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Chapterr  5 

Parallell  Asynchronous Cellular 
Automata a 

Mont ee Carlo Method [Origin: after Count Montgomery de Carlo, Italian 
gamblerr and random-number generator (1792-1838).] A method of jazzing 
upp the action in certain statistical and number-analytic environments by 
settingg up a book and inviting bets on the outcome of a computation. 

—S.. Kelly-Bootle, The Computer Contradictionary 

5.11 Introductio n 

Manyy fundamental problems from natural sciences can be modeled as a dy-
namicnamic complex system. A dynamic complex system is defined to be a set of 
uniquee elements with well defined microscopic attributes and interactions, 
showingg emerging macroscopic behavior. This emergent behavior can, in gen-
eral,, not be predicted from the individual elements and their interactions. In 
manyy cases, dynamic complex systems cannot be solved by analytical methods, 
butt require explicit simulation of the system dynamics to obtain insight into 
thee system. A distinguished computational solving method for a large class of 
dynamicc complex systems are (synchronous) cellular automata (CA). The CA 
modell  is in itself a set of dynamic systems where space, time, and variables 
aree discrete. Cellular automata exhibit remarkable self-organization that can 
bee used in models for real-world systems. For instance, the CA technique has 
provenn to be useful for direct simulation of fluid flow experiments in both two 
andd three dimensions. Other applications of CA in natural sciences can be 
foundd in lattice spin models such as the Ising model, or, in biology for example, 
inn immune deficiency in cancer tissue simulations. 

AA commonly made assumption is that the update strategy of a CA is syn-
chronous,, i.e., the CA system evolves in discrete time. In the asynchronous 
cellularcellular automata (ACA) model the synchronous cell update is relaxed to allow 
forr independent, asynchronous cell updates. The asynchronous update strategy 
resultss in a more generic approach to CA, where also continuous-time models 
cann be described conveniently (Bersini and Detours 1994; Lumer and Nicolis 
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1994). . 
Thee APSIS simulation environment is designed to effectively support the 

parallell  execution of dynamic complex systems, and in particular spatially de-
composedd asynchronous cellular automata. The use of PDES to solve this class 
off  problems is a challenge as the problem sizes in terms of memory and com-
putationn time can fill  any parallel supercomputer. To validate the design and 
assesss the practical usability of optimistic simulation methods in ACA mod-
els,, we designed and implemented a well-defined and well-understood problem, 
namelyy the Ising spin model. The fairly simple Ising spin model shows a com-
plexx behavior that is parameterized by essentially one degree of freedom. The 
differentt behavior characterization of the Ising spin model put also different 
requirementss to the PDES simulation kernel, and is as such an ideal vehicle 
forr the validation and assessment of the APSIS environment. For example, the 
computationall  load of the Ising spin model is easily adjusted by the problem 
size,, and the communication intensity of the simulation application is deter-
minedd by a single model parameter. Besides the characteristic computational 
loadd and communication intensity, the Ising spin model also exhibits long-
rangee correlations for certain model parameter ranges, where these long-range 
correlationss induce time-dependent (evolution of the) computational behavior. 
Onee of the first questions that is raised is how the PDES protocol behaves with 
respectt to this class of asynchronous systems. What are the limitations of the 
applicationn of Time Warp to spatial decomposed regular problems, and in what 
wayy is the execution behavior influenced by the application parameters that de-
terminee the spatial interaction (synchronization) and computational load over 
thee parallel processes? 

Thee asynchronous cellular automata model wil l be introduced in Section 5.2, 
includingg the transition from synchronous to asynchronous cellular automata 
updatee strategy. In Section 5.3 the Ising spin model is presented and the Monte 
Carloo simulation method is briefly explained. Further, the asynchronous, 
continuous-timee Ising spin model is introduced. The design and parallel imple-
mentationn of the continuous-time Ising spin model is presented in Section 5.4, 
andd the results of performance and scalability experiments are reported in 
Sectionn 5.5. 

5.22 Asynchronous Cellular  Automata 

5.2.11 Cellular  Automata 

Cellularr automata are discrete, decentralized, and spatially extended systems 
consistingg of large numbers of simple identical components with local connec-
tivity .. The meaning of discrete here is, that space, time, and features of an 
automatonn can have only a finite number of states. The rational of cellular au-
tomataa is not to try to describe a dynamic complex system from a global point 
off  view as i t is described using for instance differential equations, but model-
ingg this system starting from the elementary dynamics of its interacting parts. 
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Inn other words, not to describe a complex system with complex equations, but 
lett the complexity emerge by interaction of simple individuals following simple 
rules.. In this way, a physical process may be naturally represented as a compu-
tationall  process and directly simulated on a computer. The original concept of 
cellularr automata was introduced by von Neumann and Ulam to model biolog-
icall  reproduction and crystal growth respectively (von Neumann 1966; Ulam 
1970).. Since then it has been applied to model a wide variety of (complex) sys-
tems,, in particular physical systems containing many discrete elements with 
locall  interactions. Cellular automata have been used to model fluid flow, galaxy 
formation,, biological pattern formation, avalanches, traffic jams, parallel com-
puters,, earthquakes, and many more. In these examples, simple microscopic 
ruless lead to macroscopic emergent behavior. 

Thee locality in the cellular automata rules facilitate parallel implementa-
tionss based on domain decomposition. The locality combined with the inherent 
parallelismm of cellular automata make the design and development of high-
performancee software environments possible on parallel architectures. These 
environmentss exploit the inherent parallelism of the CA model for efficient 
simulationn of complex systems modeled by a large number of simple elements 
withh local interactions. By means of these environments, cellular automata 
havee been used recently to solve complex problems in many fields of science, 
engineering,, computer science, and economy. In particular, parallel cellular 
automataa models are successfully used in fluid dynamics, molecular dynamics, 
biology,, genetics, chemistry, road traffic flow, cryptography, image processing, 
environmentall  modeling, and finance (Talia and Sloot 1999). 

5.2.22 Asynchronous Cellular  Automata 

Inn the previous section, we have seen the dualistic functionality of cellular au-
tomataa in modeling and simulation. From a modelers perspective, a CA model 
allowss the formulation of a dynamic complex system (DCS) application in sim-
plee rules. From a computer simulation perspective, a CA model provides an 
executionn mechanism that evaluates the temporal dynamic behavior of a DCS 
givenn these simple rules. An important characteristic of the CA execution 
mechanismm is the particular update scheme that applies the rules iteratively 
too the individual cells of the CA. The different update schemes impose a dis-
tinctt temporal behavior on the model. Thus we must select the proper update 
mechanismm that aligns with the dynamics of the model. 

Thee update mechanism of CAs is described as being synchronously in par-
allel.. However, for certain classes of DCS, the temporal dynamic behavior is 
asynchronous.. In particular, systems with heterogeneous spatial and temporal 
behaviorr are, in general, most exactly mapped to asynchronous models (Bersini 
andd Detours 1994; Lumer and Nicolis 1994). In case asynchronous models are 
solvedd by CA, the asynchronous temporal behavior must be captured by the 
updatee mechanism. This class of CA is called asynchronous cellular automata 
(ACA)) (Ingerson and Buvel 1984; Lubachevsky 1987; Overeinder et al. 1992; 
OO vereinder and Sloot 1993; Sloot and Overeinder 1999). The ACA model incor-
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poratess asynchronous cell updates, which are independent of the other cells, 
andd allow for a more general approach to CA. With these qualifications, the 
ACAA is able to solve more complicated problems, closer to reality. 

Dynamicc systems with asynchronous updates can be forced to behave in 
aa highly inhomogeneous fashion. For instance in a random iteration model 
i tt is assumed that each cell has a certain probability of obtaining a new 
statee and that cells iterate independently. As an example one can think 
off  the continuous-time probabilistic dynamic model for an Ising spin sys-
temm (Lubachevsky 1988). 

