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Chapter 4

Tubular recurrence

M.S. Keane and S.W.W. Rolles
Abstract

We introduce directed-edge-reinforced random walk and prove that the process is
equivalent to a random walk in random environment. Using Oseledec’s multiplica-
tive ergodic theorem, we obtain recurrence and transience criteria for random walk
in random environment on graphs with a certain linear structure and apply them
to directed-edge-reinforced random walk. 1 2 3

1 Introduction

Let G be a finite or infinite connected locally finite graph with all edges directed. We
introduce directed-edge-reinforced random walk (DRRW) on G as follows. Each edge is
given a strictly positive real number as initial weight. In each step the random walker
traverses a directed edge pointing from her current location to an adjacent vertex with
probability proportional to the weight of the edge chosen. Each time an edge is traversed,
its weight is increased by 1.

We prove that DRRW is equivalent to a random walk in random environment (RWRE)
with independent environment (Theorem 5.1). If all initial values are equal to 1, then
the transition probabilities at vertex v are distributed according to a uniform distribution
on the d-dimensional simplex with d equal to the out degree of v; transition probabili-
ties at different vertices are independent. In case of general initial values the transition
probabilities have a Dirichlet distribution.

We are interested in the question on which graphs DRRW is recurrent. It follows
immediately from Solomon’s criterion for RWRE [8] that DRRW on Z with all initial
values equal to 1 is recurrent. For the two-dimensional integer lattice the recurrence
question secems to be open.

In this article we study the recurrence problem for DRRW and RWRE on Z x G with G
a finite connected graph. We assume that the transition probabilities of the RWRE at the
different levels {i} x G, i € Z, are i.i.d.. Using Oseledec’s multiplicative ergodic theorem,
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56 Chapter 4. Tubular recurrence

we find necessary and sufficient conditions for recurrence and transience of RWRE in
terms of the Lyapunov exponents of certain random matrices. This approach is similar to
the one in [5] where RWRE on Z with jumps of bounded size is studied. We prove that
RWRE is recurrent if the transition probabilities have a certain symmetry property. In
particular, we obtain recurrence of DRRW with all initial values equal.

After finishing this paper, we learned that Bolthausen and Goldsheid (1] have a char-
acterization of recurrence and transience of RWRE on Z x G in terms of the top Lyapunov
exponent of certain non-negative random matrices. It seems that Corollaries 2.1 to 2.4
can be proved using their results. However they do not discuss reinforced random walks,
and the random matrices we consider are more intuitively defined.

Every graph can be turned into a directed graph by replacing each edge by two directed
edges with opposite directions. DRRW on this graph differs from so called edge-reinforced
random walk which has been introduced by Coppersmith and Diaconis in 1987. Edge-
reinforced random walk (ERRW) is a nearest neighbour random walk on a non-directed
graph. Each edge has a strictly positive number as a weight. Each time an edge is
traversed, its weight is increased by 1, independent of the direction in which the edge is
traversed. The random walker moves in each step to an adjacent vertex with a probability
proportional to the weight of the traversed edge.

The first time a vertex v is visited, the probabilities to leave vertex v depend in case of
ERRW on the edge that has been traversed to reach v, whereas they do not depend on this
edge for DRRW. The small difference in the definition of ERRW and DRRW results in a
significant difference of the processes: On finite graphs for example, ERRW is equivalent
to a reversible RWRE with dependent environment [4], whereas DRRW is equivalent to
a non-reversible RWRE with independent environment.

For ERRW not much is known about recurrence. It is easy to show that ERRW on Z
is recurrent, but even for Z x {1,2} we do not know of any recurrence proof.

The exposition is organized as follows: In Section 2, we define DRRW and RWRE on
a general graph, and state our results. In Section 3, we study the potential equations on
Z x G. They can be written in terms of products of random matrices. In Section 4, we
use Oseledec’s multiplicative ergodic theorem to obtain an abstract characterization of
recurrence and transience for RWRE. We obtain also a sufficient criterion for recurrence
which is easy to verify. In Section 5, we prove that DRRW is equivalent to a RWRE, and
apply the criteria from section 4 to DRRW.

