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Chapterr 4 

Tubularr recurrence 

M.S.. Keane and S.VV.W. Rolles 

Abst ract t 

Wee introduce directed-edge-reinforced random walk and prove that the process is 
equivalentt to a random walk in random environment. Using Oseledec's multiplica-
tivee ergodic theorem, we obtain recurrence and transience criteria for random walk 
inn random environment on graphs with a certain linear structure and apply them 
too directed-edge-reinforced random walk. *  2 3 

11 Introduction 

Lett G be a finite or infinite connected locally finite graph with all edges directed. We 
introducee directed-edge-reinforced random walk (DRRW) on G as follows. Each edge is 
givenn a strictly positive real number as initial weight. In each step the random walker 
traversess a directed edge pointing from her current location to an adjacent vertex with 
probabilityy proportional to the weight of the edge chosen. Each time an edge is traversed, 
itss weight is increased by 1. 

Wee prove that DRRW is equivalent to a random walk in random environment (RVVRE) 
withh independent environment (Theorem 5.1). If all initial values are equal to 1, then 
thee transition probabilities at vertex v are distributed according to a uniform distribution 
onn the rf-dimensional simplex with d equal to the out degree of v; transition probabili-
tiess at different vertices are independent. In case of general initial values the transition 
probabilitiess have a Dirichlet distribution. 

Wee are interested in the question on which graphs DRRW is recurrent. It follows 
immediatelyy from Solomon's criterion for RWRE [8] that DRRW on Z with all initial 
valuess equal to 1 is recurrent. For the two-dimensional integer lattice the recurrence 
questionn seems to be open. 

Inn this article we study the recurrence problem for DRRW and RWRE on Z x G with G 
aa finite connected graph. We assume that the transition probabilities of the RWRE at the 
differentt levels {%} x G, i G Z, are i.i.d.. Using Oseledec's multiplicative ergodic theorem, 
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wee find necessary and sufficient conditions for recurrence and transience of RWRE in 
termss of the Lyapunov exponents of certain random matrices. This approach is similar to 
thee one in [5] where RWRE on Z with jumps of bounded size is studied. We prove that 
RWREE is recurrent if the transition probabilities have a certain symmetry property. In 
particular,, we obtain recurrence of DRRW with all initial values equal. 

Afterr finishing this paper, we learned that Bolthausen and Goldsheid [l] have a char-
acterizationn of recurrence and transience of RWRE on Z x G in terms of the top Lyapunov 
exponentt of certain non-negative random matrices. It seems that Corollaries 2.1 to 2.4 
cann be proved using their results. However they do not discuss reinforced random walks, 
andd the random matrices we consider are more intuitively defined. 

Everyy graph can be turned into a directed graph by replacing each edge by two directed 
edgess with opposite directions. DRRW on this graph differs from so called edge-reinforced 
randomm walk which has been introduced by Coppersmith and Diaconis in 1987. Edge-
reinforcedd random walk (ERRW) is a nearest neighbour random walk on a non-directed 
graph.. Each edge has a strictly positive number as a weight. Each time an edge is 
traversed,, its weight is increased by 1, independent of the direction in which the edge is 
traversed.. The random walker moves in each step to an adjacent vertex with a probability 
proportionall  to the weight of the traversed edge. 

Thee first time a vertex v is visited, the probabilities to leave vertex v depend in case of 
ERRWW on the edge that has been traversed to reach v, whereas they do not depend on this 
edgee for DRRW. The small difference in the definition of ERRW and DRRW results in a 
significantt difference of the processes: On finite graphs for example, ERRW is equivalent 
too a reversible RWRE with dependent environment [4], whereas DRRW is equivalent to 
aa non-reversible RWRE with independent environment. 

Forr ERRW not much is known about recurrence. It is easy to show that ERRW on Z 
iss recurrent, but even for Z x {1,2}  we do not know of any recurrence proof. 

