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Chapterr 2 

2.. INFLUENCE OF TEMPERATURE ON VIBRATIONAL SPECTRA 

ANDD CONSEQUENCES FOR THE PREDICTIVE ABILITY OF 

MULTIVARIATEE MODELS. 

Abstract Abstract 

Temperature,, pressure, viscosity and other process variables fluctuate 

duringg an industrial process. When measuring vibrational spectra on- or in-

linee for process analytical and control purposes, the fluctuations influence 

thee shape of the spectra in a non-linear manner. The influence of these 

temperaturee induced spectral variations on the predictive ability of 

multivariatee calibration models is assessed. Short wave NIR spectra of 

ethanol/water/2-propanoll mixtures are taken at different temperatures and 

differentt local and global partial least squares calibration strategies are 

applied.. The resulting prediction errors and sensitivity vectors of a test set 

aree compared. For data with no temperature variation, the local models 

performm best with high sensitivity but the knowledge of the temperature for 

predictionn measurements cannot aid in the improvement of local model 

predictionss when temperature variation is introduced. The prediction errors 

off global models are considerably lower when temperature variation is 

presentt in the dataset but at the expense of sensitivity. In order to be able to 

buildd temperature-stable calibration models with high sensitivity, a way of 

explicitlyy modeling the temperature should be found. 

Basedd on: Wülfert, F.; Kok, W.Th.; Smilde, A.K.; Anal. Chem. 1998, 70, 
1761-1767. . 
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Introduction Introduction 

General General 

Midd infrared, Near-Infrared (NIR) and short-wave NIR spectroscopic 

techniquess in combination with multivariate calibration are finding an 

increasingg range of applications in process analysis 1 ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 . The 

spectroscopicc analysis can be done in- or on-line and, in contradiction to 

slowerr classical off-line techniques, the results can be used for process 

controll purposes. 

Thee high sensitivity and consequently short pathlengths (in the range of a 

feww îm) of mid-IR instrumentation is often not compatible with industrial 

environments.. With the orders of magnitude lower absorbance of the 

overtoness in NIR and short-wave-NIR , much more robust flow cells can be 

usedd which are not susceptible to blockage. 

Byy moving the measurement from the well controlled laboratory to the 

processs environment, external process variables such as temperature, 

pressure,, flow turbulence will also affect the measurements. The difficulty to 

keepp these variables constant or even the inevitability to change their value 

duringg the process (e.g. temperature programming in batch processes) 

makess it necessary to study the influence on the spectra and therefore also 

onn the calibration models. 

TemperatureTemperature effects on vibrational spectra 

Vibrationall spectra from liquid and solid samples do not only show isolated 

molecularr features, such as structure and functional groups, but also inter-

orr intramolecular features, such as hydrogen bonding. These weaker forces 

influencee the vibrational modes8'9'10'11'12'13'14'15'16,17 of molecular bonds 

butt are themselves affected by conditions such as temperature and 

pressure.. Therefore the variations in, e.g., temperature translate via the 

changess in intermolecular forces to modifications of the vibrational spectra. 
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Chapterr 2 

Thee influence of the temperature on the O-H stretch band and its overtones 

hass been described in various articles18'19'20'21'22. The hydroxyl group gives 

risee to two bands for its stretching mode: a sharper band for the "free" O-H 

groupss and a broader one for the stretch mode of hydrogen-bonded O-H 

groups.. The broad band, which can be seen as an overlay of many bands 

thatt belong to different cluster sizes formed by hydrogen bonding, is shifted 

towardss lower energies (higher wavelength) relative to the free O-H stretch. 

Risingg the temperature decreases the average cluster size and increases 

thee relative absorbance of free groups23. 

Thiss can be seen most clearly in water spectra where the hydroxyl band 

shiftss to the lower wavelengths and becomes sharper when the temperature 

iss increased. The increase of free O-H groups can also be observed for 

alcohols,, but a combination OH stretch mode that absorbs in the same 

regionn makes the effect less apparent. Similar effects can be observed for 

spectraa of polyamides and polyurethane, where the N-H groups can form 

hydrogenn bonds24,25,26. The bands originating from N-H stretching modes 

aree influenced by the temperature much in the same way as for hydroxyl 

groups. . 

