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Chapterr 2 

Largee and small hexagons 

2.11 Introduction 
Thee phase behaviour of hard particles, in particular spheres, as a simple model of in-
teractingg particles, has received much attention. Computer simulations of monodis-
persee hard spheres in three dimensions show a first-order transition between a dilute 
disorderedd phase (fluid) and a dense ordered phase (solid) [89, 4, 49]. The continuous 
translationall  symmetry of the Hamiltonian remains intact in the fluid, but is broken 
too a discrete subgroup in the solid. Although a rigorous proof is lacking, this phase 
transitionn in the hard-sphere model is now generally accepted. For bidisperse hard 
spheress the situation is more complicated. The existence of several solid phases has 
beenn established; see, for example, [30] and the references therein. The behaviour 
inn the fluid phase, however, is not known. Using the Percus-Yevick closure of the 
Ornsteinn Zernike equation, Lebowitz and Rowlinson [64] found miscibility in all 
proportionss for all diameter ratios. More recently however, Biben and Hansen [16], 
usingg the Rogers-Young closure, found a spinodal instability when the diameter 
ratioo exceeds 5. Even so it might be that the fluid-fluid transition is pre-empted 
byy the fluid-solid transition, so that the former does not actually occur. Thus it 
remainss an open question whether bidisperse spheres can show a fluid fluid phase 
separation.. More generally one may ask if gas liquid-solid behaviour can occur in 
binaryy mixtures with only hard-core repulsion. 

Motivatedd by this interest Van Duijneveldt and Lekkerkerker [28, 29] studied a 
two-dimensionall  binary hard-core lattice model. This model, introduced by Frcnkel 
andd Louis [37], consists of large and small hard hexagons on a triangular lattice, see 
Figuree 2.1. Every site can be empty or occupied by a large or small hexagon, and 
iff  it is occupied by a large hexagon all its direct neighbours must be empty. When 
thee small particles are omitted, one regains the hard hexagon model [20], which has 
beenn solved exactly by Baxter [9, 10]; it has a second-order ordering transition. Van 

Thiss chapter is a slightly reworked version of the following paper: A. Verberkmoes and B. Nienhuis, 
Evidencee against a three-phase point in a binary hard-core lattice model, Phys. Rev. E 60(3), 2501 
(1999),, ©1999 The American Physical Society. 
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Figuree 2.1: A typical configuration of large and small hexagons. 
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Figuree 2.2: Phase diagram in the z\— z<z plane calculated by Van Duijneveldt and 
Lekkerkerkerr [28, 29] from Monte Carlo simulations. The letters F, G, L and S 
indicatee the fluid, gas, liquid and solid phase, respectively. 

Duijneveldtt and Lekker kerker studied the binary model by means of Monte Carlo 
simulation.. They found three phases: dilute disordered (gas), dense disordered 
(liquid),, and ordered (solid). Figure 2.2 shows this phase diagram, represented in 
termss of the fugacities z\ and Z2 of the large and small hexagons, respectively. 

Inn this chapter we study the same model by different methods. Our interest is 
inn the qualitative, rather than quantitative, aspects of the phase diagram. We do 
nott address the general question whether gas-liquid-solid behaviour is possible in 
binaryy hard-core mixtures. The chapter is organised as follows: First, we briefly 
revieww the Monte Carlo approach of Van Duijneveldt and Lekkerkerker, and we give 
somee exact results. Then we describe our numerical transfer matrix calculations. 
Next,, we discuss the relation of the model with an exactly solvable restricted solid-
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on-solidd (RSOS) model and with the dilute three-state Potts model. Finally, we 
proposee an explanation for the discrepancy between our results and those of Van 
Duijneveldtt and Lekkerkerker. 

2.22 Monte Carlo simulation and exact results 

Beforee we review the Monte Carlo method of Van Duijneveldt and Lekkerkerker [28, 
29]]  and discuss some exact results, we make the following notational conventions: the 
subscriptss 1 and 2 refer to the large and small hexagons, respectively; the superscript 
00 refers to the pure hard hexagon model; the symbol iV without subscript is the 
numberr of sites and is generally omitted as an argument of the thermodynamic 
quantities. . 

