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Chapter 2

Large and small hexagons

2.1 Introduction

The phase behaviour of hard particles, in particular spheres, as a stimple model of in-
teracting particles, has received much attention. Computer simulations of monodis-
perse hard spheres in three dimensions show a first-order transition between a dilute
disordered phase (fluid) and a dense ordered phase (solid) [89, 4, 49]. The continuous
translational symmetry of the Hamiltonian remains intact in the fluid, but is broken
to a discrete subgroup in the solid. Although a rigorous proof is lacking, this phase
transition in the hard-sphere model is now generally accepted. For bidisperse hard
spheres the situation is more complicated. The existence of several solid phases has
been established; see, for example, [30] and the references therein. The behaviour
in the fluid phase, however, is not known. Using the Percus-Yevick closure of the
Ornstein-Zernike equation, Lebowitz and Rowlinson [64] found miscibility in all
proportions for all diameter ratios. More recently however, Biben and Hansen [16],
using the Rogers-Young closure, found a spinodal instability when the diameter
ratio exceeds 5. Even so it might be that the fluid-fluid transition is pre-empted
by the fluid-solid transition, so that the former does not actually occur. Thus it
remains an open question whether bidisperse spheres can show a fluid-fluid phase
separation. More generally one may ask if gas-liquid-solid behaviour can occur in
binary mixtures with only hard-core repulsion.

Motivated by this interest Van Duijneveldt and Lekkerkerker [28, 29] studied a
two-dimensional binary hard-core lattice model. This model, introduced by Frenkel
and Louis [37], consists of large and small hard hexagons on a triangular lattice, see
Figure 2.1. Every site can be empty or occupied by a large or small hexagon, and
if it is occupied by a large hexagon all its direct neighbours must be empty. When
the small particles are omitted, one regains the hard hexagon model [20], which has
been solved exactly by Baxter [9, 10]; it has a second-order ordering transition. Van

This chapter is a slightly reworked version of the following paper: A. Verberkmoes and B. Nienhuis,
Evidence against a three-phase point in a binary hard-core lattice model, Phys. Rev. E 60(3), 2501
(1999), ©1999 The American Physical Society.
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Figure 2.1: A typical configuration of large and small hexagons.
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Figure 2.2: Phase diagram in the z;—2z5 plane calculated by Van Duijneveldt and
Lekkerkerker [28, 29] from Monte Carlo simulations. The letters F, G, L and S
indicate the fluid, gas, liquid and solid phase, respectively.

Duijneveldt and Lekkerkerker studied the binary model by means of Monte Carlo
simulation. They found three phases: dilute disordered (gas), dense disordered
(liquid), and ordered (solid). Figure 2.2 shows this phase diagram, represented in
terms of the fugacities z; and z5 of the large and small hexagons, respectively.

In this chapter we study the same model by different methods. Our interest is
in the qualitative, rather than quantitative, aspects of the phase diagram. We do
not address the general question whether gas-liquid—-solid behaviour is possible in
binary hard-core mixtures. The chapter is organised as follows: First, we briefly
review the Monte Carlo approach of Van Duijneveldt and Lekkerkerker, and we give
some exact results. Then we describe our numerical transfer matrix calculations.
Next, we discuss the relation of the model with an exactly solvable restricted solid-
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on-solid (RSOS) model and with the dilute three-state Potts model. Finally, we
propose an explanation for the discrepancy between our results and those of Van
Duijneveldt and Lekkerkerker.

2.2 Monte Carlo simulation and exact results

Before we review the Monte Carlo method of Van Duijneveldt and Lekkerkerker [28,
29] and discuss some exact results, we make the following notational conventions: the
subscripts 1 and 2 refer to the large and small hexagons, respectively; the superscript
0 refers to the pure hard hexagon model; the symbol N without subscript is the
number of sites and is generally omitted as an argument of the thermodynamic
quantities.

