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Abstract
Many researchers use GARCH models to generate volatility forecasts. Using

data on three major U.S. dollar exchange rates we show that such forecasts

are too high in volatile periods. We argue that this is due to the high per-

sistence of shocks in GARCH forecasts. To obtain more flexibility regarding

volatility persistence, this paper generalizes the GARCH model by distin-

guishing two regimes with different volatility levels; GARCH effects are al-

lowed within each regime. The resulting Markov regime-switching GARCH

model improves on existing variants, for instance by making multi-period-

ahead volatility forecasting a convenient recursive procedure. The empirical

analysis demonstrates that the model resolves the problem with the high

single-regime GARCH forecasts and that it yields significantly better out-

of-sample volatility forecasts.
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1 Introduction

Volatility of financial returns is an important aspect of many financial decisions. For

example, volatility of exchange rates is a determinant for pricing currency options used

for risk management. Hence, there is a need for good volatility forecasts.

Such forecasts are often based on the fact that volatility is time-varying in high-

frequency data and that periods of high volatility tend to cluster. To capture this,

many authors use autoregressive conditional heteroskedasticity (ARCH) models, as in-

troduced by Engle (1982) and extended to generalized ARCH (GARCH) in Bollerslev

(1986); see Bollerslev, Chou and Kroner (1992) for an overview of the GARCH liter-

ature. Such models usually improve the fit a lot compared with a constant variance

model and, as Andersen and Bollerslev (1998) claim, GARCH models provide good

volatility forecasts.

This paper shows that GARCH forecasts are, nevertheless, too high in volatile

periods, using almost twenty years of daily data on U.S. dollar exchange rates versus

the British pound, German mark and Japanese yen. This suggests that better volatility

forecasts can be obtained by solving that problem. The goal of this paper is to adapt

the GARCH model in order to obtain such better forecasts.

The reason for the excessive GARCH forecasts in volatile periods may be the well-

known high persistence of individual shocks in those forecasts. Lamoureux and Las-

trapes (1990), among others, show that this persistence may originate from structural

changes in the variance process. For example, if the variance is high but constant for

some time and low but constant otherwise, persistence of such high- and low-volatility

homoskedastic periods already results in volatility persistence (see also Timmermann

(2000)). A GARCH model, which cannot capture persistence of such periods, puts

all volatility persistence in the persistence of individual shocks. This idea is similar

to Perron’s (1989) work on the mean equation, as he finds that structural breaks in

the mean make it more difficult to reject the null of a unit-root, that is, permanent

persistence of shocks in the mean.

One possibility to allow for periods with different unconditional variances is, of

course, by introducing deterministic shifts into the variance process, but this is rather

ad hoc. A popular approach to endogenize changes in the data generating process is the

Markov regime-switching model. Hamilton (1989) introduces this model to describe

the U.S. business cycle, which is characterized by periodic shifts from recessions to

expansions and vice versa. In our context of exchange rate volatility, a Markov process

can be used to govern the switches between regimes with different variances. See

Kaufmann and Scheicher (1996) for a survey on Markov-switching models.
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To solve the problem of the excessive GARCH forecasts in volatile periods, we

therefore generalize the GARCH model by allowing for regimes with different volatility

levels. We use two regimes and do not consider models with more regimes, because

we want to explore whether the introduction of regimes helps solve the problem with

the GARCH forecasts and it turns out that two regimes are sufficient for that. Within

each regime we use GARCH models to govern the variance. Hence, it is a regime-

switching GARCH model. The persistence of both regimes yields an extra source of

volatility persistence compared to standard, single-regime GARCH, thereby enhancing

the flexibility in describing the volatility persistence of shocks.

The regime-switching GARCH model we develop differs from existing variants.

First, it allows for GARCH dynamics, thereby generalizing the regime-switching ARCH

models of Cai (1994) and Hamilton and Susmel (1994), and also used by Fong (1998).

Because for our data the conditional heteroskedasticity within regimes cannot always

be captured by a moderate number of ARCH terms, we need a GARCH term for par-

simony. In addition, the data reveal that the variance dynamics differ across regimes.

Our model allows for that, which is not the case for their models.

A second difference between our model and existing variants concerns Gray’s (1996a)

regime-switching GARCH specification, also used in Ang and Bekaert (1998). For that

variant we are unable to compute the multi-period-ahead volatility forecasts needed for

the detailed forecasting analysis we want to do in the current paper. In contrast, for

our version such forecasts can be obtained through a convenient first-order recursive

procedure. The idea behind this difference is that, when integrating out the unobserved

regimes, we use all available information, whereas Gray uses only part of it; this also

explains the better fit for our model. The development of our convenient regime-

switching GARCH model is the main contribution of the paper from a theoretical

point of view.

The main empirical results are that regime-switching GARCH resolves the problem

that standard GARCH forecasts are significantly too high in volatile periods and that

regime-switching GARCH forecasts significantly outperform GARCH forecasts in terms

of mean squared error. These results hold out-of-sample and for both forecast horizons

we examine, namely the one-day and ten-day horizons. This provides evidence for the

conjecture raised by West and Cho (1995) that it will be productive to explore models

that explicitly account for movement in the variance generating process, for instance,

by regime switches.

The next section introduces the regime-switching GARCH model and discusses its

properties. Section 3 describes the data used in the empirical application and presents
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the empirical results. It also contains the out-of-sample forecasting exercise that yields

the most important empirical results of the paper. Section 4 concludes.

2 Regime-Switching GARCH

In this section we introduce the regime-switching GARCH model, with which we try

to improve on the standard, one-regime GARCH volatility forecasts. We describe the

model, discuss its properties and relate the model to existing regime-switching ARCH

and GARCH models.

2.1 The Model

We use the following notation. Let St denote the logarithm of a spot exchange rate

at time t, that is, the domestic currency price of one unit of foreign currency. We

concentrate on the exchange rate change st=100(St−St−1), so that st is the percentage
depreciation of the domestic currency from time t−1 to t.

The regime-switching GARCH model consists of four elements, namely the mean,

regime process, variance and distribution. Two of them, the regime process and variance

are crucial for interpreting the empirical results, as they are directly related to the

difference between our model and standard, one-regime GARCH models.

The mean of exchange rate processes is often modeled by a random walk (with

drift). For instance, Meese and Rogoff (1983) and MacDonald and Taylor (1992) stress

the empirical quality of the random walk over structural models of exchange rate deter-

mination, particularly in the short run. We follow this simple but reasonable approach,

also because the focus of our paper is on the volatility rather than the mean:

st = µ+ εt. (1)

The innovation εt has zero mean conditional on the information set of the data gener-

ating process to be defined below. Thus, µ is the constant conditional mean of st. (It

is possible to incorporate, for example, autoregressive terms in the conditional mean

without making the formulas that follow essentially different.)

As argued in the introduction, the purpose of the regimes with different volatility

levels is to explain part of the volatility persistence. This requires that regimes can

be persistent. To model this, let rt ∈ {1, 2} be the (unobserved) variance regime at
time t, where the first regime is identified as the low-variance one. Let pt−1(rt |ert−1)=
p(rt | It−1, ert−1) denote the probability of going to regime rt at time t conditional
on the information set of the data generating process, which consists of two parts.
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The first part, It−1, denotes the information observed by the econometrician, that is

(st−1, st−2, . . . ). The second part, ert−1, is the regime path (rt−1, rt−2, . . . ), which is
not observed by the econometrician. Note that the subscript t−1 below an operator
(probability, expectation or variance) is short-hand notation for conditioning on It−1.

As in Hamilton (1989), we assume that rt follows a first-order Markov process with

constant staying probabilities

pt−1(rt |ert−1) = p(rt |rt−1) =
p11 if rt = rt−1 = 1

p22 if rt = rt−1 = 2.
(2)

If p11 and p22 are high, this specification results in the regime persistence required

above.

The specification of the conditional variance, the third element of the model, rep-

resents the main difference between this paper and earlier ones on regime-switching

ARCH and GARCH. Using the law of iterated expectations and (1), the conditional

variance Vt−1{st} equals Et−1[Vt−1{εt | ert}], so that we concentrate on Vt−1{εt | ert}.
Four specifications of the latter variance will be discussed, where the final one turns

out to be the most convenient. For the sake of exposition, we confine ourselves to mod-

els with only one ARCH and one GARCH term; including more ARCH and GARCH

terms is straightforward.

The first specification of the conditional variance is a direct application of the

GARCH(1,1) model in a regime-switching context:

Vt−1{εt |ert} = ωrt + αrtε
2
t−1 + βrtVt−2{εt−1 |ert−1}, (3)

where Vt−1{εt |ert} denotes the variance of εt conditional on observable information It−1
and on the regime path ert. The current regime only determines the parameters, that
is, the intercept ωrt , the ARCH parameter αrt and the GARCH parameter βrt .

This specification, however, appears practically infeasible when estimating the model.

This is due to the fact that Vt−1{εt |ert} in (3) depends on the entire regime path ert, be-
cause it depends on rt and Vt−2{εt−1 |ert−1}, which depends on rt−1 and Vt−3{εt−2 |ert−2},
which depends on rt−2 and Vt−4{εt−3 | ert−3}, and so on. Since the number of possible
regime paths grows exponentially with t, this leads to an enormous number of paths to

t. The econometrician, who does not observe regimes, has to integrate out all possible

paths when computing the sample likelihood. This renders estimation intractable. The

remaining specifications of the conditional variance are ways to avoid this problem of

path dependence.

The second specification is based on Cai (1994) and Hamilton and Susmel (1994).

