‘Latin-American dictatorship’(p.24). A more recent critic of the consensus ideal is
Rescher (1993). A common thread in these critiques is the idea that variety in opinion
and mutual criticism are the driving forces of scientific inference. Since consensus is
a state in which such variety and criticism are absent, it must stifle progress. On
the other hand, it is hard to imagine where progress leads, if not to some ultimate
answer on the nature of the phenomenon under study, no matter how distant in the
future. Surely, one would hope that, once given, this answer will be striking enough
to demand universal consent. This, in a nutshell, is the puzzle of scientific consensus:
it is at once a highly desirable, and highly undesirable state. It is desirable, because
the attainment of scientific aims should entail consensus. It is undesirable, because it
marks a halt to inquiry, where inquiry should usually proceed. Consensus is an end
to inquiry, but there is no way of telling whether we got out prematurely, or whether
we went for the whole ride.

1.3 Overview

This thesis approaches the subject of consensus and methodology from a philosophical,
decision-theoretic, statistical, and empirical direction. This multi-faceted approach
reveals my personal conviction that pluralism is essential to a proper understanding
of any subject. While there is a change in focus between the different chapters, effort
was taken to present them in a logical order.

Chapter 2 introduces some important concepts for the remainder of the thesis,
and is actually more of an introduction than the present chapter. The focus is on the
problem of justification, or the question how to defend particular choices for theory
and method. The main problem to be dealt with is that of underdetermination,
which means that there is no sufficient basis for such a choice. The classical problem
of underdetermination is that empirical evidence is insufficient, since two or more
incompatible theories can be equally consistent with a given body of data. From
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the decision-theoretic view of scientific inference introduced in this chapter, the more
general problem of axiological underdetermination is introduced. This problem arises
when, for a given collection of epistemic goals, multiple theories or methods have
identical utility. The chapter concludes with a theoretical investigation of the concept
of consensus. As will be argued, the usual definition of consensus as uniformity in
opinion is inadequate. An adequate definition of consensus should take higher-levels
of belief into account, those beliefs which pertain to the beliefs of others.

Chapter 3 describes a general theory which has been proposed to explain the
occurrence of consensus and dissensus in scientific matters. This theory, called the
hierarchical theory of justification, is compatible with the decision-theoretic view of
scientific inference introduced in Chapter 2. The hierarchical theory of justification
consists of three interrelated levels at which, and by means of which, consensus is
forged. The lowest level is the factual level, consisting of all statements about the
world. The theory prescribes that disagreement on this level can be resolved by reach-
ing agreement on the methodological level. Disagreement on the methodological level
is in turn resolvable by reaching agreement on the axiological level, which concerns
the aims of scientific inference. The hierarchical theory is applied to the field of
statistical model selection, which has been chosen because, due to the quantitative
nature of statistical models, it allows for a precise implementation of the proposed
decision-theoretic model. While the hierarchical theory is an useful means of over-
arching the separate literature on statistical model selection, it ultimately fails as a
normative theory. There are two reasons for this failure. The first is that theoretical
considerations must guide methodological decisions, which goes against the hierarchi-
cal structure of the model. The second reason is that problems of underdetermination
also arise in statistical model selection, so that consensus on the appropriate method
does not forge consensus on a theoretical level.

The problem of underdetermination has moved some to argue that social fac-
tors should be taken into account when dealing with scientific theory choice. Hence,
Chapter 4 addresses the relation between underdetermination and consensus. Two
experiments on the influence of consensus in situations of empirical underdetermi-
nation are described. Both experiments investigate the extent to which individual
hypothesis behaviour is influenced by the hypotheses of peers under differing levels
of underdetermination. Social comparison theory states that in situations of uncer-
tainty, individuals will attempt to validate their opinions by comparing them to those
of others. The first experiment shows that, as expected, individuals rely on social
comparison in situations of underdetermination, but not in situations of determina-
tion. In the second experiment, the effects of differing levels of underdetermination
on social comparison were studied. The expectation that higher levels of underde-
termination result in stronger reliance on social comparison was supported, although
the evidence for belief change following social feedback was weaker than in the first
experiment. Overall, the effect of empirical information appeared much larger than
that of social information.

Chapter 5 describes two experiments on collaboration in multiple cue probability
learning. There are two main reasons why groups may outperform individuals when
it comes to making good judgements and decisions. The first is that individuals may
have partly non-overlapping information, so that the group can base its collective
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decision on more information than any individual alone. The second is that the
collective decision may be less subject to idiosyncratic bias than individual decisions.
The experiments described in this chapter are an attempt to investigate the validity
of these two reasons. It builds on some of the insights of Brunswik and his followers
to derive plausible models for collective decision making. A model in which members’
decisions are weighted by their confidence provides an adequate description of the
group decisions. Moreover, since confidence is related to past achievement, the group
decision process can be viewed as a weighting-by-achievement process.

Chapter 6 offers a critical examination of the possible role of consensus in a nor-
mative methodology. Three possible roles are distinguished: consensus as a goal, as
a means, and as a criterion. It is argued that consensus fulfills none of these roles
adequately, and as such has no role in a normative methodology. But this is not to
say that social factors have no role in science, for they certainly do. However, striving
for consensus is not the way to capitalise on those social factors. There is no need to
demand unanimous belief, nor to demand dissensus for that matter. What is called
for is a situation of ‘mutual understanding’, where all individuals have accurate beliefs
regarding the beliefs of others, and can use these to validate and improve upon their
own belief.

Chapter 7, finally, offers a summary and further discussion of the topics raised in
the preceding chapters.

1.4 Notation

I’ve attempted to make the notation consistent throughout this thesis. Sets are typeset
in calligraphic. Vectors and matrices are typeset in bold, with matrices denoted in
capitals. Some symbols that will be used are:

≡ Definition/Defined as
∧ Conjunction/And
∨ Disjunction/Or
¬ Negation/Not
=⇒ Implication/Implies
∀ Universal quantifier/For all
∃ Existential quantifier/There exists
∈ Membership/Element of
∩ Intersection
⊂ Subset
Bi Belief-operator/Agent i believes
u|G(·) Utility of · relative to a set of goals G

uA(·) Utility of · for individual A
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Problems of justification

All our reasoning is nothing but the joining and substituting of characters, whether
these characters be words or symbols or pictures. . . if we could find characters or signs
appropriate for expressing all our thoughts as definitely and as exactly as arithmetic
expresses numbers. . . we could in all subjects in so far as they are amenable to reasoning
accomplish what is done in arithmetic and geometry. For all inquiries that depend on
reasoning would be performed by the transposition of characters and by a kind of
calculus. . . . And if someone would doubt my results, I should say to him: ‘let us
calculate, Sir,’ and thus by taking to pen and ink, we should soon settle the question.

Leibniz, The Art of Discovery

Such was Leibniz’ dream: if scientific reasoning is adequately formalised, all sci-
entific disagreement can be settled in a satisfactory manner. This may seem pre-
posterous now, but for long enough it didn’t. The logical positivist programme was
one attempt at such a formalisation. That the logical positivists didn’t realise Leib-
niz’ dream may now seem unsurprising. Famous incompleteness-theorems, such as
Gödel’s (see Nagel & Newman, 1958), show that in any consistent and sufficiently
strong formal system, there are true statements which are not provable. In prov-
ing the theorem, Gödel used a self-referring statement, essentially ‘this formula is
undecidable in formalism F ’. Gödel used an ingenious trick, so-called Gödel num-
bering, to make such meta-statements stateable in the language of arithmetic itself.
The problem that arises is somewhat akin to the classical liar paradox. Consider the
truth-value of the statement ‘this statement is false’. If the statement is considered
true, it must be false, while if it is considered false, it must be true. A true philo-
sophical puzzle. Tarski (1944) tackled it by arguing that ‘truth’ can only be defined
in a meta-language. This means that no formal language may contain its own truth-
predicate. So all such languages are incomplete. For methodology, being concerned
with rules for scientific inference, the question of completeness raises itself in the fol-



8 2. Problems of justification

lowing problem: can a methodology, consisting of rules of inference and justification,
justify these rules?

Justifying methods of justification is a difficult task, to say the least. Infinite
regress looms, for if a rule is justified by another rule, then its justification depends
on the justification of this other rule. If the justification of this rule depends on
another rule, then this latter rule must be justified, and so forth ad infinitum. The
justificatory chain should stop at some point, but where, and more importantly, how?
One solution is to stop it at the point where there is no choice between competing
rules. When there is no possible disagreement to settle, there are no conflicting
viewpoints which differ in their justification. In the absence of conflict, there is no
practical problem of justification. Insofar as scientific inference is viewed as a decision-
problem, and justification as defending a particular decision, this seems an adequate
solution. A decision implies the existence of alternative courses of action, and if there
is no alternative, there simply is no decision to defend.

2.1 A decision-theoretic framework

A decision-theoretic analysis takes scientific inference as instrumental action. Such
a view was for instance taken by Ellis (1988), Giere (1988), Hempel (1965), Laudan
(1984) and Levi (1967, 1980), although none of these authors, except maybe for
Levi, take full advantage of the tools of decision analysis. The triple ‘actions’, ‘goals’
and ‘consequences’ provides a simple framework which is general enough to capture
most of scientific reasoning. With ‘general enough’ I mean that, insofar as scientific
reasoning is purposeful action, which it undoubtedly is, scientific behaviour can be
analysed as means towards ends. But offering a decision-theoretic analysis of scientific
inference is not a trivial exercise. What are for instance the relevant actions? Scientific
inference is a cognitive affair, so we should be considering cognitive actions, such as
believing a certain proposition. But does the belief in a proposition really result from
a decision to believe that proposition? This issue should be addressed when using
decision-analysis in order to describe actual scientific inference. However, this need
not concern us in the context of justification. Here, decision-analysis is used in order
to ascertain whether it is possible to give a rational reconstruction of belief. For
this purpose, we can treat cognitive actions as decisions. There are many cognitive
actions, but for the present discussion, the cognitive actions will be restricted to those
related to a set of theories T proposed to explain, describe, or predict some aspect
of reality. The relevant decisions are then of the kind ‘accept theory T over all other
theories in T ’.

The next question is: what are the relevant goals? Again, we should be considering
cognitive goals. Important epistemic aims are for instance truth, coherence, relevance,
universality, and simplicity. It is questionable whether these epistemic aims exhaust
the goals that drive actual scientific behaviour. More mundane goals such as achieving
professional recognition, publishing articles in high-impact journals and rising in the
academic ranks, undoubtedly affect the behaviour of scientists. Some sociologists
of science argue that it is these latter-type goals that are the main impetus for any
scientific activity (see Gustin, 1973, for an exposition and critique), and that epistemic
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aims only enter as post-hoc justifications. Such radical views have been criticised for
undermining the rationality of science. But in the present framework this is not
necessarily the case. A scientist, motivated by a need for professional recognition,
acting solely to promote this goal by stealing ideas, forging data, badmouthing the
competition, may be considered a rational one. For such measures can, and maybe
often do, result in awe and recognition if the particulars of the chosen strategy remain
undetected. Yet, the ascription of the predicate ‘rational’ to such a scientist does not
come readily. But I do not think this should be attributed to a wrong definition of
‘rationality’. Rather, I find it hard to believe that someone can be solely driven by a
goal of professional recognition. But if such a person exists, so be it. In the present
framework, such a person should be called rational. However, such a person will
not be called a rational scientist, if one takes the aim of knowledge to be a minimal
defining characteristic of a scientist.

The final and probably hardest question is: what are the relevant consequences?
Each action should have some value in realising the aspired aims. If one of the theories
in T is taken to be true, only one action has the desired consequence of realising the
goal of truth. If the theories in T differ in simplicity, it might be possible to order
them along this dimension, so that one action (accepting the simplest theory) has
the consequence of maximising the attainment of this goal, while the others serve
this goal to a lesser extent (although all serve the goal to some extent). However,
as will become clear in Chapter 3, simplicity is not a well-defined characteristic of a
theory. This problem complicates ordering theories on the basis of simplicity. But,
a subjective evaluation of simplicity is enough in order to render the choice between
theories individually rational, as long as such evaluations can be made in a consistent
manner1. Assigning epistemic consequences to theories, models, hypotheses, and
such, is certainly not without problems. But that aims form the basis of an ordering
of the available actions is essential to a decision-theoretic analysis. It is customary
to call this ordering a utility ordering. The optimal decision is the action with the
highest utility, or, if there is some uncertainty, the highest expected utility.

Uncertainty is always present in scientific inference. Otherwise, science would be
an easy and rather dull enterprise. One way to view decisions under uncertainty
is as a game. We can take scientists to play a game against nature. Nature has
made a certain move (her state) and the scientist must make a counter-move, such as
adopting a certain belief regarding nature’s state. The utility (or payoff) of this move
depends on nature’s unknown state. So instead if assigning utilities to each move or
action of the scientist, utilities are assigned to each pair of moves (one for nature and
the other for the scientist). We’ll call the situation just described an epistemic game
Γ ≡ 〈Θ,A, u〉. The game consists of a set of moves for nature Θ, a set of actions
for the scientist A, and an utility function u(·) over the cartesian product Θ × A.
No utility function for nature is included, since I find it implausible that nature is a
strategic player in the standard sense. To illustrate, let’s consider a simple example
in which nature has two possible states, θ1 and θ2, and the scientist two actions, a1

(believe the state of nature to be θ1) and a2 (believe the state of nature to be θ2). If

1One demand of consistency is for instance that the relative simplicity of T1 to T2 should not
change when T3 is added to (or removed from) the choice set.
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Scientist

Nature
θ1 θ2

a1 α −α
a2 −α α

Figure 2.1: A simple epistemic game

we take the scientist to be concerned only with being right, then the utility matrix of
the game might look something as in Figure 2.1. Without any further information,
this game does not have an immediate solution. None of the actions has an overall
higher utility. In other words, the choice for a particular action is underdetermined.

2.2 Underdetermination

Underdetermination is a well-known problem in the philosophy of science. The thesis
of underdetermination can be traced back to Hume’s (1748/1910) classic problem
of induction. This problem concerns the confirmation of universal laws of the type
‘all A’s are B’s’. As long as one cannot observe, or has not observed, all members
of class A, there is no way in which this law can be conclusively confirmed. No
matter how many black ravens one has observed, there is always a possibility that an
unobserved raven does not have the property ‘black’. No finite body of data can prove
the correctness of a universal law, simply because a finite body of data cannot cover
the infinite domain to which the law applies. So universal laws are underdetermined
by empirical data.

Hume’s thesis is a reminder that induction does not result in absolute certainty.
Factual inference does not have the same status as logical inference. One may be able
to arrive at theories which are probably true, but one cannot arrive at a theory which
is necessarily true. A different slant on the underdetermination problem is given by
Goodman (1954). His ‘new riddle of induction’ is introduced as follows. Consider the
theory

T1: All emeralds are green.

Confirmation of this theory comes from the observation of a number of emeralds,
which were indeed all green. Hume’s problem was that, unless one has observed all
emeralds that have and will ever exist in the world, it cannot be ruled out that an
emerald ever exists which is not green. Goodman’s problem is of a different nature.
He introduces another theory

T2: All emeralds are grue,

in which grue is defined as

Grue: An object is grue if it is green before time t and blue after.

The problem is that, until time t, both theories have exactly the same prediction,
namely that all emeralds will be observed to be green. So both theories are equally



2.2. Underdetermination 11

supported by observations made before t. The theories differ only in their predictions
of emeralds after t. After t, T1 would still be confirmed by observing a green emerald,
while this would disconfirm T2. But, when t lies somewhere in the future, why should
we prefer T1 over T2, if both are equally supported by empirical evidence?

One might argue that T2 is a strange theory, since it introduces a colour definition
which does not stick with our intuitive colour definitions. But that is just the point
Goodman is trying to make. For us, being speakers of the green-language, it is strange
to speak of ‘grue’. But apart from habit, there is no reason to prefer terms such as
‘green’ to terms such as ‘grue’. Another argument against T2 might be that T1 is a
simpler theory, since it does not involve an extra time-dependence. To this Goodman
would reply that, although T1 is indeed simpler for someone who normally uses the
terms ‘green’ and ‘blue’, it isn’t for someone who uses terms like ‘grue’. To see this,
define ‘bleen’ similar to ‘grue’ as

Bleen: An object is bleen if it is blue before time t and green after.

Now, T1 isn’t immediately sensible to a member of the ‘grue’ language community.
It needs to be translated as

T ′
1: all emeralds are grue before t and bleen after.

Comparing this formulation to T2 shows that, for a member of the grue community,
T2 is simpler. Admittedly, Goodman’s example is somewhat contrived. But similar
problems do appear in actual science. Take Freud’s notion of repression. I won’t do
justice to the full theory, and formulate it simply as:

Repressed: M is repressed if it could be remembered before t1, could not be
remembered after t1 and before t2, and could be remembered after t2.

where t1 denotes the time of repression and t2 the time of some unblocking action by
the therapist. Now define the theory of repression as

T1: All ego-threatening states M are repressed,

and take the alternative theory

T2: All ego-threatening states M are forgotten,

in which forgotten is defined as

Forgotten: M is forgotten if it could be remembered before t1, but could not be
remembered after.

The resemblance to the grue problem should be clear.
Goodman’s new riddle of induction strengthens the case for underdetermination.

For now there are multiple theories which are equivalent with empirical data. One
way to deal with Goodman’s and Hume’s problem is to reject induction as a form
of scientific inference. And if rejecting induction, why not reject confirmation at the
same time? This was Popper’s (1959) strategy. For while universal laws cannot be
conclusively confirmed, they can be conclusively falsified, even by a single observation.
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Or at least, that was Popper’s idea. For there is a version of the underdetermina-
tion thesis which denies conclusive falsification as well as confirmation. This general
thesis of underdetermination is related to the Duhem-Quine thesis. Duhem argued
that, in order to empirically test a theory, one derives predictions from it which are
compared to observable evidence. But the predictions do not follow directly from the
theory itself. To derive predictions, the theory must be supplemented with auxiliary
hypotheses. The problem then is that when the observed evidence does not agree
with the predictions, this can mean that the theory is wrong, but also that the auxil-
iary hypotheses are wrong. This is an instance of the modus tollens rule in predicate
logic. If a theory T and auxiliary hypotheses A together imply an observable event
E, i.e. (H ∧ A) =⇒ E, then the valid conclusion from not observing the event is
¬E =⇒ ¬(T ∧ A). But ¬(T ∧ A) means that either ¬T or ¬A (or both). So when
predictions are disconfirmed, this is not necessarily a disconfirmation of the theory,
but only of the combination of the theory and the auxiliary hypotheses. Empirical
tests can only test the whole of theory and auxiliary hypotheses. As such, there are
no critical tests of theories. Theories are neither confirmed nor falsified by empirical
evidence. Quine calls this position ‘holism’. As a reaction to the disconfirmation of
predictions, one can choose to abandon the theory or the auxiliary hypotheses. The
data do not give precedence to one of these actions. The crux of the Duhem-Quine
thesis is that it is always possible to adjust the auxiliary hypotheses in such a way
that the combination of theory and adjusted auxiliary hypotheses is consistent with
the observations. If this is the case, then any theory can be saved in the face of
disconfirmation. This led Quine (1951, p.40) to the often cited maxim that: ‘Any
statement can be held true come what may, if we make drastic enough adjustments
elsewhere in the system.’

As Quine (1975) points out, the thesis of holism is different from the strong thesis
of underdetermination which is sometimes attributed to him. Holism refers to a type
of underdetermination, in the sense that the choice for which aspect in a network
to adjust, in order to reconcile disconfirming evidence, is underdetermined. The
strong thesis of underdetermination refers to underdetermination of whole networks.
It takes that for any given network or ‘total system of the world’, there exists a rival
which is empirically equivalent. The empirical equivalence is not bounded to a given
body of data, but extents to any possible body of data, to all possible observations.
Moreover, while empirically equivalent, the theories are logically incompatible and
cannot be made logically equivalent by a reconstrual of predicates. This is a very
strong thesis indeed, and Quine remains somewhat vague about his commitment to
it. But it is this thesis which leads to the rejection of realism as a viable position (e.g.
Van Fraassen, 1980).

2.3 Back to decisions

The simple epistemic game described in Section 2.1 was of course overly simple. Its
purpose was mainly to provide a smooth transition to the topic of underdetermination.
Since it has served that purpose, I shall now extend it into a more realistic version.
One important omission was the scientist’s belief regarding the probability that nature
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Scientist

Nature
θ1 θ2

a1 α −α
a2 −3α 1

3α

Figure 2.2: An epistemic game with simplicity

is in a particular state. Such belief would allow the scientist to choose the action with
the highest expected utility. If the scientist can assign a non-identical probability
to each state, the underdetermination may vanish. Say that state θ1 is assigned a
probability of .25, and state θ2 a probability of .75. Then E[u(a1)] = .25α − .75α =
−.5α and E[u(a2)] = .75α − .25α = .5α, so that a2 is the rational strategy. If
the probability assignment is entirely subjective, made without regard to anything
independent of the scientist, we have a case of pure armchair research. While there
is nothing inherently wrong with maximising subjective expected utility, it is more
common that the scientist has empirical evidence which is informative (although not
decisive) of the state of nature. Ideally, this information would be fully captured by a
probability distribution over Θ. In that case, the scientist can proceed as before, by
computing the expected utility of his actions and adopting that action with the highest
expected utility. Unfortunately, the informational value of empirical evidence for the
state of nature is not a simple matter. Some problems will be addressed in Chapter
3. From the strong underdetermination thesis, it follows that empirical evidence
can have an identical informational value for indefinitely many actions. Regarding
underdetermination, two reservations are in place. Firstly, the thesis concerns sets
of ‘proposable’ theories, not sets of actually proposed theories. The requirement
that a scientist can justify his decision against all other possible decisions may be
overly strong. If the requirement is that the decision can be justified against a set
of decisions under actual consideration, then the problem of underdetermination may
not be of much practical importance. For while there exists an empirically equivalent
theory for every theory under consideration, this equivalent theory may not itself be
one under consideration. Secondly, the thesis in its classical formulation concerns
empirically equivalent actions. Some authors (e.g. Laudan, 1996) have argued that
the problem can be avoided when other goals than empirical adequacy are considered.
But, although initially plausible, it is not that easy to sweep underdetermination under
the carpet. To see this, consider a situation in which the scientist has additional aims
to being right. For instance, the scientist values simple theories over more complex
ones. If θ2 is more complex than θ1, the utility matrix might look something like
Figure 2.2. Again, the game does not have an immediate solution, since no action
dominates the other (an action is dominant if its utility is at least as high as the
utility of the other actions for every element in Θ). Now consider the case where
the scientist has some information regarding the probability of the different states
of nature. The game is supplemented by a probability function over Θ, and if this
function is the same as before, then E[u(a1)] = −.5α and E[u(a2)] = −.5α. So in
this case the scientist should still be indifferent to the two actions. Hence, the choice
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for an action is underdetermined.
When there are multiple goals to realise, we enter the field of multi-attribute

decision making. A simple form of multi-attribute utility is additive. If the conse-
quences of an action can be described by a vector of values of the particular action
(relative to the goals), then under additivity, the utility of the action can be stated
as u(a) =

∑
j wijvj , in which wij denotes the relative weight given to attribute j

by individual i. It is easy to see that two actions, a1 and a2, with different values,
v1 = (v11, v12) and v2 = (v21, v22), may have the same utility. Suppose that an in-
dividual weights the importance of achieving the goals as wi = (.75, .25), then two
actions with respective values of v1 = (4, 1) and v2 = (2, 7) have an equivalent utility.
So undecidability remains a potential problem even if more aims are added. I will
call theories with identical epistemological utilities axiologically equivalent:

Definition 1 (Axiological equivalence).
Theories T ∈ T are axiologically equivalent relative to a set of goals G if (∀Ti, Tj ∈
T )[u|G(Ti) = u|G(Tj)].

Axiological equivalence leads to the notion of axiological underdetermination:

Definition 2 (Axiological underdetermination).
Given a set of goals G, the choice for a theory T is axiologically underdetermined if
(∀T ′)[u|G(T ′) � u|G(T )] and (∃T ′ 6= T )[u|G(T ′) = u|G(T )].

Underdetermination in the classical sense is subsumed in axiological underdetermi-
nation. If empirical adequacy is the only aspired aim, the two types of underde-
termination are identical. Note that an axiologically underdetermined theory is not
necessarily empirically underdetermined. Other aspects of theories can be traded off
against empirical fit in such a way that the epistemic utility of two theories is iden-
tical. In the previous example, this was shown for the trade-off between simplicity
and empirical fit. So contrary to earlier claims, the addition of aspired aims can ac-
tually raise the probability of underdetermination, for there are more ways in which
trade-offs can be realised.

2.4 Relativism, conventionalism, and social constructivism

Responses to challenges such as underdetermination take a variety of forms. One,
which will not be discussed extensively, is to deny that there is a real problem. Prob-
lems such as underdetermination simply pose limits on what science can reasonably
achieve. Van Fraassen’s (1980) position, which he calls constructive empiricism, is
that science should stay within these limits and focus solely on empirical adequacy.
If there is a pluralism of perspectives which achieves this, so be it. There is no need
to designate one as the best. Constructive empiricism is a normative position, stating
that empirical adequacy is all that scientists should be concerned with. In practice
however, scientists do want to go further. Moreover, they wish to justify such moves
as non-arbitrary. So there is a mismatch between the goal prescribed by constructive
empiricism and the goals actually held by scientists. Many scientists are of a real-
ist persuasion, whether outright or secretly. Realism is the position that theoretical
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terms refer to things in reality. Theories can be true or false, and the truth of a theory
depends on events in reality. The realist aim is to arrive at such true theories. Most
will realise that it is a difficult goal to achieve, and that it is even more difficult to
recognise when the goal is actually achieved and when not. But this does not render
the goal of realism irrational. Goals themselves are not subject to designations of ra-
tionality, only acts of striving to realise a goal are rational or irrational. When goals
are conflicting, so that they cannot all be obtained concurrently, then realising one is
irrational if unrealised other goals are deemed more important. Now, I don’t believe
that the goal of realism is conflicting in such a way with other epistemic aims such
as empirical adequacy. But even if it was, waving aside the realist aim as irrational
would still be nonsense.

Instead, one might argue, a la Van Fraassen, that the realist aim is inconsequential,
since there is no way in which it can be overtly obtained. That would require means
of conclusively separating true from false theories, and those means are not available.
Although scientists may be driven by a realist aim, they cannot invoke this aim to
justify their decisions2. The three -ism’s in the title of this section, conventionalism,
relativism and social constructivism, take such a position. Contrary to constructive
empiricism, they do not take underdetermined choices as entirely arbitrary. While
particular choices are arbitrary from a purely logical viewpoint, they are not arbitrary
to an individual scientist or scientific community. The three -ism’s are varieties of
subjectivism (indeed another -ism), in the sense that their central concepts are not
devoid of reference to a particular person or group of persons. Their tenets are quite
similar, and it is difficult to make a clear distinction apart from their genesis.

Conventionalism was touched upon at the start of this chapter as a possible strat-
egy to avoid infinite regress in justification. Conventionalism takes truth (or at least
some truths) to be a matter of convention. The logical positivists took this position
to solve the problem that logical truths depend on the truth of logic, while the truth
of logic is neither a logical nor empirical truth. So the truth of logic is established
by convention. A different conception of conventionalism stems from the work on the
foundations of geometry, most noticeably by Poincaré (1905/1979). Realising that
the choice for a specific geometry, such as Euclidian geometry, is underdetermined by
empirical data, Poincaré argued that this choice constitutes a convention. This is not
to say that it is an arbitrary choice. According to Reichenbach, conventions such as
a particular geometry are ‘co-ordinate systems’; they are general rules which are laid
down so that the terms and concepts in a theory have a well-defined subject-matter
(Hibberd, 2001). While they have an a priori status, this is not in the sense of Kant’s

2To scientist A’s claim that ‘I believe X because I strive for truth, and X is true’, a sceptic can
always respond ‘How is X true?’. In other words, A must justify this claim. He might do so by
stating that X has ample empirical support, but then he should also offer means to separate true
from false theories on the basis of empirical support (i.e. some point p below which theories are false
and above which theories are true). And even if A was able to do so, his actions would be identical
to those of scientist B who strives for theories with empirical support above p. For justification, as
long as ‘truth’ is not a directly inferable property, the realist aim can always be replaced by different
aims, reflecting the indicators of truth. Hence, in the context of justification, the realist aim can
be deemed inconsequential. If empirical support is directly inferable, scientist B may find himself
in a more comfortable position, since his goal can then be overtly obtained. Insofar as truth is
not identical to ‘empirical support above p’, scientist A will still be uncertain whether he actually
achieved his goal. But, on another note, who expects certainty?
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synthetic a priori knowledge. They are not for all time and independent of experience,
but rather ‘before knowledge’. Without them, there simply is no knowledge possible.

Relativism can be taken as merely another term for subjectivism. Indeed, rela-
tivism is such a broad and loosely jointed myriad of positions, that this would be
correct. The relevant subspecies of relativism here is epistemological relativism, the
position that the status of a knowledge claim can only be determined relative to the
individual or group making that claim. Feyerabend (1975) is a well-known episte-
mological relativist. Taking knowledge in the classical sense as justified true belief,
one can take either justification, truth, or both to be relative. Truth-relativism is
a difficult position to defend, for it is self-refuting. If all propositions have differ-
ent truth-values, depending on one’s circumstances, then so does this position. A
weaker version of truth-relativism is that some propositions may have a truth-value
in one framework, but not in another, because the proposition has no meaning in
that framework. This is a short characterisation of the thesis of incommensurability,
as forwarded by Kuhn (1970) and Feyerabend (1975). Incommensurability renders
a rational choice between competing frameworks impossible, for there is no common
standard by which to compare different frameworks. Kuhn (1970) calls general scien-
tific frameworks paradigms, and argues that the move from one paradigm to another
has to be based on a ‘leap of faith’, rather than a rational decision. A little later, Kuhn
(1977) admitted that there are paradigm-overarching principles that can be used to
guide paradigm choice. But such methodological principles are too vague to determine
paradigm choice. Feyerabend took a stronger position. He argued that there are no
methodological rules which have not been profitably broken in the history of science.
So there are no methodological rules that, upon their adoption, render a particular
inference superior to another. The only defendable methodological principle is that
‘Anything goes’.

While the conditionals in conventionalism and relativism can be either individuals
or groups, social constructivism is explicitly a collectivist thesis. In its most radical
form, it claims that all facts are constructions of ‘thought collectives’. Facts are not
discovered, but decreed through a social process of argumentation and negotiation.
As we have seen, there are definite problems in justifying a theory choice by stating
that it meets the realist aim. From this problem, social constructivists seem to infer
that it is an impossible aim to be met (and not just impossible to show that it has
been met). Scientific theories do not reflect reality in any way, but rather construct
a ‘reality’. That there really is no objective reality out there is a radical, and I think
radically foolish, thesis. In order to understand this claim, one should realise that
social constructivists equate ‘truth’ with ‘generally accepted as true’. That is, they
conflate ‘X is true’ with ‘X is believed to be true’ and as such hold a consensus theory
of truth (Fine, 1996). According to social constructivists, ‘truth’ and ‘fact’ are not
properties of objects or phenomena ‘out there’, but properties of social groups. Social
discourse determines what is true or false, or fact or fiction. Reality plays no role in
such matters.

I shall defer further discussion of the three -ism’s to Chapter 6. The short charac-
terisation offered here should suffice to realise that they offer a similar solution to the
underdetermination problem. Namely, that while theory choice is underdetermined
by empirical evidence, it is determined by empirical evidence and additional factors.
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The additional factors being conventions (conventionalism), scientific frameworks or
paradigms (relativism), or social processes such as argumentation and negotiation
(social constructivism).

2.5 No place for normative methodology?

Relativistic arguments are often employed to reject the normative status of method-
ological rules (e.g. Feyerabend, 1975). Normative rules are imperatives, and with
Kant we should distinguish between categorical and hypothetical imperatives. Cate-
gorical imperatives apply without qualification. For instance, ‘You should not kill’ is a
categorical imperative. Hypothetical imperatives, on the other hand, are of the form
‘If you want to achieve G, then do A’. For instance, ‘If you want to live life outside
of prison, you should not kill’ is a hypothetical imperative. Methodological rules are
hypothetical imperatives. Since methods are instrumental, they serve a certain goal.
Clearly, the imperative applies to people striving for that goal. There is no reason
to deny the normative status of methodological rules as hypothetical imperatives. Of
course, it is up to the methodologist to show that (and where possible how) method-
ological rules forward certain aims. This is difficult, to be sure, but I don’t think it
should be considered impossible in principle.

The position that follows from the decision-theoretic framework is relativistic in a
certain sense. The justification of scientific inference is relative to aspired aims. I see
no problem in such a form of relativism. Under certain circumstances, it is equivalent
to a relativism in Kuhn’s sense. If different paradigms entail completely different sets
of aims, then justification is relative to a paradigm. But many scientific aims, such as
empirical adequacy and coherence, are paradigm-overarching. Some aims may even be
pursued by all scientists. In the current framework, foundationalism in epistemology
can be seen as the search for such universal aims. For if aims are universally shared,
justification relative to these aims is universally valid.

2.6 Consensus

As soon as the conditional in relativism is not a single individual, but a group, con-
sensus enters the picture. For instance, the justification of belief as knowledge may
be taken as dependent on consensus. It has also been argued that not only the justi-
fication, but also the formation of belief, depends on consensus. For one thing, most
of our knowledge does not stem from direct experience, but rather others’ experiences
that have been communicated to us. An important factor in this social process is
the trust that is placed in others’ knowledge claims. A way to determine the validity
of such claims is by determining whether there is consensus between others on the
claim. While the idea that much of our knowledge was transmitted by others is still
compatible with the view that knowledge ultimately results from direct experience
(albeit now someone else’s experience), it has been argued that experience itself is
determined by social processes. For instance, Vygotsky (1978) argues that higher
psychological processes, such as thinking, arise from the internalisation of social in-
teraction. In a similar vain, Levine, Resnick, and Higgins (1993) state that ‘all mental
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activity – from perceptual recognition to memory to problem solving – involves either
representations of other people or the use of artifacts and cultural forms that have a
social history’ (p.604). A common argument for the social determination of knowl-
edge is that language is a social medium, and experience and thought draw upon
language to make them interpretable. Hence, experience and thought are mediated
by social factors. Such ideas can be classified as ‘social constructivist’, although they
differ from radical social constructivist accounts of science. But consensus is not only
an important concept for scientists of a relativist persuasion. The history of science
is often portrayed as a movement from consensus to consensus (e.g. Kitcher, 1993;
Kuhn, 1970). In this sense, the key advancements in a scientific field are identified by
consensus. On another note, some form of consensus may be deemed necessary for
science to function at all. For instance, Popper’s (1959) falsificationism can only work
if there is consensus on what the basic statements are. For a test of a hypothesis is a
critical test only to the extent that evidence is universally accepted as critical evidence
for or against the hypothesis. In this sense, consensus can resolve the Duhem-Quine
problem. For if there is universal consensus that the auxiliary hypotheses are true,
then a critical test of an isolated theory is possible.

Ziman (1968, 1978) assigns a higher status to consensus, taking it to be the first
principle of science. Attempting to demarcate science from non-science, he argues that
the only principle on which such a distinction can be made is that science strives for a
rational consensus. In the current framework, the incorporation of consensus in the set
of aims would mean that the methods of science should realise this aim. According to
Ziman, the methods commonly used by scientists serve just this aim. De Groot (1961,
1982) takes this idea a step further. Instead of justifying scientific methods (partly)
by arguing that they implicitly serve the goal of consensus, he proposes a normative
methodology which explicitly promotes the goal of consensus. This idea, which is the
key to his Forum-theory, is the topic of Chapter 6. The intermittent chapters concern
the relation between consensus and the issue of underdetermination, as well as social
information integration and collective decision making. But before moving to these
topics, the meaning of the term ‘consensus’ should be addressed.

2.6.1 A definition of consensus

Often, the term ‘consensus’ is employed as a proper synonym for agreement between
people (Horowitz, 1962). So, there is consensus in a group that X if all individuals
in the group agree that X. But, while surely a necessary aspect of consensus, this is
not the whole story. To see why there must be more to consensus, consider a case of
‘false dissensus’. There is false dissensus if everyone believes X, but nobody believes
anybody else to believe X. For clarity of presentation, especially later on, the belief-
operator Bi will be introduced, which is taken to mean ‘individual i believes . . .’. In
the situation just described, there is a group of individuals P = {1, . . . , n}, who all
believe X

(∀i ∈ P)[Bi(X)],
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while each individual believes the other’s don’t believe X

(∀i ∈ P)(∀j 6= i ∈ P)[BiBj(¬X)].

Does it make sense to speak of ‘consensus’ in such a situation? I think not. This situ-
ation of false dissensus is one of ‘accidental’ agreement, but not consensus. Consensus
at least requires that the agreement is recognised. So we may speak of consensus if

(∀i, j ∈ P)[BiBj(X)],

that is, if each individual believes all individuals (including him- or herself) believe
X. I shall take it for granted that if a person believes he/she believes X, he or she
actually believes X (i.e. BiBi(X) =⇒ Bi(X)). The demand for recognition should
be extended further, since it is strange to speak of consensus if the recognition of
agreement is itself not recognised. That is, if everyone believes X, everyone believes
everyone else believes X, but no one believes everyone else believes everyone else
believes X:

(∀i 6= j, k ∈ P)(∀j, k ∈ P)[BjBk(X) ∧Bi¬BjBk(X)].

Since the requirement of recognition should be reapplied to each recognition, that
is, to all higher-order beliefs, we arrive at the notion of common belief, akin to that
of common knowledge (Lewis, 1969). Common knowledge or belief is an important
concept in game theory (Aumann, 1976; Geanakoplos, 1992), the field of multi-agent
systems (Fagin, Halpern, Moses, & Vardi, 1995), and theories of meaning (Schiffer,
1972), and discourse understanding (Clark & Marshall, 1981). There is common belief
in a group if everyone believes X, believes everyone believes X, believes everyone
believes everyone believes X, etc. For a concise definition, define the operator EP as
‘everyone in P believes . . .’, i.e.

EPX ≡
∧

i∈P

BiX.

Then Ek
P can be defined recursively as

E1
PX ≡ EPX

Ek
PX ≡ EPE

k−1
P X for k > 1,

and consensus as common belief as:

Definition 3 (Consensus).
There is consensus in a group P that X if E∞

P X.

2.6.2 Attaining consensus

The formal definition of consensus given above requires an infinite series of beliefs.
But such an infinite series of beliefs cannot be actually entertained in practice (if
believing something takes time, no matter how little, someone can only entertain
a finite number of beliefs in a finite lifetime). Moreover, there is no way to provide
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conclusive empirical evidence for the existence of this consensus, for this would require
verifying the existence of an infinite number of beliefs. Scheff (1967) and Bach (1975),
who arrived at a similar definition of consensus, argue that there is no need for an
infinite series, and that E3

P is enough to speak of consensus. However, the level of
agreement necessary differs from case to case. Truncating the series is certainly not
always a viable solution. In many situations, such as the problem of ‘coordinated
attack’, supposed disagreement on a higher level will lead people to behave as if
there was no agreement at all (for another example, see Rubinstein, 1989). A better
solution, offered by Lewis (1969), is that the infinite series should be viewed as a chain
of implications, not as actual steps in someone’s reasoning. Such an infinite chain of
implications can be based on a few basic premisses. According to Lewis, there is
common belief in a group P that X if a state-of-affairs S holds, such that

(a) Everyone in P has reason to believe that S holds.

(b) S indicates to everyone in P that they all have reason to believe that S holds.

(c) S indicates to everyone in P that X.

What kind of state-of-affairs is S, and how does the chain of implications proceed?
I will try to make the idea more tangible by an example. It seems a safe assumption
that, amongst all people with at least a primary education, there is consensus that
the earth is round. Why? Because being taught that the earth is round is part of all
primary education. So every individual with a primary education believes that the
earth is round. Denoting the set of people with at least a primary education as P,
and the proposition ‘the earth is round’ as X, then

E1
P : (∀i)[(i ∈ P) =⇒ BiX].

Whether I believe that everyone with a primary education believes the earth is round
rests on my belief in E1. But in order to believe that everyone believes everyone else
believes the earth is round, I should believe that everyone else in P also believes E1.
A possible justification for this belief is that membership of P implies belief in E1

E2
PX: (∀i)[(i ∈ P) =⇒ BiEPX].

In order to believe the third-order shared belief (∀i, j, k ∈ P)BiBjBkE a similar
assumption can be made, i.e.

E3
PX: (∀i)[(i ∈ P) =⇒ BiE

2
PX],

and so forth. So a chain of reasoning is instigated from ‘being a member of P’. Being
a member of P implies that one has certain beliefs, as well as certain beliefs about
the beliefs of other members of P. So essentially

P =⇒ E∞
P X.

But how does membership of P imply such consensus? A possible answer is that
‘believing X’ is a defining characteristic of the social-identity of group P. If this
social identity is understood by all members of P, and all members of P share an
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implication-schema, so that (∀i ∈ P)(EPX =⇒ BiEPX), then consensus itself is
implied.

Another and easier way in which consensus can be reached is by overt communi-
cation. If all members in a group come together and voice their belief that X, and
nobody has reason to suspect someone to falsely report this belief, then there is reason
enough for everyone to believe everyone believes X. Moreover, there is reason enough
for everyone to believe there is reason enough to believe everyone believes X, etc.

While infinite series of beliefs are counter-factual and impossible to confirm em-
pirically, the definition of consensus given here is not entirely useless. For consensus
is possible when taken as a chain of implications, based on for instance group-identity
or overt communication. Also, the practical relevance of higher-order beliefs often
diminishes as we move higher up in the hierarchy. Let’s go back to the Duhem-Quine
problem of critical tests. Second-order shared belief in P of the auxiliary hypotheses
A (e.g. E2

PA) seems enough in order for everyone in P to accept a test of theory T
as a critical test for all members of P. However, for everyone to accept that the test
is a critical test for everyone in P would require E3

PA, a third-order shared belief.

2.6.3 Implications of consensus

Consensus (or common belief) is often taken as necessary prerequisite for interpersonal
coordination (Lewis, 1969; Bach, 1975). An example of this necessity is given in the
problem of ‘coordinated attack’ (Fagin et al., 1995). Suppose there are two generals,
who are stationed with their armies on hills located on opposite sides of a valley, with
the enemy army between them. The generals must attack, but an attack will only
be successful if both generals attack at the same time. If any general would attack
by himself, he would suffer unacceptable loss. The only means of communicating
with each-other is through messengers who might not arrive at their destination,
since they have to travel through enemy territory. So the generals cannot be sure
that their message was actually delivered to the other. Suppose that general A plans
on attacking at dawn, and sends a message to general B to inform him about his
intentions. Since general B knows that general A will only attack if he is sure that
general B will do so also, he sends a messenger back to acknowledge his agreement
with the plan. However, general B cannot be sure that this message arrived. Since
general B will only attack if he is sure that A does so also, and A knows this, A sends
a messenger back acknowledging the receipt of B’s message. But for A to attack,
he must be sure that this message has arrived, which would require another message
back, and so forth. There is no way in which both parties can coordinate the attack.

