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GeneralGeneral introduction 

1.. Community-acquired pneumonia 

Community-acquiredd pneumonia (CAP) is a major cause of morbidity and mortality 

alll  over the world. The incidence of CAP requiring hospitalization is 258 per 100,000 per year 

andd increases with age to 962 per 100,000 for those 65 years of age or older [1]. The 

introductionn of antibiotic agents dramatically reduced mortality from pneumococcal 

pneumonia,, but the mortality rate from CAP has shown littl e improvement during the past 3 

decades,, remaining between 2 and 30% among hospitalized patients with an average o f -14% 

[1,2].. Mortality is estimated to be < 1% for non-hospitalized patients [2]. CAP can be caused 

byy a variety of bacterial and viral pathogens, but the etiology is established in only 50-70% of 

cases.. The etiology of CAP in North America over the past 20 years is listed in table 1 [3] and 

thesee numbers are supported by multiple studies [4,5]. 

Tablee 1. Etiology of CAP in North America 

Etiologyy Cause of CAP (in %) 

Streptococcuss pneumoniae 20-60 

Haemophiluss influenzae 3-10 

Staphylococcuss aureus 3-5 

Gram-negativee bacteria 3-10 

Aspirationn 6-10 

Miscellaneouss 3-5 

Legionellaa spp. 2-8 

Mycoplasmaa pneumoniae 1-6 

Clamydiaa pneumoniae 4-6 

Virusess 2-15 

Dataa from [3]. 

2.. Epidemiology of Legionella pneumophila 

Inn 1976 an outbreak of pneumonia occurred among attendees of a convention for 

Americann Legion's in Philadelphia. The causative agent was identified and called Legionella 

pneumophilapneumophila and the illness Legionnaires' disease (LD) [6,7], L. pneumophila is a gram-

negative,, aerobic and facultative intracellular bacillus. Although 48 species of Legionellae 

havee been described [8], L. pneumophila is responsible for about 90% of infections caused by 

memberss of the Legionellaceae family [9,10]. L, pneumophila serogroup 1 (70-80%), 4 and 6 
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accountt for most of the strains implicated in human infection [11,12]. In total 19 Legionella 

speciess are documented as human pathogens on the basis of their isolation from clinical 

materiall  [13]. The clinical syndromes produced by members of the Legionellaceae family are 

designatedd legionellosis: LD is pneumonia, and Pontiac fever is an acute febrile, self-limiting 

illnesss without pneumonia that has been serologically linked to L. pneumophila or other 

Legionellaa species [13]. 

LDD is usually community acquired (75%) and accounts for 2-13 % of all CAP cases 

worldwide.. This range of LD incidence among CAP patients can be explained by 

geographicall  site and severity of pneumonia of the population that is studied [4,12,14]. In 

addition,, the use of diagnostic tools may differ between countries. Hospital acquired LD (25% 

off  cases) is often more severe, with fatality rates reaching 50% [15], and 37% of these cases 

aree linked to outbreaks (reported to the Centers for Disease Control and Prevention) [10]. 

Overall,, outbreaks of LD account for 10-20% of LD cases, so the majority of cases occurs 

sporadic.. Travel is an underappreciated factor in the acquisition of LD in the community. 

Characteristicss of typical travel-related LD make detection very difficult: a low attack rate, a 

longg incubation period, dispersal of persons away from the source and inadequate 

surveillance.. The sources of outbreaks and sporadic cases are similar. 

Legionellaa bacteria are ubiquitous in both natural and engineered water supplies and a 

varietyy of equipment that disperse water has been implicated as the source of infection, 

includingg potable water. The mode of transmission is by inhalation of aerosols or micro-

aspirationn of contaminated water [16]. No person-to-person transmission has ever been 

observed,, indicating that L. pneumophila is not adapted to the human host. In the absence of 

transmisionn to a new human host, mutations that promote survival and replication only in the 

humann lung wil l not persit in the species' genome [17]. However, in water systems L. 

pneumophilapneumophila can grow in a wide range of hosts: >13 species of amoebae and 2 species of 

ciliatedd protozoa [17]. It is important to note that protozoa frequently contaminate water 

supplies,, especially heated reservoirs. The lif e cycle of L. pneumophila in amoebae strongly 

resembless that observed in (alveolar) macrophages. The similar cell biology suggests that the 

virulencee of L. pneumophila for alveolar macrophages is a consequence of its evolution as a 

parasitee of amoebae. Moreover, replication in amoebae not only increases the bacterial 

numberss but also increases virulence and resistance to anti-microbial agents. For example, 

micee inoculated with a mixture of bacteria and amoebae develop more severe disease than 

thosee infected with either L. pneumophila or Hartemanella vermiformis [18]. 
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3.. Microbiology 

Legionellaceaee are gram-negative, small coccobacilli measuring up to 0.5 (im by 1-3 

|imm with polar or lateral flagella up to 8 |j.m in length and 14-20 r)m in diameter. The 

organismm is nutritionally fastidious and does not grow on standard bacteriological media. 