5.2.33 The Asynchronous Cellular  Automata Model 
Thee model for an asynchronous cellular automata is given by its constituents: 
thee cellular automata, the definition of the neighborhood, the transition rules, 
and—thiss is exclusively for asynchronous cellular automata—a time evolution 
function.. We define a deterministic asynchronous cellular automata by 

ZZ = (Id,N, V,vQ,f,F,T), 

where: : 

 Id is the set of rf-tuple integers, called an array of the cellular space. An 
elementt of ld represents the coordinate of a cell or a cell at that coordi-
nate.. The positive integer d is called the dimension of the cellular space. 

 N is an «-tuple of different elements of Id, called the neighborhood index. 
Withh N = («] , . . . ,«„) and given a cell a, an element of the set N(a) = 
{(a{(a + n i), . . ., (a + nn)} is called a neighborhood cell of a, and a is the center 
celll  of those neighborhood cells. The set consisting of elements of N is 
simplyy called the neighborhood. 

 The cellular space is homogeneous. Thus for all cells, V is a nonempty 
finitefinite set, called a state set. 

 The state set V has an element Do in which the cell is at rest, called the 
quiescentt state. 

 The local function ƒ is a mapping from V" to V and satisfies the specific 
propertyy f(vo,...,vo) = vo. 

 The next state of a is given by st(a) = F(a, N, ƒ, t), where ƒ is instanta-
neouss applied to the neighborhood N of a at time t. 

 The time of the next state change evaluation of a is described by t' = 
T(a,T(a, N, t), where t' > t. 

AA nondeterministic asynchronous cellular automata can be obtained by in-
troducingg a random experiment and defining a random variable on the sample 
spacee of the experiment. The nondeterministic local function ƒ is augmented 
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withh £, which is a realization of the random variable. The local function can be 
writtenn as /$, where one can think of /% as a tabulated function depending on 
%,%, or if the random variable is discrete, £ can be considered as an argument to 
thee function. 

Similarly,, the time evolution function can be written as 7 ,̂ where T% can be a 
tabulatedd function depending on |, or, for both continuous and discrete random 
variables,, £ can be considered as an argument to function 7$. The use of £ for 
continuouss random variables is valid since time is continuous in asynchronous 
cellularr automata. 

AA more general system can be modeled with an asynchronous cellular au-
tomataa where the transition rule operates on the active cell and its neighbor-
hoodd (Priese 1978; Lubachevsky 1988). We can write the local transition func-
tionn ƒ as a mapping from V" to V* and the next state is given by st(N(a)) = 
F(a,F(a, N, f, t). 

Thee concurrent update of the neighborhood N(a) of cellular automaton a 
introducess ambiguity if two distinct neighbors a and a' decide to change their 
overlappingg neighborhoods N(a) and N(a') at the same simulation time. If 
twoo events with the same timestamp are scheduled for the same cellular au-
tomaton,, the feature of instantaneous update that is characteristic to discrete 
eventt simulation, does not preclude this ambiguity in update order. Priese in-
dicatess how one may devise a computation and construction universal, concur-
rent,, asynchronous cellular automaton where no overlapping can possibly oc-
cur.. Another practical solution is to prohibit coincidence of update time in pairs 
off  different cells, which is part of the predictability requirements as stated by 
Misraa (1986), or to provide tie-breaking rules for simultaneous event updates 
(Wielandd 1997). 

5.2.44 Parallel Simulation of Cellular  Automata Models 

Thee parallelization of a CA, both for synchronous and asynchronous models, is 
realizedd by spatial decomposition. That is, the individual cells of the CA are 
aggregatedd into sub-lattices, which are mapped to the parallel processors. As 
wee wil l see, parallel synchronization between the sub-lattices is very different 
forr synchronous and asynchronous CA models. 

Parallell  Synchronous Cellular  Automata Simulat ion 

Similarr to the sequential execution of synchronous CA, the cells in a paral-
lell  synchronous CA simulation undergo simultaneous state transitions under 
directionn of a global clock. Al l cells must finish their state transition computa-
tionss before any cell can start simulating the next clock tick. 

Thee parallelization of the discrete-time simulation is achieved by imitating 
thee synchronous behavior of the simulation. The simulation is arranged into a 
sequencee of rounds, with one round corresponding to one clock tick. Between 
successivee rounds, a global synchronization of all cells indicates that the cells 
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havee finished their state change at time step t and the new time step t + At can 
bee started. 

Generally,, the simulation proceeds in two phases, a computation and state 
updatee phase, and a communication phase. The progress of time in this time-
drivenn simulation is illustrated in Fig. 5.1. 

synchronization/ / 
communication n 

-o-o o 
—(t+AtJJ (t+AtV~ 

t+At t HO--

Figuree 5.1: Time-driven simulation of a synchronous CA model, where compu-
tationn and communication phases succeed each other. 

Parallell  Asynchronous Cellular  Automata Simulation 

Inn parallel ACA simulation, state transitions (further called events) are not 
synchronizedd by a global clock, but rather occur at irregular time intervals. 
Inn these simulations few events occur at any single point in simulated time 
andd therefore parallelization techniques based on synchronous execution us-
ingg a global simulation clock perform poorly. Concurrent execution of events 
att different points in simulated time is required, but this introduces severe 
synchronizationn problems. The progress of time in event-driven simulation is 
illustratedd in Fig. 5.2. 

Thee absence of a global clock in asynchronous execution mechanisms neces-
sitatess parallel discrete event simulation algorithms to ensure that cause-and-
effectt relationships are correctly reproduced by the simulator. 

Too summarize, the parallel synchronous execution mechanism for discrete-time 
modelss mimics the sequential synchronous execution mechanism by interleav-
ingg a computation and state update phase with a synchronization and commu-
nicationn phase. The parallel execution mechanism is fairly simple and induces 
aa minimum of overhead on the computation. The parallel asynchronous exe-
cutionn mechanism for discrete event models, in our discussion the optimistic 
Timee Warp simulation method, is more expensive than its sequential counter-
part.. The synchronization mechanism in optimistic simulation requires extra 
administration,, such as state saving and rollback. Despite this overhead, op-
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Figuree 5.2: Progress of simulation time in event-driven simulation. As the cells 
evolvee asynchronously in time, the simulation time of the individual cells are 
different. . 

timisticc simulation is an efficient parallel execution mechanism for discrete 
eventt models. 

5.33 Ising Spin Systems 
Thee Ising spin model is a model of a system of interacting variables in statis-
ticall  physics. The model was proposed by Wilhelm Lenz and investigated by 
hiss graduate student, Ernst Ising, to study the phase transition from a para-
magnett to a ferromagnet (Brush 1967). A variant of the Ising spin model that 
incorporatess the time evolution of the physical system is a prototypical exam-
plee how asynchronous cellular automata can be used to simulate asynchronous 
temporall  behavior. 

AA key feature in the theory of magnetism is the electron's spin and the as-
sociatedd magnetic moment. Ferromagnetism arises when a collection of such 
spinss conspire so that all of their magnetic moments align in the same direc-
tion,, yielding a total magnetic moment that is macroscopic in size. As we are 
interestedd how macroscopic ferromagnetism arises, we need to understand how 
thee microscopic interaction between spins gives rise to this overall alignment. 
Furthermore,, we would like to study how the magnetic properties depend on 
temperature,, as systems generally loose their magnetism at high tempera-
tures. . 

5.3.11 The Ising Spin Model 

Too introduce the Ising model, consider a lattice containing N sites and assume 
thatt each lattice site *' has associated with it a number s,, where s, = +1 for 
ann "up" spin and s, = —1 for a "down" spin. A particular configuration or 
microstatee of the lattice is specified by the set of variables {s\, S2,... ,s^} for all 
latticee sites (see Fig. 5.3). 
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II  1 I  \ \ 

ff f | | | 
|| | | | f 

Figuree 5.3: Schematic spin model for an Ising spin system. 