Wee consider the semi-grand canonical partition function Z(Ni, z2) of large hex-
agons,, whose number TVi is fixed, and small hexagons, whose fugacity z2 is fixed, 
onn N lattice sites. We may view the small hexagons as causing an effective so-
calledd depletion interaction [6] between the large hexagons. The question is then 
whetherr this attractive depletion interaction is strong enough to induce a fluid 
fluidfluid  transition. The effective interaction can be expressed in the number of sites 
availablee for small hexagons, once the large hexagons have been placed on the lattice. 
Interestingly,, the sites available for small hexagons are exactly the sites where an 
additionall  large hexagon could be inserted. Such sites are called free. It is easy 
too express the semi-grand canonical partition function Z(Ni,z2) in terms of the 
canonicall  partition function Z°(Ni) of the hard hexagon model and the probability 
distributionn p(N{\Ni) for the number Nf of free lattice sites in the hard hexagon 
model, , 

Z(NZ(Nuuzz22)) = Z°(N1)Z'(Nuz2), 

where e 
Z'(NZ'(N11,,Z2Z2)) = Y,p(Nf\N1)(l + z2)

N<. 
NNf f 

Afterr taking logarithms this gives the free energy, 

F(NF(N uuzz22)=F°(N)=F°(N11)) + F'(N l:z2). (2.1) 

Vann Duijneveldt and Lekkerkerker determine the probability distribution p from 
canonicall  Monte Carlo simulations of the hard hexagon model. To determine ac-
curatelyy the wings of the distribution an umbrella sampling technique is employed. 
Theyy calculate F' from p, and for fixed z2 fit a polynomial in p1 :=  Ni/N to this 
quantity.. They obtain the free energy F from (2.1), using Baxter's exact result [9, 10] 
forr F° and the fitted polynomial for F'. The fugacity z\ of the large hexagons and 
thee pressure P are calculated in the usual way from F. Finally phase equilibrium is 
determinedd by looking for phases with equal z\ and P but different p\. As this cal-
culationn is carried out for fixed z2, z2 is also equal in the phases. The resulting phase 
diagramm is shown in Figure 2.2. It has three branches: liquid-solid, gas-solid and 
gas-liquid.. The branches meet at the three-phase point, at z\ = 22.5 and z2 = 1-89. 
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(Vann Duijneveldt and Lekkerkerker use the term "tripl e point", but as that suggests 
thee coexistence of three phases where three first-order transit ions meet we prefer to 
usee the term "three-phase point".) The gas liquid end point is located at z\ = 13.3 
andd 22 — 1-36. 

Expandingg Z' to first order in z2 gives 

Z'{NjZ'{Nj,, z2) = 1 + z2(N()°Ni + o{z2). (2.2) 

Forr a finite system we could have written 0(z2) instead of 0(22)5 but in the thermo-
dynamicc limi t this is not valid at the phase transit ion of the hard hexagon model. 
Lekkerkerkerr [65] found that the average pf : = {Nf/N)°N can be calculated exactly, 
ass follows. Adding one hexagon to a configuration of Ni hexagons can be done in 
JVff  ways. By doing this to all configurations of  hexagons each configuration of 
7V"ii  + 1 hexagons is obtained exactly N\ + 1 times. Hence, 

{Nf){Nf)00
NlNlZZ00(N(N11)) = (N1 + l)Z°{N1 + l), 

whichh in the thermodynamic limi t yields 

PiPi =  P~- (2-3) 

Th iss is an example of Widom's famous particle-insertion formula [85]. In Ap-
pendixx 2.A we apply this exact result in the method of Van Duijneveldt and Lek-
kerkerker.. In part icular, we show that the existence of a Van der Waals loop cannot 
bee concluded from its presence in the first-order approximant (2.2). 

A ss the first derivatives of the thermodynamic functions with respect to z2 are 
knownn in this way, we shall now at tempt to calculate the locus of the phase transit ion 
inn this order. The difference between the large and small hexagons is that two small 
hexagonss may occupy neighbouring sites, whereas two large ones may not. At small 
222 the density of small hexagons is low, so that they wil l generally occur isolated. 
Thuss they cannot be distinguished from the large ones. For the grand canonical 
par t i t ionn function this implies 

Z(zZ(zll,Z,Z22)=Z°(z)=Z°(z11+Z+Z22)+o(z)+o(z22).). (2.4) 

Thiss suggests that the locus of the phase transit ion is given by 

z\z\ =z\ -z2 + o{z2), (2.5) 

wheree the superscript c refers to the critical point of the pure hard hexagon model. 
Thee particle densities follow also, 

Pi(z i,, z2) = ^—pi(zi + 22) + 0(22) 
Z\Z\ + z2 

forr the large hexagons, and similarly for the small ones. Combining these results 
yieldss the density of the large hexagons at the phase transit ion, 

PiPi = ( l - Zj^jp\ + o{z2). (2.6) 

Equat ionss (2.5) and (2.6) cannot be derived rigorously from (2.4) alone, but we 
conjecturee that they are nevertheless valid. 
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Figuree 2.3: The transfer matrix adds one layer (shaded) to the system. 

