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We propose and analyze two series of clustered quantum Hall states for rotating systems of spin-1
bosons. The first series [labeled SU�4�k] includes the exact ground states of a model Hamiltonian at large
angular momentum L, and also for N � 3k particles at L � N. The latter is a spin-singlet boson-triplet
condensate. The second series, labeled SO�5�k, includes exact ground states at large L for different
parameter values.
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xy plane. The x, y dependence of these wave functions is
 m�z� / z

me�jzj2=2 [where z � x� iy, and the quantum
present results for the GS’s of Hint as a function of L, c0,
and c2. We identify a region in the c0-c2 plane where the
In the study of the phenomenon of Bose-Einstein con-
densation (BEC) of cold atoms, the possibility of using
bosons with internal degrees of freedom (spin 1 in particu-
lar) and of rotating the condensate has led to fascinating
new possibilities for the states of matter that can be formed
and observed. A multicomponent BEC can be realized by
trapping higher spin atoms such as 87Rb [1] and 23Na [2] in
optical traps, which do not affect the spin degeneracy, and
spin-1 or ‘‘vector’’ BEC’s have been realized and studied
[2,3]. In a model description, the two-body interactions of
the spin-1 atoms are written as ��r1 � r2��c0 � c2S1 � S2�,
with c0 � �g0 � 2g2�=3, c2 � �g2 � g0�=3, and gS �
4	�h2aS=Mb with Mb the boson mass and aS the s-wave
scattering length in the total spin S channel [4,5]. In the
case of 23Na one has c2 > 0 and, hence, ‘‘antiferromag-
netic’’ spin correlations. The ‘‘polar’’ ground state [4,5]
has hSi � 0; it supports many interesting collective exci-
tations (see [6] for a review). The case of 87Rb has c2 < 0,
leading to a spin-polarized (ferromagnetic) ground state.

The effect of rotating a ‘‘scalar’’ BEC of spinless or
spin-polarized atoms in an isotropic harmonic trap of
frequency !0 can be studied at mean field level (the
Gross-Pitaevskii equation), and a vortex lattice is found
at sufficiently high rotation frequency !, in agreement
with experimental observations [7]. At still higher frequen-
cies, quantum fluctuations become important and it has
been argued that the vortex lattice is replaced by a se-
quence of distinct quantum fluids, which can be understood
using a mapping to the fractional quantum Hall (qH) effect
[8]. In this Letter, we explore the corresponding possibil-
ities in a rotating system of spin-1 bosons.

In the regime !0 �!� !0 and very weak interaction,
only the lowest-energy single-particle states in the trap are
of interest. These have non-negative angular momentum
m � 0; 1; . . . about the rotation axis, and no excitation of
the motion along the axis, so the motion is effectively in the
0031-9007=02=89(12)=120401(4)$20.00
length ��h=Mb!0�
1=2 of the trap, and �h, have been set to

1]; they correspond to the lowest Landau level (LLL) [8].
We consider the interaction Hamiltonian for bosons i,

j � 1; . . . ; N, restricted to the LLL,

Hint �
X
i<j

��ri � rj��c0 � c2Si � Sj�: (1)

The ground state (GS) for the system rotating at frequency
! is found by minimizing Htot � Hint � �!0 �!�L [8],
where L �

P
i mi is the total angular momentum. For N

particles in the LLL with zero center-of-mass angular
momentum, the average ‘‘filling factor’’ of the occupied
states can be defined as � � N=�NV � 1�, where NV �
2L=N is the number of vortices there would be if there
were a Bose condensate (we assume here a uniform aver-
age occupation of states up to m � NV). The use of only
the LLL states is physically reasonable when !0 �!�
!0=NV (so that particles in the LLL with m � NV cannot
lower their energy by moving to a non-LLL state withm �
0) and �cS � !0, S � 0; 2 (so that perturbative cor-
rections from mixing non-LLL states into the GS are
negligible).

For the scalar case (in the LLL, without c2), a study [9]
using periodic boundary conditions found that the vortex
lattice melts at a critical � � �c � 10, that incompressible
fluid states occur at � � 1

2 ; 1;
3
2 ; 2; . . .< �c, and that the

corresponding GS wave functions have large overlaps with
the Read-Rezayi (RR) [10] series of fractional qH states.