Thee macroscopic properties of a system are determined by the nature of the 
accessiblee microstates. Hence, it is necessary to know the dependence of the 
energyy on the configuration of spins. The total energy of the Ising spin model 
iss given by 

NN N 

EE = —J ^ SjSj — noH^^Si > (5.1) 
i,j=na(i)i,j=na(i)  i = l 

wheree 57 = , J is the measure of the strength of the interaction between 
spins,, and the first sum is over all pairs of spins that are nearest neighbors 
(seee Fig. 5.4). The second term in Eq. 5.1 is the energy of interaction of the 
magneticc moment, /XQ, with an external magnetic field, H. 

\ \ \\  1 1 1 AA / ff <* \ ''  V 

EE = -J E~ +J 

Figuree 5.4: The interaction energy between nearest neighbor spins in the ab-
sencee of an external magnetic field. 

Iff  J > 0, then the states 11 and 11 are energetically favored in comparison 
too the states f I and |f- Hence for / > 0, we expect that the state of the lowest 
totall  energy is ferromagnetic, i.e., the spins all point to the same direction. If 
JJ < 0, the states f I and I t a r e favored and the state of the lowest energy 
iss expected to be paramagnetic, i.e., alternate spins are aligned. If we add a 
magneticc field to the system, the spins wil l tend to orient themselves parallel 
too H, since this lowers the energy. 

Thee average of the physical quantities in the system, such as energy E or 
magnetizationn M, can be computed in two ways: the time average and the 
statisticall  average. The time average of physical quantities are measured over 
aa time interval sufficiently long to allow the system to sample a large number of 
microstates.. Although time average is conceptually simple, it is convenient to 
formulatee statistical averages at a given instant of time. In this interpretation, 
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alll  realizable system configurations describe an ensemble of identical systems. 
Thenn the ensemble average of the mean energy E is given by 

m m 

5 =1 1 

wheree Ps is the probability to find the system in microstate s, and m is the 
numberr of microstates. 

Anotherr physical quantity of interest is the magnetization of the system. 
Thee total magnetization M for a system of N spins is given by 

N N 

i=l i=l 

Inn our study of the Ising spin system, we are interested in the equilibrium 
quantityy (M), i.e., the ensemble average of the mean magnetization M. 

Besidess the mean energy, another thermal quantity of interest is specific 
heatt or heat capacity Cv. The heat capacity Cv can be determined by the sta-
tisticall  fluctuation of the total energy in the ensemble: 

cc«« = w> (< £ 2 >" { E ) i )

Andd in analogy to the heat capacity, the magnetic susceptibility x is related to 
thee fluctuations of the magnetization: 

XX = If  ({M2) ~ {M)2) ' 

Forr the Ising model the dependence of the energy on the spin configuration 
(Eq.. 5.1) is not sufficient to determine the time-dependent properties of the sys-
tem.. That is, the relation Eq. 5.1 does not tell us how the system changes from 
onee spin configuration to another, therefore we have to introduce the dynamics 
separately. . 

5.3.22 The Dynamics in the Ising Spin Model 

Physicall  systems are generally not isolated, but are part of a larger environ-
ment.. In this respect, the systems exchange energy with their environment. 
Ass the system is relatively small compared to the environment, any change in 
thee energy of the smaller system does not have an effect on the temperature 
off  the environment. The environment acts as a heat reservoir or heat bath at 
aa fixed temperature T. From the perspective of the small system under study, 
i tt is placed in a heat bath and it reaches thermal equilibrium by exchanging 
energyy with the environment until the system attains the temperature of the 
bath. . 
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AA fundamental result from statistical mechanics is that for a system in equi-
libriumm with a heat bath, the probability of finding the system in a particular 
microstatee is proportional to the Boltzmann distribution (Reif 1965) 

PsPs ~ e~  ̂ , 

wheree £ = l/ksT ,kg is Boltzmann's constant, Es is the energy of microstate s, 
andd Ps is the probability of finding the system in microstate s. 

Th ee Metropoli s Algorith m 

Too introduce the dynamics that describe the system changes from one configu-
rationn to another, we need an efficient method to obtain a representative sam-
plee of the total number of microstates, while the temperature T of the system 
iss fixed. The determination of the equilibrium quantities is time independent, 
thatt is the computation of these quantities does not depend on simulation time. 
Ass a result, we can apply Monte Carlo simulation methods to solve the dynam-
icss of the system. The well-known Metropolis algorithm uses the Boltzmann 
distributionn to effectively explore the set of possible configurations at a fixed 
temperaturee T, see for instance Binder and Heermann (1992). The Metropolis 
algorithmm samples a representative set of microstates by using an importance 
samplingsampling method to generate microstates according a probability function 

Thiss choice of TTS implies that the ensemble average for the mean energy and 
meann magnetization can be written as 

.. m . m 

(E)(E) = -YJES and (M) = -YMS. 
5=11 5 = 1 

Thee resulting Metropolis algorithm samples the microstates according to 
thee Boltzmann probability. First, the algorithm makes a random trial change 
(aa spin flip) in the microstate. Then the energy difference A£ is computed. The 
triall  is accepted with probability e~PAE (note that for A£ < 0 the probability 
iss equal to or larger than one and the trial is always accepted). After the trial, 
acceptedd or not accepted, the physical quantities are determined, and the next 
iterationn of the Metropolis algorithm can be started. 

Thee number of Monte Carlo steps per spin (or in general per particle) plays 
ann important role in Monte Carlo simulations. On the average, the simulation 
attemptss to change the state of each particle once during each Monte Carlo 
stepp per particle. We wil l refer to the number of Monte Carlo steps per particle 
ass the "time," even though this time has no obvious direct relation to physical 
time.. We can view each Monte Carlo time step as one interaction with the heat 
bath.. The effect of this interaction varies according to the temperature T, since 
TT enters through the Boltzmann probability for flipping a spin. 
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3.5 5 

vv L = 32 x 32 
LL = 64 X 64 

L== 128 X 128 

(a)) Temperature dependence of the mean 
magnetizationn per spin for lattice size 32 x 
32,, 64 x 64, and 128 x 128. 

(b)) Temperature dependence of the spe-
cificc heat for lattice size 32 x 32, 64 x 64, 
andd 128 x 128. 

Figuree 5.5: Ising spin temperature dependence of the mean magnetization and 
specificc heat. 

Thee temperature dependency of the physical quantities (M) and Cv are 
shownn in figures Fig. 5.5(a) and Fig. 5.5(b) respectively. For temperature 7 = 0, 
wee know that the spins are perfectly aligned in either direction, thus the mean 
magnetizationn per spin is . As T increases, we see in Fig. 5.5(a) that (M) 
decreasess continuously until T = Tc, at which (M) drops to 0. This Tc is known 
ass the critical temperature and separates the ferromagnetic phase T <TC from 
thee the paramagnetic phase T > Tc. The singularity associated with the crit-
icall  temperature Tc is also apparent in Fig. 5.5(b). The heat capacity at the 
transitionn is related with the large energy fluctuations found near the criti-
call  temperature. The peak becomes sharper for larger systems but does not 
divergee because the lattice has finite sizes (singularities are only found in an 
infinit ee system). 

Continuous-Timee Ising Spin System 

Thee standard Ising spin model represents a certain discrete-time model, as 
Montee Carlo steps are regarded to be time steps. However, the discrete evolu-
tionn of the Ising spin configurations is considered an artifact. Glauber (1963) 
introducedd continuous-time probabilistic dynamics for the Ising system to rep-
resentt the time evolution of the physical system. 

Thee Ising spin model with continuous-time probabilistic dynamics cannot 
bee solved by Monte Carlo simulation, since time has no explicit implication on 
thee evolution of the system in the Monte Carlo execution model. To capture 
thee asynchronous continuous-time dynamics correctly, the problem is mapped 
too the ACA model and is executed by event-driven simulation. 