The coordinated attack problem is a clear example in which common belief is
necessary. There is no point at which the infinite series of shared beliefs can be
truncated while maintaining the effect of common belief. But clearly, the coordinated
attack is rather different than situations encountered in scientific practice. Are there
coordination-problems in science which might require consensus? This question will
be addressed in Chapter 6. But to round off this chapter, here is one example where
consensus might play a role in science: assumptions. It is not often that one finds
an article in which all assumptions on which its results rest are stated explicitly. A
possible reason for this is that doing so would diminish the persuasive force of the
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argument in the article. For the number of necessary assumptions can be quite large,
and many assumptions, if not inherently untestable, remain untested nevertheless.
Explicit exposition of all untested assumptions renders the argument an easy target
for criticism. Of course, not mentioning assumptions does not provide immunity
to such criticism. A clever commentator could pinpoint the implicit assumptions
taken. Consensus on the (plausibility of) assumptions however would ‘immunise’ the
argument in a practical way, since no one would be able to criticise these assumptions
without in some sense criticising him- or herself. So consensus on assumptions results
in the absence of criticism to an otherwise criticisable assumption.

Consider as an example the assumption of a normally distributed variable. Since
most hypothesis tests in psychology are either based on a t-test or F -test, this as-
sumption is usually made. As once remarked by Lippman, the reason the assumption
is so widespread is that ‘Experimentalists think that [the Normal distribution] is a
mathematical theorem while the mathematicians believe it to be an experimental
fact.’ (cited in Wright, 2003, p.128). Now this is an example of an assumption which
is testable, for instance by a Kolmogorov-Smirnoff test. But nobody seems to take
the effort to do this, or at least nobody mentions it when they do so. Of course, both
the t-test and F -test are rather robust when it comes to violation of the normality-
assumption. Also, because of the central limit theorem, there can be good reasons
to assume normality. But still, testing the normality assumption takes very little
effort nowadays. So why does nobody do it? There are two options that I would like
to mention. The first is that the assumption is actually tested, but the test is not
mentioned, because the assumption could not be rejected. If there is consensus that
testable assumptions should always be tested, but the test should only be mentioned
when it leads to a rejection of the assumption, this is fine. Any reader who is part of
this consensus could then infer that the assumption holds. It is however questionable
that this particular consensus exists. The second option is that there is consensus
that the assumption is plausible and need not be tested. In this case, a researcher can
quite safely proceed without testing, for neither himself nor peer reviewer or reader
would find the results less convincing because of the absence of a test of the assump-
tion. In this way, the normality assumption achieves the status of a priori knowledge.
I think this is in general how consensus affects propositions: it obliviates the need
to test them. Of course, this is just in the same practical sense that there is only a
problem of justification if there is a disagreement in view.
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The hierarchical theory of justification and

statistical model selection

3.1 Introduction

The possibilities of language are endless. As Chomsky (1957) showed, natural lan-
guage allows for the formation of an infinite number of grammatically correct sen-
tences. For one thing, this is due to the fact that there is no theoretical limit to the
number of dependent clauses that can be embedded in a given sentence, as in ‘the
rat ran’, ‘the rat the cat chased ran’, ‘the rat the cat the dog teased chased ran’,
etc. There is an infinitude of possible sentences which convey a certain message, and
we can conceive an uttered statement as the result of an implicit choice from this
infinitude. Now, consider a situation in which a scientist provides an explanation for
a certain phenomenon. Just like the grammatically correct sentences, the number of
possible explanations he or she can give is also infinite, since it will always be possible
to add another explanans to an existing explanation. For the field of statistical mod-
elling, the situation can be exemplified in what is known as the curve-fitting problem.
In this regression-type problem, the goal is to find a curve that describes a relation
between a set of paired observations (x, y), for instance by finding the function f(x)
that best predicts the values of variable y. Since, for any set of n paired observa-
tions there exists a (n − 1)-degree polynomial that passes through all n points, an
(n−1)-polynomial provides a perfect description of the occurrences of the data. Obvi-
ously, considering this maximal descriptive accuracy, an n-degree polynomial passing
through all points is an equally good candidate for the unknown function, and so is
an (n + 1)-degree polynomial, an (n + 2)-degree polynomial, etc. For any finite set
of paired observations (x, y), there is a family of best fitting curves which has infinite
members. When based purely on the accuracy of description, the choice for one from
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the family is arbitrary.

Science does not pride itself on the arbitrariness of its explanations; the choice for
a certain explanation must be motivated and this motivation should be explicit and
scientifically valid. However, this problem of justification has not been adequately
solved for the empirical sciences. Without any objective criteria for justification, it
is quite reasonable for scientists to disagree, or at least, not irrational to do so. Still,
scientists do reach agreement, and quite often so. Since this consensus is not the
logical result of a reference to the universal rules of scientific inference, there must
be another explanation. One of these involves the postulation of what can be called
the hierarchical theory of justification. It is also known as the theory of instrumental
rationality, and its influential advocates include Popper (1959), Hempel (1965), and
Reichenbach (1938), amongst others.

3.1.1 The hierarchical theory of justification

According to the hierarchical theory of justification, there are three interrelated levels
at which, and by means of which, consensus is forged (Laudan, 1984). The factual
level is the lowest in the hierarchy and concerns matters-of-fact. In this context, the
term ‘matters-of-fact’ refers to all descriptions and explanations of what there is in
the world, formulated as hypotheses, models, theories, etc. The hierarchical theory
prescribes that disagreement concerning such matters-of-fact can be resolved on the
methodological level, which is one step up in the hierarchy. This level consists of
the rules concerning empirical support and theory comparison. The methodological
rules constituting this level will not be the universal laws of scientific inference as
sought by the logical positivists, but rather the inter-subjective rules that are part
of specific paradigms (e.g. Kuhn, 1970). It may be possible that scientists do not
agree on the proper methodological rules. The hierarchical theory prescribes that
disagreement on the methodological level must be resolved by moving to the highest
level in the hierarchy. This is the axiological level, which concerns the goals and aims
of science. These values may resemble the Mertonian norms of science (commonality,
universalism, disinterestedness and organised scepticism) but other, more specific
values can be considered. In fact, any values by which to judge the merits of theories
might be considered here. The model allows for disagreement on an axiological level,
but this disagreement cannot be resolved on a higher level in the hierarchy and so will
remain unresolved. A summary of the hierarchical theory in graphical form is given
in Figure 3.1.

As a preliminary example, let’s impose the hierarchical theory onto the curve-
fitting problem. The problem is to provide an explanation for occurrences in a given
dataset by specifying the generating function that could have resulted in the ob-
served data. Consider two scientists who both have found ‘the’ explanation for the
data: scientist A proposes an (n− 1)-degree polynomial and scientist B an n-degree
polynomial; how can the scientists resolve their disagreement? A reasonable solution
would be to compare their explanations on a common criterion and decide which is
optimal. That is, they must agree on a proper method to evaluate the explanations
and decide on the basis of the result of this evaluation. Clearly, the choice for such
an evaluation method should depend on what both scientists require from an expla-
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Figure 3.1: The hierarchical theory of justification

nation. One requirement already mentioned may be the precision of the explanation,
which in this case may be defined as the fit between the proposed model and the
observed data. Since both polynomials describe the observed data perfectly well, this
criterion is not sufficient to distinguish the explanations. Another requirement may
be that the explanation be as simple as possible. It will become clear later that this
requirement may be problematic, but for now let’s assume that the scientists agree
that the number of degrees of the polynomial is a good measure of the simplicity of
the explanation. Comparing both functions on this criterion, the scientists will agree
on the optimality of the (n−1)-degree polynomial as the explanation for y. Recapitu-
lating: the disagreement on the factual level concerning the best explanation for y was
solved by evaluating the explanations with the agreed-upon parameter count method,
whose use was motivated by the agreement on the axiological level that simplicity is
a required value for any explanation.

3.1.2 Statistical model selection

The curve-fitting problem above is a simplified version of a situation that may arise
when scientists disagree on the best statistical model. For statistical modelling, the
problem of finding the best curve describing paired observations becomes the general
problem of finding the best model to describe regularities in a body of data. A
statistical model M is defined as a family of (multivariate) probability distributions
f(x|θ), characterised by parameters θ = (θ1, θ2, . . . , θk), θ ∈ Θ ⊂ R

k (Linhart &
Zucchini, 1986). The observed data, consisting of n, q-variate observations x =
(x1,x2, . . . ,xn), are considered to be the result of random sampling from a population
which is governed by the data generating process F (x). If F is the set of all q-variate
distribution functions, a model M(θ) is a subset of F , and each element in M(θ)

is a fully specified model. A fitted model M(θ̂x) is a fully specified model of which

the parameters θ̂x are fixed so as to minimise the discrepancy between the model
and the observed distribution f(x), as in maximum likelihood estimation. A best

approximating model M(θ̂F ) is a fully specified model of which the parameters θ̂F
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are fixed so as to minimise the discrepancy between the model and the data generating
process. A model M is correctly specified if F (x) ∈ M , and otherwise misspecified.
A model M1 is nested under model M2 if M1 ⊂ M2, and these models are strictly
non-nested if M1 ∩M2 = ∅.

The general problem of statistical model selection considered here is that of a set
of models M = {M1,M2, . . .} which are proposed to describe the data generating
process F (x). The objective is to choose the element M∗ ∈ M that optimally repre-
sents F (x). The elements of M may be nested or non-nested and correctly specified
or misspecified. Moreover, the nontrivial situations are considered where F (x) is not
directly observable, so that the merit of each model as representing F (x) can only be
estimated. In practise, most of the parameters θ will represent substantial hypothe-
ses concerning the data generating process, but some may represent the auxiliary
assumptions necessary for a model’s identifiability. Most researchers will agree that
the selection of M∗ should be more dependent on the agreement between substantial
relations in the model and the population, than on the agreement between the ad hoc
assumptions and the population (e.g. Golden, 2000).

3.1.3 Requirements of the hierarchical theory

According to the hierarchical theory of justification, disagreement over M∗ can be
resolved by reaching agreement on the proper methods to determine the models’
merit, while disagreement regarding these specific methods can be resolved by reaching
agreement on what qualities a method should address. The hierarchical theory of
justification offers a normative theory of rational scientific decision-making and is an
application of the decision-theoretic framework described in Chapter 2. For statistical
model selection, the decision constitutes a choice from the model set M and this choice
is to be made in accordance with epistemic aims or goals g ∈ G. In other words, the
choice for a model can be evaluated in terms of the consequences that choice has for
the realisation of the epistemic aim g. If there are J aims under consideration, we
may assume that each model can be characterised by J variables vj , each reflecting
the value of the model relative to the epistemic aim gj . Not every aim may be deemed
of equal importance to each decision-maker. As such, the values vjk of a model k may
be weighted by the relative importance wij of aim gj to decision-maker i. If the values
vjk and the weights wij were directly accessible and both measured on an interval
scale, the model selection problem would be solvable by standard techniques for multi-
attribute decision making (e.g. Keeny & Raiffa, 1976). For instance, a simple and
widely used decision rule is to choose the option which maximises the weighted sum,
i.e. M∗ = arg maxk

∑
j wijvjk. Although some of the values vjk may be directly

inferred from the model Mk, often this will not be the case. When some of the values
must be estimated on the basis of the model and the data, the decision procedure is
more complicated, because a model which has the highest estimated worth may in
reality have less worth than another model in the choice set. Any way, in statistical
model selection, it is customary to use a model selection criterion C as the decision
procedure. Theoretically, we may assume that the criterion acts as a function over
the values vjk. The appropriateness of a criterion for an individual i can then be
evaluated as the match between the weights which the criterion inherently assigns to
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the values vjk and the weights wij the decision-maker i assigns to the aims gj .
Because disagreement on the methodological level must be resolvable by reaching

agreement on the axiological level, the hierarchical theory is based on the assumption
that a single stance on the axiological level unequivocally leads to a single stance on
the methodological level. Thus, there should not be multiple conflicting methods that
are optimal in the light of the values by which the methods are judged. Similarly,
the hierarchical theory prescribes a direct relation between an evaluation method and
a model: there should not be multiple, conflicting models that are optimal in the
light of the agreed-upon evaluation methods. Thus, the usefulness of the hierarchical
theory of justification in the context of statistical modelling rests on the existence
of an optimal model evaluation criterion C∗ in a set C of proposed criteria, given a
specific stance on the axiological level, and the existence of a model M∗ in a set M
of proposed models, that is optimal in the light of C∗. More formally, the two critical
assumptions of the hierarchical model are that, for any (non-empty) set of aims G,
criteria C, and models M:

(∃Ci ≡ C∗, Ci ∈ C)(∀Cj 6=i ∈ C)(u|G(Ci) ≻ u|G(Cj)), (3.1)

in which u|G denotes the utility of a particular criterion in forwarding a set of aims
G, and

(∃Mi ≡M∗,Mi ∈ M)(∀Mj 6=i ∈ M)(C∗(Mi) ≻ C∗(Mj)). (3.2)

3.1.4 Overview

The purpose of this chapter is to determine the tenability of these two assumptions
and with that of the hierarchical theory of justification. The field of statistical model
selection is especially useful for this analysis. Due to the quantitative nature of
statistical models, the epistemic consequences of different models (the values of models
relative to epistemic aims) can be relatively precisely determined. The hierarchical
theory is often assumed to hold, either explicitly in discussions of scientific rationality
and theory choice, or implicitly in those of statistical model selection. For the latter
field, the hierarchical theory may provide a general framework in which to address
different model evaluation criteria. To my knowledge, statistical model selection has
not been viewed as a multi-attribute decision problem. This view can provide a
means of overarching the separation in the literature on model selection, couched
in different statistical paradigms such as frequentism, Bayesianism, and information-
theory. Even if the main assumptions are untenable, the quality of the hierarchical
theory as a descriptive device may remain relatively untouched. The untenability
of the hierarchical theory as a normative device does have implications for the view
that model selection can proceed on an algorithmic basis. Furthermore, the tenability
of the hierarchical theory has strong implications for the classical view that scientific
consensus is the product of the (or at least, ‘a’) scientific method (e.g. Laudan, 1984).

The structure of the remainder of this chapter follows the structure of the hier-
archical theory of justification. First, the epistemic aims comprising the axiological
level are addressed. This is followed by a discussion of the model selection criteria
and their relation to these epistemic aims. After this spade-work, the tenability of
the two critical assumptions will be addressed. Essentially, this will require two forms
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of determination, namely that the choice for a method is completely determined by
a stance on the axiological level, and that the choice for a model is determined by a
stance on the methodological level.

3.2 Axiological values: precision, generality and simplicity

An analysis of the applicability of the hierarchical theory of justification to the situ-
ation of statistical model selection naturally starts at the top level in the hierarchy:
what specific values are taken into account when a statistical model is evaluated?
From a strictly realist viewpoint, an optimal model is that which represents the ‘true’
relations in the population, so that M∗ = F (x). From a strictly instrumentalist view-
point, an optimal model is that which is most accurate in predicting observations. A
model that is optimal from a realist viewpoint will be optimal from an instrumen-
talist viewpoint, but this relation is not necessarily reciprocal. In practise, a model’s
predictive qualities may be the sole indication of a model’s optimality available to
proponents of either view. Two models performing equally well in this respect, such
as the two polynomials in the curve-fitting example, must be distinguished on other
criteria, based on other axiological values.

According to Forster (2000), all scientific approaches to model selection follow
three steps: the specification of a goal, the specification of a criterion as means to this
goal, and an explanation of how the criterion achieves the goal. This characterisation
is similar to the hierarchical theory in that the goal is the axiological value, the
criterion or means is the method and the explanation should state how the method
exactly follows from the goal. As stated earlier, the goal for a realist would be to
arrive at the true model, while the goal for an instrumentalist would be to arrive at
the best predicting model. The problem for the realists is how to reach the goal of
a true model, since there is no universally valid method to determine the truth of a
model. The task for the instrumentalist may be easier, although a method for proving
that a model will optimally predict future observations is also not at hand. Since the
axiological values of truth and optimal (perfect) prediction do not directly lead to
methods for their realisation, the hierarchical theory may be rejected. However, this
is premature if other aims can be distinguished which are directly associated with
methods for their realisation.

The axiological values considered relevant in the context of statistical modelling are
precision, generality and simplicity. Although still other values may enter discussions
regarding the appropriateness of models, these three values seem commonly attached
to statistical models and theories in general. For instance, Popper (1959) summarises
the requirements of good theories – theories high in empirical content – as precision,
universality (generality) and low dimensionality (essentially ‘simplicity’) In a recent
special issue of Journal of Mathematical Psychology (vol. 44, issue 1) on statistical
model selection, most authors base their description on some or all of these values.
Jacobs’ and Grainger’s (1994) list contains descriptive adequacy, generality, simplicity
(and falsifiability) and explanatory adequacy, in which the last one is described rather
vaguely. Finally, Myung and Pitt (1997) name descriptive adequacy and complexity,
although their definition of complexity seems to incorporate the generality of a model.
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Figure 3.2: Types of precision as relations between F (x), M(θ̂F ) and M(θ̂x)

In the following paragraphs, precision, generality and simplicity are first treated
separately. Since in practice, they are often interrelated or overlapping, some of their
connections are described in the closing section of this paragraph.

3.2.1 Precision

Of the three values, precision is least problematic (Cutting, 2000). Using the frame-
work of Linhart and Zucchini (1986), we may make a distinction between a model’s
approximation precision and its estimation precision (see Figure 3.2). A model’s ap-
proximation precision is its maximum obtainable precision in representing F (x). It is

the inverse of the discrepancy ∆[F (x),M(θ̂F )] between the data generating process
and the best approximating model. For a correctly specified model, the approxima-
tion precision clearly equals its maximum value. A model’s estimation precision is the
precision of the fitted model in representing the best approximating model. It is the
inverse of the discrepancy ∆[M(θ̂x),M(θ̂F )] between the fitted and best approximat-
ing model. The estimation precision thus represents a fitted model’s precision in the
light of sampling error and is dependent on sample size. With the types of precision
distinguished here, the realist aim can now be defined as maximising approximation
precision, while the instrumentalist aim is defined as maximising the expected overall
precision, which effectively consists of finding an optimal balance between approxima-
tion and estimation precision. Since the data generating process is generally unknown,
it is not straightforward to show the extent in which either aim is met, although the
instrumentalist aim may be the more realistic one.

Maximal precision per se is usually not the objective in statistical modelling (e.g.
Kaplan, 2000). The specification of a model should not be motivated by the need
for a complete description of reality; if this would be the aim, then why specify
a model at all? Reality is a precise enough description of itself; no model could
do better! A model is taken to be an analogy for reality and should highlight those
particular aspects of it that are interesting in the context of what one wants to explain.
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The precision of a model should be adequate, not necessarily complete. Thus, for a
statistical model, precision becomes descriptive adequacy (e.g. Jacobs & Grainger,
1994). Taking observations as the sum of signal and noise, adequate precision would
be reached when the model addresses the signal and not the noise. Of course, whether
the residual variation is really random noise is a metaphysical question, whose answer
is usually imposed by assumption.

3.2.2 Generality

Generality is more difficult to specify than precision (Cutting, 2000). It can be defined
in terms of the domain to which the model applies: a model built in the domain of
one data set hopefully generalises to other data sets, observed in similar situations.
In this sense, generality is defined as the predictive precision of a model. A model’s
maximum predictive precision equals the estimation precision defined above. A re-
lated but different aspect of generality is a model’s scope, which can be defined as
a model’s robustness to changes in the data generating process. This term could be
operationalised as the proportion of the model-appropriate domain in which a model
is expected to reach a certain level of precision (Cutting, 2000; Popper, 1959). As
such, it requires specification of the model-appropriate domain, or the set of data
generating processes to which the model is required to apply. This aspect of a model
may be studied by simulation. While it is desirable for a fitted model to perform well
under certain changes in the data generating process, a model that is precise in all
possible samples to which it may be fitted is regarded as too flexible and unfalsifiable.
This is related to Popper’s (1959) notion of the empirical content of a hypothesis: the
more the predictive domain of a hypothesis is restricted, the more falsifiable it is and
the more specific the information it entails. Analysis of a model’s scope is obviously
more involved, and usually only predictive precision is taken into account.

3.2.3 Simplicity

Simplicity, while arguably one of the most widely underwritten values in science,
may be the hardest of the three values to define (Cutting, 2000; Popper, 1959). In
contrast to precision and generality, which are properties of the relation between a
model and the data, simplicity is a property of the model alone. Despite the lack
of an universally accepted definition (Derkse, 1993), the principle of simplicity has
guided scientific inference for over two millennia. In the Physics, Aristotle explicitly
stated that it is better to use a minimal plurality of principles (see Derkse, 1993, for
an analysis of Aristotle’s use of simplicity). Currently, the principle of simplicity is
commonly referred to as Occam’s Razor, after William of Ockham, who applied the
principle so often and with such rigour, that the principle of parsimony was later given
his name. In the form mistakenly ascribed to Ockham (Thorburn, 1918), the principle
is stated as ‘plurality should not be posited without necessity’, but in practice, the
principle is usually taken to mean something like ‘among the several theories that
are all consistent with the observed phenomena, one should pick the simplest theory’
(e.g. Li & Vitáni, 1992). But when is a theory or model simpler and why should it be
preferred when it is? While the last question doesn’t require an answer if simplicity



3.2. Axiological values: precision, generality and simplicity 31

is purely a goal, it has been posed so often that it will be insightful to deal with it.
For the attempts at justification lead to the question whether simplicity is held as a
goal in itself or is assumed to be a principle which advances another goal.

How is simplicity defined?

For Aristotle and Ockham, the principle of simplicity referred mostly to paucity in the
presupposition of entities in the world. For instance, Ockham used the principle to
defer with the existence of species, the medieval concept of mediators between object
and knower. The assumed simplicity of objects in reality can be termed ontological
simplicity, to distinguish it from semiotic simplicity, which refers to the simplicity of
concepts, propositions and theories (Bunge, 1962). Ontological simplicity is mostly
associated with ontological justifications, while more diverse justifications are asso-
ciated with semiotic simplicity. The latter type of simplicity is usually assumed in
current versions of Occam’s Razor, and it will be this form of simplicity that is dealt
with here. Moreover, as Bunge (1962) argues, this is the primary form of simplicity,
since ontological simplicity can be judged through scientific analysis. One problem of
semiotic simplicity is its possible language dependence. In terms of the curve-fitting
example, a curve that looks simple in a x − y diagram will look complex in a x′ − y
diagram, when x′ is a nonlinear transformation of the original variable x. To com-
pare the simplicity of different theories, one would like a criterion independent of the
language in which the theory is stated. One solution to this problem has been to
define the simplicity of an object x in terms of its Kolmogorov complexity, which is
defined as the shortest binary computer program that has x as output (Li & Vitáni,
1992). Since the length of a program depends on the language in which it is written,
the definition requires a universal computer language, defined in terms of a Universal
Turing Machine, capable of describing all other Turing machines. By referring to the
shortest binary program for a Universal Turing Machine, the Kolmogorov complexity
provides a language invariant definition of simplicity. Unfortunately, it is logically im-
possible to compute. However, different estimations of the Kolmogorov Complexity
have been proposed, such as Rissanen’s (1983) Minimum Description Length, which
will be discussed later.

For statistical models concerned with relations in a finite set of observations, lan-
guage variance may not pose a direct problem, since the models considered can be
formulated in terms of probability distributions over the outcome space. The simplic-
ity of a statistical model is then usually defined in terms of the number of adjustable
model parameters, an approach similar to that proposed by Jeffreys (cited in Sober,
2000). According to Jeffreys, the simplicity of a law is defined as the summation of
the number of freely adjustable parameters with the absolute values of its integers
(degrees and datives). However, this definition is difficult to apply to a function such
as y = sinx (Sober, 2000). Similarly, Popper (1959) defines the simplicity of a the-
ory in terms of the number of its dimensions, which, for quantitative laws equals the
number of freely adjustable parameters.

Although the simplicity of a model and the number of parameters will be gener-
ally related, the strength of this relation is not always clear. As the above example
makes clear, the ‘number of free parameters’ measure of complexity may not capture
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all intuitively clear simplicity differences. Myung and Pitt (1997) propose a measure
of complexity that, beside the number of model parameters, also takes the ‘functional
form’ of a model and the ‘extension of the parameter space’ into account. The func-
tional form of a model is defined as ‘the way in which parameters are combined in
the model equation’ (p.81) and the extension of the parameter space is defined as
the range of parameter values allowed by the model. Although the functional form
seems incorporated in intuitive notions of simplicity, the extension of parameter space
seems more characteristic for a model’s flexibility or its precision in making predic-
tions about parameter values. The example provided by Myung and Pitt is that of
two models that are both characterised by the equation y = 1/(1 + e−θx), but with
different parameter spaces, ΘM1

= R and ΘM2
= R

+. Essentially, M2 is nested in
M1, the model M2 being restricted to increasing functions, while M1 also incorporates
decreasing functions. This renders M1 a more general model, but is it really a more
complex one? Take for example two models characterised by the function y = a+ bx,
in which for model M1 : a ∈ (0, 2) and for model M2 : a ∈ (0, 1). Is model m1 to be
judged (more) ‘complex’, or less specific, but more general?

The concept of simplicity is complex (Bunge, 1962), and as yet there may not be a
measure available that captures all of its aspects. Even for the relatively easy case of
mathematically specified models, its true nature may remain elusive. However, there
seems to be a large consensus in the statistical modelling field on the operationalisation
of the simplicity as the number of model parameters (Cutting, 2000), and that is all
that the hierarchical theory requires.

How is the principle of simplicity justified?

Despite the murky definition of simplicity, Occam’s Razor is often taken as the canon
of scientific inference. The classical motivation for applying the simplicity principle
is ontological: a simple theory is to be preferred because this reflects the inherent
simplicity of nature. This position was taken by Aristotle, who argued that if nature
had unlimited constituent parts, it would be indefinite, in which case things of nature
could not be the object of knowledge, a conclusion he deemed absurd (Derkse, 1993).
For Ockham, the ontological motivation was also important, although he seldom ex-
plicitly justified his use of the simplicity principle. Also, Newton took an ontological
stance when he stated that ‘Nature is pleased with simplicity, and affects not the
pomp of superfluous causes’ (Principia Mathematica, 1687; cited in Thorburn, 1918).
In the light of current theories, in which natural systems move towards complexity
(Nicolis & Prigogine, 1989), such a stance seems difficult to defend.

For Popper (1959), the simplicity principle is justified by empirical content: ‘Sim-
ple statements, if knowledge is our object, are to be prized more highly than less
simple ones because they tell us more; because their empirical content is greater;
and because they are better testable’ (p.142). Popper illustrates his position with an
example of the simple hypothesis of a straight line and the complex hypothesis of a
circle: three data points are required to falsify the hypothesis that all points lie on
a straight line, while four data points are required to falsify the hypothesis that all
points lie on a circle. Similarly, Sober (1975) related the simplicity of a hypothesis to
the amount of information it conveys. More specifically, he defines the simplicity of a
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hypothesis in terms of the amount of extra information needed to answer a question
related to the hypothesis.

Mach (1956, cited in Derkse, 1993) justifies the simplicity principle by psycho-
logical economy. According to Mach, science is defined as reducing the need for
experience by the anticipation of facts in thought. Simpler theories are more cost-
effective in this reduction. Mach’s justification by psychological economy seems to
follow from an instrumentalist view, since the psychological economy of a hypothesis
in no way guarantees a model’s truth. As long as models have a similar predictive
precision, a strict instrumentalist, judging models purely on their predictive qualities,
should be indifferent. This indifference leaves room for additional evaluations, so that
the simpler may be preferred for its psychological economy, but this preference does
not follow from a strict instrumentalist position. As Planck argued (cited in Derkse,
1993), every theory can be simultaneously a simplification and a multiplication, de-
pending on one’s point of view. For example, the hypothesis of atomism could be
judged a legitimate theoretical simplification as well as a needless multiplication of
entities. Basically, Mach’s form of simplicity is not an inherent quality of an object,
but a subjectively assigned label by a perceiver of the object. Each perceiver can
assign a degree of simplicity to the object he or she sees fit, making the justification
of the principle also subjective. This subjectivism makes Mach’s version of simplicity
unfit to function as an axiological value in the hierarchical theory of justification,
since it does not lead to a single method for its realisation.

Jeffreys (1961) argues that simple models should be preferred because they are
a priori more probable. He bases this assertion on a similar ground as Mach: sci-
entists seem to prefer simple models to complex ones, all other things being equal.
Considering nested models, the notion that simple models have a higher prior prob-
ability is rather counterintuitive. Standard probability theory prescribes that, if X
is a subset of Y, then the probability of X cannot exceed the probability of Y, i.e.
X ⊂ Y =⇒ P (X ) ≤ P (Y). So actually, a more complex model should have a higher
probability than a simpler one, at least when the models are nested.

The final justification considered here is statistical in nature and relates simplicity
to predictive accuracy by arguing that the additional parameters in a more complex
model may just capitalise on chance, accounting for random sample fluctuations rather
than true population characteristics. This is the traditional justification for trading off
fit for the simplicity of a model (e.g. Cheeseman, 1990; Forster, 2000; Myung, 2000).
Reichenbach (1938) has argued along this line in relation to the curve-fitting problem.
As Zucchini (2000) points out, a more complex model M1 will generally have a smaller

error of approximation than a simpler model M2, but the fitted model M1(θ̂x) will

generally have a greater error of estimation than a fitted model M2(θ̂x). This is due
to the general observation that, for a fixed number of observations, the parameter
estimates for model M1 will be relatively less stable than those for model M2. Thus,
while the more complex model family is potentially more precise, a realised model
M1(θ̂x) from this family will generally not live up to its potential. This argument
applies directly mainly in situations where model M2 is nested in M1, so that greater
complexity is the result of additional model-parameters. In the presence of random
sample error, a model that fits the data perfectly well accounts for the sample error
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as if it were a structural aspect of the data generating process. Remember that
from the definition of a correctly specified model, it follows that if a model M is
correctly specified, those models in which M is nested are also correctly specified.
Consider a sequence of nested models (M1,M2, . . . ,Mk,Mk+1, . . .), in which model
Mk is correctly specified (and with that also models Mk+1,Mk+2, . . .), while Mk−1

isn’t. We may call Mk the minimal correctly specified model. If there was an infinite
amount of data, all correctly specified estimated modelsMk(θ̂), Mk+1(θ̂), . . . would be

practically identical (the additional parameters of the models Mk+1(θ̂),Mk+2(θ̂), . . .
would for instance be estimated at 0). But since the data is limited, parameter
estimates are unreliable, and will be influenced by the random sample error. And
the more additional parameters to estimate, the larger such influence. In short, the
argument for simplicity rests on the more complex models Mk+1,Mk+2, . . . having
additional parameters which are redundant in the light of predictive accuracy, since
they only account for random error in a particular sample. But since non-nested
models may differ in respect to their approximation precision, so that a more complex
model is correctly specified, while a simpler is not, the argument of greater predictive
accuracy does not necessarily apply in this case.

From all justifications of the simplicity principle, the last may be most appropriate
for the selection of statistical models. The trade-off between model fit and simplicity
to maximise predictive accuracy seems to constitute a well-defined version of Occam’s
Razor (Forster, 2000). However, since this justification applies directly only when
choosing from a set of nested models, this version of Occam’s Razor may be restated
as: For a set of nested models, the preferred model is that which does not fit the
data significantly worse than the other models, while its parameter estimates are
more reliable than those of the others. This seems justifiable from an instrumentalist
viewpoint and it makes the model selection partly dependent on the sample size.
From a realist viewpoint, however, this justification does not make immediate sense,
since a model should be judged on its correspondence to reality, not the precision with
which the parameters of a possibly misspecified model can be estimated in a limited
sample of observations.

3.2.4 Connections

A link between the simplicity of a model and its predictive accuracy was described
above as a justification for the simplicity principle. This is based on the simple asser-
tion that, in general, for a fixed number of observations, the reliability of parameter
estimates is inversely related to the number of model parameters. Thus, simplicity
defined in terms of the number of model parameters may be positively related to a
model’s predictive accuracy. More precisely, for two nested, correctly specified models,
the estimated simpler model will more likely reliably represent the structural relations
in the data generating process, since the more complex will more likely incorporate
random sample fluctuation into its parameter estimates. Similarly, in the presence of
random sample fluctuation, the descriptive precision and predictive accuracy are also
inversely related. Finally, in the presence of sample error, there will be a negative
relation between the simplicity of a model and its descriptive accuracy. Note that
these relations directly hold for nested, correctly specified models. The argument for
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all relations is similar: a model should account for important relations in a popula-
tion and these relations may be more reliably estimated in simple models. However,
for misspecified models, the parameter estimates of a simpler model may be more
reliable, but less valid.

3.3 On the methodological level: model evaluation criteria

The dependencies between the axiological values show that they cannot all be opti-
mally realised at once. There is often a trade-off between simplicity and precision and
between precision and generality. A model evaluation criterion should decide on the
model in which this trade-off is optimally reached. According to the hierarchical the-
ory, the specific model evaluation criterion to use should follow from one’s stance on
the axiological level. That disagreement concerning the appropriate model evaluation
criteria is likely, follows from the number of available fit-indices, a number so large
that one author remarked that ‘it seems likely we will need a tool to select model
selection tools in the not too distant future’ (De Leeuw, 1990, p. 240).

In the following sections, common model evaluation criteria are compared by iden-
tifying the axiological values they address. This is not a straightforward matter, since
a number of indices simultaneously address multiple values. However, one value may
be the dominant basis in a given criterion, and the following categorisation rests on
such dominance.

3.3.1 Criteria addressing precision

A model’s descriptive precision is directly observable, and a model evaluation criterion
that incorporates it directly can be based on the χ2 discrepancy

Cχ =

n∑

i=1

[
f(xi) −M(xi|θ̂)

]2

M(xi|θ̂)
, (3.3)

or the Gauss discrepancy

CG =

n∑

i=1

[f(xi) −M(xi|θ̂)]2. (3.4)

Another criterion can be defined in terms of the log-likelihood

CL = − 1
n

n∑

i=1

log [M(xi|θ̂)]. (3.5)

In the absence of sampling error, such criteria would be good indicators of the approx-
imation precision, but if the observed distribution is a random realisation of the data
generating process, minimising these discrepancies will probably lead to overfitting,
and a researcher should then be more interested in a model’s average precision over
a number of such realisations, i.e. the predictive precision.
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3.3.2 Criteria addressing generality

A natural definition of predictive precision is in terms of the Kullback-Leibler distance

∆KL[F (x),M(θ̂)] (3.6)

between a model and the data generating process. A model evaluation criterion that
provides an asymptotic estimate of the mean Kulback-Leibler distance of a model is
the Akaike Information Criterion (Akaike, 1992[1973]), defined as

CAIC = −2

n∑

i=1

log [M(xi|θ̂x)] + 2k, (3.7)

where k is the number of free model parameters. CAIC is sometimes interpreted as a
criterion of predictive precision (e.g. De Leeuw, 1992) , and sometimes as a criterion
that penalises a model’s descriptive precision with its complexity (Forster & Sober,
1994). A criterion with a similar form, although derived in a different theoretical
framework, is the Bayesian Information Criterion (Schwarz, 1978), defined as

CBIC = −2

n∑

i=1

log [M(xi|θ̂x)] + k log n. (3.8)

A model for which CAIC or CBIC is minimal should be chosen. The difference between
CAIC and CBIC is that the first selects the model of which the estimated Kullback-
Leibler distance is minimal, while the latter selects the model which maximises the
posterior probability of the model given the data (Myung, 2000).

3.3.3 Criteria addressing simplicity

As previously mentioned, CAIC and CBIC can be interpreted as criteria that penalise
a model’s fit by its complexity. The penalty term 2k of CAIC is a constant for a given
model, while the penalty term k log n of CBIC is dependent on sample size, so that
with increasing sample size the penalty for model complexity becomes relatively more
severe. A criterion that specifically addresses a model’s simplicity is the Minimum
Description Length (Rissanen, 1996), which estimates the Kolmogorov Complexity by
replacing algorithmic complexity with stochastic complexity (the shortest obtainable
description of x by a model class M). The MDL takes the familiar form of a penalised
likelihood and is defined as

CMDL = −
n∑

i=1

log [M(xi|θ̂x)] + k
2 log n

2π
+ log

∫ √
|I(θ)|dθ + o(1) (3.9)

(Rissanen, 1996), in which |I(θ)| is the determinant of the Fisher information matrix
and o(1) becomes negligible for n large. The last terms are often difficult or impossible
to compute, but a reasonable practical version views stochastic complexity as a two-
stage description of the data, consisting of the encoding of a model M(θ) and the
encoding of the data x using M(θ). This leads to an approximation of CMDL as

CMDL = −
n∑

i=1

log [M(xi|θ̂x)] + k
2 log n (3.10)
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(Grünwald, 2000), which is identical to one half of CBIC. As such, both CMDL and
CBIC will result in an identical ordering of the models Mi ∈ M.

3.3.4 Connections

The general form of a model evaluation criterion is that of a penalised likelihood, in
which the penalty is dependent on the number of model parameters (CAIC), com-
bined with the number of observations (CBIC, CMDL). For a set of nested, correctly
specified models, these criteria essentially compare the models on their expected pre-
dictive accuracy. But, given the prevalent view that statistical models are never true
(e.g. McDonald & Marsh, 1990), it is questionable whether a model is ever correctly
specified. As Golden (2000) has shown, when dealing with two non-nested models,
one of which is correctly specified and the other not, the model selection criteria
may actually show a strong favour for the misspecified model. Golden proposes a
model selection test, which tests the hypothesis that two models have an equal error
of approximation. This test is highly conservative, leading to a choice in just a few
situations. At least for the applicability of the hierarchical theory of justification, a
method that mostly results in indifference is not an optimal method.

3.4 The hierarchical theory in action

As indicated earlier, the applicability of the hierarchical theory as a normative device
rests on the two critical assumptions given in (3.1) and (3.2). Below, the tenability
of these two assumptions will be discussed in turn.

3.4.1 From aims to methods

The first critical assumption (3.1) of the hierarchical theory of justification is that by
taking a stance on the axiological level, the number of optimal evaluation criteria is
restricted to one. Since precision, generality, and simplicity are all generally endorsed
and multiple criteria address all three aims, this restriction either depends on (a) a
single method optimally addressing all values, or (b) a correspondence between an
individual’s relative ranking of the aims and the relative strength with which the
criteria address them.

Since the optimality of the evaluation criteria depends on the correctness of the
assumptions on which the criteria are based, which in turn requires knowledge of the
data generating process, I take option (a) not to be true for realistic situations. The
problem here is that both the adequacy of a criterion and a model rest on assumptions
regarding the data generating process F (x). For instance, CBIC is consistent, meaning
that if F (x) ∈ M, then by using CBIC, P [M∗ = F (x)] → 1 when n→ ∞. This does
not hold for CAIC. On the other hand, CAIC is loss-efficient when F (x) 6∈ M, meaning
that the expected squared error of M∗ is asymptotically equivalent to the smallest
possible of all candidate models in M. This does not hold for CBIC. The assumption
that at least one of the models in M is correctly specified cannot be tested. Since the
set of models M will not exhaust the possible models, it is neither always true. Option
(b) seems more viable. For instance, since CMDL and CBIC place a stronger penalty on
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extra parameters as the sample size increases, researchers putting more emphasis on
simplicity than generality may prefer these criteria to CAIC, while researchers putting
more emphasis on generality may choose the latter.

3.4.2 Model equivalence: statistical underdetermination

The second critical assumption (3.2) is that the choice for a model evaluation cri-
terion restricts the number of optimal models to one. Regarding this requirement,
the problem of underdetermination must be addressed. As exemplified in the intro-
duction of this chapter, multiple models may fit the data equally well, so that their
choice is underdetermined by precision. Such equivalent models arise routinely, espe-
cially in the area of structural equation models, which is one of the more prevalent
types statistical model in psychology. In structural equation modelling, two mod-
els M1 and M2 are equivalent if they reproduce the same set of covariance matrices
when their parameters vary over the parameter spaces. The topic of model equiva-
lence in structural equation modelling has received some attention over the last 20
years (e.g. MacCallum, Wegener, Uchino, & Fabrigar, 1993; Raykov & Penev, 1999;
Stelzl, 1986; Williams, Bozdogan, & Aiman-Smith, 1996), leading to various algo-
rithms for producing equivalent models. One of the more sophisticated algorithms
is based on graph theory, and allows the specification of the entire equivalence class
for a particular model M . Although the problem of model equivalence has received
due theoretical attention, in practice, scientist rarely acknowledge the existence of
equivalent models for a favoured model (Breckler, 1990). As Markus (2002) argues,
equivalent models pose a problem only to the extent that the statistically equiva-
lent models are not semantically equivalent. Trivially, any model is equivalent to
itself. Also trivially, any model is equivalent to a nesting model in which all addi-
tional parameters are set to 0 (or 1). Such examples of equivalent models are not
very interesting, because these models will have an identical semantic interpretation.
Examples of equivalent structural equation models that do differ semantically can be
easily constructed by changing the causal direction of certain effects. Such examples
may be seen as instances of the classic methodological adagio that ‘correlation does
not imply causation’. But this is not all there is to statistical model equivalence. An
interesting example of model equivalence is given by Bartholomew and Knott (1999),
who show that a (k+ 1)-latent profile model is equivalent to a k-factor model. Mole-
naar and Von Eye (1994) expanded on this result, showing the complete equivalence
of these models on the level of second-order moments. These authors pointed to the
significance of this result for the types vs traits discussion in differential psychology.
Essentially, if latent profile analysis was more popular than factor analysis, we might
be talking about the Big Six rather than the Big Five.

Equivalent models pose a serious problem to the hierarchical theory of justifica-
tion. Two types of statistical equivalence can be distinguished. Sample equivalence
means that for a given finite sample of data x, two models M1 and M2 have identical
likelihoods, i.e.

n∑

i=1

log [M1(xi|θ̂x)] =

n∑

i=1

log [M2(xi|θ̂x)]. (3.11)
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Figure 3.3: Population equivalent models

Population equivalence means that models assign identical likelihood to the popula-
tion of all data generated by the data generating process F (x). This implies that two
models M1 and M2 are population equivalent if

∆KL[F (x),M1] = ∆KL[F (x),M2]. (3.12)

Population equivalent models may have identical likelihood functions, as is the case
with many equivalent SEM models. But this is not necessarily so. An example
of two population equivalent models with different likelihood functions is given in
Figure 3.3. Note that models that are population equivalent are not necessarily sample
equivalent, since population equivalent models can assign a different likelihood to a
given sample. But as sample size increases, so does the probability that two population
equivalent models will also be sample equivalent. Population equivalence results in
the more serious form of underdetermination, since population equivalent models are
underdetermined by all possible observations. Sample equivalence is less serious, since
gathering more data will usually resolve the underdetermination.

