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Many two-dimensional physical systems have symmetries which are mathematically described by
quantum groups (quasitriangular Hopf algebras). In this Letter we introduce the concept of a
spontaneously broken Hopf symmetry and show that it provides an effective tool for analyzing a
wide variety of phases exhibiting many distinct confinement phenomena.
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dual (dis)order parameters—for example, the density of
magnetic vortices— come into play [2–4].

of D�H� is ‘‘twisted.’’ Explicitly, the multiplication rule
for two elements in D�H� is
Introduction.—Planar quantum physics is known to
exhibit many surprising properties such as charge frac-
tionalization, spin-charge separation, and fractional and
non-Abelian statistics. Important analogies show up be-
tween apparently different systems such as fractional
quantum Hall systems and rotating bose condensates.
Many of the special features are based on a subtle inter-
play between particles and their duals, e.g., between
charges and fluxes, or between particles and vortices.
These features are often a consequence of topological
interactions among the relevant degrees of freedom.
From a mathematical point of view many of these aspects
are related to nontrivial realizations of the braid group.
The appearance of the braid group is linked quite
generically to the presence of an underlying quantum
symmetry described by a (quasitriangular) Hopf alge-
bra. Quantum groups naturally provide a framework
in which Abelian or non-Abelian representations of
the braid group can be constructed explicitly. More-
over, particles and their duals are treated on an equal
footing in this framework. As a result, it is possible to
give a systematic and a detailed description of the spin
and statistics properties of the relevant degrees of
freedom.

The generic appearance and therefore importance of
Hopf symmetries in two-dimensional systems provide a
strong physical motivation for studying what happens to
such systems if one of the (bosonic) fields acquires a
vacuum expectation value which breaks the Hopf sym-
metry. How does a phase with broken Hopf symmetry
manifest itself physically and how can such phases be
characterized? In the case of breaking of ordinary gauge
symmetries one usually finds that masses for vector par-
ticles are generated and/or massless scalars show up. A
further—and equally important —aspect of symmetry
breaking is the impact on topological defects: some of
them will disappear from the spectrum and new ones may
show up depending on the properties of the order parame-
ter [1]. As we will show this is only the simplest case,
with other and more complicated situations arising when
0031-9007=02=89(18)=181601(4)$20.00 
In this Letter we report on general results from the
study of (dis)order parameters that carry representation
labels of a Hopf algebra A. The (dis)order parameter
breaks the Hopf symmetry to some Hopf-subalgebra T.
The analysis shows that the representations of T fall into
two sets. One contains representations that get confined in
the broken phase, while the other contains nonconfined
representations. The tensor products of T representations
allow one to determine the ‘‘hadronic’’ composites that
are not confined. The nonconfined representations to-
gether form the representation ring of a smaller algebra
U, which is the residual symmetry of the effective low
energy theory of nonconfined degrees of freedom. We find
that both confined and nonconfined representations can be
electric, magnetic, or dyonic in nature, depending on the
type of (dis)order parameter one assumes is condensed.
We have relegated an extensive mathematical treatment of
these problems to a separate paper [5], to which we refer
the reader for more detailed statements and proofs.

Hopf symmetry.—In this section we briefly summarize
some essential properties of a Hopf algebra [6], choosing
a relatively simple class as an example. This class de-
scribes the symmetry that arises if one breaks, for ex-
ample, a non-Abelian continuous group G to a discrete
subgroup H, giving rise to what is known as a discrete
gauge theory [7–10]. Such a model contains magnetic
defects which carry a flux labeled by a group element
of H. The group H acts on fluxes by conjugation, so that
fluxes in the same conjugacy classes form irreducible
multiplets. If the group is non-Abelian one finds that the
fluxes, when parallel transported around each other, gen-
erate non-Abelian Aharonov-Bohm phases. The under-
lying Hopf symmetry in this case turns out to be the
quantum double A � D�H� of the group H [11,12]. This
double has more structure than the group H because
D�H� � F�H�~��CH. Here F�H� are the functions on the
group and CH is the group algebra of H (the linear span
of group elements with the given group product). The
symbol ~�� indicates that D�H� is the tensor product of
F�H� and CH but that the multiplication of two elements
2002 The American Physical Society 181601-1
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�f1 � h1��f2 � h2��x� � f1�x�f2�h1xh�1
1 � � h1h2;

x 2H: (1)