Inn the continuous-time Ising spin model, a spin is allowed to change the 
state,, a so-called spin flip, at random times. The attempted state change ar-
rivalss for a particular spin form a Poisson process. The Poisson arrival pro-
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cessess for different spins are independent, however, the arrival rate is the 
samee for each spin. Similar to the Monte Carlo simulation, the attempted 
spinn flip, or trial, is realized by calculating the energy difference A£ between 
thee new configuration and the old configuration. The spin flip is accepted with 
thee Boltzmann probability e~PAE. 

Thee discrete-time and continuous-time models are similar. They have the 
samee distribution of the physical equilibrium quantities and both produce the 
samee random sequences of configurations. The difference between the two 
modelss is the time scale at which the configurations are produced: in discrete-
time,, the time interval between trials is equal, and in continuous-time, the 
timee intervals are random exponentially distributed. 

5.44 Optimisti c Simulation of Continuous-Time 
Isingg Spin Systems 

AA parallel model of the continuous-time Ising spin system is designed and im-
plementedd with use of the APSIS simulation environment. For the design 
andd implementation of the parallel model a number of issues are important: 
Metropoliss algorithm, simulation time advancement, random number genera-
tion,, and the spatial decomposition parallelization strategy. Both the Metropo-
li ss algorithm and the time advancement (Poisson arrival process) require a 
pseudo-randomm number generator, which has to meet certain requirements to 
precludee undesired correlations if the pseudo-random generator is used in par-
allell  processing. Spatial decomposition has consequences for the embedding of 
thee parallel model in the APSIS simulation environment. 

Thee algorithm that computes the dynamics of the Ising spin system at a 
temperaturee is the Metropolis algorithm, as discussed in the previous section. 
Forr each successful attempt, thus actual spin flip, the energy quantities E, {E), 
andd (E2), and magnetic quantities M, (A/), and (M2) are recomputed. Note that 
(E)(E) and (M) are the ensemble means, thus not the mean energy of magnetiza-
tionn of the system at that simulation time, but rather the mean value of all 
ensemblee configurations probed by the Metropolis algorithm up to the current 
simulationn time. From the energy and magnetization values we can compute 
thee specific heat Cv and magnetic susceptibility /• The values E, (E), (£2), 
M,, <M), and (M2) are typically values that are state saved by the optimistic 
simulationn protocol. 

Thee trials to update a spin in the continuous-time Ising spin system oc­
curr at random times. The interarrival times of the trials for a particular spin 
aree independent and exponentially distributed, thus forming a Poisson arrival 
processs with rate X. In the discrete event simulation, upon the execution of 
aa trial event at simulation time t, the spin flip is accepted according to the 
Metropoliss algorithm, and the next trial event is scheduled at simulation time 
/'' = ( — 1/klogU, where U is a uniform distributed random variable in the 
intervall (0, 1]. 
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Inn the PDES implementation of the Ising spin model we have two choices 
too schedule the trial events for the spin updates. With spatial decomposition 
off the Ising spin model, we aggregate a large number of spins into one sub-
latticee and assign this sub-lattice to one LP. For example, the two-dimensional 
Isingg spin system of size 128 x 128 is partitioned in eight sub-lattices of size 
322 x 64. With this decomposition, each LP simulates the dynamics of 32 • 64 = 
20488 spins. As each spin generates its own Poisson stream with rate k, the LP 
cann schedule for each individual spin a trial event. The execution of a trial 
eventt at a spin schedules a new future trial event for that particular spin. In 
thiss approach the number of events pending for execution at an LP is equal 
too the size of the sub-lattice, e.g., with the 32 x 64 sub-lattice the LP has 2048 
eventss scheduled for future execution. However, we can do better since the 
Poissonn asynchrony in the aggregated algorithm is a special case: the sum of 
kk independent Poisson streams with rate k each, is a Poisson stream with rate 
kk.kk. In the event scheduling algorithm, k is the size of the sub-lattices. In the 
secondd approach, we neither maintain individual Poisson streams, nor future 
triall events for individual spins. Instead, a single cumulative Poisson stream 
iss simulated, and spins are delegated randomly to meet these trial events. 

Inn parallel simulation, and in particular parallel Monte Carlo simulation, 
speciall care should be taken with the generation of random numbers. Both the 
Metropoliss algorithm and the Poisson stream need a uniform random variable 
forr their operation. For sequential architectures, good random number gener­
atorss exist. However, it is not at all trivial to find high-quality random number 
generatorss for parallel architectures. It should be noted that highly correlated 
andd statistically dependent parallel random number generators originating 
fromm bad parallelization or distributed strategies may destroy or dramatically 
forgee simulation results. 

Theree are two basic parallelization techniques to produce random numbers. 
Thee first approach assigns different random number generators to different 
processors,, and the second approach assigns different substreams of one large 
randomm number generator to different processors. The first approach suffers 
formm intrinsically bad scalability (this approach requires thousands of differ­
entt high-quality random number generators on massively parallel architec­
turess such as the ASCI Option Red or ASCI Option Blue systems; Dyadkin 
andd Hamilton (2000) presented approximately 2100 good 128-bit multipliers 
forr congruential pseudo-random number generators). Additionally, there might 
alsoo be unknown correlations betweenn the different random number generators 
wee use. The second approach can be controlled better, although its risks should 
nott be forgotten. 

Theree are two methods for splitting a given stream of random numbers into 
suitablee parallel streams (Hellekalek 1998). The first method, the "leap-frog 
technique",, assigns the substream (jcjt„+i)«>o to the ith processor, 0 < i < k - 1. 
Inn other words, we use substreams of lag k of the original sequence (jt„)„>o, 
seee Table. 5.1(a). The second method, the "splitting technique", partitions the 
originall sequence into k (very long) consecutive blocks, see Table. 5.1(b). Each 
off the k processors is assigned a different block, where every block is defined by 
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aa unique seed. This approach is very efficient way to assign different streams 
off random numbers to different processors. 

PQ PQ 

XQ XQ 

xx4 4 

*8 8 

Pi Pi 
XI XI 

X5 X5 

XX9 9 

P2 P2 
X2 X2 

XX6 6 

*10 0 

P3 P3 
X3 X3 

Xl Xl 

x\\ x\\ 

PO PO 
xo xo 
Xl Xl 

XL-X XL-X 

P\ P\ 
XL XL 

XL+\ XL+\ 

X2L-1 X2L-1 

P2 P2 
X2L X2L 

X2L+1 X2L+1 

X3L-\ X3L-\ 

P3 P3 
X3L X3L 

X3L+1 X3L+1 

X4L-1 X4L-1 

(a)) The leap-frog technique. (b) The splitting technique. 

Tablee 5.1: Parallel random number generation: leap-frog and splitting. 

Thee Mersenne Twister MT19937 random number generator has an ex­
tremelyy long period of 219937 - 1 and an extensive theoretical background (Mat-
sumotoo and Nishimura 1998). Due to its long period, we can choose the initial 
value,, the seed, randomly and obtain as many substreams as we need. It is 
highlyy improbable that two substreams will overlap. Other solutions are of­
feredd by parallel random number generator libraries such as the PRNG library 
(Entacherr et al. 1998) or the SPRNG library (Ceperley et al. 1999). These 
librariess provide implementations of various parallel random number genera­
tors.. The user can initialize the parallel random number generator by specify­
ingg all the parameters to the parallel random number generator, including the 
splittingg method and the number of parallel streams. 

Ann additional complicating factor in optimistic PDES is that due to the 
rollbackk synchronization, the sample path generated according to the desired 
statisticss can be altered, unless some precautions are taken (Tsitsiklis 1989). 
Inn particular, if part of the simulation is performed for a second time, due to 
aa rollback, one should use the same random numbers that were used the first 
time.. Suppose that the dynamics of an LP has been formulated so that the 
statisticss of the random variable xt corresponding to the ith event has a pre­
scribedd distribution depending only on i. We can then generate random vari­
abless XQ, xi,... and the the value x, will be the one to be used for the simulation 
off the i th event, no matter how many times the ith event has to be simulated 
(duee to rollbacks) and even if different simulations of the i th event corresponds 
too different simulation times. 