Since equivalent models assign identical likelihood to observed data x, they must
be distinguished by other aspects than descriptive precision. The two aims endorsed
most widely are generality and simplicity. The underdetermination problem is not
solved by a generality criterion defined in terms of predictive precision, since equiva-
lent models give similar predictions for new data. If equivalent models have different
numbers of parameters, they can be distinguished by a simplicity criterion. How-
ever, equivalent models will often have the same number of parameters (Williams et
al., 1996), so that none of the model selection criteria described here will be able to
distinguish between them.
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3.5 Conclusion

The problem of statistical modelling has been described as the choice for an optimal
modelM∗ from a set of possibly misspecified, possibly non-nested models M. Accord-
ing to the hierarchical theory of justification, disagreement concerning this choice is
resolved by reaching agreement on the proper model evaluation criteria. Disagreement
concerning these model evaluation criteria in turn is resolved by reaching agreement
on the axiological values, defining the proper goals for statistical modelling or science
in general. The hierarchical theory defines a top-down mechanism where agreement
on the axiological level forges consensus on the proper model evaluation criteria, which
in turn forges consensus on the proper model M∗. It is a normative theory, describ-
ing a rational method of resolving scientific disagreement. The applicability of the
hierarchical theory to statistical model selection is limited due to two reasons. The
first is that the optimality of model selection criteria rests on assumptions regarding
the data generating process F (x). This means that the problem of deciding on an
optimal selection criterion can not be entirely separated from that of deciding on the
optimal model. The second is the possible existence of equivalent models. This means
that two models may be indistinguishable on the basis of a chosen model selection
criterion. Admittedly, this conclusion is based on a specific set of axiological values
and model evaluation criteria. Incorporating other axiological values, or different
operationalisations thereof, may lead to different model evaluation criteria which do
distinguish between otherwise equivalent models. For example, some authors argue
that the definition of simplicity in terms of the number of parameters is not adequate
(e.g. Bozdogan, 2000) and that the functional form of the model should also be taken
into account. In the ICOMP(IFIM) criterion (e.g. Bozdogan, 2000), complexity is
defined in terms of the inverse of the estimated Fisher Information matrix, of which
the elements represent the (co-)variances of parameter estimates. While this criterion,
as well as the proper version of CMDL, might be able to distinguish between otherwise
equivalent models, it is interesting to note that here it is not the simplicity of a model
that seems to matter, but the reliability of parameter estimates. This is also the main
concern when using CAIC, which amounts to choosing the model with the highest ex-
pected overall precision. Since the estimation precision will increase with sample size,
it makes sense that the effect of the penalty term disappears with increasing sam-
ple size. As such, it can be argued that the simplicity aim is parasitic on the aim
for reliable parameter estimates. This holds to a lesser extent for CBIC and CMDL,
where the penalty on extra parameters becomes relatively stronger when sample size
increases. As such, these criteria may be the more appropriate when simplicity per se
is an aspired aim. However, it is unclear whether simplicity can be taken to serve the
higher-order realist or instrumentalist aims. Taken as the maximisation of approx-
imation precision, the realist aim is served by simplicity only under the ontological
assumption that nature (the data generating process) is inherently simple. When the
instrumentalist aim is defined as the maximisation of expected overall precision, the
choice between two equivalent models performing equally well in this respect should
be considered arbitrary. The main justification for the simplicity principle in statisti-
cal modelling is related to the reliability of parameter estimates: a simple model that
describes the data sufficiently well will have a better predictive accuracy because its
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parameter estimates are less dependent on random sample fluctuations. When there
are no other reasons to prefer simple models, why not simply prefer reliable models?
This position would make sense, since it states that no more assertions are to be made
than those that are justified by the data at hand. Moreover, the concept of reliabil-
ity is well defined in statistics, while simplicity is not well defined in or outside of
statistics. Although the simplicity principle and the reliability principle may appear
identical, they are not. Simplicity is an aspect of the model itself, while reliability
concerns a relation between the model and the observed data.

Since, at least when dealing with equivalent models, theoretical considerations
must enter the model evaluation, the hierarchical theory paints an incomplete picture
of justification. Disagreement on the theoretical level cannot be unequivocally settled
by agreement on higher levels. In a sense, model selection is doubly underdetermined:
methods are underdetermined by aims and theories are underdetermined by meth-
ods. In this regard, the ‘battle on theory’ must be fought at least partially on home
territory.
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4

Underdetermination and social validation in

inductive tasks

In inductive tasks, the objective is to discover the process that generated a given body
of data. Such tasks are difficult due to problems of underdetermination (see Chapter
2). On the basis of the general underdetermination thesis it has been argued that since
theory choice cannot be sufficiently based on empirical or logical criteria, it should
be explained by social factors (Kuhn, 1970; Hesse, 1980). There is a clear connection
between this idea and one of the cornerstones of social psychology. According to the
theory of social comparison (Festinger, 1954), when objective means to ascertain the
correctness of a belief are lacking, people will tend to evaluate their opinions by com-
paring them to those of others. When a belief is underdetermined by empirical data,
such objective means are lacking. In such circumstances, Festinger (1950) proposed
that the validity of belief is established in social reality, rather than physical reality.
In this social reality, consensus is the measure of valid belief. Social comparison tends
to result in uniformity of opinion, for someone who disagrees with others in a group
will tend to change his or her belief in the direction of the group position. Since its
invocation by Festinger, the scope of social comparison theory has become increas-
ingly wide, including the comparison of ability, belief, values and emotions. There are
important differences between these domains. For instance, when ability refers not
to the question ‘Can I do X?’, but to the question ‘How good am I at X?’, ability
becomes a social construct. Since there is no objective standard of ‘good’ to compare
one’s ability to, it is a question of one’s rank in a group and requires social compari-
son by definition. Beliefs, on the other hand, refer to potentially verifiable assertions
about the true nature of an entity (Jones & Gerard, 1967). To answer the question ‘Is
belief X correct?’, social comparison is neither necessary nor sufficient, but it can be
informative. There are two main reasons why others’ beliefs are informative. The first
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is that different individuals may have based their beliefs on different informational
bases. The second is that different individuals may process the same information in
different ways. Different people may have different ‘mental models’ of a situation
and some models may be more adequate than others. Inadequate mental models,
those that do not fit the objective world very well, will lead to erroneous processing
of the information and hence incorrect belief. Both lack of information and erroneous
processing of information may lead to biased belief and when it is impossible to di-
rectly compare a belief to an objective standard the only means of investigating this
bias may be through social comparison. The goal of correcting the two types of bias
should result in the preference for dissimilar comparison others. To investigate bias
stemming from insufficient information, one should compare one’s belief with those
held by people with different or more information. To counter bias from erroneous
processing of information, one should compare one’s belief with those held by people
with the same information but different mental models. This is in disagreement with
Festinger (1954), who proposed that people prefer to compare their opinions to those
of people whose opinions are not too diverging from their own. This similarity thesis
has been a controversial aspect of the theory. When taken literally, it defines social
comparison as a conservative process directed at the preservation of existing opinion
(Earle, 1986). This is clearly at odds with the central objective of social comparison:
uncertainty reduction. By basing the selection of comparison others on agreement, the
outcome of the social comparison is given beforehand and so the observed agreement
has no informational value. The preference for dissimilar others for belief comparison
was proposed in Goethals’ and Darley’s (1977) attributional reformulation of social
comparison theory. Founded on Kelly’s attribution theory, they proposed that social
validation of belief concerns assessing whether a belief is entity or person caused. Be-
liefs that are entity caused are taken to be proper reflections of the entity to which the
belief refers. Person caused beliefs, on the other hand, reflect idiosyncratic aspects of
the person rather than an objective entity. In this account, agreement with similar
others is uninformative, since the agreement may simply be the result from shared
bias. Agreement with dissimilar others provides a strong indication the belief was
entity caused. The preference for dissimilar others has been supported by a number
of experiments (Goethals, 1972; Goethals, Darley, & Kriss, 1978; Gorenflo & Crano,
1989). A further refinement of Goethals’ and Darley’s attributional theory by Suls,
Martin, and Wheeler (2000) further distinguishes social comparison processes as they
relate to preference, preference predictions, or belief. According to the triadic model
of opinion comparison (Suls et al., 2000), people prefer dissimilar advantaged others
for belief comparison. The relevant attribute on which comparison others are chosen
is the amount of information on which their belief is (assumed to be) based. Although
comparing with people with more information is clearly a reasonable method of in-
vestigating bias due to lack of information, the triadic model overlooks the possible
bias due to erroneous processing of information. The belief of others, who have based
their belief on exactly the same information should be considered highly informative
for this goal.

Moving back into the realm of inductive tasks, social comparison concerns factual
beliefs about the generating process of observed data. For such objective judgements
– that is, potentially verifiable statements concerning a factual matter – one may
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expect strong effects of social comparison (Olson, Ellis, & Zanna, 1983). Because
such judgements should not be influenced by subjective values, it is reasonable to
expect similarity in judgement, given that all have adequate information to base their
judgement on. Beliefs are an especially interesting domain in which to study so-
cial comparison, because the entity to which the belief pertains is not itself a social
construct. Social constructs such as ability are defined by interpersonal comparison,
so that social comparison is a necessary means for assessing ability. Because beliefs
are true or false irrespective of personal values, variation in belief indicates that at
least one of the disagreeing parties is wrong. Social comparison can provide valuable
information regarding the truth of belief, especially if one assumes that beliefs that
receive more social support are more likely to be true. Belief comparison is a relatively
understudied aspect in social comparison research, which has mainly focused on the
comparison of ability or value-type opinions rather than factual beliefs. In the studies
that address belief comparison, the focus has been mainly on the preference for dif-
ferent types of comparison others (Gorenflo & Crano, 1989; Suls et al., 2000), rather
than the process and outcome of the actual comparison process. However, indirect
evidence for the social comparison of belief can be found in related experiments on
conformity. Social comparison processes have been proposed to explain the conformity
found in Asch-type experiments (Allen & Wilder, 1977). In these studies, subjects
adopted an unanimously endorsed group position even when this position was clearly
at odds with empirical evidence (Asch, 1952; see Allen, 1965, and Levine & Thomp-
son, 1996, for an overview). Some of these conformers reported a social comparison
motive: they simply couldn’t believe they were right and all others wrong (Asch,
1952, p. 470-471). In the typical conformity experiment, the task of comparing lines
to a baseline is unambiguous, while social comparison is only expected under uncer-
tainty. When available and sufficient, people should rely solely on objective evidence
and not on the opinions of others. On the other hand, participants in the conformity
experiments had no choice but to compare their opinion to those of others, since all
others voiced their opinion first. Social comparison theory concerns voluntary evalu-
ation, while the conformity research imposes a situation of forced comparison (Allen
& Wilder, 1977). Orive (1988) proposed that people use social comparison implicitly,
by assuming agreement with similar others. In general, no attempt is made to test
the validity of this social projection through explicit social comparison. An imposed
disconfirmation of assumed consensus, such as in the conformity experiments, will
induce uncertainty about the correctness of the belief. When this uncertainty is high
enough, action is taken to reduce it. Two possible actions are particularly relevant in
the present context. The first is to render the other as irrelevant for the evaluation
of belief, for instance, by attributing the disagreement to the lower ability of the dis-
agreeing party. The second action is to minimise the disagreement by changing one’s
belief in the direction of the others’ beliefs, resulting in conformity. The unambiguity
of the task in the conformity experiments may have actually moved people to the
latter action, since participants have no reason to suspect others to perform worse
than themselves in such an easy task.

According to Deutsch and Gerard (1955), conformity can result from two types of
group influence: normative influence, defined as ‘influence to conform to the positive
expectations of another’, and informational influence, defined as ‘influence to accept
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information obtained from another as evidence about reality’. The latter type of in-
fluence corresponds with social comparison theory. From the many variations in the
conformity paradigm (see Allen, 1965 for an overview), it appears that both types
of influence play a role in conformity. Reducing the normative pressure by breaking
the group consensus with a deviant besides the participant reduces conformity con-
siderably. In support of informational influence, the magnitude of the reduction in
conformity depends on the assumed ability of the social supporter. For instance, Allen
and Levine (1971) found that the reduction in conformity was much greater when the
support came from a valid as compared to an invalid (i.e. visually impaired) source.
While the results of the conformity experiments can be taken to support the role
of social comparison in the formation and change of belief, these results can also be
interpreted as disconfirming Festinger’s theory since people are supposed to rely on
social comparison only when objective information is insufficient for belief evaluation.
Moreover, the percentage of people for whom the conformity was accompanied by
a change in belief may have been very small. Allen (1965) doubted whether there
was any private acceptance of the group position in the Asch-type experiments at all.
About twenty years ago, Insko, Drenan, Solomon, Smith, and Wade (1983) noted that
the evidence for conformity as a result of informational influence was very sparse, and
this situation has not changed much since. The present study attempts to fill this
hiatus by investigating social comparison processes in inductive tasks.

Inductive tasks provide an especially interesting situation for social comparison
processes because they are objective in principle, but can be ambiguous due to un-
derdetermination problems. In natural situations, most beliefs will be based on a
combination of objective and social information. In studies on social comparison,
usually only consensus information is provided, so the results may generalise poorly
to natural situations (Insko et al., 1983). By providing evidence pertaining to the
generating process, a naturalistic setting arises in which belief can be based on both
objective and social information. Laughlin has conducted many experiments on social
processes in inductive tasks, resulting in his theory of collective induction (Laughlin,
1999). In these studies, real groups collaborated to discover rules that generated
sequences of playing cards. The group processes were analysed by means of Social
Decision Schemes (Davis, 1973), and the following process was deemed adequate to
describe the combination of individual hypotheses into a group hypothesis: If at least
two group members propose correct and/or plausible hypotheses, the group selects
among those only. Otherwise the group selects among all proposed hypotheses. If
a majority of members propose the same hypothesis, the group selects a hypothesis
according to a majority rule. Otherwise, the group follows a proportionality process.
The preference for hypotheses held by a majority, as well as the finding that the
group chooses the correct hypothesis when proposed by at least two members, are
not incompatible with social comparison theory. The objective in the SDS analysis,
however, is to ascertain how groups combine individual hypotheses into a single group
hypothesis. Although this is certainly interesting in its own right, it does not pro-
vide evidence for social comparison processes in the formation of belief. The groups
were required to posit a single collective hypothesis and it is not clear whether the
collective hypothesis corresponds to those held by the group members individually.
The present study attempts to overcome this by studying individual induction in
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a Crutchfield type setting where participants receive not only objective information,
but also anonymous feedback regarding the hypotheses of other group members. This
feedback is manipulated to result in consensus or dissensus among the other group
members. When hypotheses regarding the generating process are underdetermined
by the objective evidence, both a dissenter and a unanimous group of others may
find their beliefs equally supported by the available objective evidence. In such a sit-
uation, social comparison theory predicts that the social support for the unanimous
group hypothesis increases its subjective validity. If this increase is large enough, a
dissenter should be persuaded to conform to the consensual position.

4.1 Experiment 1

Inductive tasks have both an intellective and a judgemental component (Laughlin,
1999). While some hypothetical generating processes can be shown to be inconsistent
with the data (the intellective component), the choice between multiple hypothetical
processes that are equally consistent with the data is a judgemental task. In the
terminology used here, whether or not there is a judgemental component depends
on whether the generating rule is underdetermined by the data. Social comparison
is only expected for the judgemental aspect of the task, so that conformity is ex-
pected only when the generating process is underdetermined by the evidence. This
hypothesis is tested by investigating conformity in a situation of underdetermination
or determination. If conformity in belief is the result of informational influence, as it
should be according to social comparison theory, then conformity is expected in the
presence of underdetermination, but not determination.

The inductive task in this experiment is an adaptation of the one used by Laugh-
lin and colleagues (Laughlin, 1999; Laughlin, Chandler, Shupe, Magley, & Hulbert,
1995), in which participants have to determine by which rule a sequence of playing
cards is formed. Exemplars of the rule are presented sequentially and participants are
asked to report their hypothesis of the rule after each new exemplar. The evidence is
manipulated to ensure either underdetermination or determination of the rule by the
evidence. After reporting their initial hypothesis, participants receive (bogus) feed-
back concerning the hypotheses of the other group members. This social feedback
is manipulated to show either an emerging consensus among the group members or
not. After receiving the social feedback, a new exemplar is added to the sequence,
after which participants are again required to report a hypothesis. Intermitting the
social feedback with new evidence before asking a new hypothesis allows participants
to base their new hypothesis on a combination of objective and social evidence. For
underdetermined rules, there are multiple hypotheses consistent with this new infor-
mation of which the consensual hypothesis is one. Although the new evidence may
be consistent with a participant’s hypothesis, it is equally consistent with the consen-
sual hypothesis. While there is no evidential basis to choose one plausible hypothesis
over the other, the social support for the consensual hypothesis should make this
hypothesis more plausible, and move participants to adopt it consequently. For de-
termined rules, there is only one hypothesis compatible with the exemplars and the
consensual hypothesis is implausible. Since the evidence is unambiguous, participants
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who report the correct hypothesis may expect others to do so too. The disagreement
with the other group members will disconfirm this expectation, which might result
in conformity. However, no conformity was expected for the determined rules. The
objective evidence was deemed enough ground for participants to reject the consen-
sual position. Although in an anonymous Crutchfield-type experiment, in which only
value-free judgements are made, the possibility for normative influence seems min-
imised, it cannot be ruled out beforehand. But, when no conformity is found for
determined rules, it is plausible that conformity for the underdetermined rules is due
to informational influence. Normative influences would affect the reported hypotheses
regardless of the status of the ambiguity of the evidence.

4.1.1 Method

Participants and design

Seventy-one university undergraduates participated in the experiment, either in par-
tial fulfillment of course requirements or for a small fee. There were 20 males and 51
females; the mean age was 22.91 (SD = 6.57).

The experiment had a 2 (no-consensus or consensus) × 2 (underdetermination or
determination) factorial within-subjects design.

Procedure

Upon entering the experimentation room, participants were seated at a computer
which was placed so that it was impossible to view the screens of the other par-
ticipants. The computers were visibly linked through a network. Participants were
informed the experiment concerned the differences between face-to-face and computer-
mediated communication in a rule-discovery task and that they were placed in the
latter condition. After this, they received extensive instructions concerning the in-
ductive task. They were also told the two best performing participants would each
receive a prize in the form of gift vouchers. Their performance would supposedly be
assessed by the number of correctly chosen cards (the participants could keep track of
this score) and the number of correct hypotheses given (participants could not keep
track of this score). After a short practice trial consisting of a sequence of five exem-
plars, in which they received computerised feedback concerning the workings of the
programme and their responses, they began with the four experimental trials. Each
trial consisted of a different rule to discover, and was subject to one of the four ex-
perimental conditions. The order of these conditions was counterbalanced; there were
four possible orders to which the participants were randomly assigned. After com-
pletion of the four trials, subjects answered eight exit-questions, inquiring whether
they found the task difficult, how well they thought they performed in the task and
whether they found the feedback of the others’ hypotheses useful.

The inductive task involved the discovery of the rule that generated a sequence of
playing-cards. This rule could be based on colour (red, black), suit (spades, hearts,
clubs, diamonds), number (even, odd, 1, 2, . . .), or a combination of number and
colour or number and suit. Examples of such rules are ‘all cards are even’ or ‘clubs
followed by hearts followed by diamonds while the number of the next card is raised
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by one’. After being shown the first three exemplars1 of the rule, participants were
asked to formulate a hypothesis concerning the rule by choosing from a set of possible
hypotheses. They could either choose a hypothesis concerning colour or suit, one
concerning number, or a combination of these two. There were 15 hypotheses related
to colour or suit and 17 hypotheses related to number, resulting in a total of (15 +
17 + 15×17 =) 287 possible hypotheses. After reporting their hypothesis, for which
they had thirty seconds, they were supposedly shown the hypotheses reported by the
other three group members. Then they were shown a set of three playing cards, from
which they had to choose the next exemplar of the rule. This choice was subject
to a time limit of fifteen seconds. The time limits were set in order to synchronise
the participants’ answers so they would not get suspicious about the feedback. In a
small pilot study, both time limits appeared long enough for participants to choose a
hypothesis, while short enough for them not to get bored waiting. The card-choosing
aspect of the task was included to control the amount of determination of the rule.
By showing three cards, one of which was the next exemplar of the rule, the evidence
concerning the rule could be precisely controlled. For instance, a card that was not
the next exemplar of the rule could disconfirm a possible hypothesis held by the
participant. If participants chose the correct card, they received a point. The point
system was included as a motivational device. Then, regardless of whether they
correctly identified the next exemplar, it was added to the existing sequence. Next,
participants were asked to report their hypothesis concerning the rule based on this
new information, after which they were shown the manipulated hypotheses of the
other group members, etc. This cycle was repeated until the final, tenth exemplar
of the rule was given, after which the participants were asked to give their final
hypothesis. Thus, in each trial, participants were asked to report a total of eight
hypotheses. The rules to be discovered were ‘All cards have even numbers’, ‘The
number of a card is first lowered by one, then raised by three’, ‘All cards are black’
and ‘Hearts follow spades, clubs follow hearts’.

Independent variables

Underdetermination
The cards from which the participants had to choose the next exemplar were

chosen so as to result in either a determination or underdetermination of the rule.
For a determined rule, the fourth or fifth exemplar in the sequence restricted the
compatible hypotheses to one while for an underdetermined rule, multiple hypotheses
were compatible with the sequence until the tenth exemplar. Due to the properties of a
standard deck of cards, the multiple plausible hypotheses for an underdetermined rule
can form a hierarchy. For instance, the sequences of exemplars that are compatible
with ‘hearts followed by diamonds’ are a subset of those that are compatible with the
rule ‘all cards are red’. Clearly, when the rule ‘hearts followed by diamonds’ is the
true generating rule, the rule ‘all cards are red’ will also be true. Participants were
informed that in such a case, they should choose the hypothesis that corresponds with

1The term ‘exemplar’ shall be used throughout to denote particular cards that are instances of
the rule. Each of the four trials consisted of the determination of the generating rule on the basis of
a total of ten exemplars.
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the true generating rule and not the one that is necessarily true when the other is
true.

Consensus
The feedback about the others’ hypotheses was manipulated so as to result in

complete agreement (consensus) or disagreement (no consensus) among the three
group members. In the no-consensus condition, group members reported different
hypotheses after each consecutive exemplar, while in the consensus condition, all
group members reported identical hypotheses after the fourth or fifth exemplar. In
the no-consensus condition, there was always at least one person who reported the
consensual hypothesis of the consensus condition, so that possible differences between
these conditions would not be dependent on differences in information. The consen-
sual hypothesis remained plausible until the last exemplar in the underdetermination
condition. In the determination condition, the consensual hypothesis turned out to
be inconsistent with the evidence after the fourth or fifth exemplar.

To clarify the nature of the task, an example of a trial for the different conditions
is given in Appendix 4A.

Dependent variables

The analyses focus on the hypotheses reported by the participants. Due to the large
number of possible hypotheses (287), it was necessary to categorise the reported
hypotheses in three relevant classes.

Consensual Hypotheses (CH)
Each reported hypothesis was scored to indicate whether it was identical to the

hypothesis constituting the consensus position for that rule. Since there was no con-
sensual hypothesis in the no-consensus condition, hypotheses equal to the consensual
hypothesis of the consensus condition do not indicate conformity. However, if the pro-
portion of consensual hypotheses is larger in the consensus condition, as compared
to the no-consensus condition, this indicates a conformity effect in the consensus
condition.

Plausible Hypotheses (PH)
Each reported hypothesis was scored to indicate whether it was plausible, that is,

consistent with the sequence of exemplars presented before the participant was asked
to report the hypothesis.

Correct Hypotheses (CorH)
Each reported hypothesis was scored to indicate whether it was correct, that is,

consistent with the entire sequence of exemplars.

Analysis

The experiment had a 2×2 factorial within-subjects design. Since, in the consensus
condition, there was unanimity only in the last half of each trial, the reported hy-
potheses could be meaningfully divided into two blocks: those occurring before the
formation of consensus and those occurring after the formation of consensus. For the
analyses, we thus used an extra Block factor with two values (i.e. before and after),
resulting in a 2×2×2 within-subjects design. For dependent variables with a normal
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distribution, a 2×2×2 factorial repeated-measures ANOVA would be appropriate,
but since the dependent variables were binary indicator variables, the distribution
would clearly be non-normal. For binary variables, a logistic-regression model is
more appropriate. This models the logit of the probability of a positive response
as a linear function of the parameters. Since for a normally distributed variable, a
regression analysis with dummy-coding for the experimental conditions is equivalent
to an ANOVA analysis, the logistic-regression analysis with dummy-coding can be
interpreted as the analogue of an ANOVA analysis for binary variables. To take into
account the dependence of observations due to the repeated measurements of the
same subjects, a random intercept was included for each subject. The random effects
logistic regression analyses were performed using the MIXOR (Hedeker & Gibbons,
1996) programme, version 2.0. While it is plausible to assume a difference between
the participants in their ability to report a plausible or correct hypothesis, and hence
include a participant-specific random intercept in the analyses of PH and CorH, this
does not make much sense for the analysis of consensual hypotheses. For each rule,
the consensual hypothesis was a different hypothesis and there may have been a dif-
ference in the initial appeal of these hypotheses. Although participants may differ in
their susceptibility to social influence, this should not result in a higher probability
of reporting the consensual hypotheses over all four trials. Therefore, no random
participant-specific intercept was included in the analysis for CH. In order to account
for the possible difference in appeal between the consensual hypotheses, a fixed effect
for the different rules was included.

4.1.2 Results

There were four possible orders of the conditions. There was no difference between
the groups of participants who were assigned to one of these orders in the mean age,
F (3, 63) = 1.72, p = .17, or the distribution of sex χ2(3) = 1.12, p = .77 2.

Plausibility of the reported hypotheses

Since the social validation hypothesis assumes participants can distinguish between
determined and underdetermined and with that plausible and non-plausible hypothe-
ses, results concerning the plausibility of reported hypotheses are given first. The
means and variances of PH are given in Table 4.1. No differences between the condi-
tions were expected for the plausibility of the reported hypotheses, but respondents
were expected to give a reasonable amount of plausible hypotheses. Overall, the
proportion of PH was .69, indicating a reasonable level of difficulty in reporting hy-
potheses that are consistent with the evidence shown. As described in the method
section, the Plausible Hypotheses were analysed with a logistic regression analysis
with a participant-specific random intercept. The estimated standard deviation of
the random intercept was σ̂ = 1.39 (SE = .13, Z = 10.94, p < .001), indicating a sig-
nificant variability in individual performance. For the fixed part of the model, there
were significant effects of Determination (b = −1.83, SE = .21, Z = −8.82, p < .001)
and Block (b = −1.15, SE = .27, Z = −4.23, p < .001). Both parameter-estimates

2These analyses were based on n = 63, because the age and sex of eight participants were missing.
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Table 4.1: Means, variances and predicted means of PH, CorH and CH1

No consensus Consensus
First Last First Last

M Var M Var M Var M Var
Underdetermination

PH .88 (.93) .11 .75 (.80) .19 .84 (.93) .13 .76 (.80) .18
CorH .04 (.02) .03 .21 (.15) .17 .06 (.02) .06 .21 (.15) .17
CH .12 (.11) .11 .17 (.14) .14 .04 (.05) .04 .23 (.25) .18

Determination
PH .64 (.67) .23 .51 (.39) .25 .63 (.67) .23 .52 (.39) .25
CorH .31 (.24) .22 .51 (.48) .25 .34 (.24) .22 .52 (.48) .25
CH .05 (.07) .05 .01 (.04) .01 .04 (.03) .04 .09 (.06) .08
1 PH = Plausible Hypotheses, CorH = Correct Hypotheses, CH = Consensual Hypotheses.
Values between parentheses are predicted proportions based on the fitted logistic regression
models. Note that a binary variable with values 0 and 1, the mean equals the proportion of a
positive value (M = P (X = 1)) and the variance equals the product of the proportions of the
two values (Var = P (X = 1)P (X = 0)).

were negative, indicating that participants had a lower probability of reporting a
plausible hypothesis when the rule was determined (as compared to underdetermined
rules), and reported less plausible hypotheses in the last four responses than the first
four. In logistic regression analysis with binary independent variables, the exponent of
parameter-estimates corresponds to the estimated odds-ratio (Hosmer & Lemeshow,
2000). Looking at the parameter-estimates in this way, we see that participants were
about 6.23 times more likely to report a plausible hypothesis for an underdetermined
rule than a determined rule. Furthermore, participants were about 3.15 times more
likely to report a plausible hypothesis in the first four responses than in the last four
responses. However, as in normal regression analysis, caution must be applied when
interpreting regression weights since they can be interdependent. To aid the inter-
pretation of the effects of the independent variables on the probability of a plausible
hypothesis, Table 4.1 contains the predicted probability of a plausible hypothesis in
each cell of the design. These predictions were computed from a model which included
only the intercept term and the significant effects of Determination and Block3. The
main effect of Determination indicates that in the conditions in which the rule was
determined, the reported hypotheses had a lower probability of being plausible. The
main effect of Block indicates that the probability of a plausible hypothesis decreased
from the first to the last four responses. Since the rules became more determined as
more exemplars were added to the sequence, this reduction in probability from the
first to last responses can also be attributed to a determination effect. Interestingly,
these results indicate a relatively poorer performance as rules become more deter-
mined, which was not expected beforehand. A possible explanation is statistical: the

3Inclusion of only significant effects makes sense for two reasons. First of all, estimation of non-
significant effects affects the estimation of the significant effects, leading to less reliable estimates of
these latter effects. Second, incorporation of all effects leads to an exact replication of the observed
mean probabilities, so that nothing is gained by investigating the the predicted probabilities.
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probability that a randomly chosen hypothesis is plausible was higher in the low than
in high determination condition. However, if subjects chose hypotheses on a random
basis, then the number of correct hypotheses should not rise within the trials.

To ascertain whether the probability of a reported hypothesis being the correct
one rose within trials, a logistic regression analysis with a participant-specific ran-
dom intercept was applied to the Correct Hypotheses (CorH). A positive effect of
Block (i.e. a rise in CorH from the first four to last four responses) was expected, as
well as a larger probability of CorH in the determination than underdetermination
condition. The estimated standard deviation of the random intercept was σ̂ = 1.30
(Z = 6.13, p < .001), indicating a significant individual variation in the ability to
report the correct hypothesis. For the fixed part of the model, there were again
significant effects of Determination (b = 2.79, SE = .39, Z = 7.13, p < .001) and
Block (b = 2.16, SE = .45, Z = 4.76, p < .001). Participants were about 16.28
times more likely to report the correct hypothesis when the rule was determined by
the evidence than when it was underdetermined. Participants were about 8.67 times
more likely to report the correct hypothesis in the last four responses than in the
first four responses. Finally, there was a significant Determination×Block interaction
(b = −1.08, SE = .52, Z = −2.07, p < .05). For the interpretation of the combined
effects, we shall again look at the predicted probabilities of a correct hypothesis as
given in Table 4.1. These predictions were derived from a model incorporating only
the significant Determination, Block and Determination×Block effects. The main ef-
fect of Determination indicates that the probability of reporting the correct hypothesis
was higher in the determination condition than in the underdetermination condition.
The main effect of Block indicates that in both conditions, the probability of a cor-
rect hypothesis rose within trials from the first to the last block. The interaction
between Determination and Block finally indicates that this rise was highest in the
determination condition. As for PH, all effects can be attributed to a determination
effect. Concluding, we can say that the determination of the rules affected CorH as
expected.

Conformity to consensual hypotheses

As indicated in the analysis-section, the Consensual Hypotheses (CH) were analysed
with a logistic regression model with fixed effects for the conditions, as well as the
four different rules. The results of this analysis are given in Table 4.2. As can be
seen in Table 4.2, there were indeed significant differences between the rules in the
probability of reporting the consensual hypothesis. Also, there were significant main
effects of Consensus and Determination, as well a significant Consensus×Block and
Determination×Block interaction. Both main effects were negative, indicating that
participants were about 3.33 times more likely to report the consensual hypothesis
in the no-consensus condition than in the consensus condition, and about 2.78 times
more likely to report the consensual hypothesis in the underdetermination condition
than in the determination condition. The negative influence of determination was
expected, since the consensual hypothesis became implausible relatively early in the
determination condition. The negative influence of consensus was not expected, but
looking at Table 4.1, the effect seems attributable to initial differences (i.e. before
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Table 4.2: Logistic regression for CH1

b SE(b) Z p OR
(Intercept) -1.06 0.22 -4.87 <.001
Rule 2 -0.96 0.20 -4.75 <.001 0.38
Rule 3 -1.20 0.21 -5.62 <.001 0.30
Rule 4 -1.95 0.26 -7.42 <.001 0.14
Consensus (C) -1.21 0.37 -3.27 .001 0.30
Determination (D) -1.01 0.36 -2.81 .005 0.36
Block (B) 0.42 0.26 1.62 .106 1.52
C×D 1.02 0.59 1.74 .082 2.78
C×B 1.50 0.44 3.45 <.001 4.48
D×B -2.04 0.71 -2.90 .004 0.13
C×D×B 1.03 0.89 1.16 .245 2.80
1 OR = odds-ratio

the feedback showed consensus) between the no-consensus and consensus conditions.
The Consensus×Block interaction shows that in the consensus condition, there was a
rise in the probability of reporting the consensual hypothesis after the formation of
consensus. The Determination×Block interaction shows a decrease in the probability
of reporting the consensual hypothesis in the determination condition. Again, caution
must be applied when directly interpreting regression weights. For better interpre-
tation of the effects, the predicted probabilities for each cell of the design are given
in Table 4.1. These predictions were derived from a model incorporating the signif-
icant Rule, Consensus, Determination, Consensus×Block and Determination×Block
effects. The predicted probabilities confirm the earlier interpretation of the effects.
The main effect of Consensus appears to be due to a higher initial probability of
reporting the consensual hypothesis in the no-consensus condition. The main ef-
fect of Determination indicates a lower probability of reporting the consensual hy-
pothesis in the determination condition than in the underdetermination condition.
Furthermore, the predicted probabilities show that in all conditions apart from the
no-consensus/determination condition, the probability of a consensual hypothesis rose
within trials from the first to last block. The Consensus × Block interaction indicates
that this rise was larger when there was consensus, while the Determination×Block
interaction indicates that this rise was lower when the rule was determined. The slight
rise in the predicted probability of a consensual hypothesis provides some indication
of conformity to the consensual position in the consensus/determination condition.
But, compared to the underdetermination condition, the level of conformity was very
small.

4.1.3 Discussion

The results of experiment 1 were in agreement with the expectations from social com-
parison theory. Consensus resulted in conformity when the rule to be discovered was
underdetermined by the evidence. This conformity was hardly found for determined
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rules, and there seemed to be no general conformity effect. Therefore, the normative
influence from the social feedback seems minimal and the conformity found for the
underdetermined rules should be attributed to the informational influences. The re-
sults thus support Festinger’s (1954) hypothesis that people rely on social comparison
when objective evidence is ambiguous as to whether a belief is correct. Although the
expectations from social comparison theory were supported, the overall level of con-
formity was rather moderate, with the highest predicted probability of a consensual
hypothesis of .25 in the consensus/underdetermination condition. The effect of deter-
mination on the proposed hypotheses appeared much larger than that of consensus,
so subjects seemed more influenced by the evidence than the hypotheses proposed by
others. This is in agreement with Festinger’s proposition that objective evidence is
favoured for the evaluation of belief. The preference for information from the exem-
plars may also be due to particulars of the task. Although early on in the sequences,
there was ambiguity as to which of the different plausible hypotheses is the correct
one, by the final tenth exemplar the data always settled on a single hypothesis, so a
reliance on social comparison would only have to be temporary. A stronger reliance
on social validation might be expected when the level of underdetermination is higher,
and underdetermination is pervasive rather than temporary.

4.2 Experiment 2

The goal of the second experiment was to study social comparison in situations of
stronger underdetermination. When social comparison results from the ambiguity of
the objective evidence, a stronger reliance on social comparison is expected as the be-
lief becomes more underdetermined by the evidence. Subsequently, more conformity
is expected for highly underdetermined rules than for rules with a lower level of under-
determination. The second experiment included confidence ratings, so the effects of
social feedback on confidence could be investigated directly instead of through confor-
mity behaviour. Although subjective confidence is considered an important variable
in most theories on social influence, there have been few direct investigations of the
influence of social support on confidence (McGarty, Turner, Oakes, & Haslam, 1993).
Notable exceptions are the experiments of Goethals (1972); Goethals et al. (1978)
and McGarty et al. (1993). These experiments showed that confidence is decreased by
disagreement and increased by agreement and that, for beliefs, this increase is higher
when agreement comes from a dissimilar rather than similar other. The present study
is not so much concerned with the similarity thesis. Since purely factual beliefs are
taken to be value-free, and all group members can base their hypotheses on the same
evidence, participants will most likely assume similarity on attributes related to be-
lief. However, if participants apply social projection (Orive, 1988), differences are
expected for the different levels of underdetermination. In particular, the effect of
social feedback on confidence is expected to differ for different levels of underdeter-
mination. When a rule is less underdetermined, the judgement is less ambiguous and
more agreement may be expected. As such, the informational value of agreement is
lower when a rule is highly determined than when it is lowly determined. Thus, the ef-
fect of agreement on confidence is expected to be stronger the more underdetermined
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a rule is, and agreement is expected to raise confidence more for highly underde-
termined than for lowly underdetermined rules. For disagreement, the opposite is
expected. When a rule is highly underdetermined, and hence the judgement more
ambiguous, more disagreement may be expected. Therefore, the informational value
of disagreement is lower the more underdetermined the rule becomes. When a rule
is lowly underdetermined, less disagreement may be expected and the informational
value of disagreement is higher. As such, disagreement should reduce confidence more
when the rule has a lower level of underdetermination.

4.2.1 Method

Participants and design

79 university undergraduates participated in the experiment for partial fulfillment of
course requirements or a small fee. There were 35 males and 44 females and the mean
age was 22.30 (SD = 3.50).

The experiment had a 2 (consensus, no-consensus) × 2 (low underdetermination,
high underdetermination) factorial within-subjects design4.

Procedure

The procedure was similar to that of experiment 1. Participants entered the experi-
mentation room in groups of four and were seated in front of computers which were
connected through a network and placed so that it was impossible to see the screens of
the other participants. The participants were first given instructions about the nature
of the task and the manner in which they could report hypotheses. After receiving
instructions concerning the inductive task, they started with the first of four trials.

The inductive task was slightly different from that of experiment 1. Due to the
relation between suit and colour in standard playing cards, we found the manipula-
bility of underdetermination too limited. Therefore, different cards were used in this
experiment, consisting of three aspects: shape (square, triangle, circle, star), colour
(red, blue, green or purple) and number (1 to 10). Again, the task consisted of re-
porting hypotheses for the rule that generated a sequence of these cards. To do this,
subjects could choose one from a set of 33 hypotheses. The hypotheses referred to
only one aspect of the cards, so either shape (for instance ‘triangle follows circle’),
colour (for instance ‘all cards are red’) or number (for instance ‘the number of each
consecutive card is raised by one’). Of the 33 offered hypotheses, 10 referred to shape,
13 to colour and 10 to number.

Each trial consisted of a generating rule to be discovered on the basis of a sequence
of nine cards. Participants were first presented with three cards (the exemplars of the
rule) and asked to report a hypothesis. They were then asked to rate their confidence
in the reported hypothesis on a nine-point scale, ranging from ‘completely unsure’

4The experiment also included a second manipulation of underdetermination, which was varied
between subjects. In the condition with additional underdetermination, the instructions included
a hint that some sequences might contain erroneous cards. In the condition without additional
underdetermination, this hint was not included. Since this manipulation did not show any effect in
any of the reported analyses, we will not discuss it further.
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to ‘completely sure’. After the first confidence rating, they received bogus feedback
about the hypotheses of the other group members. Then the participants were asked
to give a second confidence rating on the same nine-point scale. After adding two
more exemplars to the sequence, participants reported a new hypothesis as well as
their confidence in this hypothesis. Then they received social feedback and gave a
second confidence rating. This was repeated twice more, each time after adding two
more exemplars to the sequence. Thus, for each sequence of 9 exemplars participants
were required to report a total of four hypotheses, one after the first three exemplars,
one after the first five exemplars, one after the first seven and one after all nine
exemplars.

Independent variables

Underdetermination
As in experiment 1, two levels of determination were included. In contrast to

experiment 1, the rules remained underdetermined throughout the trials. In the
low underdetermination condition, two hypotheses were consistent with the entire
sequence. In the high underdetermination condition, three or four hypotheses were
consistent with the entire sequence.

Consensus
As in experiment 1, the feedback about the others’ hypotheses was manipulated

so as to result in complete agreement (consensus) or disagreement (no consensus)
among the three group members. In the no-consensus condition, group members
reported different hypotheses after each consecutive exemplar, while in the consensus
condition, all group members reported identical hypotheses after the fifth exemplar.
In the no-consensus condition, there was always at least one person who reported the
hypothesis that was unanimously endorsed in the consensus condition.

Dependent variables

Since all rules remained underdetermined throughout the trials, the designation of
one plausible hypothesis as ‘correct’ is arbitrary. Therefore, the CorH variable was
not used in this experiment. In addition to the Plausible Hypotheses (PH) and Con-
sensual Hypotheses (CH) variables as used in experiment 1, there were two confidence
variables, one for the confidence ratings before receiving the social feedback (Conf1)
and one for the ratings after (Conf2).

4.2.2 Results

Plausibility of the reported hypotheses

As before, the results for PH are discussed first. The means and variances of the
plausible hypotheses (PH) for the different conditions can be found in Table 4.3.
Overall, the proportion of PH was .94, indicating that the task was relatively easy as
compared to the first experiment, in which the overall proportion of PH was .69. As in
experiment 1, the plausible hypotheses were analysed with a logistic regression model
with a participant-specific random intercept. The estimated standard deviation of
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Table 4.3: Means and variances of PH and CH1

No consensus Consensus
First Last First Last

M Var M Var M Var M Var
High underdetermination

PH .95 (.93) .05 1.00 (.99) .00 .95 (.93) .05 .98 (.99) .02
CH .25 (.29) .19 .33 (.29) .22 .29 (.38) .21 .47 (.38) .25

Low underdetermination
PH .92 (.93) .07 .86 (.95) .12 .88 (.93) .11 .93 (.95) .07
CH .44 (.56) .25 .67 (.56) .22 .35 (.49) .23 .61 (.49) .24
1 PH = plausible hypothesis, CH = consensual hypothesis. Values between parentheses are
predicted proportions based on the fitted logistic regression models.

the random intercept was σ̂ = 1.24 (SE = .18, Z = 6.79, p < .001), indicating a
significant variability in participants’ ability to report a plausible hypothesis. The
fixed part of the model showed a significant effect for Block (b = 2.03, SE = .71,
Z = 2.86, p < .01) and a significant Underdetermination×Block interaction (b =
−1.76, SE = .89, Z = −1.98, p < .05). The positive parameter estimate of Block
indicates a rise in the probability of a plausible hypothesis from the first two to the
last two responses. Participants were about 7.61 times as likely to report a plausible
hypothesis in the last two responses than the first two. The parameter estimate
of the Underdetermination×Block effect was negative, indicating that this rise was
less for lowly underdetermined than highly underdetermined rules. To see how these
two effects affected the predicted probabilities of PH for each of the cells in the
design, Table 4.3 contains the predicted probability of PH, based on a model with
only the significant Block and Underdetermination×Block effects. As can be seen,
the predicted probabilities were relatively high in each cell. While the probability
of a plausible hypothesis rose from the first to second block, indicating that as a
rule became more determined, it was easier to report a plausible hypothesis, the
main effect for Underdetermination was in the opposite direction, showing a higher
probability of a plausible hypothesis for the highly underdetermined rules. Again, a
simple explanation is found in the fact that there were more plausible hypotheses for
the highly underdetermined rules.

