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Supersymmetric conical defects: Towards a string theoretic description of black hole formation
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Conical defects, or point particles, in Ag&re one of the simplest nontrivial gravitating systems, and are
particularly interesting because black holes can form from their collision. We embed the BPS conical defects
of three dimensions into th&/=4b supergravity in six dimensions, which arises from the 1IB string theory
compactified on K3. The required Kaluza-Klein reduction of the six dimensional theory on a sphere is analyzed
in detail, including the relation to the Chern-Simons supergravities in three dimensions. We show that the six
dimensional spaces obtained by embedding the 3D conical defects arise in the near-horizon limit of rotating
black strings. Various properties of these solutions are analyzed and we propose a representation of our defects
in the CFT dual to asymptotically AgX S® spaces. Our work is intended as a first step towards analyzing
colliding defects that form black holes.
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[. INTRODUCTION serving supersymmetry is important because the controlled

Twenty-five years after Hawking showed that black holesquantization of black holes and solitons in string theory usu-
emit thermal radiatiofil], the apparent loss of quantum me- ally requires supersymmetry. The presence of the negative
chanical unitarity in the presence of a black hole remains agosmological constant in three dimensions suggests that
outstanding problem for theoretical physics. We expect thathere should be a dual description of such spaces in terms of
this “information puzzle,” which represents a fundamental a two-dimensional conformal field theof§]. Our goal is to
tension between general relativity and quantum mechanicsind such a dual picture and describe in it the process of
should either be erased or explained in a quantum theory aflack hole formation from collision of conical defects.[6]
gravity. In recent years string theory has explained microjt was shown that the 3D conical defects and their collisions
scopically the huge degeneracy required to account for thgan pe detected in correlation functions of the dual CFT.
entropy of certain extremal black holes. However, there hagjere we are interested in the direct description of the defects
been no insight into why this degeneracy of states is relatedq objects in the dudl.

]EO s(,jomethinﬁ ge?hmet_ricf sucht_as the arlea of & horizon. Mt(l)re Type |IB supergravity compactified on K3 yields the chi-
undamentaily, - the information puzzie remains exactly o x—ap supergravity in six dimensions, coupled to 21

tha_lt_ﬁs p;zaei.s the first in a series investioating the blacktensor multiplets. This theory has classical solutions with the
pap gating eometry of Ad§x S, In Sec. Il we will construct super-

hole information puzzle in the context of string theory. In 9 . . L
general relativity, the simplest context for black hole forma-Symmetric solutions where the sphere is fibered over,AdS

tion is gravity in three dimensions where there are no locaf© that @ minimum length circuit around the Adsase leads
dynamics. In the presence of a negative cosmological corf® @ rotation of the sphere around an axis. Since ASS
stant, 3D gravity possesses black hole soluti@jsThere is  SIMPly connected, the fiber must break down at a point.
also a family of conical defects, the so-called point particled?POn dimensional reduction to the base this produces super-

[3]. These solutions interpolate between the vacuum solutiofYMMetric conical defects in three dimensions. In fact, the
(AdS; with massM=—1 in conventional unitsand the identical objects have been obtained previously as solutions

black hole spectrum which startsht=0. Exact solutions of (0 €xtended Z 1 supergravity in the Chern-Simons formu-
3D gravity are known in which the collision of conical de- ation [8,9]. The U(1) Wilson lines used in these construc-
fects forms a black holé4]. We would like to use these toOns to obtain a Bogomol'nyi-Prasad-Sommerfi¢BPS
simple classical processes to study the formation of highefolution arise in our case from the Kaluza-Klein gauge field
dimensional black holes in string theory. To this end, Weassouated with the fibration. Our Kaluza-Klein ansatz for

must first embed the conical defects supersymmetrically in 5£dUcing the action and equations of motion of 6D gravity to
higher dimensional gravity arising from string theory. Pre-the 3D base does not yield precisely a Chern-Simons theory.
Nevertheless, the dimensionally reduced system admits solu-

tions with vanishing field strength, for which the analysis of
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*Electronic address: keskivak@rock.helsinki.fi 1t would also be interesting to make contact with the investiga-
$Electronic address: S.F.Ross@durham.ac.uk tions of spherical shells ifi7].
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supersymmetry remains unchanged—the holonomy of Kill- 1 2

ing spinors under the spin connection is canceled by the S= 167G f d3x\/—_g R+|—z

holonomy under the gauge connection. Various details of 3/ M

sphere compactifications of 60/=4b supergravity are re- 1 1

viewed in the main text and the Appendixes. 876, ﬁM\/—_h 0+ 1/ (1)

It is well known that a horospheric patch of the AdS

X S° geometry can be obtained as a near-horizon limit of th‘?/vherea is the trace of the extrinsic curvature of the bound-

black string soliton of 6D supergravifyl2]. Compactifying — : )
the extremal string solution on a circle yields the black holes[a.lry' The boundary ter ho renders the equations of mo

, : . . fon well-defined, leading to the solutions
of five dimensional string theory whose states were counte
in the classic papef13].> The near-horizon limit of these r2
solutions yields the BTZ black holes times &2]. In Sec. ds?=— (l—z— M,
Il we show that the fibered Ssolutions described above
arise as the near-horizon geometries of an extremal limit 0\‘7vhere¢~¢+27r. Ms=—1 is the vacuum, global anti—de
spinni.ng 6-dimensional strings compactifigd on a circle. IN-Sitter space (Adg. The boundary term/—h/l renders the
terestingly, Whef? the angular momentu_m IS sun(_:\bly Chose_rhction finite for any solution that approaches the vacuum
global AdS; X S* is recovered as a solution. We discuss Varlgyfficiently rapidly at infinity[16]. The mass of these solu-

ous properties of the solution, including the nature of thetions can then be computed followind6,17 to be M
conical singularity and potential Gregory-Laflamme inSta'=M3/863. The M5;=0 solutions are the né)n—rotating BTZ

bilities in the approach to extremality. lack holesi21 while th . in th 1<M
The near-horizon limit of the six dimensional black string l;%c areoceoeriga\;vdle?et;tga]sp?ge(;:gjzylr':hte ed(ra?gge |e,y2§3

is also a decoupling limit for the worldvolume conformal i -~ N -
field theory (CFT) description of the soliton. Following the —Ms and rescale the coordinates=ty, r=r/y, and ¢

2

r -1
dt2+(|_2_M3

dr?+r2d¢?, (2)

reasoning ofl5] we conclude that the BPS conical defects = 97- Then

described above should enjoy a non-perturbative dual de- ~y A\ —1

scription in the worldvolume CFT of the black string—i.e., a d2= — | 14— |dgizs | 14— di2472d32,  (3)
deformation of the orbifold sigma modeK@)V/SN [15]. 12 12 ’

When reduced to the AdS base, the fibered geometries ap-

pearing in our solutions carry a(ll) charge measured by the where ¢~ ¢+ 27y, manifestly exhibiting a deficit angle of
Wilson line holonomy. Within the AdS-CFT duality, this

spacetime (1) charge translates into d&charge of the dual Sp=2m(1—1y). (4)
system. In Sec. IV, we propose that the conical defects are

described in the dual as an ensemble of the chiral primariek these coordinates the mass measured with respect to trans-
carrying the sameR charge. In subsequent papers we will Jations int is M = — \—M/8Gs.

test this proposal and then use it to analyze the spacetime We are looking for an embedding of these solutions in the

scattering of conical defects. N=4b chiral supergravity in six dimensio8], coupled to
tensor multiplets. The theory has self-dual tensor fields, so it
Il. CONICAL DEFECTS FROM KALUZA-KLEIN has ;plutions where three directigns are spontaneously com-
REDUCTION pactified on $; the vacuum for this sector is AgSand the

spectrum of fluctuations around this vacuum solution has
In this section, we obtain the supersymmetric conical debeen computefl19—-21. We seek a supersymmetric solution
fects in 3D via Kaluza-Klein reduction of the six- where AdS is replaced by a conical defect.
dimensionalA’=4b supergravity. Defects in three dimen-  In extended three dimensional supergravity, the conical
sions that involve just the metric and gauge fields with adefects can be made supersymmefi8t These BPS defects
Chern-Simons action have been obtained previol&lyWe  achieve supersymmetry by canceling the holonomy of
will construct a Kaluza-Klein ansatz for six dimensional spinors under the spin connection by the holonomy under a
gravity which reproduces these defects upon dimensional réA/ilson line of a flat gauge field appended to the solution.
duction. Thus, we will consider a Kaluza-Klein ansatz which involves
We begin by reviewing the structure of the 3D conical non-trivial Kaluza-Klein gauge fielddeading to a fibere®®
defects. The action with a negative cosmological constant it the 6D geometryand the three dimensional metric, since
these were the only fields present in the extended three-
dimensional supergravities.
2Sphere compactifications have been extensively studied in the Famously, three—dlmen_S|onaI graVI_ty can be written as a
literature. Se¢10] for a review, and the recent wofi1] for refer-  SUM two SL(2R) Chern-Simons theories. The sphere reduc-
ences. tion of six-dimensional V'=4b gravity has symmetries ap-
3The AdS, and Baados-Teitelboim-ZanelliBTZ) geometries can  Propriate to the SU(1|2)xSU(1,]2) Chern-Simons su-
also be related to the near-horizon limit of extremal four dimen-pergravity (see[22,23,21,24,25and references thergin
sional black hole$14], by constructing the black holes as the near We will show that the three-dimensional equations of motion
horizon limit of intersecting 5-branes in M theory. obtained from our Kaluza-Klein ansatz contain thesonig
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solutions of this theory. However, the six-dimensional action oxM=¢'K", (7)
does not reduce to Chern-Simons in three dimensions. In
fact, the equations of motion obtained from our ansatz are SXM=0, (8)
not obtainable from a three-dimensional action; we would
have to include some non-trivial scalars in our general ansatz 5A|u: aﬂg i fJKIA-/]LGK' (9)

to obtain a consistent truncation to a three-dimensional ac-

tion. _That IS, wh|le_ our ansgtz shows that we can construcyere fJKI are the SO(4) structure constants, expressed in
solutions of the six-dimensional theory using all the solu-tarms of the Killing vectors as

tions of the SU(1,12) < SU(1,1 2) supergravity, asking that

the ansatz solve the six-dimensional equations does not in f1 KR =K K= Kg,KM. (10)
general give the equations of motion of a three-dimensional
theory. The SO(4) gauge invariance of E¢p) follows from the