We consider the semi-grand canonical partition function Z(Ny, z2) of large hex-
agons, whose number NV; is fixed, and small hexagons, whose fugacity z, is fixed,
on N lattice sites. We may view the small hexagons as causing an effective so-
called depletion interaction [6] between the large hexagons. The question is then
whether this attractive depletion interaction is strong enough to induce a fluid-
fluid transition. The effective interaction can be expressed in the number of sites
available for small hexagons, once the large hexagons have been placed on the lattice.
Interestingly, the sites available for small hexagons are exactly the sites where an
additional large hexagon could be inserted. Such sites are called free. It is easy
to express the semi-grand canonical partition function Z(Nj,z2) in terms of the
canonical partition function Z°(N;) of the hard hexagon model and the probability
distribution p(N¢|N7) for the number N; of free lattice sites in the hard hexagon
model,

Z(Ny, z3) = Z°(N1) Z'(Ny, 23),

where

Z'(Ny,z2) = > p(NelN1)(1 + 22)™.
Nt

After taking logarithms this gives the free energy,
F(va;-"?)=F0(N1)+FI(N1122)' (21)

Van Duijneveldt and Lekkerkerker determine the probability distribution p from
canonical Monte Carlo simulations of the hard hexagon model. To determine ac-
curately the wings of the distribution an umbrella sampling technique is employed.
They calculate F from p, and for fixed z, fit a polynomial in p; : = N1/N to this
quantity. They obtain the free energy F' from (2.1), using Baxter’s exact result [9, 10]
for FO and the fitted polynomial for F’. The fugacity z; of the large hexagons and
the pressure P are calculated in the usual way from F. Finally phase equilibrium is
determined by looking for phases with equal z; and P but different p;. As this cal-
culation is carried out for fixed 22, 23 is also equal in the phases. The resulting phase
diagram is shown in Figure 2.2, It has three branches: liquid-solid, gas-solid and
gas-liquid. The branches meet at the three-phase point, at z; = 22.5 and 2z, = 1.89.
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(Van Duijneveldt and Lekkerkerker use the term “triple point”, but as that suggests
the coexistence of three phases where three first-order transitions meet we prefer to
use the term “three-phase point”.) The gas-liquid end point is located at z; = 13.3
and 2z, = 1.36.

Expanding Z' to first order in z; gives

Z'(N1,z2) = 1+ 2o(Ne)Q, + o(22)- (2.2)

For a finite system we could have written O(z2) instead of o(22), but in the thermo-
dynamic limit this is not valid at the phase transition of the hard hexagon model.
Lekkerkerker [65] found that the average p¢ : = (Ng/N)Q; can be calculated exactly,
as follows. Adding one hexagon to a configuration of N; hexagons can be done in
Nt ways. By doing this to all configurations of N; hexagons each configuration of
Ny + 1 hexagons is obtained exactly N3 + 1 times. Hence,

(Ne)J, Z°(M1) = (N, + 1) Z° (N, + 1),
which in the thermodynamic limit yields

o =L (2.3)
21

This is an example of Widom’s famous particle-insertion formula [85]. In Ap-
pendix 2.A we apply this exact result in the method of Van Duijneveldt and Lek-
kerkerker. In particular, we show that the existence of a Van der Waals loop cannot
be concluded from its presence in the first-order approximant (2.2).

As the first derivatives of the thermodynamic functions with respect to z; are
known in this way, we shall now attempt to calculate the locus of the phase transition
in this order. The difference between the large and small hexagons is that two small
hexagons may occupy neighbouring sites, whereas two large ones may not. At small
2y the density of small hexagons is low, so that they will generally occur isolated.
Thus they cannot be distinguished from the large ones. For the grand canonical
partition function this implies

Z(z1,22) = Z°(21 + 22) + 0(22). (2.4)
This suggests that the locus of the phase transition is given by
21 = 2y — 22 + o(z2), (2.5)

where the superscript ¢ refers to the critical point of the pure hard hexagon model.
The particle densities follow also,

21
2+ 22
for the large hexagons, and similarly for the small ones. Combining these results
yields the density of the large hexagons at the phase transition,

o= (1-2) b5+ ol (26)

P%(21 + 2z2) + o(z2)

pi(z1, z2) =

Equations (2.5) and (2.6) cannot be derived rigorously from (2.4) alone, but we
conjecture that they are nevertheless valid.
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Figure 2.3: The transfer matrix adds one layer (shaded) to the system.

