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ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRASVICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERAbstrat. We study the ategory O of representations of the rational Cherednik algebra AWattahed to a omplex reetion group W . We onstrut an exat funtor, alled Knizhnik-Zamolodhikov funtor: O ! HW -mod, where HW is the (�nite) Iwahori-Heke algebra assoi-ated toW . We prove that the Knizhnik-Zamolodhikov funtor indues an equivalene betweenO=Otor, the quotient of O by the subategory of AW -modules supported on the disriminant,and the ategory of �nite-dimensionalHW -modules. The standard AW -modules go, under thisequivalene, to ertain modules arising in Kazhdan-Lusztig theory of \ells", provided W is aWeyl group and the Heke algebra HW has equal parameters. We prove that the ategory Ois equivalent to the module ategory over a �nite dimensional algebra, a generalized "q-Shuralgebra" assoiated to W . Contents1. Introdution 12. Category O 32.1. Algebras with triangular deomposition. 32.2. Loally nilpotent modules 32.3. Standard modules 42.4. Graded modules 52.5. Highest weight theory 72.6. Properties of ategory O 83. Rational Cherednik algebras 93.1. Basi de�nitions 93.2. Category O for the rational Cherednik algebra 114. Duality, Tiltings, and Projetives 124.1. Ringel duality 124.2. Naive duality for Cherednik algebras 134.3. Homologial properties of Cherednik algebras 145. Heke algebras via monodromy 165.1. Loalisation 165.2. Dunkl operators 185.3. The Knizhnik-Zamolodhikov funtor. 205.4. Main results 216. Relation to Kazhdan-Lusztig theory of ells 256.1. Lusztig's algebra J 256.2. Standard modules for the Heke algebra via KZ-funtor 27Referenes 271. IntrodutionLet W be a omplex reetion group ating on a vetor spae V . Let AW denote the rationalCherednik algebra introdued in [EtGi℄ as a ertain deformation of D(V )oW , the ross-produt1



2 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERof W with the algebra of polynomial di�erential operators on V . The algebra AW an be alsorealized as an algebra of operators (Dunkl operators) ating on polynomial funtions on V .When W is a Weyl group, AW is a rational degeneration of the double aÆne Heke algebra.A nie ategory O of AW -modules has been disovered in [DuOp℄, f. also [BeEtGi℄. It sharesmany similarities with the Bernstein-Gelfand-Gelfand ategory O for a �nite-dimensional semi-simple Lie algebra.We develop a general approah to the ategory O for a rational Cherednik algebra, similarin spirit to Soergel's analysis, see [So1℄, of the ategory O in the Lie algebra ase. Spei�ally,in addition to the algebra AW , we onsider an appropriate (�nite) Heke algebra HW , andonstrut an exat funtor KZ : O !HW -mod, that may be thought of as a Cherednik algebraanalogue of the funtor V of [So1℄. One of our main results says that the funtor KZ is fullyfaithful on projetives. Thus, the (nonommutative!) Heke algebra plays, in our ase, therole similar to that the oinvariant algebra (= ohomology of the ag manifold) plays in theLie algebra ase. It is also interesting to note that, in both ases, the algebra in question isFrobenius.To prove our results, in x2 we develop some basi representation theory over a ground ring(whih is not neessarily a �eld) of a general assoiative algebra with a triangular deompo-sition. This generalizes earlier work of the seond author [Gu℄ and of the last two authors(unpublished). Suh generality will be essential for us in order to use deformation argumentsin x5. The results of setion 2 are applied to Cherednik algebras in x3.2.In x4, we explain how to generalize some lassial onstrutions for D(V ), the Weyl algebra,(suh as harateristi varieties, duality) to the rational Cherednik algebra. We study twokinds of dualities. One of them is related to Fourier transform while the other, muh moreimportant one, generalizes the usual (Verdier type) duality on D-modules. This enables us toshow that the Ringel dual of ategory O is a ategory O for the dual reetion group. We alsogive a formula for the dimension of the harateristi variety involving only the highest weightstruture of O.Our most important results are onentrated in x5.4. We use the de Rham funtor forKnizhnik-Zamolodhikov type D-modules over the omplement of the rami�ation lous in V .This way, we relate the ategory O with a Heke algebra. We prove that the ategory O anbe reovered from its quotient by the subategory of objets with non-maximal harateristivariety (Theorem 5.3 and Corollary 5.5).Then, we obtain a \double entralizer" Theorem 5.16, asserting in partiular that the ategoryO is equivalent to the ategory of modules over the endomorphism ring of some Heke algebramodule. A ruial point is the proof that the de Rham funtor sends the D-modules omingfrom objets of O to representations of the braid group that fator through the Heke algebra(Theorem 5.13).In a di�erent perspetive, our results provide a solution to the problem of assoiating ageneralized \q-Shur algebra" to an arbitrary �nite omplex reetion group W . This seems tobe new even when W is a Weyl group (exept for types A;B). For instane, letW be the Weylgroup of an irreduible simply-laed root system. Then, the data de�ning the Cherednik algebraAW redues to a single omplex parameter  2 C. In this ase, HW is the standard Iwahori-Heke algebra ofW , speialised at the parameter q = e2�i. If  is a rational number, then q is aroot of unity, and the orresponding ategory HW -mod beomes quite ompliated. Our resultsshow that the ategory O for AW may be viewed as a natural \quasi-hereditary over" of the



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 3ategory HW -mod, whih is not itself quasi-hereditary. As a onsequene, the deompositionmatries of Heke algebras (in harateristi 0) are triangular (Corollary 5.19). We remark that,in view of [CPS2℄, one might have expeted on general grounds that the ategory HW -mod onlyhas a \strati�ed over", whih is weaker than having a \quasi-hereditary over".The reader should be reminded that, in type A, a well-known \quasi-hereditary over" ofHW -mod is provided by the q-Shur algebra. We expet that the latter ategory is equivalentto the ategory O. Furthermore, for an arbitrary �nite Weyl group W , we prove in x6 that theKZ-funtor sends the standard modules in O to modules over the Heke algebra (with equalparameters) that an be desribed via Kazhdan-Lusztig's theory of ells. It follows in partiularthat, in type A, the standard modules in ategory O go to Speht (or `dual Speht', dependingon the sign of parameter `') HW -modules, introdued in [DJ℄.Aknowledgments. The seond named author gratefully aknowledges the �nanial support of theFonds NATEQ. The third named author was partially supported by a Pioner grant of the Netherlands Organi-zation for Sienti� Researh (NWO). 2. Category O2.1. Algebras with triangular deomposition. In this setion, we assume given an asso-iative algebra A with a triangular deomposition. We study a ategory O(A) of A-modules,similar to the Bernstein-Gelfand-Gelfand ategory O for a omplex semi-simple Lie algebra.The main result of this setion is Theorem 2.19 below, saying that the ategory O(A) is ahighest weight ategory (in the sense of [CPS1℄).Throughout this setion 2, let k0 be an algebraially losed �eld and k a ommutative noe-therian k0-algebra.Let A be a graded k-algebra with three graded subalgebras B, �B and H suh that� A = �B 
H 
B as k-modules� B and �B are projetive over k� B 
H = H 
B and H 
 �B = �B 
H� B =Li�0 Bi, �B =Li�0 �Bi, and B0 = �B0 = k and H � A0.� H = k 
k0 H(k0) where H(k0) is a �nite dimensional semi-simple split k0-algebra� the grading on A is inner, i.e., there exists � 2 A0 suh that Ai = fu 2 Aj�u�u� = iug.We denote by BH and �BH the subalgebras B
H and �B
H. We put Bi = B�i. We denoteby Irr(H(k0)) the set of isomorphism lasses of �nite dimensional simple H(k0)-modules. Weput � = �0 � �0 with �0 2 �B 
H 
B>0 and �0 2 Z(H). For E 2 Irr(H(k0)), we denote by Ethe salar by whih �0 ats on k 
k0 E.The theory developped here is losely related to the one developped by Soergel [So2, x3-6℄ inthe ase where g is a graded Lie algebra with g0 redutive, A = U(g), B = U(g>0), �B = U(g<0)and H = U(g0).12.2. Loally nilpotent modules. We denote by Oln the full subategory of the ategory ofA-modules onsisting of those modules that are loally nilpotent for B, i.e., an A-module Mis in Oln if for every m 2 M , there exists n � 0 suh that B>n � m = 0. This is a Serresubategory of the ategory of A-modules.1In the Lie algebra ase, the algebra H = U(g0) is not �nite dimensional. One then has to restrit oneself tothe onsideration of H-semisimple A-modules only. The theory developed below easily extends to suh a ase.