EffectsEffects of shifts and peak distortion on multivariate regression 

Duee to a lack of selectivity NIR applications consist mostly of spectroscopic 

measurementss in combination with multivariate data analysis. Partial Least 

Squaress (PLS) and Principal Component Regression (PCR) are the most 

commonn methods. Both methods assume linear additivity. This means that 

absorptionn spectra are supposed to increase linearly with the concentration 

(linearity)) and that a mixture of components gives a spectrum that is a linear 

combinationn of the pure spectra (additivity). Any deviation from this ideal 

behaviorr has to be approached by using more components in the PLS or 

PCRR model. 

Spectraa that exhibit shifts or other changes in their shape do not conform to 

thee linearity demand and consequently a multivariate model will have to use 
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moree regression factors than is to be expected by the chemical rank 

(numberr of components in the mixture). 

ScopeScope of this chapter 

Too study the effect of external variation on the predictive ability of 

multivariatee calibration for spectral data, the temperature has been chosen 

ass the external variable. Short-wave NIR spectra, measured at different 

temperatures,, of mixtures containing ethanol, water and 2-propanol are 

usedd as data and PLS regression is employed as data analysis method. 

Twoo different types of PLS models are compared: local models that apply to 

sampless of one temperature and global models that can be used for 

sampless at different temperatures. The difference in prediction error for the 

differentt models is used to evaluate which calibration strategy can handle 

temperature-influencedd spectra. Explanation of the differences in predictive 

abilityy is sought by inspecting the sensitivity vectors for the analytes. 
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ExperimentalExperimental  section 

Apparatus Apparatus 

Mixturess of ethanol, water and 2-propanol have been prepared using an 

analyticall balance and kept in airtight sample flasks. Fresh p. a. quality 

alcoholss and sub-boiled water have been used. Closed quartz cells with 

11 cm path length have been used in order to prevent dissipation of the 

alcoholss during the measurement. The spectra have been taken on a HP 

84533 Spectrophotometer with a thermostatically controlled cell holder and 

celll stirring module (Hewlett Packard, Palo Alto, CA, USA). The wavelength 

rangee used was 580 to 1091 nm with 1 nm resolution and the integration 

timee was 20 s. The collection of the spectra was done on a Hewlett Packard 

Vectraa XM2 PC using the UV-Visible Chemstation software (Rev A.02.04). 

Thee temperature of the sample has been regulated using an external Pt-100 

sensorr immersed in the sample and linked to the controller of a Neslab 

microprocessorr EX-111 circulator bath. 

Forr simulations and the data processing Matlab (ver. 4.2 and 5; The 
Mathworkss Inc.) and the PLS toolbox (ver. 1.4) were used on a Pentium-
classs computer. 
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Mixturee design 

Inn order to span the concentration variation a mixture design (Figure 2-1) 

hass been set up. The mole fraction levels that obey this design have been 

mixedd and are given in Table 2-1. In order to perform linearity and additivity 

tests,, the spectra of the pure components have also been measured. 

Thee 19 mixtures and the three pure components have been measured at 

temperaturess of 30, 40, 50, 60 and C (  0.2"C). 

100% % 
Ethanol l 

OO O O 
oo o o o 

oo o © © © 
// © © © © \ 

100%% fi&--flfc--fl&----  100% 

waterr ^ ' ' 2-propanol 

Figuree 2-1: Mixture design for ethanol, water and 2-propanol mole 

fractions. . 
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Tablee 2-1: Mole-fractions of the samples in % 

2 2 
3 3 
4 4 
5 5 
6 6 

6 6 
9 9 

10 0 
11 1 
12 2 
13 3 
14 4 

1b b 
16 6 
17 7 
18 8 
19 9 

ethanol ethanol 
66.4 4 
67.2 2 
66.6 6 
50.0 0 
50.0 0 
49.9 9 
50.0 0 
33.3 3 
33.2 2 
33.3 3 
32.2 2 
33.5 5 
16.6 6 
16.7 7 
16.6 6 
16.2 2 

0 0 
0 0 
0 0 

f::: water 

33.6 6 
16.3 3 
0 0 

50.0 0 
33.3 3 
16.7 7 
0 0 

66.7 7 
50.0 0 
33.4 4 
16.6 6 

0 0 
66.7 7 
50.0 0 
33.3 3 
16.3 3 
66.7 7 
50.0 0 
33.4 4 

2-pr<$: 2-pr<$: 

0 0 
16.5 5 
33.4 4 

0 0 
16.7 7 
33.3 3 
50.0 0 
0 0 

16.7 7 
33.3 3 
51.2 2 
66.5 5 
16.7 7 
33.3 3 
50.1 1 
67.5 5 
33.3 3 
50.0 0 
66.6 6 
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DataData analysis 

PretreatmentPretreatment and analysis of experimental data 

Thee measured spectra are pretreated to remove instrumental baseline drift. 