2.3 Transfer-matrix approach

Now we study the model through its row-to-row transfer matrix. For practical
reasons, we work with sawtooth rows as shown in Figure 2.3. One advantage is that
the high-density ground state of the hexagons fits on the lattice (which has an even
number of sites), whereas for straight rows it does so only when the system size is a
multiple of 3. Another advantage is that the layer between two successive rows can
be built up by repeatedly adding a pair of triangular faces, without increasing the
number of external sites; this makes the transfer matrix easy to generate in numerical
computations. Periodic boundary conditions are imposed on the rows. The number
of “teeth” is denoted by W, so a row contains 2W sites and has length L = W+/3.
The largest few eigenvalues of the transfer matrix (in the zero-momentum sector)
were calculated numerically for W = 2, ..., 5, using the power method.

In the ordered regime there are in fact three coexisting ordered phases, corre-
sponding to the three sub-lattices of the triangular lattice. They give rise to three
eigenvectors of the transfer matrix, dominated by these ordered phases: one symmet-
ric and two asymmetric for permutations among the ground states. The symmetric
vector has the largest eigenvalue Ag. The asymmetric vectors have a complex conju-
gate pair of eigenvalues Ay and Aj;. In the relevant region of the phase diagram the
largest eigenvalues turn out to be Ag, Ay and Afy, and another real eigenvalue Ar.
The phase behaviour can be diagnosed from the behaviour of the gaps between the
eigenvalues, Ay : = log |Ag/Am| and At :=log|Ag/AT|, as the system size L tends
to infinity.

The gap AT is an inverse correlation length between density fluctuations. In the
absence of a phase transition, the bulk (L = oo) value of this length is finite and
the value for finite L approaches this bulk value when L tends to infinity. Hence Ap
tends to a non-zero limit. At a critical point the bulk correlation length diverges
and the value for finite L is proportional to L. As a consequence of scale invariance
At decreases as 1/L. At a first-order transition with a change in the density,
however, A is not an inverse correlation length. The eigenvalues Ag and At are
then asymptotically degenerate. Their gap A is related to the interfacial tension
between the coexisting phases. More precisely, At decays as exp(—oL), where o is
proportional to the interfacial tension [33].

For the gap Ay the situation is analogous. In the disordered regime, it is an in-

o
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Figure 2.4: (a) Phase diagram with a fluid and solid phase. The critical line (fat)
terminates at a tricritical point where the phase transition becomes first-order (dou-
ble line). (b) Phase diagram with gas, liquid, and solid phases. The critical line
(fat) meets the first-order transition (double line) at the three-phase point.

verse correlation length, here between fluctuations in the sub-lattice ordering. Thus
the gap approaches a non-zero value as L grows. At a first-order transition be-
tween two disordered phases this correlation length is generally different in the two
phases. Therefore, the value of Ay undergoes a sharp change through the tran-
sition, approaching a jump as the system size L increases. At a critical point the
bulk correlation length diverges, so that Ay decays as 1/L when L increases. In the
ordered regime three phases coexist, and the eigenvalues Ag and Ay (and Ajy) are
asymptotically degenerate: Ay decays exponentially with L. At a first-order tran-
sition between an ordered and a disordered phase by the same token Ajp; vanishes
exponentially with L.

We shall now distinguish between two scenarios: (i) there are two phases (fluid
and solid) as in Figure 2.4(a) and (ii) there are three phases (gas, liquid and solid)
as in Figure 2.4(b). The gaps should behave as follows. At fixed 2o, the gap Aym
decreases with increasing z;, whereas At has a minimum at the phase transition(s).
For low 29, see the lower dashed lines in Figures 2.4(a) and 2.4(b), the scaled gaps
LAy and LAt will tend to a non-zero value when L — oo at the critical line. For
high 25, see the upper dashed lines, this is no longer the case: both scaled gaps
tend to zero when L — oo at the phase transition, which is now first-order. On the
middle dashed line in Figure 2.4(b), Ay changes rapidly at the gas—liquid transition.
Furthermore, At has two minima: at the gas-liquid transition and at the liquid—
solid transition. When L — 00, the minimum of the scaled gap LA~ tends to zero at
the gas—liquid transition, but to a non-zero value at the liquid—solid transition. Thus
the gas-liquid transition in Figure 2.4(b) can be recognised from the appearance of
a sudden change in Ay and a second minimum of Ar.