4 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERRemark 2.1. The anonial funtor Db(Oln)! Db(A) is not faithful in general. Nevertheless,for i = 0; 1, and any M;M 0 2 Oln, one still has ExtiOln(M;M 0) �! ExtiA(M;M 0).2.3. Standard modules.2.3.1. Let h 2 H. We denote by �h : �B ! �B 
 H � A the map de�ned by �h(�b) = h 
 �b.Similarly, we denote by  h : B ! H 
B � A the map de�ned by  h(b) = b
 h.Let E be an H-module. The augmentation B ! B=B>0 = k indues a morphism of algebrasBH ! H and we view E as a BH-module by restrition via this morphism. All simple BH-modules that are loally nilpotent over B are obtained by this onstrution, starting with E asimple H-module.We put �(E) = IndABH E = A
BH E:The anonial isomorphism �(E) �! �B 
E is an isomorphism of graded �BH-modules (E isviewed in degree 0), where �B ats by multipliation on �B and the ation of h 2 H is given by�h 
H 1E : �B 
 E ! �B 
H 
H E = �B 
 E.We now put r(E) = Homgr��BH(A;E) = LiHomgri�BH(A;E) (this is also the submodule ofelements of Hom �BH(A;E) that are loally �nite for B). Here, E is viewed as a �BH-module viathe anonial morphism �BH � ( �B= �B>0)
H = H.We have an isomorphism of graded BH-modules r(E) �! Homk(B; k) 
 E where B atsby left multipliation on Homk(B; k) and the ation of h 2 H is given by f 
 e 7! (b 
 e 7!(1
 f)( h(b))e).The A-module �(E) is a graded module, generated by its degree 0 omponent. The A-module r(E) is also graded. Both �(E) and r(E) are onentrated in non-negative degrees,hene are loally nilpotent for B.2.3.2. We haveExtiA(�(E);r(F )) ' Exti�BH(Res �BH �(E); F ) ' Exti�BH(Ind �BHH E;F ) ' ExtiH(E;F ):It follows that, when k is a �eld and E;F are simple, then(1) ExtiA(�(E);r(F )) = 0 if i 6= 0 or E 6' F and HomA(�(E);r(E)) ' k:Let N be any A-module. We have(2) HomA(�(E); N) �! HomBH(E;ResBH N)2.3.3. A �-�ltration for a A-module M is a �ltration 0 = M0 � M1 � � � � � Mn = M withMi+1=Mi ' �(k 
k0 Ei) for some Ei 2 Irr(H(k0)). We denote by O� the full subategory ofOln of objets with a �-�ltration.Given an H-module E and n � 0, we also onsider more general modules�n(E) = IndABH�(B=B>n)
k E�The modules �n(k 
k0 F ) have a �-�ltration, when F is a �nite dimensional H(k0)-module.For N a A-module, we haveHomA(�n(E); N) �! HomBH�(B=B>n)
k E;N�:As a onsequene, we have a haraterization of B-loally nilpotent A-modules :Proposition 2.2. Let N be a A-module. Then, the following are equivalent



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 5� N is in Oln� N is a quotient of a (possibily in�nite) sum of �n(E)'s� N has an asending �ltration whose suessive quotients are quotients of �(E)'s.2.4. Graded modules.2.4.1. Given � 2 k and M a A-module, de�ne generalized weight spaes in M byW�(M) = fm 2M j (� � �)nm = 0 for n� 0g:LetO be the full subategory ofOln onsisting of those modulesM suh thatM =P�2kW�(M)where W�(M) is �nitely generated over k, for every � 2 k. This is a Serre subategory of theategory of A-modules.Let ~O be the ategory of graded A-modules that are in O. This is a Serre subategory ofthe ategory of graded A-modules.Let ~O� be the full subategory of ~O onsisting of those objetsM suh that Mi � Wi��(M)for all i. Note that this amounts to requiring that �0 � (i + F � �) ats nilpotently onHomgriH(k 
k0 F;M) for F 2 Irr(H(k0)), sine � and �0 ommute.More generally, if I is a subset of k, we denote by ~OI the full subategory of ~O onsisting ofthose objets M suh that Mi �P�2IWi��(M).We denote by ~�(E) the graded version of �(E) (it is generated in degree 0 and has no termsin negative degrees). Further, write hri for `grading shift by r' of a graded vetor spae.Lemma 2.3. Let E 2 Irr(H(k0)). We have ~�(k 
k0 E)hri 2 ~OE�r.Proof. Note that �0 ats as zero on ~�(k
k0 E)0, sine B>0 ats as zero on it. So, � ats as �Eon it. It follows that � ats by i� E on �Bi ~�(k 
k0 E)0 = ~�(k 
k0 E)i and we are done. �2.4.2. Let P be the quotient of SE2Irr(H(k0))(E + Z) by the equivalene relation given as thetransitive losure of the relation : � � � if � � � is not invertible.We make the following assumption until the end of x2.4.Hypothesis 1. We assume that E � E + n for some n 2 Z implies n = 0 (this holds forexample when k is a loal ring of harateristi zero).Proposition 2.4. We have ~O =La2P ~Oa.The image by the anonial funtor ~O ! O of ~Oa+n is a full subategory Oa+Z independentof n 2 Z.We have O =La2P=ZOa+Z and the forgetful funtor ~Oa �! Oa+Z is an equivalene.Proof. Let M be an objet of O. Let a 2 P and Ma =P�2�a+ZW�(M). By Lemma 2.3 andProposition 2.2, we have a deomposition M =La2P=ZMa as A-modules.Similarly, given ~M 2 ~O, we have ~M =La2P ~Ma where~Ma =Mi X�2a(Wi��(M) \Mi) 2 ~Oa:Given M 2 Oa+Z, we put a grading on M by setting Mi =P�2i�aW�(M) (here we use theassumption on k). This de�nes an element of ~Oa and ompletes the proof of the proposition. �We denote by pa : ~O ! ~Oa the projetion funtor.



6 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIER2.4.3. We now give a onstrution of projetive objets (under Hypothesis 1).Lemma 2.5. Let a 2 P and d 2 Z. There is an integer r suh that the anonial mapHom( ~�m(H)h�di;M)!Mdis an isomorphism for all m � r and M 2 ~Oa.Proof. Replaing M by Mhdi and a by a+ d, we an assume that d = 0.There is an integer r suh that pa( ~�(H)hr0i) = 0 for r0 � r. The exat sequene0! ~�(Bm 
H)hmi ! ~�m(H)! ~�m�1(H)! 0shows that the anonial mapHom( ~�r(H);M) �! Hom( ~�m(H);M)is an isomorphism for any M 2 ~Oa and m � r. Equivalently, the anonial mapHomB(B=B�r;M) �! HomB(B=B�m;M)is an isomorphism. Sine M is loally B-nilpotent, this gives an isomorphismHom( ~�m(H);M) �!M0: �Corollary 2.6. Let E 2 Irr(H(k0)) and a 2 E +Z. Then, the objet pa( ~�r(k 
k0 E)ha� Ei)of ~Oa is independent of r, for r � 0. It is projetive, has a �ltration by modules ~�(k
k0 F )hriand has a quotient isomorphi to ~�(k 
k0 E)ha� Ei.Corollary 2.7. Let E 2 Irr(H(k0)). Then, for r� 0, the module �r(k
k0 E) has a projetivediret summand whih is �-�ltered and has a quotient isomorphi to �(k 
k0 E).Corollary 2.8. There is an integer r suh that �r(H) ontains a progenerator of O as a diretsummand.Lemma 2.9. Let E;F 2 Irr(H(k0)) suh that Ext1O(�(k 
k0 E);�(k 
k0 F )) 6= 0. Then,F � E is a positive integer.Proof. By Lemma 2.3 and Proposition 2.4, we have Ext1O(�(k
k0E);�(k
k0F )) = 0 if F�Eis not an integer. Assume now F � E is an integer. ThenExt1O(�(k 
k0 E);�(k 
k0 F )) ' Ext1~O( ~�(k 
k0 E); ~�(k 
k0 F )hF � Ei)' Ext1A( ~�(k 
k0 E); ~�(k 
k0 F )hF � Ei);by Lemma 2.3 and Proposition 2.4. Now,Ext1A( ~�(k 
k0 E); ~�(k 
k0 F )hF � Ei) ' Ext1BH(k 
k0 E;ResBH ~�(k 
k0 F )hF � Ei):If the last Ext1 is non zero, then F � E is a positive integer. �Corollary 2.10. Assume k is a �eld. Let E 2 Irr(H). Then, L(E) has a projetive overP (E) with a �ltration Q0 = 0 � Q1 � � � � � Qd = P (E) suh that Qi=Qi�1 ' �(Fi) for someFi 2 Irr(H), Fi � E is a positive integer for i 6= d and Fd = E.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 7Proof. We know already that there is an indeomposable projetive module P (E) as in thestatement satisfying all assumptions but the one on Fi � E, by Corollary 2.7.Take r 6= d maximal suh that Qr=Qr�1 ' �(F ) with F � E not a positive integer. ByLemma 2.9, the extension of P (E)=Qr�1 by �(F ) splits. So, we have a surjetive morphismP (E)! �(E)��(F ). This is impossible sine P (E) is indeomposable and projetive. �2.5. Highest weight theory.2.5.1. We assume here that k is a �eld.For E a simple H-module, all proper submodules of �(E) are graded submodules by Propo-sition 2.4, hene are ontained in �(E)>0. Consequently, �(E) has a unique maximal propersubmodule, hene a unique simple quotient whih we denote by L(E).It follows from (1) that L(E) is the unique simple submodule of r(E) and that L(E) 6' L(F )for E 6' F .Proposition 2.11. The simple objets of Oln are the L(E) for E 2 Irr(H).Proof. Let N 2 Oln. Then there is a simple H-module E suh that HomBH(E;ResBH N) 6= 0.By (2), it follows that every simple objet ofOln is a quotient of �(E) for some simpleH-moduleE. �2.5.2. Let M be a A-module. Let p(M) be the set of elements of M annihilated by B>0. Thisis an H-submodule of M .Lemma 2.12. Let M be a A-module and E an H-module. Then,� M is a quotient of �(E) if and only if there is a morphism of H-modules ' : E ! p(M)suh that M = A'(E) ;� If k is a �eld and E is simple, thenM ' L(E) if and only ifM = Ap(M) and p(M) ' E.In partiular, Ap(M) is the largest submodule of M that is a quotient of �(F ) for some H-module F .Proof. The �rst assertion follows from (2) and the isomorphismHomBH(E;ResBHM) ' HomH(E; p(M)):Now, we assume k is a �eld and E is simple.Assume p(M) ' E and M = Ap(M). Then, M is in Oln. Let N be a non-zero submoduleof M . We have 0 6= p(N) � p(M), hene p(N) = p(M) and N = M . So, M is simple andisomorphi to L(E) sine M is a quotient of �(E).Assume M ' L(E). Sine dimk Hom(�(F ); L(E)) = 1 if E ' F , and this Hom-spaevanishes otherwise, it follows from (2) that p(M) ' E. �Let Mf0g = 0 and de�ne by indution Nfig = M=Mfig, Lfig = Ap(Nfig) and Mfi + 1gas the inverse image of Lfig in M . We have obtained a sequene of submodules of M , 0 =Mf0g �Mf1g � � � � �M .Sine �(E) is loally nilpotent for B, the following proposition is lear. It desribes how theobjets of Oln are onstruted from �(E)'s (f Proposition 2.2).Proposition 2.13. A A-module M is loally nilpotent for B if and only if SiMfig =M , i.e.,if M has a �ltration whose suessive quotients are quotients of �(E)'s.