2.33 Transfer-matrix approach 

Noww we study the model through its row-to-row transfer matrix. For practical 
reasons,, we work with sawtooth rows as shown in Figure 2.3. One advantage is that 
thee high-density ground state of the hexagons fits on the lattice (which has an even 
numberr of sites), whereas for straight rows it does so only when the system size is a 
multiplee of 3. Another advantage is that the layer between two successive rows can 
bee built up by repeatedly adding a pair of triangular faces, without increasing the 
numberr of external sites; this makes the transfer matrix easy to generate in numerical 
computations.. Periodic boundary conditions are imposed on the rows. The number 
off  "teeth" is denoted by W, so a row contains 2W sites and has length L = W\/2>. 
Thee largest few eigenvalues of the transfer matrix (in the zero-momentum sector) 
weree calculated numerically for W = 2, . . ., 5, using the power method. 

Inn the ordered regime there are in fact three coexisting ordered phases, corre-
spondingg to the three sub-lattices of the triangular lattice. They give rise to three 
eigenvectorss of the transfer matrix, dominated by these ordered phases: one symmet-
ricc and two asymmetric for permutations among the ground states. The symmetric 
vectorr has the largest eigenvalue A0. The asymmetric vectors have a complex conju-
gatee pair of eigenvalues AM and AM . In the relevant region of the phase diagram the 
largestt eigenvalues turn out to be A0, AM and AM , and another real eigenvalue AT-
Thee phase behaviour can be diagnosed from the behaviour of the gaps between the 
eigenvalues,, A M : = log |A0/A M | and A T : = log |A0/A T |, as the system size L tends 
too infinity. 

Thee gap Ax is an inverse correlation length between density fluctuations. In the 
absencee of a phase transition, the bulk (L = oo) value of this length is finite and 
thee value for finite L approaches this bulk value when L tends to infinity. Hence A T 
tendss to a non-zero limit . At a critical point the bulk correlation length diverges 
andd the value for finite L is proportional to L. As a consequence of scale invariance 
A TT decreases as l/L. At a first-order transition with a change in the density, 
however,, A T is not an inverse correlation length. The eigenvalues Ao and A T are 
thenn asymptotically degenerate. Their gap A T is related to the interfacial tension 
betweenn the coexisting phases. More precisely, A T decays as exp(—crL), where a is 
proportionall  to the interfacial tension [33]. 

Forr the gap A M the situation is analogous. In the disordered regime, it is an in-



18 8 Chapterr 2. Large and small hexagons 

(a) ) (b) ) 

Figuree 2.4: (a) Phase diagram with a fluid and solid phase. The critical line (fat) 
terminatess at a tricritical point where the phase transition becomes first-order (dou-
blee line), (b) Phase diagram with gas, liquid, and solid phases. The critical line 
(fat)) meets the first-order transition (double line) at the three-phase point. 

versee correlation length, here between fluctuations in the sub-lattice ordering. Thus 
thee gap approaches a non-zero value as L grows. At a first-order transition be-
tweenn two disordered phases this correlation length is generally different in the two 
phases.. Therefore, the value of AM undergoes a sharp change through the tran-
sition,, approaching a jump as the system size L increases. At a critical point the 
bulkk correlation length diverges, so that AM decays as 1/L when L increases. In the 
orderedd regime three phases coexist, and the eigenvalues Ao and AM (and AM) are 
asymptoticallyy degenerate: A M decays exponentially with L. At a first-order tran-
sitionn between an ordered and a disordered phase by the same token A M vanishes 
exponentiallyy with L. 

Wee shall now distinguish between two scenarios: (i) there are two phases (fluid 
andd solid) as in Figure 2.4(a) and (ii) there are three phases (gas, liquid and solid) 
ass in Figure 2.4(b). The gaps should behave as follows. At fixed Z2, the gap A M 
decreasess with increasing z\, whereas A T has a minimum at the phase transition(s). 
Forr low zi, see the lower dashed lines in Figures 2.4(a) and 2.4(b), the scaled gaps 
L A MM and LA x will  tend to a non-zero value when L —+ oo at the critical line. For 
highh 22, see the upper dashed lines, this is no longer the case: both scaled gaps 
tendd to zero when L —» oo at the phase transition, which is now first-order. On the 
middlee dashed line in Figure 2.4(b), A M changes rapidly at the gas-liquid transition. 
Furthermore,, Ax has two minima: at the gas-liquid transition and at the liquid-
solidd transition. When L —> oo, the minimum of the scaled gap LA x tends to zero at 
thee gas-liquid transition, but to a non-zero value at the liquid-solid transition. Thus 
thee gas-liquid transition in Figure 2.4(b) can be recognised from the appearance of 
aa sudden change in A M and a second minimum of Ax