Thee exposition is organized as follows: In Section 2, we define DRRW and RWRE on 
aa general graph, and state our results. In Section 3, we study the potential equations on 
Z x G .. They can be written in terms of products of random matrices. In Section 4, we 
usee Oseledec's multiplicative ergodic theorem to obtain an abstract characterization of 
recurrencee and transience for RWRE. We obtain also a sufficient criterion for recurrence 
whichh is easy to verify. In Section 5, we prove that DRRW is equivalent to a RWRE, and 
applyy the criteria from section 4 to DRRW. 

22 Definitions and Results 

Lett G — (V, E) be a connected graph with vertex set V and edge set E. We assume that 
eachh vertex has only finitely many neighbours and all edges are directed. Between two 
verticess u and v with u / v there may be two parallel edges, one from u to v and one 
fromm v to u. For simplicity of notation, we do not allow parallel edges with the same 
direction.. All proofs remain valid without this assumption. For a directed edge e = (u, v) 
fromm vertex u to vertex v, we call ë :—v the head of e and é := u the tail of e. We do 
nott require that head and tail of an edge are different-

Eachh edge is given a strictly positive weight. At time 0 the weights are non-random; 
edgee e has weight a(e). We denote by wn(e) the weight of edge e at time 72 (just after the 
nnthth step) and by wn(v) the sum of the weights of the edges incident to vertex v. 
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Lett VQ 6 V. We define directed-edge-reinforced random walk with starting point VQ to 
bee a sequence X = (XQ, X  ̂ X2,...) with X, taking values in V, P(X0 = vQ) — 1 and 

{ wwnn(X(Xnn,v) ,v) 

00 otherwise, 

andd the weights satisfy tt'o(e) — a(e), 

iu„(e)) + l if (Xn, Xn+i) = e 
n+HH ; i Wn(e) otherwise. 

Nextt we define random walk in random environment (RWRE) on G. An environment 
iss a function w : E —> [0,1] with the property that uj(e) > 0 for all e € E and 

5 11 ^ t r ) = l 

{v£V:(u,v)eE} {v£V:(u,v)eE} 

forr all u € V. We denote the set of all environments by Q. Let P„0)U, denote the distribution 
off  the Markov chain on G induced by the environment to with starting point v0: PVô (Y0 = 
VQ)VQ) = 1 and 

E E 
PvoAYn+lPvoAYn+l ~ « i n , * i ,  , Yn) - | Q o t h e r w i s e. 

Lett P be a probability measure on f£. The measure 

PvPv00(-):=(-):=  f PvoA-md*») 

iss the distribution of the random walk in random environment with environment dis-
tributedd according to P and starting point v0. We call the environment independent if 
underr P the transition probabilities {UJ(V, -);v £ V} are independent. 

Definitionn 2.1. We call a sequence («o, «i, «2, ) with n > 1, Ui 6 V and («i_i, «,) € i? 
/orr alii  > 1 an infinite path with starting point u0. We call an infinite path recurrent if it 
containscontains each vertex infinitely often and transient if it contains each vertex at most finitely 
often.often. We call DRRW or RWRE on a graph G recurrent f transient,) if with probability 
oneone the paths are recurrent (transient). 

Propositionn 2.1. RWRE with independent environment is either recurrent or transient. 

PROOF.. This follows from the same arguments as Lemma 1 in [3], page 761.
Lett G = (V, E) be a finite connected graph with all edges directed. We study recur-

rencee of DRRW and RWRE onG' = ZxG. More precisely, G' = (V, E') with V' = ZxV 
and d 

E'E' = {(uu Vi) : (u, v) e E} U {{v it v^), (v{, vi+l ) :veV,ieZ} 

withh Vi ~ (i, v) for v e V. We set Vi = {i}  x V and define the length of vt by \vi\ — i. We 
calll  G' a tube and K level i of the tube. 
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Lett ui be an environment on Z x G, and let u){ — (to(e) : ê G V,,e 6 E') denote 
thee transition probabilities to leave level i. For the rest of this article we make the 
followingg assumption on the environment: u;,, i G Z, are independent and identically 
distributedd with 

loga;(c)lP(da;)) > - o o for all e G E'. (2.1) 