They essentially remove the GARCH term, which is the cause of the path dependence,
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and thus use only an ARCH term in (3). Since Vt−1{εt |ert} then only depends on the
current regime rt, there is no problem of path dependence. (More precisely, Cai (1994)

and Hamilton and Susmel (1994) use slightly different models in which Vt−1{εt |ert} not
only depends on the current but also on a few recent regimes. The essential point is

that the conditional variance depends only on a small number of regimes, which can

be integrated out in the likelihood quite easily.)

The third specification of the conditional variance comes from Gray (1996a). He

argues that the problem of path dependence can be solved without giving up the poten-

tially important persistence effects of a GARCH term, as has been done in the second

specification. The basic idea of Gray is to integrate out the unobserved regime pathert−1 directly in the source of the path dependence, Vt−2{εt−1 | ert−1} in (3), instead of
only in the likelihood. This makes Vt−1{εt | ert} only depend on the current regime rt,
not on the path ert−1, as is clear from the explanation of the path dependency problem

below (3). As Gray shows, this is very convenient from an estimation point of view, be-

cause the likelihood can then be computed in a first-order recursive way, which speeds

up the estimation process considerably. Since Gray uses the information observable at

time t−2 when integrating out, he actually assumes that

Vt−1{εt |ert} = ωrt + αrtε
2
t−1 + βrtEt−2

h
Vt−2{εt−1|ert−1}i , (4)

where the expectation on the right-hand-side is across the regime path ert−1, conditional
on information It−2. Note that this is equivalent to integrating out only the single

regime rt−1, as the lag of (4) implies that Vt−2{εt−1|ert−1} is independent of ert−2.
The main benefit of specification (4) is that there is no path dependence problem

any more, although GARCH effects are still allowed. There is, however, one important

inconvenience, especially regarding our focus of volatility forecasting: generating multi-

period-ahead variance forecasts such as Vt−1{st+1} turns out to be very complicated.
This motivates our search for another specification that makes multi-period-ahead fore-

casting more convenient while preserving the attractive features of Gray’s model.

Our specification of Vt−1{εt | ert} differs from Gray’s (1996a) model in two ways.

First, as the expectation in (4) shows, Gray integrates out the regime rt−1 at time t−2.
We postpone this till t−1, the time at which the conditional variance Vt−1{εt | ert} is
really needed. This allows us to use more observable information when integrating out

the previous regime. This extra data embodies information about previous regimes and

is thus useful.

The second difference is that, when integrating out the regime rt−1, Gray does not

use the information that the regime at time t is in the conditioning information of

Vt−1{εt | ert}. Particularly if regimes are highly persistent, rt gives much information
5



about rt−1. In contrast to Gray, we do use this information.

In formula, our regime-switching GARCH(1,1) model is described by

Vt−1{εt |ert} = ωrt + αrtε
2
t−1 + βrtEt−1

h
Vt−2{εt−1 |ert−1}¯̄̄ rti , (5)

where the expectation on the right-hand-side is across the regime path ert−1, conditional
on information It−1 and rt. Note that this is equivalent to integrating out only the

single regime rt−1, as the lag of (5) implies that Vt−2{εt−1 | ert−1} is independent ofert−2. By construction, Vt−1{εt | ert} only depends on the current variance regime rt,
so that Vt−1{εt | ert} = Vt−1{εt | rt}. Hence, there is no problem of path dependence.

To complete the specification of the conditional variance, we impose ωrt > 0 and αrt ,

βrt>0 to ensure positivity of Vt−1{εt |ert} for all t, just as for single-regime GARCH.
The final element of the regime-switching GARCHmodel is the conditional distribu-

tion. We assume that, conditional on It−1 and ert, the innovation εt has a t-distribution
with ν degrees of freedom, where ν is assumed to be independent of the conditioning

information, and with mean zero and variance Vt−1{εt |rt}:

εt |It−1, ert ∼ t
³
ν , 0 , Vt−1{εt |rt}

´
. (6)

The use of a t-distribution instead of a normal one is quite popular in the standard,

single-regime GARCH literature (see Bollerslev, Chou and Kroner (1992)). For regime-

switching models, a t-distribution can be extra useful. After all, in case of normality, a

large innovation in the low-volatility period will lead to a switch to the high-volatility

regime earlier, even if it is a single outlier in an otherwise tranquil period. Allowing

for a t-distribution will thus enhance the stability of the regimes. Note that the t-

distribution includes the normal distribution as the limiting case where the degrees of

freedom go to infinity.

In summary, equations (1), (2), (5) and (6) describe our regime-switching GARCH

model. It contains the standard, one-regime GARCH(1,1) model as a special case, since

that model results when all regime-specific parameters are equal across regimes.

2.2 Properties of the Model

The model just described has several interesting properties. We first show the increased

flexibility regarding the volatility persistence of shocks. After that we present the

convenient procedure for multi-period-ahead volatility forecasting, which we need to

examine the forecast quality of regime-switching GARCH compared with single-regime

GARCH, the focus of the paper. Then the unconditional variance, the estimation

procedure, and inference about the unobserved regime are discussed.
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2.2.1 Flexibility Regarding Volatility Persistence

As motivated in the introduction, the reason to generalize the single-regime GARCH

model by introducing regimes is to enhance the flexibility of the model to capture the

persistence of shocks in volatility. One example is that in regime-switching GARCH a

shock can be followed by a volatile period not only because of GARCH effects, but also

because of a switch to the high-volatility regime.

The flexibility with respect to volatility persistence is further improved by the al-

lowance for different ARCH and GARCH parameters across regimes. For instance,

if shocks are more persistent in periods of high than in periods of low volatility, this

can be captured by the regime specific parameters in (5). This has consequences for

capturing the “pressure relieving” effect of some large shocks, that is, some shocks are

not persistent at all but are followed by a tranquil period. Any regime-switching model

can capture this to some extent by a shift from the high-volatility to the low-volatility

regime. However, our regime-switching model with different parameters across regimes

has a second source of neglecting large recent shocks. After all, if the low-variance

regime is also the low-persistence regime, the large shock will be out of the market very

soon after the switch to the low-variance regime. In this respect, our model generalizes

the models in Hamilton and Susmel (1994) and Cai (1994), as their regime variances

only differ by a multiplicative or additive constant, respectively, not by differences in

the ARCH parameters.

2.2.2 Recursive Volatility Forecasting

Suppose we need the variance of the exchange rate change over a horizon h, conditional

on information available at time t−1. Let st,h denote the h-period change, that is,
st,1 = st and st,h = st + ... + st−1+h for h > 1. The variance of interest is thus

Vt−1{st,h}. Because of the absence of serial correlation in the one-period changes (see
below (1)),

Vt−1{st,h} =
t−1+hX
τ=t

Vt−1{sτ}. (7)

Each variance on the right-hand-side is equal to

Vt−1{sτ} =
X
rτ=1,2

pt−1(rτ ) · Vt−1{ετ |rτ}, (8)

where pt−1(rτ ) is the probability that the regime at time τ is rτ conditional on It−1.

Note that we use the same symbol pt−1 for several probabilities (for instance, see (2)
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and (8)). The specific meaning of pt−1 is uniquely determined by the symbols in its

argument. This results in a concise notation.

An important implication of our way of modeling the conditional variance in (5)

is that Vt−1{ετ | rτ} in (8) can be computed in a first-order recursive manner using a
formula analogous to the one Engle and Bollerslev (1986) have derived for the standard,

one-regime GARCH model. Starting from Vt−1{εt |rt}, appendix A shows that one can
compute Vt−1{ετ |rτ} for τ>t by iterating forward on

Vt−1{εt+i |rt+i} = ωrt+i + (αrt+i + βrt+i) ·Et−1
h
Vt−1{εt+i−1 |rt+i−1}

¯̄̄
rt+i

i
(9)

for i=1, ..., τ−t. This simplifies the computation of Vt−1{st,h} in (7) substantially and
represents one of the main advantages of our regime-switching GARCH model over

Gray’s (1996a) model.

2.2.3 Unconditional Variance

In Appendix B we derive the following results for the “unconditional” error variance

V {εt | rt}. First, if V {εt | rt = i} exists for both i = 1, 2 and both ω1,ω2 and is

independent of t, denoted by σ2i , then σ21

σ22

 = (I2 −A)−1 ·
 ω1

ω2

 , (10)

where I2 is the identity matrix of order two and the (i, j)-th element of A is Aij =

P{rt−1=j |rt=i}(αi + βi) (appendix B gives expressions for the probabilities in Aij).

Second, necessary conditions for the existence of both variances are A11, A22 < 1

and det(I2−A) > 0. So, given the definition of Aii, a probability times the sum of the

regime-specific ARCH and GARCH coefficients must be less than one for both regimes.

Moreover, there is some restriction on a combination of the ARCH and GARCH coef-

ficients across regimes.

To get a better understanding of these results, let us look at standard GARCH(1,1).

There the unconditional variance is σ2 = (1 − α − β)−1ω and the necessary (and

sufficient) condition for its existence is α+β < 1. Hence, we again see a correspondence

between single-regime GARCH and regime-switching GARCH.

2.2.4 Recursive Estimation

The regime-switching GARCH model can be estimated by maximum likelihood (ML).

The likelihood function is derived in appendix C, using similar techniques as Gray
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(1996a). As for Gray’s model, this likelihood has a first-order recursive structure,

similar to that of single-regime GARCH. This speeds up the estimation process.