Conformity to consensual hypotheses

The means and standard deviations of Consensual Hypotheses (CH) are given in
Table 4.3. As in experiment 1, a rise in the probability of a consensual hypothe-
sis from the first to the last two responses indicates conformity to the consensual
position in the consensus condition. In other words, conformity to the consensual
hypothesis is indicated by a positive Consensus×Block interaction. As in experiment
1, the consensual hypotheses were analysed using a logistic regression model with
fixed effects for Consensus, Underdetermination, Block and their interactions, as well
as fixed main effects for the different rules. This analysis showed only a significant
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effect for Underdetermination (b = .85, SE = .26, Z = 3.32, p < .001), indicating
that participants were about 2.34 times as likely to report the consensual hypothesis
when the rule was lowly underdetermined. This effect was expected, since in this
condition the consensual hypothesis was one of two plausible hypotheses, while in the
high underdetermination condition it was one of three or four plausible hypotheses.
There were no significant effects for the different rules, indicating that the different
consensual hypotheses did not differ much in their initial appeal. There was also
no significant Consensus×Block interaction and hence no indication of a conformity
effect. Since there were only two responses in each block, as compared to four in
experiment 1, there may have been a loss in statistical power. Although it does not
provide direct evidence for conformity, a logistic regression model without the Block
effect did result in a significant effect for Consensus (b = 0.40, SE = .17, Z = 2.30,
p = .022) and Underdetermination (b = 1.13, SE = .18, Z = 6.42, p < .001), as well
as a significant Consensus×Underdetermination interaction (b = −0.71, SE = .24,
Z = −2.94, p = .003). The effects were in the expected directions. Participants
were about 1.49 times more likely to report the consensual hypothesis when it was
supported by a unanimous group than when only one other group member supported
this hypothesis. Due to the exclusion of the Block effect, the consensus effect can-
not be immediately interpreted as a conformity effect, because there may have been
more participants initially (before receiving social feedback) reporting the consensual
hypothesis in the consensus condition. However, this was not the case. The pro-
portion of participants initially reporting the consensual hypothesis in the consensus
condition was .19, which is actually lower than the no-consensus condition, where
this proportion was .26, although the difference was not significant χ2(1) = 1.93,
p = .17. Since the consensus effect cannot be attributed to initial differences, it
can be attributed to a rise in the number of participants reporting the consensual
hypothesis after they received social feedback, thereby indicating a conformity ef-
fect. As in the first experiment, the effect of underdetermination seemed stronger
than that of consensus: participants were about 3.10 times more likely to report
the consensual hypothesis when it was one of two plausible hypotheses rather than
one of three or four plausible hypotheses. The Consensus×Underdetermination effect
indicates that the effect of consensus was less when the rule was less underdeter-
mined by the evidence. The predicted probabilities derived from the logistic regression
model with Consensus, Underdetermination and Consensus×Underdetermination ef-
fects are given in Table 4.3. These predicted probabilities show a puzzling effect of
the Consensus×Underdetermination interaction. For highly underdetermined rules,
the probability of a consensual hypothesis was higher in the consensus condition than
in the no-consensus condition. For rules with a low level of underdetermination, this
relation was reversed, so there was a higher probability of reporting the consensual
hypothesis in the no-consensus condition than the consensus condition. This could
indicate a resistance to informational influence from the group when belief was only
mildly underdetermined by the evidence. However, it may have also been due to a
difference in the number of participants initially reporting the consensual hypothesis.
In the low-underdetermination/no-consensus condition, the proportion of participants
initially reporting the consensual hypothesis was .28, while this proportion was only
.18 in the low-underdetermination/consensus condition. Although this difference was
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Table 4.4: Means and variances of Conf1 and Conf21

No consensus Consensus
First Last First Last

M Var M Var M Var M Var
High underdetermination

Conf1 6.15 4.81 7.14 3.45 6.05 4.55 7.34 3.15
Conf2 5.97 4.61 7.00 4.16 5.95 5.16 7.40 3.10

Low underdetermination
Conf1 5.99 5.81 6.97 4.47 5.94 4.82 7.27 4.15
Conf2 5.98 6.26 7.03 4.79 5.86 5.85 7.34 4.29
1 Conf1 = confidence rating before social feedback, Conf2 = confidence rating
after social feedback.

again not significant, χ2(1) = 1.56, p = .21, it may have affected the interaction
effect. The overall proportion of participants reporting the consensual hypothesis in
the low-underdetermination/no-consensus condition (.56) was not significantly higher
than the corresponding proportion in the low-underdetermination/consensus condi-
tion (.49), χ2(1) = 3.30, p = .07. In the high-underdetermination condition, there was
a significant difference for this proportion between the consensus and no-consensus
condition, χ2(1) = 5.38, p = .02. Although the interaction may have been due to
a resistance to informational influence in the low-underdetermination condition, the
evidence for such resistance is inconclusive. While the possible resistance effect needs
further investigation, the hypothesis that conformity is higher for highly underdeter-
mined than lowly underdetermined rules was clearly supported.

Confidence

For each reported hypothesis, two confidence ratings were given: one before, and one
after receiving social feedback regarding the hypotheses of the other group members.
We shall refer to these as Conf1 and Conf2 respectively. The means and variances of
the two confidence ratings are given in Table 4.4. No direct effects of the experimen-
tal manipulations were expected on the overall level of confidence. Confidence was
expected to be more related to the hypotheses held, and effects of the experimental
manipulations were expected only in interaction with hypothesis type. To detect pos-
sible overall differences, which may have influenced the results of later analyses, the
confidence ratings were first analysed with an univariate repeated-measures ANOVA,
treating the two confidence scores as repeated measures of the same variable, distin-
guished by a dummy variable to indicate whether the confidence was given before or
after the social feedback. This 2×2×2×2 repeated-measures ANOVA resulted in a
significant effect only for Block, F (1, 66) = 154.93, p < .001, indicating that the confi-
dence in the first two reported hypotheses (M = 5.99, SD = 2.28) was lower than the
confidence in the last two reported hypotheses (M = 7.19, SD = 1.99). This analysis
does not distinguish between hypothesis types (i.e. plausible or consensual). Overall,
we expected the confidence in a plausible hypothesis to be higher than the confidence
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in an implausible hypothesis. Since there was a significant difference between the
means of Conf1 for a non-plausible hypothesis (M = 4.92, SD = 2.72) and a plausible
hypothesis (M = 6.84, SD = 1.97), t(81) = −6.07, p < .001, this appeared to be the
case.

Following Goethals et al. (1978), the effect of social feedback on the confidence
in a hypothesis was investigated by means of an ANCOVA for the second confidence
ratings (Conf2), with the first confidence ratings (Conf1) as a covariate. The included
fixed effects were Consensus and Underdetermination, as well as CH, the binary vari-
able indicating whether the hypothesis was the consensual hypothesis or not. We
expected a significant interaction between Consensus and CH, since in the consensus
condition, there was unanimous support for the consensual hypothesis. This support
should have lowered confidence in a non-consensual hypothesis, and raised the confi-
dence in a consensual hypothesis. To test this hypothesis, the confidence ratings for
non-plausible hypotheses were excluded from the analysis (due to the large percent-
age of plausible hypotheses, only 6% of the cases needed to be excluded). The reason
for this is that the effect of CH can be inflated when the non-consensual hypothe-
ses can be either plausible or non-plausible (the consensual hypothesis was always
plausible), since plausibility was related to confidence. As expected, the ANCOVA
showed a significant Consensus×CH interaction, F (1, 1051) = 17.40, p < .001. Look-
ing at the adjusted means (the means of Conf2 as deviations from Conf1), we see
that in the consensus condition, there was a relatively large difference between the
change in confidence in the consensual hypothesis (M = .30, SD = .06) and in a
non-consensual but plausible hypothesis (M = −.26, SD = .06). In the no-consensus
condition, there was hardly a difference between the change in confidence in the
consensual hypothesis (M = −.01, SD = .06) and a non-consensual but plausible
hypothesis (M = −.03, SD = .06). Besides the expected interaction effect, there
was also a main effect of CH, F (1, 1051) = 20.54, p < .001, indicating an overall
increase in confidence in the consensual hypothesis (M = .15, SD = .04) and an
overall decrease in the confidence in a non-consensual but plausible hypothesis (M =
−.14, SD = .04). Finally, there was a significant Consensus×Underdetermination
interaction, F (1, 1051) = 7.36, p = .007. This effect indicates that while confidence
increased in both the high-underdetermination/consensus (M = .07, SD = .06) and
low-underdetermination/no-consensus (M = .10, SD = .06) conditions, there was an
overall decrease in the high-underdetermination/no-consensus (M = −.14, SD = .06)
and low-underdetermination/consensus (M = −.02, SD = .06) conditions. This in-
teraction is difficult to interpret, since it does not incorporate the distinction between
hypothesis types.

As indicated earlier, a particular interaction between agreement and the level of
underdetermination was expected. In the above analysis, no significant Consensus ×
Underdetermination × CH interaction was found. A more direct test of the expec-
tation was obtained by applying a contrast to the ANCOVA. Changes in confidence
following social feedback were only expected in the consensus condition. So, in the
absence of consensus, no effects of Determination or CH on Conf2 were expected. In
the consensus condition, we expected that disagreement (i.e. the participant reporting
a non-consensual hypothesis) would result in a decrease in confidence, which is larger
for the low-underdetermination condition than for the high-underdetermination con-
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Table 4.5: Adjusted means of Conf21

Underdetermination: High Low
M SD M SD

No consensus
Non-consensual hypothesis -0.10 0.07 0.05 0.10
Consensual hypothesis -0.16 0.10 0.15 0.08

Consensus
Non-consensual hypothesis -0.17 0.07 -0.34 0.09
Consensual hypothesis 0.30 0.09 0.30 0.08

dition. Agreement was expected to result in an increase in confidence, which should be
higher in the high-underdetermination condition than in the low-underdetermination
condition. To test this hypothesis, a contrast was specified with coefficients equal
to 0 for the no-consensus conditions. For the consensus conditions, coefficient val-
ues of -1, 2, -2, and 1, were used for the high-underdetermination/disagreement,
high-underdetermination/agreement, low-underdetermination/disagreement and low
underdetermination/agreement combinations respectively. This contrast described
differences between the adjusted means of Conf2 very well, F (1, 1051) = 42.18,
p < .001, and the residual variance was non-significant, F (7, 1051) = 1.88, p = .071.
The expected pattern was clearly confirmed, but planned comparisons did not show
a significant difference between the high-underdetermination/disagreement and low-
underdetermination/disagreement cells, nor between the high-underdetermination/
agreement and low-underdetermination/agreement cells. From the adjusted means
of Conf2, given in Table 4.5, it appears that although disagreement (non-consensual
hypothesis) resulted in a larger decrease in confidence for highly than lowly underde-
termined rules, there was no difference between the levels of underdetermination in
the rise in confidence following agreement (consensual hypothesis). Thus, although
the contrast fitted the results very well, the expectation that agreement would result
in a larger increase in confidence when the hypothesis was highly underdetermined
was less supported than the expectation that disagreement would result in a larger
decrease in confidence when the hypothesis was lowly underdetermined.

4.2.3 Discussion

Experiment 2 did not show direct evidence for conformity to the consensual position.
Indirect evidence was found however, since overall the consensual hypothesis was re-
ported more in the consensus condition than in the no-consensus condition, a result
which could not be attributed to a higher proportion of participants initially report-
ing this hypothesis in the consensus condition. Also, as expected, there was more
evidence for conformity in the low determination condition than in the high determi-
nation condition. The effect of consensus showed itself more clearly in the analysis in
participants’ confidence in their reported hypotheses. The unanimous support for the
consensual hypothesis raised the confidence in this hypothesis, and lowered the confi-
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dence in a non-consensual hypothesis. Moreover, the decrease in confidence following
disagreement appeared higher when the rule was less underdetermined. Although
disagreeing with a unanimous group did lower confidence in a hypothesis, especially
in the low underdetermination condition, this may not have been enough to persuade
participants to abandon their own hypothesis in favour of the consensual one.

4.3 General discussion

The two experiments presented support Festinger’s basic claim that people evalu-
ate beliefs by social comparison when the objective evidence is insufficient for this
purpose. In the first experiment, strong evidence was found for the informational
influence of an unanimous group belief on the belief of individual participants. In a
situation of underdetermination, where there is equal objective support for a consen-
sual hypothesis and another plausible hypothesis, the social support for the consensual
hypothesis resulted in a conformity to this position. In the second experiment, the
level of underdetermination was varied in order to test the hypothesis that the in-
formational influence of the group is stronger when the objective evidence is more
ambiguous. Although there was less direct evidence for conformity in this experi-
ment, this hypothesis was supported. Stronger evidence for the social comparison of
belief came from the effects of social feedback on the confidence in reported hypothe-
ses. Confidence was lowered when participants reported a hypothesis that differed
from one unanimously endorsed by the other group members, while confidence was
raised when participants reported a hypothesis that was identical to the consensual
hypothesis. Furthermore, the effects of agreement or disagreement on confidence ap-
peared to differ for the different levels of underdetermination. It was expected that
the increase in confidence following agreement would be stronger for highly than for
lowly underdetermined rules, while the decrease in confidence following disagreement
would be stronger for lowly underdetermined than for highly underdetermined rules.
This expectation was supported, although most clearly for the decrease in confidence
following disagreement.

That the first experiment provided stronger evidence for conformity than the sec-
ond experiment may be due to the relative easiness of the task in the latter experiment.
Participants in the first experiment had more difficulty reporting a plausible hypoth-
esis than in those the second experiment. This difficulty may have resulted in a lower
overall confidence and hence more impetus for social comparison to reduce this uncer-
tainty. If participants were more confident in the second experiment, disagreeing with
an unanimous group may not have lowered confidence enough to result in a change
of belief. Interestingly, while the decrease in confidence following disagreement was
higher in the low underdetermination condition, there was less evidence for confor-
mity in this condition as compared to the high underdetermination condition. While
participants may have assumed more agreement in the low underdetermination condi-
tion, and the disconfirmation of this expectation resulted in a relatively large decrease
in confidence, participants were less inclined to resolve this uncertainty by adopting
the consensual hypothesis. A possible explanation for this is that in the low underde-
termination condition, there were two hypotheses consistent with the evidence, while
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in the high underdetermination condition, there were three or four. The probability
that a plausible hypothesis is correct is therefore higher in the low underdetermina-
tion than in the high underdetermination condition. For this reason, dissenters in the
low underdetermination may have been more certain about the correctness of their
plausible hypothesis than dissenters in the high underdetermination condition.

Another difference between the two experiments is that in the first experiment
the entire sequence of exemplars was always conclusive evidence in favour of a sin-
gle generating rule. In the second experiment the rules remained underdetermined.
This higher level of ambiguity in the second experiment was expected to result in a
higher reliance of social comparison and, as a result, a higher level of conformity. On
the other hand, the ambiguity may have interfered with the participants’ perception
of the task as principally objective. Although the task was considered objective in
both experiments, being concerned with potentially verifiable statements concerning
the generating rule behind a sequence of data, only in the first experiment was this
potential of verifiability realised. The pervasive underdetermination in the second ex-
periment may have led some participants to believe there was no objectively correct
hypothesis, or at least not one they could ever determine. Consequently, these partic-
ipants would not be expected to use social comparison, for why attempt to evaluate
the correctness of a belief if there is no correct belief? The assumption of objectivity,
i.e. the possibility of a true belief, seems critical for the social comparison of belief.
Evidence for this was found in an experiment by Insko et al. (1983). They studied
conformity in a task in which participants had to indicate which of two colours was
more alike a third colour. In one group, participants were led to believe that the
correct answer could be objectively determined by means of a spectrometer. In the
other condition, participants were led to believe that this was impossible. As the au-
thors expected, conformity was much stronger in the first condition than in the latter.
According to Insko et al., participants in the first condition were more concerned with
being right than in the second condition, and hence more persuaded to apply social
comparison. The results are consistent with the idea that the informational value of
others’ beliefs is higher when the task is objective rather than subjective. Similar
results were obtained by Olson et al. (1983). Apparently, the occurrence of social
comparison hinges on two factors: (1) the assumption of a single true belief, and (2)
the underdetermination of this belief by objective evidence. Both aspects are related
to the informational value of others’ beliefs. When there is a single correct position,
all beliefs pertain to this single object, so that any belief has informational value in
principle. When the correct position is underdetermined by objective evidence, there
are multiple plausible positions, and there is no objective ground to favour one over
the other. In order to make a trustworthy choice, the social support may then be
used as additional evidence to discriminate among the otherwise equally plausible
positions.

While social comparison did appear to influence the individual hypotheses in both
experiments reported here, the effect of objective information on the formation and
change of belief appeared much larger. This is in agreement with Festinger’s assump-
tion that people prefer objective evidence for the evaluation of belief. In inductive
tasks, where there is a single true rule that generated the data, an increase in the
amount of evidence has been shown to raise the number of correct hypotheses more
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than an increase in the number of proposed hypotheses (Laughlin, 1999; Laughlin &
Bonner, 1999). The correct hypothesis must be one of all possible hypotheses that
are consistent with the evidence. Enlarging the set of explicitly proposed plausible
hypotheses will raise the probability that the correct hypothesis is a member of this
set. However, enlarging the set of plausible hypotheses will not make the correct
hypothesis stand out more, nor raise the probability that a (randomly) chosen hy-
pothesis from the set of proposed plausible hypotheses is correct. Only an increase in
the amount of evidence, and with that a decrease in the amount of possible plausible
hypotheses, can accomplish this.

Social comparison can be a valuable means of reducing effects of idiosyncratic
biases in availability, selection, and processing of information on belief formation. In
the two experiments reported here, all participants based their hypotheses on the
same information. For this reason, disagreement should be attributed to differences
in the processing of this information, not in differences in the amount of available
information. Suls et al. (2000) found a preference for dissimilar advantaged others
(i.e. experts or persons who possess more information) in the comparison of belief,
supporting the idea that people use social comparison in order to counter bias stem-
ming from insufficient information. The results of the two experiments described here
indicate an additional motivation to counter idiosyncratic bias in the processing of
information.

Appendix

4A Example of a trial in experiment 1

This appendix contains an example of a trial in experiment 1. A sequence of 10
exemplars is given for both the Underdetermination and Determination conditions.
Immediately below the sequence are the two cards which, together with the exemplar,
were the set of three cards from which participants had to choose the next exemplar.
Below the objective evidence is an overview of the plausible hypotheses, i.e. the
hypothetical rules that are consistent with the sequence of exemplars given so far.
Note that these lists start at exemplar 4, since this is where participants were to
give their first hypothesis. Hypotheses are abbreviated, with ‘even’ denoting the
hypothesis ‘All cards have an even number’, ‘R B B’ denoting the hypothesis ‘A Red
card is followed by two Black cards’ (which are followed by another red card and two
black cards, etc.), and ‘+0 -2’ denoting the hypothesis ‘A card is followed by a card
with the same number, and then followed by a card with a number lowered by two’
(which is then followed by a card with the same number and one with a number -2,
etc). Below the sequences and plausible hypotheses, the feedback is given for the
no-consensus and consensus conditions.
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1 2 3 4 5 6 7 8 9 10

Underdetermination
Exemplar: ♥10 ♠10 ♣8 ♥8 ♣6 ♠6 ♥4 ♦4 ♠2 ♠8
Other cards: ♣7 ♦7 ♦5 ♠3 ♠1 ♦1 ♥3

♠9 ♥5 ♥7 ♠9 ♠5 ♠3 ♠1

Plausible hypotheses even even even even even even even
+0 −2 +0 −2 +0 −2 +0 −2 +0 −2 +0 −2
R B B R B B
♥♠♣

Determination
Exemplar: ♥10 ♠10 ♣8 ♦8 ♥2 ♣6 ♥4 ♠4 ♣2 ♥8
Other cards: ♣7 ♦3 ♠5 ♦9 ♠1 ♦7 ♥1

♠9 ♣1 ♥7 ♣3 ♥5 ♠3 ♣9

Plausible hypotheses even even even even even even even
+0 −2

Feedback consensus ♥♠♣ ♥♠♣ R B B +0 −2 +0 −2 +0 −2
R B B R B B +0 −2 +0 −2 +0 −2 +0 −2
+0 −2 +0 −2 +0 −2 +0 −2 +0 -2 +0 -2

Feedback no-consensus ♥♠♣ ♥♠♣ ♥♠♣ ♥♠♣ ♥♠♣ ♥♠♣
+0 −2 +0 −2 +0 −2 even even even
R B B R B B +0 −2 +0 −2 +0 −2 +0 −2



5

Collaboration in nonmetric multiple cue

probability learning

There are at least two reasons why a group can outperform individuals when it comes
to making good judgements and decisions (Meehl, 1999). The first is that individuals
may possess (partly) non-overlapping information, so that the group as a whole can
base its judgement or decision on more information than any individual alone. The
second is that idiosyncratic biases may affect the group judgement or decision to a
lesser extent than individual ones, because the idiosyncratic biases may cancel each
other out, so to say, in a group judgement or decision. While these reasons render it
plausible that groups are advantaged over individuals, previous research has shown
that groups often do not realise their potential. For instance, it has been shown that
group discussions focus mainly on information shared by group members, rather than
on the unique information individuals can contribute (Stasser & Titus, 1985; Gigone
& Hastie, 1993; Larson, Christensen, Abbott, & Franz, 1996). Even when unique
information is discussed, the influence of this information on the final group judgement
or decision is much smaller than that of shared information. The preference for shared
over unique information has been labelled the ‘common knowledge effect’ (Gigone
& Hastie, 1993), and it shows that while groups are potentially advantaged over
individuals, they usually do not realise this potential fully. As for the ‘cancelling-out’
of idiosyncratic bias argument, research shows that some biases which are often found
on an individual level, such as the base-rate fallacy, may actually be exaggerated in a
group decision (Tindale, 1993; Kerr, MacCoun, & Kramer, 1996; Kerr, Niedermeier,
& Kaplan, 1999). Findings such as these show that the assumption that groups arrive
at better judgements and decisions should be scrutinised. The purpose of this chapter
is to do so in the context of group decision-making based on probabilistic information,
an area in which group performance has not been studied extensively.
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Overall, it has been an ubiquitous finding that actual group performance lies below
potential group performance, i.e. the performance that would be obtained if a group
makes optimal use of its members’ resources (Kerr & Tindale, 2004). In Steiner’s
(1972) terminology, groups exhibit process loss. Steiner takes group performance (he
uses the term group productivity) to depend on three components: task demands,
group resources and group process. Task demands specify the resources needed, and
how they should be combined, in order to complete the task. Group resources are
those resources available to the group as a whole. Together, these two components
determine the potential performance of the group. The group process refers to the
process through which the group combines the group resources and determines to what
extent the potential performance is realised. The actual group performance depends
on the match between the task demands on the one hand, and the group resources and
process on the other. Task demands, which are not under the control of the group,
are critical determinants of both potential and actual group performance. They form
the basis of Steiner’s (1972) typology of group tasks. Tasks are distinguished on three
dimensions. The first dimension concerns whether the task is divisible or unitary.
Divisible tasks can be divided into subtasks in such a way that a group can achieve
maximal performance if every member completes just one subtask. For unitary tasks,
a profitable division into subtasks is not possible. The second dimension concerns
whether the task is of a maximising or optimising kind. Maximising tasks require
as much as is possible of something, such as force in a rope-pulling contest or ideas
in a brainstorming session. In optimising tasks, the goal is to produce a specific,
correct or most preferred outcome. Decisions and judgements are optimising tasks.
The third dimension concerns the permitted and prescribed group process. This
dimension distinguishes between four task-types: additive, disjunctive, conjunctive
and discretionary tasks.

In additive tasks, group performance equals the sum of the individual contribu-
tions. The rope-pulling contest is an example of an additive task, since the force a
group exerts is the sum of the force of each group member. While the group perfor-
mance in an additive task must always be at least as high as the actual performance of
any individual member, this is not to say that group performance is necessarily higher
than the potential performance of any of its members. Classic research by Ringelman
(cited in Steiner, 1972) showed that the force a group exerts is smaller than the sum
of the forces the group members exert when pulling individually. This can be due to a
problem in coordination, for instance if not all group members pull at the same time,
or a problem in motivation, if group members exert less force because they are work-
ing in a group. In disjunctive and conjunctive tasks, the group product must equal
the contribution of a single group member. In disjunctive tasks, the group is free to
choose which contribution to adopt as its own. Group performance is optimal if the
group adopts the contribution of the most proficient member. In unitary disjunctive
tasks, groups can only perform successfully if at least one member possesses all re-
sources necessary to complete the task. An important class of disjunctive tasks are
so-called Eureka-problems (Lorge & Solomon, 1955). These are problems in which
the correctness of the proper solution, once obtained, can be easily demonstrated.
Demonstrability is a key characteristic of intellective tasks (Laughlin & Ellis, 1986).
For such tasks, it has been shown that groups mostly perform at the level of the best
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group member. The advantage of the group lies in the simple fact that as the size
of the group increases, so does the probability that at least one member possesses
the necessary resources. When the demonstrability requirement is not met, groups
often do not perform at the level of the best individual member. In conjunctive tasks,
the group is not free to choose which member’s contribution to adopt as the group
product. Performance in these tasks is necessarily identical to the performance of the
least proficient member. A climbing expedition is an example of such a task, since
the expedition can only move at the speed of its slowest member. Discretionary tasks
comprise the last task type. In these tasks a group is free to combine the individual
contributions in any way it sees fit. Judgement and decision tasks are usually of this
type.

Most judgements, and with that the decisions which follow from these judge-
ments, are based on information which is not deterministically related to the subject
of judgement. Furthermore, this information may be the only indication of the true
state of the object to which the judgement pertains. In Brunswik’s (1955) terms,
it is a situation in which a distal criterion can only be perceived through proximal
cues, which are probabilistically related to the criterion. Brunswik’s theory of proba-
bilistic functionalism addresses how an organism adapts to the probabilistic relations
in its environment. This process is directly investigated in Multiple Cue Probability
Learning (MCPL) tasks, in which individuals learn to predict the value of a criterion
on the basis of a number of cues. Brunswik’s lens model provides the framework for
analysing performance in such tasks. The lens model concerns how information from
multiple cues is combined into individual judgements, and how the relation between
cues and judgements compares to the relation between cues and an objective crite-
rion. In the so-called two system approach, the proximal cues and distal criterion
comprise the ecological system and the cues and judgements the judgement system.
Hammond, Wilkins, and Todd (1966) proposed to extend the two system approach
to a three system approach, with one ecological system and two judgement systems,
or even to an n-system approach. These extensions provide a framework in which
social processes in judgement can be precisely studied. Such research goes under
the name of Interpersonal Conflict (IPC) or Interpersonal Learning (IPL). The basic
structure of both is as follows. Two individuals participate in a MCPL experiment
with an ecological system consisting of two cues. The first individual is trained in a
system where cue 1 is strongly related to the criterion, but cue 2 is not related. The
second individual is trained in a system where cue 1 is not related to the criterion,
while cue 2 is strongly related. In the interpersonal learning stage, the individuals
are put together to learn in a system where both cues are related to the criterion,
although less than before. By learning from each other, the participants are expected
to perform better in this new system than by working alone. Research conducted
using this paradigm (Brehmer, 1973, 1974) has shown that individuals often tend to
change an optimal judgement procedure toward a less optimal one under interper-
sonal learning conditions. Problematic in this approach is that the ecological system
changes between the individual learning stage and the interpersonal learning stage.
This will probably be quite confusing for the participants, and such sudden changes
in the ecological system are not expected in realistic situations where interpersonal
learning might take place. In fact, the IPL studies as previously conducted required
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group members to unlearn part of what they previously learned, rather than learning
about aspects of the ecological system from each other. Such unlearning will be much
more difficult than learning about aspects of the ecological system from each other’s
responses. Indeed, research by Andersson and Brehmer (1979) has shown that the
diminished individual performance in IPL conditions is attributable to the change in
the ecological system, rather than to the social environment.

A way to overcome this problem of IPL research is to train participants in different
parts of the same ecological system. In this way, each group member has knowledge of
only a partial ecological system, but, depending on how this knowledge is distributed
in the group, the group as a whole may have more knowledge about the complete eco-
logical system than any group member alone. If each group member bases his response
on a different partial ecological system, the group can maximise the information it
possesses as a whole. Such a division of cognitive labour is effective if there is a limit
to the amount of information that individuals can process adequately and individ-
ual contributions are properly integrated in the group process. The two experiments
described here investigate such collaboration in Nonmetric Multiple Cue Probabil-
ity Learning (NMCPL) tasks under different distributions of information over group
members. In the following, a brief overview of NMCPL is given, as well as methods
for the analysis of individual behaviour in such tasks. Then, a group paradigm is
described, as well as possible group processes in such collective NMCPL tasks.

5.1 NMCPL

In nonmetric multiple cue probability learning (NMCPL) tasks, the objective is to
learn about the probabilistic relations between a categorical event ek, k = 1, . . . ,K
and a number of categorical cues cj , j = 1, . . . , J , in order to predict the event on the
basis of observed cues. A common NMCPL task is that of medical diagnosis, where a
physician has to decide whether a disease is present on the basis of the presence of a
number of symptoms. NMCPL tasks are a special case of general multiple cue prob-
ability learning tasks and can be analysed in a similar vain as metric MCPL tasks,
using the lens model approach. For metric MCPL tasks, achievement is defined as the
correlation between judgements ri and event ek. The lens model equation (Tucker,
1964) shows how this correlation is a function of four components, which have been
termed the predictability of the event, the cognitive control of the individual, the
individual’s linear knowledge and his configural knowledge (e.g. Cooksey, 1996). For
nonmetric MCPL tasks, achievement is more naturally defined as P (ri = ek), the
probability that the response is identical to the event. A nonmetric version of the
lens model equation has been derived by Björkman (1973) for an ecological system
consisting of a polytomous criterium and a single polytomous cue. It is easy to gen-
eralise his approach to an ecology with more than one cue, by analysing the multiple
cue environment as a single cue environment, in which the single cue C represents
the cartesian product of the individual cues cj . For example, for an environment with
two dichotomous cues, the variable C would have 22 = 4 levels: C1 = (c1:1, c2:1),
C2 = (c1:1, c2:0), C3 = (c1:0, c2:1), and C4 = (c1:0, c2:0).

The main elements of a double system design for NMCPL are the cue profiles Cm,
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the event ek and the responses ri. From the standard axioms of probability, the joint
probability P (ri, ek, Cm) can be partitioned as P (ri, ek|Cm)P (Cm). But since we can
assume the responses and event are conditionally independent, we have:

P (ri, ek, Cm) = P (ri|Cm)P (ek|Cm)P (Cm). (5.1)

5.1.1 Achievement

The achievement Ai of individual i is defined as

Ai ≡ P (ri = ek) =
∑

k

∑

m

P (ri:k|Cm)P (ek|Cm)P (Cm). (5.2)

An analogous formulation can be given in matrix algebra. While the approach is
general, it will be illustrated here for a simple system with a dichotomous criterium
e, with values e1 and e−1, and two dichotomous cues cj , with values cj:1 and cj:0. Let
c be a vector of the base-rate probabilities of the cue profiles

c =





P (c1:1, c2:1)
P (c1:1, c2:0)
P (c1:0, c2:1)
P (c1:0, c2:0)



 ,

Ui be a matrix with the conditional probabilities of responses ri:k given the cue
profiles

Ui =





P (ri:1|c1:1, c2:1) P (ri:−1|c1:1, c2:1)
P (ri:1|c1:1, c2:0) P (ri:−1|c1:1, c2:0)
P (ri:1|c1:0, c2:1) P (ri:−1|c1:0, c2:1)
P (ri:1|c1:0, c2:0) P (ri:−1|c1:0, c2:0)



 ,

and V be a matrix with the conditional probabilities of criterium values ek given the
cue profiles

V =





P (e1|c1:1, c2:1) P (e−1|c1:1, c2:1)
P (e1|c1:1, c2:0) P (e−1|c1:1, c2:0)
P (e1|c1:0, c2:1) P (e−1|c1:0, c2:1)
P (e1|c1:0, c2:0) P (e−1|c1:0, c2:0)



 .

Individual i’s achievement is then given as

Ai = tr[U′
idiag(c)V], (5.3)

in which tr[·] denotes the trace and diag(c) is the diagonal matrix with elements
corresponding to c.

The nonmetric lens model equation in (5.3) shows achievement is a function of
three components: c, which can be interpreted as the cue profile usability, V, rep-
resenting cue profile validity, and Ui, representing cue profile utilisation. Maximum
achievement is obtained by consistently giving as the response that event which has
the highest conditional probability. Let om denote the optimal response for cue profile
Cm. Then achievement is maximal if P (ri = om|Cm) = 1 for all m. Consider an eco-
logical system with parameters as given in Table 5.1. Highest achievement is obtained
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Table 5.1: Ecological system with two dichotomous cues and a dichotomous criterion

C P (C) P (C|e1) P (C|e−1) P (e1|C) P (e−1|C)
c1:1 .50 .80 .20 .80 .20
c2:1 .40 .20 .60 .25 .75
c1:1, c2:1 .14 .16 .12 .57 .43
c1:1, c2:0 .36 .64 .08 .89 .11
c1:0, c2:1 .26 .04 .48 .08 .92
c1:0, c2:0 .24 .16 .32 .33 .67

by consistently giving response r1 for cue profiles C1 = (c1:1, c2:1) and C2 = (c1:1, c2:0)
and giving response r2 otherwise. Thus, the optimal utilisation matrix is

U∗ =





1 0
1 0
0 1
0 1



 ,

and the associated achievement is Ai = .8. Here, in a nutshell, lies the main difference
between MCPL and NMCPL. In MCPL, achievement is maximal when the response
system is identical to the ecological system. In NMCPL, however, achievement is
maximised when the response system is different from the ecological system.

5.1.2 Cue validity and utilisation

The three components of achievement, c, V and Ui, are defined for cue profiles
Cm, rather than for separate cues cj . It has been customary to define validity and
utilisation coefficients for separate cues. When all cues and event dimension are di-
chotomous, the phi-correlation between a cue and event (or response) can be taken
as a validity (or utilisation) coefficient for that cue (Castellan, 1977). Edgell (1978,
1980, 1993) takes a different approach, in which not only the cues, but also cue profiles
can be assigned a validity (or utilisation) coefficient. His approach amounts to par-
titioning the conditional probabilities P (ek|Cm) into several orthogonal components,
representing the base-rate, main effects and interaction effects. While this approach
works when the dichotomous cues are statistically independent with equal base-rates,
it does not for a more general situation with dependent cues and/or unequal base
rates. Moreover, neither phi-correlation nor the Edgell coefficients are suitable when
cues and/or criterion are polytomous. In Appendix 5A, a method is proposed which
is based on information theory (Shannon, 1948) and is applicable to the general sit-
uation of polytomous cues and criterion, where the cues may be dependent and have
unequal base-rates. The validity coefficients defined in this manner reflect not only
the conditional probability of the event given the cue, but also the cue base-rate.
This is a nice property, since even though for instance P (e1|c1:1) = 1, so that the
occurrence of the event is deterministically related to a cue, if P (c1:1) is very small,
the predictability of e on the basis of c1 is not very high. As such, the validity of c1
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should not be considered high. For the environment as in Table 5.1, the validity of the
base-rate is η0 = 0, the validity of cue 1 is η1 = .28, the validity of cue 2 is η2 = .13
and the validity of the cue interaction is η12 = −.04. While the validity coefficients
of the main effects can only be positive, sign is important for the validity coefficients
of the cue interactions. When the validity is positive, it indicates that knowledge of
the first (or second) cue increases the information of the second (or first) cue. When
the coefficient is negative, as it is here, it indicates that knowledge of the first (or
second) cue decreases the information of the second (or first) cue. Positive interac-
tion validity coefficients indicate true interaction, while negative interaction validity
coefficients indicate an information overlap (Attneave, 1959).

The information measures used do not only lead to generally applicable cue va-
lidity and utilisation coefficients. As noted in Appendix 5A, we may also define a
predictability coefficient ψ for the total environment as the sum of all validity coeffi-
cients (for the ecological system in Table 5.1, ψ = .36). In similar fashion, the sum of
the cue utilisation coefficients defines a consistency coefficient ξi for each individual.

5.2 Collaboration in NMCPL

When groups of individuals arrive at a single group response gg, group achievement
can be defined in an identical fashion to individual achievement, by replacing Ui in
Equation 5.3 by Gg, the K ×M matrix containing the conditional probabilities of
group responses gg:k given cue profiles Cm. When individuals form their own judge-
ment before the collective judgement, the group cue utilisation matrix Gg will depend
on the individual cue utilisation matrices Ui. If the group functions under a simple
majority rule, then each element gkm in Gg will represent the probability of a ma-
jority of the group giving a response k conditional on cue profile m. The individual
responses of the group members are assumed to be conditionally independent, so that
the probability of a majority giving a response for a cue profile Cm is completely spec-
ified by the conditional probabilities of the responses of the different group members.
For instance, for a group consisting of three individuals

P (rg:1|Cm) = P (r1:1|Cm)P (r2:1|Cm)P (r3:1|Cm) + P (r1:1|Cm)P (r2:1|Cm)P (r3:−1|Cm)

+ (r1:1|Cm)P (r2:−1|Cm)P (r3:1|Cm) + P (r1:−1|Cm)P (r2:1|Cm)P (r3:1|Cm).

Similar to individual achievement, group achievement is maximal when the group
consistently gives responses with the highest conditional probability of being correct.

If individuals respond independently, the probability that the collective response
is correct can be derived from the probability that an individual response is correct.
We shall denote this latter probability as pi = P (ri = ek). If this probability is
identical for all individuals, i.e. pi = pj = p, and individuals respond independently,
the probability that a collective response by simple majority is correct in a group with
an odd number n of individuals is

P (rg = ek) =

n∑

m=
n+1

2

(
n

m

)
pm(1 − p)(n−m). (5.4)
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This result was already derived in 1785 by Marquis de Condorcet, and his main result
is now known as the Condorcet Jury Theorem (CJT):

Theorem 1 (Condorcet Jury Theorem).
If p > .5, P (rg = ek) increases monotonically in n, while if p < .5, P (rg = ek)
decreases monotonically in n, and

lim
n→∞

P (rg = ek) =






1 if p > .5

.5 if p = .5

0 if p < .5.

The CJT has received much attention over the years (Berend & Paroush, 1998;
Boland, 1989; Kanazawa, 1998; T. Koch & Ridgley, 2000; Owen, Grofman, & Feld,
1989). One avenue of research, with particular relevance for the present study, has
been to generalise the theorem to situations in which group members have different
competency (e.g. Ladha, 1992; Owen et al., 1989). The generalised CJT is essentially
similar to the original CJT, with p replaced by p, the mean probability of a correct
response in the group, with the exception that, if the distribution of p is asymmetric,
limn→∞ P (rg = ek) 6= .5 when p = .5 (Owen et al., 1989).

From the generalised CJT, it can be inferred that for groups functioning under a
simple majority rule, the probability that the group response is optimal approaches
1 as group size increases, as long as the mean probability of an optimal individual
response is greater than .5. Even though none of the individual cue utilisation ma-
trices might be optimal, as group size increases, the group cue utilisation matrix can
approach optimality. It is in this sense that individual bias can be corrected in a
group decision.

The inference from the generalised CJT about the optimality of Gg holds only
if group members base their responses on all available information. In the case that
all group members base their responses on the same partial ecological system, the
group utilisation matrix will approach the optimal utilisation matrix for this par-
tial ecological system, but the optimal utilisation matrix for the complete ecological
system may be different. For instance, the optimal response for the partial cue pro-
file C1

m = (c1:1, c2:1) is r1, while the optimal response for the complete cue profile
Cm = (c1:1, c2:1, c3:1, c4:1, c5:0, c6:1) is r−1. The situation under a division of labour is
different. If the individual group members base their responses on different partial
ecological systems, the group response matrix Gg will, besides differences in the indi-
vidual utilisation of the cues, also reflect differences in the relations between cues and
criterium. If the complete ecological system consists of six cues and an event, and
the group consists of three members, each of which was trained in a different partial
ecological system consisting of two cues and an event, the group as a whole can base
its decisions on the complete ecological system. In such a situation, there will be no
correction for individual bias, but there will be a correction for neglecting relevant
evidence. The extent of this correction depends on the group process. Suppose the
optimal response for the partial cue profile C1

m = (c1:1, c2:1) is r1, the optimal response
for the partial cue profile C2

m = (c3:1, c4:1) is r1 and the optimal response the partial
cue profile C3

m = (c5:0, c6:1) is r−1. If the group members respond optimally to their
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partial cue profile and the group decides by simple majority, then the group would
respond rg:1 to the complete cue profile Cm = (c1:1, c2:1, c3:1, c4:1, c5:0, c6:1), with the
probability P (rg:1) increasing as the consistency of the group members increases. But,
as before, the optimal response to the complete cue profile is rg:−1. As such, a simple
majority rule may lead to sub-optimal group achievement, even though the group
members all respond optimally to the information at hand.

5.2.1 Optimal group process

Situations such as the one just described call for a weighted majority rule. If each
group member has a certain probability pi = P (ek|Cm) that their response ri:k to cue
profile Cm is correct, the optimal group decision rule is the weighted majority rule
(see Appendix 5B):

rg = sgn

{
n∑

i=1

log

(
pi

1 − pi

)
ri

}
. (5.5)

To distinguish this process from others, it will be referred to as the weighting-by-
evidence (WE) rule, since each response is weighted by its evidential support. For
example, take an ecological system with three cues c1, c3, and c5, that have identi-
cal properties to c1 in Table 5.1, and three cues c2, c4, and c6, that have identical
properties to c2 in Table 5.1. This is the ecological system used in experiment 1. All
cues are conditionally independent given the events ek. If group member 1 responds
optimally to partial cue profile C1

m = (c1:1, c2:1), he would respond r1:1 with a prob-
ability of p1 = .57 that the response is correct. The same holds for group member
2 who responds optimally to partial cue profile C2

m = (c3:1, c4:1). If group mem-
ber 3 responds optimally to partial cue profile C3

m = (c5:0, c6:1), he would respond
r3:−1 with a corresponding probability of p3 = .92 that this response is correct. In

this case,
∑

i ri log
(

pi

1−pi

)
= −1.88, so the weighted majority rule would result in

rg:−1. This is the optimal response, since P (e−1|c1:1, c2:1, c3:1, c4:1, c5:0, c6:1) = .87. If
member 3 were to give the suboptimal response r3:1, he would have a corresponding
probability of .08 that this response is correct. Even though the group is now unan-
imous in giving response ri:1, the weighted majority rule would still result in rg:−1,

since
∑

i ri log
(

pi

1−pi

)
= −1.88, due to the lack of evidential support for e1. In the

completely distributed case, the optimal weighted majority rule always results in the
optimal group response. This is due to the fact that, in the present ecological system,
the cues are conditionally independent given the events, so that

log

(
P (ek|c1, . . . , c6)

1 − P (ek|c1, . . . , c6)

)
=
∑

j

log

(
P (ek|cj)

1 − P (ek|cj)

)
.

This means that the log-odds of the events for a complete cue profile is reconstructable
from the log-odds of the events of the partial cue profiles. Hence, under the weighting-
by-evidence rule, the group task is a divisible task.