2 Definitions and Results

Let G = (V, E) be a connected graph with vertex set V' and edge set E. We assume that
each vertex has only finitely many neighbours and all edges are directed. Between two
vertices u and ¢ with u # v there may be two parallel edges, one from u to v and one
from v to u. For simplicity of notation, we do not allow parallel edges with the same
direction. All proofs remain valid without this assumption. For a directed edge e = (u, v)
from vertex u to vertex v, we call é := v the head of e and é := u the tail of e. We do
not require that head and tail of an edge are different.

Each edge is given a strictly positive weight. At time 0 the weights are non-random;
edge e has weight a(e). We denote by w,(e) the weight of edge e at time n (just after the
n* step) and by w,(v) the sum of the weights of the edges incident to vertex v.
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Let vg € V. We define directed-edge-reinforced random walk with starting point vy to
be a sequence X = (X,, X}, Xy, ...) with X; taking values in V, P(X; = 1) =1 and

/u""(Xnav) .

—— f(Xnv)€E

P(X"+1 = leO’ X17 v aXn) = Wn(Xn) l (X U) €
0

otherwise,
and the weights satisfy wo(e) = a(e),

wu(e)+1 i (Xn, Xpy1) =€
wy(e) otherwise.

Wnii(€) = {

Next we define random walk in random environment (RWRE) on G. An environment
is a function w : E — [0,1] with the property that w(e) > 0 for all e € E and

> wwv)=1

{veV:{u,v)eE}

forall u € V. We denote the set of all environments by . Let P, denote the distribution
of the Markov chain on G induced by the environment w with starting point vg: Py, (Yo =
v) = 1 and

w(Y,,v) if(Y,,v)eE
Poo Yoy =vlYo, 11, . Vo) = { 0( : otl(1erwis)e.

Let P be a probability measure on 2. The measure

P,():= /QPvD,w(-)IP(dw)

is the distribution of the random walk in random environment with environment dis-
tributed according to P and starting point vg. We call the environment independent if
under [P the transition probabilities {w(v,-);v € V} are independent.

Definition 2.1. We call a sequence (ug, w1, u2,...) withn > 1, u; € V and (u;_1, %) € E
for alli > 1 an infinite path with starting point uy. We call an infinite path recurrent if it
contains each vertex infinitely often and transient if it contains each verter at most finitely
often. We call DRRW or RWRE on a graph G recurrent (transient) if with probability
one the paths are recurrent (transient).

Proposition 2.1. RWRE with independent environment is either recurrent or transient.

PROOF. This follows from the same arguments as Lemma 1 in [3], page 761. O

Let G = (V, E) be a finite connected graph with all edges directed. We study recur-
rence of DRRW and RWRE on G' = Z x G. More precisely, G' = (V' E'} with V! = Zx V
and

E' = {(u;,v;) : (u,v) € E}YU{(vi,viy), (vi,vi41) 1 v € Vi € Z}

with v; = (4,v) for v € V. We set V; = {i} x V" and define the length of v; by |v;| =i. We
call G’ a tube and V; level i of the tube.




58 Chapter 4. Tubular recurrence

Let w be an environment on Z x G, and let w; = (w(e) : € € V;,e € E’) denote
the transition probabilities to leave level i. For the rest of this article we make the
following assumption on the environment: w;, ¢ € Z, are independent and identically
distributed with

/ logw{e)P(dw) > —oc  foralle € E'. (2.1)
0

We apply Oseledec’s multiplicative ergodic theorem to products of random matrices
A; describing the potential equations for the environment. This yields to the following
characterization of recurrence and transience in terms of Lyapunov exponents:

Theorem 2.1. Let A} < Ay < -++ < Ay be the Lyapunov exponents of the sequence A,
i > 0, defined in Section 3 by (5.3). The RWRE onZ x G

1. is recurrent iff Ag = Ag41 = 0,
2. satisfies lim, .o |Ya] = —00 tff Aa= 0 and Agqy > 0,
3. satisfies lim, .o |Ya] = +0¢ tff Mg < 0 and Agy = 0.