Straightt lines are fitted through the wavelength range 749-849 nm, where 

noo absorbance bands are present, and subtracted from the spectra. The 

dataa analysis is performed on the region 850-1049 nm. The absorption at 

lowerr wavelengths is too low to be considered significant and absorption 

abovee 1050 nm is very noisy due to instrumental effects. 

Thee data analysis consists of PLS1 regressions using the mean-centered 

pretreatedd spectra as X-block and mean-centered mole fractions for each 

chemicall component separately as y-vector. For the different models that 

willl be used the data is always split into a training set for building the 

respectivee model and a test set for estimating the predictive quality of that 

model.. When building the model, cross validation techniques are used to 

estimatee the number of latent variables (LV's). 

PLSS models have been built for each temperature separately (local models) 

andd for the full dataset containing all temperatures (global models). These 

twoo cases are fundamentally different when used for prediction of new 

samples. . 

LocalLocal models 

Whenn building small, local models for each temperature it is also necessary 

too know the temperature of the new samples in the prediction step, 

otherwisee it is not possible to choose one of the local models. If a model 

andd a prediction sample are measured at the same temperature, the mole 

fractionn can directly be predicted (case a). Another possibility is that the 

temperaturee of the new sample falls in between the model-temperatures 

(casee b). In the latter case the estimated concentration of the new sample 

fromm one of the models is expected to be biased. In order to achieve a 

14 4 



Chapterr 2 

bette rr  prediction , the mol e fractio n can be estimate d by interpolatin g 

betwee nn the result s of the models . 

Casee a: At each temperatur e model s for each chemica l compoun d are buil t 

fro mm sample s that are on the "edge "  of the experimenta l desig n {sample s 1, 

2,, 3, 4, 7, 8, 12, 13, 16, 17, 18, 19) and the sampl e in the "center "  (sampl e 

10).. The test set is give n by the remainin g concentratio n level s (sample s 5, 

6,, 9 ,11 , 14,15). As can be seen fro m the graphica l representatio n in Figur e 

2-22 A, no extrapolatin g predictio n wil l be done . The result s fro m loca l 

model ss case a can also bee seen as a "bes t case scenario "  considerin g that 

temperaturetemperature  does not play any role . 

Leave-one-ou tt  cros s validatio n is used to establis h the numbe r of LV's in all 

models ,, usin g the predictio n erro r for the left-ou t sample s and visua l 

examinatio nn of the loadin g as criteria . 
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Figuree 2-2: Graphical representation of training (gray circles and areas) 

andd test (white circles and areas.) sets. A: Local models case 

a;; B: Local models case b; C: Global models case a; D: Global 

modelss case b;. 

Casee b: Since the test set consists of samples measured at a different 

temperaturee all samples from the experimental design can be used for 

buildingg the model. Three models are built from the spectra at 30, 50 and 

700 C and the prediction samples are the spectra measured at 40 and 60

(Seee Figure 2-2 B). 
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Thee model s are buil d wit h the same numbe r of LV's as establishe d for the 

model ss in case a. The mol e fraction s of the test set are estimate d by 

averagin gg the predicte d mol e fractio n resultin g fro m the two model s at the 

neares tt  temperature s [1] . 

y40°CC = /l \$ WC +y50oC/ » y60°C=/2Vy50°C"'"y70oC/ 

GlobalGlobal  models 

Withh one globa l mode l for all temperature s it is neithe r necessar y to kno w 

thee temperatur e of a new sampl e to be predicte d nor that of the trainin g set 

samples .. The globa l mode l treat s temperatur e as an unknow n interferent . 

PLSS uses the covarianc e betwee n X and y to establis h a regressio n mode l 

thatt  explain s the variatio n in y wit h variatio n in X. If the spectru m of the 

interferen tt  correlate s perfectl y wit h that of the analyte , the PLS algorith m 

canno tt  distinguis h betwee n analyt e and interferent . The weaker the 

correlatio nn betwee n interferen t and analyt e becomes , the easier the PLS 

algorith mm can distinguis h betwee n them . The spectru m of temperatur e (if 

seenn as interferent ) is strongl y non-linea r and differen t fro m that of the 

chemica ll  compounds . It may therefor e be advantageou s but not necessar y 

too kno w the temperature s of the trainin g sample s and to vary temperatur e 

independentl yy  fro m the concentration s in orde r to minimiz e the covarianc e 

betwee nn them . 