Too make random number generators rollback proof, the APSIS environment 
encapsulatess the random number generators into the simulation kernel. For 
eachh i th event, the corresponding random variable xt is generated once and 
storedd in a data structure by the simulation kernel. Upon rollback from the Jtth 
eventt to the y'th event, the next random variables *,-, j < i < k, are retrieved 
fromm the data structure before new random variables are generated. This can 
bee efficiently implemented in a circular buffer (see Section 3.5.3, Fig. 3.5). Be­
sides,, the reuse of random variables is profitable as random number generation 
iss relative expensive. 
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Thee resulting continuous-time Ising spin model is parallelized by spatial 
decomposition.. The Ising spin lattice is partitioned into sub-lattices, and the 
sub-latticess are mapped onto parallel processors. To minimize the communi­
cationn between sub-lattices, local copies of the neighbor boundaries are stored 
locallyy (see Fig. 5.6). By maintaining local copies of neighbor boundaries, spin 
valuess are only communicated when they are actually changed, rather than 
whenn they are only referenced. A spin flip along the boundary is communi­
catedd to the neighbors by an event message. The causal order of the event 
messages,, and thus the spin updates, are guaranteed by the optimistic simula­
tionn mechanism. 
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Figuree 5.6: Spatial decomposition of the Ising spin lattice. The grey areas are 
locall copies of neighbor boundary strips. For example, processor PE 2 has a 
locall copy of spin "a" owned by processor PE 1. Processors PE 2 and PE 3 both 
ownn a copy of spin "c". The arrows in the figure indicate the event messages 
sentt upon a spin flip. 

Asynchronouss cellular automata, and thus also the Ising spin model, put 
efficientt memory management requirements on the original formulation of the 
Timee Warp method. The state vector of a spatial decomposed ACA can be arbi­
trarilyy large, that is, all the cells in the sub-lattice are part of the state vector. 
Hence,, the incremental state saving method of the APSIS environment is used 
duringg the simulation of the Ising spin model. Although incremental state sav­
ingg requires less state saving time and memory, there is an increased cost of 
statee reconstruction. In general, the number of rolled back events is a fraction 
off the number of events executed during forward simulation. In this respect, 
thee state recovery overhead of incremental state saving and copy state saving 
aree in the ratio of 102 bytes to an order of 106 bytes, therefore incremental state 
savingg is favorable in spatial decomposed ACA applications. 

a' ' 

c' ' 

bj j PE E 
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5.55 Parallel Performance and Scalability 

AA series of experiments were executed, for different problem sizes and I sing 
spinn parameter settings, to get insight into the efficiency and scalability be­
haviorr of Time Warp. The experiments with the parallel Ising spin simulation 
weree performed on the Distributed ASCI Supercomputer (DAS)*. (Note that 
ASCII stands for Advanced School for Computing and Imaging—a Dutch re­
searchh school.) The DAS consists of four wide-area distributed clusters of total 
2000 Pentium Pro nodes. ATM is used to realize the wide-area interconnection 
betweenn the clusters, while the Pentium Pro nodes within a cluster are con­
nectedd with Myrinet system area network technology. The experiments are 
performedd within one single cluster, thus all communication is via the 1.28 
Gbit/ss Myrinet. The communication layer is an efficient implementation of 
PVMM on top of Panda (Ruhl et al. 1996). Panda is a virtual machine designed 
too support portable implementations of parallel programming systems. The ef­
ficientt communication primitives and thread support in Panda allows for low 
latency,, high throughput communication performance over the Myrinet net­
work.. The measured Panda/PVM (null message) latency is , and the 
throughputt 0 MB/s.f For random number generation, we make use of the 
Mersennee Twister MT19937 random number generator, where each LP initial­
izess the random number generator with a different seed to get parallel random 
numberr substreams. 

5.5.11 Relative Parallel Performance and Scalability 

Inn the first series of experiments, we study the relative efficiency and scalability 
off the parallel Ising spin simulation. This is done by comparing the execution 
timee of the parallel simulation on one processor, Tp{\), with the execution time 
onn different number of processors, Tp( P). The relative efficiency is now defined 
as s 

EE__ Tp(l) 
TTpp{P)P' {P)P' 

Thee parameters to the Ising spin experiment are the lattice size L x L, the 
temperaturee T, the number of simulation steps, and the number of processors. 
Thee lattice size L x L and the number of processors determine the granular­
ityy of the computation, or the computation to communication ratio. Given the 
decompositionn shown in Fig. 5.6, the boundary lattice points are potentially 
communicatedd to the neighboring LPs. The ratio of boundary lattice points to 
thee total number of local lattice points is 4/M, where M x M is the sub-lattice 
sizee after decomposition. The temperature T of the Ising spin system deter­
miness also in part the granularity of the LPs: as the temperature increases, 
thee behavior of the system becomes more dynamic and hence more communica­
tionn occurs between the nodes. The temperature of the system also influences 

*http://www.asci.tudelft.nl/das/das.shtmll or http://www.cs.vu.nl/das/ 
"Performancee experiments with MPI are presented by al Mourabit (2000). 

http://www.asci.tudelft.nl/das/das.shtml
http://www.cs.vu.nl/das/
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thee computational behavior of the simulation in a more subtle way, which is 
presentedd in Chapter 6. 

Thee simulation time is denoted by a derivative of Monte Carlo time steps. A 
Montee Carlo time step embodies L x L spin update attempts such that all the 
latticee points in the system have potentially got the opportunity to change their 
state.. In the continuous-time Ising spin simulation we still use the notion of 
Montee Carlo steps to specify the duration of the simulation, as it conveniently 
indicatess both the statistical evolution of the system and the expected amount 
off computational work. Of course, it has no (direct) relation to the simulated 
time,, as simulation time progress is determined by the aggregated Poisson ar­
rivall process. 

APSEE Analysis 

Thee influence of temperature and lattice size on the average parallelism in­
herentt to the Ising spin simulation is studied by use of the APSE analysis 
frameworkk (see Chapter 4). The APSE analysis allows one to study the scal­
abilityy behavior of the simulation application without any assumption on the 
simulationn protocol, or stated differently, with an ideal, omniscient simulation 
protocol.. The results from the APSE analysis supports the interpretation of the 
experimentall results in the next section. For example, if the APSE analysis of 
aa simulation application results in a limited average parallelism, this should 
bee attributed to the bounded inherent parallelism of the simulation applica­
tionn software, rather than the inability of the simulation protocol to exploit the 
availablee parallelism. 

Thee dependency of the average parallelism on the Ising spin temperature 
iss shown in Fig 5.7 for lattice sizes L = 32 and L = 64. From the figures 
wee learn that the average parallelism decreases for increasing temperature. 
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(a)) Average parallelism versus tempera­
turee for L = 32. 

(b)) Average parallelism versus tempera­
turee for L = 64. 

Figuree 5.7: APSE average parallelism versus temperature analysis. 
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Thiss can be explained by the higher rate of successful spin flips for higher 
temperatures.. Spin flips on the sub-lattice boundaries must be synchronized 
withh the neighboring sub-lattices, resulting in sequentialization of (part of) the 
spinn flip trials. 

Thee impact of lattice size on the sequentialization of boundary spin flips ap­
pearss also from the figures for lattice sizes L — 32 and L = 64. The average 
parallelismm is smaller for smaller lattice size L, and vice versa. For constant 
temperature,, the ratio of boundary spin flips is larger for small lattice sizes 
thann for large lattice sizes. Hence, for small lattice sizes the ratio of sequen-
tializedd spin flips is larger, which depresses the average parallelism. 

