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Chapterr  3 

Mor ee density profiles 

Inn the previous chapter we have seen that the analysis of the influence of the boundary 
onn the properties of a quantum many-body system is a difficult mathematical problem. 
Evenn if the bulk properties of the unconfined system are understood, the presence of 
thee edge leads to a boundary-value problem that is hard to solve analytically. Leaving 
outt the inter-particle interaction simplified this problem quite a lot, although even in 
thatt case the analysis remains complicated. 

Overr the years, several methods have been devised to analyse edge effects in the con-
finedfined magnetised free-electron gas. At zero temperature one may try to solve the eigen-
valuee problem in terms of distorted Landau levels and determine the edge currents by 
summingg the contributions of the lowest-lying eigenfunctions. Even for a simple flat 
geometryy this leads to a rather involved mathematical analysis in terms of parabolic 
cylinderr functions, the basics of which can be found in [39], [35]. In chapter 2 we 
studiedd the profiles of the particle density and the electric current density along these 
liness [32]. 

Ann alternative approach starts by focusing on the high-temperature regime, where 
Maxwell-Boltzmannn statistics applies. In that case a convenient tool is furnished by the 
one-particlee temperature-dependent Green function. As shown by Balian and Bloch [8] 
thee Green function for the confined system can be related to that of the corresponding 
systemm without boundaries by making a systematic expansion that accounts for an in-
creasingg number of reflections of the particles against the confining wall. The ensuing 
multiple-reflectionn expansion was used in recent years to investigate perimeter correc-
tionss to the magnetic susceptibility [44] and to determine the profiles of the particle 
densityy and the (electric) current density for small values of the magnetic field [31]. 
Thesee small-field profiles had been found before from perturbation theory [42, 27]. 
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Itt turns out to be difficult to generalise these results for the profiles to arbitrary field 
strengthh and to relate them to those obtained by means of the eigenvalue method. 

Somee time ago Auerbach and Kivelson [7] invented a path-integral method to analyse 
boundaryy effects in Green functions. By suitably decomposing the relevant paths near 
thee edge they derived a so-called 'path-decomposition expansion' (PDX) for the one-
particlee Green function. In this chapter we will investigate whether the use of PDX may 
shedd light on the difficulties mentioned above and whether it leads to new results on the 
profiless of physical quantities for arbitrary field strength, both for the high-temperature 
regionn and in the regime of high degeneracy. 

Wee wil l start by a review of the path-decomposition expansion and its derivation from 
thee Feynman-Kac path integral. Particular attention will be given to the convergence 
off  the PDX series. It wil l be shown that a suitable re-summation can greatly enhance 
thatt convergence. The connection with the multiple-reflection expansion will be estab-
lished.. Subsequently, the extension of the method so as to include magnetic fields will 
bee discussed by starting from the Feynman-Kac-Itó representation. 

Forr the specific case of a non-interacting charged-particle system in a uniform magnetic 
field,field, confined by a hard wall parallel to the field, the general form of the terms in the 
PDXX series can be established in detail. That result wil l be used to determine the first 
feww terms of the asymptotic expansion for the profiles of the particle density and the 
currentt density. This asymptotic expansion is valid far from the edge and in the high-
temperaturee regime. In contrast to earlier work [42, 27, 30, 31] we will not need to 
restrictt ourselves to small field strengths, as we shall establish the full field dependence 
off  the profiles. As it turns out, the precise knowledge of the asymptotic profiles for high 
temperaturess and arbitrary fields is essential in determining how the profiles for the 
degeneratee case depend on the filling  of the Landau levels. 

3.11 Path-decomposition expansion 

Considerr a particle in an external potential V(r), i.e. with the Hamiltonian 

HH = ^ + V ( r ) (3.1) 

wheree we have chosen units in such a way that the particle mass drops out. The equi-
libriumm quantum statistical properties of a set of particles moving in the potential V is 
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governedd by the temperature Green function G p (r', r ), with (3 the inverse temperature. 
Itss path-integral representation is given by the Feynman-Kac formula 

Gp( r ' ) r )) = {r ' |e-pH|r> = Jdn{ :^ (a) )exp - j « I T V M T ) ) (3.2) ) 

wheree U>(T) describes the path and du£ QP is the conditional Wiener measure [45] (see 
alsoo section 1.2.2). Roughly speaking one integrates over all paths from r t o r ' with 
aa weight that is the combination of a part dependent only on the shape of the path 
(absorbedd into d|i£ Q') and a part that depends on the potential V(r) . 

Iff  a wall confines the particles to a region of space, the potential can be written as 
V(r)) = Vo(r) + V w(r) , where Vw is a steep wall potential and Vo is a smooth external 
potential.. If the wall is hard, Vw wil l be infinite outside the region and zero inside. In 
thatt case one only has to integrate over paths that stay inside the region. 

Exactt evaluation of (3.2) for such a confined problem is in general not possible, even 
iff  the corresponding unconfined problem can be solved completely. In this section 
wee will explore the use of the so-called 'path-decomposition expansion' (PDX), first 
introducedd by Auerbach and Kivelson [7], to determine the Green function of the 
confinedd problem. 