8 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERLemma 2.14. Assume k is a �eld. Every A-module quotient M of �(E) has a �nite Jordan-H�older series 0 = M0 � M1 � � � � � Md = M with quotients M i=M i�1 ' L(Fi) suh thatFi 2 Irr(kW ), E � Fi is a positive integer for i 6= d and Fd = E.Proof. By Proposition 2.4, we an assume F � E 2 Z. From Proposition 2.4, it follows thatM inherits a grading from �(E) (with M0 6= 0 and M<0 = 0). Note that sine �0 ats as zeroon p(M), we have p(M) �LF2Irr(H)ME�F .We will �rst show that M has a simple submodule.Take i maximal suh that p(M)i 6= 0 and F a simple H-submodule of p(M)i. Let L = AF .Then, p(L) � p(M) \M�i and p(L) � F � L>i, hene p(L) = F . It follows from Lemma 2.12that L ' L(F ) and we are done.Let d(M) =PF2Irr(H) dimME�F .We put M 0 = M=L. We have d(M 0) < d(M). So, the lemma follows by indution ond(M). �2.6. Properties of ategory O. We assume here in x2.6 that k is a �eld. We now derivestrutural properties of our ategories.2.6.1.Corollary 2.15. Every objet of Oln has an asending �ltration whose suessive quotients aresemi-simple.Proof. Follows from Lemma 2.14 and Proposition 2.2. �Corollary 2.16. Every objet of O has a �nite Jordan-H�older series.Proof. The multipliity of L(E) in a �ltration of M 2 O given by Corollary 2.15 is bounded bydimW�E (M), hene the �ltration must be �nite. �Corollary 2.17. The ategory ~Oa is generated by the L(E)hri, with r = E � a.Proof. Follows from Lemma 2.3 and Proposition 2.11. �Corollary 2.18. Given a 2 k, the full abelian Serre subategory of the ategory of A-modulesgenerated by the L(E) with E 2 a+ Z is Oa+Z.2.6.2.Theorem 2.19. The ategory O is a highest weight ategory (in the sense of [CPS1℄) withrespet to the relation: E < F if F � E is a positive integer.Proof. Follows from Corollary 2.10 and Lemma 2.14. �The standard and ostandard objets are the �(E) and r(E). There are projetive modulesP (E), injetive modules I(E), tilting modules T (E). We have reiproity formulas, f. [CPS1,Theorem 3.11℄:[I(E) : r(F )℄ = [�(F ) : L(E)℄ and [P (E) : �(F )℄ = [r(F ) : L(E)℄:Corollary 2.20. If E � F 62 Z � f0g for all E;F 2 Irr(H(k0)), then O is semi-simple.Proposition 2.21. Let M 2 O. The following assertions are equivalent� M has a �-�ltration



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 9� ExtiO(M;r(H)) = 0 for i > 0� Ext1O(M;r(H)) = 0� the restrition of M to �B is free.Proof. The equivalene between the �rst three assertions is lassial. The remaining equiva-lenes follow from the isomorphism Ext1O(M;r(H)) �! Ext1A(M;r(H)) �! Ext1�B(M;k). �2.6.3. From Proposition 2.2, we dedueLemma 2.22. Let M 2 Oln. The following onditions are equivalent� M 2 O� M is �nitely generated as a A-module� M is �nitely generated as a �B-module.Lemma 2.23. There is r � 0 suh that for all M 2 O, a 2 k and m in the generalizedeigenspae for �0 for the eigenvalue a, then (�0 � a)rm = 0.Proof. The ation of �0 on �(H) is semi-simple. It follows that, given r � 0, a 2 k andm 2 �r(H) in the generalized eigenspae for �0 for the eigenvalue a, then (�0 � a)rm = 0.Now, by Corollary 2.7, there is some integer r suh that every objet of O is a quotient of�r(H)l for some l. �Proposition 2.24. There is r � 0 suh that every module in Oln is generated by the kernelof B�r. Further, there is an integer r > 0 suh that for M 2 Oln, we have Mfig = Mfrg fori � r.Proof. Let r � 0 suh that every projetive indeomposable objet in O is a quotient of�r�1(H). This means that every objet in O is generated by the kernel of B�r. Now, onsiderM 2 Oln and m 2 M . Let N be the A-submodule of M generated by m. This is in O, henem is in the submodule of N generated by the kernel of B�r. �Proposition 2.25. Every objet in Oln is generated by the 0-generalized eigenspae of �0.Proof. It is enough to prove the proposition for projetive indeomposable objets in O, henefor �r's, where it is obvious. �2.6.4. Let Q be a progenerator for O (f Corollary 2.8) and � = (EndAQ)opp. Then, � is a�nitely generated projetive O-module. We have mutually inverse standard equivalenes(3) Hom(Q;�) : O �! �-mod; Q
� (�) : �-mod �! O:Let now X be a (non-neessarily �nitely generated) �-module. Then, Q
� X is a quotientof Q(I) for some set I, where X is a quotient of �(I). Now, Q(I) is in Oln. So, the funtorQ
� (�) : �-Mod ! A-Mod takes values in Oln and we have equivalenesHom(Q;�) : Oln �! �-Mod; Q
� � : �-Mod �! Oln:3. Rational Cherednik algebras3.1. Basi de�nitions. Let V be a �nite dimensional vetor spae and W � GL(V ) a �niteomplex reetion group. Let A be the set of reeting hyperplanes of W . Given H 2 A;let WH � W be the subgroup formed by the elements of W that �x H pointwise. We hoosevH 2 V suh that CvH is a WH -stable omplement to H. Also, let �H 2 V � be a linear formwith kernel H.



10 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERLet k be a noetherian ommutative C-algebra. The group W ats naturally on A and onthe group algebra kW , by onjugation. Let  : A ! kW ; H 7! H ; be a W -equivariant mapsuh that H is an element of kWH � kW with trae zero, for eah H 2 A.Given  as above, one introdues an assoiative k-algebra A(V; ); the rational Cherednikalgebra. It is de�ned as the quotient of k 
C T (V � V �) oW , the ross-produt of W withk-tensor algebra, by the relations[�; �℄ = 0 for �; � 2 V; [x; y℄ = 0 for x; y 2 V �[�; x℄ = h�; xi + XH2A h�; �HihvH ; xihvH; �Hi HRemark 3.1. Let Re � W denote the set of (pseudo)-reetions. Clearly Re is an AdW -stable subset. Giving  as above is equivalent to giving a W -invariant funtion  : Re !k ; g 7! g suh that H = Pg2WHrf1g g � g. One may use the funtion  instead of , andwrite vg 2 V , resp. �g 2 V �, instead of vH, resp. �H , for any g 2 WH r f1g. Then the lastommutation relation in the algebra A(V; ) reads:[�; x℄ = h�; xi + Xg2Re g � h�; �gihvg; xihvg; �gi � g;whih is essentially the ommutation relation used in [EtGi℄. In ase of a Weyl group W ,in [EtGi, BeEtGi, Gu℄, the oeÆients � (� a root) were used instead of the g's. Then,H = �2�g for H the kernel of � and g the assoiated reetion.Remark 3.2. Put eH = jWH j. Denote by "H;j = 1eH Pw2WH det(w)jw the idempotent ofCWH assoiated to the harater det�jjWH . Given  as above, there is a unique family fkH;i =kH;i()gH2A=W ; 0�i�eH of elements of k suh that kH;0 = kH;eH = 0 andH = eH eH�1Xj=0 (kH;j+1()� kH;j())"H;j:We observe that  an be reovered from the kH;i()'s by the formulaH = Xw2WH�f1g eH�1Xj=0 det(w)j � (kH;j+1()� kH;j())!w:This way, we get bak to the de�nition of [DuOp℄.Introdue free ommutative positively graded k-algebras P = k 
C S(V �) = Li�0 Pi and� = k
CS(V ) =Li�0 �i. We have a triangular deomposition A = P
k kW 
k � as k-modules[EtGi, Theorem 1.3℄.For H 2 A, we putaH() = eH�1Xi=1 eH � kH;i() � "H;i 2 k[WH℄ and z() = XH2A aH() 2 Z(kW ):We denote by Irr(kW ) a omplete set of representatives of isomorphism lasses of simplekW -modules.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 11For E 2 Irr(CW ), we denote by E = E() the salar by whih z() ats on k 
C E. Theelements aH() ; z(); and E(); may be thought of as funtions of the oeÆients kH;i =kH;i() (through their dependene on ). In partiular, it was shown in [DuOp, Lemma 2.5℄that E, expressed as a funtion of the kH;i's, is a linear funtion with non-negative integeroeÆients.Below, we will often use simpli�ed notations and write A for A(), kH;i for kH;i(), and zfor z(); et.We introdue a grading on A by putting V � in degree 1, V in degree �1 and W in degree0 (thus, the indued grading on the subalgebra P � A oinides with the standard one on P,while the indued grading on the subalgebra � � A di�ers by a sign from the standard oneon �).2Let euk =Pb2B b_b be the \deformed Euler vetor �eld", where B is a basis of V and fb_gb2Bis the dual basis. We also put eu = euk � z. The elements euk and eu ommute with W . Notethat Pb [b; b_℄ = dimV +PH H .We have(4) [eu; �℄ = �� and [eu; x℄ = x for � 2 V and x 2 V �:This shows the grading on A is \inner", i.e., Ai = fa 2 A j [eu; a℄ = i � ag.3.2. Category O for the rational Cherednik algebra.3.2.1. We apply now the results of x2 in the speial ase: A = A = A(V; ), B = �, �B = P,H = kW , k0 = C, H(k0) = CW , � = eu, �0 = euk and �0 = z. In partiular, we have theategory O() := O(A(V; )), whih was �rst onsidered, in the setup of Cherednik algebras,in [DuOp℄.For any (ommutative) algebra map  : k ! k0, there is a base extension funtor O() !O( ()) given by A( ())
A (�).3.2.2. Assume k is a �eld. Sine O and ~O have �nite global dimension (Theorem 2.19), theGrothendiek group of the ategory of modules oinides with the Grothendiek group K0 ofprojetive modules.We have a morphism of Z-modules f : K0( ~O) ! Z[[q℄℄[q�1℄
K0(CW ) given by taking thegraded harater of the restrition of the module to W :M 7! XE2Irr(kW )Xi qi dimHomkW (E;Mi)[E℄:Set [P℄ :=PE2Irr(kW )Pi qi dimHomkW (E;Pi)�[E℄. This is an invertible element of Z[[q℄℄[q�1℄
K0(CW ), and for any F 2 Irr(kW ), we have f([�(F )℄) = [P℄ � [F ℄: Sine the lasses of standardmodules generate theK0-group, we obtain an isomorphism 1[P℄f : K0( ~O) �! Z[q; q�1℄
K0(CW ).Let k[(kH;i)1�i�eH�1℄ be the polynomial ring in the indeterminates kH;i with kw(H);i = kH;ifor w 2 W . We have a anonial evaluation morphism k[(kH;i)℄ ! k given by the hoie ofparameters. Let m be the kernel of that morphism, R the ompletion of k[(kH;i)℄ at m, and Kthe �eld of frations of R.We have a deomposition map K0(OK) �! K0(O). It sends [�(K 
C E)℄ to [�(k 
C E)℄.2We use supersripts to indiate the standard (non-negative) grading on �, and subsripts to denote thegradings on A and P. Thus, putting formally ��i := �i one reovers ompatibility: �i = � \Ai.