Here, for the case of vector bosons, we first propose two
series of spin-singlet generalizations of the RR states
[labeled SU�4�k and SO�5�k, respectively, and k �
1; 2; . . . ] and explain their structure. In a thermodynamic
limit N ! 1 with � fixed, they each represent incompres-
sible liquid phases of the system, with � � 3k=4 for the
SU�4�k states and � � k for the SO�5�k series. Then we
 2002 The American Physical Society 120401-1
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proposed qH states with k � 1 give the exact GS’s at high
values of L. We demonstrate that the k � N=3 member of
the SU�4�k series is an exact eigenstate and, apparently, the
GS ofHint with c2 � 0, c0 > 0, at angular momentum L �
N. In second quantization, this state, a spin-singlet boson-
triplet condensate (BTC), takes the form

jBTCi � �� 1 2 3by0 1
by1 2

by2 3
�N=3j0i; (2)

where bym is a creation operator for the single-particle
state  m�z� with spin  , where  � x; y; z. Finally, we
show the GS’s of Htot as a function of !.

We now explain our analysis, starting with the construc-
tion of spin-singlet qH states for spin-1 bosons. This con-
struction is a generalization of similar constructions for
scalar and spin-1/2 particles (either of which could be
electrons or bosons) [10–12]. These papers all employed
a correspondence [13] between qH states and specific
conformal field theories (CFT’s). This connection allows
one to obtain trial qH wave functions as chiral correlators
in CFT’s that are associated to a Lie algebra G and integers
k � 1 and M � 0, where M is even (odd) for bosons
(fermions). These states generalize the pairing familiar
from the theory of superconductivity to the formation of
‘‘clusters.’’ The resulting qH wave functions have a prop-
erty that guarantees that they are exact zero-energy eigen-
states of certain model Hamiltonians. For example, starting
from G � SU�n� 1� and putting M � 0, one can find
completely symmetric wave functions that obey

~���z1; . . . ; zN� � 0 for z1 � � � � � zl �l � k�;
~���z1; . . . ; zN� � 0 for z1 � � � � � zk�1; (3)

independent of the spins of the particles involved. Hence,
these are zero-energy eigenstates of a Hamiltonian with a
repulsive k� 1-body �-function interaction [10] and are
the unique states of the lowest L with this property. The
existence of such a Hamiltonian and the fact that it has a
gap in its energy spectrum ensures that a corresponding
incompressible liquid phase of matter exists (whenN ! 1
at fixed k, M) over a range of interaction parameters, not
just for the k� 1-body model. The filling factors of these
SU�n� 1�k states are

��n; k;M� �
nk

nkM� n� 1
: (4)

The parameter n corresponds to the number of components
of an internal degree of freedom of the particles, and these
models have U�n� symmetry; the clusters contain nk par-
ticles. For n � 1 this construction gives the RR states,
while for n � 2 it produces spin-singlet states for spin-
1/2 particles [11]. Finally, clustered qH states admit ex-
citations (quasiparticles) of effectively fractional ‘‘charge’’
(i.e., particle number). The simplest of these can be viewed
as the result of the adiabatic insertion of a fraction of a
quantum of magnetic flux (or vorticity), where the allowed
fraction is 1=nk in the present cases. States with more than
120401-2
three quasiparticles at well-separated fixed positions dis-
play large degeneracies, which give rise to ‘‘non-Abelian
statistics’’ [13] and are understood for n � 1; 2 [11,14].

Our first series of clustered spin-singlet qH states of
spin-1 bosons consists of the SU�4�k states (n � 3 above),
where we put M � 0. The filling factor is � � 3k=4. The
CFT construction guarantees that, for N divisible by 3k,
this state is a singlet under SU(3), and hence also under its
SO(3) subgroup, the usual spin-rotation group. The wave
function for N � 3kp particles can be written in terms of
its components for particular spin states  � x; y; z speci-
fied for each particle (similar to [15]), as

~��SU�4�
k � Sgroups�Pgroups

~��2;2;2;1;1;1�; (5)

where

~��2;2;2;1;1;1�zx1; . . . ; z
x
p; z

y
1; . . . ; z

y
p; zz1; . . . ; z

z
p� �Y

 �x;y;z

Y
i<j

�z i � z j �
2

Y
 0< 00

Y
i;j

�z 
0

i � z 
00

j �: (6)

In words, the operations Pgroups and Sgroups in Eq. (5) tell
one to divide the 3pk bosons into k groups of 3p bosons
each (p of each spin polarization), to write a factor
~��2;2;2;1;1;1 as in Eq. (6) for each group, and, finally, to
symmetrize over all ways the particles can be divided
over the k groups. For k � 1 there is a single group, and
one finds a state of total degree L � 3p�2p� 1� that
generalizes the Laughlin and Halperin states for scalar
and spin-1=2 particles, respectively, and which is a zero-
energy eigenstate of Hint for all c0, c2, and the unique GS
when both g0, g2 > 0 since Hint is then positive. Putting
instead k � N=3 gives k groups of three particles each, the
resulting state being the L � N BTC, Eq. (2). The funda-
mental quasiparticles over the SU�4�k qH liquids have
fractional charge equal to �1=4, and spin 1, for all k.
We note, however, that such assignments, while mean-
ingful for N � k, may be meaningless when N � 3k,
where the quasiparticle size is comparable to the size of
the fluid drop.