In general it seems impossible to calculate the sign of Ay + Agy1. If G has only one
vertex, all the Lyapunov exponents can be calculated, and we obtain Solomon’s criterion
[8]:

Corollary 2.1. Let g(w) = 22229, The RWRE on Z

1. is recurrent if Elog ¢ = 0,

2. satisfies lim,,_., |Y,| = —oc if Elogg > 0,

3. satisfies lim, .o |Yo| = 400 if Elogg < 0.

We define the reflected environment @ by

G(e) = w(e), fore € E' with é,é € V; for some i,
(v, vic) = w(vi, vig),
(v, viq1) = w(vi,viy), forveViielZ.

% is obtained from w by interchanging for all 4, the probability to jump from v; to v;_;
and the probability to jump from v; to v;; ;. We use Theorem 2.1 to derive the following
sufficient criteron for recurrence:

Corollary 2.2. If P is invariant under the reflection”, then RWRE on Z x G is recurrent.

Corollary 2.1 and Corollary 2.2 can be applied to DRRW. Recall that a(e) denotes the
initial weight of edge e.

Corollary 2.3. Let a,b >0, and let a(i,i — 1) = a, a(i,i +1)=b for olli € Z. DRRW
onZ

1. is recurrent if a = b,
2. satisfies lim, .o |X,| = —0c ifa>b,
3. satisfies limy,_.o | Xn| = 400 if a < b.

Corollary 2.4. Leta, >0, v € V, and let a(v;,vi_1) = a(vy,v:41) = a, forallve Vi e
Z. Then DRRW on Z x G is recurrent.
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3 Potential Equations

In this section, we study the potential equations on Z x G. Let w be an environment on
Z x G. The potential equations for w are given by:

xvi(w) = w(vivvi—l)xv.‘A(w)+w(Uiavi+1)xv.'+1(w)

+ Z w(vi, )Ty, (w). (3.1)

{ueV:{v,u)eE}

for i € Z, v € V. These equations are for example satisfied for ¢ > 1 and z,,(w) equal to
the probability of never reaching level 0 under the law P, .

Let d = |V| be the cardinality of the vertex set of G. We denote the d x d identity
matrix by I; and the d x d zero matrix by 0,. We define the d x d matrix B;(w) =
(Bi(w)(u,v);u,ve V) by

1
B;(w)(v,v —— vEeV,
(@) 0) w(vi, vig1)
W Ui, Uy .
Bi(w)(v,u) = —ﬁ, if (u,v) € E,

and B;(w)(u,v) = 0 for all other choices of u,v. We denote by C;(w) the d x d diagonal
matrix with
_w(vi, vi1)

R i

v eV,

and C;(w)(u,v) = 0 if u # v. The potential equations (3.1) can be rewritten as

Xip1(w) = Ai(w)xi(w) (3.2)

with
Alw) = (B",(j) C"(fj)), (3.3)
Xi(w) = (@ (w)ve V), (@ (W)veV)), (3.4)

where we denote the transpose of a matrix M by M!. lterating equation (3.2) gives for
n>1

Xnp1(w) = Sp(w)x(w)  with S, (w) = A, (W) Ar_1(w) - - - AL (w). (3.5)

Lemma 3.1. For any w € Q, the matriz A;(w) is invertible. Its inverse is given by

where

and A;(w) = Ai(D).

ProOF. This is an easy calculation. O
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4 Characterization of Recurrence and Transience

For our further analysis we need the multiplicative ergodic theorem of Oseledec. For
b € R" we denote by ||b|| the Euclidean norm of 4. For an (r x r)-matrix M we use the
norm

11| = sup{[I7]] : b € R, []o]] < 1}.