The minimal N=4b theory contains a gravitoe{,*i,I , four  transformations ofj,,, and Dx™:
left-handed gravitiniyy,,, and five antisymmetric tensor

fields By, - The latter transform under the vector represen- SDx"M=€'9,K"Dx", (11
tation of Spirf5). We adopt a notation where curved space-

time indices areM ,N=0, . .. ,5 for thefull six-dimensional 89mn=€'K| 9 Gmn

geometry;u,v=0, ...,2 in the AdSasem,n=1,...,3 0n | ; | ;

the sphere. The flat tangent space indices aheB =—0me ImK| —gmre dnK . (12)
=0,...,5, which parametrize six-dimensiondSO(1,5)| o

tangent vectorsi,3=0, ...,2, which index Ad$ [SO Ob;ervg thaDx™ transforms under a local gauge transfor-
(1,2)] tangent vector indicesa,b=1, ...,3,indexing § Mation in the same way adx™ under a global gauge
[SO(3)] tangent vectors. The Kaluza-Klein gauge Symmetrytransformatlon—D is like a covariant exterior derlvat|ve._
arising from the isometries of’ds SO(4)=SU(2)xSU(2). ~_ The 3-form.We must have a non-zero 3-form to satisfy
In our conventions),J=1,...,6index SO(4), whilei,j the equgnons of mot|on._ We will consider tur_nlng on just one
=1,...,3index SU(2), as doi’,j’. For Spif5), i,] of the flve 'Fhree-form fleldé-|"MNP. We require an SO(4)
=1,...,5 labels the vector representation, whiles  9auge invariant ansatz for this 3-form field. Let

=1, ... ,4labels the spinors.

We will not discuss the field content of the tensor multi- VXT) €mndX"AdXYADX, W(Xﬂ)ewpdxw\dxy/\d)f?a)
plets to which the minimalV'=4b theory is coupled in de- (

tail. The only piece of information that we need in the re-pq yha yolume forms on3&and on the non-compact factor in
mainder is that tensor multiplets contain two-form fields with Eq. (5) respectively. In terms of these forms, the six-
anti-self-dual three-form field strengths. dimensional equations of motion have an AsS® solution

of the form(5) with vanishing Kaluza-Klein gauge fields and

A. Kaluza-Klein reduction reexamined a 3-form background

Considerable work has been carried out on the topic of 1
sphere compactificationsee the revie10] and the recent H= T[W(X“ ) €ppdX“/ANDX /N dXP
works [11] for further references The discussion below
should serve as a review in a simplified setting. +V(X™ €mndX"AdX"ANdX ], (14)

The metric A general compactification of six-dimensional
gravity on a three dimensional compact space takes the formherel is the radius of the % This cannot be quite right
when the gauge fields are turned on, because it is not gauge

ds’=g,,,dx“dx"+gm,DXx"DX", (5  invariant. A candidate gauge invariant generalization is
1
Dx™=dx"— A} Kdx". (6) H= T IW(x¥)€,,,,dx*/\dx"/\dx?
+V(x™ € DXTADX"ADX"]. (15

The Kaluza-Klein gauge fieIdA'M are associated with the

Killing vectors K[" of the compact spacéNote that the in- Since the & volume form is SO(4) invariant,

dicesl| can be raised and lowered by the meisjg.) In(K"V(x™)=0, (15) is gauge invariant. However, we
We chooseg,,, to be the round metric 08°. Thus, we do  should find a proposal for the 2-form potenti,y, rather

not include any scalars in our ansatz; as stated earlier, this than the field strengtiid, which is only possible idH=0.

motivated by the absence of scalar fields in the 3D ChernThe exterior derivative of Eq15) is computed using

Simons supergravities with which we seek to make contact.

Then there are six Killing vectors arising from the SO(4) dem=—F'Klm—A'ManK{“Dx”/\dxf‘, (16)
isometry group, and it is manifest that the metric is invariant
under SO(4) gauge transformations: whereF'= %F'de”/\de. We obtain
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3 e ) ) sphere explicitly by picking a basis of Killing vectors such
dH=— 1 VennK{"F/ADX"ADX, 17 that the left €, i=1,2,3 and right €' , i' = 1,2,3 SU(2)
field strengths are
using the SO(4) invariance of the’ Solume form and the

fact that one cannot anti-symmetrize over more than three Fla,BzF:_aﬁ 1=1,2,3 (21
indices.
When the gauge field is flatvhich is typically our inter- =Fhas 1=456. (22

esh) dH=0, as desired. Nevertheless, it is worth seeking a . . _ ) )
more generally valid ansatz. We wish to add a contribution to>Uch @ basis is explicitly constructed in Appendix B. In sim-
H that cancels the term on the right hand side of @&). To plifying the equations of motion, the following identities are
find this, it is helpful to consider the 2-formw, useful. First, one can show that

=VemnK["dX"/Adx" which appears as part of E(L7). In 1 |2

terms of(), the volume form on & this 2-form can also be "G mnK '+ |—2N|mgm”NJn=§5|J . (23
written aS|KIQ. It is a standard fact thadi|KIQ+|K|dQ

=Ly 2. Since the volume form is SO(4) invariant, and an-Second, there is a simple map from SO(4) to itself, that acts

nihilated byd, it follows that » is closed. Therefore, since as+1 on SU(2) and as—1 on SU(2), which we will

we are on the three sphere there must be globally well dedenote byA; . In other words, it sends[" to AJKT'. Then we

fined one-formN,, dx" such thad(N,,dx") = w. Assembling have

these facts, a candidate Kaluza-Klein ansatz for a closed 1

3-form is gmnKFZI—AfNJm. (24)

3
Heg=H+ l—F'/\N,er’. (18 Then, if we take the metrig,,, and the Kaluza-Klein gauge

fieIdsA'M to only depend on the coordinates of the three-

The 1-formsN,, dx" for S® are related to the Killing one- dimensional non-compact space, the ansatz will satisfy all

forms and are derived explicitly in Appendix B. The choice the equations of motion of the six-dimensional theory if the

of N, given there satisfy the relation metric and gauge field satisfy the following three-
dimensional equations :

KT 9mNjr + Ny d K= £ 5Ny, . (19
2 1
| J y_—
Using this relation it can be checked thag is still gauge Rapt |‘25a3_§5IJFa7F s’=0, (29
invariant, and that
D*FL +FL 4+ g(D*FR—-F®R)g-1=0, 26
d(F'N;,DX")=VennK"F' ADX"A\DX". (20) o )9 (29
tr(F5)9dmg ™~ Htr(FPPg~1g,9)=0 (27)

Combining this with Eq.(17) shows thatHyk is a closed

form, as desired. Thus, we have a consistent SO(4) invariant tr(FO - gFRg-1)2=0. (28)

ansatz for Kaluza-Klein reduction of six dimensional gravity

on a sphere, with gauge field vacuum expectation valueblere, we used a group elemayt SU(2) to parametrize the

(VEVs). S3, and SU(2)  correspond to the left and right actions on
Notice that the three-forrhl i is not self-dual. Therefore, the three-sphere. The last equation of moti@8) has its

this ansatz cannot be given for the minirdel=4b theory,  origin in the dilaton equation of motion. It is clear that the

but we need at least one tensor multiplet as well. The selfequations of motion are gauge invariant, and that any solu-

dual part ofH then lives in the gravity multiplet, the anti- tion to three dimensional cosmological gravity with flat

self-dual part lives in the tensor multiplet. Together, one selfgauge fields solves these equations. These are the solutions

dual and one anti-self-dual tensor combine into anof the bosonic part of the SU(1,2)xSU(1,12) Chern-

unconstrained two-form field. We can think of such a two-Simons supergravity, and include the conical defects:

form field as originating in either the Neveu-Schwahks)

or Ramond-Ramon(RR) two-form in type 1B string theory _ r2 B 5 r? _ -t 2 24,2
in ten dimensions. In particular, for the equations of motion ds*= 12 Mg |dt™+ 1?2 Ma| dri+ride”,
we can use the equations of motion of string theory, rather (29
than the more complicated ones &= 4b supergravity.
Equations of motionUsing the results collected ifl0] Fl =0; |:iR’=o_ (30)

and the above remarks, it is now a straightforward, if

lengthy, exercise to compute the six-dimensional equationslowever, although Eq$25)—(28) allow F()=F(R =0 they

of motion for our Kaluza-Klein ansatz. As [i0], it is easier do not obviouslyimply this. If they did, we would have