An important point is that for c2 � 0, the Hamiltonian
(1) has SU(3), not just SO(3), spin-rotation symmetry.
Therefore, we expect the SU�4�k states to be relevant
near this line when c0 > 0, for sufficiently large L.

Our second series of qH states for spin-1 bosons is
obtained from a CFT with G � SO�5� and generalizes
the construction in Ref. [12]. The GS’s possess a symmetry
under an SO(3) subgroup of SO(5). The general construc-
tion, which involves spin-singlet clusters of 2k particles,
gives states of filling factor � � k=�kM� 1�. Putting M �
0, we obtain qH states with � � k. For k � 1, the wave
function with values in the spin space of N spin-1 particles
can be written as

~��SO�5�
k�1 �zi� � Pf

�
&i&j � 'i'j � (i(j

�zi � zj�

�
~��1
L�zi�: (7)

Here ~��1
L�zi� �

Q
i<j�zi � zj� is a spin-independent
120401-2
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Laughlin factor in all N particle coordinates; the Pfaffian
Pf is defined by Pf �Mij� � A�M12M34 . . .MN�1;N�;
where Mij are the elements of an antisymmetric matrix
and A denotes the operation of antisymmetrization; &i,
'i, (i are basis vectors in the spin space for particle i,
which correspond to x; y; z, and the product is the tensor
product. For k � 1, N must be even, and the clustering (or
pairing) of particles is seen explicitly. Clearly, there must
be even (but otherwise arbitrary) numbers of particles in
each of the three spin states &;'; (. The k � 1 wave
function for N � 2q particles has total degree L � 2q�q�
1�. The function (7) can be viewed as spin-singlet p-wave
pairing of composite fermions of spin 1 (for a review, see
Ref. [16]). There are also excited states with unpaired
charge-neutral spin-1 fermions. We note that, in the state
(7), two bosons are found at the same point only if the total
spin of the pair is zero, not if it is 2, and hence the state is an
exact zero-energy eigenstate, of lowest L, for a �-function
interaction that includes a projection onto spin 2. In our
parametrization, that is, c2 � c0=2 or g0 � 0, and if also
c0 > 0, then Hint is positive, so our k � 1 state is the GS at
this L. For general k, the SO�5�k wave function can be
written as a CFT chiral correlator and is an exact zero-
energy eigenstate of a certain k� 1-body �-function inter-
action (details will appear elsewhere). In general, the qua-
siparticles over the SO�5�k qH state have charge �1=2 and
spin 1=2, thus displaying a fractionalization of both charge
and spin.

We next report on our study (numerical and analytic) of
the GS phase diagram of the model Hint. The numerical
work is restricted to small values of N (up to 12), but it
indicates many features which we believe to hold for
general values of N. To guide our discussion we have
displayed in Fig. 1 various special directions (rays) and
regions in the c0-c2 plane.

For L � 0, the GS has total spin S � N for c2 < 0 (ferro
regime) and S � 0 (1) for N even (respectively, odd) for
c2 > 0 (antiferro regime). For c2 � 0, there is a single
FIG. 1. Overview of c0-c2 plane, with special regions and
directions marked.

120401-3
SU(3) multiplet of spin states, decomposing into unique
SO(3) multiplets of each spin S � N;N � 2; . . . .

As L increases, these two phases survive in part of the
phase diagram, as compact drops of fluid, with the center
of mass (CM) carrying all the angular momentum.
Meanwhile, the positive c0 axis gradually opens into a
region that contains other phases. By the time L is � N,
the c0-c2 plane contains the three regions labeled Ia, Ib,
and II in Fig. 1. The GS’s in regions Ia and Ib are similar to
the GS in the ‘‘attractive’’ regime in the scalar case [8]. The
orbital part of the GS wave function is of the form ~���zi� /
zLc , with zc �

P
i zi=N the CM coordinate. In region Ia

(c0 < 0, c2 > 0), the spin state is the same spin singlet as
for the L � 0 GS, and the GS energy becomes �c0N�N �
1�=2� Nc2��2	�

�3=2 [17]. In region Ib (c2 < 0, c0 <
�c2), the spin state is ferro, S � N, giving energy �c0 �
c2�N�N � 1��2	��3=2=2< 0 [8]. At c2 � 0, c0 < 0,
the spin states again form the SU(3) multiplet. In the
‘‘repulsive’’ region II, the GS is in general not a common
eigenstate of the c0 and c2 parts of the interaction, and the
GS energy depends nonlinearly on the ratio c2=c0. The
L � N GS’s all have S � 0 or S � 1 (depending on the
value of N modulo 6, and on the ratio c2=c0). For L > N,
larger values of S < N do occur near the boundary at c2 �
�c0 (g2 � 0).