While weighting-by-evidence is the optimal group process, it requires precise knowl-
edge of the probabilities pi of events given the cue profiles, which is an unrealistic
assumption. However, it is not unrealistic that individuals have some indication of
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the amount of correct responses they gave to partial cue profiles. If individuals know
their conditional achievement

(Ai|Cm) =
∑

k

P (ri:k|Cm)P (ek|Cm), (5.6)

then a weighting-by-achievement process may be a viable alternative to weighting-
by-evidence. Similarly to the latter, the weighting-by-achievement (WA) rule will be
defined as

rg = sgn

{
n∑

i=1

log

(
(Ai|Cm)

1 − (Ai|Cm)

)
ri

}
, (5.7)

As in the WE rule, weights are determined by log-odds, but now those of individual i
giving a correct response to partial cue profile Ci

m, rather than i’s particular response
ri:k to Ci

m being correct. If individuals are completely consistent in their responses, so
that P (ri:k|Cm) = 1 for one k, and 0 otherwise, then achievement is identical to pi, and
(5.7) will lead to identical results as (5.5). If individuals are not entirely consistent,
(5.7) will result in some process loss compared to (5.5). Consider the situation just de-
scribed for the optimal weighted majority rule, and suppose that P (r1:1|c1:1, c2:1) = .8,
P (r2:1|c3:1, c4:1) = .8, and P (r3:1|c5:0, c6:1) = .1. In this case, the conditional achieve-
ments are (A1|c1:1, c2:1) = .54, (A2|c3:1, c4:1) = .54, and (A3|c5:0, c6:1) = .84, re-

spectively. For responses r1:1, r2:1, and r3:−1,
∑

i log
(

(Ai|Cm)
1−(Ai|Cm)

)
ri = −1.29, so

the group response would be rg:−1. If individual 3 would respond r3:1 however,
the group response would be rg:1, unlike that prescribed by the WE rule. How-
ever, P (rg:1|Cm), the probability that the group response to Cm is rg:1, is in this
case identical to P (r1:1, r2:1, r3:1) = .07, so the probability that the group gives the
sub-optimal response under the WA rule is not very high. For comparison, the prob-
ability of the group giving the sub-optimal response under a simple majority rule is
P (rg:1|Cm) = .67, which is clearly much higher.

5.2.2 Predicting group achievement

The group utilisation matrix Gg for the complete ecological system can be derived
from the individual utilisation matrices of the partial ecological systems by making
two assumptions. The first regards consistency of individual responses over partial
and complete ecological systems. This consistency requires individuals to respond in
the complete ecological system as if they observed only the partial ecological system in
which they were trained. In other words, if individual i learned in a partial ecological
system consisting of c1 and c2, then P (ri|c1:j , c2:k, cm:1, . . .) = P (ri|c1:j , c2:k, cm:0, . . .)
for all m = 3, . . . , 6. If so, the individual utilisation matrix Ui for the complete
ecological system is entirely determined by the individual cue utilisation matrix of
the partial ecological system.

In order to derive the group utilisation matrices Gg from the individual utilisation
matrices for the complete ecological system, an assumption must be made regarding
the group process. A group process that seems plausible and which leads to particu-
larly easy computation, is the simple majority (SM) process. In this case, we will write
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Gsm for the predicted group utilisation matrix. All elements gkm in Gsm will corre-
spond to the probability that a majority of group members responds with alternative
k for cue profile m. For a weighting-by-achievement processes, computation of the
expected group score is somewhat more complicated. We will write Gwa for the pre-
dicted group utilisation matrix. For the WA rule of (5.7) and dichotomous responses,

elements g1m in Gwa will now correspond to the probability P (
∑

i log( (Ai|Cm)
1−(Ai|Cm) )ri >

0), and elements g−1m to the probability P (
∑

i log( (Ai|Cm)
1−(Ai|Cm) )ri < 0).

5.2.3 Collective gains and process loss in NMCPL

The two reasons why groups can outperform individuals when it comes to decision-
making, mentioned at the beginning of this chapter, can be re-interpreted from the
viewpoint of NMCPL. Individual bias can be defined in terms of the difference be-
tween individual responses and optimal responses. That is, a natural definition of
(conditional) bias is 1 − P (ri = om|Cm). From the generalised CJT, it follows that,
if individual bias is not too extensive, so, on average, P (ri = om|Cm) > .5, then
P (rg = om|Cm) → 1 as group size increases and the group process is a simple major-
ity process, or an adequate weighted majority process. Hence, group decisions are less
affected by individual bias than individual decisions. For groups to realise the poten-
tial performance due to a larger informational base, the individual responses based on
different information must be properly combined in the group response. As mentioned
earlier, the optimal group process under a complete distribution of information is the
weighting-by-evidence process. Weighting-by-achievement, which is a more plausible
group process, will lead to some process loss. The extent of this process loss de-
pends on the consistency of individuals. For entirely consistent individuals, there is
no process loss, since weighting-by-evidence and weighting-by-achievement are iden-
tical in this case. The process loss when individuals are not entirely consistent will
be smaller than the process loss associated with a simple majority process.

While weighting-by-achievement is a more plausible model of the group process
than weighting-by-evidence, this is not to say that it gives an accurate description
of the way in which groups actually arrive at a collective response. It is highly un-
likely that group members report their conditional achievement for the given partial
cue profiles, then take log-odds transforms of these and weight their responses ac-
cordingly in order to arrive at a group response. Weighting-by-achievement is not
a model of the overt group process, but taken as a model of the underlying group
process, a model of the influence each individual group member has in the collective
response. It is not unlikely that influence in the group response is dependent on con-
ditional achievement. The weighting-by-achievement process defined in (5.7) assumes
that the relation between influence and conditional achievement is non-linear. In the
actual group process, member influence will be more directly dependent on confi-
dence, rather than conditional achievement. Confidence may be influenced by many
factors, but it is assumed here that it has a strong relation with conditional achieve-
ment. Under this assumption, the group process based on confidence may be quite
similar to a weighting-by-achievement process. Previous research has shown that in
intellective tasks, confidence is positively related to accuracy, while in judgemental
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tasks, this relation is usually not found (Zarnoth & Sniezek, 1997). NMCPL tasks
are not truly intellective, since there is no demonstrably correct answer. Therefore,
one might expect confidence to be unrelated to achievement in these tasks. However,
in the judgemental tasks in which confidence was unrelated to accuracy, no feedback
on the correct answer was given. In NMCPL, such feedback is an integral part of
the task. By providing objective feedback on judgement accuracy, it is expected
that this accuracy will be reflected in confidence. Zarnoth and Sniezek (1997) have
shown that member confidence affects their influence in a final group judgement or
decision. While the actual group process may be largely dependent on confidence, if
confidence itself is largely dependent on conditional achievement, the group process
may indirectly mimic the weighting-by-achievement process. The likeness of the two
will depend on how weights determined by confidence resemble the weights prescribed
by the weighting-by-achievement process. This resemblance itself will be dependent
on the strength, and form, of the relation between confidence and achievement. In
this way, there are at least two causes of process loss. The first is determined by the
difference between the optimal group process (weighting-by-evidence) and the under-
lying group process (weighting-by-achievement), and the second is determined by the
difference between the underlying group process (weighting-by-achievement) and the
actual group process (weighting-by-confidence).

5.3 Experiment 1

The first experiment investigated the effect of different distributions of information
over group members on group achievement. In one condition (the distributed condi-
tion), all information was completely distributed over group members, so that each
group member possessed only unique information. In the second condition (the shared
condition), all information was shared among group members, so that all group mem-
bers possessed the same information. When the information is completely distributed,
the group as a whole possesses more information than any individual alone, so group
resources are larger than individual resources. For this reason, the group has a higher
potential achievement than any individual. Realisation of this potential requires an
adequate group process in which the available information is properly integrated in
the group response. When information is completely distributed, the optimal group
process is the weighting-by-evidence rule. Weighting-by-achievement will lead to some
process loss, depending on the consistency of group members. When all information is
shared, the group resources are the same as individual resources, and the group does
not have a higher potential achievement than individual group members. However,
when individual achievement lies below potential individual achievement, because
individuals do not consistently give optimal responses, the group may still be advan-
taged over individual members. When the group process is a simple majority process,
this advantage follows from the generalised CJT. A simple majority process is not a
prerequisite; a weighted majority process such as weighting-by-achievement will also
result in higher group achievement.

In the first experiment, participants were individually trained in a partial ecolog-
ical system. This individual task was followed by a group task, in which groups were
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to make decisions in the complete ecological system. In the distributed condition, the
partial ecological systems in which individual group members were trained as a whole
covered the complete ecological system. In the shared condition, the partial ecolog-
ical systems in which the group members were trained were identical, so the group
as a whole had knowledge about the same partial ecological system as any individual
group member. As such, groups in the distributed condition were advantaged over
groups in the shared condition. However, full realisation of potential group achieve-
ment in the distributed condition required the weighting-by-evidence process, while
a simple majority process could suffice for the realisation of potential performance
in the shared condition. The distribution of information over group members, and
the realisation that some (partial) cue profiles have a higher predictive validity than
others, was expected to move groups in the distributed condition to a weighting-by-
achievement process. When all information is shared, there is less impetus for such a
weighted majority process. Since group members base their responses on the identi-
cal information in the shared condition, much more initial agreement is expected in
this condition than in the distributed condition, where group members base their re-
sponses on different information. The more members agree, the less reason they have
for assuming differences in their predictive accuracy. As such, there is less reason to
weight members’ contributions differently. On the other hand, even if individuals base
their responses on the same information, reasonably large differences in achievement
are possible due to differences in consistency. In those cases, there is good reason to
weight members contributions differently. For this reason, there is no clear expec-
tation regarding the group process in the shared condition. Regardless of the group
process in the shared condition, if groups in the distributed condition function under
a weighting-by-achievement process, as expected, their performance should be higher
than that of groups in the shared condition. This is the first hypothesis that will be
tested in the experiment. Besides testing this hypothesis, the overall purpose of the
first experiment is to determine the underlying group process and to see whether it
depends on the distribution of information over group members. Investigation of the
group process will be based on a comparison between the group responses and pre-
dictions derived from different group processes, as well as on the effect of confidence
on the group responses. As indicated, the expected group process in the distributed
condition is the weighting-by-achievement process. This is the second hypothesis to
be tested.

5.3.1 Method

Participants and design

Ninety university undergraduates participated in the experiment. There were 25
males and 65 females. The mean age was 22.02 (SD = 1.73). The experiment had
two conditions. In the shared condition, all group members learned to predict an
event on the basis of the same two cues. In the distributed condition, all group
members learned to predict an event on the basis of two different cues. Since the
complete ecological environment consisted of six cues, groups in the shared condition
had information about only a partial ecological system, while groups in the distributed
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Figure 5.1: Group task systems in experiment 1. Thick arrows between e and cj
indicate relatively high validity (ηj = .28) and thin arrows relatively low validity
(ηj = .13) of the cues.

condition had information about the complete ecological system.

Task

The NMCPL task was a medical diagnosis task, in which participants were to decide
whether a patient has disease A (‘Atoritus’) or B (‘Burtosis’) on the basis of the pres-
ence or absence of a number of symptoms. These symptoms were labelled ‘diminished
appetite’, ‘dizziness’, ‘fever’, ‘headache’, ‘nausea’ and ‘tiredness’.

The total ecological system consisted of 6 dichotomous cues and one dichotomous
criterion. The criterion had a base rate of P (e1) = P (e−1) = .5. The cues had similar
characteristics as those in Table 5.1, with cues c1, c3 and c5 identical to c1 in Table 5.1
and cues c2, c4 and c6 identical to c2 in Table 5.1. In the individual task, only two
cues were presented to each participant, either the pair (c1, c2), (c3, c4) or (c5, c6).
Each participant thus based their responses on a partial ecological system. In the
shared condition, the partial ecological system was the same for all group members.
In the distributed condition, the partial ecological system was different for each group
member. In the group task, the whole ecological system was presented. However, it
was expected that the individuals would base their individual responses mainly on
the partial ecological system they encountered in the individual task. A graphical
representation of the difference between the conditions is given in Figure 5.1. The
probabilities defining the total ecological system are given in Appendix 5C.

The maximum potential achievement for the complete ecological system was .92.
This was also the maximum potential achievement of groups in the distributed con-
dition if they were to function under a weighting-by-evidence process. For groups in
the shared condition, the maximum potential achievement was .80 under a weighting-
by-evidence process. The larger group resources in the distributed condition clearly
affected the potential group achievement. In the group trials, not all possible 64 cue
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profiles were given. The group task consisted of 20 trials and the 20 corresponding
cue profiles were chosen so that, if groups in both conditions would work under a
simple majority process, their performance would be reasonable close. More in par-
ticular, a number of cue profiles were included for which, if all group members would
respond optimally to their partial cue profiles, a majority of group members would
respond sub-optimally to the complete cue profile. For this reason, groups in the dis-
tributed condition would need to use a weighted majority – which would then favour
the minority position – rather than a simple majority process, in order to realise the
potential group achievement.

For the chosen cue profiles, maximum potential achievement was .73. Groups in
the distributed condition, functioning under the weighting-by-evidence process, would
be able to reach this score. Groups in the shared condition had less information, and
hence their potential performance was lower. However, realisation of this potential was
less dependent on the group process. If all group members would respond optimally
to the information, and groups functioned under either a simple majority, weighting-
by-evidence or weighting-by-achievement process, groups in this condition would, on
average, reach a maximum score of .62. For groups in the distributed condition,
functioning under a simple majority process with all members responding optimally
to their information, achievement would be .66.

Procedure

Participants entered the experimentation room in groups of three and were each placed
in front of a computer. The computers were placed in such a way that participants
could not see each other’s screens, but, when looking up, could see each other’s faces in
order to allow for group discussion in the group task. In the instructions, participants
were informed they were to diagnose the presence of either one of two diseases in
a number of patients. The diseases were linked to six symptoms, but in order to
facilitate learning of the relations between symptoms and diseases, each participant
would be shown information about only two of these symptoms. Participants were
made aware the relation between symptoms and disease was probabilistic, and that
it would not be possible to always make the correct diagnosis. After reading the
instructions, participants could proceed with the individual task, consisting of a total
of 100 trials. The order of the trials was randomised for each participant. In each trial,
the values of two cues were presented by the cue label (the name of the symptom) and
a ‘+’ or ‘−’ beside it, to indicate presence or absence of the symptom respectively.
The cue values were presented below each other, and the order was randomised for
each trial. Following the information, participants made a choice for either disease
A or B. Immediately following this choice, participants received outcome feedback
(i.e. they were informed about the true disease). Also, in the right-upper corner of
the screen, participants received feedback on the total number of correct diagnoses
they gave in the previous trials. Although it has not been shown that this last type
of feedback enhances performance, contrary to other possible types of feedback, it
does not have a detrimental effect on performance either (Castellan, 1974). The
individual task was self-paced. After all group members completed the individual
task, participants received instructions for the group task. In these instructions they
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were informed they would now receive information regarding all symptoms, and were
to arrive at collective diagnoses by discussing the case in the group. No further
instructions were given as to how they should arrive at a collective response, so that
groups were free in adopting a group process. After reading the instructions, groups
proceeded with the group task consisting of 20 trials in random order. In each trial,
the values of the six symptoms were presented to the participants (again in random
order) on their computer screen, and were first asked to make an individual diagnosis.
Following the diagnosis, participants were asked to rate their confidence on a nine-
point scale, ranging from ‘completely unconfident’ to ‘completely confident’. Then,
they were instructed to discuss with the others in order to arrive at a group diagnosis.
After reaching a group diagnosis, each participant indicated the group response on
his computer and was then asked to indicate his confidence in the group diagnosis.
The group task was followed by a computerised exit-interview.

Dependent measures

Obvious dependent measures are the individual achievement Ai and group achieve-
ment Ag. However, interest was not so much in the actually obtained achievement,
but in the expected achievement for the given environment. While Ai and Ag are
unbiased estimates of expected achievement, better estimates are given by what will
be termed the individual and group scores. These scores are based on the proba-
bility that each response is correct, rather than whether each response is actually
correct. The individual score Si of individual i is defined as the mean probability of
the response rit:k at trial t being identical to the event e over all individual trials T :

Si =
1

T

T∑

t=1

P (rit:k = e). (5.8)

Both observed achievement (proportion of correct responses) and the score defined
above are unbiased estimates of the expected achievement of an individual in the
given environment. But since the conditional probabilities P (ek|Cm) are known, they
need not enter the estimation. Weighting the responses ri:k to Cm by P (ek|Cm), as is
done in (5.8), gives an estimate with a smaller variance than the proportion p̂(ri = e)
(see Appendix 5D for a proof).

For the ecological system of the individual task, as specified in Table 5.1, the
theoretical minimum of the individual score was .2, which would be obtained by
consistently giving the suboptimal response to each cue profile Cm. The theoretical
maximum of the individual scores was .8, which would be obtained by consistently
giving the optimal response to each cue profile Cm. In other words, the possible
individual scores Si lay in the closed interval [.2; .8].

In a similar way to Si, the group score Sg of group g is defined as the mean
probability of the group response rgt:k at trial t being identical to the event e over
all group trials T . For the group scores, the total environment was used (so that Cm

had 64 levels, instead of 4 in the individual task). For the 20 cue profiles used in the
group trials, the possible group scores lay in the closed interval [.27; .73].

Both Si and Sg are bounded from below and above. Hence, Si and Sg will not
follow a normal distribution, which is problematic for hypothesis testing by either F
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or t-test. Hence, for hypothesis testing, the variables Si and Sg were transformed by
the following logit-transformation:

S′ = log

(
S − min∗

S

max∗
S −S

)
,

in which min∗
S = minS −ε and max∗

S = maxS +ε (the correction ε = .01 was applied
in order to avoid problems when the score lies on the boundary).

Besides the individual and group scores, a final dependent measure was Conf,
participants’ reported confidence in their individual responses in the group task.

5.3.2 Results

The structure of this section is as follows. First, individual performance and cue
utilisation in the individual task will be discussed. This is followed by the results
related to group achievement. The hypothesis that groups in the distributed con-
dition outperform groups in the shared condition is tested by comparing the group
scores between these conditions. The remainder of the section will concern the group
process. Three methods of analysis will be used. The first compares the obtained
group scores to those expected from a simple majority or weighting-by-achievement
process. The second method compares predictions of the two processes on the level
of group responses, rather than overall scores. The third method investigates the
relation between confidence and achievement on the one hand, and confidence and
influence in the collective response on the other. Insofar as confidence is related to
achievement and groups weight members’ contributions according to confidence, this
analysis, together with the previous ones, can provide evidence for the underlying
group process.

Individual performance

In order to determine learning effects, the 100 trials in the individual task were divided
into four blocks of 25 trials each. A repeated measures analysis for the individual
scores showed a significant effect of Block, F (3, 267) = 7.75, p < .001. Pairwise
contrasts, in which the individual score at each block was compared to the score at
the previous block, showed that only the score at block 2 differed from the score
at block 1, F (1, 89) = 16.49, p < .001. There was no significant difference between
scores at later blocks. Since participants’ performance did not noticeably change after
the first 50 trials, participants’ scores on the last 50 trials were used in the remaining
analyses. The individual scores in the last 50 trials ranged from .38 to .80, with a mean
of .68 (SD = .10). A t-test was performed to rule out initial differences between the
conditions for the individual scores, since these may have affected later results. This
test showed no difference between the individual scores in the distributed condition
(M = .68, SD = .09) and the shared condition (M = .68, SD = .11), t(88) = −.08,
p = .934.

Cue utilisation coefficients were computed for the responses in the last 50 trials.
The mean of υ0, the utilisation coefficient for the base-rate, was .01 (SD = .02).
Such a low value indicates that participants did not show a preference for one of
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the response categories. The mean of υ1, the utilisation coefficient of cue 1, was .28
(SD = .25), and the mean of υ2, the cue utilisation coefficient for cue 2, was .14
(SD = .14). The mean of υ12, the utilisation coefficient for the cue interaction, was
.02 (SD = .07). The value of this last coefficient indicates that, at least on average,
participants based their responses on the separate cues rather than on the cue profiles.
When the utilisation coefficients are compared to the validity coefficients, η0 = 0,
η1 = .28, η2 = .13 and η12 = −.04, we see that, on average, they are rather alike.
Note that similarity of validity and utilisation coefficients is not indicative of high
achievement. Maximum achievement could be obtained by consistently giving the
optimal response to each cue profile. In the partial ecological system presented in the
individual task, optimal responses were entirely determined by the value of c1. Hence,
for optimally responding participants, υ1 = 1. There was one participant with this
value for υ1. Overall, the cue utilisation coefficients indicated that participants did not
consistently give optimal responses. This can also be seen in the consistency coefficient
ξ, which had a mean value of .44 (SD = .26). Instead of maximising, participants’
response behaviour was more indicative of probability matching, which is a response
strategy that is often found in probability learning research (Castellan, 1977; Shanks,
Tunney, & McCarthy, 2002). If participants were exactly matching probabilities, so
that Ui = V, the expected achievement is tr[V′diag(c)V] = .72. While the mean
individual scores were somewhat lower, they did not differ significantly from this last
value, t(89) = −1.56, p = .122.

Group achievement

To test the hypothesis that groups in the distributed condition outperform groups in
the shared condition, the group scores Sg were compared between the conditions. The
mean group score in the distributed condition was .62 (SD = .06), while the mean
group score was .58 (SD = .05) in the shared condition. A one sided t-test showed
this to be a significant difference, t(28) = 1.93 p = .032. The first hypothesis was
thus confirmed.

While groups in the distributed condition did perform better than those in the
shared condition, the mean performance lay well below the maximum potential perfor-
mance of .73. The mean group achievement in the shared condition was less removed
from the mean potential performance of .62. If the group process was weighting-by-
achievement, rather than weighting-by-evidence, realisation of the maximum poten-
tial performance required maximum individual performance of the group members (in
which case weighting-by-achievement has identical results to weighting-by-evidence).
As the results of the individual task indicate, individual performance was not maxi-
mal. Hence, if groups functioned under the weighting-by-achievement process, group
achievement would still be below the maximal group achievement. With the proce-
dure described in section 5.2.2, group achievement under different group processes
could be predicted without requiring individuals to respond optimally to their partial
cue profiles. As indicated in that section, derivation of the group utilisation matrices
Gg from the individual utilisation matrices is based on the assumption that the indi-
viduals responded in the group task as they did in the individual task. This amounts
to participants basing their response on only that information which they encountered
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in the individual task (and thus ignoring four of the six symptoms they encounter in
the group task), and using this information in the same way as in the individual task.
This assumption was tested by a χ2-difference test for each participant. This test
compared the fit of two logistic regression models for the individual responses in the
last 50 trials of the individual task and the 20 trials of the group task taken together.
The first model had a single predictor with four levels, indicating the cue profile on
which the response was been based. The second model included an additional in-
teraction between cue profile and task (individual or group). If the responses to the
cue profiles differed between the individual and group task, the second model should
have a significantly better fit. Since there were a total of 90 tests, a significance level
of α = .005 was used for each test1. The tests showed that for 4 participants the
hypothesis of equal responses in the individual and group task was untenable. This
number was deemed sufficiently small, and hence the computation of the expected
group scores should be valid.

For a simple majority (SM) process, the mean of the expected group scores was .61
(SD = .03) in the distributed condition and .59 (SD = .04) in the shared condition,
which is a non-significant difference, t(28) = 1.19, p = .25. So, if groups in both
conditions functioned under simple majority process, no significant difference in the
group scores was expected. The observed group scores were compared to the expected
group scores in a 2 (Condition) × 2 (Score: observed or expected) ANOVA with the
last factor treated as a within-groups factor. There was no significant effect of this last
factor, F (1, 28) = .93, p = .343, which indicates that the observed group scores were
not significantly different than the expected group scores from a SM process. There
was also no significant interaction between Condition and Score, so that the difference
between observed and expected group scores was about equal for both conditions.

For a weighting-by-achievement (WA) process, the expected group scores were
.65 (SD = .04) in the distributed condition, and .61 (SD = .05) in the shared
condition. This is a significant difference, t(28) = 2.29, p = .030. Hence, if the group
process was a WA process, a significant difference in group scores was to be expected.
The observed group scores were compared to the expected group scores in a similar
ANOVA as above. The effect of the Score factor was significant, F (1, 28) = 6.59,
p = .016, which indicates that the observed group scores were significantly lower than
the expected group scores from a WA process. There was no significant interaction
between Condition and Score, which indicates that the difference between observed
and expected group scores was about equal for both conditions. In both conditions,
this difference was .03, indicating a small amount of process loss.

Group process

The analyses reported above indicate that both in the distributed and shared condi-
tions performance lay below that predicted from a weighting-by-achievement process.
However, comparisons between group achievement and expected group achievement
under different group processes are not the best basis for making inferences about
the group process. One sign of a weighted majority rule is the presence of group

1Bonferroni correction with α = .05 would actually result in α′ = α/90 = .0005, but it was
thought that this value would reduce the power of the individual tests too much.
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responses which follow a minority position. In the distributed condition, there were
81 unanimous group diagnoses, 201 by majority and 18 by minority. In the shared
condition, there were 166 unanimous group diagnoses, 126 diagnoses by majority, and
8 diagnoses by minority. The higher frequency of unanimous group diagnoses in the
shared condition was expected, since group members in this condition based their
responses on the same partial cue profiles. More importantly, and also as expected,
there were more minority decisions in the distributed as compared to the shared con-
dition. Counting unanimous decisions as majority decisions, there were 282 majority
and 18 minority decisions in the distributed condition and 292 majority and 8 mi-
nority decisions in the shared condition, which is a marginally significant difference,
χ2(1) = 3.26, p = .071. The number of minority decisions was not very high in either
condition, though. But a weighted majority process should result in a minority deci-
sion only if the weight of the minority member is larger than the combined weight of
both majority members. In other words, the difference between minority and majority
weight has to be quite substantial in order for a weighted majority process to result
in a minority decision. When this difference is small in general, it will be difficult to
infer the actual process from the frequency of minority decisions.

A more direct approach to inferring the group process is to compare group re-
sponses on each trial to the expected group response under different group processes.
Since the derived group response matrices Gsm and Gwa contain probabilities of group
responses for each cue profile Cm, they can be used to determine the likelihood of
the group responses under each group process. One problem is that Gwa can contain
deterministic predictions, i.e. Gwa may contain a number of 0’s and 1’s. Hence, the
likelihood of group responses will be 0 if at least one group response occurs which was
assigned a probability of 0. While these deterministic predictions could be corrected,
a different approach was adopted here. The predictions were compared by the Root
Mean Squared Error of Prediction (RMSEP), defined as

RMSEP =

√√√√ 1

T

T∑

t=1

[zt − P (ggt:1)]2, (5.9)

in which T is the total number of trials for each group, and zt = 1 if the group response
ggt of group g at trial t is 1, and zt = 0 for ggt:−1. Each group was classified under
the process with the lowest associated RMSEP. However, since none of the group
processes may have been very accurate, the RMSEP’s were also compared to the
RMSEP of a null-model, which assigned each group response a probability of .5. The
RMSEP of this null-model was .50. Using this procedure, 5 groups in the distributed
condition could not be classified (the RMSEP of the two processes was higher than
that of the null-model), 8 groups were classified as a simple majority process, and 2
as a weighting-by-achievement process. In the shared condition, 1 group could not be
classified, 10 groups were classified as a simple majority process, and 4 groups as a
weighting-by-achievement process. The relatively large number of unclassified groups
in the distributed condition complicates the comparison between the conditions on the
inferred group process. As yet, there is no clear evidence the difference in information
distribution between the conditions has an effect on the group process.
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Figure 5.2: Relation between confidence ratings and (Ai|c1, c2) and P (r = e|c1, c2)

Group process and confidence

The analysis above is a valuable means for making inferences of the underlying group
process. But, as mentioned earlier, confidence was expected to play a more direct
role in the actual group process than achievement. Achievement was expected to
have an indirect effect through confidence. With that in mind, it was expected that
confidence would be related to conditional achievement. Since it was not expected
that the relation between achievement and confidence would necessarily be linear,
Kendall’s τ was used to investigate the strength of the relation. The rank-correlation
between Conf and (Ai|C

i
m) was τ = .27 (Z = 16.84, p < .001). For comparison, the

rank-correlation between Conf and P (ek|C
i
m), the probability that the actual response

ri:k to partial cue profile Ci
m was correct, was τ = .14, (z = 8.93, p < .001). The

relation between the confidence ratings and both (Ai|C
i
m) and P (ek|C

i
m) is depicted

in Figure 5.2.

If responses were weighted by confidence, then the confidence of the minority group
member should have been higher than the confidence of the majority group members
when the group response followed the minority individual response. Conversely, when
the group response followed the majority response, the confidence of the majority
should have been higher than that of the minority. Table 5.2 contains the means
and standard deviations of Conf for the minority member and majority members,
for those group decisions in which there was initial disagreement (n = 353). As this
table shows, minority confidence was indeed larger than majority confidence when the
group adopted the minority response, while there was no clear difference in confidence
when the group adopted the majority response. A 2 (Decision Type) × 2 (Condition)
× 2 (Source) ANOVA was performed, in which the last factor represented the source
of the confidence rating (minority or majority), and weighted least squares (WLS)
estimation with weights w = 1/σ̂2

within was used to correct for unequal variances.
This test showed significant main effects of Condition, F (1, 1051) = 4.27, p = .039,
Decision Type, F (1, 1051) = 4.62, p = .032, and Source, F (1, 1051) = 3.90, p = .049.
More importantly, there was a significant interaction between Decision Type and
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Table 5.2: Minority and majority confidence ratings by condition and decision type

Distributed Shared
Majority Minority Majority Minority
M SD M SD M SD M SD

Conf minority 5.26 1.85 6.72 1.74 4.19 2.07 5.50 2.45
Conf majority 5.13 2.10 4.61 2.17 4.74 2.20 4.94 1.65

Source, F (1, 1051) = 7.36, p = .007. Two post-hoc t-tests, with a Welch-correction
for the degrees of freedom, showed that minority confidence was significantly higher
than majority confidence for minority decisions, t(49.98) = 3.37, p = .001, while there
was no significant difference between minority and majority confidence for majority
decisions, t(693.18) = −0.96, p = .339.

To directly test how member confidence influenced the group response, three logis-
tic regression models were compared. The first model represented a simple majority
process, and had the three individual responses ri ∈ (−1, 1) as predictors:

M1 : log

(
P (rg:1)

1 − P (rg:1)

)
= α+

3∑

i=1

βiri. (5.10)

In order to specify the model for a weighted majority process with weights determined
by confidence, the functional form of the relation between confidence and weight
should be specified. This functional form may not only be dependent on the relation
between confidence and influence in the group response, but also on how the response
scale was used to indicate actual confidence. Two functional forms were deemed
plausible: linear and exponential. The model representing a weighted majority process
with the weights linearly dependent on member confidence was

M2 : log

(
P (rg:1)

1 − P (rg:1)

)
= α+

3∑

i=1

βi

rixi

max(x)
, (5.11)

in which xi is i’s confidence rating in response ri, and max(x) = 9. The division
by max(x) was for scaling purposes, so that the estimated regression weights βi were
comparable to those of M1. The model representing a weighted majority process with
weights being an exponential function of confidence was

M3 : log

(
P (rg:1)

1 − P (rg:1)

)
= α+

3∑

i=1

βirie
xi−x

max(x) , (5.12)

in which x = 5.19. The results for the three logistic regression models are given in
Table 5.3. The fit measure −2 logL represents the log likelihood ratio of the fitted
model against the saturated model (e.g. Dobson, 2002). Since all three models had
four parameters and were estimated with the same number of observations, selecting
between the models on the basis of this measure is equivalent to selecting on the
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Table 5.3: Three logistic regression models for gg:1

M1 M2 M3

est. Z p est. Z p est. Z p
α 0.43 2.01 .04 0.18 1.05 .30 0.34 1.61 .11

β1 2.82 9.95 < .001 5.03 8.79 < .001 3.16 9.44 < .001
β2 2.51 10.29 < .001 4.62 9.34 < .001 2.80 9.83 < .001
β3 2.54 9.50 < .001 4.68 8.80 < .001 2.84 9.27 < .001

−2 log L 179.57 219.95 170.00
Distributed

α 0.61 2.22 .03 0.26 1.19 .24 0.50 1.83 .07
β 2.53 9.35 < .001 4.91 7.81 < .001 2.90 8.59 < .001

−2 log L 119.05 133.16 108.30
Shared

α 0.10 0.26 .79 0.04 0.16 .88 0.06 0.19 .85
β 2.77 7.72 < .001 4.41 6.50 < .001 2.88 6.93 < .001

−2 log L 60.62 87.54 63.30

basis of either CAIC or CBIC (see Chapter 3). As can be seen in this table, M3

fitted best and was selected over both M1 and M2. Hence, it should be concluded
that overall, groups functioned under a weighted majority process with weights being
an exponential function of confidence. In order to test hypothesis for differences
in the group process between conditions, the analysis above was repeated for each
condition separately. Since the estimated values of the βi parameters were similar,
and no difference between group members was actually expected, the three models
were reduced to 2-parameter models, with the single predictor now defined as the sum
of the original predictors. Parameter estimates and model fits for each condition are
given in the lower part of Table 5.3. As expected, in the distributed condition, M3

was selected over M1 and M2, while in the shared condition, M1 was selected over M2

and M3. Taking confidence into account, there is support for expectation that groups
in the distributed condition functioned under a weighted majority rule. There was no
strong evidence for this process in the shared condition. As such, the distribution of
information over group members did appear to affect the group process.

5.3.3 Discussion

The first hypothesis was confirmed: group achievement was higher in the distrib-
uted condition than in the shared condition. Regarding the expected group process
in the distributed condition, results were somewhat inconclusive. If groups in both
conditions functioned under a simple majority process, then no differences in group
achievement were expected. The difference in group achievement between the condi-
tions indicates that it is unlikely that groups in both conditions functioned under a
simple majority process. The actual performance of groups in the distributed con-
dition lay between the expected performance from a simple majority process and
the expected performance from a weighting-by-achievement process. Actual group
achievement in the shared condition was slightly below the expected performance from
a simple majority process, and further removed from the expected performance associ-
ated with a weighting-by-achievement process. The comparison of group achievement
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to expected performance leads to the conclusion that groups in the shared condi-
tion mainly functioned under a simple majority process, while some groups in the
distributed condition functioned under a simple majority process, and some under a
weighting-by-achievement process. Inference of the group process from comparisons
between the group responses (rather than group achievement) and predictions about
these derived from different group processes showed that in both conditions, the num-
ber of groups that appeared to function under a weighting-by-achievement process was
much smaller than the number of groups that appeared to function under a simple
majority process. Hence, the expectation that groups in the distributed condition
would mainly function under a weighting-by-achievement process was not confirmed
in this analysis. The weighting-by-achievement process as formalised in (5.7) should
be thought of as an idealised model of individual influence in the collective decision.
A more accurate representation of the actual group process should take individual
confidence into account. As expected, confidence was related to conditional achieve-
ment, so that a weighting-by-confidence process can be taken as an indirect version of
the weighting-by-achievement process. While there was evidence that groups in the
distributed condition weighted members contributions according to their confidence,
there was no evidence for such a process in the shared condition. Hence, when fo-
cussing on what is thought to be a more accurate representation of the actual group
process, the expectation that groups in the distributed condition mainly functioned
under a weighted majority process was confirmed.

The finding that groups in the shared condition mainly functioned under a simple
majority process should be treated with some caution. Due to the smaller frequency
of minority decisions in this condition, a model in which individual contributions are
weighted by confidence has less room to provide a better fit to the data than a model
in which contributions are not weighted. It may be that groups are inclined to use
the same group procedure, regardless of how information is distributed over group
members. Insofar as the natural group process is weighting-by-confidence, which in-
directly represents a weighting-by-achievement due to the relation between confidence
and achievement, there are multiple causes of process loss. The first concerns process
loss due to weighting-by-achievement rather than weighting-by-evidence. The second
is due to the imperfect relation between confidence and achievement. From the pre-
dicted group scores, it is clear that the bulk of process loss should be attributed to
the first cause. Compared to the expected group achievement from the weighting-by-
achievement process, groups in both conditions exhibited a small amount of process
loss.

5.4 Experiment 2

The purpose of the second experiment was to study collaboration in NMCPL under
a different distribution of information over group members. As mentioned in the
introduction, research has shown that groups tend to focus on information that is
shared, rather than the unique information group members can contribute. One
explanation of this common knowledge effect (Gigone & Hastie, 1993) is based on
an information sampling model (Stasser & Titus, 1985; Larson et al., 1996). This
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model is based on the idea that each piece of information has a fixed probability
of being mentioned by a group member in the group discussion. As more members
share a piece of information, the probability that this information will be mentioned
is larger. A problem with previous research on the common knowledge effect is that
the information provided to the group members is unfamiliar to them. A notable
exception is the study by Larson et al. (1996), but while they found evidence for
the common knowledge effect, they failed to investigate how it affects the collective
decision itself. It is this last effect which is of interest here. While the information
sampling model can explain why shared information is mentioned more often and
earlier in group discussions, it does not explain why shared information has greater
impact on the collective decision even when unshared information is mentioned. A
plausible explanation for this effect is in terms of social validation (see Chapter 4),
where the validity of unfamiliar information is inferred from the number of individuals
who share the same piece of information. If this is an adequate explanation, the effect
should not be found when individuals have other means of inferring the validity of
their information. More precisely, if the validity of shared information is high relative
to the validity of unique information, the shared information will have a large impact
on the collective decision. If the validity of the shared information is low relative
to the validity of the unique information, the impact of unique information on the
collective decisions should be larger than that of the shared information. In the
second experiment, the distribution of information over group members was such
that information was partly shared, partly unique. In one condition, the validity of
the shared information was higher than that of the unique information, and in the
other condition, the validity of the shared information was relatively low compared
to that of the unique information. As such, the common knowledge effect is expected
in the first condition, but not in the second.

The situation of partly shared, partly unique information was not studied in ex-
periment 1. In this case, the optimal group process is more complicated. Unlike
the situation with completely distributed information, the log-odds for the complete
cue profiles are not reconstructable from the log-odds of the partial cue profiles. For
example, take an ecological system consisting of four cues, c1 like c2 in Table 5.1 and
c2, c3 and c4 like c1 in Table 5.1. Cue 1 is shared by all group members, while the
other cues are unique. This is the ecological system for the low validity conditions
used in this experiment. If group member 1 responds optimally to partial cue profile
C1

m = (c1:0, c2:0), he would respond r1:−1 with a probability of p1 = .67 that the
response is correct. The same holds for group member 2 who responds optimally
to partial cue profile C2

m = (c1:0, c3:0). If group member 3 responds optimally to
partial cue profile C3

m = (c1:0, c4:1), he would respond r3:1 with a corresponding prob-
ability of p3 = .89 that this response is correct. Under the weighting-by-evidence

rule, the group response would be gg:1, since
∑
ri log

(
pi

1−pi

)
= .67. However, for

the complete cue profile, P (e1|c1:0, c2:0, c3:0, c4:1) = .33, so the optimal response is
in fact gg:−1. The problem is that the weighting-by-evidence rule in a situation of
partly shared, partly unique information, gives too much weight to the shared cue.
For the weighting-by-achievement rule, and group members responding by probabil-
ity matching, the conditional achievements are A1 = .56, A2 = .56 and A3 = .80
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and
∑
ri log

(
(Ai|C)

1−(Ai|C)

)
= .95. Hence, the group response will also be sub-optimal.

However, while P (rg:1) = 1 under the weighting-by-evidence rule, so it always re-
sults in the suboptimal answer, P (rg:1) = .11 under the weighting-by-achievement
rule. In this respect, the weighting-by-achievement rule is actually better than the
weighting-by-evidence rule, which is the optimal rule when the information is com-
pletely distributed. For a final comparison, if group members respond by probability
matching, then we would have P (rg:1) = .50 under a simple majority rule.

A difference between this experiment and the first one was the inclusion of con-
ditions in which objective feedback was given in the group trials. One reason why
confidence may determine the members’ influence in the collective decision is that it
is the only indication of the validity of members’ decisions. Objective feedback pro-
vides other evidence for members’ accuracy, and may weaken the effect of confidence
on members’ influence in the collective decision. While feedback allows groups to
learn about the accuracy of group members, this may be quite difficult in practice.
For one thing, the accuracy of members’ predictions will depend on the validity of
the information on which their prediction is based. For some cue profiles, members
may be very accurate, and for some they may not. As such, the weight given to a
member’s response should be conditional on the information on which that response
was based. Estimation of conditional achievement, if attempted in the first place,
is more involved than estimating overall achievement. Reliable estimation of con-
ditional achievement requires (many) more observations than a reliable estimation
of achievement. It is plausible that by giving feedback, overall achievement, rather
than conditional achievement, determines the influence in collective decisions. In this
way, the informational value of an individual’s response for a given cue profile may
be neglected. When there are no large differences in overall achievement, each group
member receives the same weight, so that the group process will be identical to a
simple majority process. But a simple majority rule neglects the validity of the infor-
mation on which each response is based. The effect of feedback on group achievement
is difficult to predict. While feedback may provide an objective basis to determine
an individual’s weight in a collective decision, and as such lead to better results than
more subjectively determined weights, in practice, important differences in the va-
lidity of information for individual decisions may be overlooked, so that objectively
determined weights will lead to poorer performance than confidence-based weights,
since differences in the validity of information may result in differences in confidence.

Another change in this experiment was that the number of trials in the individual
task was increased from 100 to 200. While the individual scores did not increase
significantly over the last 50 trials in the first experiment, so that it may be that par-
ticipants reach their asymptotic performance after 50 trials, increasing the number
of trials should give participants the opportunity to learn more about the relations
between cues and event. This might result in an increase in performance and the
consistency of individual responses. Also, and more importantly, participants were
expected to have a stronger idea about their conditional achievement for different par-
tial cue profiles. Hence, the relation between confidence and conditional achievement
was expected to be stronger than in the first experiment. A final change compared
to the first experiment was in the scale of the confidence ratings. In experiment 1,
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a nine-point rating scale was used. While such a scale may give participants the op-
portunity to provide a reasonably precise indication of their confidence, the influence
of confidence in the group process may be different if participants relate confidence
more directly to their subjective evaluation of the probability that their response is
correct. Therefore, confidence ratings were now to be given on a 100-point scale, with
instructions to use it like a subjective probability scale.

Recapitulating, the main purpose of the second experiment was to investigate the
group process in the situation of partly shared, partly unique information. The valid-
ity of the shared information is not expected to result in differences in group process.
In both conditions, groups were expected to indirectly function under a weighting-by-
achievement process, and directly under a weighting-by-confidence process. While no
difference in group process was expected, the shared information is expected to have
a greater impact on the collective decisions when its validity was relatively high. As
such, the common knowledge effect is expected in the condition where the validity of
the shared information is relatively high, but not in the condition where the validity
is relatively low.

5.4.1 Method

Participants and design

Eighty-seven university undergraduates participated in the experiment. There were
36 males and 51 females. The mean age was 21.92 (SD = 4.24). The experiment had
a 2 (validity of shared information) × 2 (feedback in group trials) factorial between-
subjects design. The first factor concerned the validity of the shared information,
which was either high, when the shared cue had identical properties to c1 in Table 5.1,
or low, when the shared cue had identical properties to c2 in Table 5.1. The second
factor concerned whether feedback on the actual disease was given during the group
trials. There were 8 three-person groups (n = 24) assigned to the high-validity/no-
feedback condition. The other three conditions each had 7 three-person groups (n =
21).

Task

The NMCPL task was similar to that in experiment 1. Participants had to decide
whether patients had disease A or B on the basis of the presence or absence of a
number of symptoms. These symptoms were labelled ‘fever’, ‘headache’, ‘vomiting’,
and ‘diarrhea’. The total ecological system consisted of four cues and a criterion,
but in the individual task, participants were trained in a partial ecological system
consisting of two cues (one like c1 and one like c2 in Table 5.1) and a criterion.
Hence, the partial ecological system of the individual task was identical to that in
experiment 1. In the group task, the full ecological system was presented to all
participants. The total ecological system was different for the high-validity and low-
validity conditions. In the high-validity conditions, there was one cue like c1 and three
cues like c2 in Table 5.1, while in the low-validity conditions, there was one cue like
c2 and three cues like c1 in Table 5.1. While the validity of the shared cue was higher
in the high-validity conditions, the total ecological system was of less validity. This
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Figure 5.3: Group task systems in experiment 2. Thick arrows between e and cj
indicate relatively high validity (ηj = .28) and thin arrows relatively low validity
(ηj = .13) of the cues.

is reversed in the low-validity conditions, where the shared cue was of less validity
but the total ecological system of higher validity. As in experiment 1, it was assumed
that group members would base their individual responses on the partial ecological
system they encountered in the individual tasks. A graphical representation of the
difference between the conditions is given in Figure 5.3. The probabilities defining
the two ecological systems are given in Appendix 5E.

