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Chapter 3

More density profiles

In the previous chapter we have seen that the analysis of the influence of the boundary
on the properties of a quantum many-body system is a difficult mathematical problem.
Even if the bulk properties of the unconfined system are understood, the presence of
the edge leads to a boundary-value problem that is hard to solve analytically. Leaving
out the inter-particle interaction simplified this problem quite a lot, although even in
that case the analysis remains complicated.

Over the years, several methods have been devised to analyse edge effects in the con-
fined magnetised free-electron gas. At zero temperature one may try to solve the eigen-
value problem in terms of distorted Landau levels and determine the edge currents by
summing the contributions of the lowest-lying eigenfunctions. Even for a simple flat
geometry this leads to a rather involved mathematical analysis in terms of parabolic
cylinder functions, the basics of which can be found in {39], [35]. In chapter 2 we
studied the profiles of the particle density and the electric current density along these
lines [32].

An alternative approach starts by focusing on the high-temperature regime, where
Maxwell-Boltzmann statistics applies. In that case a convenient tool is furnished by the
one-particle temperature-dependent Green function. As shown by Balian and Bloch [8]
the Green function for the confined system can be related to that of the corresponding
system without boundaries by making a systematic expansion that accounts for an in-
creasing number of reflections of the particles against the confining wall. The ensuing
multiple-reflection expansion was used in recent years to investigate perimeter correc-
tions to the magnetic susceptibility [44] and to determine the profiles of the particle
density and the (electric) current density for small values of the magnetic field [31].
These small-field profiles had been found before from perturbation theory [42, 27].
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It turns out to be difficult to generalise these results for the profiles to arbitrary field
strength and to relate them to those obtained by means of the eigenvalue method.

Some time ago Auerbach and Kivelson [7] invented a path-integral method to analyse
boundary effects in Green functions. By suitably decomposing the relevant paths near
the edge they derived a so-called ‘path-decomposition expansion’ (PDX) for the one-
particle Green function. In this chapter we will investigate whether the use of PDX may
shed light on the difficulties mentioned above and whether it leads to new results on the
profiles of physical quantities for arbitrary field strength, both for the high-temperature
region and in the regime of high degeneracy.

We will start by a review of the path-decomposition expansion and its derivation from
the Feynman-Kac path integral. Particular attention will be given to the convergence
of the PDX series. It will be shown that a suitable re-summation can greatly enhance
that convergence. The connection with the multiple-reflection expansion will be estab-
lished. Subsequently, the extension of the method so as to include magnetic fields will
be discussed by starting from the Feynman-Kac-It6 representation.

For the specific case of a non-interacting charged-particle system in a uniform magnetic
field, confined by a hard wall parallel to the field, the general form of the terms in the
PDX series can be established in detail. That result will be used to determine the first
few terms of the asymptotic expansion for the profiles of the particle density and the
current density. This asymptotic expansion is valid far from the edge and in the high-
temperature regime. In contrast to earlier work [42, 27, 30, 31] we will not need to
restrict ourselves to small field strengths, as we shall establish the full field dependence
of the profiles. As it turns out, the precise knowledge of the asymprotic profiles for high
temperatures and arbitrary fields is essential in determining how the profiles for the
degenerate case depend on the filling of the Landau levels.

3.1 Path-decomposition expansion

Consider a particle in an external potential V(r), i.e. with the Hamiltonian

p?

where we have chosen units in such a way that the particle mass drops out. The equi-

librium quantum statistical properties of a set of particles moving in the potential V is
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governed by the temperature Green function Gg(r’, 1), with B the inverse temperature.
Its path-integral representation is given by the Feynman-Kac formula

) 8
Gp(r',1) = (r'le PHjr) = Jdu;g,ﬁ(w)exp [— L d’rV(w('r)]] 3.2)

where w(T) describes the path and duﬁj{,ﬁ is the conditional Wiener measure [45] (see
also section 1.2.2). Roughly speaking one integrates over all paths from r to r’ with
a weight that is the combination of a part dependent only on the shape of the path
(absorbed into du;:()e’) and a part that depends on the potential V(r).

If a wall confines the particles to a region of space, the potential can be written as
V(1) = Vo(r) + V4, (1), where V,, is a steep wall potential and V; is a smooth external
potential. If the wall is hard, V,,, will be infinite outside the region and zero inside. In
that case one only has to integrate over paths that stay inside the region.

Exact evaluation of (3.2) for such a confined problem is in general not possible, even
if the corresponding unconfined problem can be solved completely. In this section
we will explore the use of the so-called ‘path-decomposition expansion’ (PDX), first
introduced by Auerbach and Kivelson [7], to determine the Green function of the
confined problem.