Note that the product in the CH component is the ordi-
nary group multiplication but that the pointwise multi-
plication of functions is twisted by the conjugation action
of H. Physically, we think of H as the ‘‘electric’’ gauge
group generated by f1 � hg, while the F�H� component is
a ‘‘magnetic symmetry’’ generated by ff � eg. The uni-
tary irreducible representations of D�H� are denoted by
�A

�. Here A is a magnetic (flux) quantum number labeling
a conjugacy class of H and � is an electric quantum
number labeling a representation � of the centralizer
NA of that conjugacy class. We see that the trivial class
feg (consisting of the unit element of H) gives the usual
representations of H � Nfeg corresponding to the purely
electric states. Conversely the representations with the
trivial � representations are the purely magnetic multi-
plets. At this point one should observe that the labeling of
the dyonic (i.e., mixed) states already takes care of a
well-known subtlety, namely, the obstruction to defining
full H representations in the presence of a non-Abelian
magnetic flux. D�H� has a trivial representation " (the co-
unit) defined by "�f � h� � f�e�. There is a canonical
way in which tensor product representations are defined,
leading to a Clebsch-Gordan series:

�A
� ��B

� 
 NAB�
��C�

C
�: (2)

The final ingredient is the R matrix R 2 D�H� �D�H�
implementing the braid operation on a two particle state
through

R � � � ��A
� ��B

���R�; (3)

where � is the ‘‘flip’’ operation, interchanging the order
of the factors in the tensor product. The R2 operator
yields the monodromy, or generalized Aharonov-Bohm
phase factor.

We note that Hopf symmetry plays a role in all planar
systems that have a conformal field theory description,
such as two-dimensional critical phenomena, fractional
quantum Hall states [13,14], and the world sheet picture
of string theory. In these systems the tensor product rules
of the quantum group are directly related to the fusion
rules of the chiral algebra of the conformal field theory.
The (quasi)particle excitations carry representations of
that quantum group and the same mathematical tools can
be used to characterize the Hall plateau states and their
excitations.

Hopf symmetry breaking.—Let us imagine a conden-
sate forming in a state jvi in the carrier space of some
representation �A

�. Then we may define the maximal
Hopf-subalgebra T of A which leaves jvi invariant.
Explicitly, elements P of T satisfy

�A
��P�jvi � "�P�jvi 8 P 2 T: (4)
181601-2
Given the original algebra A there is a systematic way of
calculating T. The most familiar example is the case
where A is the group algebra of an ordinary group H. In
that case one easily checks T is the group algebra of a
subgroup of H, thus reproducing the well-known form of
symmetry breaking. A first nontrivial case is A � F�H�.
In that case the algebra of functions on the group H gets
broken to the algebra of functions on the quotient group
H=K, where K is some normal subgroup of H (i.e.,
HKH�1 � K).

Let us now take a closer look at the situation for A �
D�H�. If we break by a purely electric condensate jvi 2
Ve
�, then the magnetic symmetry is unbroken but the

electric symmetry CH is broken to CNv, with Nv � H
the stabilizer of jvi. In that case we get T � F�H�~��CNv.

We may also break by a gauge invariant purely mag-
netic state. Interestingly enough one such state exists for
each conjugacy class and corresponds to an unweighted
sum of the basis vectors representing the group elements
in the class: jvi �

P
a2A jai 2 VA

1 . The group action of H
leaves this state invariant:

�A
1 �1 � h�jvi �

X

h2A

jhah�1i �
X

a2A

jai � jvi: (5)

In this case one may show that the unbroken Hopf algebra
is T � F�H=KA�~��CH with KA � H the subgroup genera-
ted by the elements of class A. This reduction of
the symmetry reflects the physical fact that the fluxes
can be defined only up to fusion with the fluxes in the
condensate.

As a final example we consider what happens if the
condensate corresponds to a single flux state jvi � jgi
with (g 2 A). Now one finds T � F�H=KA�~��CNg with
Ng � fh 2 H j hg � ghg, showing that both electric and
magnetic symmetry are partially broken.