Figuree 5.8 depicts how the average parallelism scales with the number of 
processorss for the temperatures T = 1.0, Tc, and 3.0. The average parallelism 
figuress show the temperature and lattice size dependency as the number of 
processorss increase. Again, low temperature and large lattice size enhance the 
averagee parallelism in the Ising spin simulation. 
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(a)) Average parallelism versus number 
off processors for L = 32. 

(b)) Average parallelism versus number 
off processors for L = 64. 

Figuree 5.8: APSE average parallelism versus number of processors analysis. 

Exper iments s 

Figuress 5.9 and 5.10 show the relation between execution time and the number 
off processors for fixed problem sizes 128 x 128 and 256 x 256. The number of 
Montee Carlo steps for each experiment is 12000 for lattice size 128 x 128, and 
30000 steps for lattice size 256x256. In this way approximately the same number 
off events are executed for both system sizes. From these figures we can see that 
thee parallel Ising spin simulation for T — 1.0 scales almost linearly up to 10 
processors,, but eventually drops to a relative efficiency of 0.78 for 24 processors 
withh lattice size 128 x 128, and to a relative efficiency of 0.72 for 24 processors 
withh lattice size 256 x 256. For temperature T = 3.0 the relative efficiency de­
creasess gradually to 0.49 for 24 processors with lattice size 128 x 128, and to 0.62 
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(a)) Log-log plot of the execution time of 
parallell Ising spin for lattice size 128 x 
128.. The measure points and error boxes 
indicatee the mean and standard deviation 
off 6 measurements. 

(b)) Relative efficiency of parallel Ising 
spinn for lattice size 128 x 128. 

Figuree 5.9: Scalability and relative performance of parallel Ising spin simula­
tion. . 
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(a)) Log-log plot of the execution time of 
parallell Ising spin for lattice size 256 x 
256.. The measure points and error boxes 
indicatee the mean and standard deviation 
off 6 measurements. 
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(b)) Relative efficiency of parallel Ising 
spinn for lattice size 256 x 256. 

Figuree 5.10: Scalability and relative performance of parallel Ising spin simula­
tion. . 

forr 24 processors with lattice size 256 x 256. The decreasing efficiency is mainly 
duee to the increased costs to synchronize the parallel processes. With the in­
creasee in the number of processors, the time period necessary to synchronize 
thee parallel simulation processes also increases. A minimal memory manage-
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mentt requirement in optimistic simulation is the limitation of optimism, and 
hencee the maximum rollback length (this is described further on in this sec­
tion).. For lattice size 256 x 256, the decrease in efficiency flattens at P = 16 
forr T = 1.0 and Tc, and at P = 10 for T = 3.0, since the rollback lengths in 
thesee regimes approach the maximum rollback length. Additional increase of 
thee number of processors does not further increase the rollback lengths. 

Temperaturee T — Tc «» 2.269 is a special case. If we consider Fig. 5.9 and 
Fig.. 5.10 separately, we see different scaling behavior for T = Tc compared with 
TT = 1.0 and T = 3.0. For lattice size 128 x 128 (Fig. 5.9), T = Tc scales more or 
lesss within the bounds of T = 1.0 and T = 3.0, which is expected as synchro­
nizationn costs increases with the temperature and the number of processors. 
However,, for lattice size 256 x 256 (Fig. 5.10), the scalability behavior (i.e., the 
executionn time and efficiency versus the number of processors) for T = Tc is not 
boundedd by T = 1.0 and T = 3.0. Up to 10 processors, the Ising spin scaling 
behaviorr can be explained by increased communication and synchronization 
costss due to the dynamics (or temperature) of the Ising spin system, but for 12 
processorss and more, another factor determines the execution time behavior— 
whichh is discussed further on. In Fig. 5.10(a) the execution time increases from 
122 to 16 processors for T = Tc, resulting in execution times larger than for 
TT = 3.0. 

Thee influence of the temperature, the lattice size, and the number of proces­
sorss on the execution behavior of the parallel simulation processes is further 
investigated.. Figure 5.11 shows the rollback percentage of the total amount 
off executed events for the lattice size 128 x 128 and 256 x 256. The rollback 
percentagee is an expression of the amount of synchronization errors due to op­
timisticc execution of events. As such, it is a relative indication of the increased 
executionn time due to event execution order dependencies and simulation pro­
tocoll overhead. If we consider Fig. 5.11(a), the rollback percentages for lattice 
sizee 128 x 128, we find a correspondence between the increase of the rollback 
percentagee and the decrease in relative performance as shown in Fig. 5.9(b). 
Moreover,, in Fig. 5.11(b) we see the same anomalous rollback percentage be­
haviorr for T = Tc as in the relative efficiency in Fig. 5.10(b). The increase in ex­
ecutionn time for T = Tc in the trajectory from 12 to 16 processors in Fig. 5.10(a) 
cann also be found in the strong increase of rollback percentage for T = Tc in 
thee trajectory from 12 to 16 processors in Fig. 5.11(b). Hence, there is a strong 
relationn between the rollback behavior and the execution time (and the derived 
relativee performance). 

Too understand the anomalous performance behavior of the Ising spin sim­
ulationn with lattice size 256 x 256 at temperature T = TC1 a detailed execution 
tracee of the event rate is monitored. The event rate is the number of events 
tha tt are committed per second, and in this respect a measure for progress. 
Duringg normal operation, the Ising spin model simulation reaches an event 
ratee of around 19 000 events per second (see Fig. 5.12(a)). If we look in more 
detaill to Fig. 5.12(a), we can identify four serious glitches in the event rate, 
aroundd execution time 20, 48, 58, and 88, which indicate periods of resynchro-
nizationn of the parallel simulation. In these periods, the event rate drops to 
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(a)) Rollback percentages for lattice size 
1288 x 128. 

(b)) Rollback percentages for lattice size 
2566 x 256. 

Figuree 5.11: Event rollback percentages for lattice sizes 128 x 128 and 256 x 256. 
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(a)) Simulation progress (event rate) dur­
ingg execution. Parallel Ising spin with lat­
ticee size 256 x 256 on 6 processors. 
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(b)) Simulation progress (event rate) dur­
ingg execution (detail of Fig. 5.12(a) be­
tweenn 80 and 96). 

Figuree 5.12: Simulation progress (event rate) during execution. The curve is 
smoothedd by taking the exponential weighted moving average (EWMA), as the 
EWMAA follows the dynamic behavior accurately and can be efficiently com­
puted. . 

10%% of the steady state performance (about 2000 events per second). In partic­
ularr the period centered around 88 (see Fig. 5.12(b)) takes about 10 seconds to 
resynchronizee and weights heavily upon the parallel performance. 

Thee periods of resynchronization are a typical example of thrashing, where 
mostt of the time is spent on simulation rollback instead of forward simulation. 
Whilee one simulation process rolls back, another process advances in simu­
lationn time. When the rollback is completed, the simulation process restarts 
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withh event execution and as a result sends event messages to neighboring pro­
cesses.. These event messages arrive in the simulation past of the neighboring 
processes,, and trigger a rollback, etc., etc., until the simulation processes are 
inn synchrony. The thrashing behavior is a combination of a number of factors: 
numberr of processors, lattice size, event granularity, and temperature (syn­
chronizationn frequency). 

Too shorten these periods of resynchronization, the optimism of the protocol 
mustt be throttled, that is, the simulation execution mechanism should not ex­
ecutee events that lie in the remote future as it is likely that these events have 
too be rolled back eventually. The progress of the individual simulation process 
shouldd be bound to a limited simulation time window (see Section 2.4.5). In 
thiss way, the processes are forced to synchronize with each other in a short 
timee frame, after which the simulation can continue as before. A key problem 
withh Bounded or Moving Time Window optimism control is the determination 
off the appropriate size of the virtual time window. A narrow time window lim­
itss the rollbacks, but also the amount of parallelism. A time window that is 
tooo large, can potentially exploit more parallelism, but the rollbacks increase 
ass well. 