For zo = 0.0, 0.1, ..., 3.0 the scaled gaps LAy and LAt were plotted as a
function of z; for W =2, ..., 5. Figures 2.5-2.8 show examples of this. We found
no indication that At has two minima. One could argue that two minima might
be fused to a single one for these relatively small systems; however, the sharpest
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Figure 2.6: The scaled gaps LA~ as a function of z; on the line zo = 1.7.

and deepest minimum (at the gas—liquid transition) is clearly absent. This pleads
against the three-phase scenario in favour of the two-phase scenario. We also saw
no sudden change in Ay;. However, even if a gas-liquid transition were present, the
signal in Ay might be hard to detect.

The three-phase scenario can be obtained by introducing an extra parameter
into the model. Assign a weight x to every lattice edge joining a small hexagon
and an empty site. For k = 1 one recovers the original model. For k = 0 any
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Figure 2.8: The scaled gaps LAt as a function of z; on the line z; = 2.3.

contact between a small particle and an empty site is forbidden. In this limit the
model either contains no small hexagons at all or is completely filled with them. The
regime without small hexagons still exhibits the hard hexagon transition as long as
1+ 29 is smaller than the partition sum per site of the hard hexagon model. Beyond
this value the phase filled with small particles takes over. Thus the ordered and
disordered hard hexagon phases meet with the pure small hexagon phase, where the
phase transition between them terminates in a three-phase point. For x close to
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Figure 2.9: The scaled gaps LAt as a function of z; on the line zo = 1.3 in the
model with extra parameter x = 0.6. The inset shows the deep minima in more
detail.

zero, the model will still obey the three-phase scenario. Here At is indeed found
to have two minima, see Figure 2.9. (The maxima in this figure at first sight seem
to be crossings of eigenvalues, but a very close look reveals that they are, in fact,
rounded.) This supports our interpretation of the absence of a second minimum in
A~ as evidence against the three-phase scenario.

The locus in the z1—z5 plane of the phase transition can be estimated, for exam-
ple, as the location of the minimum of At. For fixed zo the value of z; at which
this gap takes its minimum was determined. The results for W =5 and W = 6 are
plotted in Figure 2.10. In order to obtain the locus in the p;—z5 plane the density
of large hexagons was computed using

0
p1 = Zla—z1 (—log Ag).

(It should be noted that for such small W this does not seem to be very accurate.)
Figure 2.11 shows the result. We observed that for fixed zo the graphs of p; versus
z1 for different system sizes pass approximately through one point. One could ask
whether this is the critical point, as would be the case in a self-dual model. The
locus of the intersection of the graphs for W = 5 and W = 6 is shown in Figure 2.11.
Figures 2.10 and 2.11 also show the phase diagrams given by Van Duijneveldt and
Lekkerkerker [29].

First-order and second-order transitions are not easily distinguished from each
other by the numerical data. In both cases At has a minimum, only the dependence
on L of the depth of the minimum is different. For zo = 1.7, the graphs of the LAy
pass approximately through one point, see Figure 2.5. The LAt have a minimum
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21

Figure 2.10: Locus in the z;-2z5 plane of the minimum of the gap At for W =5
(+) and W = 6 (x) and phase diagram of Van Duijneveldt and Lekkerkerker (solid
line). The asymptote (2.5) is also shown (dashed line).
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Figure 2.11: Locus in the p;—29 plane of phase transition calculated from W = 5
(+) and W = 6 (x), locus of the intersection of the graphs for W =5 and W = 6
of p; versus z; (©), and phase diagram of Van Duijneveldt and Lekkerkerker (solid
line). The asymptote (2.6) is also shown (dashed line).