Thee difference s betwee n a predictio n sampl e wit h a temperatur e that "fits " 

intoo a mode l (case a) or a sampl e wit h a temperature  that fall s in betwee n 

model ss (case b) does not appl y to genera l models . The temperatur e is 

assume dd unknow n and the cases can therefor e not be distinguished . 

Forr  compariso n of the predictiv e abilitie s however , it is usefu l to buil d globa l 

model ss that use exactl y the same test and trainin g data as the loca l models . 

17 7 



Influencee of temperature on vibrational spectra and consequences for the predictive ability of 
multivariatee models. 

Casee a: The same mixtures are used as training and test sets as in the local 

models.. Instead of building 5 models for the 5 temperatures, all training 

samplee measurements are used to build one global model and to predict all 

measurementss of the test set (see Figure 2-2 C) 

Leavee more out cross validation was performed on the training set leaving 

onee concentration out for all temperatures at each cross validation step. In 

thiss way the disturbance of the design by the left out samples is comparable 

too that during the cross validation used in the local case. Because of the 

higherr number of training samples it is possible to apply additionally a 

stratifiedd leave out procedure for verification. The difference between 

stratifiedd and leave-one-concentration-out strategies is, that with stratified 

fivee different mixtures (one per temperature) are left out at random, which is 

repeatedd until all concentrations have been left out once for each 

temperature. . 

Casee b'. Again the same data is used for training and test sets as with the 

locall models. Two models are made: one using all mixtures at 30 and 50*0 

forr building the model and all mixtures at C for prediction. The other 

modell uses all mixtures at 50 and 7 0 ^ as training set and all mixtures at 

600  as test set (see Figure 2-2 D). 

Thee number of LV's used is equal to that of the global model case a. 

PerformancePerformance measures 

Predictionn errors: The root mean squared error (RMSE) is used as 

performancee criterion in cross validation (RMSECV), where it is used to 

estimatee the necessary number of LV's, as well as in prediction (RMSEP), 

wheree it is used to asses the predictive power of the model. In both cases 

thee RMSE is calculated in the common way as: 
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RMSERMSE = V-& 
11 n 

wher ee y( and y t are respectivel y the predicte d and real value s of sampl e / 

off  the n sample s in eithe r the cros s validatio n or test set . 

Inn orde r to plac e the predictio n erro r in a mor e recognizabl e settin g the 

meann relativ e erro r (MRE) is also used to summariz e the result s for each 

typ ee of model . This way an impressio n can be give n on how many percen t 

thee predictio n is inaccurate . 

Sensitivit yy  vectors : In classica l firs t orde r univariat e calibratio n the sensitivit y 

iss  an importan t characterizatio n of a calibratio n model . It can be calculate d 

ass the differenc e in net analyt e signa l (respons e withou t the offset ) of two 

measurement ss at differen t concentration s resultin g in the slop e of the 

calibratio nn line . The highe r the sensitivity , the bette r the mode l performs , 

sinc ee even sligh t difference s in analyt e concentratio n giv e a distinctivel y 

differen tt  response . 

Recentl yy  a metho d has been propose d to determin e the net analyt e signa l 

(NAS)) and the sensitivit y vecto r not only for classica l univariat e and 

multivariat ee calibratio n but also for invers e multivariat e calibratio n method s 

suc hh as PLS27. This extensio n means that no longe r all pur e spectr a and all 

concentration ss have to be known . The metho d consist s of reconstructin g 

thee X data (respons e matrix ) by its descriptio n used in the calibratio n mode l 

(produc tt  of x-loadin g and x-scor e blocks) . By applyin g rank annihilatio n it is 

possibl ee to eliminat e the part of the reconstructe d respons e whic h is 

contribute dd by the analyte . The resul t is an estimatio n of the respons e 

matri xx  of only the interferent s withou t the analyte . In classica l multivariat e 

calibratio nn the pur e spectru m is needed for the rank annihilatio n step . 
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Lorbe rr  et al. 27 sho w that a linea r combinatio n of mixe d spectr a can also be 

used ,, as long as the analyt e is presen t in thos e spectra . The NAS can then 

bee estimate d as the part of a new measuremen t that is not describe d by and 

therefor ee orthogona l to the inter f e rents-respons e matrix . The norm of the 

NASS vecto r is (for the linea r case) proportiona l to the concentration . Divisio n 

off  the NAS vecto r by the sampl e concentratio n leads to a sensitivit y vecto r 

forr  each of the new measurements . Ideall y all sensitivit y vector s for new 

sample ss are the same but in practic e they for m onl y estimate s of the 

concentration-normalize dd pur e spectrum . 