to work out the equations of motion using the vielbein for-found a consistent truncation of the six-dimensional theory
malism. It is convenient to display the SO&PU(2) to three-dimensional Chern-Simons theory. Notice that the
X SU(2) gauge symmetry inherited from isometries of thefirst two equations of motioi25) and(26) can naturally be
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obtained from a three-dimensional theory consisting of thehe metric andH« provide solutions to the 6D equations of
Einstein-Hilbert term, a Yang-Mills term and a Chern- motion. The effective 3-dimensional equations are solved by
Simons term. The other two equatio(®7) and (28) do not  any solution to three dimensional cosmological gravity with
have such a clear interpretation. It has been showfilh a flat gauge field. This spectrum of solutions includes the
that consistent Kaluza-Klein reductions with general SO(4)supersymmetric conical defects we are interested in. Below
gauge fields can be achieved by also turning on scalar fieldd€ Will show how the gauge fields are chosen to make the

that parametrize the shape of the compact manifold. solutions supersymmetric.
Thus, although th&U(1,12)x SU(1,12) Chern-Simons
supergravity in 3 dimensions has the symmetries of the six- B. Supersymmetry

dimensional theory reduced on a sphere, our ansatz does nOtHaving found an appropriate Kaluza-Klein ansatz, we in-
produce this theory. The Chemn-Simons formulation of AdS yegtigate the supersymmetry of the solutions incorporating
supergravity has been an important tool in investigations of g ica| defects. By examining the Killing spinor equations,
the AdS-CFT correspondendeee, €.9.[21,9,23 amongst it 5 flat KK gauge field, we recognize the effective 3D
many other referencesWhile many of these works relied ¢4, ations as the Killing spinor equations of 8&J(1,1/2)
p.r|mar|ly on symmetries, it remains desllrable to expla!n pre'xSU(l,]JZ) Chern-Simons supergravity. This allows Us to
cisely how and whether the six-dimension&fi=4b gravity ;50 the work of8,9] to choose a Wilson line for which the

reduces to the t_hree-dimensionSIU(l,:IJ2)><SL_J(l,]JZ)_ 3D conical defects lift to supersymmetric solutions of the
theory. Once we include scalars, we can obtain consistent, jimensional theory.

truncations to a three-dimensional action. Although these

theori_es have more than just a Chern-Simons term, at low 1. 6D Killing spinor equations
energies they can be approximated by a Chern-Simons
theory—theF? terms in the action can be ignored at low :
energy. A more precise argument is giver{26], where is it tries. Half_ of them are broken py the rgdupnon on K3, so we
shown that wave functions in the Yang-Mills Chern-Simons@'€ |€ft with 16 supersymmetries in six dimensions. The re-
theory can be decomposed in a natural way in a Yang-Mill$Ulting theory is the K-4b supergravity in six dimensions.

piece and a Chern-Simons piece. As long as we consider flat gauge fields, the three-form is

We should also comment on the relation between ouf€lf-dual, and we can ignore the tensor multiplets=4%
Kaluza-Klein ansatz and the results in Sec. 718, where supergravity is a chiral theory, with four chiral, symplectic-

a Chern-Simons like structure is found for the field equationd/l@jorana superchargebeled byr =1, . . . 4),each having

for a certain set of gauge fields. The computatio[1§]  four real components. Following Romafig], the \'=4b

differs from ours in several ways. First of all, the gauge@/debra can be viewed as an extension oNan2 algebra.

fields appearing in the three form and the metric of their' "€ N=2 algebra is generated by a doublet of chiral spino-

Kaluza-Klein ansatz are different. Thus, the dimensionally”aI charges, and it has an USp2pU(2) R-symmetry. The

reduced theory has two different “gauge fields,” but only charges are doublets under the SU(2). Tie 4b algebra

one gauge invariance. Secondly, they only consider the selfi@n be viewed as an extensionM#2 to N=4, where one

dual three-form, whereas our KK ansatz contains both a self@kes two copies of thél=2 charges of the same chirality.

dual and an anti-self-dual three-forms. In particular, Eq.The resulting algebra has an USp{$pin(5) R-symmetry,

(152 in [19] depends explicitly on the gauge fields, and is aand the four supersymmetry parameteydransform in the

consequence of the self-duality equation for the three-formfundamental representation of Sgh). ,

In our case we do not impose such a self-duality relation, and Spin(5) is represented by the<#4 Gamma matrices":

as a consequence, we do not find a field equation of the form K ol “l

(152). The field equatiori27) is not obtained ih19], because {r<ri=69 kl=1,....,5 (31)

they only consider the linearized system. 5 . :
The results of 19] were extended if27] where not only I'” has two +.1 e|g_envalu_es, and tW&l eigenvalues.

quadratic but also cubic couplings in the six-dimensional1€NCe. by taking suitable linear combinations of the super-

theory were considered. It was found that, to that order, ther&/MMetry parameterg , we can organize things so that

exists a gauge field whose field equation becomes the Chern-

Simons field equation and that massive fields can be consis- (T5),ce=

tently put to zero. The gauge field in question is a linear —¢ for r=24.

combination of the gauge fields appearing in the metric and

in a self-dual two-form. If we were to insist that our three- The 6D Killing spinor equation is

form is self-dual, we would also find the Chern-Simons field

equation, and in this sense the results agree with each other. Due — EHk INPTK) =0 (33)
Summary.We have found an SO(4) invariant Kaluza- MEr 47 MNP rs=s

Klein ansatz for the $compactification of six dimensional

supergravity, involving just the KK gauge fields and no sca-In our solutions only one of the five three form fields is

lars. Upon dimensional reduction, however, we do not findurned on, and by U-duality, we can choolkp~ 6.

equations of motion that could arise from a three dimenWhen the field strengths' vanish, the gauge invariant defi-

sional effective action. In any case,Rf=0, our ansatz for nition of H in Eq. (18) reduces to Eq(15). For theM=pu

First, the 10D type IIB supergravity has 32 supersymme-

+e for r=13
(32)
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components of the Killing spinor equation, the relevant com- 1.8 1.8
ponents of the three form field are thus Diner=| dmt z0m Tas| & =70m T ager
HS . o=1"Ye,5,; Hop=| teape: i
aBy aBy abc abc :Zfabcwﬁ,bl@ ’}/C®1€r . (41)
5 — |
H}ap=—1""KI"A € €anc. (34)

The three-form contribution is
I'> can be dropped from the Killing spinor equation with the

help of Eq.(32). For the purposes of Kaluza-Klein reductjon, :EHS NP Ile e
we also decompose the SO(1,5) gamma matritess di- 4 "mN 4 'mn
rect products of SO(3) and SO(1,2) matriced andy*) as _
: [
follows: = T—ae%eabceb‘:dlig o4®1
lN=¢leley®; I'P=d’®y*®1, (35 i
=F—ell®o,®1l. (42
Y=—ioy y'=01; =0y 2 e
Y=0? a=1273 (36) Thus, the internal Killing spinor equation is
[ 2
Thlen,_ fé(i)brC exanIe, we gf “¥=101®e*#?y,; and I'2P 4_1( eabcw%CITema)(1® c?®1)e,=0. (43
=1®1e Y1,

Note that the 6D gamma matrices are 8x8, but the chir
spinors in 6D have 4 components. Chiral spind#s”) sat-

isfy

aLLlow, Omn IS by assumption the metric of a round three-
sphere. We can show by explicit calculation, using the bases
for S* in Appendix B, that

\p(i):E(1+F7)\p (37) 2
2\ t= eabcwbczl—ea (44)

where I'"=TT!...T5=¢,0101. We let the N=4b

h the base,=(2/1)L,, and
spinors be of positive chirality® (")). Then, in the Killing when we use the basg,=(21)La, an

spinor equation33), all the supersymmetry parametess 2
are of the form €3PCup = — e (45)
. :(8r> (38) when we use the basis,= —(2/1)R,. Thus, the internal
r 1 T . . P . g . .
0 Killing spinor equation can be trivially satisfied. This is as

we might have expected; since our Kaluza-Klein ansatz
where g, is a doublet of two-component spinors. We canleaves the form of the metrig,,, fixed, the internal Killing
additionally impose a symplectic Majorana condition onspinor equation is always the same, and we know it is satis-
these spinor$18]. It then follows, as is shown in detail in fied in the Ad$Xx S® vacuum.
Appendix A, thate, can be written as an SU(2) doublet of  Consider now theM = component of the 6D Killing

complex conjugate two-component spinors: spinor equation:
(2) 1 1
€ — 5 NPl _ — @
STZ(SEZ)*>' (39 (DM+ZHMNPF )Er—(DM—i—Ee#a(l@l@’y )
p
[
Consider first theVl =m internal component of the Killing iﬁA'ﬂK{"(le@am@ 1) |e=0.
spinor equation:
(46)
1
(DmIZHf’nNPFNP) €,=0. (40)  As before, the upper signs and lower signs correspond to
=1,3 andr =2,4 respectively. The gauge covariant deriva-

The upper signs and lower signs-(and +) correspond to tive is [18]

r=1,3 andr=2,4 respectively. This split will relate to the 1.