2.4. Relation to an A(QQ) RSOS model 23

that increases slowly with L and may converge to a non-zero value, see Figure 2.6.
This points to a second-order transition. For zp = 2.3, the graphs of LAy do not
pass neatly through one point, see Figure 2.7. The minimum of LA decreases
with L and may vanish asymptotically, see Figure 2.8. This points to a first-order
transition. The behaviour of LAy and LAt changes gradually between 2o = 1.7
and 29 = 2.3. Thus the value of z; at the tricritical point is estimated roughly to lie
between 1.7 and 2.3.

By universality the limit values of LAy and LA+t at the phase transition are
2wxy and 27zt respectively, with xy = 2/15 and 1+ = 4/5 on the hard hexagon
critical line (¢ = 4/5), and xp = 2/21 and 1 = 2/7 at the hard hexagon tricritical
point (¢ = 6/7), see, for instance, [39]. On the critical line close to the critical
point one expects to find the tricritical values for small system sizes, but the critical
values for large sizes. The limits were also estimated from the graphs of LAy, and
LAT for 22 = 0.0 (not shown) and 2z = 1.7. For z; = 0.0 we found zpy =~ 0.14
and zT =~ 0.80. This is in good agreement with the critical values )y = 2/15 and
z7 = 4/5. For 29 = 1.7 we found zy ~ 0.13 and 27 =~ 0.3. This agrees reasonably
with the tricritical values zp = 2/21 and xt = 2/7, which are expected for small
system size near the tricritical point.

2.4 Relation to an A’ RSOS model

Some properties of the large-and-small hexagon model are common with an exactly
solvable model. In order to make use of the exact solution we investigate whether the
two models are ever parametrically close. The sites of the large-and-small hexagon
model can be in three states: 0 (empty), 1 (large hexagon), or 2 (small hexagon).
For neighbouring sites the combinations 1-1 and 1-2 are excluded. The same is
true for the L = 7 case of the exactly solvable A(QQ) restricted solid-on-solid model
of Kuniba [63, 62]. This is an interaction-round-a-face model on the square lattice.
For a suitable choice of its spectral parameter, the condition on neighbouring sites
extends to one of the diagonals of the square face. The Boltzmann weight of the
square face then factors into weights of the composing triangles:

() o)

and these triangle weights are invariant under rotation,

o) ()=o) C D=0 ) (D)

so that the model is isotropic on the triangular lattice. The model still has one
parameter (the elliptic nome), but this solvable line stays away from our phase
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diagram. For example, at the critical point the triangle weights are

0 0.
w( )zl, w( >=4.412,
00 170
0. 0 2
w = 3.903, w = 3.129, w ( ) = 3.761,
2 0 2 2 2 2

which is not of the form

0 0
0 0 1 0
0. 0 2,
w ( ) = Z;/G, w < ‘ ) = Z%/B, w ( . ) = Zé/z
20 2 2 272

Application of the numerical transfer-matrix method from Section 2.3 to this critical
model shows that it is in the tricritical three-state Potts universality class.

2.5 Relation to the dilute three-state Potts model

The large-and-small hexagon model is intimately related to the dilute three-state
Potts model [14]. Because this relation gives insight in the phase diagram we will
consider it here in more detail. On every site j of a two-dimensional lattice with
coordination number v lives a variable s; that can take the values 0, 1, 2, 3. Of these
the states s; > 0 take the role of local occupancy of one of the three sub-lattices of
the hard hexagon model, and the state s; = 0 is neutral or vacant. The Hamiltonian
of the dilute Potts model is

H=— 3" (85,0 + Kby, 0050 = LD s, 0, (2.7)
7

<jk>

where the first sum is over nearest neighbour pairs of sites. In the parameter space
(K, L,T) the model has a line of tricritical points as well as a line of critical end
points [14], see Figure 2.12. As we will argue below, it is fairly clear where these
come together, namely, in the critical point of the four-state Potts model, K = 0,
L =0 and T = T, where all the four states are treated identically.

