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ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRASVICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERAbstra
t. We study the 
ategory O of representations of the rational Cherednik algebra AWatta
hed to a 
omplex re
e
tion group W . We 
onstru
t an exa
t fun
tor, 
alled Knizhnik-Zamolod
hikov fun
tor: O ! HW -mod, where HW is the (�nite) Iwahori-He
ke algebra asso
i-ated toW . We prove that the Knizhnik-Zamolod
hikov fun
tor indu
es an equivalen
e betweenO=Otor, the quotient of O by the sub
ategory of AW -modules supported on the dis
riminant,and the 
ategory of �nite-dimensionalHW -modules. The standard AW -modules go, under thisequivalen
e, to 
ertain modules arising in Kazhdan-Lusztig theory of \
ells", provided W is aWeyl group and the He
ke algebra HW has equal parameters. We prove that the 
ategory Ois equivalent to the module 
ategory over a �nite dimensional algebra, a generalized "q-S
huralgebra" asso
iated to W . Contents1. Introdu
tion 12. Category O 32.1. Algebras with triangular de
omposition. 32.2. Lo
ally nilpotent modules 32.3. Standard modules 42.4. Graded modules 52.5. Highest weight theory 72.6. Properties of 
ategory O 83. Rational Cherednik algebras 93.1. Basi
 de�nitions 93.2. Category O for the rational Cherednik algebra 114. Duality, Tiltings, and Proje
tives 124.1. Ringel duality 124.2. Naive duality for Cherednik algebras 134.3. Homologi
al properties of Cherednik algebras 145. He
ke algebras via monodromy 165.1. Lo
alisation 165.2. Dunkl operators 185.3. The Knizhnik-Zamolod
hikov fun
tor. 205.4. Main results 216. Relation to Kazhdan-Lusztig theory of 
ells 256.1. Lusztig's algebra J 256.2. Standard modules for the He
ke algebra via KZ-fun
tor 27Referen
es 271. Introdu
tionLet W be a 
omplex re
e
tion group a
ting on a ve
tor spa
e V . Let AW denote the rationalCherednik algebra introdu
ed in [EtGi℄ as a 
ertain deformation of D(V )oW , the 
ross-produ
t1



2 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERof W with the algebra of polynomial di�erential operators on V . The algebra AW 
an be alsorealized as an algebra of operators (Dunkl operators) a
ting on polynomial fun
tions on V .When W is a Weyl group, AW is a rational degeneration of the double aÆne He
ke algebra.A ni
e 
ategory O of AW -modules has been dis
overed in [DuOp℄, 
f. also [BeEtGi℄. It sharesmany similarities with the Bernstein-Gelfand-Gelfand 
ategory O for a �nite-dimensional semi-simple Lie algebra.We develop a general approa
h to the 
ategory O for a rational Cherednik algebra, similarin spirit to Soergel's analysis, see [So1℄, of the 
ategory O in the Lie algebra 
ase. Spe
i�
ally,in addition to the algebra AW , we 
onsider an appropriate (�nite) He
ke algebra HW , and
onstru
t an exa
t fun
tor KZ : O !HW -mod, that may be thought of as a Cherednik algebraanalogue of the fun
tor V of [So1℄. One of our main results says that the fun
tor KZ is fullyfaithful on proje
tives. Thus, the (non
ommutative!) He
ke algebra plays, in our 
ase, therole similar to that the 
oinvariant algebra (= 
ohomology of the 
ag manifold) plays in theLie algebra 
ase. It is also interesting to note that, in both 
ases, the algebra in question isFrobenius.To prove our results, in x2 we develop some basi
 representation theory over a ground ring(whi
h is not ne
essarily a �eld) of a general asso
iative algebra with a triangular de
ompo-sition. This generalizes earlier work of the se
ond author [Gu℄ and of the last two authors(unpublished). Su
h generality will be essential for us in order to use deformation argumentsin x5. The results of se
tion 2 are applied to Cherednik algebras in x3.2.In x4, we explain how to generalize some 
lassi
al 
onstru
tions for D(V ), the Weyl algebra,(su
h as 
hara
teristi
 varieties, duality) to the rational Cherednik algebra. We study twokinds of dualities. One of them is related to Fourier transform while the other, mu
h moreimportant one, generalizes the usual (Verdier type) duality on D-modules. This enables us toshow that the Ringel dual of 
ategory O is a 
ategory O for the dual re
e
tion group. We alsogive a formula for the dimension of the 
hara
teristi
 variety involving only the highest weightstru
ture of O.Our most important results are 
on
entrated in x5.4. We use the de Rham fun
tor forKnizhnik-Zamolod
hikov type D-modules over the 
omplement of the rami�
ation lo
us in V .This way, we relate the 
ategory O with a He
ke algebra. We prove that the 
ategory O 
anbe re
overed from its quotient by the sub
ategory of obje
ts with non-maximal 
hara
teristi
variety (Theorem 5.3 and Corollary 5.5).Then, we obtain a \double 
entralizer" Theorem 5.16, asserting in parti
ular that the 
ategoryO is equivalent to the 
ategory of modules over the endomorphism ring of some He
ke algebramodule. A 
ru
ial point is the proof that the de Rham fun
tor sends the D-modules 
omingfrom obje
ts of O to representations of the braid group that fa
tor through the He
ke algebra(Theorem 5.13).In a di�erent perspe
tive, our results provide a solution to the problem of asso
iating ageneralized \q-S
hur algebra" to an arbitrary �nite 
omplex re
e
tion group W . This seems tobe new even when W is a Weyl group (ex
ept for types A;B). For instan
e, letW be the Weylgroup of an irredu
ible simply-la
ed root system. Then, the data de�ning the Cherednik algebraAW redu
es to a single 
omplex parameter 
 2 C. In this 
ase, HW is the standard Iwahori-He
ke algebra ofW , spe
ialised at the parameter q = e2�i
. If 
 is a rational number, then q is aroot of unity, and the 
orresponding 
ategory HW -mod be
omes quite 
ompli
ated. Our resultsshow that the 
ategory O for AW may be viewed as a natural \quasi-hereditary 
over" of the



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 3
ategory HW -mod, whi
h is not itself quasi-hereditary. As a 
onsequen
e, the de
ompositionmatri
es of He
ke algebras (in 
hara
teristi
 0) are triangular (Corollary 5.19). We remark that,in view of [CPS2℄, one might have expe
ted on general grounds that the 
ategory HW -mod onlyhas a \strati�ed 
over", whi
h is weaker than having a \quasi-hereditary 
over".The reader should be reminded that, in type A, a well-known \quasi-hereditary 
over" ofHW -mod is provided by the q-S
hur algebra. We expe
t that the latter 
ategory is equivalentto the 
ategory O. Furthermore, for an arbitrary �nite Weyl group W , we prove in x6 that theKZ-fun
tor sends the standard modules in O to modules over the He
ke algebra (with equalparameters) that 
an be des
ribed via Kazhdan-Lusztig's theory of 
ells. It follows in parti
ularthat, in type A, the standard modules in 
ategory O go to Spe
ht (or `dual Spe
ht', dependingon the sign of parameter `
') HW -modules, introdu
ed in [DJ℄.A
knowledgments. The se
ond named author gratefully a
knowledges the �nan
ial support of theFonds NATEQ. The third named author was partially supported by a Pioner grant of the Netherlands Organi-zation for S
ienti�
 Resear
h (NWO). 2. Category O2.1. Algebras with triangular de
omposition. In this se
tion, we assume given an asso-
iative algebra A with a triangular de
omposition. We study a 
ategory O(A) of A-modules,similar to the Bernstein-Gelfand-Gelfand 
ategory O for a 
omplex semi-simple Lie algebra.The main result of this se
tion is Theorem 2.19 below, saying that the 
ategory O(A) is ahighest weight 
ategory (in the sense of [CPS1℄).Throughout this se
tion 2, let k0 be an algebrai
ally 
losed �eld and k a 
ommutative noe-therian k0-algebra.Let A be a graded k-algebra with three graded subalgebras B, �B and H su
h that� A = �B 
H 
B as k-modules� B and �B are proje
tive over k� B 
H = H 
B and H 
 �B = �B 
H� B =Li�0 Bi, �B =Li�0 �Bi, and B0 = �B0 = k and H � A0.� H = k 
k0 H(k0) where H(k0) is a �nite dimensional semi-simple split k0-algebra� the grading on A is inner, i.e., there exists � 2 A0 su
h that Ai = fu 2 Aj�u�u� = iug.We denote by BH and �BH the subalgebras B
H and �B
H. We put Bi = B�i. We denoteby Irr(H(k0)) the set of isomorphism 
lasses of �nite dimensional simple H(k0)-modules. Weput � = �0 � �0 with �0 2 �B 
H 
B>0 and �0 2 Z(H). For E 2 Irr(H(k0)), we denote by 
Ethe s
alar by whi
h �0 a
ts on k 
k0 E.The theory developped here is 
losely related to the one developped by Soergel [So2, x3-6℄ inthe 
ase where g is a graded Lie algebra with g0 redu
tive, A = U(g), B = U(g>0), �B = U(g<0)and H = U(g0).12.2. Lo
ally nilpotent modules. We denote by Oln the full sub
ategory of the 
ategory ofA-modules 
onsisting of those modules that are lo
ally nilpotent for B, i.e., an A-module Mis in Oln if for every m 2 M , there exists n � 0 su
h that B>n � m = 0. This is a Serresub
ategory of the 
ategory of A-modules.1In the Lie algebra 
ase, the algebra H = U(g0) is not �nite dimensional. One then has to restri
t oneself tothe 
onsideration of H-semisimple A-modules only. The theory developed below easily extends to su
h a 
ase.