2.2.5 Recursive Regime Inference

Although regimes are not observed, one can estimate the probability that the process

is in a particular regime at a specific time. This is, for instance, useful if one wants to

classify a series into periods of low and high volatility.

Following Gray (1996a), we use two types of regime probabilities, namely ex ante

and smoothed probabilities. The ex ante probability of regime rt at time t, pt−1(rt),

is the conditional probability that the process is in that regime at time t using only

information available to the econometrician at time t−1, that is, It−1. The smoothed
regime probability pT (rt), on the other hand, uses the complete data set IT , thereby

smoothing the ex ante probabilities. Hence, it gives the most informative answer to

the question which regime the process was likely in at time t. The ex ante probabilities

are computed during estimation (see appendix C). The smoothed probabilities can be

calculated in a recursive manner starting from the ex ante probabilities, as appendix

D shows using an algorithm based on Gray (1996b).

3 Empirical Results

So far, we have generalized single-regime GARCH to regime-switching GARCH to

obtain more flexibility regarding the volatility persistence of shocks. In this section we

estimate both models and examine whether that generalization pays off empirically in

terms of improved volatility forecasts, the central issue of the paper.

3.1 Data

We consider three major U.S. dollar exchange rates, namely, the dollar price of the

British pound, the German mark and the Japanese yen. We have 4,982 daily observa-

tions for the exchange rate change st from January 3, 1978 to July 23, 1997. All rates

have been obtained from Datastream.

Panel A of figures 1, 2 and 3 gives an indication of the volatility clustering of the

three exchange rates under consideration over the sample period. As usual, all three

plots show substantial volatility clustering. This is confirmed by (not reported) Box-

Pierce tests for serial correlation in the squared exchange rate changes, as these are

significant at any reasonable significance level.
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The plots also demonstrate that shocks sometimes have a long effect on subsequent

volatility, but that shocks can also be followed by a period of low volatility. For instance,

in figure 1A the large peak in the squared change plot for the British pound on March

27, 1985 was followed by about half a year of substantial volatility. On the other

hand, the G-5 Plaza announcement on September 22, 1985 to bring about a dollar

depreciation had a sharp effect on the dollar the next day, as the second largest peak

in the figure makes clear, but was followed by a period of low instead of high volatility.

Therefore, at first sight the extra flexibility regarding volatility persistence that is

present in regime-switching GARCH seems worthwhile.

3.2 Estimation Results

This subsection presents the estimation results for the regime-switching GARCHmodel.

Let GARCH(P1,Q1;P2,Q2) denote a regime-switching model with Q1 (Q2) ARCH and

P1 (P2) GARCH terms in the first (second) regime. These are obvious variants of the

GARCH(1,1;1,1) model developed in subsection 2.1. The models for the pound contain

an AR(1) term in mean equation (1) to correct for the small first-order autocorrelation

found in the data.

For comparison, we also estimate five other models. Two of them are single-regime

models, namely the constant variance model and the popular GARCH(1,1) model.

Two other models belong to the regime-switching ARCH class. The ARCH(0;0) model

has zero ARCH terms, so constant variance, in both regimes, as in Dewachter (1997)

and Scheicher (1999); this model is used to analyze the effect of introducing only

regimes. The other ARCH-type model, ARCH(Q1;4) with Q1 determined below, is in

the spirit of Cai (1994) and Hamilton and Susmel (1994). It is, however, somewhat

more general in the sense that the regime-specific ARCH models are allowed to vary

across regime in an unrestricted way, whereas in Cai (1994) and Hamilton and Susmel

(1994) the difference between the low- and high-variance regime ARCH models is just

an additive or multiplicative constant, respectively. The final model for comparison is

Gray’s (1996a) variant of regime-switching GARCH.

Table 1 presents the maximum likelihood estimation results. The inverse of the

degrees of freedom ν of the t-distribution (see (6)) is presented; testing for conditional

normality then boils down to testing whether ν−1 differs significantly from zero. More-

over, for easier comparison of the models, we report the regime-specific unconditional

variances σ2r (r = 1, 2) instead of the intercepts ωr in the conditional variance formula

(5); see (10) for the computation of σ2r. Finally, the last column of table 1 reports

the log-likelihood using GARCH(1,1) as a reference, so that the values for the other
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models are differences with respect to GARCH(1,1). Note that one should be care-

ful when interpreting differences in log-likelihoods in terms of likelihood ratio tests.

First, not all models are nested. Second, testing the null of a single-regime against

a regime-switching model involves unidentified parameters (the regime-staying proba-

bilities) under the null, so that the asymptotic distribution of the likelihood ratio is

not the usual χ2-distribution (see Hansen (1992)). In this paper we do not formally

test for the significance of the second regime, because the focus of the paper concerns

forecasting quality, so that we concentrate on the effects of regimes on that.

3.2.1 Single-regime GARCH

As is typically found, the standard, one-regime GARCH(1,1) model provides a much

better fit than the constant variance model. For instance, the increase in log-likelihood

of the GARCH model over the constant variance model is 244.34 for the British pound,

so that ARCH and GARCH effects are statistically very important. GARCH(1,1) is also

the preferred model within the class of GARCH(P,Q) models, as the likelihood ratios

of GARCH(1,1) versus GARCH(2,1) and GARCH(1,2) are 1.12 and 0.00, respectively,

for the pound, 0.92 and 0.00 for the mark, and 1.90 and 0.00 for the yen, which are

all insignificant. This is in accordance with Bollerslev et al. (1992), who state that in

most applications P = Q = 1 is sufficient.

As usual, the estimated sum of the ARCH and GARCH parameters (α + β) is

large for all three series, pointing at high volatility persistence of individual shocks.

This may indicate parameter instability, as argued in the introduction. We estimate

regime-switching models to analyze whether the high volatility persistence is indeed

spurious.

3.2.2 Regime-switching ARCH(0;0)

Let us first consider the regime-switching ARCH(0;0) model, in which persistence of

regimes is the only source of volatility clustering. Table 1 shows that for the three

rates there is a distinction between a low- and a high-volatility regime, where the

unconditional variance in the latter is three to four times as large.

The variance regimes are also persistent, since the staying probabilities p11 and p22

are all above 0.975. To get a better idea about the amount of persistence that such

staying probabilities imply, we compute the expected duration of the high-variance
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regime. Conditional on being in this regime (rt=2), this is (see Hamilton (1989))

∞X
h=1

h · P{rt=2, . . . , rt+h−1=2, rt+h=1 |rt=2} =
∞X
h=1

h · (p22)h−1(1−p22) = (1− p22)−1.

(11)

For a typical ARCH(0;0) staying probability of 0.98, this implies an expected duration

of 50 (working) days, which is about 2.5 months.

The log-likelihood gives a first idea of whether the regime persistence is an important

source of volatility clustering. For the pound and mark the log-likelihood is lower than

for GARCH(1,1), but for the yen it is higher. Hence, regimes can be an important

mechanism to capture volatility clustering.

This is confirmed by table 2, which gives tests for autocorrelation in the squared

normalized residuals (see the notes below the table for the computation of the normal-

ized residuals). The first-order autocorrelations ρ1 and the Box-Pierce tests Q10 show

that the conditional heteroskedasticity in the normalized residuals is greatly reduced

when going from the constant variance model to the regime-switching model with con-

stant regime-specific variances. However, the conditional heteroskedasticity tests also

make clear that there is still heteroskedasticity left (we use a significance level of 5%

throughout the paper). Apparently, there is also volatility clustering within a regime.

3.2.3 Regime-switching ARCH(Q1;4)

To capture the remaining conditional heteroskedasticity, we first add only ARCH terms

to the model, so no GARCH terms yet. To get some insight into the magnitude of

volatility clustering across the regimes, we start with a model with several ARCH

terms in both regimes. For parsimony, we restrict the number of ARCH terms to four

in both regimes, that is, ARCH(4;4). We find that four ARCH terms is too much

for the low-variance regime: for the pound two ARCH terms suffice (likelihood ratio

of ARCH(2;4) versus ARCH(4;4) is 0.74, which is insignificant because the p-value is

[0.69]), for the mark zero terms suffice (1.87 [0.76]) and for the yen one term (3.79

[0.29]). In contrast, the high-volatility regime keeps its four ARCH terms, as reducing

that number to the number of ARCH terms in the first regime yields likelihood ratios

of 23.71 [0.00] for the pound, 19.76 [0.00] for the mark, and 7.06 [0.07] for the yen. We

thus obtain ARCH(2;4) for the pound, ARCH(0;4) for the mark, and ARCH(1;4) for

the yen, thereby highlighting that there is more volatility clustering in the high- than

in the low-variance regime for our data.

The latter result is supported by Chaudhuri and Klaassen (2000), who find for

weekly data on East Asian stock index returns that there is more conditional het-

12



eroskedasticity in the high- than in the low-volatility regime. Our evidence, however,

is in contrast with the models in Cai (1994) and Hamilton and Susmel (1994). Their

regime-specific ARCH models only differ by an additive or multiplicative parameter, re-

spectively, so that, for instance, the number of ARCH terms is the same across regimes.

Since we find evidence of longer volatility persistence in the high-volatility regime, we

prefer our asymmetric approach for the data in this paper.

The usefulness of the regime-switching ARCH approach appears from the tests in

table 2. For the yen there is no remaining conditional heteroskedasticity after estimation

of ARCH(1;4). For the other two exchange rates, however, the regime-switching ARCH

models are insufficient. The remaining conditional heteroskedasticity can be attributed

to the high-variance regime, as the likelihood ratios given above show that higher-order

ARCH estimates are insignificant for the low-volatility regime.