Theorem 4.1 (Oseledec’s multiplicative ergodic theorem ([7]). Let

M;,©1 > 0, be independent and identically distributed real-valued (r x r)-matrices on
some probability space (U, F, 1), and suppose log* ||M,]| is integrable, where logt x =
max{0,logx}. Let T, = M, M,_,---M,. Then there erist constants

—oc <A<l < A <

and a strictly increasing non-random sequence of integers 1 =iy < iy < -+ < iy < iy =
T+ 1 satisfying Aiy < Xy <+ < Ay, and Ay, = Ay fori; <k <ijyy, 1 <5 < s such that
for p-almost all w € Q, the following is true:

1. For every b € K", lim,, .., n ! log||T;,(w)b]| exists or is —oc.
2. For every j < s,
W(w) = {b € R : lim n™log| T, ()]l < A, }
is a random linear subspace of R" with dimension i;,, — 1.
3. If W(0,w) = {0}, thenbe W(j,w)\ W(j — 1,w) implies
lim o™ log | T, ()8l = A,

4o limy, oo (T (W) T, (W)™ =: A(w) exists and all entries of A(w) are finite. The
eigenvalues of A(w) are exp(\;), 1 < @ < r. For every j < s, the orthogonal
complement of W(j — 1,w) in W{(j,w) is the eigenspace of A(w) corresponding to
the eigenvalue exp(\;,).

The X;; are called Lyapunov exponents.

The following identity will be useful to calculate the Lyapunov exponents in a special
case.

Lemma 4.1. Suppose |det M| > 0 p-almost surely and ¢ := fQO log | det M, (w)|p(dw) is
finite. Then Y _ A\ =c.

PROOF. Let An(w) = (T (w)Tu(w))*®*. Then det A, = (], | det Mi])*/" and conse-
quently,

log(det A,,) =n~! Z log | det M|
i=]
By Oseledec’s theorem the left-hand-side converges to log(det A) = 377 A;. The right-

hand-side converges to ¢ by Birkhoff’s ergodic theorem. O
For a proof of the following lemma see for example [2], Lemma 4.1.
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Lemma 4.2. Let M;, i > 0, be independent and identically distributed real-valued (rxr)-
matrices. Suppose M;(w) is invertible for almost all w, and log™||M|| and log* ||Mf1||
are integrable. Let Ay, Ag,. .., Aog be the Lyapunov exponents of the sequence M;,i > 0.
Then the sequence ]\/Ii_l, 1 > 0, has the Lyapunov exponents —Ay, —Aa, ..., —A2g.

We want to apply Oseledec’s Theorem and Lemma 4.2 to the matrices 4; and A;
defined in Section 3.

Lemma 4.3. The following expected values are finite: Elog* || A4]|,
Elog* ||A7Y||, Elog* || Ay]|, Elog™ ||(41)7Y.

PROOF. Since ||A4;|| > 1, log* [|A,|| = log ||A,||. For simplicity, we write A instead of
A, for the rest of this proof, and we denote the entries of A by Aij, 1 <4, < 2d. Observe
that for any matrix ||A|| < (2d)? max;<; j<24 |A;;| and therefore

log|lA]l < 2log(2d)+ ) loglAyl.

{1<i,j<2d:A;5#0}

Using (2.1), it follows that Elog |A;;| is finite for all non-zero entries of A. Hence
Elog* ||Ai|| < oo, and the same argument applies to A;. Together with Lemma 3.1,
the assertions about the inverses follow. O

Next we determine the sign structure of the Lyapunov exponents for the sequence A;.

Lemma 4.4. Let \; < Ay < --- < Ayq be the Lyapunov exponents of the sequence A;,
120, and let Ay < Ay < ... < Ay be the Lyapunov exponents of the sequence A;, i > 0.
Then for 1 <i < 2d

Ai = —Aad iyl
Proor. By Lemma 3.1,
T,:=A'AY - AT =UAUUA,_\U---UAU = US,U

with S, = A, A,_;---A,. Thus forb € K", IT.8]| = 1|S.Ub|} and lim,_... n~"log ||T.8|| =
lim, oo n‘llogllg,.UbH. By Oseledec’s Theorem, the Lyapunov exponents of the se-
quences A;', i > 0 and Ei, t > 0 agree. The claim follows from Lemma 4.2. (The inte-
grability assumptions from Oseledec’s Theorem and Lemma 4.2 are satisfied by Lemma
4.3) O

Theorem 4.2. The Lyapunov exponents A; < Ay < --+ < doq of the sequence A;, i > 0,
satisfy one of the following conditions:

1. /\d<0 and/\dH:O
2. /\dZO and )‘d+1 =0

3. /\d =0 and /\d+1 >0
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PROOF. We denote by 7y the hitting time of level 0:
70 = min{n > 0: X, € Vy}.
Foru,v € V and i € Z we set
Ty (w) = Pyu(m < oc, Xy = ug)-

By the Markov property, i (w) satisfies the potential equations (3.1) for i > 1. From (3.5)
we know that x|, (w) = 5, (w)x}(w) with x%(w) defined by (3.4). Since all components of
x¥,,(w) have values in [0, 1], it follows that lim, ., n ! log ||Sn(w)x}‘(w)|] < 0. Observe
that zy (w) =1 and z} (w) = 0 for all v € V' \ {u}. Hence the vectors xj(w), u € V, are
linearly independent, and the linear space

W(w) := {b € R*: lim n 'log||S,(w)b|| < 0}

has dimension dim(W(w)) > d. Thus 4, < 0.

Recall that the matrix /L is obtained from A; by reflection of the environment. There-
fore the previous argument applies to A4;, ¢ > 0, and the d'* Lyapunov exponent satisfies
/\d S 0. By Lemma 44 Ad+l = _/\d 2 0.

Let 1 denote the vector in R* with all components equal to 1. Since 4;1 = 1 for all
i, Sp1 =1 for all n and lim, .., n"!log ||S,1|| = 0. Thus either A\y =0 or A\gy; =0. O

The sign structure of the Lyapunov exponents can be used to characterize recurrence
and transience of the RWRE. We will make use of the following lemma:

Lemma 4.5. RWRE on Ny x G is transient iff there exists ¢ > 0 such that

n—00

lim n~!log lima&( P, o(m <00, Xp = uo)] < -c
vE

for all u € V, P-almost all w.

Proor. We denote by 7; the hitting time of level ¢:
7 =min{n >0: X, € V;}.

First we consider a fixed environment w. If level 0 is reached from a starting point at
level n, then level n — 1 must be reached before level 0. Hence

Pvn,w(TO < oC, ‘YT() - uO) - Pv",w(Tn—] <o, Ty < 0C, XT() = uO)-
An application of the Markov property at time 7,_; shows that the last probability equals

Ev,.,'.n(PXr"Al,w(TO < o0, 4 T0 — uO);Tn—l < OO)
< Pu(ma < w)rgleavxﬂ,,_l,w(ro < 00, X7y = ug).

Repeating this argument yields

n—1

max P, {1y < 00, Xr, = %) < I I max P, (1 < o0).
veEV =0 vEV
ol
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We conclude

n—1

n~'log max P, (g <oc,X; = uo)] <n’! Zolog(Zi(w)) (4.1)

with Zi(w) = max,ev P, (i < 00). Observe that Z;, i > 0, is a stationary sequence
under P with Elog(Z,) < 0. By Birkhoff’s ergodic theorem, n=! 377 log(Z;) converges
almost surely as n — oc to a limit U with E(U) = Ellog(Z),)].

Suppose Elog(Z;) = 0. Then Z; = 1 P-almost surely. If for some v, P, ,,(79 < 00) < 1,
then P, (7o < o0) < 1 for all v. Consequently, P, (70 < oc) =1 for all v P-almost
surely, and similarly P,,,, (7 < 0oo) =1 for all v and ¢ > 0 P-almost surely. We conclude
that in this case, the RWRE on Ny x G is recurrent.

Suppose Elog(Z;) < 0. Then there exists ¢ > 0 such that on a set of positive P-
measure lim,_,, n~' > 7' log(Z;) < —c. Since xy = P, (10 < 00, X5, = up) satisfies
the potential equations, we conclude from Oseledec’s theorem that the limit of the left-
hand-side of (4.1) is < —c¢ P-almost surely. In particular, lim, .. max,cy Py, o(70 <
00, X+ = %p) = 0 and the RWRE is transient. O

Lemma 4.6. RWRE on Ny x G is transient iff Ay < 0.