4 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERRemark 2.1. The 
anoni
al fun
tor Db(Oln)! Db(A) is not faithful in general. Nevertheless,for i = 0; 1, and any M;M 0 2 Oln, one still has ExtiOln(M;M 0) �! ExtiA(M;M 0).2.3. Standard modules.2.3.1. Let h 2 H. We denote by �h : �B ! �B 
 H � A the map de�ned by �h(�b) = h 
 �b.Similarly, we denote by  h : B ! H 
B � A the map de�ned by  h(b) = b
 h.Let E be an H-module. The augmentation B ! B=B>0 = k indu
es a morphism of algebrasBH ! H and we view E as a BH-module by restri
tion via this morphism. All simple BH-modules that are lo
ally nilpotent over B are obtained by this 
onstru
tion, starting with E asimple H-module.We put �(E) = IndABH E = A
BH E:The 
anoni
al isomorphism �(E) �! �B 
E is an isomorphism of graded �BH-modules (E isviewed in degree 0), where �B a
ts by multipli
ation on �B and the a
tion of h 2 H is given by�h 
H 1E : �B 
 E ! �B 
H 
H E = �B 
 E.We now put r(E) = Homgr��BH(A;E) = LiHomgri�BH(A;E) (this is also the submodule ofelements of Hom �BH(A;E) that are lo
ally �nite for B). Here, E is viewed as a �BH-module viathe 
anoni
al morphism �BH � ( �B= �B>0)
H = H.We have an isomorphism of graded BH-modules r(E) �! Homk(B; k) 
 E where B a
tsby left multipli
ation on Homk(B; k) and the a
tion of h 2 H is given by f 
 e 7! (b 
 e 7!(1
 f)( h(b))e).The A-module �(E) is a graded module, generated by its degree 0 
omponent. The A-module r(E) is also graded. Both �(E) and r(E) are 
on
entrated in non-negative degrees,hen
e are lo
ally nilpotent for B.2.3.2. We haveExtiA(�(E);r(F )) ' Exti�BH(Res �BH �(E); F ) ' Exti�BH(Ind �BHH E;F ) ' ExtiH(E;F ):It follows that, when k is a �eld and E;F are simple, then(1) ExtiA(�(E);r(F )) = 0 if i 6= 0 or E 6' F and HomA(�(E);r(E)) ' k:Let N be any A-module. We have(2) HomA(�(E); N) �! HomBH(E;ResBH N)2.3.3. A �-�ltration for a A-module M is a �ltration 0 = M0 � M1 � � � � � Mn = M withMi+1=Mi ' �(k 
k0 Ei) for some Ei 2 Irr(H(k0)). We denote by O� the full sub
ategory ofOln of obje
ts with a �-�ltration.Given an H-module E and n � 0, we also 
onsider more general modules�n(E) = IndABH�(B=B>n)
k E�The modules �n(k 
k0 F ) have a �-�ltration, when F is a �nite dimensional H(k0)-module.For N a A-module, we haveHomA(�n(E); N) �! HomBH�(B=B>n)
k E;N�:As a 
onsequen
e, we have a 
hara
terization of B-lo
ally nilpotent A-modules :Proposition 2.2. Let N be a A-module. Then, the following are equivalent



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 5� N is in Oln� N is a quotient of a (possibily in�nite) sum of �n(E)'s� N has an as
ending �ltration whose su

essive quotients are quotients of �(E)'s.2.4. Graded modules.2.4.1. Given � 2 k and M a A-module, de�ne generalized weight spa
es in M byW�(M) = fm 2M j (� � �)nm = 0 for n� 0g:LetO be the full sub
ategory ofOln 
onsisting of those modulesM su
h thatM =P�2kW�(M)where W�(M) is �nitely generated over k, for every � 2 k. This is a Serre sub
ategory of the
ategory of A-modules.Let ~O be the 
ategory of graded A-modules that are in O. This is a Serre sub
ategory ofthe 
ategory of graded A-modules.Let ~O� be the full sub
ategory of ~O 
onsisting of those obje
tsM su
h that Mi � Wi��(M)for all i. Note that this amounts to requiring that �0 � (i + 
F � �) a
ts nilpotently onHomgriH(k 
k0 F;M) for F 2 Irr(H(k0)), sin
e � and �0 
ommute.More generally, if I is a subset of k, we denote by ~OI the full sub
ategory of ~O 
onsisting ofthose obje
ts M su
h that Mi �P�2IWi��(M).We denote by ~�(E) the graded version of �(E) (it is generated in degree 0 and has no termsin negative degrees). Further, write hri for `grading shift by r' of a graded ve
tor spa
e.Lemma 2.3. Let E 2 Irr(H(k0)). We have ~�(k 
k0 E)hri 2 ~O
E�r.Proof. Note that �0 a
ts as zero on ~�(k
k0 E)0, sin
e B>0 a
ts as zero on it. So, � a
ts as �
Eon it. It follows that � a
ts by i� 
E on �Bi ~�(k 
k0 E)0 = ~�(k 
k0 E)i and we are done. �2.4.2. Let P be the quotient of SE2Irr(H(k0))(
E + Z) by the equivalen
e relation given as thetransitive 
losure of the relation : � � � if � � � is not invertible.We make the following assumption until the end of x2.4.Hypothesis 1. We assume that 
E � 
E + n for some n 2 Z implies n = 0 (this holds forexample when k is a lo
al ring of 
hara
teristi
 zero).Proposition 2.4. We have ~O =La2P ~Oa.The image by the 
anoni
al fun
tor ~O ! O of ~Oa+n is a full sub
ategory Oa+Z independentof n 2 Z.We have O =La2P=ZOa+Z and the forgetful fun
tor ~Oa �! Oa+Z is an equivalen
e.Proof. Let M be an obje
t of O. Let a 2 P and Ma =P�2�a+ZW�(M). By Lemma 2.3 andProposition 2.2, we have a de
omposition M =La2P=ZMa as A-modules.Similarly, given ~M 2 ~O, we have ~M =La2P ~Ma where~Ma =Mi X�2a(Wi��(M) \Mi) 2 ~Oa:Given M 2 Oa+Z, we put a grading on M by setting Mi =P�2i�aW�(M) (here we use theassumption on k). This de�nes an element of ~Oa and 
ompletes the proof of the proposition. �We denote by pa : ~O ! ~Oa the proje
tion fun
tor.



6 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIER2.4.3. We now give a 
onstru
tion of proje
tive obje
ts (under Hypothesis 1).Lemma 2.5. Let a 2 P and d 2 Z. There is an integer r su
h that the 
anoni
al mapHom( ~�m(H)h�di;M)!Mdis an isomorphism for all m � r and M 2 ~Oa.Proof. Repla
ing M by Mhdi and a by a+ d, we 
an assume that d = 0.There is an integer r su
h that pa( ~�(H)hr0i) = 0 for r0 � r. The exa
t sequen
e0! ~�(Bm 
H)hmi ! ~�m(H)! ~�m�1(H)! 0shows that the 
anoni
al mapHom( ~�r(H);M) �! Hom( ~�m(H);M)is an isomorphism for any M 2 ~Oa and m � r. Equivalently, the 
anoni
al mapHomB(B=B�r;M) �! HomB(B=B�m;M)is an isomorphism. Sin
e M is lo
ally B-nilpotent, this gives an isomorphismHom( ~�m(H);M) �!M0: �Corollary 2.6. Let E 2 Irr(H(k0)) and a 2 
E +Z. Then, the obje
t pa( ~�r(k 
k0 E)ha� 
Ei)of ~Oa is independent of r, for r � 0. It is proje
tive, has a �ltration by modules ~�(k
k0 F )hriand has a quotient isomorphi
 to ~�(k 
k0 E)ha� 
Ei.Corollary 2.7. Let E 2 Irr(H(k0)). Then, for r� 0, the module �r(k
k0 E) has a proje
tivedire
t summand whi
h is �-�ltered and has a quotient isomorphi
 to �(k 
k0 E).Corollary 2.8. There is an integer r su
h that �r(H) 
ontains a progenerator of O as a dire
tsummand.Lemma 2.9. Let E;F 2 Irr(H(k0)) su
h that Ext1O(�(k 
k0 E);�(k 
k0 F )) 6= 0. Then,
F � 
E is a positive integer.Proof. By Lemma 2.3 and Proposition 2.4, we have Ext1O(�(k
k0E);�(k
k0F )) = 0 if 
F�
Eis not an integer. Assume now 
F � 
E is an integer. ThenExt1O(�(k 
k0 E);�(k 
k0 F )) ' Ext1~O( ~�(k 
k0 E); ~�(k 
k0 F )h
F � 
Ei)' Ext1A( ~�(k 
k0 E); ~�(k 
k0 F )h
F � 
Ei);by Lemma 2.3 and Proposition 2.4. Now,Ext1A( ~�(k 
k0 E); ~�(k 
k0 F )h
F � 
Ei) ' Ext1BH(k 
k0 E;ResBH ~�(k 
k0 F )h
F � 
Ei):If the last Ext1 is non zero, then 
F � 
E is a positive integer. �Corollary 2.10. Assume k is a �eld. Let E 2 Irr(H). Then, L(E) has a proje
tive 
overP (E) with a �ltration Q0 = 0 � Q1 � � � � � Qd = P (E) su
h that Qi=Qi�1 ' �(Fi) for someFi 2 Irr(H), 
Fi � 
E is a positive integer for i 6= d and Fd = E.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 7Proof. We know already that there is an inde
omposable proje
tive module P (E) as in thestatement satisfying all assumptions but the one on 
Fi � 
E, by Corollary 2.7.Take r 6= d maximal su
h that Qr=Qr�1 ' �(F ) with 
F � 
E not a positive integer. ByLemma 2.9, the extension of P (E)=Qr�1 by �(F ) splits. So, we have a surje
tive morphismP (E)! �(E)��(F ). This is impossible sin
e P (E) is inde
omposable and proje
tive. �2.5. Highest weight theory.2.5.1. We assume here that k is a �eld.For E a simple H-module, all proper submodules of �(E) are graded submodules by Propo-sition 2.4, hen
e are 
ontained in �(E)>0. Consequently, �(E) has a unique maximal propersubmodule, hen
e a unique simple quotient whi
h we denote by L(E).It follows from (1) that L(E) is the unique simple submodule of r(E) and that L(E) 6' L(F )for E 6' F .Proposition 2.11. The simple obje
ts of Oln are the L(E) for E 2 Irr(H).Proof. Let N 2 Oln. Then there is a simple H-module E su
h that HomBH(E;ResBH N) 6= 0.By (2), it follows that every simple obje
t ofOln is a quotient of �(E) for some simpleH-moduleE. �2.5.2. Let M be a A-module. Let p(M) be the set of elements of M annihilated by B>0. Thisis an H-submodule of M .Lemma 2.12. Let M be a A-module and E an H-module. Then,� M is a quotient of �(E) if and only if there is a morphism of H-modules ' : E ! p(M)su
h that M = A'(E) ;� If k is a �eld and E is simple, thenM ' L(E) if and only ifM = Ap(M) and p(M) ' E.In parti
ular, Ap(M) is the largest submodule of M that is a quotient of �(F ) for some H-module F .Proof. The �rst assertion follows from (2) and the isomorphismHomBH(E;ResBHM) ' HomH(E; p(M)):Now, we assume k is a �eld and E is simple.Assume p(M) ' E and M = Ap(M). Then, M is in Oln. Let N be a non-zero submoduleof M . We have 0 6= p(N) � p(M), hen
e p(N) = p(M) and N = M . So, M is simple andisomorphi
 to L(E) sin
e M is a quotient of �(E).Assume M ' L(E). Sin
e dimk Hom(�(F ); L(E)) = 1 if E ' F , and this Hom-spa
evanishes otherwise, it follows from (2) that p(M) ' E. �Let Mf0g = 0 and de�ne by indu
tion Nfig = M=Mfig, Lfig = Ap(Nfig) and Mfi + 1gas the inverse image of Lfig in M . We have obtained a sequen
e of submodules of M , 0 =Mf0g �Mf1g � � � � �M .Sin
e �(E) is lo
ally nilpotent for B, the following proposition is 
lear. It des
ribes how theobje
ts of Oln are 
onstru
ted from �(E)'s (
f Proposition 2.2).Proposition 2.13. A A-module M is lo
ally nilpotent for B if and only if SiMfig =M , i.e.,if M has a �ltration whose su

essive quotients are quotients of �(E)'s.