3.2.4 Regime-switching GARCH

The residual conditional heteroskedasticity can be modeled by adding ARCH terms

to the high-volatility part of ARCH(Q1;4). However, that increases the number of

parameters substantially. For reasons of parsimony it is better to use a GARCH term

in the high-variance regime. This leads to regime-switching GARCH(0,Q1;1,1).

Table 2 shows that the evidence of residual conditional heteroskedasticity that was

present for regime-switching ARCH on the pound and mark has disappeared when us-

ing regime-switching GARCH. Moreover, table 1 demonstrates that the log-likelihood

increases a lot after the introduction of GARCH terms, namely 38.90 for the pound

and 23.41 for the mark. Remarkably, this increase is achieved by using fewer instead of

more parameters. After all, the regime-switching GARCH models have two parameters

less than regime-switching ARCH, and the difference becomes even larger when the

regime-switching ARCH models are extended to capture the residual volatility cluster-

ing. For Japan, with no residual conditional heteroskedasticity after ARCH(1;4), it is

not surprising the increase in the log-likelihood is negligible (0.24). However, also there

GARCH(0,1;1,1) has fewer parameters than ARCH(1;4). We thus find that GARCH

terms can be important to capture volatility persistence. Subsection 3.2.2 has shown

that regimes are also important. The advantage of regime-switching GARCH models

is that they allow for both.

The outperformance of regime-switching GARCH over regime-switching ARCH also

holds for the fourth-order regime-switching ARCH variants in Cai (1994) and Hamil-

ton and Susmel (1994). First, regime-switching GARCH removes the residual volatility

clustering that is present for their models for the pound and mark. Second, the in-
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crements in the log-likelihood are 40.46 (pound), 24.93 (mark) and -0.34 (yen) for the

Cai version, and 43.12 (pound), 23.14 (mark) and 1.10 (yen) for the Hamilton-Susmel

model. Third, regime-switching GARCH is more parsimonious: for the pound, mark,

and yen the number of parameters is 0, 2, and 1 lower, respectively, than for their

models and the difference becomes larger when the Cai and Hamilton-Susmel models

are extended to account for the residual volatility clustering.

Next, we relate our version (5) of regime-switching GARCH to Gray’s (1996a) vari-

ant (4). As table 1 shows, the parameter estimates for Gray’s specification are roughly

the same as for our specification. However, the log-likelihood for Gray’s specification

is lower, namely 10.10, 11.73 and 3.93 for the three rates. This is because Gray’s

model makes less efficient use of the conditioning information when integrating out

regimes (see below (4)). This is perhaps also the reason why there is some conditional

heteroskedasticity left in the normalized residuals for Gray’s model. Besides the the-

oretical advantages, as given in section 2, we thus also find empirical support for our

model over Gray’s variant.

Figures 1B, 2B, and 3B provide some additional insight into our regime-switching

GARCH model. They plot the estimated smoothed probabilities of being in the high-

volatility regime, as defined in subsection 2.2.5. The two European currencies have

experienced fewer regime shifts than the Japanese yen. Apparently, sudden shifts in

the variance are more important for the description of the yen than for the Euro-

pean currencies, where the conditional variance is governed more by smooth transitions

(GARCH effects) from high-volatility periods to low ones. This supports the conclusion

given above that both regimes and GARCH terms can be important.

An issue closely related to the persistence of regimes is the allowance for extra

leptokurtosis by a t-distribution, as in (6). Without this, the persistence of the, for

example, low-volatility regime would have been lower, since then a large sudden change

in the exchange rate would have been considered earlier as a shift to the high-volatility

regime. This is illustrated by figure 1C, which gives the smoothed regime probabilities

of the regime-switching GARCH model for the British pound under the restriction of

normality: more regime-switches occur.

3.2.5 Comparison of regime-switching with single-regime GARCH

Though our regime-switching GARCH model outperforms regime-switching ARCH and

Gray’s regime-switching GARCH, the main reason to introduce the model was to im-

prove on single-regime GARCH. Using the log-likelihoods in table 1, we indeed doc-

ument an increased fit of 19.34 (UK), 8.44 (Germany) and 16.52 (Japan). Because
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the regime-switching GARCH methodology generalizes single-regime GARCH, this im-

provement is presumably not surprising, even though the GARCH(0,Q1;1,1) variants

used here do not strictly encompass GARCH(1,1).

It is, however, interesting to find out where the improved fit originates from, so as

to derive the key differences between the two models. We do this in two stages. First,

we examine for which kinds of observations regime-switching GARCH outperforms

GARCH. Then we show which model differences are responsible for that.

Since both models focus on volatility, any difference in fit is presumably related

to the volatility. Therefore, to find out when regime-switching GARCH is better, we

regress the log-likelihood contribution of an observation for regime-switching GARCH

minus that for GARCH, dlt, on a simple measure of past volatility, s2t−1, and its

square. We correct the standard errors for autocorrelation and heteroskedasticity using

the Newey and West (1987) asymptotic covariance matrix. (Following West and Cho

(1995), we take Bartlett weights and use the same data-dependent automatic lag selec-

tion rule. This rule has certain asymptotic optimality properties and was introduced

by Newey and West (1994).) The regression results (not reported) show that, although

both slope estimates are positive for all three countries, they are all insignificant.

A potential reason for this insignificance is that both dlt and s2t−1 are very volatile

and may contain much noise. For instance, s2t−1 is sometimes low even in an otherwise

volatile period. To reduce the effect of both sources of noise, we transform dlt into

the binary variable 1[dlt > 0], which is one if regime-switching GARCH is better,

and proxy past volatility by the logarithm of the average of, say, ten past squared

changes s2t−1, ..., s2t−10. The regression model thus now tries to explain the probability

of outperformance from past volatility. The estimates for past volatility and its square

are again positive for all three countries, but now they are clearly significant (t-values

between 6 and 9). A plot of the parabolic dependence of the estimated probability of

outperformance on past volatility shows that regime-switching GARCH outperforms

single-regime GARCH particularly in tranquil and volatile periods.

Next, we analyze the reasons for this. Because the main difference between the two

models concerns the variance specification, a difference in the log-likelihood contribu-

tions is very likely caused by a difference in the variance estimates, dbVt−1{st}. Indeed, a
graph of dbVt−1{st} against past volatility demonstrates that regime-switching GARCH
has lower variance estimates in tranquil as well as volatile periods. We thus conclude

that the improved fit originates from lower variance estimates in both tranquil and

volatile periods.

To explain this in terms of the model differences, we first consider the volatile pe-
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riods. The regime-switching model is then mainly in the high-volatility regime 2, so

that the difference with GARCH likely originates from the differences between the es-

timated second regime parameters and the estimated standard GARCH parameters.

Indeed, if we reestimate the regime-switching GARCH model under the restriction

(α12,β2) = (bα, bβ) and then again regress 1[dlt > 0] on past volatility and its square,

the outperformance of regime-switching GARCH in volatile periods disappears. (This

may be surprising, as the differences between (bα12, bβ2) and (bα, bβ) in table 1 are small at
first sight. Nevertheless, a likelihood ratio test rejects the restriction (bα12, bβ2) = (bα, bβ)
for Germany and Japan (not for the UK). Hence, the small differences are relevant.)

Since restricting both α12 and β2 is also necessary to remove the outperformance, the

difference between the estimates of (α12,β2) and (α,β) is the reason for the outperfor-

mance in volatile periods. From table 1 we see that according to the regime-switching

model shocks have a smaller direct effect on the volatility estimates (bα12 < bα) and
their subsequent impact is also lower (bα12+bβ2 < bα+bβ); see Lamoureux and Lastrapes
(1990) for this interpretation of α and β. We thus conclude that the outperformance

in volatile periods is due to the smaller effect of shocks on variance estimates.

Next, we explain the outperformance in tranquil periods, which is caused by the

lower regime-switching variance estimates. To abstract from the outperformance in

volatile periods, this paragraph uses the restricted regime-switching GARCH model in-

troduced above, so (α12,β2) = (bα, bβ). This model also outperforms standard GARCH
in tranquil periods and yields lower variance estimates there. The main difference

between regime-switching and single-regime GARCH in tranquil periods is that the

former has a separate regime for such periods. This regime is relevant for the outper-

formance if the latter depends on the probability of being in that regime, Pt−1{rt = 1}.
Therefore, we add the estimated probability as a regressor to the model that explains

1[dlt > 0] from past volatility and its square. The estimated effect of the probability is

significantly positive for all three countries (t-values between 7 and 11). Moreover, the

effect of past volatility has disappeared. Hence we conclude that the outperformance

in tranquil periods is obtained by the use of the low-variance regime.

The low-variance regime is used in two ways. First, it can explain why volatility is

low for a long time. Second, as explained in subsection 2.2.1, it helps describe that sev-

eral shocks are “pressure relieving,” that is, are followed by a tranquil instead of volatile

period. Figure 1D clarifies this by visualizing the impact of two particular shocks. It

contains the conditional variance estimates of both GARCH(1;1) and GARCH(0,2;1,1)

for the British pound over 1985 only. The persistent effect of the first shock on sub-

sequent volatility is captured by both models (though the regime-switching GARCH
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variances are less affected by the shock, in line with our argument above). On the

other hand, the pressure relieving effect of the second shock, which is the sharp fall in

the dollar one day after the G-5 Plaza announcement on September 22, 1985, is better

described by the regime-switching model. The reason is a temporary switch to the

low-volatility regime, which helps reduce the variance estimates rather quickly.