To simplify matters, consider the one-dimensional case, with a hard wall at x = 0, i.e.
Viw(x) = oo for x < 0 and V4, (x) = 0 for x > 0. As a first step, we split the Green
function into two parts

Gg(x/,x) = GR(x/,x) + G§(x",x). (3.3)

Here G is the Green function for the problem without a wall. In order to calculate
it, one needs to specify the potential Vj(x) for x < 0 as well. We will take the latter
to be the analytical continuation of the potential for x > 0. We shall assume that the
resulting Vo (x) is such that G% can be evaluated in closed form.

The second term of (3.3) is the difficult part. It is a correction that contains contribu-
tions from all paths crossing the boundary at least once, with an additional minus sign
so as to compensate the corresponding contributions in G$. In order to calculate G§,
one discretises the path integral in the usual way by introducing n evenly spaced grid
points at Tm = Men, with €, = B/(n + 1). Subsequently, one decomposes the paths
at the boundary [7]. Here ‘decomposing’ means that the paths are split into two at the
point T, where they cross the boundary for the last time. Choosing this ‘point of no
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Figure 3.1: Decomposition of a sample-path.

return’ between Ty, and Tm 41, one writes the path integral for G§ as

i 0 0
Gi(x/,x) = — lim ZJ dme' dxXmt1
n—><>om=1 5% 0

X GB—(m+1 )en (le Xm+1 )ng (X‘TTH-] axm)G?nen (Xm) X) (34)

for x and x’ both positive. This decomposition is depicted in figure 3.1. With the ‘point
of no return’ at T, < T < Tmy1, We see that on the interval [0, T,] this particular
path is not restricted at all and therefore included in the ‘free’ propagator G9, . After
Tm+1 though, it must stay above the x-axis, and is therefore included in the restricted
propagator Gg_<, ;-

In the small interval between T,, and T 41 the potential Vj can be ignored. The error
we make by doing so will vanish in the continuum limit. Hence, we may use in that
interval the ‘free’ propagator G‘f),ﬁ(x’,x) = (2nB) /2 expl—(x’ — x)?/2p] (here take
R = 1). The free propagator satisfies the identity

B )
G? g (Ix'l,—Ix]) = sgn(x) g,% L dTWG?,B_T(x’,x”) GY (0,x%). (3.5)

This identity, which is a generalisation of that used in [7], follows directly by differen-
tiation of the relation

1
J drlt(1— 1)) /2e~*/72*/0-%) — nErfe(a+b) (a>0,b>0) (3.6)
0
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with respect to b. Using (3.5) with x < 0 and x’ > 0 in (3.4), we get

n €n 4]
Gg(x',x) = — lim lim J d’r[ dxm

n—oo x’ 10
bl m=1 0

3 GBmen (X', X")G20,Xm)Gohe, (4m, %), (37)
The integral over xm, can be extended to the interval [—o0, o0}, if a compensating fac-
tor 1/2 is inserted. In fact, only small values of xm contribute anyway, at least in the
continuum limit, owing to the presence of the second G° function. For these small
values of x, the integrand is approximately invariant under a change of sign of xm.
Subsequently, we may join the two G into one, so that we get a closed integral relation

1P )
_I dr = Gp(x',x") G2(0,x) (3.8)

¢(x',x) =— lim
3( ) xnloz 0

for positive x and x’. This integral relation is the PDX formula derived in [7]. Since
the right-hand side contains the original Green function G, we can iterate this integral
equation by inserting (3.3). In this way we arrive at the PDX series:

1

B
Gg()(’,x):G%()c’,X)—%ij dt aa Gﬁ <(x,x")G2(0,x)

B—t
+ lim J dtv— lim J dt’
x"10 ax” X0

meB e (X, %) GE,(0,x") G2(0,x) —...  (3.9)
In figure 3.2 a sample-path contained in the third term of (3.9) has been drawn. We
see that it crosses the x-axis twice from below at tand T+ 7',

To study the convergence of the PDX series we look at the special case of a vanishing
external potential V. The Green function for a free particle in the presence of a hard
wall can be calculated using a reflection principle. It reads

Gt,p(x',x) = G2 a(x’,x) — Gf g (—x",X) (3.10)

for x and x’ positive. Since the first term is G, the second term must be the correction
tGh G- T(Ll check the validity of (3.9) for the present case, we employ (3.5) repeatedly, with
e result

Gr,p(x’,x) = GY g(x’,x) (Zz* ) g(—x',x). (3.11)
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Figure 3.2: A multiple reflected sample-path.

This is indeed identical to (3.10). It is clear that all terms in (3.9) are necessary to
reproduce the correct result. In addition, we cannot change the order of integration
and taking the limit in (3.9). In fact, since one has limy o aan?'T,(O,x”] = 0, this
would give an incorrect result. This suggests that (3.9) is not the most convenient form
of the PDX to use.