Too simplify matters, consider the one-dimensional case, with a hard wall at x = 0, i.e. 
Vw(x)) = oo for x < 0 and Vw,(x) = 0 for x > 0. As a first step, we split the Green 
functionn into two parts 

Gp(x',x )) = G£(x',x ) + Gc
p(x',x) . (3.3) 

Heree Gp is the Green function for the problem without a wall. In order to calculate 
it,, one needs to specify the potential Vb(x) for x < 0 as well. We wil l take the latter 
too be the analytical continuation of the potential for x > 0. We shall assume that the 
resultingg V0(x) is such that Gjj can be evaluated in closed form. 

Thee second term of (3.3) is the difficult part. It is a correction that contains contribu-
tionss from all paths crossing the boundary at least once, with an additional minus sign 
soo as to compensate the corresponding contributions in Gjj. In order to calculate G%, 
onee discretises the path integral in the usual way by introducing rt evenly spaced grid 
pointss at Tm = me ,̂ with en = fi/{n + 1). Subsequently, one decomposes the paths 
att the boundary [7]. Here 'decomposing' means that the paths are split into two at the 
pointt T, where they cross the boundary for the last time. Choosing this 'point of no 
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Figuree 3.1: Decomposition of a sample-path. 

return'' between Tm and Tm + i , one writes the path integral for Gp as 

iplx' .XJ J limm Y 
Tl—»000 ' 

m = 1 1 

dxT T dx x m + 1 1 

xx Gp_(m + 1 ) e j l( x ' ) x m + 1)G°n( x m + 1, xm)G^ i e n( x m , x) (3.4) 

forr x and x' both positive. This decomposition is depicted in figure 3.1. With the 'point 
off  no return' at Tra < T < Tm+i , we see that on the interval [0,Tm] this particular 
pathh is not restricted at all and therefore included in the 'free' propagator G°m. After 
x m + ii  though, it must stay above the x-axis, and is therefore included in the restricted 
propagatorr Gp_T m + 1. 

Inn the small interval between Tm and Tm +i the potential V0 can be ignored. The error 
wee make by doing so will vanish in the continuum limit . Hence, we may use in that 
intervall  the 'free' propagator G? a(x',x) = (27t3)~1 /2exp[-(x' - x)2/2|3] (here take 
Tll  = 1). The free propagator satisfies the identity 

G?,p( | x ' | , - | x | )=sgn(x ' ) l imm f dr ~Gl^(x',x") G?,,(0,x). (3.5) 
x"J.0 0 

Thiss identity, which is a generalisation of that used in [7], follows directly by differen-
tiationn of the relation 

dx [T ( l - x ) ) - 1 / 2e - a 2 / T - b 2 / ( 1 - r ) ) 7tErfc(aa + b) (aa > 0, b > 0) (3.6) 
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withh respect to b. Using (3.5) with x < 0 and x' > 0 in (3.4), wee get 

nn r € n rO 

G R ( X ' , X ) == — lim lim 5~ dx dxm 

T a == l 

xx g^7Gp„ T _m e n( x , , x " )G ; (0 ,xm)G j l £ n( x m , x ) . (3.7) 

Thee integral over x m can be extended to the interval [—oo, oo], if a compensating fac-
torr 1 /2 is inserted. In fact, only small values of x m contribute anyway, at least in the 
continuumm limit , owing to the presence of the second G° function. For these small 
valuess of x m the integrand is approximately invariant under a change of sign of xm . 
Subsequently,, we may join the two G° into one, so that we get a closed integral relation 

Gcs(x',x)) = - l r m i [ d T ^ Gp _ T ( x ' , x " ) G?(0,x) (3.8) 
pp x'UO 2 J0 ox" 

forr positive x and x'. This integral relation is the PDX formula derived in [7]. Since 
thee right-hand side contains the original Green function G, we can iterate this integral 
equationn by inserting (3.3). In this way we arrive at the PDX series: 

G ^(x^x)) = G 0 3(x^x ) - t oJJ o
^ dT^_G 0

^ _ T ( x^x ' ' )G ; (0 , x ) 

/ 1 \ 22 fp d fp~T 

++ lim ( - 1 dx —— lim d t ' 
x"io\2Jx"io\2J Jo ax"x'"ioJo 

xx ^ G g _ T _ T , ( x ' ( x " ' ) G ; , ( 0 , x " ) G ; ( 0 , x ) - . . . (3.9) 

Inn figure 3.2 a sample-path contained in the third term of (3.9) has been drawn. We 
seee that it crosses the x-axis twice from below at T and T + T '. 

Too study the convergence of the PDX series we look at the special case of a vanishing 
externall  potential VQ. The Green function for a free particle in the presence of a hard 
walll  can be calculated using a reflection principle. It reads 

Gf,p(x\x)) = G?>p{x',x) - G? t (J(-x',x) (3.10) 

forr x and x' positive. Since the first term is Gp, the second term must be the correction 
G |.. To check the validity of (3.9) for the present case, we employ (3.5) repeatedly, with 
thee result 

G f,p(x',x)) = G?>p(x',x) - (f_ 2-A G? tP(-x',x). (3.11) 
<n=] <n=] 
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Figuree 3.2: A multiple reflected sample-path. 

Thiss is indeed identical to (3.10). It is clear that all terms in (3.9) are necessary to 
reproducee the correct result. In addition, we cannot change the order of integration 
andd taking the limi t in (3.9). In fact, since one has limX"^o 9X"G? T,(0,x") = 0, this 
wouldd give an incorrect result. This suggests that (3.9) is not the most convenient form 
off  the PDX to use. 