Procedure

The procedure was essentially similar to that of experiment 1. However, the indi-
vidual task now consisted of 200 trials, which were presented in blocks of 50. After
completing each block, participants were instructed to wait until the other group
members completed that block before they could proceed to the next block. This was
done in order to synchronise the time that participants finished the individual task as
much as possible, while allowing each participant to work at his/her own pace. The
group task consisted of 32 trials (each of the possible 16 combinations of cue values
was presented twice). Each trial began with the presentation, in random order, of
the values of the four cues. This was followed by an individual response, and a rating
of the confidence in that response. In contrast to experiment 1, confidence ratings
were now made on a scale from 0 to 100. Participants were instructed to use the scale
in the following way. A score of 0 means one is completely sure the given response
is incorrect, and hence, one is completely sure the alternative response is correct. A
score of 50 would mean one is just as confident in the given response as in the alter-
native response. A score of 100 would mean one is completely sure the given response
is correct. These instructions were meant to direct participants to use the scale as
a (subjective) probability scale. For dichotomous decisions, it is customary to use a
scale from 50 to 100, since it is irrational to give a response if the probability that
the alternative is the correct one is deemed lower than .50 (participants should then
have chosen the other alternative). However, participants were asked to rate their
confidence in the group response on the same scale. Since the group may choose an
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alternative the participant deems very unlikely, participants could indicate this by
rating their confidence in the group response as lower than 50. After rating the con-
fidence in their individual response, participants were instructed to discuss the case
in the group in order to arrive at a group response. Each participant was then asked
to rate their confidence in the group response. After completing the group task, the
experiment was concluded with a computerised exit-interview.

Dependent measures

The dependent measures were the same as in experiment 1. The possible individual
scores Si again had a range of [.2; .8]. The ecological environment in the group task
was different than in experiment 1. For the ecological environment in high-validity
conditions, the range of the possible group scores Sg was [.15; .85]. For the ecological
environment in the low-validity conditions, this range was [.10; .90]. Since in the 32
trials of the group task, each cue profile was presented twice, the trials in the group
task were not a proper reflection of the base-rates of the cue profiles in the complete
environment. In the actual group task, the range of the possible group scores in the
high-validity conditions was [.21; .79] and in the low-validity conditions this range
was [.18; .82]. Besides the individual and group scores, a final dependent measure was
Conf, the participants’ reported confidence in their individual responses.

5.4.2 Results

The structure of this section is as follows. First, results for individual performance will
be discussed. Then, group achievement will be compared between conditions in order
to investigate the effect of the validity of shared information and feedback on group
achievement. After this, group scores are compared to the expected group scores from
a simple majority and weighting-by-achievement process. This is followed by a test of
the hypothesis that the common knowledge effect is present in the high-validity, but
not the low-validity conditions. Finally, the group process will be investigated more
in depth, by comparing the group responses to predictions from a simple majority
and weighting-by-achievement process, and an analysis of the influence of member
confidence on the collective response.

Individual performance

The individual task consisted of 4 blocks of 50 trials each. To determine learning ef-
fects, a 1-factor (Block) repeated-measures ANOVA was performed over the individual
scores. As expected, the effect of Block was significant, F (3, 258) = 25.47, p < .001.
Pairwise comparisons between consecutive blocks showed that the individual scores in
block 1 differed significantly from those in block 2, F (1, 86) = 25.47, p < .001, and the
individual scores in block 2 differed significantly from those in block 3, F (1, 86) = 6.24,
p = .014. There was no significant difference between the individual scores in block 3
and 4.

As in experiment 1, the individual scores from the last 50 trials were used in the
remaining analyses. The mean individual score in the last 50 trials was .68 (SD = .12).
This is identical to the mean individual score in the last 50 trial in experiment 1.
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Hence, the additional 100 trials did not appear to result in a significant increase in
performance.

Cue utilisation coefficients were computed for the responses in the last 50 trials.
The mean of υ0, the utilisation coefficient of the base rate, was .01 (SD = .02). Hence,
participants did not show a definite preference for one of the response alternatives.
The mean of υ1, the utilisation coefficient of c1, was .34 (SD = .30). This cue had
the highest validity (η1 = .28), and in order to give optimal responses, participants
could respond to this cue alone. Hence, for consistently optimally responding partici-
pants, υ1 would be 1. There were four participants who consistently gave the optimal
response. The mean of υ2 was .12 (SD = .13), which is equal to the validity of c2
(η2 = .12). Finally, the mean of υ12, the utilisation coefficient of the cue interaction,
was .01 (SD = .05). As in experiment 1, participants appeared to base their responses
more on separate cues than on cue profiles. The mean consistency coefficient ξi was
.47 (SD = .31). This is about equal to the mean consistency in experiment 1, so the
additional trials in the individual task did not appear to have an effect on response
consistency.

As initial differences between conditions may have influenced later results, an
ANOVA was performed in order to ascertain such differences. This analysis showed
no such differences: F (3, 85) = .44, p = .725.

Group achievement

The mean group score was .71 (SD = .02) in the high-validity/no-feedback condition,
.66 (SD = .07) in the high-validity/feedback condition, .67 (SD = .07) in the low-
validity/no-feedback condition, and .69 (SD = .05) in the low-validity/feedback con-
dition. An ANOVA showed no significant main effect for Validity, F (1, 25) = .84, p =
.268, or Feedback, F (1, 25) = .32, p = .577, nor a significant Validity×Feedback in-
teraction effect, F (1, 25) = 2.55, p = .123.

As in experiment 1, the expected group scores were computed for two group
processes. The assumption of consistency in responses from partial to complete eco-
logical system (see section 5.2.2) was tested using the same procedure as in experiment
1, and was rejected for only one participant (for α = .005). Since the assumption had
to be rejected only once, the derivation of the expected group response matrices from
the individual response matrices was deemed valid.

For a simple majority process, the mean expected group score was .68 (SD = .02)
in the high-validity/no-feedback condition, .68 (SD = .07) in the high-validity/feedback
condition, .65 (SD = .08) in the low-validity/no-feedback condition, and .70 (SD =
.06) in the low-validity/feedback condition. There were no significant differences be-
tween the conditions for the expected group scores, F (3, 25) = 1.07, p = .379. The
observed group scores were compared to the expected group scores in a 2 (Validity) ×
2 (Feedback) × 2 (Source: observed or expected) ANOVA with the last factor treated
as a within-groups factor. This last factor had no significant effect, F (1, 25) = .58,
p = .455, which indicates that, overall, group scores did not differ significantly from
the expected group scores from a SM process. There was a marginally significant
interaction between Feedback and Source, F (1, 25) = 3.34, p = .079, which indi-
cates that for the no-feedback conditions, the observed group scores were higher than
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expected, while for the feedback conditions, observed group scores were lower than
expected.

For a weighting-by-achievement process, the expected group scores were .71 (SD =
.01) for the high-validity/no-feedback condition, .70 (SD = .03) for the high-validity/
feedback condition, .72 (SD = .02) for the low-validity/no-feedback condition, and
.71 (SD = .03) for the low-validity/feedback condition. There were no significant
differences between the conditions in these expected group scores, F (3, 25) = .197,
p = .897. The observed group scores were compared to the expected group scores
with a similar ANOVA as above. There was a significant effect of the Source fac-
tor, F (1, 25) = 6.23, p = .020, which indicates that, overall, observed group scores
were lower than expected from a WA process. There were no significant interactions
between Source and the other factors.

Cue utilisation and the common knowledge effect

As for the individual responses, cue utilisation coefficients were computed for the
group responses. Since the complete ecological environment consisted of four cues,
there were a total of 15 utilisation coefficients (4 for the separate cues and 6 for
the first-order, 4 for the second-order, and 1 for the third-order cue interactions).
Appendix 5F contains all utilisation coefficients for each group. Not all utilisation
coefficients are of interest. In order to determine the common knowledge effect, we are
mainly interested in υ1, the utilisation coefficient of the shared cue. Presence of the
common effect should have resulted in υ1 being much higher than the other utilisation
coefficients. As can be seen in Appendix 5F, υ1 was in general much larger in the
high-validity conditions (M = .55, SD = .33) than in the low-validity conditions
(M = .16, SD = .20). The mean utilisation in the latter condition was actually
quite close to that found in the individual task (υ2 = .12). Remember that cue
utilisation coefficients can be interpreted in terms of ‘percentage variation explained’.
By dividing cue utilisation coefficients by consistency coefficients, the proportion of
explained variation due to a cue, relative to the other cues, is obtained. For υ1,g/ξg,
there was still a large difference between the high-validity condition (M = .63, SD =
.31) and the low-validity conditions (M = .20, SD = .23). These differences show
that, as expected, reliance on the shared cue was larger when it had a high validity
than when it had a low validity.

The results above clearly indicate the common knowledge effect is mediated by the
validity of shared information relative to unique information. Insofar as the common
knowledge effect is caused by anything other than the validity of information, one
might expect the shared information to entirely dominate the collective response in
the high-validity condition. In this case, the impact of the shared information on
the collective decision would be higher than expected from its validity. To test this
domination of shared information, two logistic regression models were compared. The
first model only had c1, the shared cue, as a predictor, while the second model had all
four cues as predictors. Since the first model is nested in the second, a χ2-difference
test can be used to infer whether the second results in a significantly better fit than the
first. If group responses are only dependent on the shared cue, the χ2-difference test
should be non-significant. Overall, the second model did result in a significantly better
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Table 5.4: Types of group decisions

Low validity High validity
No feedback Feedback No feedback Feedback

Minority 22 19 11 11
Majority 126 144 65 114
Unanimous 76 61 180 99

fit, χ(3) = 30.33, p < .001. This also held for the low-validity conditions separately,
χ(3) = 112.32, p < .001, as well as for the high-validity conditions, χ(3) = 26.59,
p < .001. Hence, there is no strong evidence indicating groups neglected unique
information, even when its validity was relatively low2.

Group process

The frequencies of minority, majority, and unanimous decisions are given in Table 5.4.
As can be seen in this table, the number of unanimous decisions was higher in the
high-validity than in the low-validity conditions. This was expected, since, due to
its larger validity, the shared cue should dominate the individual responses in the
high-validity condition. Also, the number of minority decisions was higher in the
low-validity than in the high-validity conditions. This could indicate more groups in
the former condition functioned under a weighted majority process. As in experiment
1, group responses were compared to predictions following from a simple majority
process (SM) and a weighting-by-achievement (WA) process. Groups were classified
as either SM, WA, or neither, according to the lowest RMSEP value. In the high-
validity/no-feedback condition, 1 group was classified as SM, and 7 as WA. In the
high-validity/feedback condition, 6 groups were classified as SM, and 1 as WA. In the
low-validity/no-feedback condition, 2 groups could not be classified, 2 were classified
as SM and 3 as WA. In the low-validity/feedback condition, 3 groups were classified
as SM and 4 as WA. There appears to be no overall effect of Validity on the group
process. Both in the high and low-validity conditions, about half of the groups were
classified as SM, and half as WA. Collapsing over Validity and ignoring the groups
that could not be classified, 3 groups in the no-feedback conditions were classified
as SM, and 10 as WA, while in the feedback conditions, 9 groups were classified as
SM, and 5 as WA. This is a marginally significant difference, χ(1) = 3.12, p = .077.
While there are too little groups to provide reliable evidence, the finding that feedback
appeared to affect the group process is interesting and requires further research.

Group process and confidence

As before, confidence was expected to play a significant role in the actual group
process. The rank-correlation between Conf and (Ai|C

i
m) was τ = .28 (Z = 21.85,

2Besides these two models, a third model was also fitted, which included the four predictors as
well as all their interactions. In neither condition did this model result in a significantly better fit.
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Figure 5.4: Relation between confidence ratings and (Ai|c1, c2) and P (r = e|c1, c2)

p < .001). In contrast to experiment 1, the correlation between Conf and P (ek|C
i
m)

was just as high, τ = .28, (Z = 22.10, p < .001). The relation between the confidence
ratings and both (Ai|C

i
m) and P (ek|C

i
m) respectively is depicted in Figure 5.4.

The means and standard deviations of Conf for minority and majority group
members, for those situations in which there was initial disagreement (n = 512), are
given in Table 5.5. A 2 (Validity) × 2 (Feedback) × 2 (Decision Type) × 2 (Source)
ANOVA with WLS estimation was performed for this data. This analysis showed no
significant main effects, but as expected, a significant interaction between Decision
Type and Source was found, F (1, 1518) = 64.65, p < .001. Two post-hoc t-tests (with
a Welch-correction for the degrees of freedom) showed that minority confidence was
significantly higher than majority confidence for minority decisions, t(118.31) = 6.10,
p < .001, while minority confidence was significantly lower than majority confidence
for majority decisions, t(970.32) = −7.17, p < .001. Besides this effect, the ANOVA
showed a significant Validity × Source interaction, F (1, 1518) = 12.60, p < .001, and
a Decision Type × Feedback × Source interaction, F (1, 1518) = 7.97, p = .005. This
was an unexpected result, but it indicates that the difference between minority and
majority confidence was larger when no feedback was given. As in experiment 1,
the results are consistent with a weighted majority process. When group decisions
followed the minority position, the confidence of the minority was much higher than
the confidence of the majority. When group decisions followed the majority position,
the confidence of the minority was lower than that of the majority. The effect of
confidence appears larger when no objective feedback was given. This is consistent
with the idea that feedback is used as a means to determine member competence.
Hence, in the presence of feedback, there was less need to rely on member confidence
in the group process.

In order to ascertain how confidence directly influenced group decisions, the three
logistic regression models also used in experiment 1 were compared. The first model,
representing a simple majority group process, was identical to (5.10). The second
model, representing a weighted majority group process, was identical to the model
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Table 5.5: Confidence ratings of minorities and majorities for minority and majority
decisions

Low Validity High Validity
No Feedback Feedback No Feedback Feedback
M SD M SD M SD M SD

Minority decisions
Minority 75.32 16.43 71.00 21.76 66.82 13.09 55.55 16.50
Majority 49.64 16.10 52.74 16.80 49.09 18.81 57.27 20.74

Majority decisions
Minority 54.94 20.14 59.07 19.88 50.80 14.13 55.25 18.47
Majority 60.21 22.88 64.94 20.23 67.79 17.38 64.37 20.24

given in (5.11), but now with max(x) = 100. The last model represented the weighted
majority process with weights being an exponential function of confidence, and was
identical to that given in (5.11), but now with max(x) = 100 and x = 63.27. Ta-
ble 5.6 contains the results of these three models. As can be seen, M2 provided
the best fit and was selected over the other two models. Hence, the group process
appears to have followed a weighted majority rule, with weights being a linear func-
tion of confidence. As in experiment 1, the analysis was repeated for each condition
separately, again with 2-parameter models with a single predictor consisting of the
sum of the original predictors. The results of these analyses are given in the lower
part of Table 5.6. The model comparison does not show an entirely clear pattern.
The selected models were M2 for the high-validity/no-feedback condition, M1 for the
high-validity/feedback condition, M2 for the low-validity/no-feedback condition, and
M3 for the low-validity/feedback condition. Combined with the results from the com-
parison of predicted and observed group responses reported in section 5.4.2, there
is clear evidence that groups in the high-validity/feedback condition functioned un-
der a simple majority process. In the other conditions, groups did appear to weight
members’ contributions according to confidence. As such, there is also more indirect
evidence for a weighting-by-achievement process in these conditions.

Discussion

As expected, there was evidence for the common knowledge effect in the high-validity
conditions, but not in the low-validity conditions. As such, the common knowledge
effect appeared to be mediated by the validity of shared information, relative to that
of unique information. Further support for the view that the effect should be at-
tributed to the validity of information, comes from the finding that groups in the
high-validity conditions did not ignore unique information, since this information was
also valid, although to a lesser extent than the shared information. The validity of
shared information, or the presence of feedback, did not appear to have an effect on
the group achievement. Inspection of the means does appear to indicate the presence
of an interaction, with feedback resulting in an increase of the group score for groups
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Table 5.6: Logistic regression models for P (g = 1)
M1 M2 M3

est. Z p est. Z p est. Z p
α -0.06 0.14 0.67 -0.12 -0.83 0.41 -0.11 -0.74 0.46

β1 2.01 12.63 < .001 3.75 11.53 < .001 2.25 11.99 < .001
β2 2.00 12.50 < .001 3.43 11.53 < .001 2.12 12.00 < .001
β3 2.04 12.47 < .001 3.93 11.26 < .001 2.32 11.80 < .001

−2 log L 382.97 322.80 327.08
High-validity/no-feedback

α -0.23 -0.67 .50 -0.28 -0.65 .52 -0.29 -0.70 .48
β 1.96 6.78 < .001 3.62 5.74 < .001 2.12 6.19 < .001

−2 log L 63.14 42.13 48.54
High-validity/feedback

α -0.07 -0.21 .84 -0.03 -0.10 .93 -0.06 -0.20 .84
β 2.36 7.64 < .001 3.32 6.92 < .001 2.21 7.15 < .001

−2 log L 74.42 81.48 75.50
Low-validity/no-feedback

α 0.00 0.00 .99 -0.09 -0.33 .75 -0.06 -0.23 .82
β 1.80 8.23 < .001 3.96 6.85 < .001 2.24 7.58 < .001

−2 log L 125.17 99.06 102.21
Low-validity/feedback

α -0.02 -0.06 .95 -0.17 -0.67 .50 -0.12 -0.47 .64
β 2.05 8.60 < .001 3.71 7.28 < .001 2.28 7.87 < .001

−2 log L 117.63 102.34 101.73

in the low-validity condition, and a decrease in the high-validity condition. The non-
significance of the interaction effect may have been due to insufficient power. Further
research will be needed to show whether this supposed interaction is actually present.
The presence of such an interaction is plausible when considering that the presence
of feedback may affect the social process by which a group decides on a collective re-
sponse. This is consistent with the analyses of the group process: without feedback,
groups mostly worked under a weighting-by-achievement rule, while with feedback,
groups mostly worked under a simple majority rule. This effect of feedback was mostly
noticeable in the high validity conditions. This is also apparent when looking at the
influence of confidence in the group process. In the high-validity/feedback condition,
groups did not appear to weight members’ contributions by their confidence while in
the other conditions, there was evidence for such a weighting process. That feedback
results in a simple majority process is consistent with a possible effect of feedback
proposed in section 5.4. Here it was argued feedback might lead groups to neglect
differences in the validity of information between cue profiles. If the overall achieve-
ment of individual group members is similar, a weighting by overall achievement will
be identical to a simple majority process. If this is so, then the finding that groups
in the low-validity/feedback condition did appear to weight by member confidence
should be explained by a higher variance in overall achievement in this condition.
However, such a difference was not found. The difference in the effect of feedback
on the group process between the high and low-validity conditions may be explained
otherwise. Since the validity of the shared cue in the latter condition is lower than
that of the unique cues, and there is more initial disagreement, differences in the
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Figure 5.5: Histogram and fitted mixture distribution for Si in the last 50 trials.
Values on the y-axis are frequencies, values on the x-axis are individual scores.

validity of partial cue profiles may be more apparent in this condition than in the
high-validity condition. As such, groups may be more persuaded to consider such
differences in validity when forming a group response.

Surprisingly, increasing the number of trials in the individual task from 100 to 200
did not result in a higher mean of the individual scores in the last trials as compared
to the first experiment, nor in an increase in the consistency of individual responses.
However, inspection of the distribution of individual scores in the present experiment
indicates a mixture distribution. This was confirmed in a mixture analysis for the
logit-transformed individual scores3. The best fitting mixture was a 2-component
Normal-mixture with unequal variances. Figure 5.5 contains a histogram of the indi-
vidual scores, with the fitted mixture distribution (transformed back to the original
scale) superimposed. On the original scale, the estimated mean individual score in
the first component was .76 and in the second it was .54. The mixture is easily in-
terpreted as consisting of a group which mastered the environment (n = 62) and a
group which did not (n = 25). The number of individuals classified as non-learners
is relatively high, which may be due to a lack of motivation or the inherent difficulty
of learning in the environment. That the mean consistency of individual responses
was also about equal to that found in the first experiment can be attributed to the
same cause as that underlying the equivalence of the individual scores. Taking the
classification as ‘learners’ and ‘non-learners’ from the mixture analysis into account,
the mean consistency coefficient for the learners was .62 (SD = .21), while the mean
consistency of the non-learners was .09 (SD = .10). As such, the additional trials did
appear to have an effect on the consistency of a large number of participants. There

3The mixture analysis was performed with MCLUST (Fraley & Raftery, 2002). In the analysis,
10 models were compared. These were 1 to 5 component normal-mixtures with equal or unequal
variances. Model selection was based on CBIC (see Chapter 3).
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Table 5.7: Mean group and individual scores of experiment 1

Distributed Shared
M SD M SD

Group score .62 .06 .58 .05
Worst member .51 .06 .52 .05

Average member .57 .04 .57 .03
Best member .63 .04 .61 .03

was no clear indication of a mixture distribution in the first experiment, although this
does not warrant the conclusion that there was no separation between ‘learners’ and
‘non-learners’ in this experiment also. Increasing the number of trials at least results
in a clearer separation of ‘learners’ and ‘non-learners’.

5.5 Groups vs individuals

In light of the general theme of this thesis, it is interesting to determine whether
groups outperform individuals when it comes to making good decisions. Therefore,
group achievement is compared to the performance of individual group members in
this section. There are at least three possible comparisons, those between group
achievement and performance of the worst, average, and best group members re-
spectively. For each group in the two experiments, the individual performance of
the worst, average and best group member were determined. For experiment 1, the
means and standard deviations of these three individual scores and the group score
are given in Table 5.7. As can be seen in this table, on average, group achievement
lies between the performance of the average and best group member. The group
scores were compared to the best individual scores in a 2 (Condition) × 2 (Source:
group vs individual) ANOVA, with the last factor as a within-groups factor. This
analysis showed no significant effect of Source, nor a Source × Condition interaction.
Hence, it should be concluded that the group scores were not significantly different
from the individual scores of the best group member in both conditions. In contrast,
when groups were compared to the average individual, there was a significant effect
of Source, F (1, 28) = 28.54, p < .001, as well as a significant Source×Condition in-
teraction, F (1, 28) = 7.24, p = .01. Groups were advantaged over the average group
member, and moreover, this advantage was larger in the distributed than in the shared
condition.

The individual and group scores for experiment 2 are given in Table 5.8. Group
scores were compared to the individual scores of the best group members by a 2
(Validity) × 2 (Feedback) × 2 (Source: group vs individual) ANOVA, with the last
factor as a within-group factor. This analysis showed no significant effects. Hence,
group scores were not significantly different to the individual scores of the best per-
forming group members. In contrast, when comparing group scores to the average
individual score of group members, the ANOVA showed a significant main effect of
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Table 5.8: Mean group and individual scores of experiment 2

Low-validity High-validity
No-feedback Feedback No-feedback Feedback
M SD M SD M SD M SD

Group score .67 .07 .69 .05 .71 .02 .66 .07
Worst member .53 .10 .54 .05 .63 .06 .54 .04

Average member .61 .04 .62 .03 .67 .03 .62 .05
Best member .68 .01 .67 .03 .71 .02 .69 .06

Source, F (1, 25) = 30.70, p < .001, from which it should be concluded that group
scores were significantly higher than the average individual scores of the group mem-
bers. Also, there was a significant Source × Validity interaction, F (1, 25) = 11.74,
p < .01, a significant Source × Feedback interaction, F (1, 25) = 4.29, p = .05, and
a significant Source × Validity × Feedback interaction, F (1, 25) = 4.89, p = .04.
The first interaction indicates that the advantage of groups over average individuals
was larger in the high than in the low-validity conditions. The second interaction
indicates that the advantage of groups over average individuals was larger in the no-
feedback than in the feedback conditions. Finally, the three-way interaction indicates
that the largest advantage of groups over the average group member is found in the
high-validity/no-feedback condition.

5.6 General discussion

Two experiments investigated collaboration in Nonmetric Multiple Cue Probability
Learning (NMCPL) under different distributions of information over group members.
In the first experiment, information was either completely distributed or completely
shared. As expected, group achievement was higher in the first as compared to the
latter condition. In the second experiment, information was partly shared, partly
unique. Here, the relative validity of the shared and unique information did not
appear to affect group achievement.

As Steiner (1972) noted, group achievement depends on task requirements, group
resources, and group process. NMCPL tasks are optimising tasks. The objective is
to optimally predict an event on the basis of cues which are probabilistically related
to the event. If the cues are conditionally independent, as they were in the ecological
systems of the experiments, NMCPL tasks are divisible tasks. This means a divi-
sion of labour can be profitable. An important reason to divide cognitive labour is
that there are limits to an individual’s capacity to process information. In realistic
situations, there are many cues which are possible indicators of an event. Learning
about the relations between cues and event will be impeded when individuals con-
sider all possible cues as relevant. By restricting the information that is processed,
by focussing on a subset of cues and ignoring others, learning will be facilitated. This
will result in individuals responding more optimally to their information. In principle,
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groups are able to perform optimally when the resources are completely distributed
over group members. Hence, a division of labour makes it possible for a group to in-
crease its informational base, while staying within the limits of individual capacity. A
division of labour does put rather stringent requirements on the group process. When
resources are completely distributed, as in the distributed condition in experiment 1,
the optimal group process is a weighting-by-evidence process, in which each individual
response is weighted by its evidential support. This process requires precise knowl-
edge of the structure of the (partial) ecological system. If individuals had such precise
knowledge, one would expect them to always respond optimally to their information.
This consistently optimal response behaviour is not often encountered. While precise
knowledge of the structure of the (partial) ecological system is likely to be missing,
individuals may have knowledge regarding their ability to give correct predictions
to specific information. This knowledge can be used in a weighting-by-achievement
process, in which each individual response is weighted according to individuals’ track-
records of giving correct predictions to specific information. When the group process
is a weighting-by-achievement process, groups will suffer some process loss. However,
this process loss is less than the loss when the group process is a simple majority
process. As its name indicates, this latter process is simple to apply. If information
is shared, so that all group members base their responses on identical information,
each individual has the same potential of making a correct prediction. In such a
situation, a simple majority process will often be adequate to realise potential group
achievement. However, if group size is relatively small and there are large differences
in individuals’ predictive accuracy, a weighting-by-achievement process will outper-
form a simple majority process. In the case that information is partly shared and
partly distributed, as it was in the second experiment, a weighting-by-achievement
process may actually outperform a weighting-by-evidence process. This is because the
weighting-by-evidence process will put too much weight on the shared cue. Overall,
weighting-by-achievement is a viable and reasonably adequate group process. It also
seems more plausible than the weighting-by-evidence process.

As indicated earlier, the weighting-by-achievement process defined in (5.7) should
not be taken as a model of the actual way in which groups arrive at a collective deci-
sion. It should be viewed as a somewhat idealised representation of group members’
influence in the collective decision. In practice, this influence will be more directly
determined by members’ confidence in their individual decisions. Confidence was as-
sumed to be dependent on achievement, and this assumption was confirmed in both
experiments. Overall, the group process was adequately described by a model in
which the individual decisions are weighted by confidence. Due to the relation be-
tween confidence and achievement, it was thought the group process would resemble
a weighting-by-achievement process more than a simple majority process. In the first
experiment however, there were more groups in which the group process resembled
a simple majority process than groups in which the process resembled a weighting-
by-achievement process. In the second experiment, the group process resembled a
simple majority process for about half the groups, and a weighting-by-achievement
process for the other half. It should be noted that the predictions on which these
classifications are based are derived entirely from group members’ response behaviour
in the individual task. Hence, these predictions are accurate if individuals’ response
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behaviour is consistent over the individual and group task. In the first experiment,
the individual task consisted of less trials than the individual task in the second ex-
periment. For this reason, participants in the first experiment are expected to be
less consistent than participants in the second experiment. While this is not imme-
diately clear from the mean consistency coefficients in both experiments, there was
a clear indication of a mixture distribution in the second experiment. Consistency
coefficients for ‘learners’ in the second experiment were clearly higher than the mean
consistency score in the first experiment, where there was no clear indication of a
mixture distribution. Also, the assumption of consistency over individual and group
task was more often rejected in the first experiment than in the second. As such, the
predictions from a weighting-by-achievement process are more likely to be valid in the
second experiment than in the first. Predictions from a simple majority process are
less influenced by inconsistent response behaviour, because the predictions from the
weighting-by-achievement process are generally more extreme (closer to either 1 or 0).
Therefore, the finding that not many groups in the first experiment could be classified
as functioning under a weighting-by-achievement process may be attributable to the
relative inconsistency of individual response behaviour in this experiment.

The results regarding the group process were somewhat mixed. Overall, there was
clear evidence that the members’ influence in the collective decisions depended on their
confidence, and that confidence was related to achievement. But for a large number
of groups the underlying group process was more alike to a simple majority process
than a weighting-by-achievement process. This divergence between inference of the
group process based on predictions from individual response behaviour and inference
based on member confidence also arises when looking at the relation between the
distribution of information and group process. When information was completely
shared, as in the shared condition in the first experiment, there was no evidence that
members’ contributions were weighted by their confidence. When information was
(partly) distributed, groups did weight members’ contributions by their confidence.
When inferring the group process on the basis of predictions from individual response
behaviour, the relation between information distribution and group process was less
marked. There was no clear difference in the underlying group process between the
situation of completely distributed and that of completely shared information. In
the situation of partly shared, partly unique information, there were more groups
classified as weighting-by-achievement. As mentioned earlier, the classification in this
experiment may be more valid, due to the higher consistency in individual response
behaviour. There was some indication that the presence of feedback had an influence
on the group process. This was mainly visible in the high-validity conditions, where
almost all groups were classified as weighting-by-achievement when no feedback was
given, and almost all groups were classified as simple majority when feedback was
given. Relating this to the obtained group scores, the feedback appeared to have a
detrimental effect on group achievement, since weighting-by-achievement is the more
optimal group process. The reason why feedback moved groups to adopt a simple
majority process is not directly evident.

Another reason why inferences based on model predictions and inferences based
on confidence diverge lies in the imperfect relation between confidence and achieve-
ment. If confidence was perfectly related to achievement, weighting-by-achievement
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would be similar to weighting-by-confidence, but otherwise the two will lead to dif-
ferent results. As noted before, this leads to two causes of process loss. The first is
the difference between the underlying group process (e.g. weighting-by-achievement)
and the optimal group process (e.g. weighting-by-evidence), the second is the differ-
ence between the underlying group process (e.g. weighting-by-achievement) and the
actual group process (e.g. weighting-by-confidence). With the methods used in these
experiments, the two causes can be clearly separated. Process loss due to the first
cause can be determined by comparing the predicted group scores from different group
processes to the maximum group score, while process loss due to the second cause can
be determined by comparing the obtained group scores to the predicted group scores.
Overall, the bulk of process loss is attributable to the first cause. Actual group scores
were much closer to the predicted group scores than predicted group scores to the
maximum group scores.

The main purpose of the two experiments was to determine whether groups outper-
form individuals in NMCPL tasks, and how the advantage of groups over individuals
is determined by the two causes mentioned in the beginning of the chapter. In the
first experiment, conditions were created so that these two causes could be separately
investigated. The advantage of groups over individuals due to the greater informa-
tional base of groups could be determined in the distributed condition. The advantage
of groups over individuals due to minimising the effect of idiosyncratic bias could be
determined in the shared condition. Since group achievement in the distributed con-
dition was higher than that in the shared condition, the effect of the first cause is
larger than that of the second. In the second experiment, information was partly
shared and partly unique, and the two causes could not be investigated separately. A
possible concern in this situation is the common knowledge effect, which leads groups
to be more influenced by shared than by unique information and would eliminate the
advantage due to a larger informational base. A plausible explanation of this effect
can be given in terms of social validation. If the validity of information for the prob-
lem at hand is unknown, the number of people sharing the information may be an
indicator of the validity of the information. If the common knowledge effect is caused
by social validation, it is not expected when group members have prior information
on the validity of information. The results of the second experiment show the weight
given to shared information is indeed related to the validity of the information. The
influence of the shared cue was much higher when it had a high validity than when
it had a low validity, relative to the validity of the unique information. However, this
did not result in groups neglecting unique information in the favour of shared infor-
mation. As such, the common knowledge effect may not be of much concern when
group members have a good idea of the validity of information.

In both experiments, group performance was about equal to the performance of the
best group member. While this does not show groups are advantaged over all group
members, it does show groups are advantaged over the average group member. If
information is completely distributed, potential group performance is higher than the
potential performance of any group member, no matter how optimal their responses
are for their partial cue profiles. Since group achievement was not better than the
achievement of the best group member, groups were unable to realise this potential
fully. If this result holds in general, the question of whether groups outperform
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individuals cannot be answered unequivocally. The answer is ‘yes’ when reference is
to the average individual, but ‘no’ when reference is to the best performing individual.
While there is no apparent loss associated to letting groups make a decision rather
than an individual, there is no apparent gain either if it is possible to pick the best
performing individual beforehand. When it comes to decision-making, the effects of
the ‘cancelling-out’ of idiosyncratic bias and the larger informational base of groups
as compared to individuals are not large enough to raise group performance above
that of all group members. While this is a negative finding, the result groups perform
at the level of the best individual group member shows such relatively high group
performance is not reserved for tasks which meet the demonstrability requirements,
as is often thought.

In addition to the empirical findings, this chapter has offered novel methods for
studying individual and collective behaviour in NMCPL. The information-theoretic
cue utilisation coefficients were useful for the analysis of individual and group cue use.
A full-blown information-theoretic analysis of individual and collective behaviour in
NMCPL is promising and certainly possible, but hypothesis testing in this framework
will require further investigation of the distribution of the information-theoretic mea-
sures (more specifically, on the distribution of the interaction-measures). Compared
to previous research on interpersonal learning in MCPL tasks, the experimental design
applied here has large advantages. By changing the ecological system from individual
to group task, previous research on interpersonal learning actually manipulated indi-
vidual bias. As such, adequate group performance required participants to unlearn
what they previously learned, rather than learning additional aspects of the ecolog-
ical system from each other. By training individuals in partial ecological systems,
a more realistic situation is created where individuals may learn from each other
about additional aspects of the ecological system. There are many possible variations
in the particulars of the ecological system and the distribution of information over
group members. Hopefully, the paradigm employed here will open the door for many
interesting studies on interpersonal learning in realistic situations.

Appendix

5A Cue validity and utilisation coefficients

This appendix derives cue validity and cue utilisation coefficients from classical mea-
sures of information (Shannon, 1948). First, a short overview of the properties of
entropy and information measures is given, after which the coefficients are derived.

Suppose an event ek, k = 1, . . . ,K has to be predicted. Without any knowledge,
the occurrence of each event should be deemed equally likely. That is, the probability
P (ek) = 1

K
for all k. This null-model has a corresponding entropy of

H0(e) = logK.
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In general, the events ek are not all equally likely, and the entropy is defined as

H(e) = −
K∑

k=1

P (ek) logP (ek).

The informational value of knowing the base-rates of events ek is taken as a reduction
in uncertainty or entropy

I(e) = H0(e) −H(e).

For two variables ek and cj , the joint entropy is defined as

H(c, e) = −
J∑

j=1

K∑

k=1

P (cj , ek) logP (cj , ek),

for which the following relation holds

0 ≤ H(c, e) ≤ H(c) +H(e),

with equality on the right-hand side only if c and e are statistically independent.
Besides the joint entropy, it is also possible to define the conditional entropy as

H(e|c) = −
J∑

j=1

K∑

k=1

P (cj)P (ek|cj) logP (ek|cj).

This is equivalent to
H(e|c) = H(c, e) −H(c),

from which it follows that H(e|c) = H(e) if e and c are independent. The mutual
information between e and c is defined as

I(c; e) = H(e) −H(e|c) = H(c) −H(c|e) = H(c) +H(e) −H(c, e),

i.e. the reduction in uncertainty resulting from knowledge about c. Classical informa-
tion theory has been formulated for the two variable case (representing one transmitter
and one receiver), but McGill (1954) has given a useful extension to a multivariate
case (with multiple transmitters and one receiver). In general, the entropy of e can
be partitioned as

H(e) = I(c1, . . . , cJ ; e) +H(e|c1, . . . , cJ ),

i.e. as a component of information transmitted by the cues and a component which
is unexplained by the cues. As McGill shows, it is possible to partition the ‘explained
component’ further. For instance, for a three variable case (two cues and one event):

I(c1, c2; e) = I(c1; e) + I(c2; e) +A(c1, c2, e), (5A.1)

in which
A(c1, c2, e) = I(c1; e|c2) − I(c1; e) = I(c2; e|c1) − I(c2; e).
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The conditional mutual information I(c1; e|c2) is defined as

I(c1; e|c2) = H(e|c2) −H(e|c1, c2) = H(e|c1) −H(e|c1, c2).

Equation 5A.1 can be interpreted in a similar way as an ANOVA-model, with the first
two terms representing main effects and the third an interaction effect. The method is
easily generalised to situations with more predictors. For three cues, the partitioning
of the total transmitted information would be

I(c1, c2, c3; e) = I(c1; e) + I(c2; e) + I(c3; e) +A(c1, c2, e) +A(c1, c3, e) +A(c2, c3, e)

+A(c1, c2, c3, e),

i.e. into all main effects, all two-way interactions and the three-way-interaction.
The definition of cue validity proposed here is in terms of relative uncertainty

reduction. As indicated at the start of this appendix, the maximum uncertainty
associated with a dichotomous variable is H0 = log 2. Cue validity coefficients can be
computed by dividing the different I(·) and A(·) components by H0(e). For instance,
the validity of the base rate is defined as

η0 =
I(e)

H0(e)
, (5A.2)

the validity of cue 1 as

η1 =
I(c1; e)

H0(e)
, (5A.3)

and the validity of the cue interaction between c1 and c2 as

η12 =
A(c1, c2, e)

H0(e)
. (5A.4)

Defined in this way, all validity coefficients lie in the interval [0;1], and
∑

i ηi ≤ 1.

Furthermore, note that
∑

i ηi = I(c1,...,cJ ;e)
H0(e)

. As such, the proportion of uncertainty

reduction (or ‘explained variation’) in the entire ecological system is equal to the sum
of the validity coefficients. This leads to the definition of an overall predictability
coefficient as

ψ =
∑

j

ηj . (5A.5)

Cue utilisation coefficients υj are defined in an identical way to the validity coefficients
ηj , but now the criterion is not the event ek, but the response ri. Similar to the
predictability coefficient ψ, an individual consistency coefficient ξi is defined as the
sum of all utilisation coefficients υj for individual i.

5B Optimal group process

In a dichotomous choice situation with events e and responses r

e, r ∈ {−1, 1}
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and a group of n independently responding individuals each with a probability pi =
P (r = e) that their response is correct, Nitzan and Paroush (1982) have proved that
a weighted majority rule

rg = sgn

(
n∑

i=1

wiri

)
,

with weights wi ∝ log
(

pi

1−pi

)
is optimal, in the sense that it maximises the probability

P (rg = e). While they do not mention this, their result is intuitively plausible, since
this particular weighted majority rule is equivalent to a likelihood-ratio test, which,
from the Neyman-Pearson Lemma, are well known to be optimal for choosing between
two simple hypotheses. This correspondence can be shown by taking the log-odds
transform of pi

ωi = log

(
pi

1 − pi

)
.

The log-likelihood ratio of alternative e1 over e−1 is then given as

log
p(r1, . . . , rn|e1)

p(r1, . . . , rn|e−1)
= log

[
∏

i

(
pi

1 − pi

)ri

]
=

n∑

i=1

riωi.

Hence, the weighted majority rule is equivalent to a decision on the basis of a
likelihood-ratio test when the alternatives have identical prior probabilities and the
costs of type I and II errors are equal.

5C Complete ecological system in experiment 1

Table 5C contains the details of the complete ecological system used in experiment 1.
The cues cj are conditionally independent given the events ek. For each cue profile
Cm = (c1:x, . . . , c6:z), the corresponding probabilities P (e1|Cm) and P (e2|Cm) are
given. Also, the probabilities P (e1|C

i
m) for the partial cue profiles C1

m = (c1:x, c2:y),
C2

m = (c3:x, c4:y) and C3
m = (c5:x, c6:y) are given. Note that the values of P (e2|C

i
m)

are not given, but they can easily be reconstructed from the information provided,
since P (e2|C

i
m) = 1 − P (e1|C

i
m). An asterix (‘*’) in front of a row number indicates

that the particular cue profile was used in the group trials.