A slightly different series is obtained by modifying (3.8) as follows:

B9
C [l 1 Y 1 L1y ~0

Gi(x',x) = XI,I,IT"IJ"IOJO dt ax”GB_T(x ,x") G(0,x) (3.12)
where the limit x T| 0 is the average of the limits x T 0 and x | 0. Since G.(x’,x)
vanishes for x < 0, at least for a hard wall, we have merely added zero to the right-hand
side of (3.8). If we iterate (3.12), with (3.3) inserted, we get the re-summed PDX series

Sy
— 0 . 0 0
Gg(x’,x) = Gﬁ(x',x) — xl/}il’%ojo dt aX”GB_T(X/’XII) G2(0,x)

6] d B—T
+ lim J dt lim J. dt’
x"170 Jo ox’ x"170 Jo

0

0
X WG%,T_T,(X',X”’) G%(0,x")G2(0,x)—... (3.13)

Let us consider again the case Vo(x) = 0. One easily verifies that the correction G§ is
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given by the second term of (3.13) alone, since it follows directly from (3.5) that

B9
lim [ dr 6l ) G0 = Gl 1) (.14

when x and x’ are both positive. The convergence of the re-summed PDX series is thus
found to be much better than that of the original one. All higher-order terms in (3.13)
vanish separately in the present case, since one may prove

: 0 . * 0 "
X%OW*)}}’I%}OJ'Od Gf‘r T/(X X )Gf’r (0 x’ ) 0. (3.15)

a n

Note that here we are allowed to interchange the order of integration and taking the
limit. This property is an additional advantage of the series in (3.13). Returning to
the general case with Vp(x) # 0, we expect that both favourable properties of the re-
summed PDX series (fast convergence and invariance under interchange of the order of
integration and taking the limit) are conserved. Of course, in general the series will no
longer terminate after the second term. Nevertheless, in some applications only a few
terms in the expansion are relevant. In particular if x and x” are ar a great distance from
the wall, the higher order terms can be expected to be small in comparison to the first
term. Paths that start far from the boundary and cross it more than once, will have to
get there much ‘faster’. This in turn makes their weight in, and their contribution to,

the path integral much smaller. This will be investigated in more detail in the remainder
of this chapter.

The re-summed PDX series (3.13) is of the general form

=]

Gplx',x) = Y GEV(x",x) (3.16)

n=0

where we put G (9) — Gg. The term of order n involves n positions at the boundary. It

can be seen as ansmg from paths along which the particle hits the boundary n times.
These multiple reflections at the boundary form the basis of the multiple-reflection
expansion, which was derived by Balian and Bloch [8] quite some time before the
path-decomposition expansion was written down. A close inspection shows that the
two expansions are completely equivalent.

Note that in principle the PDX formula (3.8) and the PDX series (3.9) can be applied
to any problem involving distinct spatial regions, for example to tunnelling problems
[7]. In contrast, the modified PDX formula (3.12) depends on the presence of a hard
wall. The application of the re-summed PDX series (3.13) is likewise limited to hard-
wall problems only.
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3.2 Magnetic field

We will now apply the methods of the previous section to a confined free-electron gas
in a uniform magnetic field. The Hamiltonian is given by

H= 2 (p—AJ 4 Vau(r) (3.17)

where V,, is again a hard-wall potential. Because of the symmetry of the problem we
will choose the Landau gauge A = (0,Bx,0). Againwesete =1, m =1,¢c =1 and
h = 1 like we did in the previous chapter.

The presence of the vector potential complicates matters. The Feynman-Kac represen-
tation (3.2) of the path integral is no longer valid. We have to use the Feynman-Kac-1td
formula instead, which in the special case of V - A = 0 reads (see section 1.2.2)

, B
Gg(r',1) =J‘du1.r’(,ﬁ(w)exp [— L dt V,,{w(T)) +i[ dr” -A(r”):| . (3.18)

If we let w, denote the x-component of the path, we can replace the exponential factor
containing Vi, by 8(infr w(T)). Since the factor that contains the vector potential is
independent of z, the integral over the z-component of the path gives a trivial factor
(2nB)~"/2 exp[—(z' — z)?/2PB]. The part of the Green function that depends on x and
y will be denoted by G g(r’, ) in the following.

The path integral over the y-component of the path can be evaluated by a Fourier-
transform technique. In fact, discretising the x- and y-components of the path, with
n intermediate points, we write W(Tm) = Tm = (Xm,Ym), With 7o = rand r47 =
r’. The integral in the exponent of (3.18) is then given by J'g drw(1) - Alw(T)) =
Yo —o(Ttms1 —¥m) - A(rm) (in [t6’s convention). We get

n+1 ('I" —r . )2
Grpa(r',v) =[] Jdrm (2men) " exp [__mEeL] 0(xm)
m=1 n
x exp [i(Ym — Ym—1)Bxm—-118(rns1 —1'). (3.19)

The integrals over ym can now be carried out by using the standard Fourier represen-
tation of the Dirac 8-function. This introduces an integral over an additional variable
k. Going back to the continuum limit for the path integral over the x-component of
the path we arrive at

Gy p(r!,r)=(2m)" j dke*¥'~¥)G4(x" —k/B,x — k/B, k) (3.20)

—o0
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with
Ga(x',x,k) =Jdu’;,'a“(wx)e(igfwxm +k/B)e"¥B7SSdvlwntnl® (3 97)

This function Gg is the propagator for a particle in a one-dimensional harmonic po-
tential with a wall at the position —k/B.