AA slightly different series is obtained by modifying (3.8) as follows: 

Gc
R(x',x) ) li m m 

x"U0 0 
d-rr —Gp_T ( x ' , x " )G?(0 ,x 

9x x 
(3.12) ) 

wheree the limi t x f J. 0 is the average of the limits x f 0 and x J. 0. Since GT(x',x) 
vanishess for x < 0, at least for a hard wall, we have merely added zero to the right-hand 
sidee of (3.8). If we iterate (3.12), with (3.3) inserted, we get the re-summed PDX series 

GB(X ' ,X )) = G « ( X ' , X ) - lim 
11 x"i.T0 

dxx —G°p_T (x ' ,x")G°(0,x) 

++ lim 
x"lT0 0 

d t — -- hm 
00 dx" X"'IT O 

(3-T T 

dx' ' 

ox ' ' 
-G{U_T,(%',x'")) G?,(0,x") G°(0,x) - . .. (3.13) 

Lett us consider again the case VQ(X) = 0.. One easily verifies that the correction GS is 



3.1.3.1. Path-decomposition expansion 41 1 

givenn by the second term of (3.13) alone, since it follows directly from (3.5) that 

x ^ o | o
d T 0 ^ G ? ' ^ T ( X , ' X ' / ) G ? ' T ( 0 ' X )) = G ^ ( X / ' " X ) - ( 3 ' 1 4) 

whenn x and x' are both positive. The convergence of the re-summed PDX series is thus 
foundd to be much better than that of the original one. All higher-order terms in (3.13) 
vanishh separately in the present case, since one may prove 

li mm — - lim 
x"TJ.oo dx " x'"TJ.o 

d T ' ^ G ?) T _T , ( x \ x " ' ) G ?| T , ( 0 , x ")) = 0. (3.15) 

Notee that here we are allowed to interchange the order of integration and taking the 
limit .. This property is an additional advantage of the series in (3.13)- Returning to 
thee general case with Vo{x) ^ 0, we expect that both favourable properties of the re-
summedd PDX series (fast convergence and invariance under interchange of the order of 
integrationn and taking the limit ) are conserved. Of course, in general the series will no 
longerr terminate after the second term. Nevertheless, in some applications only a few 
termss in the expansion are relevant. In particular if x and x' are at a great distance from 
thee wall, the higher order terms can be expected to be small in comparison to the first 
term.. Paths that start far from the boundary and cross it more than once, wil l have to 
gett there much 'faster'. This in turn makes their weight in, and their contribution to, 
thee path integral much smaller. This wil l be investigated in more detail in the remainder 
off  this chapter. 

Thee re-summed PDX series (3.13) is of the general form 

oo o 

Gfi[x',x)Gfi[x',x) = ^G£)(x\x) (3.16) 
n=0 0 

wheree we put Gp = Gjj. The term of order n involves n positions at the boundary. It 
cann be seen as arising from paths along which the particle hits the boundary n times. 
Thesee multiple reflections at the boundary form the basis of the multiple-reflection 
expansion,, which was derived by Balian and Bloch [8] quite some time before the 
path-decompositionn expansion was written down. A close inspection shows that the 
twoo expansions are completely equivalent. 

Notee that in principle the PDX formula (3.8) and the PDX series (3.9) can be applied 
too any problem involving distinct spatial regions, for example to tunnelling problems 
[7].. In contrast, the modified PDX formula (3.12) depends on the presence of a hard 
wall.. The application of the re-summed PDX series (3.13) is likewise limited to hard-
walll  problems only. 
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3.22 Magnetic field 

Wee will now apply the methods of the previous section to a confined free-electron gas 
inn a uniform magnetic field. The HamUtonian is given by 

HH = i ( p - A ) 2 + V w ( r ) (3.17) ) 

wheree Vw is again a hard-wall potential. Because of the symmetry of the problem we 
wil ll  choose the Landau gauge A = (0,Bx,0). Again we set e = 1, m — 1, c = 1 and 
h.. = 1 like we did in the previous chapter. 

Thee presence of the vector potential complicates matters. The Feynman-Kac represen-
tationn (3.2) of the path integral is no longer valid. We have to use the Feynman-Kac-Itó 
formulaa instead, which in the special case of V  A = 0 reads (see section 1.2.2) 

Gp(r',r)) = ,r'.P P d u ^ M e xp p f f 
Jo o 

dTVw(cu(T))+ii  d r" -A(r" ] (3.18) ) 

Iff  we let a>x denote the x-component of the path, we can replace the exponential factor 
containingg Vw by 0{infT CUX(T)). Since the factor that contains the vector potential is 
independentt of z, the integral over the z-component of the path gives a trivial factor 
(27T|3)-1/22 exp[-(z' — z)2/20]. The part of the Green function that depends on x and 
yy wil l be denoted by Gj.t3(r ' ,r) in the following. 