SU(2), and SU(2)g sectors. We assume that the Killing D,&=d,6+ ZwﬁBFABe (47)
spinor is in a zero mode on the sphere, in accord with our

Kaluza-Klein approach. That is, is independent of the ~ AB s | ab

sphere coordinates, so that w, Tag= @, T op=A, VK pl®. (48
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Using the definition of the gamma matrices, the last term of

Eq. (48) becomes

ALV Kipl'2P=A'V K pi €210 0@ 1), (49

1
VaKip= I_zfachlca (50)

PHYSICAL REVIEW &4 064011

2. SU(1,12)XSU(1,12) supergravity

We now compare the three-dimensional spinor equations
(54), (65 to the Killing spinor equations for the three-
dimensionalSU(1,12)x SU(1,12) supergravity. The latter
is described by the actigr24,25

1

_ 3
16mG) 4%

S

2 _
eR+ |—2e+ 1e""Pi, Dy

where we have used the relation between the Lorentz cova-

riant derivative ofK and the components of a one-forh

(see Appendix B Folding these facts into the last term in

Eq. (47) yields the Killing spinor equatio46) as

! ap 3 i I 1 c— e
&M1®1+16aﬁ5w” 1®y +EAM —I—N|+K| o.®1

1 o
57€ue1®y" |8, =0,

i2| (51

where we used E38) for the chiral spinors. Now, accord-

ing to Appendix B, the combinatioris *N.+K! are projec-
tors to the left and righ8U(2) sectors,

g 1N'+K' l6, for 1=1,2,3 i
c17e |0 for =456, (52
| 1 | 0 for 1=1,2,3

Re= = N Ke= 15,72 for 1=4,5,6. ®3

Then, the two Killing spinor equations labeled by 1,3 (r
=2,4) give the SU(2) [SU(2)g] sector equations:

1
(ﬁM1®1+ Zeaﬁaw;ﬂm Yo+ 2A;ac®1
1 o
—Eelml®y e=0 (54)
forr=1,3 and
1 af ) i rC
3,101+ 2 €aBs?y 1oy +§A 20c®1
1 e
+ﬂeﬂal®y g, =0 (55

for r=2,4. Because of the doublet struct®®), each spinor

+i SMVpE,:LrD;‘M;r

2
—lgrre Tr( Aud A, 3 AAA,

: (56)

2
+1ghre Tr( ALd AL+ §A;LA’VA,’J)

whereej is the dreibeinA, and A,; are thesSU(2), and
SU(2)g gauge fields

A :Aaiaa

io
' _para a
w g AM_A !

" (57)
and ¢, (‘ﬂ;,u) with r=1,2 are theSU(2), [SU(2)g] dou-
blet two-component spinors of Appendix A. The covariant
derivatives are

1 o8 1 N
DM=(?M+ Zw’uaﬁy +A#— Eeﬂa’y (58)

! 1 af ! 1 a

'D’u=(9ﬂ+ Zwlwﬁ'y +A’u+ gewy .
(59)

Recall that y*#=(1/2)[ y,,vz]=&e*°ys. Recall that in
three spacetime dimensions there are two inequivalent two-
dimensional irreducible representations for thenatrices fy
and— v) (se€[22,28). The two sectors in the actiqb6) are
related to the two inequivalent representations. Therefore,
the two covariant derivative® differ by a minus sign in the
y-matrices.

The supersymmetry transformation of the spinors gives
the Killing spinor equations

Y, =D,e=0; ¢, =D, =0. (60)

One can readily see that the equatidf6) are identical to
Egs.(54), (55). The solution of these equations for the point
particle spacetimes was already considered in the context of
theSU(1,2§2)x SU(1,12) supergravity iff9]. However[9]

e, has four real degrees of freedom. Since we have twhresents a rather brief discussion of the actual embedding of

equations in the SU(2)sector and two in the SU(R)sector,

the solutions of8], leaving out many issues that are relevant

in total we have 88=16 supersymmetry parameters, in to us. We therefore give a complete discussion of the solution
agreement with the 16 supersymmetries of the 6D theon2f EAS: (54), (55), using the results ofg], in the next two

From the three dimensional point of view of the AdSase
of our fibered compactification, this is thé=(4,4) super-

symmetry, sincé\ counts the number of supercharges, which
in 3D are real two-component spinors. Below, we will use

subsections.

3. Conical defects as BPS solutions in (2,0) supergravity

We have reduced the problem of finding the Killing

the results 0f8,9] to choose a Kaluza-Klein Wilson line for spinors in 6D supergravity to solving Eq&4), (55) in 2+1

our 6D solutions that makes them supersymmetric.

dimensions. Then the task has been made much easier, since
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a related problem has already been solveddh We only e=eNP2HNAry \[f1y—k, - v]
need a minor generalization of the solutions[8f to con-
struct solutions for our equations. In this and the following
section we will show in detail how to do the embedding. In
particular, we are interested in keeping track of the number
of supersymmetries that are preserved as the conical deficit b
parameter increases from 0O to its extreme value. 102y
Extended Ad$§ supergravity theories were first con-
structed based on th©sp(p|2R)®@0SHq|2,R) super- Wherek. are arbitrary constants,
groups[22], and are referred to ap(q) supergravities. The
number of supercharges ié=p+q, and each of them is a

1
1= (iyy + 5= 7271)}

1
21+ iy Py 71)”50, (65)

two-component real spinor. The action also contad(®) +Vf+7+ Nf—y (66)
X 0O(q) gauge fields. Izquierdo and Towns€il embedded it y—k =y

the 3D conical defects int¢2,0) supergravity and investi-

gated their supersymmetry. [8], the two-component real and{, is a constant spinor. It satisfies a projection condition
spinors have been combined into a single complex spinor, sB{,= ¢, with the projection matrix

the O(2) gauge group has been interpreted &$(&). Then

there is a single complex vector-spinor gravitino field, with a

supersymmetry transformation parametrized by a single -1

complex two-component spinor parameter. The correspond- P= m[|(k§—ki)yo—2k+k, vl (67)
ing Killing spinor equation is o
For fixed k., the projection removes two of the four real
D,e=0 (61)  spinor degrees of freedom, so the space of Killing spirors
has two real dimensions. Note that Izquierdo and Townsend
with the covariant derivatie find Killing spinors for arbitraryy,n. Apparently this leads

to BPS solutions of arbitrarily negative mass. We will com-
ment briefly on their meaning in Sec. lIl.
(62) The Killing spinors may be singular at=0. Near the

1 B 5 i 1
D,=d,+ 7 €aps@u Y +-A,— e u
origin, e behaves as

A 91 Cua?”

Izquierdo and Townsend finvo Killing spinors (out of ,
the maximum of four, counting the real degrees of freedom e~r72en?2¢, (68)
for conical defects with Wilson lines. The three-dimensional . )
metric we are interested in {€) with Mz=— 2. TheU(1)  Wheree, is some constant spinor anddepends ory,n. If &

gauge potential producing to the Wilson line is is a positive integere will be regular at the origin. =0,
the spinor will be regular ifn|=1, but otherwise it is sin-

I gular. Foro<0 the spinor is singular.
A=—=(y+n)de, (63) Whenn=0, 0<|y|<1, corresponding to the conical de-
2 fects, 0=0 in Eq. (68) but n=0, the Killing spinors are
periodic, and, since we are working in a polar frame, singular
wheren is an integer related to the periodicity of the Killing at the origin. However, the origin is in any case a singular
spinors. If y=—n, the gauge field is zero. If, in addition, point, and removed from the spacetime. That is to say, the
vy=*1 we recover a global adSmetric. The casea=0, 0  spacetime has noncontractible loops @e-0 is possible.
<|y|<1 corresponds to the point mass spacetimes in whiciThere are then two Killing spinors.
we are interested. These have charge Let us consider the case of global A¢i# greater detail.
AdS; in global coordinates with zero gauge fields is ob-
1 y tained wheny=—n==*1. In this case, the origin becomes
Q=5 fﬁ A=-3, (64)  regular. The corresponding Killing spinors hawe=0 and
are regular at the origin, as required. They are antiperiodic in
) o ) ¢, as expected since the space is now contractible. We get
so thatM = —4Q?. The deficit angle i ¢=27(1-|y]), a8 two Killing spinors with y=—n=1, and two withy=—n

we saw at the beginning of this section. The origin0 isa = —1_ since both these choices give the Adfometry, we
conical singularity and is excised from the spacetime. see it has four Killing spinors, that is, it preserves the full

What is the relation between global A¢l8nd the conical
defects with Wilson lines? There are two limits of the point
4In converting from the ¢ ——) signature of[8] to our  particles. The limitn=y=0 corresponds to tht!1=J=Q
(—++) signature, we have replaced’ by —iy*. Note that[8] =0 black hole vacuum, and it has two Killing spinors. One
uses a different notation, with 1/2 m. can move away from this limit in either the>0 direction or
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the 7<Q direction. The Iimityz +1,n=0 corresgonds to Azz — yg&A:f: —v'. (73
AdS; with non-zero gauge fields of chargg=+3. Now

note that the integen can be changed by a large gauge

transformation 8] (from the six-dimensional point of view, ) ) )

this corresponds to a coordinate transformationS3nsee ~ For the point masses, the maximum supersymmetry is ob-
Sec. Il for details. In Sec. IV, we will see that such large tained by settingA=+A’. The point mass and zero mass
gauge transformations correspond to a spectral flow in th&lack hole spacetimes then have four Killing spinors in each
boundary CFT. Fory=+1, we can make a gauge transfor- sector, and the pure Ad®ackground without a Wilson line
mation to maken= = 1; this turns the periodic spinors asso- has the maximum, eight, in each sector. Thus, as in the (2,0)
ciated with the point particle geometries into the antiperiodicsupergravity, the point masses break half of the supersymme-
spinors associated with AdS Again, AdS; has twice as try.