Wee apply Oseledec's multiplicative ergodic theorem to products of random matrices 
AiAi describing the potential equations for the environment. This yields to the following 
characterizationn of recurrence and transience in terms of Lyapunov exponents: 

T h e o r e mm 2.1. Let Ai < A2 <  < A2<j be the Lyapunov exponents of the sequence A,, 
ii  > 0, defined in Section 3 by (3.3). The RWRE onZxG 

1.1. is recurrent iff Xd = A^+i — 0, 

2.2. satisfies limn_+oo jVn| = —oo iff Xd = 0 and A^+i > 0, 

3.3. satisfies l im , , -^ \Yn\ = +oc iff Xd < 0 and A d+i = 0. 

Inn general it seems impossible to calculate the sign of A^ + Ad+i- If G has only one 
vertex,, all the Lyapunov exponents can be calculated, and we obtain Solomon's criterion 

[8]: : 

Corol laryy 2.1. Let q(u) = i ^ ^ f The RWRE on Z 

1.1. is recurrent ifKlogq — 0, 

2.2. satisfies l i m ^ ^ \Yn\ — — oo if Elog q > 0, 

3.3. satisfies l im^oo \Yn\ — +oc if Elogq < 0. 

Wee define the reflected environment u) by 

a>(e)) = w(e), for e G E' wTith ë,ê G V, for some z, 

uj(vi,vuj(vi,vi+i+ i)i)  — u(vi,Vi-i), for v e V,i eZ. 

ZJZJ is obtained from u) by interchanging for all i, the probability to jump from vt to t',_i 
andd the probability to jump from t\ to vi+ i. We use Theorem 2.1 to derive the following 
sufficientt criteron for recurrence: 

Corol laryy 2.2. If P is invariant under the reflection* then RWRE onZxG is recurrent. 

Corollaryy 2.1 and Corollary 2.2 can be applied to DRRW. Recall that a(e) denotes the 
initiall  weight of edge e. 

Corol laryy 2.3. Let a, b > 0, and let a(i, i - 1) = a, a(i, ii + 1) = b for all i G Z. DRRW 
onon Z 

1.1. is recurrent if a = b, 

2.2. satisfies l im^oo \Xn\ = - oo if a > b, 

3.3. satisfies l i m ^ ^ |X„ | = +oc if a <b. 

Corol laryy 2.4. Let av > 0, v G V, and let a(vi, vt-i) = a(i\,vt+i) - av for all v G V, i G 
Z.. Then DRRW on Z x G is recurrent. 

, , 
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33 Potential Equations 

Inn this section, we study the potential equations on Z x G. Let UJ be an environment on 
Z x G.. The potential equations for LU are given by: 

xxViVi{u){u) = lo^Vi^Vi-ijx^^u) +uj(vi, vi+l )xVi+1(u;) 

++  ^2 v(vi,Ui)xUi(u)). (3.1) 
{u£V:(v,u)eE} {u£V:(v,u)eE} 

forr i e Z, v 6 V. These equations are for example satisfied for i > 1 and xVi(u>) equal to 
thee probability of never reaching level 0 under the law PVuW. 

Lett d = \V\ be the cardinality of the vertex set of G. We denote the dx d identity 
matrixx by Id and the d x d zero matrix by 0 .̂ We define the d x d matrix Bi(uj) = 
(Bi(w)(u,v);u,v€(Bi(w)(u,v);u,v€ V) by 

Bi(u))(v,v)Bi(u))(v,v) = ~. T,V£V, 
u>(vu>(vuuvvi+i+ i) i) 

BiMfau)BiMfau) = - "fo"*' }  i f ( « , t , ) e£, 

andd Bi(u)(u, v) = 0 for all other choices of u, v. We denote by Ci(u) the cf x rf diagonal 
matrixx with 