Thee path integral over the y-component of the path can be evaluated by a Fourier-
transformm technique. In fact, discretising the x- and y-components of the path, with 
nn intermediate points, we write tu(Tm) = r m = ( xm , ym) , with T*O = r and r n + i = 
r ' .. The integral in the exponent of (3.18) is then given by ƒ£ dTtü(T)  A(CL>(T)) = 
n = 0 ( r m + ii  - r m )  A ( r m) (in Itö's convention). We get 

G ~L ,p ( r r 

n+11 f 'r)) = n J - 1 1 drm(27ten)) exp ll"mm — Tm-1 
2et t 

9(x, , 

xx exp [i(um - ym_! )Bxm_i] 6 ( rn +1 - r ') (3.19) ) 

Thee integrals over y m can now be carried out by using the standard Fourier represen-
tationn of the Dirac 6-function. This introduces an integral over an additional variable 
k.. Going back to the continuum limit for the path integral over the x-component of 
thee path we arrive at 

)) = (27i , - i i d k ei l c ( y ' - y , G3 ( x ' - k / B > x - k / B , k ) ) (3.20) ) 
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with h 

G ^ ( x ^ x , k ) = | d )̂ ' ƒ ( ^x ) e ( i n f a )x ( T )) + k/B)e-^B 2
x{T ^ ( 3 2 1 ) 

Thiss function Gp is the propagator for a particle in a one-dimensional harmonic po-
tentiall  with a wall at the position —k/B. 

Wee are now in a position to use the PDX techniques from the previous section. The 
leadingg term in the PDX series is found by omitting the wall. In that case the propagator 
GpGp becomes [45]: 

Gg(x',x,k)) = 
B B 

27tsinh(6B) ) 

1/2 2 

exp p 
B (x / 2+x 2 )) Bx'x 

4--2tanh(SB)) sinh(SB) 
(3.22) ) 

Ass a matter of fact, Gjj is independent of k, since the only k-dependence in (3.21) is 
inn the position of the wall. After performing the integral over k, which is Gaussian, we 
findfind that the leading term in the PDX series is given by 

.(0) ) Gl, 'p( r ' , r)) = 4 7 t s i n h ( p B / 2 )e xp 
BB iB 

-A-A , / r t „  „Ar'  -r)2 + —[x' +x){y' -y) 

(3.23) ) 
whichh is indeed the Green function in the Landau gauge for the unconfined system. 

Thee next term in the re-summed PDX series (3.13) (or (3.16)) is more complicated. 
Thee integral over k is again Gaussian (in fact it is Gaussian for all terms), but the 
additionall  integral over T is not. If we set ti = tanh(TB/2), si = sinh(TB/2), t2 — 
tanh((88 - T ) B / 2) and S2 = sinh((B - T ) B / 2 ), we can write 

B2 2 

with h 

G i V »» = - ^ 3 72 I d T f £ > ' , r } e xp [ g ^ ( r ' , r ) ] (3.24) 

( t i t 2)V 2 2 1 1 fH)) tr' ~\ _ _!_R1/2 

W>r)-W>r)-22öö $ l S 2 ( t l + t 2 ) i / 2 L t l ' t2 

xx + ^ + i (y ' - -y ) (3.25) ) 

and d 

.!»>-!{ * * t ]]  + xt2 + i ( y ' - - y ) ] 2 

t ! + t 2 2 --
(3.26) ) 

Similarr expressions can be found in [31]. Note that the formulas in [31] differ slighdy 
fromfrom those given above. We have made use of the property Gp(r ' , r) = [Gpfr,!*')] * 
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andd of the possibility to change T into (3 — T to write f(1^ and g(1) in a form that is 
moree symmetric. 

Thee higher-order terms in the re-summed PDX series can be found along similar lines. 
Forr the special case r ' = r they have been collected in appendix 3.A. They are found 
too agree with those derived in [31], after appropriate symmetrisation. 

3.33 Asymptotic? (non-degenerate case) 

Thee particle density and the (electric) current density can both be found from the 
Greenn function. In the absence of quantum degeneracy the particle density is directly 
relatedd to Gj.^fr . r) via 

pp(x)) = —G_L,p(r , r ) 
Z_L L 

(3.27) ) 

wheree p is the bulk density and  = B/[47tsinh((3B/2)] is the transverse one-particle 
partitionn function per unit area for the bulk. The expression for the current density is 
slightlyy more complicated, involving derivatives of Gj_,p: 

Jn.pWW = _ P _ 1 1 
Z,, 2i 

j J r G ^ t r ' . r )) - S i l f ( r ' , r ) -Bxpp(x) ) (3.28) ) 
J r ' =r r 

Usingg only the u = 0 term of the PDX series in the expression for pp (x) yields the bulk 
densityy p = pp(oo), as it should, since G^ p( r , r ) = Zj_. Therefore we will consider 
thee excess particle density 6pp (x) = pp (x) — pp (oo) instead of pp (x) in the following. 
Sincee there is no bulk current, the n = 0 term of the PDX series does not contribute to 
thee current density. 

Too determine the exact profiles of the excess particle density and the current density for 
arbitraryy distances from the wall we need to evaluate all terms in the re-summed PDX 
series.. However, the T-integral in (3.24) cannot be carried out analytically. Likewise, 
evaluationn of the multiple x-integrals in the higher-order terms given in appendix 3.A 
iss in general not possible. 

Forr large distances from the wall (in units of the magnetic length 1/\/B) the leading 
contributionn to the profiles comes from the n = 1 term in the re-summed PDX series, 
ass we wil l discuss presently. Moreover, the T-integral in (3.24) can be evaluated analyti-
callyy in that limit . It is thus possible to derive asymptotic expressions for the profiles of 
thee excess particle density and the current density that are valid for large \/B X. Since 
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itt is natural to measure distances in terms of the magnetic length l/v^ÏJ we wil l use 
tt = \/B x wherever appropriate, just like in the previous chapter. 