We are now in a position to use the PDX techniques from the previous section. The
leading term in the PDX series is found by omitting the wall. In that case the propagator
Gp becomes [45]:

1/2 12 2 !
SYRDPIN HE T C

2rsinh (BB *P |~ 2tanh(BB) T sinh(BB)

] . (3.22)

As a matter of fact, G§ is independent of k, since the only k-dependence in (3.21) is
in the position of the wall. After performing the integral over k, which is Gaussian, we
find that the leading term in the PDX series is given by

B ’ iB _, ’
—W(T —‘l")2+ ?(X +X)(y —y)]
(3.23)

which is indeed the Green function in the Landau gauge for the unconfined system.

(0) (,.7 _ B
CLe(™ ") = sinn(eB/2) P [

The next term in the re-summed PDX series (3.13) (or (3.16)) is more complicated.
The integral over k is again Gaussian (in fact it is Gaussian for all terms), but the
additional integral over T is not. If we set t; = tanh(tB/2), s; = sinh(1B/2), t; =
tanh((B — T)B/2) and s; = sinh({B — 1)B/2), we can write

BZ

B
16372 J dr (v, v) exp [gpx (v, 7)) (3.24)

G 1
(,)B(l,)l)
0

1
L) =

1/2 [;
1gia__(ta) [" x ] (3.25)

— —— 1 ,_
2 s1s2(ty +t2)]/2 t + t +ily' —y)

and

M s o _ B[t +xt2+iy’ —y)? 1Y 2 1\,
gB,T(r,r)—4{ s tit o )x 2+ )
(3.26)

Similar expressions can be found in [31]. Note that the formulas in [31] differ slightly
from those given above. We have made use of the property Ga(v/,7) = [Gg(r,7/)]*
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and of the possibility to change T into p — T to write (') and g!") in a form that is
more symmetric.

The higher-order terms in the re-summed PDX series can be found along similar lines.
For the special case v’ = r they have been collected in appendix 3.A. They are found
to agree with those derived in [31], after appropriate symmetrisation.

3.3 Asymptotics (non-degenerate case)

The particle density and the (electric) current density can both be found from the
Green function. In the absence of quantum degeneracy the particle density is directly
related to G g(r, 1) via

pp(x) = %GL,BU‘,T) (3.27)

where p is the bulk density and Z, = B/[47msinh(BB/2)] is the transverse one-particle
partition function per unit area for the bulk. The expression for the current density is
slightly more complicated, involving derivatives of G g:

p 1] 0

; L NS / _
Jy,ﬁ(x)—zlﬁ ay,GL,s(r,r) ayGi,p(r,r) - Bxpp(x). (3.28)

Using only the n = 0 term of the PDX series in the expression for pg (x) yields the bulk
density p = pg(o0), as it should, since G(J)_,B(r’ 1) = Z, . Therefore we will consider
the excess particle density §pg(x) = pg(x) — pg(co) instead of pg(x) in the following.
Since there is no bulk current, the n = 0 term of the PDX series does not contribute to
the current density.

To determine the exact profiles of the excess particle density and the current density for
arbitrary distances from the wall we need to evaluate all terms in the re-summed PDX
series. However, the t-integral in (3.24) cannot be carried out analytically. Likewise,
evaluation of the multiple T-integrals in the higher-order terms given in appendix 3.A
is in general not possible.

For large distances from the wall (in units of the magnetic length 1/v/B) the leading
contribution to the profiles comes from the n = 1 term in the re-summed PDX series,
as we will discuss presently. Moreover, the T-integral in (3.24) can be evaluated analyti-
cally in that limit. It is thus possible to derive asymptotic expressions for the profiles of
the excess particle density and the current density that are valid for large v/B x. Since
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it is natural to measure distances in terms of the magnetic length 1/vB we will use
= v/B x wherever appropriate, just like in the previous chapter.

A change of variables p = q%/(q0% — q?), with q = tanh[B(2t — B)/4] and qo =
tanh(Bf/4), brings (3.24) into the form

(n _ BE 1-—qo? E2
GL,B(T,T) = - 8\/—713/2 3/2 exp _E

— (1 —QO) -2)
J \/—+p 1+ (1—qo2 pexp( ——&°). (3.29)

Because of the presence of &2 in the exponential, only small values of (1 — qo2)p/qo
contribute to the integral for large £. Since one has 0 < go < 1, this implies small
values of (1 — qo?)p. Note that this does not necessarily mean that p itself is small, as
do may be close to 1. For large £ the factor /14 (1 — go2)p in the integrand can be

replaced by 1. Subsequently, we can use

J T_ 90 ar_ e%2Ko(a/2) (3.30)
o Vr(1+p)

where Ko is the modified Bessel function of the second kind. In this way we arrive at
the following asymptotic expression for the transverse part of the Green function for
large &:

(M . ___BL 1-qo® 1+ae®;, 1—qo?;;
G, glrr) =~ 873 qa32 exp day £2 ) Ko o 1. (3.31)

The next term in the asymptotic expansion of G(l]‘lﬂ is

___BE  (1—qo?)? ex 1 +QO2£2
8V2n3/2 4qg32 OF 4qo

X {K‘ (] a0 5‘2) (] e Ez)} (332

which can be derived by substituting /1 + {1 — qoZ)p = 1 + (1 — qo2)p/2 instead of
simply 1 and using the relation
J ® pdp

o vp(1+p) da Jo

eap__ 4 r° _ 9P e _ %eufzm, (a/2) — Kola/2)\.

vr(l1+7p)

(3.33)
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Figure 3.3: Numerical results for G(f,)ﬁ / G(j')‘3 as a function of &, for B = 4.

The last step follows from the fact that dd—zKo(z] = —Kj(z).
Now look at the quotient of (3.32) and (3.31) which is

qo z[K1(z) — Ko(z)]

2 Kol e

with z = (1 — qo?)&2/(4qo). Since qo € [0,1) we see that if Q(z) = z[Ki(z) —
Ko(z)]/Ko(z) is bounded for all positive z, (3.32) is of higher order in 1/&. This is in-
deed the case since lim,|p Q(z) = 0, lim,_, Q(z) exists ([K;(z) — Ko(z)] ~ z73/2¢—2
and Ko(z) ~ z71/2e~% for z — 0), both Ko(z) and K;(z) are analytic for real, positive
z, and Ko(z) has no zeroes in this region.

Having investigated the n = 1 term in the re-summed PDX series, we may turn to
the higher orders. From a detailed analysis (see appendix 3.A) it is found that all terms
n = 2,... are of higher order in 1/ in comparison with (3.31). In figure 3.3 we have
plotted G(J_z,)ﬁ/ GT’)B as a function of &, for a representative value of BB. We indeed

see that Gf‘)ﬁ dominates over Gf)ﬁ for large €. The decay is in good agreement with

(3.62).

The asymptotic expression for the excess particle density at large & follows by substitut-
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ing (3.31) into (3.27):

E i ( 1+q0? -2) (] — 4o’ -2)
6 R —p—= - Ko | —— 33
pp(x) P ando” Texp 290 £° ) Ko 90 & (3.35)
where we have used that Z is given by Z, = B(1 — q9?)/(8mqo) in terms of qo. In a
similar way an asymptotic expression for the current density at large £ can be derived.
In leading order it is found to be proportional to the asymptotic excess particle density:

1 -
ju,p(x) = —EB'/ZE. 5pp(x) (3.36)

with 8pg(x) given in (3.35). Unfortunately, this simple proportionality relation ceases
to be valid, if higher-order terms are incorporated in the asymptotic expansion. Com-
paring (3.36) to (3.28) we see that there is a compensation between the term propos-
tional to pg(x) and the term that contains the derivatives of the Green function. For
the n = 0 contribution this compensation is complete, but for n = 1 only half of the
second term in (3.28) is cancelled, at least in leading order in 1/£.

It must be stressed that both (3.35) and (3.36) are valid for large £, whereas B may
take arbitrary values. If, apart from &2, also [(1 — qo?)/q0)&? is large, we can simplify

(3.31) to ,
1 —adp2 4
B & exp (— £ ) (3.37)

)] ~
GL,B(r,r) e B Z—qo-

by using the first term of the asymptotic expansion of the modified Bessel function

Ko(z) = \/—ge_z. (3.38)

In this case the excess particle density profile is asymptotically given by

£2
8pg(x) =~ —pcosh(pB/4) exp [—m] . (3.39)

Large [(1 — q02)/qol&? implies that the regime go — 1 or BB — 00 is not included,
whereas no such limitation is imposed on the use of (3.35). For fixed B this is not
a serious limitation in the present context of a non-degenerate electron gas, since for
B — oo (T — 0) we have to use Fermi-Dirac statistics anyway. In the next section it will
be shown that the Green function in the form (3.31) is crucial to obrain information
on the asymptotic profiles for a degenerate electron gas with Fermi-Dirac statistics.

To investigate the validity of the asymptotic expressions for G(J_]‘)‘5 mentioned above we
have compared (3.31) and (3.37) with numerical results based on (3.24) or (3.29). The
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Figure 3.4: Comparison between results from numerical integration of (3.24) or
(3.29) ( ) and the asymptotic expressions (3.31) (------ ) and (3.37) (— - —) for
—GS,)B/B as a function of .
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results are drawn in figure 3.4. It is clear that for BB = 4 both asymptotic expressions
are adequate, even for relatively small values of &, whereas for BB = 16 the performance

of (3.31) is much better than that of (3.37).
Finally, for small B, the expression (3.39) for the excess particle density yields

o~ 1 g2p2_ ! apg2) -262/88
pa(x) =~ —p (1 + 3213 B 24685, ) e . (3.40)
Indeed these terms correspond to the leading terms (for large £2/BB) in the expression

for the density up to order BZ, as given in [31].