Forr z<2 = 0.0, 0.1, . . ., 3.0 the scaled gaps L A M and LA x were plotted as a 
functionn of z\ for W = 2, . . ., 5. Figures 2.5-2.8 show examples of this. We found 
noo indication that Ax has two minima. One could argue that two minima might 
bee fused to a single one for these relatively small systems; however, the sharpest 
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Figuree 2.5: The scaled gaps L A M as a function of z\ on the line z2 = 1.7. 
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Figuree 2.6: The scaled gaps LA x as a function of z\ on the line z2 = 1.7. 

andd deepest minimum (at the gas-liquid transition) is clearly absent. This pleads 
againstt the three-phase scenario in favour of the two-phase scenario. We also saw 
noo sudden change in AM - However, even if a gas-liquid transition were present, the 
signall  in AM might be hard to detect. 

Thee three-phase scenario can be obtained by introducing an extra parameter 
intoo the model. Assign a weight K to every lattice edge joining a small hexagon 
andd an empty site. For K = 1 one recovers the original model. For K = 0 any 
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Figuree 2.7: The scaled gaps LAM as a function of z\ on the line z-i = 2.3. 
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Figuree 2.8: The scaled gaps L A T as a function of z\ on the line Z2 = 2.3. 

contactt between a small particle and an empty site is forbidden. In this limi t the 
modell  either contains no small hexagons at all or is completely filled with them. The 
regimee without small hexagons still exhibits the hard hexagon transition as long as 
11 + Z2 is smaller than the partition sum per site of the hard hexagon model. Beyond 
thiss value the phase filled with small particles takes over. Thus the ordered and 
disorderedd hard hexagon phases meet with the pure small hexagon phase, where the 
phasee transition between them terminates in a three-phase point. For K close to 
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Figuree 2.9: The scaled gaps LA x as a function of z\ on the line 22 = 1-3 in the 
modell  with extra parameter K = 0.6. The inset shows the deep minima in more 
detail. . 

zero,, the model will still obey the three-phase scenario. Here Ax is indeed found 
too have two minima, see Figure 2.9. (The maxima in this figure at first sight seem 
too be crossings of eigenvalues, but a very close look reveals that they are, in fact, 
rounded.)) This supports our interpretation of the absence of a second minimum in 
Axx as evidence against the three-phase scenario. 

Thee locus in the z\-z-i plane of the phase transition can be estimated, for exam-
ple,, as the location of the minimum of Ax- For fixed 22 the value of z\ at which 
thiss gap takes its minimum was determined. The results for W = 5 and W = 6 are 
plottedd in Figure 2.10. In order to obtain the locus in the pi-22 plane the density 
off  large hexagons was computed using 

PiPi = zx— (-logAo) . 
OZ\ OZ\ 

(Itt should be noted that for such small W this does not seem to be very accurate.) 
Figuree 2.11 shows the result. We observed that for fixed 22 the graphs of p\ versus 
Z\Z\ for different system sizes pass approximately through one point. One could ask 
whetherr this is the critical point, as would be the case in a self-dual model. The 
locuss of the intersection of the graphs for W — 5 and W — 6 is shown in Figure 2.11. 
Figuress 2.10 and 2.11 also show the phase diagrams given by Van Duijneveldt and 
Lekkerkerkerr [29]. 

First-orderr and second-order transitions are not easily distinguished from each 
otherr by the numerical data. In both cases Ax has a minimum, only the dependence 
onn L of the depth of the minimum is different. For 22 = 1.7, the graphs of the LAM 
passs approximately through one point, see Figure 2.5. The LA x have a minimum 
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Figuree 2.10: Locus in the Zy-Z2 plane of the minimum of the gap A T for W = 5 
(+)) and W = 6 (x) and phase diagram of Van Duijneveldt and Lekkerkerker (solid 
line).. The asymptote (2.5) is also shown (dashed line). 
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Figuree 2.11: Locus in the pi~z2 plane of phase transition calculated from W = 5 
(+)) and W = 6 (x), locus of the intersection of the graphs for W = 5 and W — 6 
off  pi versus Zi (0), and phase diagram of Van Duijneveldt and Lekkerkerker (solid 
line).. The asymptote (2.6) is also shown (dashed line). 
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thatt increases slowly with L and may converge to a non-zero value, see Figure 2.6. 
Thiss points to a second-order transition. For z<i — 2.3, the graphs of L A M do not 
passs neatly through one point, see Figure 2.7. The minimum of L A T decreases 
withh L and may vanish asymptotically, see Figure 2.8. This points to a first-order 
transition.. The behaviour of L A M and L A T changes gradually between z  ̂ — 1.7 
andd z-i — 2.3. Thus the value of z-i at the tricritical point is estimated roughly to lie 
betweenn 1.7 and 2.3. 