3.3 Forecasting Performance

So far, we have developed a regime-switching GARCH model to obtain more flexibil-

ity in capturing the persistence of shocks in volatility. We have shown that this is

worthwhile from an in-sample point of view. In this subsection we analyze whether

regime-switching models can also improve on the out-of-sample performance of single-

regime GARCH.

The volatility forecasts of interest are the forecasts at time t−1 of the variance of
the exchange rate change over a h-day horizon, that is, bVt−1{st,h}. They follow from
subsection 2.2.2 after substitution of the estimation results of table 1. We analyze two

forecast horizons, namely one day (h = 1) and ten days (h = 10).

To get some insight into the generality of the results, we need an extensive out-

of-sample period. Therefore, we split the sample into two parts of both 2,491 days;

the second half starts at October 20, 1987. As usual, we reestimate the models using

the first half and, keeping the parameters fixed to save on estimation time, use the

observations of the second half to generate the forecasts bVt−1{st,h}. We also do the
reverse, that is, estimate the parameters on the second half and use the first half for

forecasting.

To investigate the quality of the volatility forecasts, we need some measure of “ob-

served volatility.” Since Vt−1{st,h} = Et−1{(st,h − h · µ)2}, an obvious candidate is
the (mean adjusted) squared change (st,h − h · µ)2. However, one can obtain a more
accurate measure following an idea advocated by Merton (1980) and Schwert (1989)

and formalized by Andersen and Bollerslev (1998). They argue that the single squared

change, though unbiased, is a noisy indicator for the latent volatility in the period,

because the idiosyncratic component of a single change is large. The noise is reduced

by taking the sum of all squared intra-period changes, and the smaller the subperiods,

the larger the noise reduction. Since the highest frequency available to us is daily data,

this idea results in the sum of squared daily changes over the h days in the forecast

period:
Pt−1+h

τ=t (sτ − µ)2. This measure is unbiased, just as the single squared change,
but it is more accurate (for h > 1; for h = 1 both measures are equivalent). Therefore,

we prefer this measure. Substituting the estimate bµ for µ, we thus define observed
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volatility vt,h over the h days t, ..., t− 1 + h as

vt,h =
t−1+hX
τ=t

(sτ − bµ)2. (12)

As stated in the introduction, the paper is motivated by the claim that single-regime

GARCH forecasts are too high in volatile periods. This claim is based on the standard

forecast efficiency regression

vt,h = γ0 + γ1 bVt−1{st,h}+ ητ (13)

(see also Pagan and Schwert (1990)). If the mean and variance forecasts are (condi-

tionally) unbiased, that is, bµ = Et−1{st} and bVt−1{st,h} = Vt−1{st,h}, then regression
(13) implies γ0=0 and γ1=1. To test both implications we estimate (13) by OLS and

correct the standard errors for autocorrelation and heteroskedasticity following Newey

and West (1987), as explained in subsection 3.2.5. We also correct the standard er-

rors for the uncertainty originating from the fact that the parameters used to compute

the forecasts are not known but are estimated. This correction is based on West and

McCracken (1998). As we keep the parameters fixed over the forecasting period, we

have what they call the “fixed sampling scheme”. Because in our study the in-sample

and out-of-sample periods have the same number of observations, West and McCracken

show that we have to multiply the Newey-West standard errors by
√
2.

The results are in table 3. For each model and horizon we have two estimates for

both γ0 and γ1; the left one is based on the usual procedure of estimating the parameters

from the first half of the sample and obtaining forecasts from the second half, while the

right one is computed from the reverse procedure. We see for the GARCH(1,1) model

that in eight out of twelve cases both implications γ0=0 and γ1=1 are significantly

rejected (an asterisk for the estimate of γ1 means that it is significantly different from

one, not zero). For all twelve cases the estimate of γ0 is larger than zero and the

estimate of γ1 is smaller than one. This is in line with the results of West and Cho

(1995), among others.

The finding of γ0> 0 and γ1 < 1 suggests that low GARCH(1,1) forecasts under-

estimate the true volatility or that high forecasts overestimate volatility, or both. To

distinguish between the two cases we reestimate (13), but now allowing for a break in

the regression line at, say, the median forecast (allowing for more breaks does not alter

the conclusion). That is, one pair (γ−0 , γ
−
1 ) is relevant for forecasts below the median

and another pair (γ+0 , γ
+
1 ) for forecasts above the median. The results (not tabulated)

show that the estimates of (γ−0 , γ
−
1 ) are close to (0, 1) (average estimate is (-0.00, 1.02)
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for the one-day and (-0.38, 1.09) for the ten-day horizon) and that they are nowhere sig-

nificantly different from (0, 1). The estimates of (γ+0 , γ
+
1 ), however, differ substantially

from (0, 1) (averages are (0.23, 0.55) and (2.96, 0.43)) and in nine out of twelve cases

the difference is significant. Therefore, high GARCH forecasts generally overestimate

the true variance, while low GARCH forecasts do not underestimate volatility. This is

in line with the in-sample result that regime-switching GARCH improves on GARCH

by reducing the high GARCH forecasts in volatile periods and by reducing instead of

increasing the low GARCH forecasts in tranquil periods (see subsection 3.2.4). We thus

conclude that single-regime GARCH volatility forecasts are too high in volatile periods.

To compare the regime-switching models to GARCH in this respect, we return to the

standard forecast efficiency regression (13), so without the break. Table 3 shows that the

regime-switching models do better than GARCH(1,1), as γ0=0 and γ1=1 are generally

not rejected. Apparently, the excessive GARCH forecasts are sufficiently reduced by

the regime-switching models. In subsection 3.2.5 we have shown that this is caused by

the smaller persistence of shocks in volatility. Hence, allowing for more flexibility in

volatility persistence by using regimes is worthwhile to improve the standard GARCH

forecasts in the sense of regression (13).

Another way to compare the forecasts is by using the mean squared error (MSE)

defined as the mean of (vt,h− bVt−1{st,h})2 over the out-of-sample period. Table 3 gives
the MSE for GARCH(1,1) and the difference in MSE with respect to GARCH(1,1)

for the other models. The standard errors are the heteroskedasticity and autocorrela-

tion consistent standard errors from a regression of (vt,h − bVt−1{st,h})2 obtained from
GARCH(1,1) (or the difference with respect to GARCH(1,1) for other models) on a

constant; these standard errors need no further correction for estimation uncertainty

(West (1996)).

Table 3 shows that in 11 out of 12 cases our regime-switching GARCH forecasts

are better (lower MSE) than those from single-regime GARCH. Moreover, in 6 cases

the outperformance is significant. Hence, also for the MSE criterion regime-switching

GARCH improves on single-regime GARCH in terms of volatility forecasting. This

does, of course, not mean that single-regime GARCH forecasts are bad. After all,

Andersen and Bollerslev (1998) show that GARCH(1,1) yields good volatility forecast.

We only conclude that regime-switching GARCH forecasts are better.

For the two variants of regime-switching ARCH we find an improvement over single-

regime GARCH in 15 out of 24 cases (4 significant). These improvements are all for

the mark and yen, as for the pound GARCH is the best in all 8 cases (1 significant).

This is partly in line with our conclusion from the in-sample fit in subsection 3.2 that
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GARCH gives a better fit for the pound and regime-switching ARCH yields a better fit

for the yen; for the mark the GARCH fit is better but the forecasts are worse. Hence,

as in subsection 3.2.4, both regimes and GARCH effects can be important to model

volatility, which is another argument for using regime-switching GARCH.

Table 3 also shows that there is some preference of our model over Gray’s (1996a)

variant of regime-switching GARCH for the one-day horizon, as the MSE for our model

is lower in 5 out of 6 cases. For the ten-day horizon we cannot make such a comparison,

since we are unable to forecast more than one day ahead with Gray’s model.

A final means to compare the volatility forecasts is to analyze the coefficient of

determination, R2, of the forecast efficiency regression (13). The standard R2 measures

the explanatory quality of a linear combination, γ0 + γ1 bVt−1{st,h}, of the forecast.
However, one is interested in the quality of the forecast itself, not a linear combination

of it. Therefore, we prefer the R2 under the restriction γ0 = 0 and γ1 = 1,

eR2 = 1− V
n
vt,h − bVt−1{st,h}o
V {vt,h} . (14)

This forecasting statistic is similar to the R2-type measure used by Gray (1996a). It is

generally smaller than the standard (unrestricted) R2 and it can be negative.

The values of eR2 in table 3 confirm the conclusions obtained from the MSE above.

In particular, our regime-switching GARCH forecasts are better (higher eR2) than those
from single-regime GARCH in 11 out of 12 cases. The average improvements are 0.007

for the 1-day horizon and 0.057 for the 10-day horizon.

These improvements may seem low. However, the average eR2 are also low (0.034
for h = 1 and 0.099 for h = 10 for single-regime GARCH). This does not mean that

the forecasts are bad, as Andersen and Bollerslev (1998) show. The primary reason

for the low R2 (and thus low eR2 and low improvements in eR2) is the noise in the
observed volatility measure vt,h. As discussed above (12), this noise can be reduced by

taking the sum of squared changes over smaller subperiods. To give an indication of the

magnitude of the effect of this noise reduction on R2, Andersen and Bollerslev compute

the R2 for a GARCH(1,1) model on daily mark/dollar and yen/dollar exchange rates

both using a single squared daily change and using the sum of 288 squared five-minute

changes in a day. The R2 increases from on average 0.036 to 0.436. They conclude that

GARCH does provide good volatility forecasts despite the low R2 that one typically

obtains using a single squared change. (Note that their argument also explains why

for our series eR2 is higher for the ten-day than for the one-day horizon, as we have
reduced the noise in the ten-day observed volatility by using ten instead of one squared

changes.)
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To put the eR2 improvements given above into perspective, we divide them by the

average eR2. We conclude that the relative outperformance of regime-switching GARCH
over single-regime GARCH is 22% (h = 1) and 58% (h = 10), which is quite substantial.