many supersymmetries, because there are two ways to reachIn summary, the supersymmetric solutions are given by a
the AdS; limit. three-dimensional metric

4. Embedding into 6D N=4b supergravity
It is quite simple to promote Izquierdo’s and Townsend'’s

solutions for (2,0) Killing spinors to solutions of the Killing B r? A r? 5 ! 2 24,2
spinor Eqs.(54), (55). To relate the Killing spinor equation ds*=— YAt +y7) dritridet (74)
(61) to (54), we replace theU(1) gauge potential by a
SU(2), gauge potential,
and gauge fields
1 u(l) 1 SU@2).c
TAM —>§AM Yo, (69)
. . Ad==AY=—y. (75)
and the spinor by th&U(2), doublet of spinors,
& This gives a six-dimensional metric by the Kaluza-Klein an-
E—E= &* (70 satz(5), which satisfies the six-dimensional equations of mo-
r

tion and preserves half the supersymmetry. In the next sec-
tion, we will discuss how this metric arises in the near-

Recall that the label=1,3 is needed, since E(p4) contains horizon limit of the rotating black string.

two identical Killing spinor equations. THeg(1) Wilson line
is embedded into th8U(2) by

I1l. CONICAL DEFECTS FROM THE SPINNING BLACK
y 1 STRING

Ag(l): _ E_)EAiu(z),s 3= %/03, (71

1
I In the previous section, we saw how the three-
dimensional solutions in which we are interested arose by
Thus theSU(2), gauge field has a non-zero compondijt,  spontaneous compactification of the six-dimensiorél
=4b theory. Interest in the six-dimensional theory is often
3 focused on its black string solutions, so we would like to see
Ag=—. (72) if we can relate the point particles to these black strings. The
presence of non-trivial Kaluza-Klein gauge fields in the su-
Then the solutions to the Killing spinor equatio(®)) are  persymmetric point particle solutions suggests we should
the twoSU(2), doublet ¢, ,e¥)T, wheree, is the solution ~ consider a rotating black string, as the gauge field arises from
(65) andgr’ is its Comp|ex Conjugate_ Note that the Comp|ex off—diagonal components of the higher-dimensional metric
conjugate structure is consistent with g having opposite and B-field, which we would associate with rotation.
sign diagonal entries. Note also that the number of Kiling The solution describing a non-extremal spinning black
spinors is doubled in each sector, because of the kabel String in six dimensions i§29,30°
Similar manipulations are done on tf&U(2)g sector.
However, there is a subtlety when theandR sector Killing
spinor equations are combined. The two sectors each havenotice that in[29)], there is also a nontrivial three-form field in
their ownSU(2) gauge field®\,A’ and Killing spinor equa-  the solution. We expect that this three-form reduces, in the near-
tions (54), (55). For the charged point mass spacetimes, theorizon limit, to our KK ansatz for the three-form, but we have not
two background gauge fields need not be equal. In generalhecked this explicitly.
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r4

[12+dy?>+HHof ot 2
A Ay HaRe o o 2 —ome I

1 2mfp
dsi= ~1-
s \/Hle[ ( re

Amf ~
-z © coshs, coshs,(l, co26d -+, sirfod ) dt

2mf

4mf 2
D (r2+|§)H1H2+(|§—|§)co§9< rzD) sinhzélsinhzéz)

- sinhd; sinh8,(1; cogdy+1, sirfed ) dy

2mfp)\?
X coggdy? (r2+|§)H1H2+(|§—|§)sin20<—rz—[’) sink?s, sint? s,

2mf
X sirf0d ¢p?—> (I, co20d s+ |, SirfOd )2+ H,Hor 2f 5 1d 62| (76)
r2 D
[
where where
2me sinhzéi 2 16(32\]2
Hi=1+r—2 (77 N2:I|)_2_M3+ p23 3 (86)
fori=1,2,
2 no= 2055 (87)
f—:r2+|§co§e+|§sin2 0, (79) P

D
5 _ _ and there is a non-trivial transformation between the coordi-
andt andy are boosted coordinates, nates @,%,) on the near-horizor8® and the asymptotic

- ) ~ . coordinates,
t=tcoshdy—ysinhdy, y=ycoshs,—tsinhd,.

(79

R
~_ R L
For this metric, the asymptotic charges are dg=dé 12 (12 coshdy =1y sinhdg)de
2 Ry )
M:mE cosh 25, (80) - |—3(|1C05h50—|28|nh50)d7'
=0
Qi=msinh 25,; 1=0,1,2, (81 ~ Ry )
dlﬁ=d¢—I—g(|1COSh50—|ZS|nh50)d(p
2 2
J r=m(, 71| [] coshs. =[] sinhs,|. (82) R
BROTELTE S = ~ 3 (1,coshéo I, sinhdy)dr. 88)

A. Near-horizon limit The parameters of this near-horizon metric are related to the

Cveticand Larseri30] showed that this metric has a near- parameters of the full metric by
horizon limit of the form BTZx S3. To reach this limit, we
take a’—0 while holding R , _
M3=|—4[(2m—I1—I2)cosh250+ 21415, sinh28,], (89)
r m l1o Q_lz

2 , , and & (83

a’ a’ a’ a’ R2
_ , _ , 8G3J3=—2[(2m—12—12)sinh25,+ 2l 1, cosh25,],
fixed. The resulting metri¢after removing an overall factor |

of ') can be written as (90
d2=— N2d 72+ N~ 2dp2+ p2(do— N¢dr)2+12d012, and| =(Q;Q,)** The BTZ coordinates are given by
(84
L o1
d02=d 6+ coS od 2+ sir?6d 2 (85) TR TR, (91)
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and tion. For simplicity, we have only considered non-rotating
conical defects, so we requidg=0. Since we seek a super-
R§ 2 2 2 symmetric solution, it is reasonable to sat=0. ThenJ;
2_ _12_ ; ; ) .
p —|—2—[r + (2= 17 12)sinff 8+ 21,1 sinh, coshdo ). =0 implies a;a,=0; without loss of generality, taka,
(92 =0. Note that for this choice of parameters, all dependence

) ) ) ) on &, disappears from the metric. The mass and gauge field
The near-horizon metric looks like the direct product of agre now

rotating BTZ metric and ar®. However, in the original

spacetime, we identifiegp~ ¢+ 27 at fixed i, ¢, which is R§ ) )

not in general the same as- ¢+ 2 at fixedy, ¢. Thus, the Ma=—jzai=—v (99

coordinate transformatio(88) is not globally well-defined;

that is, there are still off-diagonal terms in the near-horizonand

metric, which give rise to gauge fields in the three-

dimensional solution[The part of the transformatio(88) 3 Ry

involving 7 is well-defined, as- is not identified] A'=-A :Tfald‘P: vdé. (100
It is convenient to trade thig , for parameters, , which

are related to the strength of the Kaluza-Klein gauge field: Therefore, we recover the conical defects of the previous

section.

a;=1,cosh¥—I5sinhdy,  a=l,c0shy—1;sinhd, . The near-horizon limit of strings with physically reason-

93 able choices for the parameters can thus give rise to point
Then we can write particle spacetimes, with negative values fMg. Remark-
ably, this shows thaglobal AdS; appears as the near-horizon
- Ry Ry - Ry Ry limit of a suitable compactified black striffglo explore the
¢:¢—Tzaz¢—|—§31ﬂ = ¢_Tfal@_ 3 T consequences of this, it will be useful to also consider a

(94) family of non-extremal solutions with the same parameters.
A convenient choice is to také,=0, a,=0 (which is
and the relations between the near-horizon and full metriequivalent to5,=0, 1,=0). In this caseJ;=0 and M3

parameters become =Rj(2m—af)/1*.
R2 .
8GJ3=|—§’(2m sinh28,+ 2a,a,) (95) B. The full metric
Having seen that point particles can arise in the near-
and horizon limit of spinning black strings, we would like to be
able to say something about the geometry of the full string
R§ solution. The near-horizon limit is also a near-extreme limit
M3 =17 (2mcosh2,—aj—aj). (96)  of the full black string. The extremal limit involved’is
It is more convenient to keep sorhedependence ip, and m—0, Qi andd fixed. (103
write it as Initially, we will leave the value ofa, unspecified. In this
R2 limit,
2 Y 2 H 2 2
=—2(r24+2msint?s,+15—a3). 9
=T ot15-ad) (97 M=0.4 0, (102
To extract the Kaluza-Klein gauge fields, we need to write JO,0,
the metric on the 3-sphere in the coordinates used in Sec. Il. J Rr= %(Ililz)(cosmot sinhdy)
This coordinate transformation is given in Appendix B. The
result is A0
. . - 2% 7ay). (103
Aszl_zy(al_az)d% A3/:—|—2y(a1+a2)d<p, (99)

The coordinate transformatiq7?=r2+lg—a§ results in an

where the indices 3, "3refer toSU(2), andSU(2)g respec-  extremal metric in the extremal metric of the form
tively. The near-horizon limit of the spinning black string
thus gives a three-dimensional metric of BTZ form coupled
to gauge fields. Furthermore, the BTZ madg (96) can be  6the wilson line that appears in this limit of our solutions can be
negative for suitable choices of the parametérsparticular,  removed by a coordinate transformation from the 6D point of view.
it is possible to makev ; negative whilem=0). "Note that this impliefQ,—0, and is hence not the same as the

We can now choose the parameters so that we recover thienit m—0 with Q, ; , fixed that is usually considered in the con-
supersymmetric point particle solutions of the preceding sectext of studies of extremal black strinf31].
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P4 —

— — dp
(p?+ad)(p*+aj)

1

e
B 2vQ1Q29p [
2
p

dsi=

{ —dt?+dy?+H;H,0p"

cogdy(a,dt+a;dy)+sirfdd¢(a;dt+a,dy)]

2
+ ((;2+ a2)H H,+(a2— ag)co§0( g__z Qle)COSZGdlﬂZ
p

2
+ ((;24- af)H H,+ (a5~ ai)siﬁa( g__f;) Q1Q2)Sin20d¢2+ H1H,p?gp 'd6? |, (104
p

where dp®
A~ 7+ p’de?+ 0P+ A+ ¢7(dy+ vde)”

Hi=1+ gD_Qi (105 (108

This suggests a further coordinate transformation

fori=1,2, and )
ort an p=yRcow, = Rsinu, (109

= p?+alco 6+ alsirte. (106  Which brings the metric to the form

§ 1=

ds’~dR?+ R du?+ y?cogude?+ sirfu(dy+ yde)?].