At T = 0 there is a dilute phase with s; = 0 when vK + 2L > 0, while the three
dense, or ordered phases associated with s; = 1, 2, 3 coexist when vK + 2L < 0.
These phases extend to non-zero temperatures so that a first-order surface separates
the dilute region from the dense coexistence region. This first-order surface will not
remain precisely at vK + 2L = 0 for T > 0, but by symmetry it does include the
T axis, K = L = 0. At high temperature the coexistence region is bounded by a
surface of three-state Potts critical points, shaded gray in Figure 2.12, where the
line tension between the coexisting dense phases vanishes. This critical sheet must
join with the first-order surface in a line of multicritical points, as they both form
boundaries to the coexistence region.
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T

L

Figure 2.12: A qualitative picture of the phase diagram of the dilute three-state
Potts model. The dense coexistence region (back) and the dilute region (front) are
separated by the three-state Potts critical surface (shaded) and the lower part of the
first-order surface (not shaded). These surfaces meet at a line of three-state Potts
tricritical points (left) and a line of three-state Potts critical end points (right).
The upper part of the first-order surface (not shaded) separates a dilute and a dense
disordered phase. It is bounded by a line of Ising critical points. The bullet indicates
the four-state Potts critical point.

The nature of this multicritical line depends on the sign of K, as follows. Along
the first-order sheet we can distinguish two line tensions, namely, that between
two different dense phases and that between a dense and the dilute phase. When
K < 0 the interface between the dilute and the dense phases costs less energy
than that between two of the dense phases. However, on the critical surface the
line tension between the dense phases vanishes. As a consequence, all line tensions
vanish simultaneously where the critical and first-order sheets meet as K < 0. The
separatrix between these two types of phase transition is thus a tricritical line.
When K > 0 the dense-dense interface costs less energy than the dense-dilute
interface, so there remains a positive line tension between the dilute phase and the
dense phases where the first-order sheet meets the critical surface, and the dense-
dense interfacial tension vanishes. This results in a critical-end-point scenario: The
three-state Potts critical sheet terminates where it hits the first-order sheet. The
first-order sheet extends beyond this line, separating a disordered dense phase from
the dilute phase. Obviously, at K = 0 the two scenarios come together, and we
conclude that the tricritical curve and the critical-end curve as well as the critical
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line terminating the dilute—disordered phase transition all meet in the four-state
Potts critical point, marked as a dot in Figure 2.12. This qualitative description of
the phase diagram of (2.7), though not rigorous, is the simplest possible scenario,
and has been corroborated by numerical studies [14].

These considerations are of interest for the large-and-small hexagon model be-
cause that can be mapped onto a model sufficiently similar to the dilute Potts
Hamiltonian (2.7) that the arguments can be carried over. We divide the triangular
lattice into triangular blocks of three sites each, indicated in Figure 2.13(a). Each
block then has three sites, which we label 1, 2, and 3. We assign a spin variable
s; to each block, as follows. When the site o in block j is occupied by a large
hexagon, the spin variable takes the value s; = o, while in all other cases s; = 0.
For convenience of notation we consider one block variable sg, in interaction with six
neighbours s; with 1 < |j] < 3, as shown in Figure 2.13(a). The blocks j with j > 0
contain two sites neighbouring the site j of the central block, and the block —j sits
in the opposite direction. To give an expression for the interaction we introduce the
variables

D = (651.,() + 551,1') (1 ha 63_”—) (1 — 55_k7k) s (28)

where 1, 7, k is a permutation of 1,2,3. Note that p; can only take the values 0 and 1,
and it signals if site ¢ of the central block is free. The spin states 1, 2, and 3 have
weight z1, but are excluded by some configurations of the neighbouring blocks by
the factor

1= 045(1—py). (2.9)

In other words the state so = j is not allowed when p; = 0. The weight of the spin
state sop = 0 depends on the surrounding blocks and is given by the expression

(1+ Z2)P1+P2+p3. (2.10)

If this model would be precisely the dilute Potts model with Hamiltonian (2.7) we
could simply read off the value of K and its sign would conclusively decide between
a tricritical point versus a three phase point. The interaction is, of course, much
more complicated than that of the dilute Potts model, but the overall effect is that
some combinations of unequal nearest neighbours are excluded or suppressed. As
the state 0 is treated altogether different from the states 1, 2, and 3, it is difficult to
judge the sign of the effective coupling K in (2.7).