4 Conclusion

This paper is based on the observation that forecasts from the widely-used GARCH

model are significantly too high in volatile periods. We argue that this is due to the

well-known high degree of persistence of individual shocks in volatility according to

GARCH estimates. Therefore, we develop a model with more flexibility regarding

volatility persistence, that is, not all shocks have to be highly persistent. The model

generalizes GARCH by using two regimes with different levels of volatility and regime-

specific GARCH formulas to describe the variance within the regimes. It is thus a

regime-switching GARCH model.

Its specification shares the attractive features of Gray’s (1996a) version of regime-

switching GARCH, such as the recursiveness of the likelihood function. Our model,

however, is preferable in other respects. For instance, multi-period-ahead volatility

forecasting is a recursive procedure similar to standard GARCH and is much more

convenient than with Gray’s variant. Moreover, our model makes better use of the

conditioning information to integrate out the unobserved regimes, which translates

into a better fit.

In the empirical part of the paper we estimate the model using about twenty years

of daily data on three U.S. dollar exchange rates (British pound, German mark and

Japanese yen). The out-of-sample study shows that the problem of excessive single-

regime GARCH forecasts in volatile periods disappears when using regime-switching

GARCH. Moreover, regime-switching GARCH yields significantly better volatility fore-

casts than single-regime GARCH. We quantify the relative outperformance by 22% for

the one-day and 58% for the ten-day horizon.

The other empirical results can be summarized as follows. First, including regimes is

important, since even a regime-switching model with constant regime-specific variances

sometimes outperforms standard GARCH. Second, there is conditional heteroskedas-

ticity within regimes. Thus there is a need for ARCH or GARCH terms. Third, the

heteroskedasticity differs across regimes, as more ARCH terms are needed in high-

volatility regimes. This is in contrast with the regime-switching ARCH models of Cai

(1994) and Hamilton and Susmel (1994). Fourth, GARCH terms, which are not allowed

in regime-switching ARCH models, are important, because even single-regime GARCH

is sometimes better than regime-switching models with several ARCH terms. Finally,
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a t-distribution instead of a normal one for the error term helps make the regimes more

stable.

There are a number of other possible applications of the model. For example,

the proposed technique of averaging out unobserved regimes to avoid path-dependence

of the likelihood function may also be useful in models that combine switches in the

mean with a GARCH variance specification (see Klaassen (1999)). Moreover, regime-

switching GARCH volatility forecasts can be used to analyze the effect of volatility on

stock returns and to price options, for which volatility assessments are crucial.

Our results also yield several methodological suggestions for future research. Regime-

switching GARCH generalizes standard GARCH by making the volatility persistence

of shocks more flexible. Of course, it does so in a specific way, which is presumably not

the optimal one. Moreover, we have not tried to rationalize the timing of the estimated

regime switches in our data from an economic point of view, for instance, in terms of

financial market liberalization, changes in exchange rate policies, or oil shocks. The

regimes are only used as a technical means to obtain more flexibility regarding volatility

persistence, just as the standard GARCH model is only a technical means to model

volatility persistence. This appears, nevertheless, worthwhile, as we do find that the

regime-switching GARCH forecasts are better than the GARCH ones. Hence, the pa-

per suggests that it is promising to study volatility persistence in more detail, including

the economic mechanisms behind it, to improve volatility forecasts even further.
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Appendices

A Volatility Forecasting

In this appendix we give an expression for pt−1(rτ ) in the volatility forecasting formula

(8) and prove the recursive formula (9).

For the future regime probability in (8) we have

pt−1(rτ ) =
X

rt−1=1,2
pt−1(rt−1) · pt−1(rτ |rt−1), (15)

where pt−1(rt−1) is discussed in (31). For the multi-period-ahead probability on the

right-hand-side of (15), we form the time-constant Markov transition matrix M :

M =

 p11 1−p22
1−p11 p22

 . (16)

Using the (τ − (t− 1))-th power of M , the theory of Markov processes states that

pt−1(rτ |rt−1) =
³
Mτ−(t−1)

´
rτrt−1

, (17)

so that (15) can be computed.

In the remaining part of this appendix we prove (9). More precisely, we derive the

special case i = τ − t of (9),

Vt−1{ετ |rτ} = ωrτ + (αrτ + βrτ )Et−1 {Vt−1{ετ−1 |rτ−1}| rτ} , (18)

as for the other i the derivation is analogous. The formula can be proved by repeatedly

using the law of iterated expectations. Using definition (5), we get

Vt−1{ετ |rτ} = Et−1 [Vτ−1{ετ |rτ} |rτ ]
= Et−1

£
ωrτ + αrτ ε

2
τ−1 + βrτEτ−1 {Vτ−2{ετ−1 |rτ−1}| rτ} |rτ

¤
. (19)

For the ARCH part

Et−1[ε2τ−1 |rτ ] = E{ε2τ−1 |rτ , It−1}
= E[E{ε2τ−1 |rτ−1, rτ , It−1} |rτ , It−1]
= Et−1[Et−1{ε2τ−1 |rτ−1} |rτ ], (20)

where the last equality uses that the error distribution given the contemporaneous

variance regime does not depend on the future variance regime.
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For the GARCH part in (19) we use similar techniques to obtain

Et−1[Eτ−1(Vτ−2{ετ−1 |rτ−1} |rτ ) |rτ ]
= E[E(V {ετ−1 |rτ−1, Iτ−2} |rτ , Iτ−1) |rτ , It−1]
= E(V {ετ−1 |rτ−1, Iτ−2} |rτ , It−1)
= E[E(V {ετ−1 |rτ−1, Iτ−2} |rτ , rτ−1, It−1) |rτ , It−1]
= E[V {ετ−1 |rτ−1, It−1} |rτ , It−1]
= Et−1[Vt−1{ετ−1 |rτ−1} |rτ ]. (21)

The penultimate equality uses that Iτ−2 given rτ , rτ−1, It−1 is independent of rτ , since

the Markov structure implies that the distribution of variance regimes (rτ−2, rτ−3, ...)

conditional on rτ−1 and rτ is independent of rτ ; this makes the changes (sτ−2, sτ−3, ...)

also independent of rτ once rτ−1 is given.

Substituting the results for the ARCH and GARCH parts in (19) gives formula

(18). The required probability in (18) is

pt−1(rτ−1 |rτ ) = pt−1(rτ |rτ−1) · pt−1(rτ−1)
pt−1(rτ )

, (22)

where the switching probability follows from (2) and the regime probability pt−1(rτ−1)

follows in a similar way as pt−1(rτ ) in (15); the denominator is given by (15).

B Unconditional Error Variance

Here we derive expression (10) for the “unconditional” error variance V {εt |rt} and the
three necessary conditions for its existence.

Suppose V {εt | rt} exists for both rt = 1, 2 and for all ω1,ω2. Using the variance
definition (5), repeated use of the law of iterated expectations yields

V {εt |rt}
= ωrt + αrtE{ε2t−1 |rt}+ βrtE{Vt−2{εt−1 |rt−1}|rt}
= ωrt + αrtE{E{ε2t−1 |rt−1, rt}|rt}+ βrtE{E{Vt−2{εt−1 |rt−1}|rt−1, rt}|rt}
= ωrt + αrtE{V {εt−1 |rt−1}|rt}+ βrtE{V {εt−1 |rt−1}|rt}
= ωrt + (αrt + βrt) ·E{V {εt−1 |rt−1}|rt}, (23)

where the penultimate equality uses that the distribution of the error given the con-

temporaneous variance regime does not depend on the future variance regime.
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Next, assume that V {εt |rt = 1} and V {εt |rt = 2} do not depend on t and denote
them by σ21 and σ22, respectively. Then σ21

σ22

 =
 ω1

ω2

+
 A11 A12

A21 A22

 ·
 σ21

σ22

 , (24)

where Aij = P{rt−1= j |rt= i}(αi + βi); expressions for the probabilities involved are

at the end of this appendix.

Let A be the matrix with elements Aij . Since we have assumed that both un-

conditional variances exist for all ω1,ω2, the matrix I2 − A is invertible, so that the

unconditional variances are indeed given by (10).

Necessary conditions for the existence of both variances can be derived as follows.

Because αrt ,βrt > 0 implies that the variances are strictly positive for all ω1,ω2(> 0)
the four elements of (I2 −A)−1 in (10) must be nonnegative and (I2 − A)−1 may not
have a zero row. The four elements follow from

(I2 −A)−1 = 1

det(I2 −A)

 1−A22 α1 + β1 −A11
α2 + β2 −A22 1−A11

 , (25)

where we have used A12 = α1+β1−A11 and A21 = α2+β2−A22. Since αi+βi−Aii > 0
for both regimes i = 1, 2, the nonnegativity of (I2 − A)−1 implies through (25) that
det(I2 − A) > 0, so that 1 − A11 > 0 and 1 − A22 > 0. However, neither A11 nor

A22 may be unity; otherwise det(I2 −A) = −(α1 + β1 −A11)(α2 + β2 −A22), so that
αi + βi −Aii > 0 for both regimes would imply that det(I2 −A) 6 0, which is not the
case. Hence, the three necessary conditions are A11, A22 < 1 and det(I2 −A) > 0.