Whenn applyin g net analyt e signal , its norm and sensitivit y as figure s of 

merit ,, precaution s have to be taken in the case of mean centere d data . The 

linea rr  combinatio n of mixe d spectr a used in the rank annihilatio n step 

canno tt  be the sum of all spectr a from the trainin g set , sinc e they sum up to 

zero .. Therefor e spectr a wit h the highes t analyt e concentratio n (for ethanol : 

sample ss 1, 2, 3; for water : sample s 8, 13, 17; for 2-propanol : sample s 12, 

16,, 19) have been chosen . Furthermore , predictio n sample s wit h an analyt e 

concentratio nn very near to the mean concentratio n sho w a sensitivit y vecto r 

consistin gg onl y of amplifie d measuremen t noise , sinc e bot h NAS and 

concentratio nn wil l becom e almos t zero. Becaus e of thi s artifact , onl y 

sensitivit yy  vector s of test sample s wit h a differen t mol e fractio n than the 

meann (one third ) and commo n to all test sets are used for interpretatio n and 

compariso nn (for ethanol : sample s 5, 6, 14, 15; for water : sample s 6, 9, 11, 

14;;  for 2-propanol : sample s 5, 9,11, 15). 
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ResultsResults  and Discussion 

Simulations Simulations 

Too asses s the influenc e of spectra l shift s and broadenin g on multivariat e 

model ss simulation s have been carrie d out . Especiall y the increas e of 

complexit yy  (the numbe r of principa l component s needed to describ e the 

data)) was estimated . 

Threee data sets of Gaussia n peaks showin g eithe r an increas e in area, a 

shif tt  or changin g widt h were generate d and Principa l Componen t Analysi s 

(PCA)) was applie d to thes e mean centere d datasets . The loading s and 

score ss of the dataset s (Figur e 2-3) sho w that onl y variatio n in area is a 

linea rr  phenomenon . Variatio n in the positio n of the maximu m or in the widt h 

off  the Gaussia n peaks lead to a PCA descriptio n wit h mor e then one 

principa ll  componen t (PC). 
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Area a Position n Width h 

Datasets s 

Loadings s 

3rd d 

2nd d 

pi i 

B B 
x10"; ; 

3C0Ï© © 

Figuree 2-3: Changing area, position and width of a peak and it's effects on 

multivariatee space. A: Datasets and loadings. B: Score values 

II I I I Area; t-H-fr-Position; 66#0Width. 
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Itt  is show n clearl y that for the area variation , onl y the firs t loadin g vecto r has 

anyy meanin g whils t the secon d and thir d merel y describ e the whit e nois e 

thatt  has been added . The scor e plot s also sho w the linearit y for the area 

increas ee data , sinc e onl y the firs t PC contain s significan t scor e values . 

Contrary ,, the loading s for the shif t and broadenin g dataset s sho w 

systemati cc  informatio n even at highe r PC's than show n here, unti l finall y 

nois ee level is reached . Their respectiv e scor e plot s have a clear 3-D 

characte rr  (corkscrew ) sinc e they are non-linea r effect s and have to be 

approache dd by severa l principa l components . An increas e in complexit y can 

therefor ee also be expecte d for spectr a that sho w shif t or broadenin g of 

bands . . 

QualitativeQualitative  analysis  of  the data set 

Spectr aa of the pur e component s have been measure d for qualitativ e 

evaluatio nn of the temperature  effect s and testin g linearity . Figur e 2-4 give s a 

goo dd impressio n of the temperatur e effect s on the absorptio n bands , the 

bandd assignment s were don e usin g the spectr a show n by Bonann o et al.17. 

Forr  water a temperature  increas e leads to a band shif t toward s lowe r 

wavelength ss togethe r wit h an absorptio n increas e and band narrowing . 