Confinement.—Consider now the physical situation
after the breaking has taken place. As the ground state
has changed we should discuss the fate of the (quasi)par-
ticle states belonging to the representations of the residual
Hopf algebra T. These representations can be constructed
[15] and describe the excitations in the broken phase.
Furthermore, there is a decomposition of representations
of the algebra A into representations �j of T � A. Now it
may happen that the braiding of the condensed state jvi 2
V0 and some (quasi)particle state jpi in a representation
�j is nontrivial. If this happens, the vacuum state is no
longer single valued when transported around the (qua-
si)particle. Consequently, the new ground state does not
support a localized excitation of the type �j and will
force it to develop a stringlike singularity, i.e., a domain
wall ending on it. Such a wall carries a constant energy
per unit length and therefore the particle of type �j will
be confined. The upshot is that we can use braid relations
of the T representations �j with the ground state repre-
sentation �0 of A to determine whether or not the corre-
sponding particles are confined. Physically speaking this
181601-2
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procedure is like imposing a generalized Dirac charge
quantization condition to determine the allowed non-
confined excitations in a given phase. In general the
determination of these braid relations of the T and A
representations is a difficult problem. For detailed calcu-
lations we refer to our paper [5]. It is also shown there that
all T representations which have trivial braiding with the
vacuum representation can survive as localized states in
the broken phase.

Consistency requires that the nonconfined representa-
tions should form a closed subset under the tensor product
for representations of T. One may show that this is the
case and that the subset of nonconfined representations
can in fact be viewed as the representations of yet another
Hopf algebra U. Mathematically, U is the image of a
surjective Hopf map

�:T ! U: (6)

The U symmetry characterizes the particlelike represen-
tations of the broken phase. Under quite general circum-
stances U itself is again quasitriangular, implying that it
features an R matrix which governs the braid statistics
properties of the nonconfined excitations in the broken
phase. Returning to T, it is clear that the tensor product
rules for confined T representations allow one to construct
multiparticle composite (hadronic) states which belong to
nonconfined representations.

For a complete characterization of the excitations in the
broken phase we should comment on the strings attached
to confined particles. These are not uniquely character-
ized by their end points because one can always fuse with
nonconfined particles. It turns out that the appropriate
mathematical object characterizing the strings is the Hopf
kernel ker��� of the Hopf map (6).

To illustrate these concepts we return to the examples
mentioned in the previous section. The first example
concerned a purely electric condensate which just breaks
the electric gauge group to Nv so that, as mentioned, T �
F�H�~��CNv. One obtains U � F�Nv�~��CNv � D�Nv� and
ker��� � F�H=Nv�. Physically, this means that the only
surviving representations are those which have magnetic
fluxes corresponding to elements of Nv while the states
with fluxes in the set H � Nv get confined. In short,
partial electric breaking leads to a partial magnetic con-
finement. The distinct walls are now in one-to-one corre-
spondence with the Nv cosets in H � Nv.

The second example had the gauge invariant magnetic
condensate, and we found that T � F�H=KA�~��CH with
KA � H the subgroup generated by the elements of class
A. In this case we find that U � D�H=KA� with ker��� �
CKA. Thus, only electric representations which are KA
singlets survive while the others get confined. Partial or
complete magnetic breaking will result in partial or com-
plete electric confinement, depending on KA. The walls in
this phase are labeled by the representations of KA.
181601-3
Finally the pure flux condensate jgi, which has
T � F�H=KA�~��CNg, leads to a phase for which U �
D�Ng=KA \ Ng� and ker��� � F��H=KA�= �NNg�~��C�KA \
Ng�. Here �NNg is the subgroup of H=KA which consists
of the classes nKA with n 2 Ng. In this case we have a
breaking of magnetic and electric symmetry leading to a
(partial) confinement of both. We do not discuss dyonic
condensates here, not because of essential complications
but rather because of notational inconveniences. The same
analysis can be applied.

Explicit examples.—Having discussed our results on a
rather general level, it may be useful to be concrete and
give some explicit examples. First, we take H � Z3. This
is a case treated by ’t Hooft in [4], where the Z3 arises as
the center of the SU�3� color group of QCD. We recover
the well-known results for this case. Because Z3 is
Abelian, we have F�Z3� 
 CZ3 and hence the quantum
double D�Z3� is isomorphic to the group algebra of ~ZZ3 �
Z3. In other words, we have a magnetic group ~ZZ3 and an
(isomorphic) electric group Z3. Denoting the irreps (ir-
reducible representations) of Z3 by �i with 0 � i < 3, the
irreps of D�Z3� are simply tensor products �p

q � ~��p �
�q and describe (quasi)particles with flux p and charge q.
As everything is Abelian, the R matrix in this case is just
given by the usual Aharonov-Bohm phase obtained by
taking a particle with flux p and charge q around a
particle with flux r and charge s, yielding the phase factor
e2&i�ps�rq�=3. Consider now a magnetic condensate, re-
lated to a (dis)order parameter which transforms in a
nontrivial representation �p

0 . It breaks the magnetic ~ZZ3

down to the trivial group but leaves the electric Z3 un-
broken, so that T 
 CZ3. This algebra has a trivial rep-
resentation �0 and two nontrivial ones, �1 and �2,
corresponding to the quarks and antiquarks. Particles in
nontrivial representations of T will pull strings in the
condensate, since their braiding factors with the conden-
sate are nontrivial. Hence these particles are confined.
Total color confinement is reflected in the triviality of the
algebra U 
 C.