In closing this section on the non-degenerate electron gas we remark that the path- |
integral representation can be used to derive a strict bound on the particle density for |
all values of x. Upon setting k’ = x — k/B we find from (3.20), (3.21) and (3.27): |

J dk’Jduk,’B(wx)e(k' x—-mfwx('r))e 387 8 drclw (1)

(3.41)
All paths that contribute to this integral must pass below the point k' —x (as a result of
the factor 8(k’ —x — inf. w (1)), while starting and finishing at k’. Now look at paths
that go via a point below k’ — x precisely ac T = /2. Since these form a subclass of all
allowed paths, the corresponding path integral provides a lower bound on [6pg (x)!:

dpp (x) = szl

k'—x

pB r’ ’J J ',8/2 —1B2 [8/2 drfw, (1))2
dpp(x)| > —— dk dx’ | dp;, wy)e 0 x
5pp (x)| > nzy ) . Mo’ (wx)
) Jdutjig/z(wx)e_%Bz'rg”dﬂw"m]z- (3.42)

The path integrals in this expression are now unrestricted, so that they are given by G}
(see (3.22)). Integration over k’ and x’ — k' (in that order) gives

] £2 172 |

which is the bound for all x that we set out to derive. In the limit of large £ this implies

2

fim, Eexp [2tanh(BB/4)
This inequality is consistent with (3.39), as it should be. In particular, the Gaussian

|
]IBPB(X)I > 20 k(BB 2. (.40 '
decay of 8pg (x), with the same characteristic length as in (3.39), is corroborated.
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As can be seen from the results (3.35) and (3.36) the decay towards the bulk value of
both the excess particle density and the current density is Gaussian, modulated by a
Bessel function and an algebraic factor. For not too large BB the decay of the excess
particle density, as given by (3.39), is strictly Gaussian far from the edge. The asymp-
totic decay of the current density is likewise Gaussian, albeit with an extra algebraic
factor. The characteristic length on which the Gaussian decay manifests itself is pro-
portional to [tanh(BB/4)/B]'/2. As we have shown above, the Gaussian decay for the
excess particle density is consistent with a lower bound that can be derived exactly.
For the current density it is consistent with the upper bound on the absolute value
of the current density that has been derived by Macris et a/ [40]. However, it should
be remarked that the upper bound obtained in that paper is rather wide. In fact, the
characteristic length of the Gaussian function in their upper bound is the thermal wave
length, which is independent of the magnetic field. This characteristic length is larger
than that in the Gaussian found here, at least for non-vanishing magnetic fields.

3.4 Asymptotics (degenerate case)

The results from section 1.2.3 imply that the particle density p,.(x) of a degenerate
Fermi-Dirac system at temperature T = 0 and chemical potential p is related to the
density of the non-degenerate system by a Laplace transformation:

2z

oBPe (x). (3.45)

L dpe Pp,(x) =

Here Z = Z)Z, is the total one-particle partition function per unit volume for the
bulk, with Z, = (27tB)~"/2; the factor 2 takes the spin degeneracy into account. The
relation (3.45) implies that we can calculate the excess particle density 8p,(x) from
dpa(x) via an inverse Laplace transform (see (1.37))

soulx) = o | a8 e+2Z 5oy 1 (3.46)
g 2mi c—ioo PR ¢ '
with arbitrary ¢ > 0. Hence, the asymptotic behaviour of the excess particle density
of the degenerate system for large & can be obtained on the basis of the results of the
previous section.

Let again v = p/B, and introduce a new integration variable t by writing f = &(it +
1)/B, which means that we now choose ¢ to be £/B. If we express the right-hand side
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of (3.35) in the variables £ and v, and substitute it into (3.46), we get

dpu(x) =~

B3/2E1/2 [ evEit+l) 1 _ q42
16m3 J_oo (it +1)3/2 gp3/2

1+ qo® 2) (]—QOZ-z) 4
x exp( 29 —¢ T &), (3.47)

In terms of the new variable t, we have qo = tanh[(it + 1)/4], so that large  implies
qo ~ 1and 1—qo? ~ 4exp[—&(it+1)/2]. Consequently, the argument of Ko in (3.47)
is small in absolute value, so that we can use the series representation

Ko(z) = Z [Z nll-y—log (;)] EZ“(]T)ZZZ“ (3.48)

n=0 Lm=1

for the modified Bessel function. Here v is Euler’s constant. In this way we get

B3/2£‘|/2 _£22 o0 F4n )
bpu(x) ~ — 3 2| e

473
= 1 £2\] elv-(n+1/201EGt+1)
+) H—Y—log( )] ErSIZ (3.49)

m=1

Nfﬂ

X [(it+l

Upon using the identity [19]

00 e(it+l)x 27‘0(}‘_1
J dt = 0(x) N

oo TR (A>0) (3.50)

we arrive at the asymptotic expression for the excess particle density
3 /2% a 2 £'4n -I 1/2
~ — —£2/2 _ —
8py(x) ~ 572 © Z 22n ()2 [ (n + 2)]

< —l——+i‘——y—1og(g) (3.51)
4v — (n+ 3] m 2 ’

m=1

where the prime again indicates that the sum is only over those values of n that are
smaller than v — 1/2, corresponding to a sum over (partially) filled Landau levels. Note
that the asymptotic expression derived here is valid for large £ and fixed v.