Ci{u)(v,v)Ci{u)(v,v) = r, V € V, 
U){vU){vititVVi+i+i) i) 

andd Ci{ui){u, v) = 0 if u  ̂ v. The potential equations (3.1) can be rewritten as 

x i+1(w)) = A.-^x^uO (3.2) 

with h 

MMu)u) = ( Bfd
] C^ ] ) , (3.3) 

wheree we denote the transpose of a matrix M by A/'. Iterating equation (3.2) gives for 
nn > 1 

xn+i(w)) = 5„(u;)x1(u;) with 5„(o;) = Aw(ti;)An_i(w)  AL(UJ). (3.5) 

Lemmaa 3.1. For any UJ G Q, the matrix Ai(uj) is invertible. Its inverse is given by 

A~A~11(uj)(uj) = UA1(uj)U 

where where 

andand Ai(uj) = Ai(uj). 

PROOF.. This is an easy calculation. D 
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44 Characterization of Recurrence and Transience 
Forr our further analysis we need the multiplicative ergodic theorem of Oseledec. For 
bb G W we denote by ||b|| the Euclidean norm of b. For an (r x r)-matrix M we use the 
norm m 

| | M | | - s u p { | | A / 6 | | : 6 e Kr , | | 6 | | < l }. . 

T h e o r emm 4.1 (Ose ledec 's mu l t ip l i ca t ive e rgod ic t h e o r em [7]). Let 
Mi,iMi,i  > 0, be independent and identically distributed real-valued (r x r)-matrices on 
somesome probability space (Q0,T,/J), and suppose log+ | |A/ i || is integrable, where log+:r = 
max{0,, logx} . Let Tn = A/nA/„_ i - - - M[. Then there exist constants 

—occ < Ai < A2 <  < Ar < 00 

andand a strictly increasing non-random sequence of integers 1 = ?'i < ii  <  < is < is+i = 
rr  + 1 satisfying Xn < A,-2 <  < Xit and Xtj — \k for i} < k < ij+i,  1 < j < s such that 
forfor ^-almost all ui G Q0 the following is true: 

1.1. For every 6 G Rr , l i m ^ ^ n^1 log ||!Tn(a;)6|| exists or is —00. 

2.2. For every j < s, 

W(j,u)W(j,u) := {beW : lim n " 1 log \\Tn(u)b\\ < \ l } \ 
K.K. n—too ' ) 

isis a random linear subspace of W with dimension i J +i — 1. 

3.3. If W(Q,UJ) = {0} , then b G W(j,<j) \ W(j - l ,w) implies 

li mm n^1log||T„(u;)6[| - AZj. 
n—n—«x> «x> 

4-4- limn^00(T^(u;)T,
n(a;))1/'2n =: A(UJ) exists and all entries of A(u;) are finite. The 

eigenvalueseigenvalues of A(u>) are exp(A;), 1 < i < r. For every j < s, the orthogonal 
complementcomplement ofW(j — l,a;) in W(j,uj) is the eigenspace of i\{u) corresponding to 
thethe eigenvalue expfA^.). 

TheThe Xi are called Lyapunov exponents. 

Thee following identity wil l be useful to calculate the Lyapunov exponents in a special 
case. . 

L e m m aa 4.1 . Suppose | det A/i | > 0 /i-almost surely and c := JQ log | det Mi(tü)\fi(duj) is 

finite.finite. Then ^ [ = 1 ^t = c-

P R O O F.. Let An(w) = (T^iü)Tn(^
2n. Then detA„  = (TJ î I det,Mt\)

1/n and conse-
quently, , 

n n 

log(dett A„ ) = n'1 £ log | det Mt\. 
ii  = l 

Byy Oseledec's theorem the left-hand-side converges to log(det A) = Xw=i ^«- The right-
hand-sidee converges to c by BirkhofTs ergodic theorem. D 

Forr a proof of the following lemma see for example [2], Lemma 4.1. 
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Lemmaa 4.2. Let Mi, i > 0, be independent and identically distributed real-valued (rxr)-
matrices.matrices. Suppose Mi(u)) is invertible for almost all u), and log+\\Mi\\ and log+ ILV/fM I 
areare integrable. Let AL, X2,... ,X2d be the Lyapunov exponents of the sequence Mi,i > 0. 
ThenThen the sequence Mf1, i > 0, has the Lyapunov exponents —Xi, —X2,... , — X2d-

Wee want to apply Oseledec's Theorem and Lemma 4.2 to the matrices Ax and A{ 

definedd in Section 3. 