Byy universality the limit values of L A M and L A T at the phase transition are 
27TXM27TXM and 2-KX  ̂ respectively, with XM = 2 / 15 and XT = 4/5 on the hard hexagon 
criticall  line (c = 4/5), and I M = 2/21 and x  ̂ = 2/7 at the hard hexagon tricritical 
pointt (c = 6/7), see, for instance, [39]. On the critical line close to the critical 
pointt one expects to find the tricritical values for small system sizes, but the critical 
valuess for large sizes. The limits were also estimated from the graphs of L A M and 
L A TT for z<i — 0.0 (not shown) and zi — 1.7. For 22 = 0.0 we found xu ~ 0.14 
andd £T ~ 0.80. This is in good agreement with the critical values XM = 2/15 and 
%T%T — 4/5. For 22 — 1.7 we found XM « 0.13 and XT ~ 0-3. This agrees reasonably 
withh the tricritical values XM = 2/21 and x  ̂ = 2/7, which are expected for small 
systemm size near the tricritical point. 

2.44 Relation to an A^] RSOS model 

Somee properties of the large-and-small hexagon model are common with an exactly 
solvablee model. In order to make use of the exact solution we investigate whether the 
twoo models are ever parametrically close. The sites of the large-and-small hexagon 
modell  can be in three states: 0 (empty), 1 (large hexagon), or 2 (small hexagon). 
Forr neighbouring sites the combinations 1-1 and 1-2 are excluded. The same is 

(2) (2) truee for the L — 7 case of the exactly solvable A2 restricted solid-on-solid model 
off  Kuniba [63, 62]. This is an interaction-round-a-face model on the square lattice. 
Forr a suitable choice of its spectral parameter, the condition on neighbouring sites 
extendss to one of the diagonals of the square face. The Boltzmann weight of the 
squaree face then factors into weights of the composing triangles: 

(d_(d_ c\ (d. \ /d__..c\ 
WW ) = W I  ) w [ 

\a\a bj \a bj \ b) 

andd these triangle weights are invariant under rotation, 

/cc \ (c b\ /b \ (b a\ (a \ (a c\ 

W ii  J = W { J = W U J = W { =W\> J = W { J ' 
soo that the model is isotropic on the triangular lattice. The model still has one 
parameterr (the elliptic nome), but this solvable line stays away from our phase 
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diagram.. For example, at the critical point the triangle weights are 

ww I J = l , w ( ] =4.412, 

ww ( ] = 3.903, w\ ] = 3.129, w [ ) = 3.761, 
\ 22 0/ \2 2/ \ 2 2 

whichh is not of the form 

oo \ /o 
WW \ . 1 = 1 , W \ 1 = 2 

,00 0/ \1 0 

1/6 6 
11 ' 

Applicationn of the numerical transfer-matrix method from Section 2.3 to this critical 
modell  shows that it is in the tricritical three-state Potts universality class. 

2.55 Relation to the dilute three-state Potts model 
Thee large-and-small hexagon model is intimately related to the dilute three-state 
Pottss model [14]. Because this relation gives insight in the phase diagram we will 
considerr it here in more detail. On every site j of a two-dimensional lattice with 
coordinationn number v lives a variable Sj that can take the values 0, 1, 2, 3. Of these 
thee states Sj > 0 take the role of local occupancy of one of the three sub-lattices of 
thee hard hexagon model, and the state Sj = 0 is neutral or vacant. The Hamiltonian 
off  the dilute Potts model is 

HH = - 2 (S'i,B k+K6ai,05akio)-LYl8si,o, (2-7) 
<j,k><j,k> j 

wheree the first sum is over nearest neighbour pairs of sites. In the parameter space 
(K,L,T)(K,L,T) the model has a line of tricritical points as well as a line of critical end 
pointss [14], see Figure 2.12. As we wil l argue below, it is fairly clear where these 
comee together, namely, in the critical point of the four-state Potts model, K — 0, 
LL = 0 and T = Tc, where all the four states are treated identically. 