AA change of variables p = q2/ (qo2 - q2), with q = tanh[B(2T - B)/4] and q0 = 
tanh(BS/4),, brings (3.24) into the form 

rOO O 

X X 

Becausee of the presence of 1} in the exponential, only small values of (1 — qo2)p/qo 
contributee to the integral for large £,. Since one has 0 < q0 < 1, this implies small 
valuess of (1 — qo2)p. Note that this does not necessarily mean that p itself is small, as 
qoo may be close to 1. For large t the factor y/] + (1 — qo2)p in the integrand can be 
replacedd by 1. Subsequently, we can use 

f000 dr> 
II  v e -Q p= ea / 2K 0 ( a / 2) (3.30) 'oo \/v0+v) 

wheree KQ is the modified Bessel function of the second kind. In this way we arrive at 
thee following asymptotic expression for the transverse part of the Green function for 
largee I: 

Thee next term in the asymptotic expansion of G^1 L is 

8 v5„3 /22 4q03/2 e xP  ̂ 4q0 ) 

whichh can be derived by substituting y/\+{\ — qo2)p « 1 + (1 — qo2)p/2 instead of 
simplyy 1 and using the relation 

VdvVdv _ Q P _ d f00 dp __QÜ 1 rr  v*v r-qP=_  r 
Joo ^/pfTTp) da J0 

e-«""  = -ea /2[K,(o/2)-K 0(o/2)]. 
\/p(1+p)) d aJo Vpfl+p] 

(3.33) ) 
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Figuree 3.3: Numerical results for G  g/GjJg as a function of £,, for |3B = 4. 

Thee last step follows from the fact that ^Ko(z) = —Ki (z). 

Noww look at the quotient of (3.32) and (3.31) which is 

q0zlKi(z)-Ko(z)] ] 

II 2 2 Ko(z) ) 
(3.34) ) 

withh z = (1 - q0
2)£,2/(4q0). Since q0 <E [0,1) we see that if Q(z) = Z[KT(Z) -

K0(z)]/Ko(z)) is bounded for all positive z, (3.32) is of higher order in 1/£. This is in-
deedd the case since l im z i 0 Q(z) = 0, limz_>oo Q(z) exists ([Ki (z) - K0(z)] - z " 3 / 2e "z 

andd Ko(z) ~ z~1 / 2e~z for z —> oo), both Ko(z) and Ki (z) are analytic for real, positive 
z,, and Ko(z) has no zeroes in this region. 

Havingg investigated the n = 1 term in the re-summed PDX series, we may turn to 

thee higher orders. From a detailed analysis (see appendix 3.A) it is found that all terms 

nn = 2 , . .. are of higher order in 1/Ï, in comparison with (3.31). In figure 3.3 we have 

plottedd Gj_ a/G_j_ o as a function of £,, for a representative value of |3B. We indeed 

seee that G^11 dominates over G *  for large £,. The decay is in good agreement with 

(3.62). . 

Thee asymptotic expression for the excess particle density at large £, follows by substitut-
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ingg (3.31) into (3.27): 

« » ( .)) - - P ^ o - e x p ( - 1 + j d p ) K0 ( l ^ a d p ) (3.35) 

wheree we have used that Zj_ is given by  = B(1 — qo2)/(87tqo) in terms of qo- In a 
similarr way an asymptotic expression for the current density at large t can be derived. 
Inn leading order it is found to be proportional to the asymptotic excess particle density: 

Jy > p W « - ^ B1 / 2 l 6 p 3 ( x )) (3.36) 

withh ópp(x) given in (3.35). Unfortunately, this simple proportionality relation ceases 
too be valid, if higher-order terms are incorporated in the asymptotic expansion. Com-
paringg (3.36) to (3.28) we see that there is a compensation between the term propor-
tionall  to pp(x) and the term that contains the derivatives of the Green function. For 
thee n = 0 contribution this compensation is complete, but for n = 1 only half of the 
secondd term in (3.28) is cancelled, at least in leading order in 1 /£,. 

Itt must be stressed that both (3.35) and (3.36) are valid for large £,, whereas 0B may 
takee arbitrary values. If, apart from £2, also [(1 — qo2)/qo]£2 is large, we can simplify 
(3.31)) to 

6i>."-K^«p(- SS <337) 

byy using the first term of the asymptotic expansion of the modified Bessel function 

Ko(z)) « J^e~z. (3.38) 

Inn this case the excess particle density profile is asymptotically given by 

II 2 2 

ópp(x)) « — pcosh(BB/4)exp 
2tanh(BB/4)__ * 

(3.39) ) 

Largee [{1 — qo2)/qo]£2 implies that the regime qo —> 1 or 3B —> oo is not included, 
whereass no such limitation is imposed on the use of (3.35). For fixed B this is not 
aa serious limitation in the present context of a non-degenerate electron gas, since for 
BB —> oo (T —> 0) we have to use Fermi-Dirac statistics anyway. In the next section it wil l 
bee shown that the Green function in the form (3.31) is crucial to obtain information 
onn the asymptotic profiles for a degenerate electron gas with Fermi-Dirac statistics. 