Turning to L� N in region II, we have already pointed
out that the SU�4�1 state is the zero-energy GS for N � 3p
particles at L � 3p�2p� 1� when g0 and g2 > 0, while
the SO�5�1 state is the zero-energy GS forN � 2q particles
at L � 2q�q� 1� for g0 � 0. (For N � 3; 4, these states
occur at L � N). For even larger L, each of these model
cases possesses many degenerate GS’s of zero energy. This
implies that, within our model, the SU�4�1 and SO�5�1 GS’s
are those found (for the parameters as stated) at the critical
rotation frequency ! � !0, and so the lowest possible
filling factor is 3=4 in the region g0, g2 > 0, but is 1
when g0 � 0.

At intermediate L > N values in this region, we expect
similar physics. Thus, for c2 � c0=2 > 0, (g0 � 0), the
system can lower its energy by forming SO(3) singlet pairs
of bosons. For L< 2q�q� 1� (N � 2q > 4) we do not
have exact eigenstates, but we expect that, similar to
Ref. [9], for � � k less than some critical value �0c > 1,
the bulk of the fluid will be in the SO�5�k state. For c2 � 0,
c0 > 0, the preferred behavior is singlet formation via
triples of bosons of spin zero; each such three bosons
must be in an antisymmetric orbital state as well. For L<
3p�2p� 1� (N � 3p > 3), we do not generally have
exact eigenstates, but we expect the bulk of the fluid
to be the SU�4�k states for � � 3k=4 less than another
critical �00c > 3=4.

We also found that the exact GS for N � 6, L � 6 at
c2 � 0 is the SU�4�2 or BTC state (2). Prompted by this,
we have proved analytically that for N � 3p particles the
SU�4�p state is an exact eigenstate of Hint with c2 � 0,
with eigenvalue
120401-3
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FIG. 2. Density profiles versus x at y � 0 in the LLL model:
BTC (solid line); nonrotating BEC (broken line). Vertical axis is
in units of the particle number N � 3p.
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FIG. 3. GS values for L as a function of the rotation frequency
! for N � 6 particles at c2 � 0. [We put !0 � 1 and c0 �
�2	�3=2=4.] The state at L � 6 is the BTC, while the L � 18
state is the SU�4�1 state. The spin values S are shown for
each GS.
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E �
11

48
N�N � 3��2	��3=2c0: (8)

We have numerically checked that for N � 3; 6; 9; 12 this
state is the GS and believe this is true for all N � 3p.

The BTC state in Eq. (2) has a clear experimental
signature, that is, the density profile given in Fig. 2, whose
form is independent ofN. We caution again that one should
probably not think of the limit N � 3k as a qH state, since
the drop is so small. We identified the state as an extreme
member of the SU�4�k qH series, but it might be more
useful to view it as a boson-triplet analog of the BCS paired
electron states, or alternatively as an SU(3) analog of a
Skyrmion spin texture (see Ref. [18]).

The response of the spin-1 boson system to a rotation
frequency ! is found by minimizing Htot. In Fig. 3 we
display the result for N � 6 particles. The BTC is at L �
6, and the SU�4�1 state is at L � 18. The degenerate spin
multiplets listed at the steps at L< 6 each form a single
SU(3) multiplet. The wave functions of these GS’s at L �
N are uniquely determined by their SU(3) and L quantum
numbers.

The SO�5�1 state found here will survive for some dis-
tance off g0 � 0. For N large at fixed �, there will be
several phases within region II, and, in particular, a bound-
ary between the SO�5�1 and SU�4�1 phases that approaches
g0 � 0 as !! !0.

Our constructions for c2 � 0 directly generalize to an
n-component rotating Bose gas with repulsive spin-inde-
pendent �-function interactions, implying SU�n� symme-
try. In particular, we expect a ‘‘boson n-plet condensate’’ at
L � �n� 1�N=2, and SU�n� 1�k states at sufficiently
small � � nk=�n� 1�.

To conclude, we have found several interesting states of
matter, not containing vortices, in rotating spin-1 bosons.

We thank E. Rezayi, M. Kasevich, S. M. Girvin, T.-L.
Ho, and E. Mueller for helpful discussions. This research
was supported by the Netherlands Organisation for
Scientific Research, NWO, and the Foundation FOM of
the Netherlands (J. W. R., F. J. M. v. L., and K. S.), and by
120401-4
the NSF under Grants No. DMR-98-18259 (N. R) and
No. DMR-98-02813 (K. S.).

As this manuscript was being prepared, two e-prints
appeared [19,20] that also address a rotating BEC. These
papers point out the relevance of the SU�n� 1�1 states at
large L but do not discuss the other qH states or the BTC
state that we consider.
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