Att T = 0 there is a dilute phase with Sj = 0 when vK + 2L > 0, while the three 
dense,, or ordered phases associated with Sj = 1, 2, 3 coexist when vK + 2L < 0. 
Thesee phases extend to non-zero temperatures so that a first-order surface separates 
thee dilute region from the dense coexistence region. This first-order surface will not 
remainn precisely at vK + 2L — 0 for T > 0, but by symmetry it does include the 
TT axis, K = L — 0. At high temperature the coexistence region is bounded by a 
surfacee of three-state Potts critical points, shaded gray in Figure 2.12, where the 
linee tension between the coexisting dense phases vanishes. This critical sheet must 
joinn with the first-order surface in a line of multicritical points, as they both form 
boundariess to the coexistence region. 
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Figuree 2.12: A qualitative picture of the phase diagram of the dilute three-state 
Pottss model. The dense coexistence region (back) and the dilute region (front) are 
separatedd by the three-state Potts critical surface (shaded) and the lower part of the 
first-orderr surface (not shaded). These surfaces meet at a line of three-state Potts 
tricriticall  points (left) and a line of three-state Potts critical end points (right). 
Thee upper part of the first-order surface (not shaded) separates a dilute and a dense 
disorderedd phase. It is bounded by a line of Ising critical points. The bullet indicates 
thee four-state Potts critical point. 

Thee nature of this multicritical line depends on the sign of K, as follows. Along 
thee first-order sheet we can distinguish two line tensions, namely, that between 
twoo different dense phases and that between a dense and the dilute phase. When 
KK < 0 the interface between the dilute and the dense phases costs less energy 
thann that between two of the dense phases. However, on the critical surface the 
linee tension between the dense phases vanishes. As a consequence, all line tensions 
vanishh simultaneously where the critical and first-order sheets meet as K < 0. The 
separatrixx between these two types of phase transition is thus a tricritical line. 
Whenn K > 0 the dense-dense interface costs less energy than the dense-dilute 
interface,, so there remains a positive line tension between the dilute phase and the 
densee phases where the first-order sheet meets the critical surface, and the dense-
densee interfacial tension vanishes. This results in a critical-end-point scenario: The 
three-statee Potts critical sheet terminates where it hits the first-order sheet. The 
first-orderr sheet extends beyond this line, separating a disordered dense phase from 
thee dilute phase. Obviously, at K = 0 the two scenarios come together, and we 
concludee that the tricritical curve and the critical-end curve as well as the critical 
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linee terminating the dilute-disordered phase transition all meet in the four-state 
Pottss critical point, marked as a dot in Figure 2.12. This qualitative description of 
thee phase diagram of (2.7), though not rigorous, is the simplest possible scenario, 
andd has been corroborated by numerical studies [14]. 

Thesee considerations are of interest for the large-and-small hexagon model be-
causee that can be mapped onto a model sufficiently similar to the dilute Potts 
Hamiltoniann (2.7) that the arguments can be carried over. We divide the triangular 
latticee into triangular blocks of three sites each, indicated in Figure 2.13(a). Each 
blockk then has three sites, which we label 1, 2, and 3. We assign a spin variable 
SjSj to each block, as follows. When the site a in block j is occupied by a large 
hexagon,, the spin variable takes the value Sj = a, while in all other cases Sj = 0. 
Forr convenience of notation we consider one block variable so, in interaction with six 
neighbourss Sj with 1 < \j\ < 3, as shown in Figure 2.13(a). The blocks j with j > 0 
containn two sites neighbouring the site j of the central block, and the block — j sits 
inn the opposite direction. To give an expression for the interaction we introduce the 
variables s 

PiPi = (öSl,o + <5Siii) (1 - Ss_^j) (1 - 6s_kjk) , (2.8) 

wheree i, j , k is a permutation of 1,2,3. Note that pi can only take the values 0 and 1, 
andd it signals if site i of the central block is free. The spin states 1, 2, and 3 have 
weightt z\. but are excluded by some configurations of the neighbouring blocks by 
thee factor 

1 - < W 1 - P J )-- (2-9) 

Inn other words the state SQ = j is not allowed when pj = 0. The weight of the spin 
statee SQ = 0 depends on the surrounding blocks and is given by the expression 

(l(l  + z2)
Pl+P2+P3. (2-10) 

Iff  this model would be precisely the dilute Potts model with Hamiltonian (2.7) we 
couldd simply read off the value of K and its sign would conclusively decide between 
aa tricritical point versus a three phase point. The interaction is, of course, much 
moree complicated than that of the dilute Potts model, but the overall effect is that 
somee combinations of unequal nearest neighbours are excluded or suppressed. As 
thee state 0 is treated altogether different from the states 1, 2, and 3, it is difficult to 
judgee the sign of the effective coupling K in (2.7). 