Too investigate the validity of the asymptotic expressions for G  « mentioned above we 
havee compared (3.31) and (3.37) with numerical results based on (3.24) or (3.29). The 
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Figuree 3.4: Comparison between results from numerical integration of (3.24) or 

(3.29)) ( ) and the asymptotic expressions (3.31) ( ) and (3.37) (— ) for 
—G  L/B as a function off,. 
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resultss are drawn in figure 3.4. It is clear that for SB = 4 both asymptotic expressions 
aree adequate, even for relatively small values of £,, whereas for BB = 16 the performance 
off  (3.31) is much better than that of (3.37). 

Finally,, for small B, the expression (3.39) for the excess particle density yields 

p,, (x) « -p (l + 1U2B2 - 1 m1) e-21''**  (3.40) 

Indeedd these terms correspond to the leading terms (for large £,2/BB) in the expression 

forr the density up to order B2, as given in [31]. 

Inn closing this section on the non-degenerate electron gas we remark that the path-
integrall  representation can be used to derive a strict bound on the particle density for 
alll  values of x. Upon setting k' = x — k/B we find from (3.20), (3.21) and (3.27): 

6 p p ( x ) = - I | | I J ° °° d k ' | d ^ ;; g ( a >x ) 0 ( k ' - x - m f a ,x ( T ) ) e - i B 2 J " oP d^ ^ 2 . 

(3.41) ) 
Al ll  paths that contribute to this integral must pass below the point k' — x (as a result of 
thee factor 0 (k' — x — infT <x> x (t))), while starting and finishing at k'. Now look at paths 
thatt go via a point below k' — x precisely at T = B/2. Since these form a subclass of all 
allowedd paths, the corresponding path integral provides a lower bound on |6pp {x)|: 

|5Pf>(x)|>> ^ 5 - ( ° ° dk'^dx'jd^f'Me'^ir^'-'^2 

x ( d ^ : I / 2 ( ^ ) e -i B ! ; » ' 2 d T [ a ," ' T , l i -- (3-42) 

Thee path integrals in this expression are now unrestricted, so that they are given by Gp 
(seee (3.22)). Integration over k' and x' — k' (in that order) gives 

11 / r F2 iV2 > 

|6p3(x)|| > -pErfc (3.43) ) 
.2tanh(3B/4) ) 

whichh is the bound for all x that we set out to derive. In the limi t of large £, this implies 

II 2 2 

limm £exp 
£—NX) ) 

|6pp(x)|| > z£= [2tanh(0B/4)]1/2 . (3.44) 
2tanh(.BB/4)JJ ' K p ' " " lypk 

Thiss inequality is consistent with (3.39), as it should be. In particular, the Gaussian 
decayy of 6pp(x), with the same characteristic length as in (3.39), is corroborated. 
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Ass can be seen from the results (3.35) and (3.36) the decay towards the bulk value of 
bothh the excess particle density and the current density is Gaussian, modulated by a 
Bessell  function and an algebraic factor. For not too large fJB the decay of the excess 
particlee density, as given by (3.39), is strictly Gaussian far from the edge. The asymp-
toticc decay of the current density is likewise Gaussian, albeit with an extra algebraic 
factor.. The characteristic length on which the Gaussian decay manifests itself is pro-
portionall  to [ tanhOB/4)/B]1 /2. As we have shown above, the Gaussian decay for the 
excesss particle density is consistent with a lower bound that can be derived exactly. 
Forr the current density it is consistent with the upper bound on the absolute value 
off  the current density that has been derived by Macris et al [40]. However, it should 
bee remarked that the upper bound obtained in that paper is rather wide. In fact, the 
characteristicc length of the Gaussian function in their upper bound is the thermal wave 
length,, which is independent of the magnetic field. This characteristic length is larger 
thann that in the Gaussian found here, at least for non-vanishing magnetic fields. 

3.44 Asymptotic^  (degenerate case) 

Thee results from section 1.2.3 imply that the particle density p^x) of a degenerate 
Fermi-Diracc system at temperature T = 0 and chemical potential \i is related to the 
densityy of the non-degenerate system by a Laplace transformation: 

f ooo 2 7 

d u e - ^ x )) = — pp(x). (3.45) 
oo PP 

Heree Z =  is the total one-particle partition function per unit volume for the 
bulk,, with Z|| = (27t|3)_1/2; the factor 2 takes the spin degeneracy into account. The 
relationn (3.45) implies that we can calculate the excess particle density 6p^{x) from 
ÖP3MM via an inverse Laplace transform (see (1.37)) 

11 rC+ioo 2 7 

^^MM=^LJ^^^=^LJ^^^MM (3-46) 
withh arbitrary c > 0. Hence, the asymptotic behaviour of the excess particle density 
off  the degenerate system for large £, can be obtained on the basis of the results of the 
previouss section. 

Lett again v = u/B, and introduce a new integration variable t by writing fS = £,(it + 
11 )/B, which means that we now choose c to be Ï./B. If we express the right-hand side 
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off  (3.35) in the variables £, and"v, and substitute it into (3.46), we get 

B3/2£l/2 2 

$Pn(x)»» - 167t3 3 t t ooo e-vfc(lt+1) T . ^ 2 
d t ( i t + l ) V 22 qo3/2 

" ( - ^ W 1 ^ 1 ) -- (3-47) 
Inn terms of the new variable t, we have q0 = tanh[£,(it + 1 )/4], so that large I implies 
q00 « 1 and 1 - qo2 « 4exp[-£ (it+1 )/2]. Consequendy, the argument of K0 in (3.47) 
iss small in absolute value, so that we can use the series representation 