12 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERProposition 3.3. Assume k is a �eld. Then, [�(E)℄ = [r(E)℄ and [P (E)℄ = [I(E)℄ for anykW -module E.Proof. We �rst onsider the equality [�(E)℄ = [r(E)℄. The orresponding statement for K istrue, sine the ategory is semi-simple in that ase. Hene the modules are determined, up toisomorphism, by their sole (resp. by their head).The statement for k follows by using the deomposition map.Now, the equality [P (E)℄ = [I(E)℄ follows, using the reiproity formulas (x2.6.2). �4. Duality, Tiltings, and Projetives4.1. Ringel duality. We keep the setup of x2.1, with k being a �eld. We make the followingtwo additional assumptions� We have �B 
H 
B = B 
H 
 �B = A;� The subalgebra B � A is Gorenstein (with parameter n), i.e., there exists an integer nsuh that ExtiB(k;B) = (k if i = n0 if i 6= n:The Gorenstein ondition implies that, for any E 2 Irr(H), viewed as a BH-module via theprojetion BH ! H, we have ExtiBH(E;BH) = 0; for all i 6= n; moreover, ExtnBH(E;BH) =E[; where E[ is a right BH-module suh that dimE[ = dimE.Assume further that the algebra A has �nite homologial dimension. Thus (see [Bj℄), thereis a well-de�ned duality funtorRHomA(�; A) : Db(A-mod) �! Db(Aopp-mod)opp:Furthermore, this funtor is an equivalene with inverse RHomAopp(�; A).The triangular deomposition A = B 
H 
 �B gives a similar deomposition Aopp = �Bopp
Hopp
Bopp, for the opposite algebras. Therefore, we may onsider the ategory O(Aopp) and,for any simple right H-module E0, introdue the standard Aopp-module�opp(E0) := IndAopp(BH)oppE0 = E0 
BH A;and also the projetive objet P opp(E0) 2 O(Aopp), the tilting objet T opp(E0) 2 O(Aopp), et.Lemma 4.1. The funtor RHomA(�; A[n℄) sends �(E) to �opp(E[); for E a �nite-dimensionalH-module.Proof. Using that A is free as a left BH-module, we omputeExtiA(�(E); A) �! ExtiBH(E;A) �! ExtiBH(E;BH)
BH A:We see that this spae vanishes for i 6= n, and for i = n we get RHomA��(E) ; A[n℄� 'E[ 
BH A = �opp(E[). �We would like to use the duality funtor RHomA(�; A[n℄) to obtain a funtor Db(O(A))!Db(O(Aopp))opp. To this end, we will exploit a general result below valid for arbitrary highestweight ategories (a ontravariant version of Ringel duality [Ri, x6℄).Given an additive ategory C, let Kb(C) be the orresponding homotopy ategory of boundedomplexes in C.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 13Proposition 4.2. Let A and A0 be two quasi-hereditary algebras and C = A-mod, C0 = A0-modthe assoiated highest weight ategories. Let F be a ontravariant equivalene between the exatategories of �-�ltered objets F : C� �! (C0�)opp. Then,� F restrits to equivalenesC-proj �! (C0-tilt)opp and C-tilt �! (C0-proj)opp� The anonial equivalenes Kb(C-proj) �! Db(C) and Kb(C0-tilt) �! Db(C0), yield an equiv-alene of derived ategories D : Db(C) �! Db(C0)opp:� Let T = F (A), an (A 
 A0)-module. Then, we have D = RHomA(�; T ) and D�1 =RHomA0(�; T ). Via duality (A-mod) �! (Aopp)-modopp, the funtor D identi�es Copp with theRingel dual of C0.Proof. LetM 2 C�. Then,M is projetive if and only if Ext1(M;�(E)) = 0 for every standardobjet �(E) of C (indeed, if 0 ! M 0 ! P ! M ! 0 is an exat sequene with P projetive,then M 0 is �-�ltered, hene the sequene splits). The module F (M) is tilting if and only ifExt1(�(E0); F (M)) = 0 for every standard objet �(E0) of C0. We dedue that M is projetiveif and only if F (M) is tilting.So, F restrits to equivalenes C-proj �! (C0-tilt)opp and C-tilt �! (C0-proj)opp.The last assertions of the Proposition are lear. �We an now apply this onstrution to the ategory O(A). Spei�ally, Lemma 4.1 im-plies that the funtor RHomA(�; A[n℄) restrits to an equivalene O(A)� �! (O(Aopp)�)opp.Therefore, using Proposition 4.2 we immediately obtain the followingProposition 4.3. The funtor RHomA(�; A[n℄)opp restrits to equivalenesO(A)-proj �! (O(Aopp)-tilt)opp and O(A)-tilt �! (O(Aopp)-proj)opp :The anonial equivalenes Kb(O(A)-proj) �! Db(O(A)) and Kb(O(Aopp)-tilt) �! Db(O(Aopp))indue an equivalene D : Db(O(A)) �! Db(O(Aopp))opp; suh that �(E) 7! �opp(E[) ; P (E) 7!T opp(E[); and T (E) 7! P opp(E[): �Corollary 4.4. The ategory O(Aopp)opp is the Ringel dual of O(A). �4.2. Naive duality for Cherednik algebras. Reall the setup of x3.2.Denote by (�)y : CW �! CW the anti-involution given by w 7! wy := w�1 for w 2 W .In this setion, we ompare the algebras A = A(V; ) and A(V �; y). This will provide uswith means to swith between left and right modules, between �-loally �nite and P-loally�nite modules.The anti-involution (�)y : CW �! CW extends to an isomorphism(5) (�)y : A() �! A(y)opp ; V 3 � 7! ��; V � 3 x 7! x; W 3 w 7! w�1:Remark 4.5. If all pseudo-reetions of W have order 2, then y = .Further, we de�ne an isomorphism of k-algebras reversing the gradings by' : A(V; ) �! A(V �; y)oppV 3 � 7! �; V � 3 x 7! x; W 3 w 7! w�1:



14 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERRemark 4.6. When V is self-dual, an isomorphism of CW -modules F : V �! V � extends toan algebra isomorphism (Fourier transform)F : A(V; ) �! A(V �; )V 3 � 7! F (�); V � 3 x 7! �F�1(x); W 3 w 7! w:The funtor F� restrits to an equivalene O(V; ) �!O(V �; y).4.2.1. Given M 2 Oln, denote by M_ the k-submodule of P-loally nilpotent elements ofHomk(M;k). This is a right A-module. Via '�, this beomes a left A(V �; y)-module. If M isgraded, then M_ = Homgr�k(M;k).Thus we have de�ned a funtor (analogous of the standard duality on the ategory O in theLie algebra ase):(6) (�)_ : Oln(V; )! Oln(V �; y)oppWhen k is a �eld, this funtor is an equivalene.Given a kW -module E, we use the notation E_ = Homk(E; k) for the dual kW -module.Proposition 4.7. We have �(E)_ �! r(E_) for any kW -module E. If k is a �eld, thenL(E)_ �! L(E_) ; P (E)_ �! I(E_) ; I(E)_ �! P (E_) ; r(E)_ �! �(E_) ; T (E)_ �! T (E_):Proof. We have Homgr�k(A 
�W E; k) �! Homgr�(�W )opp(A;Homk(E; k))and the �rst part of the proposition follows.The seond assertion follows from the haraterization of L(E) (resp. L(E_)) as the uniquesimple quotient (resp. submodule) of �(E) (resp. r(E_)). The other assertions are immediateonsequenes of the homologial haraterizations of the objets and/or the existene of suitable�ltrations. �Note that the funtor (�)_ restrits to a funtor O(V; )! O(V �; y)opp. When k is a �eld,it is an equivalene. A ompatible hoie of progenerators for O(V; ) and O(V �; y) gives thenan isomorphism between the algebra �(V ) for O(V; ) and the oppposite algebra �(V �)opp forO(V �; y) (f x2.6.4).Corollary 4.8. Let E and F be two simple kW -modules. Then, the multipliity of �(E) in a�-�ltration of P (F ), for O(V; ), is equal to the multipliity of L(F_) in a omposition seriesof �(E_), for O(V �; y).Proof. By x2.19, the multipliity of r(E_) in ar-�ltration of I(F_) is equal to the multipliityof L(F_) in a omposition series of �(E_).The funtor (�)_ sends P (F ) to I(F_) and �(E) to r(E_) (Proposition 4.7) and the resultfollows. �Remark 4.9. When k is a �eld andW is real, we obtain, via Fourier transform, a duality onOlnand on O. Sine all omplex representations of W are self-dual, we have then �(E)_ �!r(E).4.3. Homologial properties of Cherednik algebras.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 154.3.1. The rational Cherednik algebra is a deformation of the ross-produt of W with theWeyl algebra of polynomial di�erential operators on V . In partiular, there is a standardinreasing �ltration on A with W plaed in degree 0 and V � V � in degree 1. The assoiatedgraded ring, grA, is isomorphi to S(V �V �)oW [EtGi, x1℄. It follows (see [Bj℄, [Bo, xV.2.2℄),that A is left and right noetherian, provided k is noetherian. Sine V �� V is a smooth varietyof dimension 2 dimV , the algebra A has homologial dimension at most 2 dimV . Furthermore,the usual results and onepts on D-modules (harateristi variety, duality) also make sensefor A, even though the algebra grA is not ommutative.4.3.2. We assume k is a �eld, and put n = dimV . The algebras � and P are learly Gorensteinwith parameter n. Moreover, we have Extn�(k; �) ' �nV �. Hene, E[ = �nV � 
Homk(E; k) =�nV � 
 E_; for any �nite dimensional W -module E.It will be useful to ompose the funtor RHomA()(�;A()) with the anti-involution (�)y,see (5), to get the following omposite equivalene(7) RHomA()(�;A())y : Db(A()-mod) �! Db(A()opp-mod)opp �! Db(A(y)-mod)opp:From Proposition 4.2 we immediately obtain the followingProposition 4.10. The funtor RHomA(�;A[n℄)y gives rise to an equivaleneD : Db(O()) �! Db(O(y))opp: �We further introdue an equivalene(�)_ ÆD : Db(O(V; )) �! Db(O(V �; ))suh that �(E) 7! r(�nV 
C E)T (E) 7! I(�nV 
C E)P (E) 7! T (�nV 
C E)In partiular, we obtain (f. Corollary 4.4)Corollary 4.11. The ategory O(V �; ) is the Ringel dual of O(V; ). �Remark 4.12. Note that if W is real, then O is its own Ringel dual.4.3.3. Semiregular bimodule. Write P~ = �i Hom(Pi; k) for the graded dual of P, and form thevetor spae R := P~ 
k �W . Let us �x an isomorphism of C-vetor spaes �nV �! C. Wehave the following anonial isomorphisms:Homgr��W (A;�nV 
C �W ) �! Homgr�k(P; �W ) � P~ 
k �W �! P~ 
P A:The �rst two isomorphisms de�ne a left A-module struture on R, and the last one de�nes aright A-module struture on R. It is possible to hek by expliit alulations that the leftand right A-module strutures ommute, so that R beomes an A-bimodule. It is a Cherednikalgebra analogue of the semiregular bimodule, onsidered in [A℄, [So2℄ in the Lie algebra ase.From the isomorphisms of A-modulesR
A �(E) = R 
�W E �! Homgr��W (A;�nV 
 E)we dedueProposition 4.13. The funtor M 7! Homgr�k(R 
A M;k)y (= left A(V; y)-module) sends�(E) to �(�nV � 
C E_). �



16 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIER4.3.4. GivenM a �nitely generated A-module, a good �ltration of M is a struture of �lteredA-module on M suh that grM is a �nitely generated grA-module. The harateristi varietyCh(M) is the support of grM , viewed as aW -equivariant sheaf on V ��V (a losed subvariety).It is well de�ned, i.e., is independent of the hoie of the good �ltration (every �nitely generatedA-module admits a good �ltration). Note that Bernstein's inequality: dimCh(M) � dimV doesnot hold in general. Further, for M in O, the omplex D(M) has zero homology outside thedegrees 0; : : : ; n.Let T =LE T (E) where E runs over the simple kW -modules.Corollary 4.14. Let M 2 O. Then, dimCh(M) = dimV �minfi j ExtiO(T;M) 6= 0g.Proof. Let R = End(T )opp. The funtor RHomO(T;�) : Db(O) �! Db(R-mod) is an equiv-alene. Composing with the inverse of (�)_ Æ D we obtain an equivalene Db(O(V �; )) �!Db(R-mod) that restrits to an equivalene O(V �; ) �! R-mod. We see that minfi jExtiO(T;M) 6= 0g = minfi j H i(DM) 6= 0g; where the RHS is equal to minfi j ExtiA(M;A) 6=0g�dimV by the de�nition of D. The result now follows from the well-known formula, see e.g[Bj℄: dimCh(M) = 2 dimV �minfi j ExtiA(M;A) 6= 0g: �5. Heke algebras via monodromy5.1. Loalisation.5.1.1. Let Vreg = V �SH2AH and Preg = k[Vreg℄ = P[(��1H )℄H2A. The algebra struture on Aextends to an algebra struture on Areg = Preg 
k � 
k kW .We denote by M 7!Mreg = Areg 
AM : A-Mod! Areg-Modthe loalisation funtor. Note that ResPreg Mreg = Preg 
PM . Note also that every element ofMreg an be written as �r 
m for some r � 0, m 2M , where � =QH2A�H . This makes theloalisation funtor have speially good properties.The restrition funtor Areg-Mod ! A-Mod is a right adjoint to the loalisation funtor. Itis fully faithful. The adjuntion morphism oinides with the natural loalisation morphismM !Mreg of A-modules. Its kernel is Mtor, the submodule of M of elements whose support isontained in V � Vreg. Denote by (A-Mod)tor the full subategory of A-Mod of objets M suhthat Mreg = 0. The following is lear.Lemma 5.1. The loalisation funtor indues an equivaleneA-Mod =(A-Mod)tor �! Areg-Mod :The ategory O is a Serre subategory of A-Mod. Let Otor = O \ (A-Mod)tor. Then, theanonial funtor O=Otor ! A-Mod =(A-Mod)tor is fully faithful. Consequently, the anonialfuntor O=Otor ! Areg-Modis fully faithful, with image a full abelian subategory losed under taking subobjets andquotients (but in general not losed under extensions).



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 175.1.2. When k is a �eld, we have a ommutative diagramDb(A()-mod) RHomA(�;A)y� //

��

Db(A(y)-mod)opp
��Db(A()reg-mod) RHomAreg(�;Areg)y� // Db(A(y)reg-mod)oppwhere the vertial arrows are given by loalisation.5.1.3.Lemma 5.2. Assume k is a �eld. Then, (�)_ restrits to an equivalene Otor(V; ) �!Otor(V �; y)opp.Proof. Let M 2 O. We put a grading on M (Proposition 2.4). Sine M is a �nitely generatedgraded P-module (Lemma 2.22), the dimension of Ch(M), the harateristi variety of M , anbe obtained from the growth of the funtion i 7! dimMi. In partiular, M 2 Otor if and onlyif limi!1 �i1�dimV � dimMi� = 0. Suh a property is preserved by (�)_. �Denote by V : O ! �O = O=Otor ; M 7! �M; the quotient funtor (the notation V hasbeen used by Soergel [So1℄ for an analogous funtor in the Lie algebra setup). The funtorV admits, by the standard `abstrat nonsense', both a left adjoint and right adjoint funtors>V;V> : �O ! O.Theorem 5.3. Assume k is a �eld, and Q is a projetive in O. Then, the anonial adjuntionmorphism a : Q ! V>( �Q) is an isomorphism. In partiular, for any objet M in O, thefollowing anonial morphism is an isomorphism(8) V� : HomO(M;Q) �! Hom �O( �M; �Q):Proof. By x5.1.1, for any two objets M;Q; of O, we have a anonial isomorphismHom �O( �M; �Q) �! HomAreg(Mreg; Qreg):Assume Q has a �-�ltration. Then it is free over P and thus has no non-zero submodulelying in Otor, hene V� is injetive.Assume furthermore that M has a r-�ltration. Then M_ has a �-�ltration (Proposition4.7), hene has no non-zero submodule lying in Otor. Sine (�)_ restrits to an equivaleneOtor(V; ) �! Otor(V �; y)opp (Lemma 5.2), it follows that M has no non-zero quotient lying inOtor. This shows that V� in (8) is an isomorphism.From now on, we assume that Q is projetive. It follows that Q0 = D(Q) is tilting (Proposi-tion 4.10), hene r-�ltered.Now let M be a �-�ltered objet. Then, M 0 = D(M) is �-�ltered. We apply the result onV�, that we have already proved, to O(y). This yields, by duality (f x5.1.2), that (8) is anisomorphism, for any �-�ltered objet M .Sine any projetive is �-�ltered, for any two projetive objets P;Q in O, we have estab-lished the isomorphisms(9) HomO(P;Q) V��! Hom �O( �P ; �Q) adjuntion===== HomO(P;V>( �Q)):