Risin gg the temperatur e decrease s the cluste r size of hydroge n bonde d 

molecule ss and increase s therefor e the fractio n of "free "  hydroxyls . The 

alcohol ss sho w a very sligh t decreas e of the 3rd C-H overtone , an increas e in 

freee O-H and probabl y som e increas e in the C-H combinatio n band . 
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CHH Jdovertqne free OH ^overtone C H combination, 
11 J H-b/mded OH 

8600 880 900 920 940 960 980 1000 1020 1040 
Wavelengthh [nm] 

Figuree 2-4: Spectra of the pure components at different temperatures 

(( C C C - - ö O ^ and ; A 

ethanol,, B water, C2-propanol 

Inn order to test the linearity and additivity synthetic spectra have been 

composedd by addition of the pure component-spectra multiplied with the 

concentrationn levels as in Table 2-1. These synthetic spectra were 

comparedd with the measured spectra. In Figure 2-5 the differences between 

somee synthetic and real spectra are shown. Deviation from linearity and 

additivityy were especially found with mixtures containing a high fraction of 

waterr (sample 13). In comparison, the differences between the real and the 

syntheticc spectra were much smaller for mixtures without water (sample 7). 
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-0.02 2 
8600 900 940 980 

Wavelengthh [nm] 
1020 0 

Figuree 2-5: Difference between real and synthetic spectra. 

Solidd line sample: 13 (V6 ethanol, 2/3 water, V6 2-propanol). 

Dashedd line: sample 7 (Vè ethanol / Vz 2-propanol). 

AA PLS regression of the spectra on their mole fractions is therefore 
expectedd to need more LV's than would be expected by the chemical 
rank28. . 

LocalLocal models 

Casee a: Leave one out cross-validation is performed on the training set (see 

Figuree 2-2) for calibration models for each of the three chemical compounds 

att each of the 5 temperatures. 

Forr all local models the RMSECV does decrease considerably until 4 LV's 

aree included, staying more or less constant for more LV's. The models for 

waterr give an about factor three lower RMSECV but show the same 

behavior.. This is due to the fact that water has a higher absorption in the 

wavelengthh range studied than the alcohols. 

Visuall inspection of the loading plots indicates for all models that only the 

firstt four loadings show systematic spectral information; higher LV's consist 

primarilyy of noise. Therefore, 4 LV's have been used to build the PLS-

modelss for predicting the mole fractions in the test set. Note that in the ideal 
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casee (linearity and additivity) the model would only consist of two LV's since 

thee chemical rank is two (3 components with closure) and the spectra are 

meann centered29. The non-additive behavior of especially water is 

responsiblee for the higher number of LV's necessary in practice. 

Thee individual predicted mole fractions for each test sample and 

temperaturee did not show any anomalies such as outliers or systematic 

errors.. The results will therefore be summarized by giving the values for the 

RMSEPP and MRE per model only (see Table 2-2). The error for the 

predictionn of water is considerably lower than for the alcohols. On the 

averagee a prediction for one of the components at any temperature would 

bee about 3% inaccurate. 