The profile of the current density for large  and fixed v in the degenerate case can
likewise be obtained from the results for the non-degenerate case of section 3.3. In fact,
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because of the linearity of the inverse Laplace transform, the asymptotic form of the
current density is related to that of the excess particle density in the same way as in

(3.36): ]
Jy(x) = —E\/_B_E 5pu(x). (3.52)

The expressions (3.51) and (3.52) for the asymptotic profiles of the excess particle
density and the current density are identical to the leading terms of the asymptotic
expansions derived in the previous chapter (see also [32]), which have been obtained
by solving the eigenvalue problem and analysing the asymptotics of the eigenfunctions.
It is also possible to recover the higher-order terms of the previous chapter by inserting
higher-order terms in the approximate expressions for the factors qo and 1 — g2 in the
integrand in (3.47), taking into account corrections like (3.32), and including more
terms in the re-summed PDX series as well.

The asymprotic behaviour of (3.51) (and of (3.52)) is Gaussian in &, so that the char-
acteristic length is the magnetic length 1/v/B for a completely degenerate electron gas.
Furthermore, the Gaussian is multiplied by a pre-factor that depends algebraically and
logarithmically on &. For v just above a half-odd integer, that is, for chemical poten-
tials p slightly above a Landau level, the profile of the excess particle density shows a
singular behaviour that is a remnant of the de Haas-van Alphen effect. A numerical
assessment of the convergence of this asymptotic expression can be found in chapter 2
(see figure 2.3).

The dominant term in the asymptotic behaviour comes from the highest Landau level
with the label [v—1/2]. Since the pre-factor of the Gaussian in this term is proportional
to E*v=1/21+1, the onset of the Gaussian decay shifts to larger and larger values of £,
if v increases. In fact, (3.51) is useful only for £2 > v, or equivalently for x large
compared to the cyclotron radius /jt/B of particles at the Fermi level. If v is large, a
different behaviour can be expected in the regime £2 ~ v, before the ultimate Gaussian
decay sets in at £2 > v.

In conclusion, we can say that the PDX-approach provides a more “physical” way for
studying the edge effects in the excess particle density and the current density of a
magnetised free-electron gas confined by a hard wall. In particular the long-range in-
fluence of the wall on these quantities becomes accessible in a natural way, both for
the non-degenerate case and for strong degeneracy. New results have been obtained for
both these cases. In the former case the asymptotic spatial profiles were found to be
Gaussian (or Gaussian modulated by a Bessel function), with a characteristic length
that is proportional to [tanh($B/4)/B]'/2. In the latter case the asymptotic behaviour




3.A. Appendix: Higher-order terms in the PDX series 53

depends on the number of filled Landau levels n = [u/B—1/2]. In fact, it is determined
by a Gaussian, with a characteristic length equal to the magnetic length 1/v/B, multi-
plied by a polynomial and a logarithmic pre-factor. Since the degree of the polynomial
pre-factor grows with n, the Gaussian character of the asymptotics comes to the fore
only for distances that are large compared to \/n times the magnetic length. The latter
results corroborate the ones from the previous chapter where we calculated the same
quantities by using an eigenfunction approach.

3.A Appendix: Higher-order terms in the PDX series

In this appendix we study the asymptotic behaviour of the terms with n > 1 in the
re-summed PDX series for the Green function, for large values of . The general form
of the term of order n in the re-summed PDX series is

(n) B! (& B
Gy (', 1) = (—)“WJ dr '--L dtn 8(Tn+1)
(n)

x5 L rexplogt) o (r,7)] (3.53)

with Tn41 = B — 3, Ti. The functions (™) and g™ can be found in [31]. Here we
collect them for the case v/ = r, which is relevant for the particle density. In that case
we can symmetrise the expressions in t; and t;. As a result they get the form

n+l . 3,2 n+1 —(n+1)/2 t
f(Bn'l H L Z ti hth 2 l dn even
! PARE ) 2 n/2 ’

i=1

[(n—1)/2] (1/2), n+e1 \ P2
+ Z n—2p—1 (Zt‘) ENT2P(ty + )2

oo 34)-E)()
(5 () e

n+1
t tz i=1 t'i'

with t; = tanh(B7;/2), s; = sinh(Bt;/2) and (a)n Pochhammer’s symbol a(a +
Ne--(a+n=1).