18 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERThe above isomorphisms imply, in partiular, that, for any indeomposable projetive P ,we have dimHomO(P;Q) = dimHomO(P;V>( �Q)). It follows readily that the objets Q andV>( �Q) have the same omposition fators with the same multipliities.We an �nally prove that the anonial adjuntion map a : Q! V>( �Q) is an isomorphism.By the previous paragraph, it suÆes to show that a is injetive. To this end, put K := ker(a),and assume K 6= 0. Let L(E) be a simple submodule in K, and P (E) � L(E); its projetiveover. By onstrution, the omposite map g : P (E)� L(E) ,! K ,! Q is nonzero. This mapg 2 HomO(P (E); Q) goes, under the isomorphism between the left-hand and right-hand sidesof (9), to the map a Æg : P (E)! K ,! Q a! V>( �Q). But the latter map is the zero map sineK = ker(a), whih ontradits the fat that (9) is an isomorphism. Thus, ker(a) = 0, and theTheorem is proved. �Remark 5.4. In general, the assumption that Q is projetive annot be replaed by the weakerassumption that it is �-�ltered (already for W = Z=2Z). Nevertheless, see Proposition 5.9.Corollary 5.5. Let X be a progenerator of O and E := (End �O �X)opp. Then there is anequivalene O �! (E-mod)opp:Proof. The preeding theorem implies that (EndOX)opp �! E sine projetive modules are�-�ltered. Hene we an use ategory equivalenes (3). �5.2. Dunkl operators.5.2.1. One has an A-ation on the vetor spae P, hene an �-ation, arising via the identi�-ation P = �(k). One �nds, in partiular, that the ation of � 2 V on P is given by the Dunkloperator T� = �� + XH2A h�; �H i�H �aH 2 D(Vreg)oW;where D(Vreg) stands for the algebra of regular di�erential operators on Vreg, ated upon by Win a natural way, and aH 2 kW is viewed as an element of D(Vreg)oW . It follows that T�(P) � P(as part of A-ation on P = �(k)); furthermore, this A-ation on P is known (Cherednik, [EtGi,Proposition 4.5℄) to be faithful:Theorem 5.6. The A-representation �(k) is faithful. Thus, the natural ation of PW on Pextends to an injetive algebra morphism i : A ,! k 
C D(Vreg)oW whih maps � 2 V to T�.The map i indues an algebra isomorphism Areg �! k 
C D(Vreg)oW .5.2.2. We onsiderM = IndA�W X = P
X, where X is loally nilpotent and �nitely generatedas an �-module, free over k. The ation of � 2 V on p
 v, p 2 P and v 2 X is given by�(p 
 v) = p 
 �v + ��(p) 
 v +XH X0�i;j�eH�1 eH(kH;i+j � kH;j)�H(�)�H "H;i(p) 
 "H;j(v):Using Dunkl operators, i.e., via the isomorphism of Theorem 5.6, we have a struture of W -equivariant (k 
C D(Vreg))-module on Mreg. The orresponding onnetion is given by�� = � �XH �H(�)�H � � X0�i;j�eH�1 eHkH;i+j"H;i 
 "H;j�:



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 19Hene ��(p 
 v) = p 
 �v + ��(p)
 v �XH Xi eHkH;i�H(�)�H p 
 "H;i(v):For the rest of x5, we assume that k = C.The following result is well-known to experts, but we ould not �nd an appropriate referenein the literature.Proposition 5.7. The above formula for �� de�nes a W -equivariant integrable algebrai on-netion on M with regular singularities.Proof. All the laims follow from the onstrution, with the exeption of the assertion that thesingularities of the onnetion are regular. The onnetion has visibly only simple poles at thereetion hyperplanes, hene it suÆes to prove the regularity at in�nity with respet to some(hene any, see [De℄) ompati�ation of V .Consider the W -equivariant ompati�ation Y = P(C+ V ) of V , and extend M to the freeOY -moduleMY := OY 
X. Using a �ltration of X we an redue to the ase where X = E issimple.A straightforward omputation shows that with respet to the extensionMY of M and withrespet to any standard oordinate path on Y , the poles at in�nity are also simple in thisase. �5.2.3. We de�ne a morphism of abelian groups r : K0(O) ! Z by r([�(E)℄) = dimE; forE 2 Irr(CW ).Lemma 5.8. Let M 2 O. Then, Mreg is a vetor bundle of rank r([M ℄) on Vreg.Proof. SineMreg is a �nitely generated C[Vreg℄-module with a onnetion, it is a vetor bundle.Now, taking the rank of that vetor bundle indues a morphism K0(O) ! Z, whih takesthe orret value on �(E). �5.2.4.Proposition 5.9. Assume kH;i�kH;j+ i�jeH 62 Z, for all H 2 A and all 0 � i 6= j � eH�1. LetN be a �-�ltered objet in O. Then, for any M 2 O, we have HomO(M;N) �! Hom �O( �M; �N ).Proof. Assume �rst that M is also a �-�ltered objet. Then, we an write M = IndA�W Xand N = IndA�W Y with X;Y �nite dimensional �W -modules, nilpotent over �. The spaeHomA(M;N) is the intersetion of HomP(M;N) = P
Homk(X;Y ) with HomAreg(Mreg; Nreg).As in the proof of Theorem 5.3, we have to show that any element 	 of HomPreg(Mreg; Nreg)that ommutes with the ation of Areg extends to a P-morphism M ! N . Observe that 	 isnothing but a at, W -invariant setion of the onnetion on HomAreg(Mreg; Nreg).The residue of this onnetion on a hyperplane H 2 A is onstant, and has eigenvalueeH(kH;i � kH;j) on Homk(Xi; Yj), where Xi is the summand of X of WH -type det�ijWH (andlikewise for Yj).Loally near a generi point p of H we expand 	 =Pl�l0 �lH	l with 	l holomorphi on Hnear p, of WH -type detljWH , and with 	l0 not identially zero on H. From the lowest order termof the equation �vH (	) = 0 we see that there exist i; j suh that i� j = l0mod(eHZ), and suhthat l0 + eH(kH;i � kH;j) = 0. Thus l0 = 0 and 	 is regular on H. This ompletes the proof ofthe Proposition in the speial ase where both M and N are �-�ltered.



20 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERThe general ase follows from the speial ase above by repeating the part of the argumentfrom the proof of Theorem 5.3, starting with formula (9). �Remark 5.10. The ondition of the Proposition is equivalent to the semi-simpliity of theHeke algebra H(WH) of WH . One ould onjeture that this assumption an be replaed bythe assumption that KZ(N) is a projetiveH(WH)-module (this would still not over ompletelyTheorem 5.3).Remark 5.11. If eH = 2 for all H, then the ondition of the Proposition reads: kH 62 12 + Z.5.2.5. Let C[(kH;i)1�i�eH�1℄ be the polynomial ring in the indeterminates kH;i with kw(H);i =kH;i for w 2 W . We have a anonial morphism of C-algebras C[(kH;i)℄! C; kH;i 7! kH;i. Letm be the kernel of that morphism and R the ompletion of C[(kH;i)℄ at the maximal ideal m.Fix x0 2 Vreg, and let BW = �1(Vreg=W; x0) be the Artin braid group assoiated to W .Let HR = HR(W;V; ) be the Heke algebra of W over R, that is the quotient of R[BW ℄ bythe relations (T � 1) eH�1Yj=1 (T � det(s)�j � e2i�kH;j ) = 0for H 2 A, s 2 W the reetion around H with non-trivial eigenvalue e2i�=eH and T an s-generator of the monodromy around H, f [BrMaRou, x4.C℄. Note that the parameters di�erfrom [BrMaRou℄ beause we will be using the horizontal setions funtor instead of the solutionfuntor.We put HK = HR 
RK, where K is the �eld of frations of R and H = HR 
R (R=m).Remark 5.12. It is known that HR is free of rank jW j over R for all W that do not havean irreduible omponent of type G17:::19, G24:::27, G29, G31:::34 in Shephard-Todd notation (inthese ases, the statement is onjetural) [Mu℄.5.3. The Knizhnik-Zamolodhikov funtor. Let M be a (C[Vreg℄ o W )-module, free of�nite rank over Preg = C[Vreg℄. Let r : M ! M 
C R be an R-linear integrable onnetion.Then, the horizontal setions of r de�ne, via the monodromy representation, an RBW -moduleL, free over R.Let r0 : M ! M be the speial �ber of r. Then, the horizontal setions of r0 is theCBW -module L
R (R=m).Let rK : M ! K 
CM be the generi �ber of r. Then, the horizontal setions of rK isthe KBW -module L 
RK.Taking horizontal setions de�nes an exat funtor from the ategory ofW -equivariant vetorbundles on R 
C Vreg with an integrable onnetion to the ategory of RBW -modules that arefree of �nite rank over R.Sine the onnetion on �(R
CE)reg has regular singularities it follows that the onnetionon Mreg has regular singularities for any M 2 O�R .Composing with the loalisation funtor, we obtain an exat funtor KZR from O�R to theategory of RBW -modules that are free of �nite rank over R.Similarly, we obtain exat funtors KZ : O ! CBW -mod and KZK : OK ! KBW -mod.It is well-known (f. e.g. [BrMaRou, Theorem 4.12℄) that the representation of KBW onKZK(�(K 
C E)) fators through HK to give a representation orresponding (via Tits' defor-mation Theorem) to the representation E of CW . Reall that H = HR 
R (R=m).