8 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERLemma 2.14. Assume k is a �eld. Every A-module quotient M of �(E) has a �nite Jordan-H�older series 0 = M0 � M1 � � � � � Md = M with quotients M i=M i�1 ' L(Fi) su
h thatFi 2 Irr(kW ), 
E � 
Fi is a positive integer for i 6= d and Fd = E.Proof. By Proposition 2.4, we 
an assume 
F � 
E 2 Z. From Proposition 2.4, it follows thatM inherits a grading from �(E) (with M0 6= 0 and M<0 = 0). Note that sin
e �0 a
ts as zeroon p(M), we have p(M) �LF2Irr(H)M
E�
F .We will �rst show that M has a simple submodule.Take i maximal su
h that p(M)i 6= 0 and F a simple H-submodule of p(M)i. Let L = AF .Then, p(L) � p(M) \M�i and p(L) � F � L>i, hen
e p(L) = F . It follows from Lemma 2.12that L ' L(F ) and we are done.Let d(M) =PF2Irr(H) dimM
E�
F .We put M 0 = M=L. We have d(M 0) < d(M). So, the lemma follows by indu
tion ond(M). �2.6. Properties of 
ategory O. We assume here in x2.6 that k is a �eld. We now derivestru
tural properties of our 
ategories.2.6.1.Corollary 2.15. Every obje
t of Oln has an as
ending �ltration whose su

essive quotients aresemi-simple.Proof. Follows from Lemma 2.14 and Proposition 2.2. �Corollary 2.16. Every obje
t of O has a �nite Jordan-H�older series.Proof. The multipli
ity of L(E) in a �ltration of M 2 O given by Corollary 2.15 is bounded bydimW�
E (M), hen
e the �ltration must be �nite. �Corollary 2.17. The 
ategory ~Oa is generated by the L(E)hri, with r = 
E � a.Proof. Follows from Lemma 2.3 and Proposition 2.11. �Corollary 2.18. Given a 2 k, the full abelian Serre sub
ategory of the 
ategory of A-modulesgenerated by the L(E) with 
E 2 a+ Z is Oa+Z.2.6.2.Theorem 2.19. The 
ategory O is a highest weight 
ategory (in the sense of [CPS1℄) withrespe
t to the relation: E < F if 
F � 
E is a positive integer.Proof. Follows from Corollary 2.10 and Lemma 2.14. �The standard and 
ostandard obje
ts are the �(E) and r(E). There are proje
tive modulesP (E), inje
tive modules I(E), tilting modules T (E). We have re
ipro
ity formulas, 
f. [CPS1,Theorem 3.11℄:[I(E) : r(F )℄ = [�(F ) : L(E)℄ and [P (E) : �(F )℄ = [r(F ) : L(E)℄:Corollary 2.20. If 
E � 
F 62 Z � f0g for all E;F 2 Irr(H(k0)), then O is semi-simple.Proposition 2.21. Let M 2 O. The following assertions are equivalent� M has a �-�ltration



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 9� ExtiO(M;r(H)) = 0 for i > 0� Ext1O(M;r(H)) = 0� the restri
tion of M to �B is free.Proof. The equivalen
e between the �rst three assertions is 
lassi
al. The remaining equiva-len
es follow from the isomorphism Ext1O(M;r(H)) �! Ext1A(M;r(H)) �! Ext1�B(M;k). �2.6.3. From Proposition 2.2, we dedu
eLemma 2.22. Let M 2 Oln. The following 
onditions are equivalent� M 2 O� M is �nitely generated as a A-module� M is �nitely generated as a �B-module.Lemma 2.23. There is r � 0 su
h that for all M 2 O, a 2 k and m in the generalizedeigenspa
e for �0 for the eigenvalue a, then (�0 � a)rm = 0.Proof. The a
tion of �0 on �(H) is semi-simple. It follows that, given r � 0, a 2 k andm 2 �r(H) in the generalized eigenspa
e for �0 for the eigenvalue a, then (�0 � a)rm = 0.Now, by Corollary 2.7, there is some integer r su
h that every obje
t of O is a quotient of�r(H)l for some l. �Proposition 2.24. There is r � 0 su
h that every module in Oln is generated by the kernelof B�r. Further, there is an integer r > 0 su
h that for M 2 Oln, we have Mfig = Mfrg fori � r.Proof. Let r � 0 su
h that every proje
tive inde
omposable obje
t in O is a quotient of�r�1(H). This means that every obje
t in O is generated by the kernel of B�r. Now, 
onsiderM 2 Oln and m 2 M . Let N be the A-submodule of M generated by m. This is in O, hen
em is in the submodule of N generated by the kernel of B�r. �Proposition 2.25. Every obje
t in Oln is generated by the 0-generalized eigenspa
e of �0.Proof. It is enough to prove the proposition for proje
tive inde
omposable obje
ts in O, hen
efor �r's, where it is obvious. �2.6.4. Let Q be a progenerator for O (
f Corollary 2.8) and � = (EndAQ)opp. Then, � is a�nitely generated proje
tive O-module. We have mutually inverse standard equivalen
es(3) Hom(Q;�) : O �! �-mod; Q
� (�) : �-mod �! O:Let now X be a (non-ne
essarily �nitely generated) �-module. Then, Q
� X is a quotientof Q(I) for some set I, where X is a quotient of �(I). Now, Q(I) is in Oln. So, the fun
torQ
� (�) : �-Mod ! A-Mod takes values in Oln and we have equivalen
esHom(Q;�) : Oln �! �-Mod; Q
� � : �-Mod �! Oln:3. Rational Cherednik algebras3.1. Basi
 de�nitions. Let V be a �nite dimensional ve
tor spa
e and W � GL(V ) a �nite
omplex re
e
tion group. Let A be the set of re
e
ting hyperplanes of W . Given H 2 A;let WH � W be the subgroup formed by the elements of W that �x H pointwise. We 
hoosevH 2 V su
h that CvH is a WH -stable 
omplement to H. Also, let �H 2 V � be a linear formwith kernel H.



10 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERLet k be a noetherian 
ommutative C-algebra. The group W a
ts naturally on A and onthe group algebra kW , by 
onjugation. Let 
 : A ! kW ; H 7! 
H ; be a W -equivariant mapsu
h that 
H is an element of kWH � kW with tra
e zero, for ea
h H 2 A.Given 
 as above, one introdu
es an asso
iative k-algebra A(V; 
); the rational Cherednikalgebra. It is de�ned as the quotient of k 
C T (V � V �) oW , the 
ross-produ
t of W withk-tensor algebra, by the relations[�; �℄ = 0 for �; � 2 V; [x; y℄ = 0 for x; y 2 V �[�; x℄ = h�; xi + XH2A h�; �HihvH ; xihvH; �Hi 
HRemark 3.1. Let Re
 � W denote the set of (pseudo)-re
e
tions. Clearly Re
 is an AdW -stable subset. Giving 
 as above is equivalent to giving a W -invariant fun
tion 
 : Re
 !k ; g 7! 
g su
h that 
H = Pg2WHrf1g 
g � g. One may use the fun
tion 
 instead of 
, andwrite vg 2 V , resp. �g 2 V �, instead of vH, resp. �H , for any g 2 WH r f1g. Then the last
ommutation relation in the algebra A(V; 
) reads:[�; x℄ = h�; xi + Xg2Re
 
g � h�; �gihvg; xihvg; �gi � g;whi
h is essentially the 
ommutation relation used in [EtGi℄. In 
ase of a Weyl group W ,in [EtGi, BeEtGi, Gu℄, the 
oeÆ
ients 
� (� a root) were used instead of the 
g's. Then,
H = �2
�g for H the kernel of � and g the asso
iated re
e
tion.Remark 3.2. Put eH = jWH j. Denote by "H;j = 1eH Pw2WH det(w)jw the idempotent ofCWH asso
iated to the 
hara
ter det�jjWH . Given 
 as above, there is a unique family fkH;i =kH;i(
)gH2A=W ; 0�i�eH of elements of k su
h that kH;0 = kH;eH = 0 and
H = eH eH�1Xj=0 (kH;j+1(
)� kH;j(
))"H;j:We observe that 
 