Anotherr performance consideration in the determination of the appropri­
atee virtual time window size is the sequential simulation performance and its 
relationn to the GVT computation frequency (or progress rate). A narrow time 
windoww does not only limit the amount of parallelism, but can also limit the 
sequentiall event rate due to a slow GVT progress rate. As the sequential sim­
ulationn process proceeds faster in simulation time (that is the progress of the 
LVT)) than the progress of the GVT, the sequential simulation process will even­
tuallyy reach the upper time window boundary, and will block until the next 
GVTT progress update. The influence of virtual time window size on the se­
quentiall Ising spin simulation performance in APSIS is presented in Table 5.2 
andd Table 5.3. In the experiments, a new GVT update computation is started 
everyy 50 msec. The first columns of Tables 5.2 and 5.3 show the sequential 
simulationn execution times with unbounded time window for the three temper­
aturess T = 1.0, T = TCy and T = 3.0. As one can see, the execution time of the 
sequentiall simulation increases with the temperature. This can be explained 
byy the dynamics of the simulation: the higher the temperature, the higher the 
dynamicss of the Ising spin system, and hence the higher the computational 
costs. . 

T = 1 . 0 0 
TT = 2.269 
TT = 3.0 

VTWW = oo 
1146 6 
1232 2 
1340 0 

VTWW = 3000 
16455 (1.44) 
16455 (1.34) 
16455 (1.23) 

VTWW = 2000 
24633 (2.15) 
24644 (2) 
24644 (1.84) 

Tablee 5.2: Single processor execution time (in seconds) for Ising spin lattice size 
1288 x 128 and 3000 Monte Carlo steps. The slow down factor due to bounded 
virtuall time window size is in parentheses. 
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T == 1.0 
TT = 2.269 
TT = 3.0 

VTWW = oo 
4596 6 
4919 9 
5339 9 

VTWW = 3000 
65788 (1.43) 
65777 (1.34) 
65799 (1.23) 

VTWW = 2000 
9868(2.15) ) 
98666 (2.01) 
98688 (1.85) 

Tablee 5.3: Single processor execution time (in seconds) for Ising spin lattice size 
2566 x 256 and 3000 Monte Carlo steps. The slow down factor due to bounded 
virtuall time window size is in parentheses. 

Thee influence of the bounded virtual time window size, and hence the GVT 
updatee rate, is apparent from the second and third columns in Table 5.2 and 
Tablee 5.3. Ideally, for infinite GVT update rate, the time window size does not 
limitt the sequential simulation performance as long as there is at least one 
pendingg event within the boundaries of the time window. In practice however, 
thee GVT update rate is finite, and together with the time window size it limits 
thee potential event execution rate, and hence determines the execution time. 
Ass one can see from Tables 5.2 and 5.3, the sequential execution time for vir­
tuall time window sizes VTW = 3000 and VTW = 2000 are determined by the 
timee window size and not by the temperature of the Ising spin system (as with 
windoww size VTW = oo). The interdependency between virtual time window 
sizee and GVT update rate adds another dimension to the determination of the 
appropriatee time window size. 

Thee effect of the bounded virtual time window on the simulation execution 
timee can be clearly seen in Fig. 5.13. All the Ising spin experiments discussed 
beforee are performed with a virtual time window of 3000. In the APSIS en­
vironment,, the virtual time window is also used as a memory management 
mechanism.. If no virtual time window is used, arbitrary long rollbacks can 
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(a)) Ising spin lattice size 128 x 128. (b)) Ising spin lattice size 256 x 256. 

Figuree 5.13: Log-log plot of the execution times of parallel Ising spin for differ­
entt virtual time windows. 
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occurr whose history (i.e., event queue, output queue, etc.) consumes all (vir­
tual)) memory. Hence, for memory management purposes the time window 
shouldd be bounded, and experimentally a time window size of 3000 showed 
too be an appropriate starting value. (For a discussion on optimal virtual time 
windoww sizes, see Section 6.4.3.) The execution time figures for the virtual 
timee window size VTW = 3000 in Fig. 5.13 are the same results as presented 
inn Fig. 5.9(a) and Fig. 5.10(a) at temperature T = Tc. For virtual time window 
sizee VTW = 2000, the sequential simulation execution time (single processor 
execution)) is about 3000 seconds longer than for VTW = 3000 (for both lattice 
sizes).. The relative distance between the execution times for VTW = 2000 and 
VTWW = 3000 remains constant for 2, 4, and 6 processors. In this region the exe­
cutionn time difference is predominantly determined by the virtual time window 
andd its effect on the simulation event rate (see also previous discussion). How­
ever,, where the execution times for VTW = 3000 start to deviate from linear 
scalingg behavior (at 8, 10, 12, and 16 processors) due to excessive rollback be­
havior,, the execution times for VTW = 2000 continues to scale linearly with 
thee number of processors up to 12 processors for lattice size 128 x 128, and 
upp to 16 processors for lattice size 256 x 256. The most prominent property of 
thee figures is the crossover point in Fig. 5.13(b), between the execution times 
forr VTW = 2000 and VTW = 3000. For 12 processors, the execution times for 
bothh virtual time window sizes are almost the same, but for 16 processors, the 
executionn time for VTW = 2000 is significantly shorter. 

Thee results presented in Fig. 5.13 show the potential of virtual time window 
managementt to control excessive rollback behavior, i.e., thrashing. However, 
thee determination of an appropriate time window size is far from trivial, as it 
dependss on various system parameters (i.e., number of processors) and appli­
cationn parameters (i.e., in Ising spin for example lattice size or temperature). 

5.5.22 Absolute Parallel Performance and Scalability 
Inn the second series of experiments, we study the absolute efficiency of the par­
allell Ising spin simulation compared to the best-known sequential Ising spin 
simulationn for different temperatures, problem sizes, and event granularity 
(thatt is, the amount of work per event). The sequential continuous-time Ising 
spinn simulation is basically a Monte Carlo simulation extended with a Pois-
sonn arrival process to incorporate time evolution into the model. The Monte 
Carloo simulation execution mechanism is a lightweight process compared to 
sequentiall discrete event simulation execution mechanism. With Monte Carlo 
simulationn there is nearly no overhead involved in the execution of the spin 
flipp trials: a random spin is selected and a trial is executed. With discrete 
eventt simulation, a trial is an event that must be scheduled for future execu­
tion,, that is, inserted into the event list (in general a priority queue). Later, if 
thee scheduled trial is the next pending event, the event is dequeued and the 
triall is executed. Parallel discrete event simulation includes, besides the event 
listt management overhead, also the state saving and rollback overhead as de­
scribedd in the previous section. The absolute efficiency figures include all these 
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extraa overhead costs compared to the sequential Monte Carlo simulation. 
Thee experiments to assess the absolute performance, quantify the overhead 

inducedd by the APSIS parallel simulation protocol. An interesting perspective 
too approach the quantitative overhead evaluation is to relate this overhead 
withh the so-called event granularity. The event granularity is denned as the 
amountt of work per event (or trial in this discussion) and is in our study the 
amountt of extra computational work in terms of a sinus and an exponential 
evaluation.. The results for event granularity 0 are for the basic Ising spin 
system.. The results for increasing event granularities give an indication how a 
similarr problem scales as the amount of computational work to evaluate a trial 
(orr state change) increases. Note that extra computational work is assigned to 
eachh trial, successful or not successful. 

Thee absolute efficiency is denned as 

TTPP(P)(P)  P ' 

wheree Ts is the execution time of the sequential Monte Carlo Ising spin simu­
lation,, and Tp{P) is the execution time of the parallel Ising spin simulation on 
PP processors. 