Charcoall  yeast extract buffered to pH 6.9 (BCYE) is the primary medium used for isolation. 

L-Cysteinee is a critical ingredient in culture and keto-acids and ferric ions stimulate growth. 

L.L. pneumophila can be visualized by Gram stain with some difficulty. Legionella stains 

poorlyy when examined on smears of infected secretions or in tissue, but they stain more 

readilyy after growth on culture plates. 

Antigenss of L. pneumophila that have been studied extensively are the lipopolysaccharides 

(LPS),, responsible for endotoxic properties of the bacterium and also the determinant of the 

serogroupp specificity. LPS of L. pneumophila has a unique structure compared to LPS of 

otherr gram-negative bacteria and this may explain the observed low endotoxicity. There are 

155 antigenically distinct serogroups of I . pneumophila [8]. The major outer membrane protein 

off  Legionella is involved in binding of the bacteria to complement receptor 1 and 3 on 

mononuclearr phagocytic cells [8]. L. pneumophila produces several extracellular products: a 

hemolysin,, several proteinases with collagenase activity and a heat-stable polypeptide 

cytotoxinn (Hsp60). The latter toxin is involved in reducing superoxide generation in PMN, 

thuss reducing bacterial killing. A number of virulence factors involved in intracellular growth 

andd programmed cell death have been the focus of recent studies. The macrophage infectivity 

protiatorr (Mip)-gene is involved in the process of establishing efficient infection in 

macrophagess and protozoa [17]. In macrophages, the Dot/Icm type IV secretion machinery 

(Dot,, defective for organelle trafficking; Icm, intracellular multiplication) of L. pneumophila 

enabless the bacterial phagosome to evade maturation along the endosomal-lysosomal 

degradationn pathway [19]. Upon termination of intracellular replication the bacteria undergo 

phenotypicc modulations resulting in Dot/Icm dependent pore-formation-mediated cytotoxicity 

[20]]  and apoptosis of the host cell via activation of caspase 3 [21,22]. 

4.. Clinical features 

LDD originally was believed to cause the typical clinical syndrome that fits into the 

groupp of diseases called "atypical pneumonia". However, several prospective comparative 
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studiess have determined that on the basis of clinical findings, non-specific laboratory findings 

orr chest roentgenographic results it is not possible to distinguish between LD and common 

causess of pneumonia [4,23,24], LD encompasses a broad spectrum of illnesses, ranging from 

aa mild cough and slight fever to widespread pulmonary infiltrates and multi-organ failure. 

Earlyy in the disease most patients experience nonspecific flu-like symptoms such as fever, 

myalgia,, anorexia and headache. Cough with sputum production is reported in 25 to 75 % of 

thee patients and differences with other causes of pneumonia are not convincing [25]. The 

frequencyy of diarrhea in patients with LD ranged from 0-25%, which was not different from 

otherr causes of pneumonia. Change in mental status is the most common neurological 

abnormality.. Fever is virtually always present and often higher than 40 °C. Hyponatremia 

andd elevated levels of serum transaminase enzymes are the two most common types of non-

specificc laboratory abnormalities that clinicians associate with LD. However, in several 

prospectivee studies differences in laboratory values from other causes of pneumonia could not 

bee demonstrated [25]. Chest radiographic findings in LD are also non-specific and all types 

off  roentgenographic patterns are seen. Progression of infiltrates despite appropriate therapy is 

oftenn observed. The extent of radiographic infiltration does not correlate with severity of 

clinicall  manifestations or with ultimate outcome [26]. The outbreak in the Netherlands once 

moree demonstrated that patients with LD are not easily recognized by physicians (this thesis). 

Onn the other hand, physicians are more likely to prescribe erythromycin to patients with LD 

thann to patients with "typical" bacterial pneumonia [27]. This suggests that there maybe clues 

onn admission which alert the physician to suspect LD, for example, severity of pneumonia or 

aa history of traveling. For a subset of patients with LD findings are classic, but use of these 

classicc findings as a sole index for suspicion inevitably results in missed diagnoses. 

Cigarettee smoking, chronic obstructive pulmonary disease (COPD) and 

immunosuppressionn have consistently been implicated as risk factors for acquisition of LD 

[10,15,28].. Surgery and organ transplantation are major risk factors for acquisition of 

nosocomiall  Legionella infection [29]. All these conditions are predictors for fatal outcome 

[10,23,30]]  although results depend extensively on the population studied. 