an be re
overed from the kH;i(
)'s by the formula
H = Xw2WH�f1g eH�1Xj=0 det(w)j � (kH;j+1(
)� kH;j(
))!w:This way, we get ba
k to the de�nition of [DuOp℄.Introdu
e free 
ommutative positively graded k-algebras P = k 
C S(V �) = Li�0 Pi and� = k
CS(V ) =Li�0 �i. We have a triangular de
omposition A = P
k kW 
k � as k-modules[EtGi, Theorem 1.3℄.For H 2 A, we putaH(
) = eH�1Xi=1 eH � kH;i(
) � "H;i 2 k[WH℄ and z(
) = XH2A aH(
) 2 Z(kW ):We denote by Irr(kW ) a 
omplete set of representatives of isomorphism 
lasses of simplekW -modules.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 11For E 2 Irr(CW ), we denote by 
E = 
E(
) the s
alar by whi
h z(
) a
ts on k 
C E. Theelements aH(
) ; z(
); and 
E(
); may be thought of as fun
tions of the 
oeÆ
ients kH;i =kH;i(
) (through their dependen
e on 
). In parti
ular, it was shown in [DuOp, Lemma 2.5℄that 
E, expressed as a fun
tion of the kH;i's, is a linear fun
tion with non-negative integer
oeÆ
ients.Below, we will often use simpli�ed notations and write A for A(
), kH;i for kH;i(
), and zfor z(
); et
.We introdu
e a grading on A by putting V � in degree 1, V in degree �1 and W in degree0 (thus, the indu
ed grading on the subalgebra P � A 
oin
ides with the standard one on P,while the indu
ed grading on the subalgebra � � A di�ers by a sign from the standard oneon �).2Let euk =Pb2B b_b be the \deformed Euler ve
tor �eld", where B is a basis of V and fb_gb2Bis the dual basis. We also put eu = euk � z. The elements euk and eu 
ommute with W . Notethat Pb [b; b_℄ = dimV +PH 
H .We have(4) [eu; �℄ = �� and [eu; x℄ = x for � 2 V and x 2 V �:This shows the grading on A is \inner", i.e., Ai = fa 2 A j [eu; a℄ = i � ag.3.2. Category O for the rational Cherednik algebra.3.2.1. We apply now the results of x2 in the spe
ial 
ase: A = A = A(V; 
), B = �, �B = P,H = kW , k0 = C, H(k0) = CW , � = eu, �0 = euk and �0 = z. In parti
ular, we have the
ategory O(
) := O(A(V; 
)), whi
h was �rst 
onsidered, in the setup of Cherednik algebras,in [DuOp℄.For any (
ommutative) algebra map  : k ! k0, there is a base extension fun
tor O(
) !O( (
)) given by A( (
))
A (�).3.2.2. Assume k is a �eld. Sin
e O and ~O have �nite global dimension (Theorem 2.19), theGrothendie
k group of the 
ategory of modules 
oin
ides with the Grothendie
k group K0 ofproje
tive modules.We have a morphism of Z-modules f : K0( ~O) ! Z[[q℄℄[q�1℄
K0(CW ) given by taking thegraded 
hara
ter of the restri
tion of the module to W :M 7! XE2Irr(kW )Xi qi dimHomkW (E;Mi)[E℄:Set [P℄ :=PE2Irr(kW )Pi qi dimHomkW (E;Pi)�[E℄. This is an invertible element of Z[[q℄℄[q�1℄
K0(CW ), and for any F 2 Irr(kW ), we have f([�(F )℄) = [P℄ � [F ℄: Sin
e the 
lasses of standardmodules generate theK0-group, we obtain an isomorphism 1[P℄f : K0( ~O) �! Z[q; q�1℄
K0(CW ).Let k[(kH;i)1�i�eH�1℄ be the polynomial ring in the indeterminates kH;i with kw(H);i = kH;ifor w 2 W . We have a 
anoni
al evaluation morphism k[(kH;i)℄ ! k given by the 
hoi
e ofparameters. Let m be the kernel of that morphism, R the 
ompletion of k[(kH;i)℄ at m, and Kthe �eld of fra
tions of R.We have a de
omposition map K0(OK) �! K0(O). It sends [�(K 
C E)℄ to [�(k 
C E)℄.2We use supers
ripts to indi
ate the standard (non-negative) grading on �, and subs
ripts to denote thegradings on A and P. Thus, putting formally ��i := �i one re
overs 
ompatibility: �i = � \Ai.



12 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERProposition 3.3. Assume k is a �eld. Then, [�(E)℄ = [r(E)℄ and [P (E)℄ = [I(E)℄ for anykW -module E.Proof. We �rst 
onsider the equality [�(E)℄ = [r(E)℄. The 
orresponding statement for K istrue, sin
e the 
ategory is semi-simple in that 
ase. Hen
e the modules are determined, up toisomorphism, by their so
le (resp. by their head).The statement for k follows by using the de
omposition map.Now, the equality [P (E)℄ = [I(E)℄ follows, using the re
ipro
ity formulas (x2.6.2). �4. Duality, Tiltings, and Proje
tives4.1. Ringel duality. We keep the setup of x2.1, with k being a �eld. We make the followingtwo additional assumptions� We have �B 
H 
B = B 
H 
 �B = A;� The subalgebra B � A is Gorenstein (with parameter n), i.e., there exists an integer nsu
h that ExtiB(k;B) = (k if i = n0 if i 6= n:The Gorenstein 
ondition implies that, for any E 2 Irr(H), viewed as a BH-module via theproje
tion BH ! H, we have ExtiBH(E;BH) = 0; for all i 6= n; moreover, ExtnBH(E;BH) =E[; where E[ is a right BH-module su
h that dimE[ = dimE.Assume further that the algebra A has �nite homologi
al dimension. Thus (see [Bj℄), thereis a well-de�ned duality fun
torRHomA(�; A) : Db(A-mod) �! Db(Aopp-mod)opp:Furthermore, this fun
tor is an equivalen
e with inverse RHomAopp(�; A).The triangular de
omposition A = B 
H 
 �B gives a similar de
omposition Aopp = �Bopp
Hopp
Bopp, for the opposite algebras. Therefore, we may 
onsider the 
ategory O(Aopp) and,for any simple right H-module E0, introdu
e the standard Aopp-module�opp(E0) := IndAopp(BH)oppE0 = E0 
BH A;and also the proje
tive obje
t P opp(E0) 2 O(Aopp), the tilting obje
t T opp(E0) 2 O(Aopp), et
.Lemma 4.1. The fun
tor RHomA(�; A[n℄) sends �(E) to �opp(E[); for E a �nite-dimensionalH-module.Proof. Using that A is free as a left BH-module, we 
omputeExtiA(�(E); A) �! ExtiBH(E;A) �! ExtiBH(E;BH)
BH A:We see that this spa
e vanishes for i 6= n, and for i = n we get RHomA��(E) ; A[n℄� 'E[ 
BH A = �opp(E[). �We would like to use the duality fun
tor RHomA(�; A[n℄) to obtain a fun
tor Db(O(A))!Db(O(Aopp))opp. To this end, we will exploit a general result below valid for arbitrary highestweight 
ategories (a 
ontravariant version of Ringel duality [Ri, x6℄).Given an additive 
ategory C, let Kb(C) be the 
orresponding homotopy 
ategory of bounded
omplexes in C.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 13Proposition 4.2. Let A and A0 be two quasi-hereditary algebras and C = A-mod, C0 = A0-modthe asso
iated highest weight 
ategories. Let F be a 
ontravariant equivalen
e between the exa
t
ategories of �-�ltered obje
ts F : C� �! (C0�)opp. Then,� F restri
ts to equivalen
esC-proj �! (C0-tilt)opp and C-tilt �! (C0-proj)opp� The 
anoni
al equivalen
es Kb(C-proj) �! Db(C) and Kb(C0-tilt) �! Db(C0), yield an equiv-alen
e of derived 
ategories D : Db(C) �! Db(C0)opp:� Let T = F (A), an (A 
 A0)-module. Then, we have D = RHomA(�; T ) and D�1 =RHomA0(�; T ). Via duality (A-mod) �! (Aopp)-modopp, the fun
tor D identi�es Copp with theRingel dual of C0.Proof. LetM 2 C�. Then,M is proje
tive if and only if Ext1(M;�(E)) = 0 for every standardobje
t �(E) of C (indeed, if 0 ! M 0 ! P ! M ! 0 is an exa
t sequen
e with P proje
tive,then M 0 is �-�ltered, hen
e the sequen
e splits). The module F (M) is tilting if and only ifExt1(�(E0); F (M)) = 0 for every standard obje
t �(E0) of C0. We dedu
e that M is proje
tiveif and only if F (M) is tilting.So, F restri
ts to equivalen
es C-proj �! (C0-tilt)opp and C-tilt �! (C0-proj)opp.The last assertions of the Proposition are 
lear. �We 
an now apply this 
onstru
tion to the 
ategory O(A). Spe
i�
ally, Lemma 4.1 im-plies that the fun
tor RHomA(�; A[n℄) restri
ts to an equivalen
e O(A)� �! (O(Aopp)�)opp.Therefore, using Proposition 4.2 we immediately obtain the followingProposition 4.3. The fun
tor RHomA(�; A[n℄)opp restri
ts to equivalen
esO(A)-proj �! (O(Aopp)-tilt)opp and O(A)-tilt �! (O(Aopp)-proj)opp :The 
anoni
al equivalen
es Kb(O(A)-proj) �! Db(O(A)) and Kb(O(Aopp)-tilt) �! Db(O(Aopp))indu
e an equivalen
e D : Db(O(A)) �! Db(O(Aopp))opp; su
h that �(E) 7! �opp(E[) ; P (E) 7!T opp(E[); and T (E) 7! P opp(E[): �Corollary 4.4. The 
ategory O(Aopp)opp is the Ringel dual of O(A). �4.2. Naive duality for Cherednik algebras. Re
all the setup of x3.2.Denote by (�)y : CW �! CW the anti-involution given by w 7! wy := w�1 for w 2 W .In this se
tion, we 
ompare the algebras A = A(V; 
) and A(V �; 
y). This will provide uswith means to swit
h between left and right modules, between �-lo
ally �nite and P-lo
ally�nite modules.The anti-involution (�)y : CW �! CW extends to an isomorphism(5) (�)y : A(
) �! A(
y)opp ; V 3 � 7! ��; V � 3 x 7! x; W 3 w 7! w�1:Remark 4.5. If all pseudo-re
e
tions of W have order 2, then 
y = 
.Further, we de�ne an isomorphism of k-algebras reversing the gradings by' : A(V; 
) �! A(V �; 
y)oppV 3 � 7! �; V � 3 x 7! x; W 3 w 7! w�1:



14 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERRemark 4.6. When V is self-dual, an isomorphism of CW -modules F : V �! V � extends toan algebra isomorphism (Fourier transform)F : A(V; 
) �! A(V �; 
)V 3 � 7! F (�); V � 3 x 7! �F�1(x); W 3 w 7! w:The fun
tor F� restri
ts to an equivalen
e O(V; 
) �!O(V �; 
y).4.2.1. Given M 2 Oln, denote by M_ the k-submodule of P-lo
ally nilpotent elements ofHomk(M;k). This is a right A-module. Via '�, this be
omes a left A(V �; 
y)-module. If M isgraded, then M_ = Homgr�k(M;k).Thus we have de�ned a fun
tor (analogous of the standard duality on the 
ategory O in theLie algebra 
ase):(6) (�)_ : Oln(V; 
)! Oln(V �; 
y)oppWhen k is a �eld, this fun
tor is an equivalen
e.Given a kW -module E, we use the notation E_ = Homk(E; k) for the dual kW -module.Proposition 4.7. We have �(E)_ �! r(E_) for any kW -module E. If k is a �eld, thenL(E)_ �! L(E_) ; P (E)_ �! I(E_) ; I(E)_ �! P (E_) ; r(E)_ �! �(E_) ; T (E)_ �! T (E_):Proof. We have Homgr�k(A 
�W E; k) �! Homgr�(�W )opp(A;Homk(E; k))and the �rst part of the proposition follows.The se
ond assertion follows from the 
hara
terization of L(E) (resp. L(E_)) as the uniquesimple quotient (resp. submodule) of �(E) (resp. r(E_)). The other assertions are immediate
onsequen
es of the homologi
al 
hara
terizations of the obje
ts and/or the existen
e of suitable�ltrations. �Note that the fun
tor (�)_ restri
ts to a fun
tor O(V; 
)! O(V �; 
y)opp. When k is a �eld,it is an equivalen
e. A 
ompatible 
hoi
e of progenerators for O(V; 
) and O(V �; 
y) gives thenan isomorphism between the algebra �(V ) for O(V; 
) and the oppposite algebra �(V �)opp forO(V �; 
y) (
f x2.6.4).Corollary 4.8. Let E and F be two simple kW -modules. Then, the multipli
ity of �(E) in a�-�ltration of P (F ), for O(V; 
), is equal to the multipli
ity of L(F_) in a 
omposition seriesof �(E_), for O(V �; 
y).Proof. By x2.19, the multipli
ity of r(E_) in ar-�ltration of I(F_) is equal to the multipli
ityof L(F_) in a 
omposition series of �(E_).The fun
tor (�)_ sends P (F ) to I(F_) and �(E) to r(E_) (Proposition 4.7) and the resultfollows. �Remark 4.9. When k is a �eld andW is real, we obtain, via Fourier transform, a duality onOlnand on O. Sin
e all 
omplex representations of W are self-dual, we have then �(E)_ �!r(E).4.3. Homologi
al properties of Cherednik algebras.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 154.3.1. The rational Cherednik algebra is a deformation of the 
ross-produ
t of W with theWeyl algebra of polynomial di�erential operators on V . In parti
ular, there is a standardin
reasing �ltration on A with W pla
ed in degree 0 and V � V � in degree 1. The asso
iatedgraded ring, grA, is isomorphi
 to S(V �V �)oW [EtGi, x1℄. It follows (see [Bj℄, [Bo, xV.2.2℄),that A is left and right noetherian, provided k is noetherian. Sin
e V �� V is a smooth varietyof dimension 2 dimV , the algebra A has homologi
al dimension at most 2 dimV . Furthermore,the usual results and 
on
epts on D-modules (
hara
teristi
 variety, duality) also make sensefor A, even though the algebra grA is not 
ommutative.4.3.2. We assume k is a �eld, and put n = dimV . The algebras � and P are 
learly Gorensteinwith parameter n. Moreover, we have Extn�(k; �) ' �nV �. Hen
e, E[ = �nV � 
Homk(E; k) =�nV � 
 E_; for any �nite dimensional W -module E.It will be useful to 
ompose the fun
tor RHomA(
)(�;A(
)) with the anti-involution (�)y,see (5), to get the following 
omposite equivalen
e(7) RHomA(
)(�;A(
))y : Db(A(
)-mod) �! Db(A(
)opp-mod)opp �! Db(A(
y)-mod)opp:From Proposition 4.2 we immediately obtain the followingProposition 4.10. The fun
tor RHomA(�;A[n℄)y gives rise to an equivalen
eD : Db(O(
)) �! Db(O(
y))opp: �We further introdu
e an equivalen
e(�)_ ÆD : Db(O(V; 
)) �! Db(O(V �; 
))su
h that �(E) 7! r(�nV 
C E)T (E) 7! I(�nV 
C E)P (E) 7! T (�nV 
C E)In parti
ular, we obtain (
f. Corollary 4.4)Corollary 4.11. The 
ategory O(V �; 
) is the Ringel dual of O(V; 
). �Remark 4.12. Note that if W is real, then O is its own Ringel dual.4.3.3. Semiregular bimodule. Write P~ = �i Hom(Pi; k) for the graded dual of P, and form theve
tor spa
e R := P~ 
k �W . Let us �x an isomorphism of C-ve
tor spa
es �nV �! C. Wehave the following 
anoni
al isomorphisms:Homgr��W (A;�nV 
C �W ) �! Homgr�k(P; �W ) � P~ 
k �W �! P~ 
P A:The �rst two isomorphisms de�ne a left A-module stru
ture on R, and the last one de�nes aright A-module stru
ture on R. It is possible to 
he
k by expli
it 
al
ulations that the leftand right A-module stru
tures 
ommute, so that R be
omes an A-bimodule. It is a Cherednikalgebra analogue of the semiregular bimodule, 
onsidered in [A℄, [So2℄ in the Lie algebra 
ase.From the isomorphisms of A-modulesR
A �(E) = R 
�W E �! Homgr��W (A;�nV 
 E)we dedu
eProposition 4.13. The fun
tor M 7! Homgr�k(R 
A M;k)y (= left A(V; 
y)-module) sends�(E) to �(�nV � 
C E_). �



16 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIER4.3.4. GivenM a �nitely generated A-module, a good �ltration of M is a stru
ture of �lteredA-module on M su
h that grM is a �nitely generated grA-module. The 
hara
teristi
 varietyCh(M) is the support of grM , viewed as aW -equivariant sheaf on V ��V (a 
losed subvariety).It is well de�ned, i.e., is independent of the 
hoi
e of the good �ltration (every �nitely generatedA-module admits a good �ltration). Note that Bernstein's inequality: dimCh(M) � dimV doesnot hold in general. Further, for M in O, the 
omplex D(M) has zero homology outside thedegrees 0; : : : ; n.Let T =LE T (E) where E runs over the simple kW -modules.Corollary 4.14. Let M 2 O. Then, dimCh(M) = dimV �minfi j ExtiO(T;M) 6= 0g.Proof. Let R = End(T )opp. The fun
tor RHomO(T;�) : Db(O) �! Db(R-mod) is an equiv-alen
e. Composing with the inverse of (�)_ Æ D we obtain an equivalen
e Db(O(V �; 
)) �!Db(R-mod) that restri
ts to an equivalen
e O(V �; 
) �! R-mod. We see that minfi jExtiO(T;M) 6= 0g = minfi j H i(DM) 6= 0g; where the RHS is equal to minfi j ExtiA(M;A) 6=0g�dimV by the de�nition of D. The result now follows from the well-known formula, see e.g[Bj℄: dimCh(M) = 2 dimV �minfi j ExtiA(M;A) 6= 0g: �5. He
ke algebras via monodromy5.1. Lo
alisation.5.1.1. Let Vreg = V �SH2AH and Preg = k[Vreg℄ = P[(��1H )℄H2A. The algebra stru
ture on Aextends to an algebra stru
ture on Areg = Preg 
k � 
k kW .We denote by M 7!Mreg = Areg 
AM : A-Mod! Areg-Modthe lo
alisation fun
tor. Note that ResPreg Mreg = Preg 
PM . Note also that every element ofMreg 
an be written as �r 
m for some r � 0, m 2M , where � =QH2A�H . This makes thelo
alisation fun
tor have spe
ially good properties.The restri
tion fun
tor Areg-Mod ! A-Mod is a right adjoint to the lo
alisation fun
tor. Itis fully faithful. The adjun
tion morphism 
oin
ides with the natural lo
alisation morphismM !Mreg of A-modules. Its kernel is Mtor, the submodule of M of elements whose support is
ontained in V � Vreg. Denote by (A-Mod)tor the full sub
ategory of A-Mod of obje
ts M su
hthat Mreg = 0. The following is 
lear.Lemma 5.1. The lo
alisation fun
tor indu
es an equivalen
eA-Mod =(A-Mod)tor �! Areg-Mod :The 
ategory O is a Serre sub
ategory of A-Mod. Let Otor = O \ (A-Mod)tor. Then, the
anoni
al fun
tor O=Otor ! A-Mod =(A-Mod)tor is fully faithful. Consequently, the 
anoni
alfun
tor O=Otor ! Areg-Modis fully faithful, with image a full abelian sub
ategory 
losed under taking subobje
ts andquotients (but in general not 
losed under extensions).
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ommutative diagramDb(A(
)-mod) RHomA(�;A)y� //

��

Db(A(
y)-mod)opp
��Db(A(
)reg-mod) RHomAreg(�;Areg)y� // Db(A(
y)reg-mod)oppwhere the verti
al arrows are given by lo
alisation.5.1.3.Lemma 5.2. Assume k is a �eld. Then, (�)_ restri
ts to an equivalen
e Otor(V; 
) �!Otor(V �; 
y)opp.Proof. Let M 2 O. We put a grading on M (Proposition 2.4). Sin
e M is a �nitely generatedgraded P-module (Lemma 2.22), the dimension of Ch(M), the 
hara
teristi
 variety of M , 
anbe obtained from the growth of the fun
tion i 7! dimMi. In parti
ular, M 2 Otor if and onlyif limi!1 �i1�dimV � dimMi� = 0. Su
h a property is preserved by (�)_. �Denote by V : O ! �O = O=Otor ; M 7! �M; the quotient fun
tor (the notation V hasbeen used by Soergel [So1℄ for an analogous fun
tor in the Lie algebra setup). The fun
torV admits, by the standard `abstra
t nonsense', both a left adjoint and right adjoint fun
tors>V;V> : �O ! O.Theorem 5.3. Assume k is a �eld, and Q is a proje
tive in O. Then, the 
anoni
al adjun
tionmorphism a : Q ! V>( �Q) is an isomorphism. In parti
ular, for any obje
t M in O, thefollowing 
anoni
al morphism is an isomorphism(8) V� : HomO(M;Q) �! Hom �O( �M; �Q):Proof. By x5.1.1, for any two obje
ts M;Q; of O, we have a 
anoni
al isomorphismHom �O( �M; �Q) �! HomAreg(Mreg; Qreg):Assume Q has a �-�ltration. Then it is free over P and thus has no non-zero submodulelying in Otor, hen
e V� is inje
tive.Assume furthermore that M has a r-�ltration. Then M_ has a �-�ltration (Proposition4.7), hen
e has no non-zero submodule lying in Otor. Sin
e (�)_ restri
ts to an equivalen
eOtor(V; 
) �! Otor(V �; 
y)opp (Lemma 5.2), it follows that M has no non-zero quotient lying inOtor. This shows that V� in (8) is an isomorphism.From now on, we assume that Q is proje
tive. It follows that Q0 = D(Q) is tilting (Proposi-tion 4.10), hen
e r-�ltered.Now let M be a �-�ltered obje
t. Then, M 0 = D(M) is �-�ltered. We apply the result onV�, that we have already proved, to O(
y). This yields, by duality (
f x5.1.2), that (8) is anisomorphism, for any �-�ltered obje
t M .Sin
e any proje
tive is �-�ltered, for any two proje
tive obje
ts P;Q in O, we have estab-lished the isomorphisms(9) HomO(P;Q) V��! Hom �O( �P ; �Q) adjun
tion===== HomO(P;V>( �Q)):