Table 5C: Ecological system of experiment 1

m c1 c2 c3 c4 c5 c6 P (e1|Cm) P (e2|Cm) P (e1|C1
m

) P (e1|C2
m

) P (e1|C3
m

)

*1 0 0 0 0 0 0 .11 .89 .33 .33 .33
*2 1 0 0 0 0 0 .67 .33 .89 .33 .33
3 0 1 0 0 0 0 .02 .98 .08 .33 .33
4 1 1 0 0 0 0 .25 .75 .57 .33 .33

*5 0 0 1 0 0 0 .67 .33 .33 .89 .33
*6 1 0 1 0 0 0 .97 .03 .89 .89 .33
*7 0 1 1 0 0 0 .25 .75 .08 .89 .33
8 1 1 1 0 0 0 .84 .16 .57 .89 .33
9 0 0 0 1 0 0 .02 .98 .33 .08 .33

10 1 0 0 1 0 0 .25 .75 .89 .08 .33
continued on next page
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Ecological system of experiment 1 (continued)

m c1 c2 c3 c4 c5 c6 P (e1|Cm) P (e2|Cm) P (e1|C1
m

) P (e1|C2
m

) P (e1|C3
m

)

11 0 1 0 1 0 0 .00 1.00 .08 .08 .33
12 1 1 0 1 0 0 .05 .95 .57 .08 .33
13 0 0 1 1 0 0 .25 .75 .33 .57 .33
14 1 0 1 1 0 0 .84 .16 .89 .57 .33
15 0 1 1 1 0 0 .05 .95 .08 .57 .33

*16 1 1 1 1 0 0 .47 .53 .57 .57 .33
*17 0 0 0 0 1 0 .67 .33 .33 .33 .89
18 1 0 0 0 1 0 .97 .03 .89 .33 .89
19 0 1 0 0 1 0 .25 .75 .08 .33 .89

*20 1 1 0 0 1 0 .84 .16 .57 .33 .89
21 0 0 1 0 1 0 .97 .03 .33 .89 .89

*22 1 0 1 0 1 0 1.00 .00 .89 .89 .89
23 0 1 1 0 1 0 .84 .16 .08 .89 .89
24 1 1 1 0 1 0 .99 .01 .57 .89 .89

*25 0 0 0 1 1 0 .25 .75 .33 .08 .89
26 1 0 0 1 1 0 .84 .16 .89 .08 .89
27 0 1 0 1 1 0 .05 .95 .08 .08 .89
28 1 1 0 1 1 0 .47 .53 .57 .08 .89
29 0 0 1 1 1 0 .84 .16 .33 .57 .89
30 1 0 1 1 1 0 .99 .01 .89 .57 .89

*31 0 1 1 1 1 0 .47 .53 .08 .57 .89
32 1 1 1 1 1 0 .93 .07 .57 .57 .89
33 0 0 0 0 0 1 .02 .98 .33 .33 .08
34 1 0 0 0 0 1 .25 .75 .89 .33 .08
35 0 1 0 0 0 1 .00 1.00 .08 .33 .08
36 1 1 0 0 0 1 .05 .95 .57 .33 .08
37 0 0 1 0 0 1 .25 .75 .33 .89 .08

*38 1 0 1 0 0 1 .84 .16 .89 .89 .08
39 0 1 1 0 0 1 .05 .95 .08 .89 .08

*40 1 1 1 0 0 1 .47 .53 .57 .89 .08
41 0 0 0 1 0 1 .00 1.00 .33 .08 .08
42 1 0 0 1 0 1 .05 .95 .89 .08 .08

*43 0 1 0 1 0 1 .00 1.00 .08 .08 .08
44 1 1 0 1 0 1 .01 .99 .57 .08 .08
45 0 0 1 1 0 1 .05 .95 .33 .57 .08
46 1 0 1 1 0 1 .47 .53 .89 .57 .08
47 0 1 1 1 0 1 .01 .99 .08 .57 .08
48 1 1 1 1 0 1 .13 .87 .57 .57 .08

*49 0 0 0 0 1 1 .25 .75 .33 .33 .57
50 1 0 0 0 1 1 .84 .16 .89 .33 .57
51 0 1 0 0 1 1 .05 .95 .08 .33 .57

*52 1 1 0 0 1 1 .47 .53 .57 .33 .57
53 0 0 1 0 1 1 .84 .16 .33 .89 .57
54 1 0 1 0 1 1 .99 .01 .89 .89 .57
55 0 1 1 0 1 1 .47 .53 .08 .89 .57
56 1 1 1 0 1 1 .93 .07 .57 .89 .57
57 0 0 0 1 1 1 .05 .95 .33 .08 .57

*58 1 0 0 1 1 1 .47 .53 .89 .08 .57
59 0 1 0 1 1 1 .01 .99 .08 .08 .57
60 1 1 0 1 1 1 .13 .87 .57 .08 .57

*61 0 0 1 1 1 1 .47 .53 .33 .57 .57
*62 1 0 1 1 1 1 .93 .07 .89 .57 .57
63 0 1 1 1 1 1 .13 .87 .08 .57 .57

*64 1 1 1 1 1 1 .70 .30 .57 .57 .57
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5D Estimating achievement by scores Si and Sg

In this appendix, it will be proved that the individual and group scores are unbiased
estimators of achievement with a smaller variance than the sample proportion.

Assume that both P (ri:k|Cm) and P (ek|Cm) are fixed over trials. Results will be
derived for a single cue profile Cm (so that the conditioning can be dropped), but
results can be directly generalised to the general case with more cue profiles.

To investigate the properties of the sample proportion, define a random variable
Xt, taking value 1 if rit = et, and value 0 if rit 6= et. This variable follows a Bernoulli
distribution with p = P (ri:1)P (e1) + P (ri:−1)P (e−1) for the present case of dichoto-

mous events and responses. Then Z =
∑T

t=1Xt follows a binomial distribution, with
E[Z] = Tp and var(Z) = Tp(1 − p). For the sample proportion Z/T = p̂(ri = e) of
this binomial distribution, we have

E[Z/T ] = P (e1)P (ri:1) + [1 − P (e1)][1 − P (ri:1)] = Ai,

and

var(Z/T ) =
p(1 − p)

T

=
[2P (e1)P (ri:1) − P (e1) − P (ri:1)]

2 + 2P (e1)P (ri:1) − P (e1) − P (ri:1)

T
.

(5D.1)

To investigate the properties of the score variable Si as defined in Equation 5.8,
define a random variable r1t taking value 1 for rit:1 and 0 otherwise, and let R1 =∑T

t r1t and R−1 = T −R1. We have

E[Si] = P (e1)E[R1/T ] + P (e−1)E[R−1/T ]

= P (e1)P (ri:1) + [1 − P (e1)][1 − P (ri:1)] = Ai,

and

var(Si) =
P (ri:1)(1 − P (ri:1))(2P (e1) − 1)2

T
. (5D.2)

By subtracting (5D.2) from (5D.1), it follows that

var(Z/T ) = var(Si) + P (e1)[1 − P (e1)].

Hence, E[Z/T ] = E[Si] = Ai, but var(Z/T ) ≥ var(Si).

5E Complete ecological systems in experiment 2

Table 5E contains the details of the two complete ecological systems that were used
in experiment 2. The cues cj are conditionally independent given the events ek. For
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each cue profile Cm = (c1:x, . . . , c4:z), the corresponding probabilities P (e1|Cm) and
P (e2|Cm) are given. Also, the probabilities P (e1|C

i
m) for the partial cue profiles

C1
m = (c1:x, c2:y), C2

m = (c1:x, c3:y) and C1
m = (c1:x, c4:y) are given. Note that the

values of P (e2|C
i
m) are not given, but they can easily be reconstructed from the

information provided, since P (e2|C
i
m) = 1 − P (e1|C

i
m).

Table 5E: Ecological system of experiment 2

m c1 c2 c3 c4 P (e1|Cm) P (e2|Cm) P (e1|C1
m

) P (e1|C2
m

) P (e1|C3
m

)

High-validity
1 0 0 0 0 .67 .33 .33 .33 .33
2 1 0 0 0 .97 .03 .89 .89 .89
3 0 1 0 0 .25 .75 .08 .33 .33
4 1 1 0 0 .84 .16 .57 .89 .89
5 0 0 1 0 .25 .75 .33 .08 .33
6 1 0 1 0 .84 .16 .89 .57 .89
7 0 1 1 0 .05 .95 .08 .08 .33
8 1 1 1 0 .47 .53 .57 .57 .89
9 0 0 0 1 .25 .75 .33 .33 .08

10 1 0 0 1 .84 .16 .89 .89 .57
11 0 1 0 1 .05 .95 .08 .33 .08
12 1 1 0 1 .47 .53 .57 .89 .57
13 0 0 1 1 .05 .95 .33 .08 .08
14 1 0 1 1 .47 .53 .89 .57 .57
15 0 1 1 1 .01 .99 .08 .08 .08
16 1 1 1 1 .13 .87 .57 .57 .57

Low-validity
1 0 0 0 0 .03 .97 .33 .33 .33
2 1 0 0 0 .01 .99 .08 .08 .08
3 0 1 0 0 .33 .67 .89 .33 .33
4 1 1 0 0 .08 .92 .57 .08 .08
5 0 0 1 0 .33 .67 .33 .89 .33
6 1 0 1 0 .08 .92 .08 .57 .08
7 0 1 1 0 .89 .11 .89 .89 .33
8 1 1 1 0 .57 .43 .57 .57 .08
9 0 0 0 1 .33 .67 .33 .33 .89

10 1 0 0 1 .08 .92 .08 .08 .57
11 0 1 0 1 .89 .11 .89 .33 .89
12 1 1 0 1 .57 .43 .57 .08 .57
13 0 0 1 1 .89 .11 .33 .89 .89
14 1 0 1 1 .57 .43 .08 .57 .57
15 0 1 1 1 .99 .01 .89 .89 .89
16 1 1 1 1 .96 .04 .57 .57 .57

5F Cue utilisation in group tasks in experiment 2

Table 5F contains all cue utilisation coefficients υj for each group in experiment 2.
Utilisation coefficients υj with a single subscript refer to the utilisation of separate
cues cj . Utilisation coefficients with more subscripts refer to the utilisation of (partial)
cue profiles. Besides the utilisation coefficients, the consistency coefficient ξ is given
for each group.
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Table 5F: Cue utilisation coefficients for group responses in experiment 2

ξ υ1 υ2 υ3 υ4 υ12 υ13 υ14 υ23 υ24 υ34 υ123 υ124 υ134 υ234 υ1234

High-validity
1 1.00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
2 .41 .00 .07 .03 .00 .03 .00 .00 .01 .08 .00 .02 .02 .00 .02 .11
3 .93 .83 .00 .00 .00 .03 .03 .03 .00 .00 .00 .00 .00 .00 .00 .00
4 .81 .56 .00 .03 .03 .03 .08 .08 .00 .00 .00 .00 .00 .01 .00 .00
5 .88 .46 .05 .05 .01 .09 .09 .06 .00 .01 .01 .01 .00 .00 .04 .00
6 .61 .19 .01 .00 .19 .00 .02 .13 .00 .00 .02 .03 .00 −.01 .03 −.01
7 .74 .31 .11 .05 .01 .12 .05 .02 .01 .02 .00 .02 .00 .01 .01 .00
8 .88 .30 .10 .01 .10 .12 .01 .12 .00 .02 .00 .00 .04 .00 .05 −.01
9 .86 .72 .01 .01 .00 .06 .06 .00 .01 .00 .00 .00 .00 .00 .00 .00
10 .88 .66 .01 .01 .00 .05 .05 .07 .00 .01 .01 .00 −.01 −.01 .00 .00
11 1.00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
12 .31 .07 .03 .00 .03 .01 .00 .04 .00 .00 .00 .00 .02 .05 .00 .05
13 .81 .56 .00 .03 .03 .03 .08 .08 .00 .00 .00 .00 .00 .01 .00 .00
14 .81 .56 .03 .00 .03 .08 .03 .08 .00 .00 .00 .00 .01 .00 .00 .00
15 1.00 1.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Low-validity
16 .75 .01 .10 .10 .19 .00 .06 .02 .02 .08 .08 .05 .01 .01 .01 .00
17 .81 .56 .00 .00 .03 .03 .10 .08 .00 .00 .03 .00 .00 −.02 .00 .00
18 .74 .08 .16 .08 .03 .04 .02 .00 .04 .02 .00 .02 .03 .15 .03 .01
19 .93 .00 .00 .83 .00 .00 .03 .00 .03 .00 .03 .00 .00 .00 .00 .00
20 .93 .24 .03 .14 .07 .08 .12 .09 .04 .01 .09 −.01 .00 .01 .02 .00
21 .74 .11 .05 .19 .05 .06 .07 .01 .07 .01 .03 .00 .06 .01 .02 .02
22 .56 .00 .24 .03 .00 .01 .07 .00 .08 .01 .00 .08 .02 .00 .00 .00
23 .81 .00 .03 .38 .00 .00 .01 .07 .08 .03 .01 .07 .06 .10 .04 −.07
24 1.00 .19 .19 .00 .19 .12 .00 .12 .00 .12 .00 .00 .07 .00 .00 .00
25 .88 .46 .05 .05 .01 .09 .09 .06 .00 .01 .01 .01 .00 .00 .04 .00
26 .68 .03 .03 .24 .07 .00 .01 .04 .01 .01 .09 .04 .02 .00 .11 −.03
27 .43 .14 .00 .03 .07 .00 .01 .02 .03 .03 .01 .02 .05 .04 .00 −.02
28 .86 .00 .01 .72 .00 .00 .00 .01 .06 .00 .00 .00 .01 .06 .00 .00
29 .86 .47 .00 .05 .05 .04 .10 .10 .01 .01 .02 −.01 −.01 .01 .02 .00
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The unfounded demand for consensus

A camel is a horse designed by committee.

Sir Alec Issigonis

The achievements of a scientific discipline are often read from the consensus be-
tween scientists in that particular discipline. For psychology, where consensus is hard
to find, this practice leads to the somewhat depressing conclusion that not much has
been achieved. Of course, there are theories, such as phrenology, that have been re-
jected by all psychologists. But a theory that has been generally accepted appears
non-existent. Introductions to psychology offer a motley bunch of (mini-)theories
that, if not mutually contradicting, show little interconnection. This leads to great
despair in some first-year students and to qualifications of incoherence and pseudo-
science by non-psychologists. For others, it is a sign of psychology’s scope and vitality.
Whatever one’s reaction, psychology contrasts sharply with a field such as physics,
which does show consensus and coherence.

According to a classical view, scientific consensus is guaranteed by use of the
Scientific Method, which because of its access to the Truth, demands unanimous
agreement between the scientists that follow it (Laudan, 1984). Unfortunately, such a
naive view of science is untenable. It has now been commonly accepted – at least in the
philosophy of science – that there are no compelling criteria to distinguish knowledge,
truth and science from their counterparts. In this respect, physics is no different than
psychology; both the rejection of phrenology and the acceptance of Einstein’s theory
of special relativity do not stem from conclusive evidence for or against the theory.
This much should be clear from the previous discussion of underdetermination and
the Duhem-Quine thesis (see Chapter 2). But if all theories are underdetermined and
theory-choice unjustified, a certain arbitrariness seems unavoidable. Is it then at all
possible to defend science as a rational enterprise?
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6.1 The consensus imperative

Ziman (1968) and De Groot (1971) solve this problem as follows: consensus is not
the product of the infallible Scientific Method, it is the scientific method itself. The
striving for consensus is the distinguishing characteristic of science and as such a
norm for scientific action. This step, elaborated in the Forum Theory (De Groot,
1961, 1971, 1977, 1982), is tempting. Contrary to absolute certainty based on fact
and logic, consensus is a viable goal. But upon a closer inspection, there is little
justification for the consensus imperative. That there are scientists who strive for
consensus is an empirical statement, which is either true or false. But that all scientists
should strive for consensus is a normative statement, and truth has no say in such
a matter. Unless the categorical imperative is turned into a hypothetical one. Such
a goal-directed version would be ‘If you want to achieve X, then you should reach
consensus on matter Y ’. This proposition is true if consensus on Y is necessary
for the attainment of X, or if it makes the attainment of X easier. One defining
characteristic of consensus is unanimity in opinion and evaluation. In science, opinions
are usually generalising statements about the world, and evaluations the truth-value
of such statements. Hence, we may replace Y with an opinion or its evaluation. But
what about X? What scientific goal demands consensus?

From the consensus-imperative, De Groot wanted to arrive at ‘a normative min-
imal methodology of the empirical sciences, such that, in addition, an “alternative
methodology” is impossible’1(De Groot, 1971, p.8). One way to look at normative
methodology is as a system of rules and heuristics for the scientific evaluation of
knowledge claims. In order for consensus to function as the foundation of such a
methodology, it should function as a scientific goal, means or criterion. According
to De Groot (1971), consensus meets this demand entirely: unanimous judgement is
goal, criterion and procedural prescription. But as will be argued here, consensus
does not fulfill any of these roles: consensus is neither an adequate scientific goal,
means, nor criterion.

6.2 Consensus as goal

The first question is whether consensus can be taken as a scientific means, or just a
goal. I say ‘just’, because the attainment of consensus is far removed from classical
goals such as the acquisition of knowledge and the formulation of true theories. Unless
knowledge and truth are defined in terms of consensus. This last option appears a
way out for adherents to the consensus-imperative, for as will become clear later, the
view that consensus is an adequate scientific means is difficult to maintain. But what
is the use of a consensus-imperative if consensus itself is the goal? A proposition such
as ‘If you want to achieve consensus, you should (attempt to) achieve consensus’ is
consistent, but not very informative. Of course, other imperatives are possible. As
De Groot puts it:

If one wants to be able to reach agreement – and after all, Forum-discussions

1Translated from Dutch by M.S. Original: ‘een normatieve minimale methodologie van de em-
pirische wetenschap, zodanig, dat er daarnaast géén “alternatieve methodologie” mogelijk is.’
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are about reaching agreement, about reaching a ‘rational intellectual con-
sensus’ – then one has to “report objectively, reason logically and explain
oneself clearly, and then honesty prevails”; and it is clear that one can-
not reach agreement on “vague, inconsistent, or otherwise unfalsifiable
statements”(1971, p.7)2.

Taking it as a given that science strives for consensus, De Groot derives the ‘rules
of the game’ that will make consensus possible. But the derivation is overstated, of
course. For instance, there is consensus amongst psycho-analysts about the causal
relation between unconscious drives and behaviour. Since this presumption usually
doesn’t lead to testable predictions, a demand such as falsifiability is not a prerequisite
for consensus. Moreover, if consensus is the only goal, any means that results in
consensus should suffice. In this respect, convincingly lying and carefully adjusting
the data might be better means than honest presentation. But such strategies do not
harmonise with the usual scientific mores.

6.2.1 Rational consensus

Apparently, not every consensus suffices. Ziman and De Groot’s goal is a rational
intellectual consensus. This specific species of agreement is difficult to define. De
Groot (1982, p.245) states that the behaviour of a problem-solver is rational only if
it suits the goal, in light of the specific structure of the problem, or the ‘problem
environment’. But this common usage of ‘rational’ is not applicable to consensus as
a goal. For a goal always suits itself, so that every consensus should be considered
rational. Putting a priori restrictions on the subject of consensus, the proposition
or evaluation, is not an option either. The problems with such restrictions were the
main impetus for the consensus-imperative in the first place! Letting the definition
of rational consensus itself be a matter of consensus merely transfers the problem, for
one cannot say whether that consensus is rational or not.

We could speak of rational consensus when it is the product of rational behaviour.
All individuals in a group behave functionally with respect to their goals and the
end-result is consensus. This condition implies that, besides consensus, at least one
other goal is aspired. Consensus is rational if it fits with each one’s goals in the light
of the problem or problem environment. Clearly, such a consensus cannot always be
attained whenever the individual goals are different or conflicting. But a compromise
may allow each one’s aims to be partly met. Whether such a compromise is rational
depends on the ranking of the goals. Is consensus necessary, or is consensus more
important than the gratification of other goals? Matters of policy often require a
decision at a specific time. Moreover, in order to secure implementation, this decision
has to be supported by as many parties as possible. For such matters, reaching
consensus is crucial. But on what grounds can one pinpoint a time by which, for the
whole of science, it has to be decided for instance that the development of children

2Translated from Dutch by M.S. Original: ‘Wil men het eens kùnnen worden - en in forum-
discussies gaat het er immers om het eens te worden, gaat het om ‘a rational intellectual consensus’
– dan mòet men wel “objectief rapporteren, logisch redeneren en helder uitleggen, en dan duurt
eerlijk het langst”; en het is duidelijk dat men het over “vage, inconsistente of anderszins niet-
falsificieerbare beweringen” niet eens kàn worden.’
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is a stage-wise, rather than continuous process? Of course, science is not devoid of
issues of policy, such as the allocation of grants to research-projects. Such decisions
certainly affect the content of science. Without grants, it may not be possible to
collect empirical evidence. But they do not affect the truth-value of a theory, or at
least should not. Goals are a necessary aspect of the definition of rationality, but
are not themselves subject to evaluations of rationality. Holding a consensus goal is
neither rational nor irrational. But when different goals are held concurrently, the
act of striving for consensus does not escape evaluation in terms of rationality. If the
attempt to reach consensus impedes the meeting of other aims, and these other aims
are deemed more important than consensus, the gratification of the consensus goal
is irrational. I find it hard to imagine that, when it comes to scientific statements
and their evaluations, consensus is necessary or more important than other cognitive
aims such as empirical adequacy, consistency, or truth. Actually, that consensus is
subordinate to at least one other goal follows from the need to distinguish arbitrary
from rational consensus. The rationality of concerned parties is thus of primary
importance. If the condition of rationality necessarily results in consensus, then the
consensus goal is parasitic on the rationality goal and has no additional value. If this is
not the case, then the question rises whether it is possible to reach agreement without
abandoning rationality. If rationality is taken as a form of optimising, as is usual, this
will often be impossible. For if actions are not axiologically underdetermined, then
there is only one rational act for each individual. In order to reach agreement, some
parties will have to give up this rational act. Consensus and rationality thus appear as
conflicting, but this is not necessarily the case. The idea is of course that information
is shared in the process of reaching agreement. So the informational base on which
to found judgement is extended. In light of the new information, earlier judgements
may no longer be rational. If the shared information allows for only one rational
judgement, than a rational consensus is reached. But now the consensus goal is again
parasitic, for it is not reaching agreement that matters, but forming a judgement on
the basis of all available and relevant information. Moreover, reaching consensus is
now more a means for gathering information than a goal itself. More about consensus
as a means later. As a scientific goal, consensus plays at most a subordinate role.

6.2.2 Social constructs

In the previous section it was argued that arbitrary consensus is certainly not a
scientific goal, while rational consensus is either impossible, or depends so strongly
on the rationality of the concerned parties, that is it redundant. We could now stop
discussing the role of consensus as scientific goal. However, consensus may become
a goal in a different way, namely by practical equivalence to another aim such as
knowledge or truth. This is the position of social constructivists such as Gergen
(1985), who argue that the products of science are the result of social processes such
as persuasion and negotiation. Social constructivism is not a well-defined position,
and many distinctions are possible (Kukla, 2000). Typical is the thesis that scientific
knowledge consists of interpretations formed through social interaction. In a way, this
is true. Scientific theories are not discovered, but created, and scientists do not work
in a social vacuum. In this respect, scientific theories are social constructions. But
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this thesis is as trivial as it is true. The social constructivist thesis is interesting only
if its claims extend further.

As pointed out by Hacking (1999), the thesis that X is a social construct is based
on the thesis that

X need not have existed, or need not be at all as it is. X, or X as it is
at present, is not determined by the nature of things; it is not inevitable.
(p.6)

According to social constructivists, the phenomena studied by scientists are not in-
evitable manifestations of objectively existing entities and processes, but post hoc,
in social interaction construed theoretical entities (Nelson, 1994). Radical social con-
structivists couple this with a relativistic viewpoint in which every possible consensus
is on a par. The agreement to call something else a ‘fact’ would have maybe led to a
totally different, but just as coherent world-view as another. Every aspect of science
is negotiable, and the result of negotiation is not determined by objective reality. Not
only are theories social constructs, but so are the phenomena they intend to describe.
Underlying social constructivism is a consensus theory of truth: the truth of a sci-
entific proposition or theory consists only of their being labelled ‘true’ by members
of the scientific community (Fine, 1996). The consensus theory of truth will be dis-
cussed later. What is important here is that the theory takes truth as relative to the
group in which consensus exists. Most empirical scientists react with reservations to
such relativism. Reaching agreement, without further qualifications, is of course no
scientific goal. Social constructivism’s cold reception confirms this.

Not all constructivists are radical relativists. According to moderate construc-
tivists, such as Knorr-Cetina (1995) and Liebrucks (2001), the material world gives a
certain resistance which places restrictions on the social constructions that attempt
to describe her. What they contest is the idea that scientific theories are linguistically
objective representations of reality (Knorr-Cetina, 1995). Who they contest, however,
is unclear. Are there any scientists who entertain this naive idea? The strength of
the social constructivists does not lie in their reuse of philosophical arguments, but
in their observational studies of scientific practice. If we are allowed to conclude any-
thing from these (as some social constructivists would contest), then these show how
many subjective choices must be made. Every test of a theory rests on subjective
decisions concerning the specific form of the manipulation, the measurement-model,
the required amount of observations, etc. Because these choices are not determined
by the nature of the phenomenon under study, the acceptance of a test, and with
that, of the theory which is subjected to it, is more or less a matter of convention.
This is not a new idea. As mentioned in Chapter 2, Poincaré (1905/1979), the logical
positivists, Popper (1959), and Kuhn (1970), all defended a particular form of conven-
tionalism. But while they explain the (implicit) choice for a particular convention by
internal factors such as the usefulness, simplicity, or coherence of the convention, the
social constructivists call upon external factors such as shared interests and stakes of
particular scientific communities. Of course, there are cases where conventions were
directed by social factors. Danziger (1990) quite convincingly argues how the move
from psychology as the study of the individual to psychology as the study of aggre-
gates was influenced by the success of the latter type of research in educational and
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A

B
b1 b2

a1 α, β −α,−β
a2 −α,−β α, β

Figure 6.1: A simple coordination game

military circles. But, as Danziger himself also admits, this finding in no sense indi-
cates the necessity or desirability of the social determination of scientific knowledge.
Since the conclusion that scientific facts are social constructions is often not taken to
be reflexive – that is, applicable to itself – social constructivists neither take scientific
facts necessarily as social constructions (Kukla, 2000). Neither the necessity nor the
desirability of the social constructivists picture of science has been convincingly ar-
gued for. As for necessity, the relativistic social constructivists have put themselves
in an awkward position. According to their own view, their view is but one amongst
equals. Another paradox of self-reference. While scientific theories are, in a trivial
sense, social constructions, the genesis of scientific theories has no inevitable effect on
the relation between a theory and the reality which it aims to describe. The distinc-
tion between the context of discovery and the context of justification can be usefully
applied here. As for desirability, or rather undesirability, I find the cold reception
of social constructivism amongst empirical scientists (and non-social-constructivist
philosophers of science) typical. Social constructivism is an empirical theory that
claims how science actually proceeds, rather than a normative theory that claims
how it ideally should proceed.

6.2.3 Coordination games

If consensus is purely a goal, then prohibiting consensus is just as nonsensical as
demanding it. There are no rational grounds on which to recommend or dissuade
a goal. But I dare to contest that scientists predominantly strive for consensus.
Consensus is a goal in problems of interpersonal coordination. Such coordination
problems arise when conditional preferences are held of the kind ‘I prefer to do X
if, and only if, you do X also’. To stay within the decision-theoretic framework
of Chapter 2, the situation will be described as a game. A coordination game is
characterised by symmetrical conditional preferences. In such a case, coordination of
the actionX is necessary for a preferable outcome. A simple example of a coordination
game is given in Figure 6.1. Both A and B have two available actions, a1 and a2 for A,
and b1 and b2 for B. For instance, a1 and b1 might be ‘accept theory T1’ and a2 and b2
‘accept theory T2’. In this game, consensus in cognitive action is the only acceptable
outcome for both players. Given that both A and B coordinate their actions, the
choice for either (a1, b1) or (a2, b2) is entirely arbitrary. It does not matter on which
action agreement is reached, as long as agreement is reached. Such a situation might
be palatable for radical social constructivists, but most scientists will find it rather
distasteful. Clearly, an important player has been left out: nature. Suppose that T1

describes nature to be in state θ1, and T2 describes nature to be in state θ2. Then
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A

B
b1 b2

a1 α, β −α,−β
a2 −α,−β −α,−β

θ1

A

B
b1 b2

a1 −α,−β −α,−β
a2 −α,−β α, β

θ2

Figure 6.2: A three player coordination game
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B
b1 b2
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1
2β

a2
1
2α,−

1
2β α, β

θ2

Figure 6.3: Amended three player coordination game

the three-player game might be something like the one in Figure 6.2. The conditional
preferences in this game are more plausible. Conditional upon θ1, both players prefer
(a1, b1) to any other outcome, while conditional upon θ2, both players prefer (a2, b2)
to any other outcome. In this game, the only acceptable outcomes are those in which
all three players coordinate their action. Of course, the coordination should now not
be taken literally, for the idea that nature coordinates her state to match the beliefs
of scientists is a silly one. Rather, both A and B need to coordinate their actions with
nature and each other. But the situation in Figure 6.2 is still somewhat unrealistic.
Surely, A would find outcome (a1, b2, θ1) preferable to (a2, b2, θ1). Even B, if not
entirely egocentric, might prefer the former outcome to the latter. A more likely
situation is one in which the epistemic utility of A conforms to the following ordering:
uA(a1, b1, θ1) ≻ uA(a1, b2, θ1) ≻ uA(a2, b1, θ1) � uA(a2, b2, θ1). For such a preference
structure, and similar ones for θ2 and B, the game might look something like that in
Figure 6.3. This game looks quite different from that in Figure 6.1. It is no longer a
pure coordination game. One should realise that the epistemic utilities of the actions
are given for certain situations, i.e. ‘If the true state of nature is θ1, then the utility
of a1, conditional upon B taking action b1, is α’. Assume for the moment that there
is no uncertainty as to the true state of nature, A knows for certain that it is θ1. Why
would A assign a higher utility to (a1, b1, θ1) than to (a1, b2, θ1)? In both outcomes,
he adopts a true belief. Why should B adopting a false belief diminish A’s utility of
adopting a true belief? In an altruistic mode, A might be concerned with the well-
being of B, which is negatively affected by adopting false beliefs. In a more egocentric
mode, A might be concerned with his own well-being. If B has decisive power over
A publishing an article exposing his belief, and B will only allow publication when
she agrees with A, then surely uA(a1, b1, θ1) ≻ uA(a1, b2, θ1). However, if A is solely
concerned with publishing, then his utilities would be better reflected by the pure
coordination game depicted in Figure 6.1. To assure publication, A would simply
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need to assure that his action conforms to B’s action. But this offers a perverse view
of scientific behaviour. Moreover, agreement is then not a goal itself, but a means
to the goal of publishing. But insofar as A has a goal of adopting true beliefs and
an additional goal of publishing, the situation in Figure 6.3 is plausible (although
consensus would still not be a goal in itself). And what about social validation,
shouldn’t agreement between A and B raise the validity of an action? Maybe, but
then again, consensus is not a goal, but a criterion of validity.

If an individual has a goal of consensus, then everything else being equal, he should
assign a higher utility to an outcome in which there is consensus than an outcome in
which there is dissensus. This is so for A and B in the game in Figure 6.1, but not
in the games in Figure 6.2 and Figure 6.3. For although uA(bi|ai, θi) ≻ uA(bj |ai, θi)
in both Figure 6.2 and Figure 6.3, so that A prefers agreement with B if his belief
agrees with the state of nature, uA(bj |aj , θi) = uA(bi|aj , θi) for j 6= i in Figure 6.2,
and uA(bj |aj , θi) ≺ uA(bi|aj , θi) for j 6= i in Figure 6.3. In words, these two latter
games describe a situation in which, conditional upon achieving the goal of a true
belief, consensus is an additional goal, but conditional upon not achieving the goal
of a true belief, consensus is not an additional goal. This means that, insofar as the
orderings of the utilities in these two games conform to those entertained by actual
scientists, consensus is a subordinate goal, only aspired after the realisation of other
goals.

Although De Groot and Ziman assigned too much status to consensus, they were right
in one respect: scientific knowledge is public knowledge. This is to say that scientists
should not only strive for true or otherwise adequate beliefs, but they should also strive
to make these knowable and intelligible for others, who may employ or criticise them
as they see fit. Science is a social activity in which mutual exchange and criticism are
of fundamental importance. But such a (justified) demand for publicity is something
completely different to a demand for consensus. Consensus is not a primary scientific
goal.

6.3 Consensus as means

If consensus is not a goal itself, then the consensus-imperative has foundation only
when consensus is a means to some other goal. De Groot (1961, 1971) and Ziman
(1968) do not show relativistic sympathies and would not consider themselves social
constructivists. They do not deny that truth is the quintessential scientific goal,
but the problem is there are no adequate means available to reach this goal. The
methodological rules that are employed are not compelling rules by which truth is
discovered. In order to justify these rules as goal-directed means, De Groot and
Ziman replace the goal of truth by rational consensus. This consensus is not arbitrary
agreement, but one that approaches truth as closely as possible. Thus, reaching
consensus is considered a means to discover truth.

If consensus is a means, then it should result in something. As mentioned in
Chapter 2, consensus is usually taken as a prerequisite for interpersonal coordination.
Let’s go back to the simple coordination game in Figure 6.1. The problem usually
addressed in game theory is how such coordination problems can be solved without
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direct communication between A and B. In order to reach either preferable outcome
without communication, consensus is required. The situation is similar to the problem
of coordinated attack described in Chapter 2. A will decide on a1 only if he believes
that B will decide on b1, while B will decide on b1 only if she believes A will decide on
a1. So A will expect B to decide b1 if he believes that B believes that he will decide a1

(i.e. BABBBAa1), etc. Again, coordination without communication requires common
belief E∞

P . In this case, the outcome of consensus requires that this consensus pre-
existed in the minds of both players. But a situation without possible communication
is not one encountered in scientific practice. Moreover, in such coordination problems,
consensus is a means to achieve consensus. But if consensus is not an important
scientific goal, why attempt to achieve it?

The consensus-imperative is justified insofar as consensus is a means to another
goal. Consensus should at least have an additional result to consensus. Different
effects of consensus have been mentioned. For instance, members of a group with a
high level of consensus have a greater sense of well-being (Bliese & Halverson, 1998).
In social psychology, much research has been conducted on the differences between
small groups deciding by majority and those deciding by unanimity. Miller (1989)
gives an overview of the research on this subject and concludes that a unanimity-rule
results in

– a higher probability that no final decision is reached, but if reached, it is more
often a compromise in which minority opinion is better reflected,

– a higher correspondence amongst individual preferences, i.e. more consensus,

– a longer discussion preceding the decision which is perceived as more uneasy,
difficult and conflict full, but also as more thorough and adequate,

– group members judging each other as more likeable.

A unanimity-rule is also judged as fairer than a majority-rule, probably because it
results in more consensus, so that the group decision corresponds more to individual
decisions. Finally, consensus results in a higher trust in a decision or opinion (Orive,
1988). This can be explained by Festinger’s (1950, 1954) theory of social comparison
(see Chapter 4). According to this theory, the judged validity of an opinion is posi-
tively related to the number of individuals holding that opinion. The more individuals
agree on an opinion, the more valid that opinion will be judged.

6.3.1 The quality of group decisions

It would be nice if groups deciding under a unanimity-rule are justified in putting
greater trust in their decisions. However, the results of research on the effect of a
unanimity-rule on the quality of decisions are mixed. Holloman and Hendrick (1972)
and Bower (1965) found group decisions under unanimity to be better than those
arrived at by a majority-rule. Sorkin, West, and Robinson (1998) found that groups
perform worse as the decision-rule becomes more strict, with a simple majority rule
as least strict, and a unanimity-rule as most strict. Stasson, Kameda, Parks, and
Zimmerman (1991) found a better performance in mathematical problem-solving for



126 6. The unfounded demand for consensus

groups under a simple majority rule. But, in those groups in which none of the mem-
bers individually knew the solution, groups under unanimity arrived at the correct
solution more often than groups under majority. The authors explain this last result
by the more thorough discussion that took place in the former groups. This was also
the explanation given by Holloman and Hendrick (1972) and Bower (1965). In this
respect, the research of Postmes, Spears, and Cihangir (2001) is interesting. They
compared groups working under a consensus norm to groups working under a norm
of critical discussion. The quality of decisions was much higher in the last than in
the former groups. Comparable results are usually found when comparing dialectical
inquiry, devils advocacy, consensus and expert discussion methods. There is some
disagreement whether dialectical inquiry or devils advocacy has better results, but
both perform better than the other methods (Katzenstein, 1996). When a norm of
critical discussion is not explicitly enforced, the tendency towards social harmony can
disrupt the critical examination of possible solutions, as in the groupthink phenom-
enon (Janis, 1972). This happens when groups seek consensus prematurely, resulting
in the gathering of too little information, alternative solutions and sources of possible
failure. The potential of groups, stemming from the large informational base they
can access, is thus unrealised. This is a general finding. Rather than focussing on
the unique information each member can contribute, groups focus on the information
which is shared by a large number of group members (Wittenbaum & Park, 2001).
Furthermore, research on brainstorming shows that interactive groups produce less
alternatives than so-called nominal groups, consisting of individuals working alone
(Mullen, Johnson, & Salas, 1991). Different explanations have been given for this
finding. For instance, there is motivation-loss resulting from working in a group, be-
cause there is no individual responsibility (‘social loafing’) and it is tempting to let
others do the work (the ‘free rider’ effect). Also, some group members experience
a certain inhibition stemming from fear of a negative evaluation by other members.
Finally, procedural aspects also play a role, since group members must take turns
in expressing their alternatives. The intuitive idea that groups arrive at better deci-
sions because of mutual information exchange is not clearly supported by empirical
research. The many experiments in the Asch-paradigm (see Chapter 4 and Levine
& Thompson, 1996) show that consensus often leads to conformity to the consensual
position.

To improve the quality of group decisions, group members must be persuaded to
share as much relevant information as possible. Moreover, measures must be taken to
eliminate such processes as conformity, social pressure, social loafing and free riding.
A norm of critical dissensus appears a better means for this than one of consensus.

6.3.2 Individual vs group

The majority of the above mentioned research compares the performance of different
kinds of groups, where it was expected from these groups that they arrived at a single
decision or judgement. But how does the performance of groups compare to that of
individuals? This question does not have an unambiguous answer. Which individual
should be compared to the group, and how?

Usually, group judgements are compared to the judgements of the group members
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before group discussion. In this case, there are at least three possible comparisons.
The first one is between the group judgement and the judgement of the least com-
petent member. Here, group judgement will most likely compare favourably to in-
dividual judgement. The comparison between the group judgement and the average
individual judgement will be less favourable to the group judgement, but the group
judgement is often better than the average individual judgement (Hill, 1982; Laugh-
lin, Bonner, & Miner, 2002). When comparing the group judgement to the judgement
of the most competent individual, groups usually perform worse (Hill, 1982; Stasson
et al., 1991). In the two experiments reported in Chapter 5, the accuracy of collective
decisions lay between the accuracy of the average and best member’s decisions. Sta-
tistical tests showed that the accuracy of the collective decisions was not significantly
different from the accuracy of the decisions of the most competent group member. In
addition to this finding, the results of these experiments indicated that the relative
accuracy of a group compared to its best member depends on how information is
distributed amongst the group members. In the case that information is completely
distributed, the group as a whole can base its decision on more information than
any individual alone. As such, the potential accuracy of a group is higher than the
potential accuracy of any individual alone, no matter how competent. Groups were
not able to realise their potential. Hence, even if one has good reasons to expect
the group to perform better than its best member, this expectation is not generally
confirmed.

Suppose that someone must choose between a group or an individual judgement.
If the group judgement is always better than the individual judgement of the least
competent individual, choosing the group judgement is a security-strategy. The worst
possible outcome of the group judgement is at least as good as the worst possible out-
come of an individual judgement. Since group judgements are predominantly better
than the average individual judgement, the expected outcome of the group judgement
is also preferable to the expected outcome when randomly choosing the judgement of
an individual. But, since the group judgement is usually no better, and often worse
than that of the most competent individual, choosing the group judgement is certainly
not a strictly dominant strategy. If there is information regarding the competence
of individuals, the judgement of the nost competent individual is preferable to the
judgement of the group.

When comparing individual judgements to group judgements, one should not only
ask ‘which is better?’, but also, ‘better for who?’. When the group judgement is not
at least as good as the individual judgement of any of its members, then the group
process has a detrimental effect on at least one member. The question is then whether
this is justifiable by the possible positive effect on other group members. When
reaching consensus is viewed as a learning process, the group judgement should be
internalised by the group members. In this case, the majority of group members will
learn, but the remaining part will unlearn. Weighing collective gains and individual
loss is principally an ethical question. I can not see how a Scientific Law that imposes
a particular weighing onto all scientists can be defended.
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6.4 Consensus as criterion

In the previous, I argued that consensus is not an adequate scientific goal or means.
What remains for consensus is a role as epistemic criterion. We should distinguish
between consensus as a definition of truth, and consensus as criterion of an otherwise
defined truth, for instance in terms of correspondence to states-of-affairs. The con-
sensus definition of truth has serious drawbacks. Van Heerden (1980) mentions three.
Firstly, it is parasitic on another definition of truth, since the presence of unanimous
agreement is an empirical matter. One could reply that the presence of consensus can
be made a matter of unanimous agreement itself, but this would lead to an infinite
regress. Secondly, a statement cannot in retrospect be characterised as true in the
time preceding unanimous agreement. This conflicts with the time-less character of
truth. It should be noted that Van Heerden’s objections hold only for a definition of
truth in terms of actual consensus, not for one in terms of counterfactual consensus.
According to Habermas’ consensus theory of truth (see Hesse, 1980), a statement is
true if competent actors in an ideal speech-situation would unanimously agree on it.
The conditions for an ideal speech situation are

(a) every person with the competence to speak and act can participate.

(b) everyone is allowed to contribute and criticise any assertion, and can express
any attitude, wish or need.

(c) no one may be prevented, either by internal or external pressure, to exert his
or her rights as given in (a) and (b).

Of course, the ideal speech situation is just this: an ideal. In practice, it will not
be realised and Habermas’ theory does not provide a practical criterion of truth.
Moreover, if the definition of truth is consistent, then for any set of contradicting
statements, there must be consensus on one (and only one) element. In the ideal
speech situation, there must always be a winning argument for one. An example:

I think it is safe to assume there is consensus that the statement ‘either aliens
populated Mars, or they did not’ is true. Aliens did not populate Mars ‘a little’,
or ‘approximately’. If we denote the statement ‘Aliens populated Mars’ as X, and
the statement ‘Aliens did not populate Mars’ as ¬X, then ‘X ∨ ¬X’ is true. But
if unanimous agreement cannot be reached on X or ¬X, then both are false. So
¬X ∧¬(¬X) = ‘¬X ∧X, which is a logical contradiction and moreover contradicting
the true statement ‘X ∨ ¬X’3

Finally, I should mention Van Heerden’s (1980) third objection. With a consensus
definition of truth, reaching consensus on probability, deficient English, or ambiguity,
results in the indistinguishability of probability, deficient English, and ambiguity. For
if truth can be defined solely in terms of agreement, then so can other aspects of
statements. Why would truth be the only attribute definable in terms of consensus?

3The second contradiction may seem superfluous in light of the first, but it isn’t. For an adherent
to the consensus theory of truth might not object to the logical contradiction ¬X ∧ X, for the
contradiction rests on the ‘law of the excluded middle’, which may not be unanimously accepted.
However, he should be persuaded by the inconsistency between ¬X ∧X and X ∨¬X, since both are
true according to his own definition.
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If consensus is the only criterion, these different attributes are indistinguishable after
consensus is reached. In order to do this, other norms must be introduced, but then
consensus is deprived of its decisive role. On the basis of these conclusions, even the
ideal consensus theory of truth should be rejected.

Although consensus does not provide a good definition of truth, maybe it could
function as a (fallible) criterion of truth otherwise defined. This seems to be the
idea behind the statement ‘true is (for the time being) that which the forum . . . holds
true.’4(De Groot, 1982, p.248). It corresponds to the social constructivist thesis that
truth consists only of the assignment of the label ‘true’ by a community. As an
empirical observation, this is correct. The only observable correspondence between
all statements that are held true, is just that they are held true. But truth is of course
not an empirically observable property. Furthermore, I don’t think there are many
scientists who assume that everything they hold true is actually true. An important
function of the concept of truth is to distinguish between true and false beliefs. An
adequate definition of truth should at least allow for mistaken beliefs. Having a belief
should not make it true by definition. Since this does not hold for the definition above,
we should see consensus as an epistemic criterion, and not a definition of truth. But,
for difficult problems, consensus is not epistemically informative, as the argument in
Appendix 6A shows. Moreover, consensus is a rather peculiar epistemic criterion. Any
influence it exerts is self-reinforcing. Anyone who is persuaded by consensus to adopt
a certain viewpoint strengthens the consensus. As more people hold a view, there is
more justification for the view, and more people will be persuaded to adopt the view,
etc. In the end, there is not much left of the indicative function that consensus may
have served initially. In order to function properly, a consensus criterion should not
actually be applied. Thus, consensus is not a useful criterion.

6.5 Cooperation without consensus

Consensus is not a goal, means, or useful criterion in the empirical sciences. It is pos-
sible that a theory which is true, leads to the best predictions, or is the most useful,
will also be unanimously adhered to. But this should not be confused with the idea
that if a theory is unanimously adhered to, it is also true, leads to the best predictions,
or is the most useful. This is of course the fallacy of confirming the consequence (‘if
true then consensus’, ‘consensus’ thus ‘true’). And even if consensus is always accom-
panied by truth, then it is a naturally occurring consensus. By enforcing a consensus
imperative, consensus becomes a manipulation, with an unclear validity. Demand-
ing consensus should result in more consensus than without the demand. Otherwise
the imperative is inconsequential. If consensus arises naturally when persons cannot
find any reasonable points of disagreement, then the surplus of manipulated consensus
consists of fictitious agreement. Again, by striving for consensus, it loses its indicative
function.