To compute the unconditional error variance in (24), we need the probability p(rt−1 |
rt) that the previous regime was rt−1 given that the current regime is rt. Using Bayes’

rule, we have

p(rt−1 |rt) = p(rt |rt−1) · p(rt−1)P
rt−1=1,2 p(rt |rt−1) · p(rt−1)

, (26)

where p(rt | rt−1) is constant (see (2)) and the theory of Markov processes gives the
unconditional probabilities (see Hamilton (1989)):

p(rt−1=1) =
1− p22

2− p11 − p22
p(rt−1=2) =

1− p11
2− p11 − p22 . (27)
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C Estimation

In this appendix we derive the likelihood function of the regime-switching GARCH

model and show that it has a first-order recursive structure, as claimed in subsection

2.2.4.

To obtain the likelihood function, we first need the density of the exchange rate

change at time t conditional on only observable information. Let pt−1(st) denote this

density evaluated at an exchange rate change equal to st. It can be split up as

pt−1(st) =
X
rt=1,2

pt−1(st |rt) · pt−1(rt). (28)

The first term on the right-hand-side, pt−1(st | rt), denotes the density of the ex-
change rate change at time t evaluated at the value st conditional on It−1 and on the

regime having value rt. This t-density follows from formulas (1), (5) and (6). It is,

however, not straightforward how to compute the conditional variance in (5), as this

requires integrating out the regime path ert−1 in Et−1[Vt−2{εt−1 | ert−1}|rt]. Because
Vt−2{εt−1 |ert−1} depends only on rt−1, we just need pt−1(rt−1|rt), the probability that
the previous regime was rt−1 given that the current regime is rt and given the infor-

mation It−1:

pt−1(rt−1 |rt) = pt−1(rt−1) · pt−1(rt |rt−1)
pt−1(rt)

, (29)

where

pt−1(rt) =
X

rt−1=1,2
pt−1(rt−1) · pt−1(rt |rt−1). (30)

The constant switching probability pt−1(rt |rt−1) follows from (2).

The remaining term in (29) and (30) is pt−1(rt−1). This probability is crucial, since

all regime probabilities in the paper can be derived from it. Using similar techniques

as in Gray (1996a), the following formula shows that this probability has a first-order

recursive structure, which simplifies its computation substantially:

pt−1(rt−1) = pt−2(rt−1 |st−1)
=

pt−2(st−1 |rt−1) · pt−2(rt−1)
pt−2(st−1)

=
pt−2(st−1 |rt−1) ·

P
rt−2=1,2 pt−2(rt−2) · pt−2(rt−1 |rt−2)
pt−2(st−1)

. (31)

Hence, the variables to compute pt−1(rt−1) are its previous values pt−2(rt−2) and the

constant pt−2(rt−1| rt−2) for rt−2=1, 2 and the previous densities pt−2(st−1 | rt−1) and
pt−2(st−1). This makes the computation of pt−1(rt−1) a first-order recursive process.
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The second term on the right-hand-side of (28), pt−1(rt), is the conditional proba-

bility that the current regime is rt. It is given by (30).

Having discussed both terms on the right-hand-side of (28), we can now compute the

density of interest, pt−1(st), being a mixture of two t-densities. This density can then

be used to build the sample log-likelihood
PT
t=1 log(pt−1(st)) with which all parameters

in the regime-switching GARCH model can be estimated.

From a practical point of view, it is important to realize that the log-likelihood has

a first-order recursive structure, similar to that of a standard, one-regime GARCH(1,1)

model. After all, for (29) and (30) one needs the constant pt−1(rt | rt−1) and the
first-order recursive probability pt−1(rt−1) in (31) for all four combinations of (rt, rt−1);

density (28) can then be computed from (30), the previous change st−1, (29) and

the previous variances Vt−2{εt−1|rt−1} for rt−1=1, 2. This first-order recursiveness of
pt−1(st) speeds up the calculation of the sample log-likelihood substantially. To start up

the recursive process, we set the required variables equal to their expectation without

conditioning on the information set, that is, the “unconditional” variance σ2rt in (10).

D Regime Inference

As stated in subsection 2.2.5, the smoothed probability that the regime was rt at time

t, pT (rt), can be computed recursively. More generally, any ex post regime probability

pτ (rt), for a given future time τ ∈ {t, t + 1, . . . , T}, can be computed in a recursive
manner, starting from the ex ante probability pt−1(rt). In this appendix, we verify that

claim.

One can write pτ (rt) for both regimes rt=1, 2 as

pτ (rt) = pτ−1(rt|sτ )

=
pτ−1(sτ |rt) · pτ−1(rt)P

rt=1,2
pτ−1(sτ |rt) · pτ−1(rt) . (32)

Suppose first that τ=t. Then pτ (rt) follows directly, as pτ−1(rt) and pτ−1(sτ |rt) in
(32) are known from the estimation process (see appendix C).

Hence, let us suppose from now on that τ > t. The computation of (32) requires two

inputs. The first is the previous ex post probability pτ−1(rt), which is known from the

previous recursion for both rt. The second ingredient of (32) is the density pτ−1(sτ |rt)
for both regime outcomes. Its computation requires a number of steps. We first write

it as

pτ−1(sτ |rt) =
X
rτ=1,2

pτ−1(sτ |rτ ) · pτ−1(rτ |rt), (33)
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where we use that the conditional distribution of sτ given rτ does not depend on the

earlier regime rt. This formula itself has two ingredients. The first one is the density

pτ−1(sτ |rτ ) for both regime combinations, which is known from the estimation process.
The second term needed in (33) is the (τ−t)-period-ahead regime-switching prob-

ability pτ−1(rτ |rt) for all regime outcomes. Once it has been computed, it should be
saved, since it will be needed in the next recursive step. Making use of the Markov

structure of the regime process, it can be written in terms of (τ−1−t)-period-ahead
switching probabilities

pτ−1(rτ |rt) =
X

rτ−1=1,2
pτ−1(rτ |rτ−1) · pτ−1(rτ−1|rt). (34)

Again there are two ingredients. First, we need pτ−1(rτ |rτ−1) for all regime combina-
tions. These are constant and follow from (2).

The second ingredient of (34) is pτ−1(rτ−1|rt) for all regime combinations. We have

pτ−1(rτ−1|rt) = pτ−2(rτ−1|rt, sτ−1)

=
pτ−2(sτ−1|rτ−1) · pτ−2(rτ−1|rt)P

rτ−1=1,2 pτ−2(sτ−1|rτ−1) · pτ−2(rτ−1|rt)
, (35)

where we use that the conditional density of sτ−1 is independent of the earlier regime rt
once rτ−1 is given. We have two ingredients. First, the conditional density pτ−2(sτ−1|rτ−1)
for both regime outcomes. It is known from the estimation process. Secondly, we need

the (τ−1−t)-period-ahead switching probability pτ−2(rτ−1|rt) for all regime combina-
tions. This one was saved during the previous recursion, if τ > t + 1. If τ = t + 1, it

equals one.

This completes the algorithm to compute (33), which is the second ingredient of

(32). For each recursion one has to compute (35), use the result to compute (34) and

use this to compute (33). Using this in (32) yields the ex post probability pτ (rt) from

pτ−1(rt). Therefore, starting from the ex ante probability pt−1(rt) one can recursively

compute the ex post probability pτ (rt).
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Table 1: Estimation results

Low var. regime 1 High variance regime 2 logLik
µ ν−1 σ21 α11 α21 p11 σ22 α12 α22 α32 α42 β2 p22 -G(1,1)

BRITISH POUND

Const. variance .01 .25 .46 —244.34
(.01) (.02) (.02)

GARCH(1,1) .01 .19 .61 .06 .93 -4437.26
(.01) (.01) (.18) (.01) (.01)

ARCH(0;0) .01 .17 .18 .984 .65 .987 —46.53
(.01) (.02) (.01) (.004) (.04) (.004)

ARCH(2;4) .01 .19 .16 .11 .11 .991 .58 .07 .04 .07 .07 .996 —19.56
(.01) (.02) (.01) (.04) (.04) (.003) (.03) (.02) (.02) (.03) (.02) (.002)

GrayG(0,2;1,1) .01 .19 .18 .21 .18 .999 .74 .06 .93 .999 +9.24
(.01) (.01) (.03) (.06) (.06) (.001) (.23) (.01) (.01) (.000)

GARCH(0,2;1,1) .01 .18 .15 .17 .10 .989 .58 .05 .93 .997 +19.34
(.01) (.02) (.02) (.07) (.05) (.007) (.09) (.01) (.01) (.002)

GERMAN MARK

Const. variance -.00 .25 .50 —183.92
(.01) (.02) (.02)

GARCH(1,1) -.01 .20 .70 .08 .91 -4778.34
(.01) (.01) (.20) (.01) (.01)

ARCH(0;0) -.00 .15 .23 .984 .77 .982 —24.85
(.01) (.02) (.02) (.004) (.04) (.005)

ARCH(0;4) -.00 .16 .21 .983 .70 .06 .01 .07 .05 .987 —14.97
(.01) (.02) (.02) (.004) (.05) (.03) (.02) (.03) (.02) (.004)

GrayG(0,0;1,1) -.00 .20 .11 .998 .70 .08 .89 .999 —3.29
(.01) (.01) (.01) (.001) (.11) (.01) (.01) (.000)