Lemmaa 4.3. The following expected values are finite: Elog+ \\Ai\\, 

Eiog
++ ii^r1!! - E 1°s+ p i l l - E l o § + Il(^i) _1ll -

PROOF.. Since \\Ai\\ > 1, log+ jj,4i|| = log ||.4i||. For simplicity, we write A instead of 
AiAi for the rest of this proof, and we denote the entries of A by A^, 1 < i,j < 2d. Observe 
thatt for any matrix \\A\\ < (2rf)2maxi<ij<2d |Ay| and therefore 

log||i4||<21og(2rf)++ Y, l°z\Av\-
{l<i,j<2d:Aij^0} {l<i,j<2d:Aij^0} 

Usingg (2.1), it follows that Elog|AtJ| is finite for all non-zero entries of A. Hence 
Elog+ | | / l i ||| < co, and the same argument applies to Ai. Together with Lemma 3.1, 
thee assertions about the inverses follow.

Nextt we determine the sign structure of the Lyapunov exponents for the sequence At. 

Lemmaa 4.4. Let X^< X2 <  < X2d be the Lyapunov exponents of the sequence Aif 

ii  > 0, and let Xi Xi < X2 < ... < X2d be the Lyapunov exponents of the sequence Ai, i > 0. 
ThenThen for l<i<2d 

XiXi  — —X2ci-i+i. 

PROOF.. By Lemma 3.1, 

TTnn := A~lA~\  Aïl = UAnUUAn_xU  UA.U = USnU 

withh Sn = I „ I n _i ---Ay. Thus for b 6 W, \\Tnb\\ = \\SnUb\\ and l i m ^ ^ n " 1 log ||rn6|| = 
llm^ocn'llm^ocn'11 log\\SnUb\\. By Oseledec's Theorem, the Lyapunov exponents of the se-
quencess A'1, i > 0 and At, i > 0 agree. The claim follows from Lemma 4.2. (The inte-
grabilityy assumptions from Oseledec's Theorem and Lemma 4.2 are satisfied by Lemma 
4.3.))

Theoremm 4.2. The Lyapunov exponents Ai < A2 <  < X2d of the sequence Ai} i > 0, 
satisfysatisfy one of the following conditions: 

1.1. Xd < 0 and Xd+i — 0 

2.2. Xd = 0 and Xd+i = 0 

3.3. Xd = 0 and Xd+i > 0 
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P R O O F.. We denote by r0 the hitting time of level 0: 

r00 = min{n > 0 : Xn £ V0}. 

Forr u, v € V and i G Z we set 

x".(u)x".(u) = PVi,M{r 0 < oc, XT0 = u0). 

Byy the Markov property, x" (u;) satisfies the potential equations (3.1) for i > 1. From (3.5) 
wee know that x"+1(u;) = Sn(u;)x"(u;) with xJJ(u;) defined by (3.4). Since all components of 
x" + 1(w)) have values in [0,1], it follows that l i m ^ ^ n ^ 1 log ||5n(a;)x"(a;)|| < 0. Observe 
thatt x„ 0(u;) — 1 and x"0(w) = 0 for all i' £ V \ {u}. Hence the vectors x"(a;), u G V, are 
linearlyy independent, and the linear space 

' V )) := \b e U2d : lim n"1 log ||Sn(cj)6|| < o} w w 

hass dimension dim(iy(u;)) > rf. Thus A<j < 0. 

Recalll  that the matrix Ai is obtained from A% by reflection of the environment. There-
forefore the previous argument applieŝ  to Ai, i > 0, and the d'h Lyapunov exponent satisfies 
XXdd < 0. By Lemma 4.4, \d+i = —Xd > 0. 