However,, this problem can be resolved because there is a model in the universality 
classs and with the symmetry of the four-state Potts model which can be mapped 
too a very similar model. Consider a one-species lattice gas on the triangular lattice 
inn which not only first neighbours but also second neighbours (at distance \/3) 
cannott be occupied simultaneously. We will refer to this model as the big-hexagon 
model.. For large values of the fugacity z this model will be in an ordered phase 
inn which one out of four sub-lattices is occupied preferentially. At low fugacity the 
symmetryy between the sub-lattices is unbroken. The phase transition is known to be 
inn the four-state Potts universality class from the symmetry of its Landau-Ginzburg-
Wilsonn Hamiltonian [26, 27]. We are not aware of studies giving the critical fugacity 



2.5.. Relation to the dilute three-state Potts model 27 7 

(a) ) (1>) ) 

Figuree 2.13: (a) The large-and-small hexagon model can be mapped onto a Potts-
likee model by grouping the sites into blocks of three. The numbers indicate the 
labellingg of blocks and of the sites within the blocks, (b) The big-hexagon model 
cann be mapped onto a Potts-like model by dividing the sites into blocks of four. 
Thee numbers indicate the labelling of the sites within the blocks. The blocks are 
numberedd as in (a). 

off  this model, but we have seen numerically that it is about half the value of the 
hardd hexagon model. 

Thee big-hexagon model can be mapped exactly onto a Potts-like model very 
similarr to the model above, as expressed in (2.9) and (2.10). Now we take blocks 
off  four sites as shown in Figure 2.13(b), one in each sub-lattice. It is convenient to 
labell  the spins in each block by the numbers 0, 1, 2, 3 as indicated. When the site j 
inn a block is occupied, the block variable takes the value j . In addition, when none 
off  the sites are occupied, the block variable is taken to be 0. Therefore, the weight 
off  the states j > 0 is z and the weight of state 0 will again depend on the states 
off  the neighbouring blocks. We again consider a block variable s0 interacting with 
itss neighbours, which are labelled in the same way as in the previous case. We will 
usee again variables pt defined by (2.8). The central site of the block 0 is free if and 
onlyy if pi = p2 = pa = 1. Some combinations of states of neighbouring blocks are 
excluded,, described by precisely the same expression (2.9) as before. However, also 
somee combinations of next-neighbouring blocks are excluded. For example, site j 
off  block - j and site k of block — k in Figure 2.13(b) are second neighbours, so the 
combinationn s-j — j and s_£ — k is excluded. We introduce a variable 

11 - Ss_,iSs ,2^s_3,33 ~ £«_3,3<5s_i,l + 2<5S_1 ,l^ s_2,2«5s 

Notee that q can only take the values 0 and 1; it signals if there are no pairs s__, = j 
andd s_fc = k. If s0 / 0 then S-j = j or s_fc = k is already excluded by the interaction 
betweenn the neighbouring blocks 0 and -j or -k. Therefore, the exclusion of the 
combinationn s^j = j and S-k = k can be taken into account by including a factor q 
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inn the weight of block 0 in state 0. This weight is then given by 

q(lq(l + z)PlP2P3. (2.11) 

InIn this way any exclusion between sites of next-neighbouring blocks is absorbed in 
thee weight of state 0 of the intervening block. 

Thiss resulting model is strikingly similar to the Potts-like model above. The 
exclusionn rules for pairs of neighbouring blocks are identical and when we choose 
z\z\ = z. the weight of the spin states 1, 2, and 3 is the same. In both models the weight 
off  the state 0 depends on the configuration of its six neighbours, via expression (2.10) 
andd (2.11), respectively. When we further specify (1 + z2)

3 = (1 + z) the weights 
forfor so = 0 are equal in the case that px = p2 = Pz and q=\. In particular they are 
equall  when the surrounding blocks are also in state 0, because then pi = p2 — p:i = 1 
andd q = 1. 

Itt is the exclusion and suppression of configurations with unequal neighbours 
thatt determines an effective temperature T and coupling K in (2.7). The large-and-
smalll  hexagon model and the big-hexagon model with the parameters as set above 
wil ll  have the same effective temperature T, as all configurations involving only spin 
statess s > 0 have the same weight between the two models. Only when a block has 
55 = 0, while one or more of its neighbours have s > 0, the configurational weights 
betweenn the two models can be different. In all such cases the weight in the big-
hexagonn model is smaller than that in the large-and-small hexagon model, which is 
easyy to see from direct comparison of the expressions (2.10) and (2.11). Therefore, 
wee can confidently claim that the effective coupling K is the greater in the big-
hexagonn model, as configurations with unequal neighbours of which one 5 = 0 are 
moree strongly suppressed than in the large-and-small hexagon model. However, since 
thee big-hexagon model has the symmetry of the four-state Potts model, clearly its 
effectivee coupling K — 0. Therefore, the effective K in the large-and-small hexagon 
modell  is necessarily negative, which, as argued above, results in a tricritical scenario. 