Tablee 2-2: RMSEP (-10"2) and MRE for the different models. 
;;; m 

 « I 

"« « 

;;.,
, L

.0C
 

JQ Q 

""  W-

a a 

55 -I 

.a a 

Temperaturee ] of 

Sample e 

30 0 
40 0 
50 0 
60 0 
70 0 

40 0 
60 0 

30 0 
40 0 
50 0 
60 0 
70 0 

40 0 
60 0 

Model l 

30 0 
40 0 
50 0 
60 0 
70 0 

Mean n 

30&50 0 
50&70 0 

Mean n 

30-70 0 
30-70 0 
30-70 0 
30-70 0 
30-70 0 

Mean n 

30&50 0 
50&70 0 

Mean n 

ethanol l 

RMSEP P 

1.77 7 
1.06 6 
1.66 6 
0.98 8 
1.12 2 

1.32 2 

1.81 1 
2.77 7 

2.29 9 

1.38 8 
1.32 2 
3.77 7 
1.59 9 
1.75 5 

1.96 6 

1.17 7 
1.24 4 

1.21 1 

MRE E 

4.0% % 
2.1% % 
4.0% % 
3.0% % 
3.4% % 

3.3% % 

3.8% % 
8.5% % 

6.1% % 

4.9% % 
5.0% % 

13.1% % 
5.5% % 
4.9% % 

6.7% % 

3.4% % 
4.4% % 

3.9% % 

water r 

RMSEP P 

0.92 2 
0.67 7 
1.11 1 
0.43 3 
0.38 8 

0.70 0 

0.51 1 
1.13 3 

0.82 2 

1.25 5 
0.55 5 
0.79 9 
0.84 4 
0.76 6 

0.84 4 

0.95 5 
0.93 3 

0.94 4 

MRE E 

3.2% % 
1.3% % 
2.8% % 
1.4% % 
1.3% % 

2.0% % 

1.4% % 
3.1% % 

2.3% % 

3.4% % 
1.9% % 
2.3% % 
3.1% % 
2.1% % 

2.6% % 

2.9% % 
2.1% % 

2.5% % 

2-propanol l 

RMSEP P 

1.24 4 
0.93 3 
2.18 8 
0.83 3 
1.47 7 

1.33 3 

2.74 4 
1.92 2 

2.33 3 

1.13 3 
1.64 4 
4.08 8 
1.74 4 
1.75 5 

2.07 7 

1.03 3 
1.30 0 

1.17 7 

MRE E 

3.2% % 
2.4% % 
7.4% % 
2.3% % 
2.5% % 

3.6% % 

7.5% % 
5.6% % 

6.5% % 

3.1% % 
5.1% % 

14.9% % 
4.0% % 
4.6% % 

6.3% % 

2.2% % 
3.7% % 

3.0% % 
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Thee higher signal of water translates to a higher norm of the NAS's and 

sensitivitiess for water (Table 2-3). The increase in absorption with the 

increasee in temperature for all three components (Figure 2-4) also gives rise 

too higher sensitivity at higher temperatures. The sensitivity vectors for all 

sampless (except the samples with mole fraction 1/3 as explained in 

Performancee measures) are very similar, as shown for ethanol in Figure 

2-6a. . 

0.02 2 

0.01 1 
u u 
u u c c a a 

JO JO 

3 3 
-0.011 -

-0.02 2 

0.02 2 

8500 900 950 1000 1050 

Wavelengthh [nm] 

8500 900 950 1000 1050 

Wavelengthh [nm] 

Figuree 2-6: Sensitivity vector plots for ethanol prediction of samples —5, 
.. _6_ ™-|4 and »-15 measured at . A. Local model case 
aa at . 6: Local model case b, vectors (model at 30 . 
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Tablee 2-3: Norm of the sensitivities for prediction samples: 5, 6, 14 ,15 for 

ethanol,, 6, 9, 11, 14 for water and 5, 9, 11, 15 for 2-propanol. 

a a 

1 1 
QQ „„,„„ 

JJ J 

jg g 

^ ^ 

Sampl e e 

300 «C 
400 C 
50=0 0 
600
700 C 

400 C 
400 C 
600 C 
600 C 

300 C 
400 <C 
500
600
700 C 

400 C 
600 "C 

urefCJo f f 

Model l 

300 C 
400 C 
500 "C 
600 C 
700 C 

Mean n 

300
500 C 
50*0 0 
700

Mean n 

30-700
30-700 C 
30-700 C 
30-700 C 
30-700 C 

Mean n 

C C 
C C 

Mean n 

£:  ) for : 

ethano ll  water 

5.600 9.33 
5.400 10.6 
5.777 10.4 
5.811 12.3 
6.566 13.4 

5.833 11.2 

8.455 12.3 
8.355 11.2 
7.688 13.0 

10.00 14.0 

8.633 12.7 

3.466 7.32 
4.000 7.33 
3.777 7.20 
3.666 7.54 
3.677 7.72 

3.711 7.42 

3.977 8.47 
3.833 7.89 

3.900 8.18 

2-pro p p 

6.47 7 
6.47 7 
6.54 4 
7.20 0 
8.47 7 

7.03 3 

9.61 1 
7.62 2 
9.55 5 
9.64 4 

9.11 1 

3.10 0 
3.37 7 
3.09 9 
3.09 9 
3.35 5 

3.20 0 

3.64 4 
3.25 5 

3.45 5 
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Casee b\ With thes e model s prediction s for a test temperatur e are calculate d 

ass the averag e predictio n based on loca l model s buil t for the two 

"neighboring ""  temperatures . The predictio n error s foun d are give n in Table 

2-2. . 

Thee model s can obviousl y not predic t wit h a goo d accurac y measurement s 

don ee at a differen t temperature . Averagin g the predicte d mol e fractio n 

improve ss the predictio n erro r to approximatel y half of the predictio n erro r 

give nn by the PLS model s at the two neares t temperatures . Still , the 

predictio nn error s are almos t twic e as high as in case a. 