Lett 1 denote the vector in R2d with all components equal to 1. Since Ail — 1 for all 
i,i, Snl = 1 for all n and l im, , -^ n~l log | |5 „1 || = 0. Thus either Xd = 0 or A^+i = 0.

Thee sign structure of the Lyapunov exponents can be used to characterize recurrence 
andd transience of the RVVRE. We wil l make use of the following lemma: 

L e m maa 4.5. RWRE on No x G is transient iff there exists c > 0 such that 

limm n l log maxP„niü,(r00 < oc,.YT0 = u0) 
vSS V 

<< -c 

forfor all u G V, P-almost all u). 

P R O O F.. We denote by r, the hitting time of level i: 

T{T{ = min{n > 0 : Xn G V*} . 

Firstt we consider a fixed environment u. If level 0 is reached from a starting point at 
levell  n, then level n — 1 must be reached before level 0. Hence 

PvPvnn,U,UTT00 < ° ° i  Xr0 = « o) = PvnA
Tn-l < OC, T0 < OO, XT0 = UQ). 

Ann application of the Markov property at time rn_i shows that the last probability equals 

EEVniU)VniU)(Px(Pxrnrn__ititUUTT00 < OO,XT0 = UQ)]Tn_i < oo) 

Repeatingg this argument yields 

<< PvnA
Tn-i < oc)ma.xPtn_ULlJ(rQ < oc,Xr o = u0)-

u - l l 

maxPej)iU,(T00 < oo, XT0 = u0) < TT max PVi+uU(Ti < oo). 
t=0 0 
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Wee conclude 

nn l log maxPBll^{r oo < oc, XTQ = w0) 
t>€V V 

^ n - ^ l o g ^ w ) )) (4.1) 
i = 0 0 

withh Zi(uj) = maxV£V Pvi+1,u,(Ti < oc). Observe that Z,, i > 0, is a stationary sequence 
underr P with Elog(Zi) < 0. By Birkhoff's ergodic theorem, n~l Y^=o l°g(^t) converges 
almostt surely as n — oo to a limit U with E(U) = E[log(Zi)]. 

Supposee Elog(Zi) = 0. Then Zi = 1 P-almost surely. If for some v, PV1,U>(TO < oo) < 1, 
thenn PVUÜJ(T0 < oo) < 1 for all v. Consequently, P«,1)W(TO < oc) = 1 for all v P-almost 
surely,, and similarly P„i+ljü,(7ï < oo) = 1 for all v and i > 0 P-almost surely. We conclude 
thatt in this case, the RWRE on N0 x G is recurrent. 

Supposee Elog(Zi) < 0. Then there exists c > 0 such that on a set of positive P-
measuree lim^oo n~l X!"=o l°g(^) — ~c- Since #". = PVi,u(To < oo,XTo = UQ) satisfies 
thee potential equations, we conclude from Oseledec's theorem that the limit of the left-
hand-sidee of (4.1) is < — c P-almost surely. In particular, limn^00maxl,€v' Pvn,u(To < 
oo,, XTQ — UQ) = 0 and the RWRE is transient.

Lemmaa 4.6. RWRE on No x G is transient iff Xd < 0. 

PROOF.. Suppose RWRE on N0 x G is transient. Then by Lemma 4.5, 

W(w)W(w) := {b £ R2d : lim n"1 log ||5„(u;)6j| < o) 

hass dimension dim(W(ti;)) > d. By Oseledec's Theorem, Xd < 0. 
Supposee Xd < 0. Then by Theorem 4.2, dim(W(u;)) = d. For the rest of this proof 

wee fix a typical environment u> and suppress the dependence on u> in the notation. Let 
bi,, b2, - - - , bd be a basis of W. For 1 < j < d, we let C; denote the vector in Kd consisting 
off  the last d components of b;. We claim that c i ,c2, . .. , cd are linearly independent. 
Supposee not. Then there exists a non-zero vector fi G W with the last of components 
equall  to 0. We set fn+i — Snfi with f„  = {(fvn,v £ Vr),(/„n_1,v G V))\ and we define 
thee function ƒ : No x G —> R, i\ i—> fVi. We say that the function ƒ is induced by fi . By 
definition,, ƒ„. satisfies the potential equations (3.1) for i > 1 and fVQ = 0 for v E V. Since 
fii  E W, lim„^oo ƒ„„  = 0 for v G V. In particular, ƒ is bounded and attains its maximum 
inn N x G. By a standard argument, we conclude that ƒ is identically zero. This is a 
contradictionn to fi / 0, and we conclude that Ci, c2, . .. , cd are linearly independent. 