18 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERThe above isomorphisms imply, in parti
ular, that, for any inde
omposable proje
tive P ,we have dimHomO(P;Q) = dimHomO(P;V>( �Q)). It follows readily that the obje
ts Q andV>( �Q) have the same 
omposition fa
tors with the same multipli
ities.We 
an �nally prove that the 
anoni
al adjun
tion map a : Q! V>( �Q) is an isomorphism.By the previous paragraph, it suÆ
es to show that a is inje
tive. To this end, put K := ker(a),and assume K 6= 0. Let L(E) be a simple submodule in K, and P (E) � L(E); its proje
tive
over. By 
onstru
tion, the 
omposite map g : P (E)� L(E) ,! K ,! Q is nonzero. This mapg 2 HomO(P (E); Q) goes, under the isomorphism between the left-hand and right-hand sidesof (9), to the map a Æg : P (E)! K ,! Q a! V>( �Q). But the latter map is the zero map sin
eK = ker(a), whi
h 
ontradi
ts the fa
t that (9) is an isomorphism. Thus, ker(a) = 0, and theTheorem is proved. �Remark 5.4. In general, the assumption that Q is proje
tive 
annot be repla
ed by the weakerassumption that it is �-�ltered (already for W = Z=2Z). Nevertheless, see Proposition 5.9.Corollary 5.5. Let X be a progenerator of O and E := (End �O �X)opp. Then there is anequivalen
e O �! (E-mod)opp:Proof. The pre
eding theorem implies that (EndOX)opp �! E sin
e proje
tive modules are�-�ltered. Hen
e we 
an use 
ategory equivalen
es (3). �5.2. Dunkl operators.5.2.1. One has an A-a
tion on the ve
tor spa
e P, hen
e an �-a
tion, arising via the identi�-
ation P = �(k). One �nds, in parti
ular, that the a
tion of � 2 V on P is given by the Dunkloperator T� = �� + XH2A h�; �H i�H �aH 2 D(Vreg)oW;where D(Vreg) stands for the algebra of regular di�erential operators on Vreg, a
ted upon by Win a natural way, and aH 2 kW is viewed as an element of D(Vreg)oW . It follows that T�(P) � P(as part of A-a
tion on P = �(k)); furthermore, this A-a
tion on P is known (Cherednik, [EtGi,Proposition 4.5℄) to be faithful:Theorem 5.6. The A-representation �(k) is faithful. Thus, the natural a
tion of PW on Pextends to an inje
tive algebra morphism i : A ,! k 
C D(Vreg)oW whi
h maps � 2 V to T�.The map i indu
es an algebra isomorphism Areg �! k 
C D(Vreg)oW .5.2.2. We 
onsiderM = IndA�W X = P
X, where X is lo
ally nilpotent and �nitely generatedas an �-module, free over k. The a
tion of � 2 V on p
 v, p 2 P and v 2 X is given by�(p 
 v) = p 
 �v + ��(p) 
 v +XH X0�i;j�eH�1 eH(kH;i+j � kH;j)�H(�)�H "H;i(p) 
 "H;j(v):Using Dunkl operators, i.e., via the isomorphism of Theorem 5.6, we have a stru
ture of W -equivariant (k 
C D(Vreg))-module on Mreg. The 
orresponding 
onne
tion is given by�� = � �XH �H(�)�H � � X0�i;j�eH�1 eHkH;i+j"H;i 
 "H;j�:
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e ��(p 
 v) = p 
 �v + ��(p)
 v �XH Xi eHkH;i�H(�)�H p 
 "H;i(v):For the rest of x5, we assume that k = C.The following result is well-known to experts, but we 
ould not �nd an appropriate referen
ein the literature.Proposition 5.7. The above formula for �� de�nes a W -equivariant integrable algebrai
 
on-ne
tion on M with regular singularities.Proof. All the 
laims follow from the 
onstru
tion, with the ex
eption of the assertion that thesingularities of the 
onne
tion are regular. The 
onne
tion has visibly only simple poles at there
e
tion hyperplanes, hen
e it suÆ
es to prove the regularity at in�nity with respe
t to some(hen
e any, see [De℄) 
ompa
ti�
ation of V .Consider the W -equivariant 
ompa
ti�
ation Y = P(C+ V ) of V , and extend M to the freeOY -moduleMY := OY 
X. Using a �ltration of X we 
an redu
e to the 
ase where X = E issimple.A straightforward 
omputation shows that with respe
t to the extensionMY of M and withrespe
t to any standard 
oordinate pat
h on Y , the poles at in�nity are also simple in this
ase. �5.2.3. We de�ne a morphism of abelian groups r : K0(O) ! Z by r([�(E)℄) = dimE; forE 2 Irr(CW ).Lemma 5.8. Let M 2 O. Then, Mreg is a ve
tor bundle of rank r([M ℄) on Vreg.Proof. Sin
eMreg is a �nitely generated C[Vreg℄-module with a 
onne
tion, it is a ve
tor bundle.Now, taking the rank of that ve
tor bundle indu
es a morphism K0(O) ! Z, whi
h takesthe 
orre
t value on �(E). �5.2.4.Proposition 5.9. Assume kH;i�kH;j+ i�jeH 62 Z, for all H 2 A and all 0 � i 6= j � eH�1. LetN be a �-�ltered obje
t in O. Then, for any M 2 O, we have HomO(M;N) �! Hom �O( �M; �N ).Proof. Assume �rst that M is also a �-�ltered obje
t. Then, we 
an write M = IndA�W Xand N = IndA�W Y with X;Y �nite dimensional �W -modules, nilpotent over �. The spa
eHomA(M;N) is the interse
tion of HomP(M;N) = P
Homk(X;Y ) with HomAreg(Mreg; Nreg).As in the proof of Theorem 5.3, we have to show that any element 	 of HomPreg(Mreg; Nreg)that 
ommutes with the a
tion of Areg extends to a P-morphism M ! N . Observe that 	 isnothing but a 
at, W -invariant se
tion of the 
onne
tion on HomAreg(Mreg; Nreg).The residue of this 
onne
tion on a hyperplane H 2 A is 
onstant, and has eigenvalueeH(kH;i � kH;j) on Homk(Xi; Yj), where Xi is the summand of X of WH -type det�ijWH (andlikewise for Yj).Lo
ally near a generi
 point p of H we expand 	 =Pl�l0 �lH	l with 	l holomorphi
 on Hnear p, of WH -type detljWH , and with 	l0 not identi
ally zero on H. From the lowest order termof the equation �vH (	) = 0 we see that there exist i; j su
h that i� j = l0mod(eHZ), and su
hthat l0 + eH(kH;i � kH;j) = 0. Thus l0 = 0 and 	 is regular on H. This 
ompletes the proof ofthe Proposition in the spe
ial 
ase where both M and N are �-�ltered.
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ase follows from the spe
ial 
ase above by repeating the part of the argumentfrom the proof of Theorem 5.3, starting with formula (9). �Remark 5.10. The 
ondition of the Proposition is equivalent to the semi-simpli
ity of theHe
ke algebra H(WH) of WH . One 
ould 
onje
ture that this assumption 
an be repla
ed bythe assumption that KZ(N) is a proje
tiveH(WH)-module (this would still not 
over 
ompletelyTheorem 5.3).Remark 5.11. If eH = 2 for all H, then the 
ondition of the Proposition reads: kH 62 12 + Z.5.2.5. Let C[(kH;i)1�i�eH�1℄ be the polynomial ring in the indeterminates kH;i with kw(H);i =kH;i for w 2 W . We have a 
anoni
al morphism of C-algebras C[(kH;i)℄! C; kH;i 7! kH;i. Letm be the kernel of that morphism and R the 
ompletion of C[(kH;i)℄ at the maximal ideal m.Fix x0 2 Vreg, and let BW = �1(Vreg=W; x0) be the Artin braid group asso
iated to W .Let HR = HR(W;V; 
) be the He
ke algebra of W over R, that is the quotient of R[BW ℄ bythe relations (T � 1) eH�1Yj=1 (T � det(s)�j � e2i�kH;j ) = 0for H 2 A, s 2 W the re
e
tion around H with non-trivial eigenvalue e2i�=eH and T an s-generator of the monodromy around H, 
f [BrMaRou, x4.C℄. Note that the parameters di�erfrom [BrMaRou℄ be
ause we will be using the horizontal se
tions fun
tor instead of the solutionfun
tor.We put HK = HR 
RK, where K is the �eld of fra
tions of R and H = HR 
R (R=m).Remark 5.12. It is known that HR is free of rank jW j over R for all W that do not havean irredu
ible 
omponent of type G17:::19, G24:::27, G29, G31:::34 in Shephard-Todd notation (inthese 
ases, the statement is 
onje
tural) [Mu℄.5.3. The Knizhnik-Zamolod
hikov fun
tor. Let M be a (C[Vreg℄ o W )-module, free of�nite rank over Preg = C[Vreg℄. Let r : M ! M 
C R be an R-linear integrable 
onne
tion.Then, the horizontal se
tions of r de�ne, via the monodromy representation, an RBW -moduleL, free over R.Let r0 : M ! M be the spe
ial �ber of r. Then, the horizontal se
tions of r0 is theCBW -module L
R (R=m).Let rK : M ! K 
CM be the generi
 �ber of r. Then, the horizontal se
tions of rK isthe KBW -module L 
RK.Taking horizontal se
tions de�nes an exa
t fun
tor from the 
ategory ofW -equivariant ve
torbundles on R 
C Vreg with an integrable 
onne
tion to the 
ategory of RBW -modules that arefree of �nite rank over R.Sin
e the 
onne
tion on �(R
CE)reg has regular singularities it follows that the 
onne
tionon Mreg has regular singularities for any M 2 O�R .Composing with the lo
alisation fun
tor, we obtain an exa
t fun
tor KZR from O�R to the
ategory of RBW -modules that are free of �nite rank over R.Similarly, we obtain exa
t fun
tors KZ : O ! CBW -mod and KZK : OK ! KBW -mod.It is well-known (
f. e.g. [BrMaRou, Theorem 4.12℄) that the representation of KBW onKZK(�(K 
C E)) fa
tors through HK to give a representation 
orresponding (via Tits' defor-mation Theorem) to the representation E of CW . Re
all that H = HR 
R (R=m).
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ke algebra a
tion). The fun
tor KZ : O ! CBW -mod fa
tors through afun
tor KZ : O=Otor ! H-mod. Similarly, the fun
tor KZK : OK ! KBW -mod fa
tors througha fun
tor KZK : OK=(OK)tor!HK-mod.For M 2 O�R , the a
tion of RBW on KZR(M) fa
tors through HR.We have a 
ommutative diagram OK KZK // HK-modO�R KZR //C
R�
��

K
R� OO HR-modC
R�
��

K
R�OOO KZ // H-modProof. First, Otor (and (OK)tor) are the kernels of lo
alisation.When M = �(K 
C E), then, we have the Knizhnik-Zamolod
hikov 
onne
tion and therepresentation KZK(M) fa
tors throughHK . Sin
eOK is semi-simple (Corollary 2.20), it followsthat the a
tion on KZK(M) fa
tors through HK for any M in OK.We now 
onsider the 
ase of a �-�ltered moduleM of OR. We know that the a
tion of KBWon K
R KZR(M) ' KZK(K
RM) fa
tors through HK. Sin
e KZR(M) is free over R, it followsthat the a
tion of RBW on KZR(M) fa
tors through HR.From this result, we dedu
e that the a
tion of CBW on KZ(�r(CW )) �! C
R KZR(�r(RW ))fa
tors through H. Sin
e every inde
omposable proje
tive obje
t of O is a dire
t summand of�r(CW ) for appropriate r (Corollary 2.7), it follows that the a
tion of CBW on KZ(M) fa
torsthrough H for every proje
tiveM , hen
e for every M in O. �5.4. Main results. In this subse
tion we assume that dimH = jW j, 
f. Remark 5.12.The fun
tor KZ : O ! H-mod is exa
t. Hen
e, it is represented by a proje
tive PKZ 2 O. Inother words, there exists an algebra morphism � : H ! (EndO PKZ)opp su
h that the fun
torKZ is isomorphi
 to HomO(PKZ;�).We know also, see x5.1.1, that the fun
tor KZ fa
tors through O=Otor ! H-mod.Theorem 5.14. The fun
tor KZ indu
es an equivalen
e: O=Otor �! H-mod.This Theorem is equivalent toTheorem 5.15. The morphism � : H ! (EndO PKZ)opp is an algebra isomorphism.Proof of Theorems 5.14-5.15. Re
all that the horizontal se
tions fun
tor gives an equivalen
efrom the 
ategory of ve
tor bundles over Vreg=W with a regular integrable 
onne
tion to the
ategory of �nite-dimensionalCBW -modules (Riemann-Hilbert 
orresponden
e, [De, TheoremsI.2.17 and II.5.9℄).We dedu
e from x5.1.1 that KZ : O=Otor ! H is a fully faithful exa
t fun
tor with image afull sub
ategory 
losed under taking subobje
ts and quotients. Furthermore, PKZ, the image ofPKZ in O=Otor, is a progenerator of O=Otor. Thus, Theorem 5.14 follows from Theorem 5.15.To prove Theorem 5.15, observe that the morphism � is surje
tive. Indeed, let C0 be a fullsub
ategory of an abelian 
ategory C, 
losed under taking quotients, and >F a left adjoint tothe in
lusion F : C0 ,! C. Then the adjun
tion morphism � : IdC ! F Æ (>F ) is surje
tive, sin
e
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anoni
al map from X to its largest quotient in C0. This proves surje
tivity of themorphism � above.Further, we have PKZ = ME2Irr(CW )(dimKZ(L(E)))P (E):Hen
e, we 
omputedim(EndO PKZ) =ME;F dimKZ(L(E)) dimKZ(L(F )) dimHom(P (E); P (F ))= ME;F;GdimKZ(L(E)) dimKZ(L(F ))[P (E) : �(G)℄[�(G) : L(F )℄= ME;F;GdimKZ(L(E)) dimKZ(L(F ))[r(G) : L(E)℄[�(G) : L(F )℄=MG dimKZ(r(G)) dimKZ(�(G))Now, the restri
tions of r(G) and �(G) to Vreg are ve
tor bundles of rank dimG (Proposi-tion 3.3 and Lemma 5.8), hen
e dim(EndO PKZ) = jW j = dimH. This shows that � is anisomorphism. Note that this rank 
omputation 
an also be a
hieved by deformation to R. �The following result shows that the 
ategory O 
an be 
ompletely re
overed from H and a
ertain H-module :Theorem 5.16 (Double-
entralizer property). Let Q be a proje
tive in O. Then, the
anoni
al map HomO(M;Q)! HomH�KZ(M) ; KZ(Q)� is an isomorphism, for any M 2 O.Furthermore, if X is a progenerator for O, then, we have an equivalen
e�EndH KZ(X)�opp-mod �! O:Proof. The �rst part follows from Theorems 5.3 and 5.15 and the se
ond from Corollary 5.5. �Remark 5.17. We 
onje
ture that, ifW = Sn, then O is equivalent to the 
ategory of �nitely-generated modules over the asso
iated q-S
hur algebra. That would imply, in parti
ular, that ifkH;1 = k1 < 0 is a negative real 
onstant, then the Cherednik algebras A(Sn) with parametersk1 and k1 � 1; respe
tively, are Morita equivalent.Let Z(H) denote the 
enter of the algebra H and Z(O) the 
enter of 
ategory O (i.e. thealgebra of endomorphisms of the identity fun
tor IdO).Corollary 5.18. The 
anoni
al morphism Z(O)! EndO PKZ indu
es an isomorphism Z(O) �!Z(H). In parti
ular, the fun
tor KZ indu
es a bije
tion between blo
ks of O and blo
ks of H.Proof. This follows immediately from Theorem 5.16 : given two rings B and C and a (B;C)-bimodule M su
h that the 
anoni
al morphisms B �! EndCopp(M) and C �! (EndBM)opp areisomorphisms, then we have a 
anoni
al isomorphism Z(B) �! Z(C). �The de
omposition matrix K0(OK) ! K0(O) is triangular. We dedu
e the triangularity ofde
omposition matri
es of He
ke algebras, in 
hara
teristi
 0 :Corollary 5.19. The de
omposition matrix K0(HK)! K0(H) is triangular.
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tor and Twist. Let � be a one-dimensional 
hara
ter of W and �� : CW �! CWthe automorphism given by w 7! �(w) � w for w 2 W . This extends to an isomorphism�� : A(
) �! A(�� (
)); V 3 � 7! �; V � 3 x 7! x; W 3 w 7! �(w) � w:We obtain an equivalen
e O(
) �! O(�� (
)), sending V (E) to V (E 
 ��1), where V stands forany of the symbols: L;�;r; P; I; T .For H 2 A, let dH 2 f1; : : : ; eHg su
h that �jWH = detdHjWH . De�ne an automorphism �� ofD(Vreg)oW by P 3 f 7! f; W 3 w 7! �(w) � wand �� 7! �� �XH �H(�)�H "H;eH � eH � kH;eH�dH for � 2 V:(for notation, see Remark 3.2). We have a 
ommutative diagramA(
) i //�� �
��

D(Vreg )oW���
��A(�� (
)) i // D(Vreg )oWGiven M a (D(Vreg) oW )-module, then (�� )�M �!M 
OVreg �(��1)reg .This self-equivalen
e of the 
ategory of W -equivariant bundles with a regular singular 
on-ne
tion on Vreg 
orresponds, via the horizontal se
tions fun
tor, to the automorphism of CBWgiven by T 7! e�2i�kH;eH�dH �(s)�1Tfor H 2 A, s 2 W the re
e
tion around H with non-trivial eigenvalue e2i�=eH and T an s-generator of the monodromy around H. This indu
es an isomorphism H(�) : H(W;
) �!H(W; �� (
)) and the following diagram is 
ommutative :O(
) (�� )�� //KZ

��

O(�� (
))KZ
��H(W;
)-mod H(�)� // H(W; �� (
))-mod5.4.2. KZ-fun
tor and Duality. We have a 
ommutative diagramDb(A(
)-mod) (�det)�ÆRHomA(
)(�;A(
))y� //

��

Db(A(�det(
y))-mod)opp
��Db((D(Vreg)oW )-
oh) � // Db((D(Vreg)oW )-
oh)oppwhere the verti
al arrows are given by lo
alisation followed by the Dunkl operator isomorphismi of Theorem 5.6 and the bottom horizontal arrow is the 
lassi
al D-module duality.Consider the isomorphism CBW �! (CBW )opp given by T 7! det(s)�1e2i�kH;1T�1
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e
tion around H with non-trivial eigenvalue e2i�=eH and T ans-generator of the monodromy around H. It indu
es an isomorphismH(y) : H(W;
) �! H(W;
y)opp:We 
on
lude that we have a 
ommutative diagramDb(O(
)) �D //KZ
��

Db(O(
y))oppKZ
��Db(H(W;
)) �H(y) // Db(H(W;
y))oppOn the other hand, by Lemma 5.2, we know that (�)_ preserves Otor, hen
e des
ends tothe quotient 
ategory O=Otor, i.e., there is an equivalen
e � making the following diagram
ommute: O(V; 
) ��_