However, this problem can be resolved because there is a model in the universality
class and with the symmetry of the four-state Potts model which can be mapped
to a very similar model. Consider a one-species lattice gas on the triangular lattice
in which not only first neighbours but also second neighbours (at distance v/3)
cannot be occupied simultaneously. We will refer to this model as the big-hexagon
model. For large values of the fugacity z this model will be in an ordered phase
in which one out of four sub-lattices is occupied preferentially. At low fugacity the
symmetry between the sub-lattices is unbroken. The phase transition is known to be
in the four-state Potts universality class from the symmetry of its Landau-Ginzburg-
Wilson Hamiltonian [26, 27]. We are not aware of studies giving the critical fugacity
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Figure 2.13: (a) The large-and-small hexagon model can be mapped onto a Potts-
like model by grouping the sites into blocks of three. The numbers indicate the
labelling of blocks and of the sites within the blocks. (b) The big-hexagon model
can be mapped onto a Potts-like model by dividing the sites into blocks of four.
The numbers indicate the labelling of the sites within the blocks. The blocks are
numbered as in (a).

of this model, but we have seen numerically that it is about half the value of the
hard hexagon model.

The big-hexagon model can be mapped exactly onto a Potts-like model very
similar to the model above, as expressed in (2.9) and (2.10). Now we take blocks
of four sites as shown in Figure 2.13(b), one in each sub-lattice. It is convenient to
label the spins in each block by the numbers 0, 1, 2, 3 as indicated. When the site j
in a block is occupied, the block variable takes the value j. In addition, when none
of the sites are occupied, the block variable is taken to be 0. Therefore, the weight
of the states j > 0 is z and the weight of state 0 will again depend on the states
of the neighbouring blocks. We again consider a block variable sq interacting with
its neighbours, which are labelled in the same way as in the previous case. We will
use again variables p; defined by (2.8). The central site of the block 0 is free if and
only if p; = ps = p3 = 1. Some combinations of states of neighbouring blocks are
excluded, described by precisely the same expression (2.9) as before. However, also
some combinations of next-neighbouring blocks are excluded. For example, site j
of block —j and site k of block —k in Figure 2.13(b) are second neighbours, so the
combination s_; = j and s_; = k is excluded. We introduce a variable

q=1=0s_,10s_52 —0s_,205_53 —0s_530s_,.1+ 205 , 105 _, 205 , 3.

Note that ¢ can only take the values 0 and 1; it signals if there are no pairs s_; = j
ands_p = k. If sp # O then s_; = j or s_; = k is already excluded by the interaction
between the neighbouring blocks 0 and —j or —k. Therefore, the exclusion of the
combination s_; = j and s_; = k can be taken into account by including a factor ¢
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in the weight of block 0 in state 0. This weight is then given by
q(1 + z)P1P2ps, (2.11)

In this way any exclusion between sites of next-neighbouring blocks is absorbed in
the weight of state 0 of the intervening block.

This resulting model is strikingly similar to the Potts-like model above. The
exclusion rules for pairs of neighbouring blocks are identical and when we choose
z1 = z. the weight of the spin states 1, 2, and 3 is the same. In both models the weight
of the state 0 depends on the configuration of its six neighbours, via expression (2.10)
and (2.11), respectively. When we further specify (1 + z2)® = (1 + 2) the weights
for sp = 0 are equal in the case that p; = p» = ps and ¢ = 1. In particular they are
equal when the surrounding blocks are also in state 0, because then py = ps = p3 =1
and ¢ = 1.

It is the exclusion and suppression of configurations with unequal neighbours
that determines an effective temperature T and coupling K in (2.7). The large-and-
small hexagon model and the big-hexagon model with the parameters as set above
will have the same effective temperature T, as all configurations involving only spin
states s > 0 have the same weight between the two models. Only when a block has
s = 0, while one or more of its neighbours have s > 0, the configurational weights
between the two models can be different. In all such cases the weight in the big-
hexagon model is smaller than that in the large-and-small hexagon model, which is
easy to see from direct comparison of the expressions (2.10) and (2.11). Therefore,
we can confidently claim that the effective coupling K is the greater in the big-
hexagon model, as configurations with unequal neighbours of which one s = 0 are
more strongly suppressed than in the large-and-small hexagon model. However, since
the big-hexagon model has the symmetry of the four-state Potts model, clearly its
effective coupling K = 0. Therefore, the effective K in the large-and-small hexagon
model is necessarily negative, which, as argued above, results in a tricritical scenario.