PRrooF. Suppose RWRE on Ny x G is transient. Then by Lemma 4.5,
W(w) := {b € R* : lim n~'log||Sn(w)b]| < 0}

has dimension dim(W(w)) > d. By Oseledec’s Theorem, A; < 0.

Suppose Ay < 0. Then by Theorem 4.2, dim(W(w)) = d. For the rest of this proof
we fix a typical environment w and suppress the dependence on w in the notation. Let
by, bs, ..., by be a basis of W. For 1 < j < d, we let ¢; denote the vector in R? consisting
of the last d components of b;. We claim that ¢;,cs,...,cq are linearly independent.
Suppose not. Then there exists a non-zero vector f;, € W with the last d components
equal to 0. We set f,,) = S,f; with £, = ((f,..,v € V), (fo._,,v € V))}, and we define
the function f : Ny x G — R,v; — f,,. We say that the function f is induced by f,. By
definition, f,, satisfies the potential equations (3.1) for i > 1 and f,, = 0 for v € V. Since
f, € W, lim, . f,, = 0 for v € V. In particular, f is bounded and attains its maximum
in N x G. By a standard argument, we conclude that f is identically zero. This is a
contradiction to f; # 0, and we conclude that ¢y, cs,... ,cq are linearly independent.

Hence there exists a vector g; € W with the last d components equal to 1. We denote
by g the function on Ny x G induced by g,. We set

f(v) = Pou(ro < o0)

for v € Ny x G. Then f{v;) and g(v;) satisfy the potential equations (3.1) for 7 > 1.
Fix v; € Nx G. Let N, = f(Yanr), 2 2 0, with n A g = min{n, 70}. Then N,,n > 0,
is a bounded martingale under P,, .. Hence it converges in L! to a limit N, and
f(Ui) = Ev.-,wJVO = Ev.,w",voo
Bupio (im f(Yanr)i 7o < 00) + oy (Nooi To = 00).
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Using f(Y;,) = 1, we obtain
f(vi) = f(vl) + Ev‘,w(",voo; To = OC)

Thus E,, o(Neo; 7o = o¢) = 0. We set N, = f(Yanr) — 9(Yarr), 7 > 0. Then N, n > 0,
is a bounded martingale under P, .. Hence it converges in L' to a limit N/, and

flw) —g(v)) = E,uNy=FEuuwNiy =Ey o (f(Ye) — 9(Ye); 70 < 00)
+E,, o(NooiTo = 00) — Ey, o (lim 9(Younn); To = oo)

= —FE,. (T}ergog(YnA7o); To = 00) ,

because f(Y,,) = ¢(Ys,) = 1. If P, (76 = oc) > 0, the Markov chain is transient and
lim, . |Y,| = o¢ P, ,-almost surely. Since g € W, we have lim,,_., g(u,) =0foru e V,
and we conclude g{v;) = f(v:). Since v; € Nx G is arbitrary, we have shown f = g. Using
g; € W we conclude from Lemma 4.5 that the RWRE is transient. O

PROOF OF THEOREM 2.1. Suppose Ay < 0 and A\gy; = 0. By Lemma 4.6, the RWRE
restricted to Ny x G is transient, thus lim, .o |Y,| = +oc. To apply Lemma 4.6 to the
RWRE restricted to —Np x G, we consider the reflected environment on Ny x G. For the
potential equations, this means that A; is replaced by A By Lemma 4.4, Ay = = A4 =0,
hence by Lemma 4.6 the RWRE restricted to —Ny x G is recurrent. This implies that the
RWRE on Z x G satisfies lim,, . |Y,| = +00.

Suppose A\g = Agy1 = 0. Using the same argument as above, we see that RWRE
restricted to Ng x G and —Ny x G are recurrent. Hence the RWRE on Z x G is recurrent.