Hencee there exists a vector gi G W with the last d components equal to 1. We denote 
byy g the function on No x G induced by gi. We set 

f(v)f(v) = P0IW(TO < oo) 

forr v G No x G. Then f(vi) and g(vi) satisfy the potential equations (3.1) for i > 1. 
Fixx Vi G N x G. Let Ar

n = f{YnATo), n > 0, with n A r0 = min{n, r0} . Then Nn, n > 0, 
iss a bounded martingale under P„ itLJ. Hence it converges in Ll to a limit A^ , and 

f(vi)f(vi) = EVi„No = E^N^ 

==  EVitU ( lim f{YnAT0); r0 < oc) + £„£ ,„(#<»; r0 = oc). 
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Usingg f(YT0) = 1, we obtain 

f(vi)f(vi) = /fa) + E^JN^; rQ = oo). 

Thuss E^iN^To = oc) = 0. We set N'n = f(YnAT0) - g{YnATo), n > 0. Then N'n,n > 0, 
iss a bounded martingale under Pvuw. Hence it converges in L1 to a limit A7 ,̂, and 

f(vi)-g(vi)f(vi)-g(vi) = E^N^E^N'^^E^ifiYrJ-giY^-roKoc) 

+E+EViVi^(N^(Noooo\T\T00 = oc) - EViiU ( lim 9(y„Ar0); TO = oc J 
\n—tooo / 

== -Evuu ( lim .9(V;AT0); r0 = oc) , 

becausee f(YT0) = g{YT0) = 1. If P„.)W(ro = oc) > 0, the Markov chain is transient and 
limn^ooo |Yn\ = oc .P^^-almost surely. Since g € W, we have lim,,^,̂  g(un) — 0 for u E V, 
andd we conclude g(vi) = f(i\). Since t', € Nx G is arbitrary, we have shown f = g. Using 
gii  £ W we conclude from Lemma 4.5 that the RWRE is transient.

PROOFF OF THEOREM 2.1. Suppose Xd < 0 and Ad+i — 0. By Lemma 4.6, the RWRE 
restrictedd to N0 x G is transient, thus lim,,^^ \Yn\ — +oc. To apply Lemma 4.6 to the 
RWREE restricted to —No x G, we consider the reflected environment on j*J0 x G. For the 
potentiall  equations, this means that A, is replaced by A{. By Lemma 4.4, Xd = — Ad+1 = 0, 
hencee by Lemma 4.6 the RWRE restricted to —N0 x G is recurrent. This implies that the 
RWREE on Z x G satisfies l im,^^ |y„| = +oo. 

Supposee Ad = \d+i = 0. Using the same argument as above, we see that RWRE 
restrictedd to N 0 x G and —N0 x G are recurrent. Hence the RWRE on Z x G is recurrent. 

Thee case Xd =0 and Xd+i > 0 is treated similarly.

PROOFF OF COROLLARY 2.1. We apply Theorem 2.1 with G equal to the graph with 
preciselyy one vertex. Then 

A^(uj)A^(uj) — "(viM) <"(fl,i>2) 
vv ; ^ 1 0 

Usingg Lemma 4.1, we obtain 

'u(v'u(vuuvv00)' )' Aii  + A2 - Elog | det A{\ = / log 
v(vi,vv(vi,v22) ) 

P(cL P(cL 

Thee statement follows from Theorem 2.1.