Subjecting a belief to evaluation by other scientists mainly serves the purpose
of detecting errors. It is because there are no compelling rules for the evaluation

4Translated from Dutch by M.S. Original: ‘waar is (voorlopig) dat wat het forum . . . voor waar
houdt’.
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of knowledge claims, and because it is difficult for a scientist to rise above his or
her theoretical framework, that the opinions of others are informative. Consensus
regarding a judgement means that, for the time being, no grave errors have been
detected. The validity of such a social tests critically depends on the possibility of
detecting errors. If certain errors are due to certain presumptions that are part of
a theoretical framework, this possibility is limited when others share the framework.
The more agreement there is beforehand, the more people share the same theoretical
framework, the less valid the test. Consensus as epistemic criterion is availed by
dissensus.

It cannot be denied that science is, and should be, a social enterprise. Mutual
sharing of empirical data, theories, and ideas, prevents that each scientists must rein-
vent the wheel. It is important that the ideas and observations are available and
useable: scientific knowledge is public knowledge. Availability has its own problems,
in which consensus plays a minor role, for instance when consensus between peer
reviewers is a condition for publication in a scientific journal. Here, consensus has
a limiting function, restricting the amount of public data and theory. One could
argue that the usefulness of data and theories requires a certain level of consensus.
According to Kuhn (1970), different paradigms are incommensurable, so that the
meaning of an observation depends on the paradigm one adopts. Psychology is often
taken as a pre-paradigmatic science. Some find this disturbing, maybe because Kuhn
only speaks of ‘normal science’ in paradigmatic stages. Others regard Kuhn’s normal
science as rather pathological (Popper, 1974). A pre-paradigmatic science is char-
acterised by the simultaneous existence of multiple (mini-)paradigms. If paradigms
are truly incommensurable, then communication between scientists might seem im-
possible. But, that theoretical terms have a different meaning in different paradigms
does not mean that it is impossible to understand both meanings (Laudan, 1996).
Incommensurability does not mean that empirical data are unusable or meaningless.

According to De Groot (1977, 1990a), psychology has many schisms, apparent
contrasts that arise for instance when there is no agreement on the right methods or
meaning of basic terms. Reaching consensus is thus regarded as a medicine for the
fragmentation of psychology. This is akin to the ‘Kuhnian medicine’ as Feyerabend
(1974) describes it: ‘restrict criticism, to reduce the number of comprehensive theories
to one, and to create a normal science that has this one theory as its paradigm’ (p.198).
This was obviously not what Kuhn meant:

I claim no therapy to assist the transformation of a proto-science to a
science, nor do I suppose anything of this sort is to be had. If certain
social scientists take from me the view that they can improve the status of
their field by first legislating agreement on fundamentals and then turning
to puzzle-solving, they are misconstruing my point (Kuhn, 1974, p. 245).

Consensus is not a medicine, but luckily scientific disagreement is not a disease
which calls for one. While disagreement does indicate that there is ‘something wrong’
with the available theories – none is immediately acceptable – it does not indicate
that there is something wrong with adherents to the different theories. As long as
they keep asking themselves why they adhere to a particular theory and express the
underlying reasons to themselves and others. A well-considered choice is only possible
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to the extent that all conceivable advantages and disadvantages of a theory are known.
The formulation of new theories will also be availed by such a thorough analysis. It
is very likely that it is impossible to discover all advantages and disadvantages of a
theory, but as a regulative ideal it certainly is not inappropriate. Aiming towards this
ideal seems more availed by a norm of rational disagreement than one of agreement.

For good reasons, science is a social enterprise. From this idea, a sensible method-
ological imperative can be derived. It is not the consensus imperative, but something
like it, though. In order to make full use of the social aspects, each scientist in a field
of inquiry must have accurate beliefs about the beliefs of others in the field, and why
they believe what they believe. If individual i believes Xi for reasons Ri, this leads
to the first requirement that

C1: (∀i, j ∈ P)BjBi(Xi, Ri).

A rational scientists should make use of all available information, empirical and social,
and should capitalise on the rationality of others. So a rational scientist j would form
a new belief X2

j on the basis of all available information, or at least as much infor-

mation as can be humanly processed. That is, X2
j should be formed on the basis of∧

i∈P Bi(Xi, Ri). The rationality of BjX
2
j thus requires at least Bj

∧
i∈P Bi(Xi, Ri).

Insofar as BjX
2
j is rational, this new belief can be informative to another scientists

k. But k should be inclined to use Bj(X
2
j ) only if BkBj [X

2
j ∧

∧
i∈P Bi(Xi, Ri)].

So, the social process of using each-other’s beliefs will function optimally when the
requirement

C2: (∀i, j, k ∈ P)BkBj [X
2
j ∧Bi(Xi, Ri)]

is met. The direction of the argument should be clear. At each stage, a scientist forms
a belief on the basis of all beliefs in the group P at the previous stage. The scientist
should be inclined to do so if these beliefs at the previous stage were formed on rational
grounds, which at least requires that each group member believed what was believed in
the group at the stage preceding the previous stage. So similarly to C2, a requirement
C3 should be added, and C4, etc. The optimality of the social process does not hinge
on common belief, but something which might be called ‘mutual understanding’. For
a formal definition, denote the set of beliefs in P at stage k as

Bk
P ≡

∧

i∈P

BiX
k
i .

Then Uk
P , or mutual understanding at stage k, can be defined as

Definition 4 (Mutual understanding).
There is Uk

P , or mutual understanding in a group P at stage k, if

∧

i∈P

Bi

k−1∧

j=1

Bj
P .

From my point of view, I should believe that you believe X1
2 and that you believe

that I believe X1
1 . In addition to this, I should later believe that you believe X2

2

and that you believe I believe X2
1 . And in addition to this, I should later believe
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that you believe X3
2 and that you believe I believe X3

1 , and so forth. Certainly, this
iterated process may lead to a convergence of your and my belief, and hence result in
common belief. But this result is not required. The requirement is that beliefs and
their reasons are public, and that everyone uses these public beliefs as they see fit.

6.6 Conclusion

Consensus and dissensus are natural outcomes when multiple persons focus on the
same problem. That science is a social activity, in which individuals learn not only
from empirical observations, but also from each other’s interpretations of these ob-
servations, and evaluations of these interpretations, does not warrant the demand for
consensus. Where people learn from each other, their beliefs will often show more
similarity. But their beliefs do not have to be identical. Psychology’s highly complex
subject matter leaves plenty of room for difference in opinion. Of importance is how
such differences are dealt with. Should they be smothered, by trying to find points
where agreement is possible? Or, should they be stimulated, by trying to find points
where disagreement is possible? The convergent strategy results in the collection of
undisputed points of view, while the divergent strategy leads to the collection of dis-
putable points of view. If the aim of the convergent strategy is not finding undisputed,
but rationally indisputable points of view, the divergent strategy is a condition for the
success of the convergent strategy. When it is realised that every belief is subject to
improvement, and that the points of improvement can only be indicated by contradic-
tion, with empirical observations or other beliefs, then the divergence in psychology
is not her weakness, but rather her strength. Of course, where there is separation
and dogmatism, where there are theoretical schools that isolate themselves from the
rest of science, there the social process of science is impeded. But such disfunctioning
can be attributed to an attempt to preserve an achieved consensus by denying the
existence of a justified dissensus, rather than an inclination towards divergence as
such.

Pluralism in belief and method is a result of the complexity of psychology’s sub-
ject matter. To provide insight, theories need to be simplifications of the phenomena
they describe. Reducing a complex problem to a manageable problem, focussing on
certain aspects and ignoring others, can be done in different ways and result in dif-
ferent theories and methods. Sometimes, adherents to different methods or theories
present their differences as a dilemma in which only one of the alternatives is right,
while the different theories or methods are not truly contradictory, but instead fo-
cus on different aspects of a phenomenon. The examples of such quasi-dilemmas or
schisms De Groot (1977) mentioned, such as correlational vs experimental research,
and model-based (psychometric) measurement vs axiomatic (representational) mea-
surement, are still relevant today. These are not contradictory methods in the sense
that they usually lead to different results. One option is more stringent (experimental
research and axiomatic measurement), but therefore also more limited in its applica-
tion, than the other (correlational research and model-based measurement). While
all research demands a choice from the possible approaches to the phenomenon un-
der investigation, there is, as yet, no basis on which to lay down these choices for
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all research focussing on the phenomenon. The application of different methods is
not troublesome, but can only enrich the view of the subject of investigation. The
consensus imperative, by which the hopeless search for one absolutism (justified true
belief by compelling methodological rules) is replaced by another (justified true belief
by unanimous consensus), is not the solution to psychology’s complex problems.

Appendix

6A Observation regarding consensus as an epistemic criterion

In this appendix, the function of consensus as an epistemic criterion in dichotomous
decision-problems is investigated. As in Chapter 5, we assume that a group of n
individuals make individual decisions Xi in a dichotomous decision-problem, in which
one of the alternatives, denoted as t, is objectively correct. The decision alternatives
are valued -1 and 1. We assume that each individual in the group has a competence
pi = P (Xi = t) in the problem, which can be decomposed as

pi =
ea(θi−β)

1 + ea(θi−β)
, (6A.1)

in which the person specific parameter θi reflects i’s overall ability, and the problem
specific parameter β the relative difficulty of the problem. Note that (6A.1) is identical
to a Rasch or 1-parameter logistic model (Birnbaum, 1968) as encountered in item
response theory (IRT). Assuming that the decisions are conditionally independent, so
that

P (Xi = t ∧Xj = t) = P (Xi = t)P (Xj = t)

for all i and j, the probability of consensus (in the sense of first-order unanimity, see
Chapter 2) is

n∏

i=1

pi +

n∏

i=1

(1 − pi).

This probability is decreasing in n, so it is highly unlikely that a large group of
independently deciding individuals will be unanimous. Now we pose the following
question: when does unanimity indicate that the group has arrived at the correct
decision? To answer this question, assume that a group is unanimous in deciding
Xi = 1 and consider the likelihood-ratio

LR =
P (X1 = 1, . . . ,Xn = 1|t = 1)

P (X1 = 1, . . . ,Xn = 1|t = −1)
=

∏n

i=1 pi∏n
i=1(1 − pi)

= e(a
P

n

i=1 θi)−naβ .

Since LR > 1 indicates that it is more likely that the group arrived at the correct
decision than that it arrived at the incorrect decision, it follows that consensus epis-
temologically informative only if β < θ. For relatively difficult problems, it is actually
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more likely that the correct alternative is the opposite of the unanimous group deci-
sion! This is ironic, since it is generally for difficult problems that the requirement of
consensus becomes more acute.



7

Summary and discussion

This thesis investigated the role of consensus in psychological methodology. This
final chapter summarises the various issues raised and conclusions drawn in this in-
vestigation, and ends with some general thoughts on social learning and pluralistic
methodology.

7.1 Consensus and methodology

Consensus has been a central concept in Western thinking on science. Classically,
consensus was taken as a consequence of the scientific method, which demands unani-
mous consent amongst those who adopt it. Later theories in the philosophy of science,
starting with Kuhn (1970), assigned a more pivotal role to consensus, arguing that
consensus is itself arbiter in scientific decision problems. An important reason for rais-
ing the status of consensus is the general problem of underdetermination. It has been
widely accepted that empirical evidence by itself is an insufficient basis to determine
the choice between competing scientific theories. The classic problem of underdeter-
mination concerns the logical possibility that, for any proposed theory to explain or
describe regularities in a given body of data, there is an alternative, incompatible the-
ory that is equally consistent with the given evidence. In Chapter 2, a more general
version of underdetermination, called axiological underdetermination, was proposed.
In contrast to certain beliefs that underdetermination is not a practical problem, since
scientists base their decisions on more criteria than empirical adequacy, this thesis of
underdetermination shows that it is not so easy to rid oneself of underdetermination.
In the decision-theoretic framework introduced in Chapter 2, scientific inference is
regarded as goal-directed behaviour. Scientists pursue epistemic aims, such as de-
scriptive and predictive adequacy and simplicity, and the choice between competing
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theories or methods is based on an evaluation of the utility of these theories and
methods for those aspired aims. In such multi-attribute decision problems, under-
determination arises when multiple theories and methods have an identical utility.
While axiological underdetermination is, as empirical underdetermination, a problem
of possible existence, Chapter 3 showed how axiological underdetermination can ac-
tually arise in practical problems of statistical model selection. In a way, the addition
of aims to empirical adequacy raises the likelihood of underdetermination, since there
are multiple ways in which different values can be traded off against each other in
multi-attribute decision problems, as opposed to single-attribute decision problems,
where no such trade-off is possible. This chapter showed that methodological rules in
general underdetermine theory choice. As such, the idea that theoretical consensus is
a necessary consequence of methodological consensus should be abandoned.

Rather than being a direct consequence of the scientific method, some have argued
that consensus is itself a basis for solving scientific decision problems. Since method-
ological rules are insufficient to determine theory choice, theorists such as Hesse (1980)
have argued that social factors should be taken into account when explaining scientific
decisions. A similar point is made in a major theory in social psychology. According
to Festinger’s (1950, 1954) theory of social comparison, when objective evidence is
insufficient, individuals will attempt to validate their opinions by comparing them to
those of others. From this theory, it follows that, if the choice between competing
hypotheses is underdetermined by objective evidence, peer consensus on one of the
alternative hypotheses should be a strong impetus to adopt this hypothesis. This
prediction was tested in the two experiments described in Chapter 4. In an inductive
rule discovery task, where the objective is to determine a logical rule that underlies
a sequence of exemplars, the evidence was manipulated to result in different levels
of underdetermination. In the first experiment it was shown that individuals tend
to conform to an unanimously endorsed hypothesis if the rule is underdetermined
by the evidence. In the second experiment, the rule was either strongly or weakly
underdetermined by the given evidence, and it was expected that an increase in the
level of underdetermination would result in more conformity to an unanimously held
hypothesis. This prediction was supported. There was, however, an anomaly in the
results of this experiment. For a weakly underdetermined rule, there were actually
more individuals adopting a particular hypothesis when it was not unanimously en-
dorsed than when it was unanimously endorsed. This may have been the result of a
resistance to social pressure. While the hypothesis that greater levels of underdeter-
mination result in a stronger tendency to conform to a unanimously endorsed position
has been supported, this last anomaly indicates that consensus may not be directly
aspired in matters where a single true belief is assumed to exist. Complementing this
was the finding that in both experiments, the effect of the social information was
small relative to that of the objective evidence. The assumption of a single true belief
makes others’ beliefs at once valuable and dispensable. Valuable, because all beliefs
pertain to the same object and as such have potential informational value. Dispens-
able, because the truth of belief is not a function of the number of people sharing
the belief. In situations of underdetermination, objective evidence is insufficient to
delimit the number of plausible hypotheses to one. In such a situation, agreement
with others may raise the plausibility of one of the underdetermined hypotheses. But,
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if it is expected that underdetermination is only temporary – a consequence of the
quality of present data and not the quality of all possible data – reliance on social
validation will be temporary also. In the end, consensus is not an arbiter in scientific
decision problems.

Chapter 5 investigated collective behaviour in nonmetric probability learning tasks.
In general, there are two important reasons why a group can outperform individuals
when it comes to making good judgements or decisions. The first is that individu-
als may possess (partly) non-overlapping information, so that the group as a whole
can base its judgement or decision on more information than any individual alone.
The second is that idiosyncratic biases may affect the group judgement or decision
to a lesser extent than individual ones, because the idiosyncratic biases may cancel
each other out in a group judgement or decision. While these two reasons render the
assumption that groups are advantaged over individuals plausible, previous research
has shown that groups often do not realise their potential. The two experiments
of Chapter 5 were conducted in order to further scrutinise the assumption. In the
first experiment, information was either completely distributed or shared, so that
the effects of greater informational base and ‘cancelling out’ of individual bias could
be separately investigated. As expected, groups in the distributed condition outper-
formed those in the shared condition. The effect of informational base was larger
than that of cancelling-out individual bias. In the second experiment, information
was partly shared and partly unique. Of concern in such situations is the so-called
common knowledge effect. This refers to the finding that groups show a preference for
shared information and tend to neglect unique information. A possible explanation of
this effect, consistent with social comparison theory, is that the number of individuals
sharing information is taken as an indication of the validity of the information. If
this explanation is valid, the common knowledge effect should disappear if the shared
information is known to have less validity than unique information. This hypothesis
was confirmed, since there was no sign of the common knowledge effect in those con-
ditions in which the shared information was of relatively low validity. Besides group
achievement, the group process resulting in the collective decisions was of particular
interest. Apart from those in the completely shared condition, groups appeared to
adopt a weighting-by-confidence process, in which confidence in the correctness of
responses determines the weight of those responses in the final collective response.
Since confidence was related to conditional achievement (the probability of a correct
response conditional on the given evidence), it was assumed that underlying this group
process was a weighting-by-achievement process. This assumption did receive sup-
port, although the evidence was less marked than that for the weighting-by-confidence
process.

Chapter 6 addressed the possible roles of consensus in a normative methodology.
Three such roles were distinguished: consensus as a goal, as a means, and as a crite-
rion. It was argued that consensus fulfills none of these roles adequately. Unqualified
consensus is not a scientific goal, so it is necessary to distinguish between rational
and other forms of consensus. However, this distinction is problematic. The proposed
solution requires that at least one other goal is strived for besides consensus, which
leads to the conclusion that consensus is at most a subordinate goal. As was further
argued, consensus is an aspired goal only to the extent that other goals have already
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been realised. When considering consensus as a means, one should be careful with
one’s claims. For instance, if consensus is taken as a means to arrive at true belief, the
belief of a person adopting the consensus method can not itself be part of the consen-
sus. If the person already concurs with the prevailing consensus, there is no effect of
this consensus on that individual’s belief. If the belief of the individual is discordant
with the prevailing consensus, there was no overall consensus to begin with. Different
effects of consensus have been mentioned in the literature. In general, a norm of crit-
ical dissensus has a better effect on the quality of collective judgements and decisions
than a norm of consensus. When considering consensus as a scientific criterion, one
can take consensus as a definition of truth, or a criterion of truth otherwise defined.
The consensus theory of truth was shown to be highly problematic. When consid-
ering consensus as a criterion of truth otherwise defined, there is the problem that,
in order to be valid, the criterion should actually not be applied. This is due to the
fact that any influence the criterion has on the beliefs of those who adopt it, maps
back to the criterion itself. Consensus as a criterion is, in this sense, self-referring.
Consensus may be informative if it concerns agreement between independent sources.
The belief of someone who conforms to the belief of someone else is redundant in
this respect. Application of a consensus criterion, in such a way that individuals may
change their belief accordingly, results in such redundancy. As such, the consensus
criterion should be inconsequential – no one forms a belief on the basis of it – or not
be applied. Consensus has no role in a normative methodology. Not as a goal, not as
a method, not as a criterion.

7.2 Social learning and information integration

Both consensus and dissensus are natural states for a community of scientific inquirers.
There is no proper rationale to demand either of them. While the consensus impera-
tive is unfounded, it can not be denied that science is a social enterprise. But rather
than focussing on the product of the social organisation of science – be it consensus
or dissensus – it is more fruitful to focus on the process. What are the conditions un-
der which the social process of scientific inquiry proceeds in an optimal fashion? And
how should this social process ideally take form? Such questions have been largely ne-
glected in theories of science. The philosophy of science, and epistemology in general,
have almost exclusively focussed on the individual, while sociologists of science have,
perhaps unwillingly, mainly addressed the ‘irrational’ aspects of science. A notable
exception is the work of Merton, who took the social reward system of science as a
primary factor in its success. As a psychologist, my interest is in more small scale
social processes. How do scientists learn from each other? Is there a difference with
everyday social learning? Such questions might be the topic of the ‘social psychol-
ogy of science’, which is a recent – and as yet rather marginal – addition to science
studies. Social psychology of science, as presented by Shadish and Fuller (1994), is an
empirical study of how individual scientists are influenced by their social surround-
ings. The two empirical chapters of this thesis may be considered an addition to this
programme.

While science studies offer descriptions of how scientific inferences proceeds, method-
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ology is concerned with prescriptions for how it should proceed. Interpersonal learning
should be a major topic of a social methodology of science. One reason to focus on
social processes from a methodological viewpoint is the realisation that individual
scientists, like everyone else, are subject to cognitive limitations. There are limits in
memory and limits to the amount of information that can be adequately processed.
Theoretical frameworks and methodological preferences will determine what, and how,
new evidence is incorporated into an existing belief system. For these reasons, even
the most enlightened scientist can only be expected to show a form of bounded ratio-
nality. But a community of such boundedly rational inquirers may, as a whole, possess
a stronger form of rationality. If this is possible, it will surely depend on the social
dynamics of the scientific enterprise. Chapter 5 showed that it may be advantageous
for group members to focus on different information. If a phenomenon depends on a
large variety of factors, the amount of relevant information may be overwhelming. In
order to understand the phenomenon to some extent, the relevant information must
be reduced to a manageable amount. Ignoring relevant evidence is not something to
be proud of, as it will affect the validity of one’s conclusions. Yet, by a division of
cognitive labour, it may be possible to reach valid conclusions collectively, since a
group as a whole may have focussed on all relevant evidence. Further research might
indicate how such a division of cognitive labour can be fruitfully applied.

Others can fulfill a variety of functions in the social process of knowledge. Two im-
portant functions are as a source of information, and as a source of validation. Others
are a source of information because it is impossible to acquire all knowledge first-hand
from individual experience. One might consider consensus as a prerequisite for such
information sharing, but it is not. Of course, information must be transmitted, and
effective communication depends on some form of agreement between the conversing
parties as to what a message means. But it is surely possible to understand a position
without agreeing with it. How else would discussion and mutual criticism be possible?
In psychology, inferences about unobservable psychological processes have to be based
on observable behaviour. Often, the link between these is rather weak. The assumed
psychological process is, if sufficient, usually not necessary for the occurrence of the
observed behaviour. This is a fertile ground for problems of underdetermination. In
one way, this is ‘bad’. Underdetermination results in doubt, and doubt is uncomfort-
able. On the other hand, underdetermination can be quite useful, in the sense that
proponents of different theories can make use of the same data. Underdetermination
is a problem only insofar as a choice between the theories is necessary, and ‘agreeing
to disgree’ forbidden. But if there is no demand for consensus, it is quite unprob-
lematic that proponents of incompatible theories use the same data to support their
incompatible positions.

Others can be a good source of validation, because it is easy to overlook prob-
lematic steps in one’s reasoning. Consensus is surely not a prerequisite for others to
function as a source of validation. Insofar as errors stem from bias in reasoning, or
bias of methods, the less another shares a theoretical framework or methodology, the
easier it will be for the other to detect those biases. Hence, this aspect of the social
process of science is availed by dissensus.

When considering the conditions under which the social process of knowledge
might optimally proceed, Chapter 6 argued that attempts should be made to reach
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a situation of ‘mutual understanding’. Mutual understanding was defined as a situa-
tion in which each individual in a group has accurate beliefs regarding the beliefs of
other group members and regarding their reasons for holding those beliefs. In such a
situation, it is possible to learn from others’ beliefs on different levels. If all individ-
uals in a group apply a social learning strategy, one can not only learn from others’
initial beliefs, but also from others’ later beliefs, which have been based on others’
initial beliefs. To be more precise, a situation of mutual understanding can lead to
the following type of reasoning:

If alternative X is correct, I would expect group members 1, 2, . . . , n to
believe X with probability p1, p2, . . . , pn, respectively, for this is how I
deem their competence in such matters. If ¬X is correct, I would expect
the same for this alternative. I have been informed of the beliefs of the
group members and I deem these more likely given that X is the correct
alternative than given that ¬X is correct. So, based on this new informa-
tion, I believe X. If my estimates of the group members’ competence were
correct, I would expect the others to now believe X as well. However, they
now believe ¬X. So either their competence estimates are wrong, or mine.
I deem it less likely that their competence estimates are all incorrect and
mine correct than that their competence estimates are correct and mine
wrong. Hence, I now believe ¬X is more likely to be correct than X. So,
I now believe ¬X.

A formalisation of this type of reasoning and its consequences has been worked out
elsewhere1, but the main thrust of the argument should be clear. In a situation of
mutual understanding, one can make profitable use of others’ reasoning in multiple
ways. First of all, reasoning about others’ knowledge can be a basis to form new or
adjust existing beliefs. Second, if everyone applies such reasoning, one can use the
resulting beliefs as a basis to validate this reasoning about others’ knowledge. Now
there are multiple levels at which idiosyncratic bias can be corrected for. Insofar
as such bias is evenly distributed over all individuals in a group, there is a clear
advantage of such a multi-layered process of social learning. This process will usually
result in more uniformity of belief, but at no point is this a requirement. All that is
asked is that each uses relevant information, both empirical and social, to form and
adjust belief.

7.3 Prospects for a pluralistic methodology

This thesis began by noting psychology’s uneasy status as a fragmented discipline,
and a proposed remedy in the form of methodological unification. It should be clear
by now that I do not endorse this solution. On the contrary, in the time I have spend
thinking about consensus, I have become more and more a partisan of a pluralistic
methodology.

An important argument for favouring such pluralism is based on the necessity of as-
sumptions. As Coombs (1964) observed: ‘we buy information with assumptions’(p.5).

1Speekenbrink, M. (to be submitted). Social validation for dichotomous decisions. A copy of this
paper can be obtained by contacting the author.
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There is no purely inductive, assumptionless science, no ‘free lunch’. In order to make
any inference, assumptions must be made which partly determine the outcome. Since
there are no universally optimal methods, a rational choice for a particular method
has to be based on a judgement regarding the nature of the phenomenon under in-
vestigation. As such, methods entail assumptions, which may or may not be directly
testable. A rough but useful classification of assumptions can be based on the extent
to which they are entrenched in a theory and the extent to which they are testable.
Auxiliary hypotheses were already mentioned in the discussion of the Duhem-Quine
thesis in Chapter 2. These are assumptions which are necessary to deduct predictions
from a theory, but which do not directly belong to the theory itself. The assumption
of a normal distribution was given as an example. A theory is not changed if the as-
sumption of a normal distribution is replaced with the assumption of an exponential
distribution, for example. If an assumption is auxiliary, one would like to generalise
the conclusion to situations in which the particular distributional assumption is not
made. One way of generalising inference over assumptions in the present example
is by applying distribution-free, or nonparametric statistical techniques. Of course,
such techniques are not devoid of assumptions, but the assumptions made are more
general. If a nonparametric technique leads to the same conclusion as its parametric
alternative, why not go for the more general option? I see no problem in testing
a hypothesis twice, by different techniques, in order to investigate how assumptions
pose limits on one’s conclusions. Is the normality assumption necessary for reaching
a particular conclusion, or not? And if pervasively so, should the assumption not be
part of the theory, rather than considered auxiliary? This is not the place to discuss
different types of assumptions and their role in scientific inference in more detail. The
general point is that, if particular methods entail assumptions which do not belong
the theory proper, one would like to generalise over assumptions. If particular meth-
ods entail assumptions, this is only possible by the application of multiple methods.
Hence, there is good reason to adopt a pluralism of methodologies.

Pluralism in methodology is tied to the idea of triangulation. This term stems
from navigation and refers to the fact that, in order to infer the precise position of
an object in three-dimensional space, on needs accurate measurements of at least two
other points in that space. In an analogue fashion, the thesis of methodological trian-
gulation states that, in order to make valid inferences regarding a phenomenon under
investigation, one needs to investigate the phenomenon with more than one method.
Triangulation is now quite a mainstream concept in methodology, although it is rarely
raised from the status of metaphor. An early exception is the Multitrait-Multimethod
(MTMM) approach of Campbell and Fiske (1959) for assessing the validity of psycho-
logical measures. This approach has since its proposal received much attention, but
its initial problems have not been solved (Fiske & Campbell, 1992). One problem to
be dealt with is that different methods may lead to different conclusions. The notion
of such ‘method variance’ was a main impetus for proposing the MTMM approach.
How should one respond if different methods lead to a divergence in conclusions?
There are a number of possible responses. One may conclude that one method leads
to better results – because they are more consistent with one’s expectations, for in-
stance – and neglect the results of the other. A better response would be to look for
the possible sources of the divergence. This exercise may result in more knowledge
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regarding the methods, their underlying assumptions, and the phenomenon under
study. If not neglected, anomalies are a major source of scientific progress.

7.4 Consensus, the last word?

When considering consensus as a goal of scientific inference, I have not yet mentioned
one crucial distinction. From my point of view, I can aspire for you to agree with me,
or I can aspire to agree with you. These are two quite different goals. If a consensus
goal is held at all, it is probably in this first sense. Can one found a methodology on
the first principle ‘agree with me’? I think not. Yet, such a principle may be quite
basic to science. Scientists are not agnostic when they start a research project. Most
have a firm belief in a theoretical position. As such, they need no empirical evidence
to persuade them of the correctness of their position. Empirical evidence may mainly
serve the purpose of persuading others. If consensus is a scientific goal in this respect,
I have no reason to argue against it, for it will only lead to more discussion and mutual
criticism.

Consensus is a strange animal. I have put forward the thesis that we should
not strive for scientific consensus. But in doing so, I hope that my arguments are
convincing enough to persuade you to agree. Yet, to remain truthful to my position,
I can only hope you have good reasons to disagree.
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Consensus en methodologie

Nederlandse samenvatting

Consensus is een centraal begrip in Westerse ideeën over de wetenschap. Vroeger
werd verondersteld dat consensus een direct gevolg is van de Wetenschappelijke Me-
thode, die unanieme instemming vereist onder diegenen die haar toepassen. Latere
wetenschapsfilosofische theorieën, zoals die van Kuhn (1970), kennen consensus een
meer fundamentele rol toe. In plaats van gevolg, is consensus hier een oorzaak in
het proces van wetenschappelijke inferentie. Een belangrijke reden om dit standpunt
in te nemen is het probleem van onderdeterminatie. Het is nu een algemeen geac-
cepteerd gegeven dat empirisch bewijs alleen niet voldoende is om de keuze tussen
wetenschappelijke theorieën te bepalen. In de klassieke vorm betreft onderdetermi-
natie de logische mogelijkheid dat er, voor een willekeurige theorie die consistent is
met empirisch bewijs, een alternatieve theorie bestaat die even consistent is met dat
bewijs. Als zodanig kan een specifieke keuze voor een theorie niet worden gerecht-
vaardigd. Sommige auteurs stellen dat onderdeterminatie geen praktisch probleem is;
wetenschappers houden er immers andere doelen op na dan empirische adequaatheid
alleen. Als antwoord op deze stelling wordt in hoofdstuk 2 een meer algemene versie
van onderdeterminatie gegeven, die axiologische onderdeterminatie wordt genoemd.
In het besliskundig raamwerk dat in dit hoofdstuk wordt gëıntroduceerd wordt we-
tenschappelijk handelen als doelgericht handelen opgevat. Wetenschappers streven
cognitieve doelen na, zoals descriptieve en predictieve adequaatheid, simpelheid, e.d.,
en de keuze tussen wetenschappelijke theorieën en methoden berust op de evalua-
tie van hun prestatie met betrekking tot deze doelen. In zulke beslisproblemen met
meerdere attributen treedt onderdeterminatie op wanneer verschillende theorieën of
methoden een identieke utiliteit hebben. Hoewel deze axiologische onderdeterminatie,
net als empirische onderdeterminatie, allereerst een probleem van logische existentie
betreft, wordt in hoofdstuk 3 aangetoond hoe deze vorm van onderdeterminatie ook
in praktische gevallen kan voorkomen.
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In hoofdstuk 3 wordt het probleem van statistische modelselectie geanalyseerd
aan de hand van een theorie over de structuur van wetenschappelijke discussies. Deze
theorie, de hiërarchische theorie van rechtvaardiging, stelt dat wetenschappelijke on-
enigheid op meerdere niveaus kan worden beëindigd. De theorie stelt dat onenigheid
over feitelijke zaken – opgevat in een ruime zin van stellingen, hypothesen, theorieën
en modellen aangaande fenomenen in de werkelijkheid – kan worden opgelost door
consensus te bereiken op methodologisch niveau. Onenigheid op methodologisch vlak
kan op haar beurt worden opgelost door consensus te bereiken op axiologisch niveau,
het niveau van wetenschappelijke doelen. De hiërarchische theorie sluit goed aan bij
het besliskundig raamwerk van hoofdstuk 2, maar hoewel de theorie een inzichtelijke
beschrijving geeft van aspecten van wetenschappelijke inferentie en discussie, blijkt
het geen adequate normatieve theorie. De scheiding tussen theorie en methode is
veelal niet zo sterk te trekken, aangezien de optimaliteit van een specifieke methode
afhangt van eigenschappen van het fenomeen dat ermee wordt bestudeerd. De keuze
voor een methode dient dan ook te berusten op theoretische ideeën of assumpties
betreffende het fenomeen en niet alleen op aangehouden axiologische doelen. Daar-
naast speelt onderdeterminatie de theorie parten. Ook al is consensus bereikt over de
juiste selectiemethode, meerdere tegenstrijdige modellen kunnen als even goed wor-
den beoordeeld op het criterium van deze methode. Als zodanig dient de stelling dat
theoretische consensus een direct gevolg van methodologische consensus te worden
verworpen. Dit hoofdstuk laat zien dat theorieën niet alleen worden ondergedetermi-
neerd door empirische data, en daarmee door methoden waarmee de consistentie van
een theorie met observaties wordt bepaald, maar dat methoden tevens ondergedeter-
mineerd zijn door axiologische doelen.

Sommigen, zoals Hesse (1980) en Kuhn (1970, 1977), stellen dat consensus geen
direct gevolg van de wetenschappelijke methode is, maar juist een basis vormt voor de
oplossing van wetenschappelijke beslisproblemen. Aangezien methodologische regels
geen voldoende grond geven om wetenschappelijke keuzen te rechtvaardigen, dienen
sociale factoren in acht te worden genomen om deze keuzen te verklaren. Een overeen-
komstig idee is verwoord in een belangrijke theorie uit de sociale psychologie. Volgens
Festinger’s (1950, 1954) sociale vergelijkingstheorie trachten mensen, indien de objec-
tieve werkelijkheid hiervoor ontoereikend is, hun ideeën en opinies te valideren door
ze met die van anderen te vergelijken. Vanuit deze theorie kan worden afgeleid dat,
indien hypothesen ondergedetermineerd zijn, unanimiteit tussen andere individuen
betreffende de juiste hypothese een sterke stimulans zal zijn om deze hypothese over
te nemen. Deze verwachting wordt getoetst in de twee experimenten die in hoofdstuk
4 worden besproken. In inductieve regel-ontdekkingstaken is het doel te achterhalen
welke logische regel ten grondslag ligt aan een sequentie van observaties. In zulke ta-
ken kan de mate waarin de regel ondergedetermineerd is worden gemanipuleerd door
middel van kleine verschillen in de aangeboden sequenties. In het eerste experiment is
de regel ondergedetermineerd of gedetermineerd, en is sprake van consensus tussen de
andere proefpersonen betreffende de correcte hypothese of juist onenigheid. De ver-
wachting dat proefpersonen zich conformeren aan een consensuele hypothese indien
de regel ondergedetermineerd is werd geconfirmeerd. Voor gedetermineerde regels
werd nauwelijks evidentie voor zulk conformisme gevonden, zodat kan worden gesteld
dat de hypothesen van anderen voornamelijk een informationele, en niet zozeer een
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normatieve, invloed hebben. In het tweede experiment waren de regels in alle gevallen
ondergedetermineerd, maar in verschillende mate. Er werd ondersteuning gevonden
voor de hypothese dat de neiging tot conformeren aan een consensuele hypothese ster-
ker is naarmate de onderdeterminatie van de regel sterker is. Onverwacht was echter
dat, voor in lichte mate ondergedetermineerde regels, meer mensen voor een specifieke
hypothese kozen wanneer deze geen unanieme instemming van de andere proefper-
sonen kreeg. Dit kan duiden op een mogelijk verzet tegen sociale bëınvloeding. In
ieder geval kan niet zonder meer worden aangenomen dat het vormen van consensus
een direct doel is in situaties waarin een objectief correct antwoord wordt geacht te
bestaan. De aanname van een enkele correcte oplossing leidt er toe dat de ideeën
van anderen tegelijkertijd waardevol en ontbeerlijk zijn. Ze zijn waardevol omdat een
ieders ideeën betrekking hebben op hetzelfde object of doel. Ze zijn ontbeerlijk omdat
de waarheid van een hypothese niet afhangt van het aantal mensen dat de hypothese
ondersteunt. In beide experimenten was het effect van de sociale informatie relatief
klein in vergelijking met het effect van de empirische informatie. In situaties van on-
derdeterminatie is empirisch bewijs onvoldoende om het aantal plausible hypothesen
te beperken tot één. In zulke situaties kan instemming van anderen met een hypothe-
se de plausibiliteit van deze hypothese versterken. Maar indien verwacht wordt dat
de onderdeterminatie tijdelijk is – een gevolg van de kwaliteit van de huidige data, en
niet van de kwaliteit van alle mogelijke data – dan zal de berusting op sociale factoren
ook van tijdelijke aard zijn. De uiteindelijke scheidsrechter is dan toch de empirie, en
niet consensus.

In hoofdstuk 5 wordt collectief gedrag in zogenaamde ‘nonmetric multiple cue pro-
bability learning’ (NMCPL) taken onderzocht. Dit zijn taken waarin, aan de hand van
observaties van nominale variabelen, een nominaal criterium moet worden voorspeld.
In het algemeen zijn er twee belangrijke redenen waarom groepen in zulke situaties
tot betere beslissingen kunnen komen dan individuen. De eerste is dat individuen
over (gedeeltelijk) verschillende informatie beschikken, zodat de groep als geheel een
beslissing op meer informatie kan baseren dan ieder individu alleen. De tweede re-
den is dat idiografische vertekeningen in het oordeels- of beslissingsproces een grotere
invloed op individuele dan op collectieve beslissingen kunnen uitoefenen. Het eerste
experiment was zo opgesteld dat de validiteit van deze twee assumpties afzonder-
lijk kon worden onderzocht. In een conditie beschikte ieder groepslid over unieke
informatie en in de andere conditie beschikte ieder groepslid over dezelfde informa-
tie. Zoals verwacht presteerden groepen in de eerste conditie beter dan in de tweede.
Als zodanig kan worden gesteld dat het effect van de rijkere informatie-basis op de
kwaliteit van groepsbeslissingen groter is dan het effect van het uitmiddelen van idio-
syncratische vertekeningen. In het tweede experiment was de informatie gedeeltelijk
uniek en gedeeltelijk gedeeld. In zulke situaties is veelal sprake van het zogenaamde
‘common knowledge’ effect, hetgeen betekent dat groepen zich voornamelijk richten
op gedeelde informatie en unieke informatie negeren. Een mogelijke verklaring voor
dit effect, consistent met de sociale vergelijkingstheorie, is dat het aantal personen
dat over bepaalde informatie beschikt wordt opgevat als indicatie van de validiteit
van die informatie. Hieruit kan worden afgeleid dat, indien andere indicaties van
de validiteit van informatie beschikbaar zijn, het ‘common knowledge’ effect niet zal
optreden. Deze hypothese werd ondersteund: de gedeelde informatie had een grote
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invloed op de collectieve beslissing indien deze een relatief hoge validiteit had, maar
niet indien de validiteit van de gedeelde informatie relatief laag was. Behalve de eva-
luatie van de prestatie van groepen in NMCPL taken richtte het onderzoek zich op
het groepsproces dat resulteert in collectieve beslissingen. Afgezien van groepen in
de conditie waarin informatie geheel gedeeld was, was het groepsproces een vorm van
‘wegen-door-zekerheid’, waar het gewicht van individuele beslissingen in de collectieve
beslissing een functie is van de subjectieve zekerheid dat de individuele beslissingen
correct zijn. Aangezien de subjective zekerheid gerelateerd was aan de eerdere pres-
tatie van de individuen bij de hen aangeboden informatie, lijkt onderliggend aan dit
groepsproces een vorm van ‘wegen-naar-prestatie’ te liggen. Voor dit laatste proces
werd ondersteuning gevonden, alhoewel het bewijs minder sterk was dan voor het
wegen-naar-zekerheid proces.

De rol van consensus in een normatieve methodologie wordt kritisch beschouwd
in hoofdstuk 6. Drie mogelijke rollen worden onderscheiden: consensus als doel, als
middel en als criterium. Er wordt beargumenteerd dat consensus geen van deze rollen
vervult. Als doel betreft consensus niet elke consensus. Het is noodzakelijk rationale
consensus van andere vormen van consensus te onderscheiden, maar dit onderscheid
is problematisch. De voorgestelde oplossing vereist dat naast consensus tenminste een
ander doel wordt nagestreefd. Er wordt gesteld dat indien consensus een wetenschap-
pelijk doel is, het alleen wordt nagestreefd indien andere doelen zijn bereikt. Zo is
consensus ten hoogste een ondergeschikt doel. Wordt consensus als middel opgevat,
dan is enige voorzichtigheid geboden. Is consensus een middel, dan dient het iets te
bewerkstelligen. Beschouwt men consensus bijvoorbeeld als middel voor het bereiken
van ware opinies, dan mogen de opinies van diegenen die het middel toepassen geen
onderdeel van de consensus zijn. Indien de persoon al met de consensus instemt, is er
immers geen effect van consensus. Indien de persoon niet met de consensus instemt,
was er eigenlijk geen sprake van consensus. Consensus kan zo bezien alleen middel
zijn voor iemand zonder noemenswaardige opinie aangaande het onderwerp van con-
sensus. In de psychologische literatuur worden verschillende effecten van consensus
genoemd. Uit onderzoek blijkt dat een norm van kritische discussie over het alge-
meen beter is dan een norm van consensus. Daarmee is de consensus-imperatief een
minder goed middel dan andere imperatieven, zoals rationele dissensus en kritische
discussie. Wordt consensus als criterium gehanteerd, dan zijn er in ieder geval twee
mogelijkheden: consensus kan als waarheidsdefinitie worden gebruikt, of als indicatie
van een op andere wijze gedefinieerde waarheid. De consensustheorie van de waarheid
kent ernstige bezwaren. Wordt consensus als epistemisch criterium van een op andere
wijze gedefinieerde waarheid gebruikt dan speelt het probleem dat, om de mogelijke
validiteit van het criterium te behouden, het niet daadwerkelijk gebruikt mag worden.
Consensus als criterium is in bepaalde zin zelf-refererend. Consensus kan informatief
zijn indien het overeenstemming tussen onafhankelijk opererende individuen betreft.
Als zodanig is de instemming van iemand met een heersende consensus redundant.
Toepassing van het consensus-criterium, wanneer dit leidt tot de aanpassing van ie-
mands opinie, leidt tot dit soort redundantie. De consensus bestaat slechts gedeeltelijk
uit de overeenstemming tussen onafhankelijke individuen. Het surplus van de over-
eenstemming is dan geen indicatie voor de validiteit van de consensus-positie. Het
consensus-criterium is zo inconsequentieel – niemand laat zich bij het vormen van
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een opinie leiden door het criterium – of invalide. Consensus heeft geen rol in een
normatieve methodologie. Niet als doel, niet als middel, en niet als criterium.