KoU)) = JT 
n =0 0 

£__r _l o g( |) ) 
m=1 1 

1 1 ,2n n 
22™{n!)2' ' 

(3.48) ) 

forr the modified Bessel function. Here y is Euler's constant. In this way we get 

6pu(x)) « -*wyi.-i>/i *wyi.-i>/i 
47t3 3 

0 00 F4n r« 
dt t 

m=ll J 

Uponn using the identity [19] 

j[-v-(n+l/2)]£{it+l) ) 

( i t +1 ) 3 / 2 2 (3.49) ) 

»» e(it+1)x 
d tt — 7TT 

-ooo ( l t + l ) X 
== e(x) 

27TX X A-1 1 

r(A ) ) 
(A>0) ) (3.50) ) 

wee arrive at the asymptotic expression for the excess particle density 

öPnW~~ ïï5/2e 2_ 2^(n ! ) 2 

4[-v v ̂ nu +es-'-"(T ) ) (3.51) ) 

wheree the prime again indicates that the sum is only over those values of n that are 
smallerr than -v - 1 /2, corresponding to a sum over (partially) filled Landau levels. Note 
thatt the asymptotic expression derived here is valid for large t and fixed'*v. 

Thee profile of the current density for large £, and fixed v in the degenerate case can 
likewisee be obtained from the results for the non-degenerate case of section 3.3. In fact, 
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becausee of the linearity of the inverse Laplace transform, the asymptotic form of the 
currentt density is related to that of the excess particle density in the same way as in 
(3.36): : 

J y ^ W ^ - ^ v f U p ^ x ) .. (3.52) 

Thee expressions (3.51) and (3.52) for the asymptotic profiles of the excess particle 
densityy and the current density are identical to the leading terms of the asymptotic 
expansionss derived in the previous chapter (see also [32]), which have been obtained 
byy solving the eigenvalue problem and analysing the asymptotics of the eigenfunctions. 
Itt is also possible to recover the higher-order terms of the previous chapter by inserting 
higher-orderr terms in the approximate expressions for the factors qo and 1 — q2, in the 
integrandd in (3.47), taking into account corrections like (3.32), and including more 
termss in the re-summed PDX series as well. 

Thee asymptotic behaviour of (3.51) (and of (3-52)) is Gaussian in l, so that the char-
acteristicc length is the magnetic length l / \ /B for a completely degenerate electron gas. 
Furthermore,, the Gaussian is multiplied by a pre-factor that depends algebraically and 
logarithmicallyy on £,. For -v just above a half-odd integer, that is, for chemical poten-
tialss u. slightly above a Landau level, the profile of the excess particle density shows a 
singularr behaviour that is a remnant of the de Haas-van Alphen effect. A numerical 
assessmentt of the convergence of this asymptotic expression can be found in chapter 2 
(seee figure 2.3). 

Thee dominant term in the asymptotic behaviour comes from the highest Landau level 
withh the label [-v—1/2]. Since the pre-factor of the Gaussian in this term is proportional 
too f [

4t'v-1/2]+i )  ̂ o n s et 0f  the Gaussian decay shifts to larger and larger values off,, 
iff  v increases. In fact, (3.51) is useful only for lz > -v, or equivalently for x large 
comparedd to the cyclotron radius y/\i/B of particles at the Fermi level. If -v is large, a 
differentt behaviour can be expected in the regime £,2 s=s y, before the ultimate Gaussian 
decayy sets in at Ï,2 » -v. 

Inn conclusion, we can say that the PDX-approach provides a more "physical" way for 
studyingg the edge effects in the excess particle density and the current density of a 
magnetisedd free-electron gas confined by a hard wall. In particular the long-range in-
fluencefluence of the wall on these quantities becomes accessible in a natural way, both for 
thee non-degenerate case and for strong degeneracy. New results have been obtained for 
bothh these cases. In the former case the asymptotic spatial profiles were found to be 
Gaussiann (or Gaussian modulated by a Bessel function), with a characteristic length 
thatt is proportional to [tanh(fiB/4)/B]1/2. In the latter case the asymptotic behaviour 
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dependss on the number of filled Landau levels n = [u/B—1 /2]. In feet, it is determined 
byy a Gaussian, with a characteristic length equal to the magnetic length 1/\/B. multi-
pliedd by a polynomial and a logarithmic pre-factor. Since the degree of the polynomial 
pre-factorr grows with n, the Gaussian character of the asymptotics comes to the fore 
onlyy for distances that are large compared to y/n times the magnetic length. The latter 
resultss corroborate the ones from the previous chapter where we calculated the same 
quantitiess by using an eigenfunction approach. 