P R O OFF OF COROLLARY 2.2. Suppose P is invariant under reflection. Then Al has 
thee same distribution as Ai and consequently both sequences have the same Lyapunov 
exponents.. Using Lemma 4.4 and Theorem 4.2, we conclude that Xd — -Ad+i — 0. 
Theoremm 2.1 implies recurrence of the RWRE.

55 Application to DRRW 

Recalll  the definition of dirccted-edge-reinforced random walk (DRRW) from Section 2. 
Firstt we show that DRRW on a general graph G' is equivalent to a RWRE, then we apply 
Corollaryy 2.1 and Corollary 2.2. 
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Wee recall the definition of a generalized Polya urn with parameters al 7 . .. ,ak > 0. 
Thee urn contains "balls" of k different colours, a» balls of colour i at time 0. At each 
timee unit, a ball is drawn from the urn and returned with an additional ball of the same 
colour.. The sequence of colours of the balls drawn from the urn is called a generalized 
Polyaa urn process with parameters cti,... , a*. Clearly, this process is well-defined for 
anyy strictly positive paramaters a*  although the analogy with balls makes only sense for 
integer-valuedd parameters. 

Forr a > 0 we denote the value of the gamma function at a by T(a). We recall the 
densityy of the Dirichlet distribution with parameters ai,... , ak: 

kk k 

D(aD(auu...,a...,akk)(x)(xuu...,x...,xkk)=)= r{ar{a '' + -"+"k)f[xr\xi>0^xt = l. 

Wee attach to each vertex of the graph G' a Polya urn, urns at different, vertices 
beingg independent. For a vertex v we denote by E'v the set of edges in G' with tail v. 
E'E'vv = {e € E' : ë = v}. We assume that the parameters of the urn at vertex v are 
(a(e),ee € E'v), so the urn at vertex v contains balls of as many different types as there 
aree edges with tail v. We define a nearest neighbour random walk on G' starting at VQ 
ass follows: If the random walker is at vertex v her next step is decided with the Polya 
urnn at vertex v; the ball drawn from the urn determines which edge she traverses next. 
Writingg down the finite-dimensional distributions for the location of the random walker, 
itit  is easy to see that they agree with the finite-dimensional distributions of the DRRW. 
Usingg de Finetti's theorem, each Polya urn can be replaced by a Dirichlet distribution 
withh the same parameters ([6], Section 2). 

Wee have proved the following theorem: 

Theoremm 5.1. DRRW is equivalent to a RWRE with an independent environment. The 
transitiontransition probabilities at vertex v are distributed according to a Dirichlet distribution with 
parametersparameters (a(e), e 6 E'v). 

PROOFF OF COROLLARY 2.3. By Theorem 5.1, DRRW on Z is equivalent to a RWRE 
withh LOj, i e Z, independent and identically distributed. The transition probabilities at 
vertexx v have a beta distribution with parameters a and 6. To verify the integrability 
conditionn (2.1), let e > 0 such that a-e > 0. There exists c > 0 such that log(l/p) < cp ( 

forr all p €]0,1]. Hence 

00 < f - \ogcü{e)f(dio) = f ( - logp)D(a, 6)(p, 1 - p)dp 
Jo.Jo. Jo 

<<  c f p-(D(a,b){p,l-p)dp. 
Jo Jo 

Thee last integral is finite because the integrand is up to a constant the beta density 
D(aD(a — e, 6). It remains to compute the sign of 
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withh c a normalizing constant. We write the last integral as a sum of two integrals, the 
firstt over [0,1/2], the second over [1/2,1]. Substituting q = 1 - p in the first integral 
yields s 

=e=efM£ïy«-'r fM£ïy«-'r 
b—a b—a 

1 -p p 
dp. dp. 

Sincee p/(l - p) > 1 for p e [1/2,1], the statement follows from Corollary 2.1.

P R O OFF OF COROLLARY 2.4. We apply Corollary 2.2. Using the assumption on the 
initiall  values and the symmetry property of the Dirichlet distribution, we see that the 
distributionn of the environment is invariant under reflection. The other assumptions are 
verifiedd similarly to the proof of Corollary 2.3.
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