Thee sensitivitie s (Table 2-3) are highe r than for loca l model s case a. This is 

duee to the fact that the NAS does not describ e onl y the analyt e but also the 

temperatur ee differenc e betwee n the trainin g set and predictio n samples . 

Thiss  is show n by comparin g the plot s in Figur e 2-6, revealin g the differenc e 

betwee nn the sensitivitie s of case a and b. The same test sample s measure d 

att  40*0 exhibi t very differen t and irregula r sensitivit y vector s when predicte d 

byy a mode l at . The rank annihilatio n step cause s the net analyt e signa l 

too describ e everythin g excep t absorptio n due to water and 2-propano l at 

30'C.. The differenc e betwee n the sensitivitie s for sample s 5,6 and 14,15 

show ss clearl y that the temperatur e effect , now incorrectl y include d in the 

NASS and sensitivities , is dependen t on the concentrations . 

GlobalGlobal  models 

Casee a: The trainin g set for all fiv e temperature s is used to buil d the mode l 

andd the mol e fraction s of the test set at all temperature s are predicted . 

Forr  bot h cros s validatio n strategie s the RMSECV steadil y decrease s wit h 

thee numbe r of LV's up to seven LV's include d in the mode l when it stop s 

decreasin gg significantly . The loadin g plot s sho w that the LV's highe r than 

sevenn describ e mostl y noise . Therefor e model s wit h 7 laten t variable s were 

buil tt  for m the trainin g sets . 
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Apparently,, the nonlinearity of the temperature effects forces the PLS 

algorithmm to model some systematic information in such high LV's. Roughly, 

thee number of LV's can be rationalized as two LV's necessary to describe 

thee chemical problem, two further to explain the non-additive behavior of 

waterr (see local models) and three more LV's for the description of the 

nonlinearitiess due to temperature variation. 

Thee prediction errors for the test set at the different temperatures are given 

inn Table 2-2. In absolute terms (RMSEP) the global model performs worse 

thann the local model case a and comparable to case b. The high mean 

relativee error compared to the equivalent predictions by the local models is 

causedd by the fact that the model makes a relative high error when 

predictingg lower mole fractions. 

Thee norms of the sensitivity vectors (Table 2-3) are considerably lower than 

thosee for the local models. This leads to the conclusion that, due to the 

variationn caused by temperature, the model is forced to use a smaller 

amountt of the spectra for prediction of the analyte. 

Casee b: In this case data at two temperatures (30 and 50 C or 50 and 70 <C) 

aree used for building a model and the spectra at the temperature in between 

(400 or 60*C resp.) are used as prediction set. As it was the case for the 

locall models, the global models case b are built with the same number of 

LV'ss (7) as in case a. Table 2-2 displays the RMSEP and MRE values for 

thee two test sets. When compared to the results of the corresponding local 

model,, the global model predicts more accurate in almost all cases. As a 

whole,, the predictive performance is comparable to that of local models 

casee a, being slightly better for the alcohols and slightly worse for water. 

Consideringg that the local models are in a way a "best case scenario" it 

meanss that the temperature effect on the predictions is reduced to a 

minimum. . 
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Thee sensitivity-norm s (Table 2-3) are onl y littl e highe r than for globa l model s 

casee a, especiall y for the test set at 40'C predicte d wit h the spectr a at 30 

andd 50  The smalle r temperature  span and mainl y the highe r numbe r of 

calibratio nn sample s improve s the predictiv e abilit y in compariso n to case a. 

Still ,, a considerabl e part of a spectru m is not used for predictio n due to the 

temperatur ee effect s as can be seen fro m comparin g the sensitivity-norm s 

wit hh the loca l mode l case a. 
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Conclusions Conclusions 

Globall models in which the temperature is modeled as an unknown 

interferentt perform only slightly inferior to local models which are calibrated 

andd used for a specific temperature. Global models, however, have a 

tendencyy to become (very) complex. The obtained global models needed 

sevenn LV's, three to describe the temperature interference, two for the non-

additivee behavior of water whilst the chemical system is of rank two. If 

temperaturee is treated as an unknown interferent, it is more important to 

spann the variation due to concentration rather than for many temperature 

levels. . 

Interpolationn between local models, to accommodate temperatures not 

presentt in the calibration set, performs poorly. 

Furtherr research will aim to describe the temperature effects explicitly; 

eitherr by preprocessing data before calibration or by inclusion of 

temperaturee into a calibration model itself. 
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