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 21Theorem 5.13 (Heke algebra ation). The funtor KZ : O ! CBW -mod fators through afuntor KZ : O=Otor ! H-mod. Similarly, the funtor KZK : OK ! KBW -mod fators througha funtor KZK : OK=(OK)tor!HK-mod.For M 2 O�R , the ation of RBW on KZR(M) fators through HR.We have a ommutative diagram OK KZK // HK-modO�R KZR //C
R�
��

K
R� OO HR-modC
R�
��

K
R�OOO KZ // H-modProof. First, Otor (and (OK)tor) are the kernels of loalisation.When M = �(K 
C E), then, we have the Knizhnik-Zamolodhikov onnetion and therepresentation KZK(M) fators throughHK . SineOK is semi-simple (Corollary 2.20), it followsthat the ation on KZK(M) fators through HK for any M in OK.We now onsider the ase of a �-�ltered moduleM of OR. We know that the ation of KBWon K
R KZR(M) ' KZK(K
RM) fators through HK. Sine KZR(M) is free over R, it followsthat the ation of RBW on KZR(M) fators through HR.From this result, we dedue that the ation of CBW on KZ(�r(CW )) �! C
R KZR(�r(RW ))fators through H. Sine every indeomposable projetive objet of O is a diret summand of�r(CW ) for appropriate r (Corollary 2.7), it follows that the ation of CBW on KZ(M) fatorsthrough H for every projetiveM , hene for every M in O. �5.4. Main results. In this subsetion we assume that dimH = jW j, f. Remark 5.12.The funtor KZ : O ! H-mod is exat. Hene, it is represented by a projetive PKZ 2 O. Inother words, there exists an algebra morphism � : H ! (EndO PKZ)opp suh that the funtorKZ is isomorphi to HomO(PKZ;�).We know also, see x5.1.1, that the funtor KZ fators through O=Otor ! H-mod.Theorem 5.14. The funtor KZ indues an equivalene: O=Otor �! H-mod.This Theorem is equivalent toTheorem 5.15. The morphism � : H ! (EndO PKZ)opp is an algebra isomorphism.Proof of Theorems 5.14-5.15. Reall that the horizontal setions funtor gives an equivalenefrom the ategory of vetor bundles over Vreg=W with a regular integrable onnetion to theategory of �nite-dimensionalCBW -modules (Riemann-Hilbert orrespondene, [De, TheoremsI.2.17 and II.5.9℄).We dedue from x5.1.1 that KZ : O=Otor ! H is a fully faithful exat funtor with image afull subategory losed under taking subobjets and quotients. Furthermore, PKZ, the image ofPKZ in O=Otor, is a progenerator of O=Otor. Thus, Theorem 5.14 follows from Theorem 5.15.To prove Theorem 5.15, observe that the morphism � is surjetive. Indeed, let C0 be a fullsubategory of an abelian ategory C, losed under taking quotients, and >F a left adjoint tothe inlusion F : C0 ,! C. Then the adjuntion morphism � : IdC ! F Æ (>F ) is surjetive, sine



22 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIER�(X) is the anonial map from X to its largest quotient in C0. This proves surjetivity of themorphism � above.Further, we have PKZ = ME2Irr(CW )(dimKZ(L(E)))P (E):Hene, we omputedim(EndO PKZ) =ME;F dimKZ(L(E)) dimKZ(L(F )) dimHom(P (E); P (F ))= ME;F;GdimKZ(L(E)) dimKZ(L(F ))[P (E) : �(G)℄[�(G) : L(F )℄= ME;F;GdimKZ(L(E)) dimKZ(L(F ))[r(G) : L(E)℄[�(G) : L(F )℄=MG dimKZ(r(G)) dimKZ(�(G))Now, the restritions of r(G) and �(G) to Vreg are vetor bundles of rank dimG (Proposi-tion 3.3 and Lemma 5.8), hene dim(EndO PKZ) = jW j = dimH. This shows that � is anisomorphism. Note that this rank omputation an also be ahieved by deformation to R. �The following result shows that the ategory O an be ompletely reovered from H and aertain H-module :Theorem 5.16 (Double-entralizer property). Let Q be a projetive in O. Then, theanonial map HomO(M;Q)! HomH�KZ(M) ; KZ(Q)� is an isomorphism, for any M 2 O.Furthermore, if X is a progenerator for O, then, we have an equivalene�EndH KZ(X)�opp-mod �! O:Proof. The �rst part follows from Theorems 5.3 and 5.15 and the seond from Corollary 5.5. �Remark 5.17. We onjeture that, ifW = Sn, then O is equivalent to the ategory of �nitely-generated modules over the assoiated q-Shur algebra. That would imply, in partiular, that ifkH;1 = k1 < 0 is a negative real onstant, then the Cherednik algebras A(Sn) with parametersk1 and k1 � 1; respetively, are Morita equivalent.Let Z(H) denote the enter of the algebra H and Z(O) the enter of ategory O (i.e. thealgebra of endomorphisms of the identity funtor IdO).Corollary 5.18. The anonial morphism Z(O)! EndO PKZ indues an isomorphism Z(O) �!Z(H). In partiular, the funtor KZ indues a bijetion between bloks of O and bloks of H.Proof. This follows immediately from Theorem 5.16 : given two rings B and C and a (B;C)-bimodule M suh that the anonial morphisms B �! EndCopp(M) and C �! (EndBM)opp areisomorphisms, then we have a anonial isomorphism Z(B) �! Z(C). �The deomposition matrix K0(OK) ! K0(O) is triangular. We dedue the triangularity ofdeomposition matries of Heke algebras, in harateristi 0 :Corollary 5.19. The deomposition matrix K0(HK)! K0(H) is triangular.



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 235.4.1. KZ-funtor and Twist. Let � be a one-dimensional harater of W and �� : CW �! CWthe automorphism given by w 7! �(w) � w for w 2 W . This extends to an isomorphism�� : A() �! A(�� ()); V 3 � 7! �; V � 3 x 7! x; W 3 w 7! �(w) � w:We obtain an equivalene O() �! O(�� ()), sending V (E) to V (E 
 ��1), where V stands forany of the symbols: L;�;r; P; I; T .For H 2 A, let dH 2 f1; : : : ; eHg suh that �jWH = detdHjWH . De�ne an automorphism �� ofD(Vreg)oW by P 3 f 7! f; W 3 w 7! �(w) � wand �� 7! �� �XH �H(�)�H "H;eH � eH � kH;eH�dH for � 2 V:(for notation, see Remark 3.2). We have a ommutative diagramA() i //�� �
��

D(Vreg )oW���
��A(�� ()) i // D(Vreg )oWGiven M a (D(Vreg) oW )-module, then (�� )�M �!M 
OVreg �(��1)reg .This self-equivalene of the ategory of W -equivariant bundles with a regular singular on-netion on Vreg orresponds, via the horizontal setions funtor, to the automorphism of CBWgiven by T 7! e�2i�kH;eH�dH �(s)�1Tfor H 2 A, s 2 W the reetion around H with non-trivial eigenvalue e2i�=eH and T an s-generator of the monodromy around H. This indues an isomorphism H(�) : H(W;) �!H(W; �� ()) and the following diagram is ommutative :O() (�� )�� //KZ

��

O(�� ())KZ
��H(W;)-mod H(�)� // H(W; �� ())-mod5.4.2. KZ-funtor and Duality. We have a ommutative diagramDb(A()-mod) (�det)�ÆRHomA()(�;A())y� //

��

Db(A(�det(y))-mod)opp
��Db((D(Vreg)oW )-oh) � // Db((D(Vreg)oW )-oh)oppwhere the vertial arrows are given by loalisation followed by the Dunkl operator isomorphismi of Theorem 5.6 and the bottom horizontal arrow is the lassial D-module duality.Consider the isomorphism CBW �! (CBW )opp given by T 7! det(s)�1e2i�kH;1T�1



24 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIERfor H 2 A, s 2 W the reetion around H with non-trivial eigenvalue e2i�=eH and T ans-generator of the monodromy around H. It indues an isomorphismH(y) : H(W;) �! H(W;y)opp:We onlude that we have a ommutative diagramDb(O()) �D //KZ
��

Db(O(y))oppKZ
��Db(H(W;)) �H(y) // Db(H(W;y))oppOn the other hand, by Lemma 5.2, we know that (�)_ preserves Otor, hene desends tothe quotient ategory O=Otor, i.e., there is an equivalene � making the following diagramommute: O(V; ) ��_

//KZ
��

O(V �; y)oppKZ
��H(W;V; )-mod �� // H(W;V �; y)-modoppFurther, hoose a W -invariant hermitian form on V , i.e., a semi-linear W -equivariant iso-morphism � : V �! V �. Then, we get an isomorphism �1(Vreg=W; x0) �! �1(V �reg=W; �(x0)). Itindues an isomorphism H(�) : H(W;V; ) �! H(W;V �; ). Composing with H(y), we obtainan isomorphism H(� Æ (�)y) : H(W;V; ) �! H(W;V �; y)opp, whih we denote below by  .Remark 5.20. One ould onjeture that the two funtors � and  � are isomorphi (theyindue the same maps at the level of Grothendiek groups).5.4.3. The A-module PKZ and Duality. Let Irr(W;V; ) � Irr(W ) denote the subset formed by allE 2 Irr(W ) suh that L(E)reg 6= 0. We have a bijetion Irr(W;V; ) �! Irr(W;V �; y) ; E 7! E_(Proposition 4.7 and Lemma 5.2). Thus, PKZ =LE2Irr(W;V;)(dimKZ(L(E))) � P (E).To make the dependene on V and  expliit, we will write PKZ = PKZ(V; ).Proposition 5.21. (i) We have D(PKZ(V; )) ' PKZ(V; y) and PKZ(V; )_ ' PKZ(V �; ). Inpartiular, PKZ is both projetive and injetive.(ii) For E 2 Irr(W ), the following are equivalent� E 2 Irr(W;V; )� L(E) is a submodule of a standard module� P (E) is a submodule of PKZ� P (E) is injetive� P (E) is tilting� I(E) is projetive� I(E) is tiltingProof. The �rst laim follows from x5.4.2. Proposition 4.7 then implies that PKZ is injetive.The onsiderations above imply that if E 2 Irr(W;V; ), then P (E) is injetive and tilting.The assertions about I(E) follow by applying (�)_.We know that if L(E) is a submodule of a �-�ltered module or a quotient of a r-�lteredmodule, then E 2 Irr(W;V; ):