33 A Appendix: Higher-order  terms in the P DX series 

Inn this appendix we study the asymptotic behaviour of the terms with n > 1 in the 
re-summedd PDX series for the Green function, for large values of £,. The general form 
off  the term of order n in the re-summed PDX series is 

P P (r',r)) = (-) 
gn+l l -P P 

d t nn 9(Tn+1 
oo d T l " Jo 

* f £ i ,, x J ^ e x p l g ^ . ^ J r ' . r ]] (3.53) ) 

withh Tn +i = 6 — £ I L I Ti. The functions f(n) and g( n) can be found in [31]. Here we 
collectt them for the case r ' = r, which is relevant for the particle density. In that case 
wee can symmetrise the expressions in ti and t2. As a result they get the form 

#ii  ,>,T)= n 
n + !!  + 3/2 -(n+1)/2 2 

and d 

9^,, ,n(r,r ) = -£(t,+t2) 11 + 
11 t] + 12 

(3.54) ) 

(3.55) ) 

withh tt = tanh(BTi/2), s*  = sinh(BTi/2) and (a )n Pochhammer's symbol a(a + 

1) . - - (aa + n - 1 ). 
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Forr large £, the dominant contribution to the integral comes from the integration region 
forr which the factor multiplying £,2 in |g*n)| is minimal. This is the case for Ti = 
T22 = (3/2 and Ti = 0 (with 3 < i < n + 1). Therefore, we introduce on a par 
withh qo = tanh(BB/4) the new integration variables q+ = tanh[B(B — Ti — T2)/4], 
q__ = tanh[B(xi — Tz)/4] and for n > 2 also qi = tanh(BTt/2) = U (i = 3 , . .. ,n). 
Iff  the integrations are carried out in the order qi,q+ and q_, the allowed intervals 
off  these variables are q_ € [-qo.qoL q+ £ [0, (qo - lq-l)/(1 - qolq-l)]» and qi € 
[0,2q+/(11 + q2 )], with an additional condition on qi resulting from the 0-function in 
(3.53). . 

Wee now have to rewrite the integrand of (3.53) in terms of q+,q_ and qt. Let us 
considerr small values of q+ and qi. The function g( nj then gets the form 

fifö,fifö,  r > , r ) «-2 2 
q o ( 1 - q - 2 ]] (3.56) 
q o 2 - q - 2 2 

,, qo4q-2 + q o 2 q - 4 - 4 q 0
2 q _ 2 + q 0

2 + q _ 2 ^ 
( q 0

z - q - z ) z z 

Fromm the right-hand side it is seen that it is indeed true that only small values of q+ 
contributee to the integral in (3.53), as I,2 is large. In turn this implies that all qi have 
too be small as well,, whereas no condition of smallness is imposed on q_. In f(n) only 
thee p = 0 terms are relevant for large Ü2, since these give the terms with the highest 
powerr of £,. As a consequence we can write f'n' as 

' f tt rjT.T 

(3.57) ) 

againn for small values of q+ and qi. Finally, the 0-function in (3.53) is equal to 0(2q+ — 
^i!= 33 qi) in the neighbourhood of q+ = qi = 0. 

Sincee in the approximation considered here g( n ' does not depend on q̂  anymore, the 
integrall  over these variables can be evaluated easily: 

n__ f2q + / ( l + q +
 2) \ / n \ / n \ ] / 2 

d q i l e ( 2 q + - ^ q i jj  ( 2 q+ - ^ q i J 

yjtn-lJ/2 2 

2n-T[3(n-1)/2] ] 
(2q+)(3n-5)/2>> ( 3 > 5 8) 
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Too calculate the integral we have extended the upper limi t to oo, since the condition 
q++ < 1 guarantees that only small values of qi contribute anyway. The subsequent 
integrall  over q+ gets the following form: 

q p - l q - l l 
1 - q 0 | q _ | | 

dq++ (2q+)<3n-5>/2 

II 11 q0
4q_2 + qo2q-4 - 4q0

2q_2 + qo2 + q -2 

xx exp 

Againn we can choose oo for the upper limit , since only small values of q+ are significant; 
thee integral can then be carried out trivially. 

Wee are left with the integral over q_. Leaving it in its original form we arrive at 

G£jj(T,r ) ) 
2 n - 7 / 2 f l 1 / 2 2 

rqo o 
X X JJqo o 

d q - 7 ^ --
oo (qo 

( q 0
2 - q - 2 ) 3 ( n - 3 / 2 ) ( l - q - 2 ) 1 / 2 2 

xx exp 

4 q _ 22 + q 0
2 q - 4 - 4 q 0

2 q _ 2 + qo2 + q_2)3(n-n/2 

^ q o d - q - 2 ) 1 1 

22 q o 2 - q - 2 (3.60) ) 

AA final transformation of variables, by setting q_ = qoi/P/v7! +P> leads to the follow-

ingg asymptotic expression for tp in the regime of large £,: 

F22 \ roo d p 
,(n} } 
'-L.U U Ir.r ) ) ff ^ - ^ q o ^ ^ t l - q o 2 ) 

ll  ] B
 n3 /2£2n-3 e XP \\ 2q0JI oo VvUTv) 

v /11 + ( l - q o 2 ) p 
[2p*(11 - q2)2 + p(1 - qg)(3 - q2) + 1]3(n-D/2 

( l - q o 2 ) p ï 2 l l 
exp p 2qo o 

(3.61) ) 

Thee expression found here looks very similar to (3.29), the integral that appeared in the 
calculationn of G j_ a. As before, we may use the fact that only small values of (1 — q^)p 
contributee to the integral for large £. As a result, one has the asymptotic relation 

G f t l r . r )) « ( - ^ f f ' S ï i l r . r ) (3.62) 

forr large I,2. A similar connection formula holds between the asymptotic forms of the 
excesss particles density in various orders: 
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againn for large £,2. Likewise, one derives for the asymptotic forms of the current density 
inn various orders: 

II 2 2 C W « - TTT JiiW' f3-64) 

Wee may draw the conclusion that for large £, the n = 1 term in the re-summed PDX 
seriess yields the dominant contribution, both for the excess particle density and for the 
currentt density. 