When H is non-Abelian, our methods really come into
their own, since in these cases the double D�H� is not a
group algebra, but a true quantum group. We give some
examples involving the smallest non-Abelian group, D3,
the symmetry group of an equilateral triangle. It consists
of the unit e, 120� and 240� rotations r and r2 � r�1, and
three reflections, s, sr, and sr2. The nontrivial relation
between s and r is given by rs � sr2. D3 is the simplest
non-Abelian extension of Z3. It has three conjugacy
classes, �e� :� feg, �r� :� fr; r2g and �s� :� fs; sr; sr2g,
whose centralizers are Ne � D3, Nr � fe; r; r2g 
 Z3,
and Ns � fe; sg 
 Z2. D3 also has three irreps, which
we label 1, J, and �. Here 1 is the trivial representation,
J is one dimensional and represents the rotations by 1 and
the reflections by �1, and � is the defining two-
dimensional representation in terms of rotations and re-
flections. The quantum double D�D3� has eight irreps: the
181601-3
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trivial representation, the two electric representations �
and J, two magnetic representations labeled by the con-
jugacy classes �r� and �s�, and four dyonic representations.

Let us limit ourselves again to magnetic condensates,
of which there can be different types within the same
D�D3� irrep. The magnetic irrep labeled by �r� for ex-
ample, has two basis vectors, jri and jr2i, labeled by their
fluxes. A condensate characterized by the vector v1 � jri
breaks the gauge group D3 down to the Z3-centralizer
group of r, whereas a condensate characterized by the
vector v2 � jri � jr2i is gauge invariant and hence leaves
the gauge group unbroken. Both condensates break the
magnetic F�D3� down to F�D3=Z3� 
 F�Z2�. The ele-
ments of the Z2 quotient are the cosets E :� eZ3 and S :�
sZ3. These cosets label the flux quantum numbers in the
broken phase; fluxes are now determined only up to a
power of the condensed flux r. The residual symmetry
algebras determined by v1 and v2 are T1 � F�Z2�~��CZ3

and T2 � F�Z2�~��CD3. T1 has six irreps �E=S
q , labeled by

a Z2 flux (E or S) and a Z3 charge 0 � q < 3. Only the
trivial irrep �E

0 has trivial braiding with the condensate.
The other irreps have nontrivial braiding, because the flux
S does not commute with r and because r acts nontrivially
in the irreps �1, �2 of Z3. Hence, we have complete
confinement in this case. T2 also has six irreps �E=S

1=J=�,
now labeled by a Z2 flux and a D3 charge. The braiding
between these and the condensate does not depend on the
Z2 flux, since the condensate is gauge invariant, and we
need only look at the action of the condensate on the
charges 1; J; �. The T2 irreps that involve � have non-
trivial braiding and are hence confined. The four one-
dimensional irreps with D3 charges 1 and J have trivial
braiding with the condensate, because 1 and J are trivial
on r and r2. Thus, we are left with a nontrivial symmetry
algebra U2 
 F�Z2�~��CZ2 
 D�Z2� characterizing the
nonconfined excitations.

Conclusion.—Physical systems on a plane may contain
(quasi)particles with nontrivial topological interactions
and braid statistics. Such systems often have a hidden
quantum symmetry described by a Hopf algebra A.
Representations of such algebras have the attractive fea-
ture that they treat ordinary and topological quantum
numbers on an equal footing. In this Letter we investi-
gated what happens when such a Hopf symmetry A gets
broken to a Hopf algebra T by a vacuum expectation value
181601-4
of some field carrying a representation of A. We showed
that generically there is a hierarchy of three Hopf alge-
bras A, T, and U which play a role in this situation. The
representations of T fall into two sets, one set being
confined while the other is not. The latter can be inter-
preted as the representations of the Hopf-subalgebra U
which is the residual symmetry in the broken phase. The
tensor product rules of T representations tell us also what
the nonconfined composites (i.e., the hadronic excitations)
will be. The framework described here enables one to
analyze a wide variety of phases, each with its specific
pattern of (partial) confinement properties, and the way
these phases are linked. It is interesting to investigate to
what extent similar ideas can be exploited in more than
two space dimensions.
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