2.66 Discussion 

Thee results of our transfer-matrix calculations provide evidence against the three-
phasee scenario of Figure 2.4(b) in favour of the two-phase scenario of Figure 2.4(a). 
Thiss contradicts the earlier findings of Van Duijneveldt and Lekkerkerker [28, 29]. 
Wee propose the following explanation. Van Duijneveldt and Lekkerkerker effectively 
calculatee the free-energy difference between the binary mixture and the pure hard 
hexagons.. They then look for phases of equal pressure and fugacities but different 
composition.. They do not calculate the order parameter for the mixture. Their 
methodd has some drawbacks. Firstly, it cannot detect second-order transitions, 
becausee these do not involve a jump in the particle densities. Secondly, it uses a 
polynomiall  fit  for the free-energy difference, so that the total free energy still seems 
too possess the singularity of the pure hard hexagon model. Thirdly, whether P 
exhibitss a Van der Waals loop or not may depend sensitively on p(N{\N{). Thus the 
locuss of the liquid-solid branch in their phase diagram is a spurious consequence of 
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thee implicit assumption that the ordering transition remains at fixed p\ for small 
valuess of z2. Their qualitative conclusion that a gas-liquid transition is present relies 
onn quantitative properties of the calculated phase diagram, viz. the locations of the 
variouss branches. Figure 2.10 suggests that their gas-liquid and gas-solid branch 
togetherr form the true fluid-solid line and that the critical point of their gas-liquid 
branchh is in fact the tricritical point. This agrees well with the fact that Figures 2.10 
andd 2.11 show enhanced size dependence of the phase diagram near their gas-liquid 
criticall  point. However, this point is located at Z2 = 1.36 (and z\ — 22.5), whereas 
wee estimate roughly 1.7 < z2 < 2.3 for the tricritical point. Being unable to present 
aa satisfactory explanation for this discrepancy, we stress that our data do not signal 
aa clearly determined locus of the tricritical point. It should also be noted that in 
ourr transfer-matrix calculations only very small system sizes have been considered. 
Goingg to significantly larger systems might allow for more definitive quantitative 
statements,, but this requires much greater computational resources. 

Otherr evidence comes from the relation with the dilute three-state Potts model. 
Thee large-and-small hexagon model can be mapped onto a Potts-like model. Another 
model,, the big-hexagon model, whose phase behaviour is known, can also be mapped 
ontoo a Potts-like model. A comparison of the effective temperature and coupling 
constantss between the large-and-small hexagon model on the one hand and the big-
hexagonn model on the other hand indicates that the large-and-small hexagon model 
shouldd follow the two-phase scenario. 
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2.AA First-order approximant and Van der Waals 
loop p 

Itt is instructive to follow the method of Van Duijneveldt and Lekkerkerker using 
(2.2)) and (2.3) instead of Monte Carlo results. Calculating the pressure from (2.2) 
gives s 

PP = P°+(pt-^)z2 + o(z2). (2.12) 

Baxterr [10, p. 451] lists expansions around the critical point of several thermody-
namicc quantities of the pure hard hexagon model. Combining these expansions with 
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(2.3)) and (2.12) yields 

P = { P C + 2 5 (2 ^ " 1 ) s g n ( P l" ^ ) l p l ~ ^ | 3 / 22 + Q ( ( p l J ^ ) 2 ) } 
++ lmf ẑ

l)2\pi-ti\ l/2 + 0(p1-pl)\z2 +o(z2). 

Thiss suggests that for small non-zero values of z2 the pressure P would exhibit a 
Vann der Waals loop, so that the transition becomes first-order as soon as z2 becomes 
non-zero.. That this argument is not valid can be seen by considering, for example, 

ffzz{x){x) = (x- zf, 

whichh we view as a function of x, parametrically dependent on z. Expanding ƒ to 
firstt order in z gives 

ffzz(x)(x) — x3 — 3x2z + o(z) 

andd for all non-zero values of z the function a-3 — 3x2z of x is decreasing between 
xx = 0 and x — 2z. It is, however, a first-order approximant of fz{x), which for all 
valuess of z is an increasing function of x. 