//KZ
��

O(V �; 
y)oppKZ
��H(W;V; 
)-mod �� // H(W;V �; 
y)-modoppFurther, 
hoose a W -invariant hermitian form on V , i.e., a semi-linear W -equivariant iso-morphism � : V �! V �. Then, we get an isomorphism �1(Vreg=W; x0) �! �1(V �reg=W; �(x0)). Itindu
es an isomorphism H(�) : H(W;V; 
) �! H(W;V �; 
). Composing with H(y), we obtainan isomorphism H(� Æ (�)y) : H(W;V; 
) �! H(W;V �; 
y)opp, whi
h we denote below by  .Remark 5.20. One 
ould 
onje
ture that the two fun
tors � and  � are isomorphi
 (theyindu
e the same maps at the level of Grothendie
k groups).5.4.3. The A-module PKZ and Duality. Let Irr(W;V; 
) � Irr(W ) denote the subset formed by allE 2 Irr(W ) su
h that L(E)reg 6= 0. We have a bije
tion Irr(W;V; 
) �! Irr(W;V �; 
y) ; E 7! E_(Proposition 4.7 and Lemma 5.2). Thus, PKZ =LE2Irr(W;V;
)(dimKZ(L(E))) � P (E).To make the dependen
e on V and 
 expli
it, we will write PKZ = PKZ(V; 
).Proposition 5.21. (i) We have D(PKZ(V; 
)) ' PKZ(V; 
y) and PKZ(V; 
)_ ' PKZ(V �; 
). Inparti
ular, PKZ is both proje
tive and inje
tive.(ii) For E 2 Irr(W ), the following are equivalent� E 2 Irr(W;V; 
)� L(E) is a submodule of a standard module� P (E) is a submodule of PKZ� P (E) is inje
tive� P (E) is tilting� I(E) is proje
tive� I(E) is tiltingProof. The �rst 
laim follows from x5.4.2. Proposition 4.7 then implies that PKZ is inje
tive.The 
onsiderations above imply that if E 2 Irr(W;V; 
), then P (E) is inje
tive and tilting.The assertions about I(E) follow by applying (�)_.We know that if L(E) is a submodule of a �-�ltered module or a quotient of a r-�lteredmodule, then E 2 Irr(W;V; 
):



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 25This shows that any of the assertions about P (E) or I(E) implies that E 2 Irr(W;V; 
): �6. Relation to Kazhdan-Lusztig theory of 
ellsWe review some parts of Kazhdan-Lusztig and Lusztig's theory of Weyl group representations.6.1. Lusztig's algebra J .6.1.1. Let (W;S) be a �nite Weyl group, H be its He
ke algebra, a Z[v; v�1℄-algebra with basisfTwgw2W and relationsTwTw0 = Tww0 if l(ww0) = l(w) + l(w0) and (Ts + 1)(Ts � v2) = 0 for s 2 S:Lusztig asso
iated to W a Z-ring J , usually referred to as asymptoti
 He
ke algebra, [Lu3,x2.3℄. Let $ : H ! Z[v; v�1℄
Z J be Lusztig's morphism of Z[v; v�1℄-algebras [Lu3, x2.4℄.The ring Q
Z J is semi-simple and the morphism IdQ(v)
$ is an isomorphism.For any 
ommutative Q[v; v�1℄-algebra R we put HR := R 
Z[v;v�1℄ H.De�nition 6.1. The HR-modules S(M) = $�(R
QM), for M a simple Q
ZJ -module, willbe referred to as standard HR-modules.3When R = Q(v), then the standard HR-modules are simple and this gives a bije
tion fromthe set of simple (Q
Z J )-modules to the set of simple (Q(v)
Z[v;v�1℄ H)-modules.Similarly, takingK = Q[v; v�1℄=(v�1), we obtain a bije
tion from the set of simple (Q
ZJ )-modules to the set of simple QW -modules.We will identify these sets of simple modules via these bije
tions.We have an order �LR on W 
onstru
ted in [KaLu, p.167℄. We denote by C the set oftwo-sided 
ells of W and by � the order on C 
oming from �LR.Let fCwgw2W be the Kazhdan-Lusztig basis for H. Let I be an ideal of C, i.e., a subset su
hthat given 
 � 
0, then 
0 2 I ) 
 2 I. We put HI =L
2I;w2
Z[v; v�1℄Cw. This is a two-sidedideal of H [Lu1, p.137℄.The ring J 
omes with a Z-basis ftwgw2W and we put J
 = Lw2
Ztw. This is a blo
k ofJ and J = L
2C J
. The 
orresponding partition of the set of simple (Q 
Z J )-modules is
alled the partition into families.Given I an ideal of C, we denote by IÆ the set of 
 2 I su
h that there is 
0 2 I with 
 < 
0.The following is a slight reformulation of [Lu3, x1.4℄ :Proposition 6.2. Let I be an ideal of C. Then, the assignment tw 7! Cw indu
es an isomor-phism of H-modules M
2I�IÆ$��Z[v; v�1℄
Z J
� �! HI=HIÆ :In parti
ular, the (Q[v; v�1℄
Z[v;v�1℄ H)-module Q[v; v�1℄
Z[v;v�1℄ (HI=HIÆ) is a dire
t sumof standard HQ[v;v�1℄-modules.This proposition gives a 
hara
terization of standard HQ[v;v�1℄-modules via the He
ke algebra�ltration 
oming from two-sided 
ells.3There seems to be no name for su
h modules in the literature.
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onsider �ltrations 
oming from 
ertain fun
tions on the set of two-sided 
ells.De�nition 6.3. A sorting fun
tion f : W ! Z is a fun
tion 
onstant on two-sided 
ells andsu
h that 
0 < 
) f(
0) > f(
).Given a sorting fun
tion f , we putH�iR :=Lw2W;f(w)�iR�Cw andH>iR :=Lw2W;f(w)>iR � Cw:Then, H�iR is a two-sided ideal of HR, sin
e I = f
 2 C j f(
) � ig is an ideal. Similarly,H>iR isa two-sided ideal of HR. Furthermore, IÆ � f
 2 C j f(
) > ig. Consequently, we dedu
e fromProposition 6.2 :Corollary 6.4. We have an isomorphism of H-modulesM
2C;f(
)=i$��Z[v; v�1℄
Z J
� �!H�i=H>i:In parti
ular, the (Q[v; v�1℄
Z[v;v�1℄H)-module Q[v; v�1℄
Z[v;v�1℄ (H�i=H>i) is a dire
t sumof standard HQ[v;v�1℄-modules.Thus, we have another 
hara
terization of standard HQ[v;v�1℄-modules via the He
ke algebra�ltration 
oming from f .Let F be the set of families of irredu
ible 
hara
ters ofW . We transfer the 
on
epts asso
iatedwith C to F via the 
anoni
al bije
tion between C and F .In parti
ular, we have a fun
tion f : Irr(W )! Z 
onstant on families.We haveH�i = H\(Lf(E)�i eEQ(v)
Z[v;v�1℄H), where eE is the primitive 
entral idempotentof Q(v)
Z[v;v�1℄H that a
ts as 1 on the simple (Q(v)
Z[v;v�1℄H)-module 
orresponding to E.This shows that, if R is a lo
alisation of Q[v; v�1℄, then the �ltration on HR = R
Z[v;v�1℄Hgiven by f 
an be re
overed without using the Kazhdan-Lusztig basis. We obtainProposition 6.5. Let R be a lo
alisation of Q[v; v�1℄ and P be a proje
tive HR-module. LetQ�i (resp. Q>i) be the sum of the simple submodules E of Q(v)
RP su
h that f(E) � i (resp.f(E) > i).Then, (P \Q�i)=(P \Q>i) is a dire
t sum of standard HR-modules. �Thus, any sorting fun
tion yields a 
hara
terization of the standard HR-modules withoutusing the Kazhdan-Lusztig basis.6.1.3. Given E 2 Irr(W ), we denote by aE (resp. AE) the lowest (resp. highest) power of qin the generi
 degree of E [Lu1, x4.1.1℄.By [Lu2, Theorem 5.4 and Corollary 6.3 (b)℄, Lusztig's a-fun
tion is a sorting fun
tion. The
orresponding �ltrations on proje
tive modules have been 
onsidered in [GeRou℄.Write E < E 0 for the order on F arising from <KL via the 
anoni
al bije
tion between C andF . The following Lemma is a 
lassi
al result :Lemma 6.6. Let E;E0 2 F . If E < E0, then aE > aE0 and AE > AE0.Proof. By [KaLu, Remark 3.3(a)℄, we have v �LR w if and only if w0w �LR w0v, where w0 isthe element of maximal length. Left multipli
ation by w0 indu
es a automorphism of C. The
orresponding automorphism of F is tensor produ
t by det [Lu1, Lemma 5.14℄. It follows thatE < E0 if and only if E0 
 det < E 
 det (
f also [BaVo, Proposition 2.25℄).We have AE = N � aE
det, where N is the number of positive roots of W [Lu1, 5.11.5℄.The Lemma is now a 
onsequen
e of the fa
t that E < E 0 ) aE > aE). �
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e there is another sorting fun
tion :Proposition 6.7. The fun
tion aE +AE is a sorting fun
tion.6.2. Standard modules for the He
ke algebra via KZ-fun
tor.6.2.1. We 
onsider the setting of x3.1 with kH;1 = k1 independent of H. A

ording to [BrMi,x4.21 and Proposition 4.1℄ we have 
E = k1(aE +AE):We 
an �nally identify the images of the standard modules �(E) of O via KZ :Theorem 6.8. Assume kH;1 is a positive real number independent of H. Let E 2 Irr(CW ).Then, KZ(�(E)) �! S(E).Proof. We prove the result for R lo
al 
omplete as in x5.2.5 instead of C. The �-�ltrationof proje
tive obje
ts of OR be
omes, via KZR, the �ltration of Proposition 6.5 for the sortingfun
tion f(E) = aE+AE and the asso
iated quotients are dire
t sums of standard HR-modules.It follows that the modules KZR(�(R 
 E)) for E 2 Irr(W ) 
oin
ide with the standard HR-modules. Sin
e KZK(�(K
E)) �! K
S(E) (
f the remark before Theorem 5.13)), we dedu
ethe Theorem. �Remark 6.9. If the number kH;1 (whi
h is independent of H) is non-real, then the 
ategoryO and the algebra H are both semi-simple, hen
e it is still true that KZ(�(E)) ' S(E). If thenumber is non-positive real, then a similar approa
h shows that KZ(�(E)) ' S(E)�.Corollary 6.10. Assume kH;1 is a positive real number and W has type An. Then, KZ(�(E))is isomorphi
 to the Spe
ht module 
orresponding to E.Proof. The result is a 
onsequen
e of [Na, GaM
℄, where it is proven that the module S(E) is aSpe
ht module. Alternatively, any proje
tiveH-module is known to have a �ltration by Spe
htmodules su
h that the order of terms in the �ltration is 
ompatible with the dominan
e orderon partitions. The 
laim of the Corollary 
an be easily dedu
ed from this by 
omparing withthe order relation on two-sided 
ells. �Corollary 6.11. If KZ(L(E)) 6= 0, then KZ(P (E)) is a proje
tive H-module and, for anyF 2 Irr(W ), we have [S(F ) : KZ(L(E))℄ = [P (E) : �(F )℄.Proof. This is an immediate 
onsequen
e of Theorem 6.8, the re
ipro
ity formula in x2.6.2, andProposition 3.3. �Referen
es[A℄ S. Arkhipov, Semi-in�nite 
ohomology of asso
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