The metric is now independent &6f. That is, when we take (110
the extremal limit withd, fixed, we find that it becomes just
a coordinate freedom in the limit. This is presumably a formThus, the area of a surface atproper distance from the
of the usual restoration of boost-invariance at extremalitypointp=0,0=0 is e3y2m2. The difference between this area
Thus, the fact that the near-horizon extremal metric did nognd the standard®@reae®2 7 indicates that there is a coni-
depend on this parameter is a property of the extremal limitgal defect at this point. Note that the choices of parameters
not the near-horizon limit. If we take,=0, we find that for which we get negativévl;, and hence a point particle
JL=Jr. solution, are precisely those for which the full six-

We can also consider the non-extremal metric wigh dimensional solution does not have an event horizon. Hence
=0, 1,=0 (corresponding to the simple family of non- this is a naked conical singularity.
extremal generalizations we considered in the previous sec- For a given value o, we can obtain point particle so-
tion). The form of the metric is not substantially simplified lutions with all values ofM3 by varyingR,. There is no
relative to Eq.(5), so we will not write it out again here. We obvious bound associated with the vali;=—1 corre-
merely note that this metric has a single horizon%at2m  sponding to pure AdS space. It was already noted by Iz-

—12, of area guierdo and Townsend i8] that there exist supersymmetric
solutions to 3D gravity for arbitrarily negative valuesMf.
A=873mR,coshs; coshs, 2m—12. (1070  These solutions are all singular, and the singularities which

occur forM3<—1 are not essentially different from those

In the near-horizon limit, this reduces taryMgX 4m2I3 which occur forM 3> —1. From a three-dimensional point of

which we recognize as the product of the area of the BT2/EW, One simply asserts that while the singular solutions
black hole horizon and the volume of ti$3, as expected. with M ;> —1 are physically relevant, as they can arise from
the collapse of matter, those witfi;<<—1 are physically

irrelevant. We similarly expect that only the solutions with
Ms;>—1 will have a physical interpretation in the dual CFT,
From the three-dimensional point of view, there is a coni-as AdS space corresponds to the NS vacuum of the CFT, and
cal singularity atp=0, for both the non-rotating BTZ black we do not expect to find excitations with lower energy. It is
holes and for the point particle spacetimes. In the full six-therefore surprising that the six-dimensional string metric
dimensional solution, we need to check the nature of thisnakes no distinction betweal ;<—1 andM;>—1. It is
singularity. The curvature invariants are everywhere finite, selear that it does not, as the nature of the singularity in the
there is no curvature singularity. Consider a small neighborsix-dimensional solution is independent of the valueRpf
hood of the poinjp=0, =0 in a constant time slice. The However, we should still ask whether this solution is
metric near this point can be approximated by stable for all values oR,. In [32], it was argued the BTZ

C. Properties of the solution: Instabilities and singularities
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x S? solution (for all masseswould be stable against local- there is no lower-energy system than the extreme string that
ization on $ so long as global AdSdid not appear in the carries the same angular momentum and charges. Together
spectrum of the compactified string. Here we have arguetith experience in other examples, this suggests the extreme
that for certain parameters, the rotating, compactified stringtring is stable for all values &, , and hence instabilities do
does include global AdS Therefore, it is doubly worthwhile not serve to rule out the cases correspondinfylte< — 1.

to consider the question of instabilities for near-extremal so-
lutions with angular momentufh.

In fact, the full asymptotically flat rotating black string
solution has a more familiar InStab”Ity localization on the In [9]' an interpretation of the point mass geometries in
circle (y) along which the string is compactified. Such anterms of spectral flow operators was given. Here, we propose
instability typically sets in when the entropy of the localized a somewhat different model in terms of density matrices in
solution is greater than that of the extended (3@®. Since  the RR sector of the boundary CFT. It may seem surprising
the present solution carries a charge, a simple model for thg propose that a gravitational system without a horizon, and
localized solution is the extreme black string carrying thehence no Bekenstein-Hawking entropy, would be described
same charge, along with a six-dimensional Schwarzschilthy a density matrix. However, the classical formulas only
black hole carrying the energy above extremality of theregister a sufficiently large degeneracy. The ensemble of su-
original solution. Consider, for definiteness, the nOI’]-eXtremabersymmetric states that we are proposing contains fewer
solutions discussed above, wih,=0, 1,=0. From Eq. states than the number that enter the ensemble describing the
(80), M —Me,~mR, for near-extremal solutions, so the en- M=0 black hole. As is well known, the latter system has
tropy of the Schwarzschild black hole in the candidate localvanishing entropy in the semiclassical limit. Below, we
ized solution is briefly summarize the main idea of our proposal. Details and

43 various tests will be presented in a future publicafidd].
Sen~ (MR)™. (119 All geometries we have considered are either singular or
have a horizon. Once we remove the singular region, we are
" left with a space with topology R St. This is true even for
pure AdS with nonzeroSU(2) Wilson lines. The singularity
in those cases is not a curvature singularity, but one where
(112  theSU(2) gauge fields are ill-defined. The only exception is
pure AdS without Wilson lines, whose topology is that of
R3. We will first ignore pure Ad$§ but as we will see a bit
for near-extremal solutions. Thus, as we approach extremajater it fits in quite naturally.
ity, Rerir may grow, but it will eventually decline and reach  on a space with topology 3 St, there are two topologi-
zero aﬂ'n=|§/2. For fiXGdRy, all the near-extremal solutions cal choices for the spin bundle, corresponding to periodic
with m small enough are unstable to localizatibmhis in-  and anti-periodic boundary conditions along tHe By peri-
stability sets in at a finite distance from extremality; So weodic and anti-periodic we refer to spinors expressed in terms
will always encounter it before reaching the instability to of a Cartesian frame on the boundary cylinder, which corre-
localization on 8 that is suggested by the physics of the spond to a radial frame in the AdS geometry. Thus, periodic
near-horizon limit. boundary conditions correspond to the RR sector, anti-

There is hence aR,-dependent instability. Does this al- periodic boundary conditions to the NS sector. The proposed
low us to exclude the undesirable singulariti#sose with  dual description of the point mass geometries will be valid
M3;<—1)? We have argued for this instability by comparing assuming periodic boundary conditions, but as we will see,
the entropy of a near-extreme string to that of the extrem@ne can derive an equivalent description using anti-periodic
string plus a localized black hole. Thus we haagsumed boundary conditions.
that the extreme string, which corresponds to a supersym- |t may be confusing that we impose periodic boundary
metric point particle solutions, is stable, and we cannot useonditions on the spinor and fermion fields, because if we
this approach to argue that the extremal solutions are unise the field equations to parallel transport a spinor along the
stable. The assumption of stability of the extremal solutionsircle, we can pick up arbitrary phases, depending on the
is consistent, since, as we approach extremality, the entropshoice of point mass geometry, and also on the choice of
gain in the localizatior(111) is going to zero. Furthermore, SU(2) Wilson lines. These phases are the holonomies of the

flat SL(2) andSU(2) connections that define the geometry
and Wilson lines, but they are still connections on the same

81t was argued if32] that such a localization instability should tOPological spinor bundle. In other words, given a bundle
not occur for the full asymptotically flat black string solutions, as it With @ given topology, there are still many flat connections
would break spherical symmetry. In our case, the spherical symme?N that bundle, which are parametrized by its holonomies. In
try is already broken by the rotation: so it is not obvious that thisOUr case we choose thigeriodio spinor bundle, and view
argument applies. the gauge fields as connections on this bundle. Whether there

This is quite different from the usual behavior near extremality:exist global covariantly constant sections of the spinor
for a non-rotating black stringR.,i;— asm—0, as we can see bundle is a question that does depend crucially on the
from Eq. (112 with 1,=0. choices of flat connections, and is precisely the question

IV. APROPOSAL FOR A DUAL DESCRIPTION

Thus, forR,>R.i;, we expect the solution to be unstable
whereR,i; IS given bySgs=Sgy . That is,

s QiQa(2m-19)

crit
m8’3
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whose answer tells us whether or not a given solution pre- - X

serves some supersymmetries. P(x)= Pexr( Q§J A-dx
The near horizon geometries in Sec. lll, that include the %o