n g2 1 t1+t
Qfa. l, o (1 T) = _%(t] +t2) [1 + — 15 l (3.55)
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For large & the dominant contribution to the integral comes from the integration region
for which the factor multiplying £2 in |g{™)| is minimal. This is the case for 71 =
T2 = B/2and 1; = 0 (with 3 < i < n + 1). Therefore, we introduce on a par
with qo = tanh(BB/4) the new integration variables q., = tanh[B(f — 1 — 12)/4],
qd_ = tanh{B(t; — 72)/4] and for n > 2 also q; = tanh(B1;/2) =t; 4 = 3,...,n).
If the integrations are carried out in the order q;,q+ and g, the allowed intervals
of these variables are q_ € [~qo, 90, g+ € [0,(q0 — Iq-1)/(1 — qolq-1)], and q: €
[0,2q4 /(1 + ¢3)], with an additional condition on g; resulting from the 8-function in
(3.53).

We now have to rewrite the integrand of (3.53) in terms of q4,q— and gi. Let us
consider small values of g and g;. The function g™ then gets the form

E2 [qo(1 — q-2)
g(ﬁrj'")rl ..... Tn (ry r) ~ _"2—' __q:])oz — q_z (3-56)
4, 2 24 4 _4q42q. 2 2 2
+Qo qg_“+4qo°q— qo“q9—-+4qo- +q— 4+

(go% — g-2)?

From the right-hand side it is seen that it is indeed true that only small values of q
contribute to the integral in (3.53), as £2 is large. In turn this implies that all g; have
to be small as well, whereas no condition of smallness is imposed on q_. In f(™) only
the p = 0 terms are relevant for large €2, since these give the terms with the highest
power of £. As a consequence we can write f(™) as

2(1 — q0?) ( 1-q.2 )3’2

~. gn 90
() =& FnT/2 Y —

X (2q+ — Z qi) (H q; /2) (3.57)
i=3 i=3

again for small values of q.. and q;. Finally, the 8-function in (3.53) is equal to 8(2q —
Y 3 qi) in the neighbourhood of g, = q; =0.

(n)
fﬁ.'fl

Since in the approximation considered here g™ does not depend on q; anymore, the
integral over these variables can be evaluated easily:

n o 02q4/(1+q4+2) n n /2 s n
(HJ in> 0 (2q+ -y Qi) (ZQ+ -3 Qi) (H qi’/z) =
=370 i=3 i=3 i=3

nin—1)/2

(3n—5)/2
7 TFBm - 1)/2 20 - (338)
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To calculate the integral we have extended the upper limit to oo, since the condition
d+ < 1 guarantees that only small values of g; contribute anyway. The subsequent
integral over q.. gets the following form:

qO—|ﬂ-|

E? 4o*q-% + qo®d-* ~440’q-? + qo® + q_? ]
x exp |——= . (3.59
P[ 2 (qoz_q_z)z q+ ( )
Again we can choose oo for the upper limit, since only small values of q are significant;
the integral can then be carried out trivially.

We are left with the integral over q_. Leaving it in its original form we arrive at

2n—7/2q(|)/2

G(EL(T,T) ~ (—)"BWU - qo?)
qo d (qOZ _ q_2)3(n—3/2)(~| _ q_2)1/2
8 L 190" a2 + ao2a_* —402q_2 + qo? + q_2)3(n-11/2
£2 qo(1 —q_?)
_EGl—a ) 6
X exp [ T qol — a2 (3.60)

A final transformation of variables, by setting q— = qo./p/v/T + P, leads to the follow-
ing asymptotic expression for G S_“L in the regime of large &:
I, 7t
o vr(1+p)

n—9/2, 3n-9/2(1 _ q.2 2
27"do (0—do )exp(_a )

GM(r,r) ~ (-)"B

n3/2E2n-3 240
N 1+ (0 —qo?)p
[2p2(1 - q3)2 +p(1 — a3)(3 — q3) + 113(n—-1/2
(1—q0®)p;2
X exp [——z—qo—-—-& . (3.61)

The expression found here looks very similar to (3.29), the integral that appeared in the
calculation of G(l],)ﬁ. As before, we may use the fact that only small values of (1— g3)p
contribute to the integral for large £. As a result, one has the asymptotic relation

(n) 203\"" 1)
GJ_'B(T', 1‘) o] (—z—z) G_L_B(r,r) (3.62)

for large E2. A similar connection formula holds between the asymptotic forms of the
excess particles density in various orders:

2q 3\ n—1
505 (x) ~ (__."_) 504 (x) (3.63)
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again for large £2. Likewise, one derives for the asymptotic forms of the current density
in various orders:

(n 240%\"7
i =~ (-4 ). (3.64)
We may draw the conclusion that for large £ the n = 1 term in the re-summed PDX
series yields the dominant contribution, both for the excess particle density and for the

current density.