The case Ay = 0 and A\g4; > 0 is treated similarly. O

ProoFr or COROLLARY 2.1. We apply Theorem 2.1 with G equal to the graph with

precisely one vertex. Then
1 _w(vi,ve
A w) = w(v1,v2) w(vy,v2) .
) = | Sy Tt

Using Lemma 4.1, we obtain

w(vy, vo)

A+ A =El Al = [ 1
L+ As og | det 4] /Qog [(—U('Ul,’Uz)

] P(dw).
The statement follows from Theorem 2.1. O

Proor oF COROLLARY 2.2. Suppose P is invariant under reflection. Then ,:fi has
the same distribution as A; and consequently both sequences have the same Lyapunov
exponents. Using Lemma 4.4 and Theorem 4.2, we conclude that Ay = —Ag4; = 0.
Theorem 2.1 implies recurrence of the RWRE. O

5 Application to DRRW

Recall the definition of directed-edge-reinforced random walk (DRRW) from Section 2.
First we show that DRRW on a general graph G’ is equivalent to a RWRE, then we apply
Corollary 2.1 and Corollary 2.2.
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We recall the definition of a generalized Polya urn with parameters a;,...,a; > 0.
The urn contains “balls” of k different colours, a; balls of colour ¢ at time 0. At each
time unit, a ball is drawn from the urn and returned with an additional ball of the same
colour. The sequence of colours of the balls drawn from the urn is called a generalized
Polya urn process with parameters a;,...,a;. Clearly, this process is well-defined for
any strictly positive paramaters a; although the analogy with balls makes only sense for
integer-valued parameters.

For a > 0 we denote the value of the gamma function at a by I'(a). We recall the
density of the Dirichlet distribution with parameters ay, ... ,a:

k k
Ilay+...+a) e
Dfay,...,a)(x1y. .. 28) = —F———= || =¥ ,xi>0,§ ;=1
Hf:IT(a,-) :1;[ i=1

We attach to each vertex of the graph G’ a Polya urn, urns at different vertices
being independent. For a vertex v we denote by E/ the set of edges in G’ with tail v:
E! = {e € E' : ¢ = v}. We assume that the parameters of the urn at vertex v are
(a(e),e € E!), so the urn at vertex v contains balls of as many different types as there
are edges with tail v. We define a nearest neighbour random walk on G’ starting at vy
as follows: If the random walker is at vertex v her next step is decided with the Polya
urn at vertex v; the ball drawn from the urn determines which edge she traverses next.
Writing down the finite-dimensional distributions for the location of the random walker,
it is easy to see that they agree with the finite-dimensional distributions of the DRRW.
Using de Finetti’s theorem, each Polya urn can be replaced by a Dirichlet distribution
with the same parameters ([6], Section 2).

We have proved the following theorem:

Theorem 5.1. DRRW is equivalent to @ RWRE with an independent environment. The
transition probabilities at vertex v are distributed according to a Dirichlet distribution with
parameters (a(e),e € E!).

Proo¥r OF COROLLARY 2.3. By Theorem 5.1, DRRW on Z is equivalent to a RWRE
with w;,7 € Z, independent and identically distributed. The transition probabilities at
vertex v have a beta distribution with parameters ¢ and b. To verify the integrability
condition (2.1), let € > 0 such that ¢ —e > 0. There exists ¢ > 0 such that log(1/p) < cp
for all p €]0,1]. Hence

o
IA

1
/ ~logw(e)P(dw) = / (= log p) D(a, b)(p, 1 — p)dp
Q . 0
< c/ p“D(a,b)(p, 1 — p)dp.
0

The last integral is finite because the integrand is up to a constant the beta density
D(a — ¢,b). It remains to compute the sign of

I:= /nlog [%] P(dw) = c/ollog (%) p*H1 = p)*ldp
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with ¢ a normalizing constant. We write the last integral as a sum of two integrals, the
first over [0,1/2], the second over {1/2,1]. Substituting ¢ = 1 — p in the first integral

yields
! P p \"*°
I:c/ lo (—) 1] — pybt 1—(—> dp.
o el17-5)? (1-p) T p

Since p/(1 — p) > 1 for p € [1/2,1], the statement follows from Corollary 2.1. O

Proor oF COROLLARY 2.4. We apply Corollary 2.2. Using the assumption on the
initial values and the symmetry property of the Dirichlet distribution, we see that the
distribution of the environment is invariant under reflection. The other assumptions are
verified similarly to the proof of Corollary 2.3. O
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