BTZ and spinning point particle solutions, depend on fivegng at the same time replace the gauge field by

quantities, namely=(Q,Q,)¥* M, Jz, A3, A% . In order

#(X) (122

to give the dual conformal field theory description, we define AX)=(1-&)A(X). (123
3l This is a(singula)y gauge transformation and does not affect
c= 2_63 113 the physics. The only consequence of this transformation is
that it gives twisted boundary conditions to all fields charged
IM 3+ 8G3Js under theU(1). If we compute the new quantum numbers
0= 1. (114 according to Eqs(118—(121), we find
3
J5=Jp(1—¢) (1249
. IMy—Gyl, . 0=Jo(1-¢
°  16G; (119 12 , 6 ,,
L(,):Lo_FfJo"’Ef Jo (125
c
P a3
Jo= 12A 118 \which is precisely the behavior of these quantum numbers

under spectral flow with parametey=(12/c)¢j, [38]. In
—_ ¢ other words, we can set up the AdS-CFT correspondence
jo= 1—2A3. (1170 with arbitrary twisted boundary conditions. The twisted
boundary conditions in the bulk match the twisted boundary

Our proposal is that the geometry corresponds in the bound:-or.]di.tionS of the CFT, andi the relatiori$18—(121) are
ary theory to a density matrix gequally weighteglstates in valid independently of the twist. Spectral flow corresponds to

the RR sector with guantum numbers a field redefinition both in the bulk and in the boundary
theory, and does not affect the physics. For other discussions
Jo=io (118  of the role of spectral flow, s€@9,40,9,37.

We can now understand how pure AdS arises in this pic-
J=T. (119 ture. We start with pure AdS with a flat gauge field with
0=Jo holonomy—1 in the fundamental representation. According
to the above proposal, this corresponds to states in the RR

Lo=1o (1200  sector withLy=c/24 andJo=c/12. If we remove the gauge
24 ¢ field completely by a field redefinition, this changes the
o boundary conditions of the fermions, and they become anti-
— ¢ 6(jg)? periodic instead of periodic. Therefore, the field redefinition
Lo=loto,+ —— (12D prings us from the R to the NS sector. In addition, the quan-

tum numbers after the field redefinition becoimg=J,=0.

We see that pure AdS with anti-periodic boundary conditions
(the only boundary conditions that are well-defined on pure
AdS) corresponds to the vacuum in the NS sector, as ex-

The quadratic terms ih andfo may appear surprising,
but there are several ways to justify them. First of all, in this

way |l andl_o are spectral flow invariants, and the asymptoticpected.
density of RR states with the quantum numb@s8—(121) As a final check of our proposal, we will rederive the

is a function ofl, |, only. This is in nice agreement with the results of Izquierdo and Townsefil] regarding the super-

fact that the area of the horizon and therefore the entropy ofymmetries in point mass geometries with non-trivial gauge

BTZ black holes also depends g, |4 only. fields turned on. Consider again the point mass geometries
The quadratic terms in Eq&L20) and(121) are also natu-  with M3=— 2, andJ;=0, and only look at the left moving

ral if we use the relation between the Hamiltonian reductiorsector. The equation fdr, reads

of SU(1,12) current algebra and the boundary superconfor-

mal algebra[35,23,36,21,3] The stress tensor obtained in _ 26 C a5

this Hamiltonian reduction procedure contains the Sugawara Lo=(1~» )Z1+ ﬂ(A ) (129

stress tensor of th8U(2)C SU(1,12) current algebra, and

this extra contribution yields the quadratic terms(i20), where A is the value of theU(1)_ gauge field. The two

(127). choices of spin bundle give two inequivalent situations. If we
Spectral flow in the boundary theory corresponds in thgake periodic boundary conditions for the fermions, we find a

bulk to the following procedure. In the bulk, we can removestate with

part of theSU(2) Wilson lines by a singular field redefini-

tion. Namely, if a field ¢(x) has chargeq under the

c c c
_C 3 T N
U(1)CSU(2) subgroup, we can introduce new fields Jo=1pA%  Lo=(1=75+

12 24 24(/_\3)2 (127
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in the RR sector. If we start with anti-periodic boundary defects with Wilson lines. Supersymmetry is preserved by a
conditions for the fermions we find a state with quantumjudicious choice of the gauge potential. From the 6D point of
numbers(127), but now in the NS sector. Using the spectral view, our solutions are spheres fibered over an Al8se,
flow procedure outlined above, this can be mapped to a statend the conical defect arises at a point where the fibration
in the RR sector with breaks down. Although we thereby embed all the solutions of
the 3D Chern-Simons supergravities into the six dimensional
theory, our ansatz does not in general produce a consistent
truncation to a Chern-Simons theofgolutions withF=0
(128 are admitted, but the six dimensional equations of motion do
t impose thig!°
Our solutions can also be understood as near-horizon lim-
its of rotating string solutions in six dimensions compactified
on a circle. Surprisingly, global AgX S® appears in one
c ¢ corner of the parameter space. Although our solutions con-
(A%+2n), Lo=(1- y2)ﬂ+ Zl(A3+ 2n)? tain conical singularities, they remain interesting because we
expect them to be resolved by string theory. In particular, we
(129 have a proposal for a non-singular dual description in a con-
and from Eq.(128 we obtain states with formal field theory. If our solutions are admissible, they ap-
pear to imply a Gregory-Laflamme instability for the near-

J =£(A3+1) Lo=(1— 2)£+£(A3+1)2
0712 w0 V247" 24 '

0
There are also spectral flows that map the RR sector to itseIP,
and these are labeled by an integeApplying these spectral
flows to Eq.(127) we obtain states in the RR sector with

C

Jo=13

cC extremal rotating black strings.
Jo=15(A°+2n+1), We have suggested a concrete representation of our coni-
cal defects as ensembles of chiral primaries in a dual CFT.
c ¢ Subsequent articles will test our proposal.
Lo=(1—yz)ﬂ+ ﬂ(A3+2n+ 1)2. (130
ACKNOWLEDGMENTS

The quantum numbers in Eq&.29 and (130 can be sum-

marized by the equations We have benefited from conversations with Sander Bais,

Mirjam Cvetic, Sumit Das, Robbert Dijkgraaf, Per Kraus,
c c c Don Marolf, Samir Mathur, Andy Strominger, and Arkady
J0=1—2(A3+ n), Lo=(1— Yz)zﬁ Zl(A3+ n)? Tseytlin. During the course of this work V.B. was supported
(131) first by the Harvard Society of Fellows and the Milton Fund
of Harvard University, and then by DOE grant DOE-FG02-

wheren is an arbitrary integer. In the RR sector, supersym-95ER40893. The authors thank the Aspen Center for Physics,

metry is preserved for RR ground states witj=c/24 only. ~ Harvard University and University of Amsterdam for hospi-
Thus, we need that tality at various points in this project.

3_
A=Zy+n (132 APPENDIX A: FROM 6D SYMPLECTIC MAJORANA

for some integen. This is precisely the same condition as SPINORS TO 3D SPINORS

found in[8]; see Eqs(63) and (71). In this appendix, we discuss the symplectic Majorana
condition on 6D chiral spinors. In particular, we show in
V. SUMMARY AND DISCUSSION detail how the 6D spinors can be chosen to be SU(2) dou-

We have embedded the 3D BPS conical defects into glets of complex conjugate two-component spinors

higher dimensional supergravity arising from string theory. =@
The defects in three dimensions provide particularly simple 3r:< )
laboratories for the AdS-CFT correspondence. They are ex-
amples of systems that are neither perturbations of the AdS . ) . )
vacuum, nor semiclassical thermal states like black holes! N 6D Killing spinor equation ifN=4b supergravity was
Understanding the detailed representation of such objects in 1
a dual CFT is bound to be instructive. Furthermore, the coni- (DM FoHS NP
cal defects which we have constructed in six dimensions can 4
be collided to yield thénear horizon limit of the classic 5D o
black holes whose entropy was explained by Strominger an¥here the uppeclower) sign is forr=1,3 (r=2,4). The
Vafa[13]. supersymmetry parametess are positive chirality spinors

To recap, we have given a detailed analysis of the Kaluza-
Klein reduction of theN'=4b chiral supergravity in six di-
mensions coupled to tensor multiplets. Our KK ansatz gives 9yhile this paper was in the final stages of preparation we be-
solutions to the 6D equations of motion which corresponccame aware that related investigations have been conducted by
from the dimensionally reduced point of view to 3D conical Samir Mathur.

(A1)

852)*

0, (A2)

€y
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T P T
Er:(«;)_ A3) e1=(ellp)
0 12907 ( ey )
Each of the four (=1, ... ,4) spinors has four complex 15" 0 0
components. That gives 32 real degrees of freedom, of which 0
we must remove half, since tih=4b supergravity has only :( o % ) , (A9)
16 supersymmetries. This can be done by imposing a reality —(1®y")e]

condition on the chiral spinors. In 6D, the appropriate reality ) ] T 0 0

condition is either the S(@) or the symplectic Majorana Where in the last line we useg’’=—+° (recall thaty®=

condition, depending on tHe symmetry of the supersymme- —! 03). ) _

try algebra[41]. It can be consistently imposed along with 10 evaluate the right hand side of He8), we need the

the chirality projection. Literature on the subject includesMatrix B. We can assume it to be real, and of the form

[41,42,18,19,2}4 Here we are mostly following42]. .