Twoo years after the first described outbreak of LD in Philadelphia [6], 58% of the 

patientss were still not fully recovered [31]. Information on the follow-up of pulmonary 

abnormalitiess in survivors of LD is only limited available. Radiological abnormalities were 

shownn to persist for at least several months after recovery from the acute phase of LD [32]. In 

lungg biopsies taken shortly after LD there were structural changes and fibrosis of lung 
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parenchymaa [33]. Despite considerable progress in medical and epidemiological management 

off  outbreaks of LD, littl e is known about the overall health impact of such an event on 

survivors.. An important measure of patient well-being is the health-related quality of life 

(HRQL)) [34,35] which can be assessed by symptom-based questionnaires or The Medical 

Outcomess Study Short Form 36-item Health Survey (SF-36) questionnaire. Using a symptom-

basedd questionnaire, the recovery of patients with low-risk pneumonia to pre-morbid health 

statuss requires more than 90 days [34,35]. In patients who survived ICU admission for lung 

injury,, an impaired quality of life compared with matched population controls was 

demonstratedd even after one to two years follow-up [36,37]. For patients recovered from LD, 

follow-upp quality of life data are described in this thesis. 

5.. Diagnostic tools 

LDD can be diagnosed with the use of specialized laboratory tests and general use of 

thesee tests may prevent under-diagnosis, underreporting and delay of adequate therapy. Most 

off  the data are applicable to Legionella pneumophila, since sensitivity or specificity estimates 

forr non-pneumophila species are not known. 

Culturee of Legionella: Culture diagnosis remains the gold standard for diagnosis of 

Legionnaires'' disease. Based upon serologically positive patients (fourfold rise in titer), 

sensitivityy is near 60% and the specificity is near 100% [8,38]. Sensitivity is limited by 

severall  factors. First, laboratories experienced in the isolation of Legionellae are more likely 

too recover the organism than inexperienced laboratories [8], Second, hospital laboratories 

commonlyy reject sputum samples containing many squamous cells or few polymorphonuclear 

leukocytes.. However, many patients with LD produce non-purulent sputum in which 

Legionellaa is present. Finally, bacteria survive poorly in respiratory secretions and immediate 

culturee is critical, a factor that hampers adequate cultures in clinical practice. Legionella can 

bee cultured from blood, lung tissue, lung biopsy material, respiratory secretions (sputum, 

bronchoalveolarr lavage fluid) and stool. Occasionally, Legionella has been cultured from 

extrapulmonaryy sites such as bone marrow, prostetic heart valves and sternal wounds. Culture 

hass the disadvantage of delay, because a positive result is not available until after at least 3 

dayss of incubation and antibiotic treatment should be initiated before test results are known. 

Inn addition, certain commercially available culture media are selective for L. pneumophila but 

mayy inhibit growth of other Legionella species [13]. 

15 5 



ChapterChapter 1 

Directt Fluorescence Antibody staining (DFA): The sensitivity of DFA testing for Legionella 

inn respiratory secretions has varied from 25 to 75%, and the specificity is >95%. Estimates of 

sensitivityy of DFA staining are highly dependent on the golden standard used. Not 

surprisingly,, sensitivity is higher when a positive culture is used as the golden standard 

comparedd to serology. The sensitivity and specificity for species other than L. pneumophila is 

nott exactly known [13]. Immunofluorescent microscopy is technically demanding and should 

onlyy be performed by experienced laboratory personnel. There are several species-specific 

polyvalentt and monoclonal reagents available with different specificity and sensitivity, and 

crosss reactions have been reported [8,25,39]. In conclusion, DFA staining is not useful for 

routinee clinical practice. 

Serologicall  diagnosis: Seroconversion is a diagnostic tool with a high sensitivity and a high 

(serogroupp dependent) specificity. The indirect fluorescent antibody test (IFAT), developed 

byy the Centers for Disease Control, Atlanta (CDC), is the most widely used test and detects 

immunoglobulinn (Ig) G, IgM and IgA antibodies to L. pneumophila with a sensitivity of

80%,, using 99% cut-off values [8]. ELISA assays (detecting L. pneumophila serogroup 1-6; 

IgMM and IgG antibodies) have the advantage of being simple and rapid and several studies 

showedd a high overall correlation between IF AT and ELISA testing. The micro-agglutination 

testt (MAT) detects L. pneumophila serogroup 1-15 IgM antibodies with a specificity of > 

99%% [40]. Harrison et al [41] found a sensitivity of 63% for a fourfold rise in titer to > 1:128 

usingg positive culture or positive DFA staining in respiratory secretions as the golden 

standard.. However, serology assays are not used in clinical practice on a large scale. The time 

requiredd for seroconversion is variable and can be more than 10 weeks [8,42]. In one study, 

411 % of 42 patients with culture-proven L. pneumophila pneumonia did not seroconvert within 

4-66 weeks [43]. A single high titer > 1:256 can be used in an outbreak situation, but a single 

highh titer in solitary cases should be carefully considered [43]. 