Thee absolute efficiency experiment results for Ising spin simulations with 
temperaturess T = 1.0, T = Tc, and T = 3.0 are presented in Fig. 5.14. 
Thee absolute efficiency figures show the performance for different number 
off processors with scaled problem size, i.e., the lattice size is scaled with the 
numberr of processors such that the amount of local work at a processor re­
mainss constant. The lattice sizes for P = 4, 8, 12, 16, 24 are the square of 
LL = 91, 128, 158, 181, 222 respectively. The performance figures for P = 1, that 
iss the parallel simulation executed on one processor, is included as an upper 
boundaryy to the performance figures for other values of P. All results pre­
sentedd in the figures are the means of six experiments. The figures indicate 
thatt the parallel performance depends on the event granularity and Ising spin 
temperature.. The event granularity determines the PDES protocol overhead 
ratio,, apart from synchronization errors. The temperature T of the Ising spin 
systemm determines the computation/communication ratio: as the temperature 
increases,, the behavior of the system becomes more dynamic and hence more 
communicationn occurs between the processors. 

Forr low temperature T = 1.0, the absolute efficiency starts at 0.12 for work/-
triall is 0. Around work/trial is 20, the absolute efficiency starts to diverge for 
thee different number of processors, and eventually varies from 0.71 for P = 4 
too 0.54 for P = 24 at work/trial is 50. For critical temperature T = Tc, we see 
inn Fig. 5.14(b) that the point of divergence has moved from 20 to 15. However, 
att work/trial is 30, the performance figures per processor converge and end 
upp in the range of [0.63 — 0.66]. Finally for high temperature T = 3.0, the 
pointt of divergence moved down to the range [ 4 - 8 ] , see Fig. 5.14(c). Also for 
highh temperature, the performance figures converge and end up in the range 
off [0.56-0.6]. 
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Figuree 5.14: Absolute efficiency versus event granularity (work/trial) for par­
allell Ising spin simulations with temperatures T — 1.0, Tc, and 3.0 on 1, 4, 8, 
12,, 16, and 24 processors, with scaled problem size. 

Too understand Fig. 5.14, the relation between execution time, temperature 
andd rollback behavior must become clear. Figure 5.15 shows the parallel Ising 
spinn simulation execution times for the three temperatures. In Fig. 5.15(a), 
thee execution times for low temperature T = 1.0 are almost constant up to a 
work/triall of 20, which is to be expected with a scaled problem size. However, 
afterr this point, the execution times for larger number of processors starts to 
increasee faster than for smaller number of processors. This is due to increas­
ingg synchronization costs of the Time Warp protocol for increasing number of 
processors.. For critical temperature T = Tc and high temperature T = 3.0, 
wee see an interesting transient execution time behavior in Fig. 5.15(b) and 
Fig.. 5.15(c). At work/trial is 0, the execution times increase with the number 
off processors. For the critical and high temperature, there is more communi­
cation,, and hence more synchronization overhead. As the work/trial increases, 
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Figuree 5.15: Parallel Ising spin simulation execution times for temperatures 
TT = 1.0, Tc, and 3.0 on 1, 4, 8, 12, 16, and 24 processors, with scaled problem 
size. . 

thee execution times converge to each other. For this magnitude of work/trial, 
thee increased synchronization costs for larger number of processors are com­
pensatedd by the larger event granularity. 

Thee interesting transient execution time behavior is most prominent for in­
termediatee temperatures around T = Tc, see Fig. 5.15(b). Here, the execution 
timess for P = 16 and P = 24 even decrease with increasing work/trial up to 
10.. Apparently, two factors determine the execution time: one factor increases, 
andd the other factor decreases for larger work/trial values. The factor that 
increasess the execution time is of course the amount of work per trial, so we 
expectt to see an increase in execution time for increasing work/trial. The sec­
ondd factor that decreases with work/trial is the rollback ratio, i.e., the ratio of 
eventss that are rolled back to the total number of executed events (rolled back 
orr committed). In Fig. 5.16(a), the rollback ratio versus the work/trial are de­
pictedd for the three temperatures T = 1.0, Tc, and 3.0. For low temperature 
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(a)) Event rollback ratio versus work/trial 
forr temperatures 1.0, 7",, and 3.0. 

(b)) Execution time versus work/trial for 
thee virtual time window sizes 2750, 3000, 
andd 3250 with temperature Tc. 

Figuree 5.16: Influence of event rollback ratio and virtual time window on the 
executionn time for 24 processors. 

TT = 1.0, the rollback ratio fluctuates significantly; the large variance can be 
explainedd by the infrequent synchronization which can actuate large cascaded 
rollbacks.. For the intermediate and high temperatures, the rollback ratio falls 
offf smoothly for increasing work/trial. Consequently, the synchronization over­
headd decreases. Thus, the increasing work per trial and the decreasing roll­
backk ratio compete with each other, where the rollback ratio dominates for 
smalll values of work/trial, and the work per trial dominates for larger values 
off work/trial. 

Thee crossover point, where the rollback ratio and work/trial are in balance, 
iss partly determined by the virtual time window size. As the virtual time win­
doww size determines the amount of optimism, it also indirectly determines the 
rollbackk length and frequency. In Fig. 5.16(b), we see how the crossover point 
movess from work/trial is 12 to 6 for VTW = 2750 to 3250. 

5.66 Summary and Discussion 

Ann important subclass of dynamic complex systems, namely asynchronous cel­
lularr automata, has been used to rigorously evaluate the APSIS simulation 
environment.. The specific asynchronous cellular automata used in our exper­
imentss is the continuous-time Ising spin model. The Ising spin model is a 
well-definedd and understood problem, and shows a complex behavior that is 
essentiallyy parameterized by the Ising spin temperature. The spatial decom­
positionn of the Ising spin model over the parallel processors put severe memory 
constraintss upon the APSIS environment, necessitating the use of incremental 
statee saving. 
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Thee average parallelism analysis within the APSE framework exhibits the 
dependencyy of the average parallelism on the Ising spin temperature and the 
latticee size. Increasing temperatures results in (slowly) decreasing average 
parallelism,, and increasing lattice sizes incorporate larger average parallelism. 
Thee APSE average parallelism analysis is consistent with our experiments, ex­
ceptt around the critical temperature Tc. The parallel Ising spin simulation 
executionn times around the critical temperature are larger than the execution 
timess for temperature T = 3.0. Detailed study of the event rate showed that 
thrashingg behavior of the parallel simulation occurs around the critical tem­
perature,, resulting in a simulation progress drop of 90%. 

Thee absolute efficiency study compares the performance of the (parallel) 
discretee event simulation with the sequential Monte Carlo simulation imple­
mentationn of the Ising spin model. The absolute efficiency is also a measure 
off the amount of overhead introduced by the (parallel) discrete event simula­
tionn compared to the relatively simple Monte Carlo simulation. In this respect, 
thee event granularity is an important quantity as it determines the (parallel) 
discretee event simulation protocol overhead. The experimental results show 
aa subtle interplay between the increased execution time for increasing event 
granularity,, and decreasing rollback ratio and thus decreasing PDES overhead. 

Thee application of optimistic parallel discrete event simulation methods 
suchh as Time Warp to asynchronous cellular automata is in potential a vi­
ablee approach to parallelize the simulation. However, two essential extensions 
too the Time Warp method have to be included: incremental state saving and 
optimismm control (throttling). The results show that given a fast communica­
tionn network such as Myrinet, the Time Warp optimistic simulation method 
achievess good scalable performance. In particular, low communication laten­
ciess are essential to achieve performance, as the event messages are small. 

Thee most promising approach to effective optimism control is the design 
andd implementation of an adaptive mechanism. That is, the parallel simula­
tionn kernel determines the optimal virtual time window size using local state 
variables,, such as event rate, rollback ratio, and communication statistics. A 
futuree research challenge is to devise a forecast method that exploits the lo­
call state variables for adaptive virtual time window control. The formulation 
off simple though applicable metrics to control the amount of optimism in the 
Timee Warp method determines the success of the mechanism. 
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