GARCH(0,0;1,1) -.01 .19 .12 .981 .57 .07 .90 .998 +8.44
(.01) (.02) (.01) (.011) (.07) (.01) (.02) (.002)

JAPANESE YEN

Const. variance -.01 .28 .50 —111.62
(.01) (.02) (.03)

GARCH(1,1) -.01 .25 .61 .09 .87 -4682.58
(.01) (.02) (.11) (.02) (.02)

ARCH(0;0) -.01 .20 .21 .975 .73 .975 +9.07
(.01) (.02) (.02) (.007) (.04) (.007)

ARCH(1;4) -.01 .20 .23 .08 .981 .71 .03 .04 .05 .00 .981 +16.28
(.01) (.02) (.02) (.04) (.006) (.05) (.03) (.03) (.03) (.02) (.006)

GrayG(0,1;1,1) -.01 .21 .23 .10 .980 .80 .04 .48 .980 +12.59
(.01) (.02) (.02) (.04) (.006) (.07) (.03) (.17) (.005)

GARCH(0,1;1,1) -.01 .21 .22 .09 .978 .68 .06 .78 .984 +16.52
(.01) (.02) (.02) (.04) (.007) (.05) (.02) (.10) (.005)

Standard errors in parentheses. "logLik-G(1,1)" denotes the log-likelihood of a model minus that of
GARCH(1,1); for GARCH(1,1) it is the log-likelihood itself.
The estimated models belong to the class of models described by equations (1), (2), (5) and (6), except
for GrayG(0,Q1;1,1) (Gray’s (1996a) variant of GARCH(0,Q1;1,1)), which uses (4) instead of (5). The
parameter µ denotes the conditional mean, ν−1 is the inverted degrees of freedom of the t-distribution
for the innovation, σ2r denotes the unconditional variance in regime r, αqr and βr are the regime specific
ARCH and GARCH parameters, respectively, and the prr are the regime-staying probabilities. The
estimated first-order autoregressive coefficient used for the pound only is 0.03 (0.01) for all models.31



Table 2: Diagnostics for residual conditional heteroskedasticity

BRITISH POUND GERMAN MARK JAPANESE YEN
ρ1 Q10 ρ1 Q10 ρ1 Q10

Const. variance 0.11∗ 533.26∗ 0.12∗ 371.09∗ 0.09∗ 164.25∗
(0.01) [0.00] (0.01) [0.00] (0.01) [0.00]

GARCH(1,1) 0.01 5.29 0.00 8.02 0.02 13.00
(0.01) [0.87] (0.01) [0.63] (0.01) [0.22]

ARCH(0;0) 0.03∗ 44.69∗ 0.03∗ 25.29∗ 0.03∗ 16.15
(0.01) [0.00] (0.01) [0.00] (0.01) [0.10]

ARCH(Q1;4) -0.01 26.15∗ 0.00 25.59∗ 0.01 8.29
(0.01) [0.00] (0.01) [0.00] (0.01) [0.60]

GrayG(0,Q1;1,1) -0.00 6.30 0.01 27.08∗ 0.00 16.67
(0.01) [0.79] (0.01) [0.00] (0.01) [0.08]

GARCH(0,Q1;1,1) -0.00 6.47 0.00 9.33 0.01 8.87
(0.01) [0.77] (0.01) [0.50] (0.01) [0.54]

Standard errors in parentheses and p-values in square brackets; * is significant at the 5% level.
The first-order autocorrelation, ρ1, and the Box-Pierce statistic of order ten, Q10, are computed from
the squared normalized residuals. Note that the normalization of residuals under a regime-switching
model entails integrating out the unobserved regime in the variance, as in (8).
The specifications of the models are given in the notes below table 1.
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Table 3: Out-of-sample volatility forecasting statistics

One-day forecast horizon Ten-day forecast horizon
MSE-G(1,1) γ0 γ1 eR2 MSE-G(1,1) γ0 γ1 eR2

BRITISH POUND

Const. variance .051∗ .058∗ .88 .98 0 0 4.00∗ 4.66 .89 .98 0 0
(.017) (.028) (.10) (.12) (1.24) (3.30) (.11) (.13)

GARCH(1,1) .697 .998 .05 .08 .84 .78 .062 .058 11.20 16.39 .55 1.03 .82 .72 .256 .226
(.112) (.262) (.04) (.06) (.11) (.16) (2.55) (4.44) (.39) (.59) (.10) (.16)

ARCH(0;0) .011 .024 -.04 -.02 1.06 1.04 .048 .030 0.84 2.10 -.77 -.02 1.14 1.00 .198 .121
(.009) (.024) (.06) (.07) (.19) (.24) (0.70) (2.54) (.80) (.90) (.23) (.29)

ARCH(2;4) .009∗ .015 .00 -.02 .95 1.01 .050 .043 0.61 1.71 -1.00 -.52 1.18 1.09 .214 .139
(.004) (.015) (.06) (.08) (.17) (.22) (0.62) (2.14) (.77) (1.19) (.23) (.34)

GrayG(0,2;1,1) .002 -.002 .03 .05 .89 .85 .059 .059 — — — — — — — —
(.002) (.007) (.05) (.06) (.13) (.15)

GARCH(0,2;1,1) .001 -.004 .02 .07 .90 .80 .060 .061 -0.03 -0.56 .22 .79 .90 .76 .259 .253
(.002) (.003) (.05) (.06) (.14) (.14) (0.27) (0.34) (.43) (.58) (.12) (.15)

GERMAN MARK

Const. variance .036∗ .033∗ .89 .98 0 0 1.87 0.42 .89 .98 0 0
(.017) (.016) (.09) (.11) (1.47) (1.91) (.10) (.11)

GARCH(1,1) .817 1.208 .12∗ .12∗ .68∗ .69∗ .040 .029 14.51 22.18 1.39∗ 1.93∗ .61∗ .54∗ .122 .031
(.121) (.323) (.05) (.05) (.11) (.12) (2.60) (6.08) (.56) (.90) (.11) (.15)

ARCH(0;0) .000 -.013 .03 -.12 .87 1.31 .039 .038 -1.23 -2.77 -.10 -.76 .96 1.20 .178 .143
(.009) (.011) (.07) (.08) (.18) (.24) (0.92) (1.58) (.87) (.89) (.22) (.23)

ARCH(0;4) -.002 -.016 .04 -.01 .86 1.05 .042 .040 -1.31 -2.80 -.43 -.80 1.02 1.20 .184 .143
(.007) (.012) (.08) (.06) (.18) (.15) (0.90) (1.57) (.85) (.86) (.21) (.21)

GrayG(0,0;1,1) -.004∗ -.008 .09 .11 .73∗ .76 .046 .034 — — — — — — — —
(.002) (.005) (.05) (.06) (.11) (.15)

GARCH(0,0;1,1) -.009∗ -.011∗ .06 .08 .82 .81 .050 .036 -1.48∗ -1.69∗ .43 1.44 .83 .68 .199 .095
(.003) (.004) (.06) (.06) (.13) (.15) (0.44) (0.60) (.67) (.94) (.14) (.18)

JAPANESE YEN

Const. variance .005 .002 .87 .96 0 0 -0.14 -2.27 .87 .96 0 0
(.014) (.011) (.09) (.09) (0.88) (1.69) (.10) (.09)

GARCH(1,1) .996 1.414 .16∗ .19∗ .55∗ .56∗ .009 .005 17.35 23.59 1.19∗ 3.17∗ .57∗ .30∗ .052 -.096
(.157) (.481) (.05) (.08) (.10) (.14) (2.45) (7.61) (.61) (1.08) (.10) (.17)

ARCH(0;0) -.022∗ -.021 -.07 .03 1.09 .90 .025 .018 -2.16∗ -3.08 -1.87 1.41 1.34 .68 .102 .038
(.011) (.014) (.08) (.10) (.23) (.23) (0.71) (1.65) (1.25) (.98) (.32) (.20)

ARCH(1;4) -.021∗ -.027 .06 .02 .82 .93 .024 .023 -2.29∗ -3.12 -.40 1.30 1.00 .70 .113 .041
(.009) (.016) (.06) (.10) (.16) (.23) (0.64) (1.67) (.91) (.98) (.23) (.20)

GrayG(1,0;1,1) -.021∗ -.022 .05 .05 .82 .86 .025 .019 — — — — — — — —
(.008) (.017) (.07) (.12) (.17) (.27)

GARCH(1,0;1,1) -.024∗ -.010 .04 .15∗ .84 .65∗ .028 .011 -2.32∗ -1.44 -.46 2.72∗ 1.01 .40∗ .117 .012
(.008) (.007) (.07) (.06) (.17) (.12) (0.62) (0.83) (.90) (.98) (.22) (.16)

Standard errors in parentheses (details in section 3.3); * is significant at 5%.
"MSE-G(1,1)" is the mean squared forecast error of a model minus that of GARCH(1,1); for GARCH(1,1) it is the MSE itself;
γ0 and γ1 are the intercept and slope in the forecast efficiency regression (13); eR2 is the restricted R2 defined by (14).
There are two estimates for each statistic. This reflects the two different out-of-sample periods: the left (right) estimate is based
on forecasts for the second (first) half of the sample, that is, 2,491 days, using the first (second) half for estimation.
The specifications of the models are given in the notes below table 1. For Gray’s (1996a) variant of GARCH(0,Q1;1,1) we are
unable to compute multi-day-ahead forecasts. 33



Figure 1: British pound
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Figure 2: German mark

Figure 3: Japanese yen
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