2.6 Discussion

The results of our transfer-matrix calculations provide evidence against the three-
phase scenario of Figure 2.4(b) in favour of the two-phase scenario of Figure 2.4(a).
This contradicts the earlier findings of Van Duijneveldt and Lekkerkerker {28, 29].
We propose the following explanation. Van Duijneveldt and Lekkerkerker effectively
calculate the free-energy difference between the binary mixture and the pure hard
hexagons. They then look for phases of equal pressure and fugacities but different
composition. They do not calculate the order parameter for the mixture. Their
method has some drawbacks. Firstly, it cannot detect second-order transitions,
because these do not involve a jump in the particle densities. Secondly, it uses a
polynomial fit for the free-energy difference, so that the total free energy still seems
to possess the singularity of the pure hard hexagon model. Thirdly, whether P
exhibits a Van der Waals loop or not may depend sensitively on p(N¢|N1). Thus the
locus of the liquid—solid branch in their phase diagram is a spurious consequence of
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the implicit assumption that the ordering transition remains at fixed p; for small
values of z3. Their qualitative conclusion that a gas-liquid transition is present relies
on quantitative properties of the calculated phase diagram, viz. the locations of the
various branches. Figure 2.10 suggests that their gas-liquid and gas-solid branch
together form the true fluid-solid line and that the critical point of their gas-liquid
branch is in fact the tricritical point. This agrees well with the fact that Figures 2.10
and 2.11 show enhanced size dependence of the phase diagram near their gas-liquid
critical point. However, this point is located at zo = 1.36 (and z; = 22.5), whereas
we estimate roughly 1.7 < z3 < 2.3 for the tricritical point. Being unable to present
a satisfactory explanation for this discrepancy, we stress that our data do not signal
a clearly determined locus of the tricritical point. It should also be noted that in
our transfer-matrix calculations only very small system sizes have been considered.
Going to significantly larger systems might allow for more definitive quantitative
statements, but this requires much greater computational resources.

Other evidence comes from the relation with the dilute three-state Potts model.
The large-and-small hexagon model can be mapped onto a Potts-like model. Another
model, the big-hexagon model, whose phase behaviour is known, can also be mapped
onto a Potts-like model. A comparison of the effective temperature and coupling
constants between the large-and-small hexagon model on the one hand and the big-
hexagon model on the other hand indicates that the large-and-small hexagon model
should follow the two-phase scenario.
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2.A First-order approximant and Van der Waals
loop

It is instructive to follow the method of Van Duijneveldt and Lekkerkerker using
(2.2) and (2.3) instead of Monte Carlo results. Calculating the pressure from (2.2)
gives

d

P=P+ (pf~ ﬂ) 22 + o(zz). (2.12)

dp1
Baxter [10, p. 451] lists expansions around the critical point of several thermody-
namic quantities of the pure hard hexagon model. Combining these expansions with
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(2.3) and (2.12) yields

pP= {PC + ——25(;[{,5/5_ D sgn(pr ~ p$) o — p51¥2 + O ((p1 - 95)2)}

125 /5(p5)?

+{ 22§ o1 = 1V + Ol _pi)}ZQ + of22).
1

This suggests that for small non-zero values of 29 the pressure P would exhibit a
Van der Waals loop, so that the transition becomes first-order as soon as zy becomes
non-zero. That this argument is not valid can be seen by considering, for example,

fz(‘r) = (J,‘ - z)3,

which we view as a function of x, parametrically dependent on z. Expanding f to
first order in z gives

fo(x) = 2% = 3222 + o(2)

and for all non-zero values of z the function z3 — 322z of r is decreasing between
z = 0 and z = 2z. It is, however, a first-order approximant of f,(x), which for all
values of z is an increasing function of z.