Referencq42] first considerdN=2 susy in 6D. There is B

an SU?2) doublet of four-component complex spinors, satis- B= B ' (A10)

fying the SU?2)-Majorana condition
, - _ whereB is real 4x 4-matrix satisfyingB2=—1. A conve-

(W)* == €BEy, (A4)  nient choice turns out to be

. B _ 0
wherei,j=1,2 label the doublet and, & are spinor indices. B=010y". (ALD)

The matrixB must satisfy The right hand side of EA8) becomes

BB*=B*B=—1. (A5) 0
Bes= Yk (A12)
One can see this by applying the @JMajorana condition 3
twice and remembering thab,= — €1,=— 1. Thus Eq.(A8) reduces to the equation
For N=4 supersymmetry, we have four complex four-
component spinors, transforming as a fundamental of the _ RS 0
USp(4) R-symmetry group. The four-component spinors can (1@y)e1 =Bes=(0187)es. (AL3)
be understood as chiral 8-component complex spinors, Withjayt introduce the notation
4 components projected out by the chirality projection. Now '
the SU2)-Majorana condition is promoted to a symplectic Xr
Majorana condition srz( ¢ ) r=1,3 (Al4)
r
V., =Q,B P, (A6)  where x,,& are 2-component complex spinors. Then Eq.

(A13) is equivalent to
yvhereQ,S is the symplectic metric of the U$$ group, and 0w g
a, B label the 8 components of the spinor. B is &4 matrix ( Y X ) :( 70 3) _ (A15)
Y X3

satisfying Eq.(A5). The symplectic metric is - 7’05’1c
0 1 Thus the two 4-component spinass ; are
o ( -1 O)' A7 X1 &
81:( §1>; £4=— Nk (A16)

Let us take the spinor¥, to be the chiral 8-component

spinorse;. Recall that we have chosen the spinefswith Out of the 8 complex degrees of freedom, only 4 remain.

_ . 5 . _ .
r—;,S to have oppositE™ eigenvalues fromr'—2,4. I.n th!s Since the Killing spinor equations are linear, we can take
choice, we have ensured that the symplectic metric will O} \ear combinations of. &.-
1,€3

mix spinors with opposite eigenvalues.
For the supersymmetry parameters, the symplectic Majo-

rana condition(A6) becomes €1=8&17 83
y=i(e+e3). AL7
;1—2863, (A8) e3=i(e1tes) ( )

. Then, thez, are of the complex conjugate doublet form
and similarly fore,,e,. The left hand side of EqA8) is (Al). The corresponding 8-component spinors are
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N P HereU e SU(2). andUgre SU(2)z. We go between these
= Or (A18)  two transformations by exchangingy— .

We can compute the action of SU(2xplicitly. Write the

—a 0T
The same can be done to the 2,4 spinors which had the 9rouP elements a8, =e in terms of generators
oppositel'® eigenvalues. We can then drop the tildes, and

assume that in the Killing spinor calculation the 6D spinors Ty=— '_(0 1)_ Tzzl( 0 - 1)_
are such that the resulting 3D spinors will be of the form 2\1 0/’ 2\1 0/’
(Al).
ifl1 O
APPENDIX B: THE 3-SPHERE Ts==35l0 —1]/- (B13)

The 3-sphere of radiusis explicitly described as With a little labor one can show that the infinitesimal trans-

12= 324 X2+ X2+ %2, (B1) fprmations are explicitly realized orz{,z,) by the differen-
tial operators

d=dxi+dx3+dx3+dx3. (B2) s,
X . i L1=C¢(99+ —&qs—s,/,cotﬁ&l/,, (814)
One solution to the constraint is Sy
xa=lcost. (9 L= =Syt Lo 9 B15
. 2= T Sydy s, ¢ CyCoWwd,,, (B1Y
X,=Isinfcosae, (B4)
o L3=d,. (B16)
Xz=1sin# sin ¢ cosy, (B5)

) ) ) Since the exchangep— ¢) exchanges SU(2)and SU(2),
Xag=Isin@sing siny, (B6)  the SU(2) transformations are explicitly realized by the dif-

ferential operators
which gives the metric P

S
ds2=12(d 2+ s3d 2+ 2550 2. (B7) Ri=Cydyt 0y =S40, , (B17)
4

(We are using the notatiogy=sind andc,=cos.) The gen-
erators of the SO(4) isometry group & are A}~x‘&j
—xlg;. We are actually interested in exposing the SU(2)
X SU(2) structure and so it is better to go to complex coor-
dinates. Letz;=x;+ixX, Z,=X3+ix,. Then the sphere can Ry=dy. (B19
also be written as

c
)
Ro=—S40p+ —0dy— B1
2= "S4dp Saé'/’ cpCot0d,,, (B19)

It is also easy to check explicitly that these operators obey
dszzdzld?ﬁdzzd;z |2:Zl;1+22?2' (B8) the Lie algebra of SU(2X SU(2):

Let us parametrize solutions to these equations as [LiLil=e€ijlic  [Rir Ry 1=€joRis L ,Rj/](:Bgd)
z,=1cog 6/2)e' (¢ 72, B9 o :
! 16/2) B9 The indices andi’ onL; andR;, can be raised and lowered
2,=1 sin( 6/2)el(6="12, B10  freely.
(Note that exchangingb«< ¢ complex conjugateg,.) We 2. Killing vectors and vielbeins
arrive at the 8 metric S? has six Killing vectors, which can be taken to be the
2 generators of the SU(R)and SU(2)x symmetries above.
ds’=[d6?+dg?+dy?+ 2coddgdy].  (B1) That is,
K"=L" 1=1,23, (B21)
1. SU2)XSU(2)
) o =R", 1=456. (B22)
In the complex coordinates, it is clear that there are two
SU(2) symmetries under whicf? S invariant: The corresponding one-forms have components
z; z,\ Z; Z; |2
2, —UL ' 3 —Ug ) (B12) Lip= Z(c¢,s¢sﬂ,0), (B23)
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|2

Lzm:Z(_S,//,Cng,O), (824)
|2

Layn= Z(O,Cf,,l), (B25)
2

le: Z(C¢ ,O,S¢Sg), (826)
|2

Rom= Z(_S¢ ,0.C4S0), (B27)
|2

Ram=7(0.1¢0). (B28)

There are also two choices of vielbein fot &nstructed
from the SU(2) and SU(2) generators. A vielbein is de-
fined by

efebdan=mn» (B29)
e ePgmn= 52", (B30)
The norm of the one-forms above is
2 |2
Liijngmn: 5”2, Ririjrngmn: 5irjrz. (831)

Since the sphere is 3-dimensional, theand R cannot of

PHYSICAL REVIEW D 64 064011

4. Computing N,, and the SU(2) projectors

The discussion of the consistent ansatz for the three-form
involved a two-form
©=Venn,K"dx"dx', (B36)

which is closed, and hence, on the sphere, an exact form. So
we can write
(x):d(N“—er):&nN”an/\er (837)

for someN,, . That is,N,, are defined as the solutions of

N = N =2Vemn K" (B39
It is easy to show that a solution'ts

1=1,2,3 =N, =—IK,, (B39)

1=456 =N,,=IKy. (B40)
The defining Eq(B38) then implies

anK.,—a,Km:zl—\z/emmN{". (B4Y)

We can rewrite this with tangent indices by contracting with
the vielbeine]', yielding

2
ﬂaKlb_abKla:_ZeachF- (B42)

course be mutually orthogonal as vectors. It is readily

checked that

2
I-imI—jn5” :gnga (B32
and similarly forR. Thus, we can construct a vielbein by
identifying the group index with a tangent indexa and

Taken together with the fact tht' are Killing vectors, this
implies

introducing an appropriate normalization factor. The left and

right vielbeins defined in this manner are

2
eLam:T Lams

(B33)

eRa'm= — |—Ra/m.

3. Volumes

In these Euler angle coordinates, the volume of the sphere

is
Vol=f0wd0fozwd¢Jo4ﬂd¢\/E

T 2 4 |\3
:f daf quJ d¢(—) sing=13%272.
0 0 0 2

(B34)

Accordingly, the volume form for Bis

| 3
(5) sindoN\dpA\dy=Veq, dx"dx"dx". (B35)

VaKIb:%Zfachf- (B43)
We can construct the combinations:

er——ﬁ— m; L|r=—¥+K|m. (B44)

Clearly,
R,=0, 1=1,23, (B45)
=—2Kip=—2R;_zm =458, (B46)

and

L,=2K;n=2Lm, 1=1,2,3, (B47)
=0, 1=1,2,3. (B49)

Thus, these combinations act as projectors onto SU4ay
SU(2); respectively. In the Killing spinor equations, these

We can of course add any closed one-form\ip and we will
still have a solution; we will always choose to use the above solu-

tion.
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projectors appear with fldangentindices, i.e.,L ;=L ex
andR,=Ryhel wheree]' is a left or right vielbein. Recall-
ing the expressions for the vielbeins given in E§33),

R,=0, 1=1,23, (B49)
=lerq-zym, 1=4,586, (B50)

and
Ly=lem, 1=1,23, (B52)
=0, 1=1.23. (B52)

PHYSICAL REVIEW &4 064011

Since the SU(Z) and SU(2) equations decouple, we can go
to a tangent frame using andeg separately in each case.
So, choosing the left and right tangent frames in each case
(call the indicesa anda’), we find

Ra. =0, 1=1.23, (B53
=18 30, 1=4,586, (B54)
and
La=18. 1=1,23, (B55)
=0, 1=1,2,3. (B56)
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