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 25This shows that any of the assertions about P (E) or I(E) implies that E 2 Irr(W;V; ): �6. Relation to Kazhdan-Lusztig theory of ellsWe review some parts of Kazhdan-Lusztig and Lusztig's theory of Weyl group representations.6.1. Lusztig's algebra J .6.1.1. Let (W;S) be a �nite Weyl group, H be its Heke algebra, a Z[v; v�1℄-algebra with basisfTwgw2W and relationsTwTw0 = Tww0 if l(ww0) = l(w) + l(w0) and (Ts + 1)(Ts � v2) = 0 for s 2 S:Lusztig assoiated to W a Z-ring J , usually referred to as asymptoti Heke algebra, [Lu3,x2.3℄. Let $ : H ! Z[v; v�1℄
Z J be Lusztig's morphism of Z[v; v�1℄-algebras [Lu3, x2.4℄.The ring Q
Z J is semi-simple and the morphism IdQ(v)
$ is an isomorphism.For any ommutative Q[v; v�1℄-algebra R we put HR := R 
Z[v;v�1℄ H.De�nition 6.1. The HR-modules S(M) = $�(R
QM), for M a simple Q
ZJ -module, willbe referred to as standard HR-modules.3When R = Q(v), then the standard HR-modules are simple and this gives a bijetion fromthe set of simple (Q
Z J )-modules to the set of simple (Q(v)
Z[v;v�1℄ H)-modules.Similarly, takingK = Q[v; v�1℄=(v�1), we obtain a bijetion from the set of simple (Q
ZJ )-modules to the set of simple QW -modules.We will identify these sets of simple modules via these bijetions.We have an order �LR on W onstruted in [KaLu, p.167℄. We denote by C the set oftwo-sided ells of W and by � the order on C oming from �LR.Let fCwgw2W be the Kazhdan-Lusztig basis for H. Let I be an ideal of C, i.e., a subset suhthat given  � 0, then 0 2 I )  2 I. We put HI =L2I;w2Z[v; v�1℄Cw. This is a two-sidedideal of H [Lu1, p.137℄.The ring J omes with a Z-basis ftwgw2W and we put J = Lw2Ztw. This is a blok ofJ and J = L2C J. The orresponding partition of the set of simple (Q 
Z J )-modules isalled the partition into families.Given I an ideal of C, we denote by IÆ the set of  2 I suh that there is 0 2 I with  < 0.The following is a slight reformulation of [Lu3, x1.4℄ :Proposition 6.2. Let I be an ideal of C. Then, the assignment tw 7! Cw indues an isomor-phism of H-modules M2I�IÆ$��Z[v; v�1℄
Z J� �! HI=HIÆ :In partiular, the (Q[v; v�1℄
Z[v;v�1℄ H)-module Q[v; v�1℄
Z[v;v�1℄ (HI=HIÆ) is a diret sumof standard HQ[v;v�1℄-modules.This proposition gives a haraterization of standard HQ[v;v�1℄-modules via the Heke algebra�ltration oming from two-sided ells.3There seems to be no name for suh modules in the literature.



26 VICTOR GINZBURG, NICOLAS GUAY, ERIC OPDAM AND RAPHA�EL ROUQUIER6.1.2. Next, we onsider �ltrations oming from ertain funtions on the set of two-sided ells.De�nition 6.3. A sorting funtion f : W ! Z is a funtion onstant on two-sided ells andsuh that 0 < ) f(0) > f().Given a sorting funtion f , we putH�iR :=Lw2W;f(w)�iR�Cw andH>iR :=Lw2W;f(w)>iR � Cw:Then, H�iR is a two-sided ideal of HR, sine I = f 2 C j f() � ig is an ideal. Similarly,H>iR isa two-sided ideal of HR. Furthermore, IÆ � f 2 C j f() > ig. Consequently, we dedue fromProposition 6.2 :Corollary 6.4. We have an isomorphism of H-modulesM2C;f()=i$��Z[v; v�1℄
Z J� �!H�i=H>i:In partiular, the (Q[v; v�1℄
Z[v;v�1℄H)-module Q[v; v�1℄
Z[v;v�1℄ (H�i=H>i) is a diret sumof standard HQ[v;v�1℄-modules.Thus, we have another haraterization of standard HQ[v;v�1℄-modules via the Heke algebra�ltration oming from f .Let F be the set of families of irreduible haraters ofW . We transfer the onepts assoiatedwith C to F via the anonial bijetion between C and F .In partiular, we have a funtion f : Irr(W )! Z onstant on families.We haveH�i = H\(Lf(E)�i eEQ(v)
Z[v;v�1℄H), where eE is the primitive entral idempotentof Q(v)
Z[v;v�1℄H that ats as 1 on the simple (Q(v)
Z[v;v�1℄H)-module orresponding to E.This shows that, if R is a loalisation of Q[v; v�1℄, then the �ltration on HR = R
Z[v;v�1℄Hgiven by f an be reovered without using the Kazhdan-Lusztig basis. We obtainProposition 6.5. Let R be a loalisation of Q[v; v�1℄ and P be a projetive HR-module. LetQ�i (resp. Q>i) be the sum of the simple submodules E of Q(v)
RP suh that f(E) � i (resp.f(E) > i).Then, (P \Q�i)=(P \Q>i) is a diret sum of standard HR-modules. �Thus, any sorting funtion yields a haraterization of the standard HR-modules withoutusing the Kazhdan-Lusztig basis.6.1.3. Given E 2 Irr(W ), we denote by aE (resp. AE) the lowest (resp. highest) power of qin the generi degree of E [Lu1, x4.1.1℄.By [Lu2, Theorem 5.4 and Corollary 6.3 (b)℄, Lusztig's a-funtion is a sorting funtion. Theorresponding �ltrations on projetive modules have been onsidered in [GeRou℄.Write E < E 0 for the order on F arising from <KL via the anonial bijetion between C andF . The following Lemma is a lassial result :Lemma 6.6. Let E;E0 2 F . If E < E0, then aE > aE0 and AE > AE0.Proof. By [KaLu, Remark 3.3(a)℄, we have v �LR w if and only if w0w �LR w0v, where w0 isthe element of maximal length. Left multipliation by w0 indues a automorphism of C. Theorresponding automorphism of F is tensor produt by det [Lu1, Lemma 5.14℄. It follows thatE < E0 if and only if E0 
 det < E 
 det (f also [BaVo, Proposition 2.25℄).We have AE = N � aE
det, where N is the number of positive roots of W [Lu1, 5.11.5℄.The Lemma is now a onsequene of the fat that E < E 0 ) aE > aE). �



ON THE CATEGORY O FOR RATIONAL CHEREDNIK ALGEBRAS 27We dedue there is another sorting funtion :Proposition 6.7. The funtion aE +AE is a sorting funtion.6.2. Standard modules for the Heke algebra via KZ-funtor.6.2.1. We onsider the setting of x3.1 with kH;1 = k1 independent of H. Aording to [BrMi,x4.21 and Proposition 4.1℄ we have E = k1(aE +AE):We an �nally identify the images of the standard modules �(E) of O via KZ :Theorem 6.8. Assume kH;1 is a positive real number independent of H. Let E 2 Irr(CW ).Then, KZ(�(E)) �! S(E).Proof. We prove the result for R loal omplete as in x5.2.5 instead of C. The �-�ltrationof projetive objets of OR beomes, via KZR, the �ltration of Proposition 6.5 for the sortingfuntion f(E) = aE+AE and the assoiated quotients are diret sums of standard HR-modules.It follows that the modules KZR(�(R 
 E)) for E 2 Irr(W ) oinide with the standard HR-modules. Sine KZK(�(K
E)) �! K
S(E) (f the remark before Theorem 5.13)), we deduethe Theorem. �Remark 6.9. If the number kH;1 (whih is independent of H) is non-real, then the ategoryO and the algebra H are both semi-simple, hene it is still true that KZ(�(E)) ' S(E). If thenumber is non-positive real, then a similar approah shows that KZ(�(E)) ' S(E)�.Corollary 6.10. Assume kH;1 is a positive real number and W has type An. Then, KZ(�(E))is isomorphi to the Speht module orresponding to E.Proof. The result is a onsequene of [Na, GaM℄, where it is proven that the module S(E) is aSpeht module. Alternatively, any projetiveH-module is known to have a �ltration by Spehtmodules suh that the order of terms in the �ltration is ompatible with the dominane orderon partitions. The laim of the Corollary an be easily dedued from this by omparing withthe order relation on two-sided ells. �Corollary 6.11. If KZ(L(E)) 6= 0, then KZ(P (E)) is a projetive H-module and, for anyF 2 Irr(W ), we have [S(F ) : KZ(L(E))℄ = [P (E) : �(F )℄.Proof. This is an immediate onsequene of Theorem 6.8, the reiproity formula in x2.6.2, andProposition 3.3. �Referenes[A℄ S. Arkhipov, Semi-in�nite ohomology of assoiative algebras and bar duality, Internat. Math. Res.Noties (1997), no. 17, 833-863.[BaVo℄ D. Barbash and D. Vogan, Primitive ideals and orbital integrals in omplex exeptional groups, J.of Alg. 80 (1983), 350{382.[BeEtGi℄ Y. Berest, P. Etingof and V. Ginzburg, Cherednik algebras and di�erential operators on quasi-invariants, arXiv:math.QA/0111005, to appear in Duke Math. J.[Bj℄ J.-E. Bjork, Rings of di�erential operators.North-HollandMathematial Library, 21. North-HollandPublishing Co., Amsterdam-New York, 1979.[Bo℄ A. Borel et al., \Algebrai D-modules", Aademi Press, 1987.
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