Thee specificity of serological tests for L. pneumophila is -95-99%. False-positive result have 

beenn reported [39,44]. However, cross-reactions occur especially with non-I. pneumophila 

spp. . 

Urinee Antigen detection: The urinary antigen tests combine reasonable sensitivity and high 

specificityy with rapid results. Approximately 80% of patients withZ. pneumophila serogroup 

11 infection excrete Legionella antigen in their urine [45]. Therefore, detecting these antigens 

permitss early diagnosis and initiation of appropriate therapy. Although there is some cross 

reactivityy with L. pneumophila serogroups 4, 5 and 10, the capture antibody used in the 
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majorityy of urinary antigen tests is considered to be specific for L. pneumophila serogroup 1 

(thee antigen detected is a component of the LPS portion of the cell wall and is heat stable). 

Therefore,, even though most cases of LD are caused by L. pneumophila serogroup 1, total 

dependencee on this assay may miss as many as 30-40 % of cases. Currently, there are three 

commerciallyy available ELISA urinary antigen tests (Binax EIA, Bartels EIA and Biotest 

EIA).. Two tests intend to detect L. pneumophila serogroup 1 and the Biotest EIA is intended 

too detect antigens of other serogroups and species in addition to L. pneumophila serogroup 1 

[46].. However, the Binax EIA and Bartels EIA are capable to detect antigens from non-Z. 

pneumophilapneumophila serogroup 1, although with a lower sensitivity [47]. The reported sensitivity 

rangess from 50-90%, depending on the golden standard used , the patient characteristics, the 

serogroupp with which the patient is infected, the timing of urine collection and whether the 

urinee is concentrated or not [39,43,48,49]. A new immunochromatographic test (Binax Now) 

intendss to detect L. pneumophila serogroup 1, is simple to perform (like a home pregnancy 

test)) and results can be obtained in 15 min. This test showed 98% overall agreement with the 

Binaxx EIA assay [50]. Concerns have been raised about the sensitivity of urinary antigen 

testingg early in the course of the disease [51]. In a study with patients with nosocomial L. 

pneumophilapneumophila serogroup 1 infection, 5 of 7 patients with a negative urine antigen test during 

thee first 5 days of illness had a subsequent positive test. Because these patients had 

nosocomiall  infection, they may have been tested earlier in the disease than patients with 

community-acquiredd infection. False-negative urinary tests in early disease were not found by 

otherss [45] (Dr. E. Yzerman, pers. communication). Specificity for all tests is -98-100% and 

crosss reactivity with other micro-organisms is rare [52,53]. 

Inn general, considering the sensitivity of urinary antigen testing and the limitation of 

serogroupp and species specificity, Legionella as the cause of pneumonia can not be excluded 

whenn the test is negative. 

PCR:: Amplification of DNA by polymerase chain reaction is a very sensitive tool, able to 

detectt low quantities of Legionella DNA in respiratory secretions, serum and urine. PCR 

representss one of the few diagnostic tests with the potential to detect infections caused by any 

off  the known species of Legionella, although PCR lacks the ability to discriminate between 

Legionellaa species [46,54]. 

Urinee screening with a commercially available PCR kit (Enviro-Amp kit) within the first 2 

dayss of illness showed a sensitivity of 75% and a specificity of 90% [39]. However, the 

sensitivityy is so high that positive results may occur due to low level Legionella 
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contaminationn of drinking water [39,55]. Validation of PCR assays will be difficult, because 

deficienciess in existing techniques will make it difficult to rule out false-positive results. 

6.. Therapy 

Sincee the first described outbreak of LD, erythromycin has been the drug of choice [6]. 

Increasedd mortality associated with delay of starting adequate therapy for LD has been 

reportedd [56-58]. In patients suspected of having LD adequate therapy should therefore be 

startedd as soon as possible. It is unlikely that a comparative clinical trial testing newer drugs 

couldd be completed, since such a study would require 300-900 patients in each group for 

adequatee statistical power and thus would take years to perform [59]. Therefore, assessment 

off  the efficacy and potential utility of antimicrobials against Legionella spp. is based on 3 

methods:: first, in vitro extracellular susceptibility testing can be used to screen for active 

agents.. However, the MIC can be influenced by inactivation of drugs by the test media and 

alsoo high extracellular susceptibility can not be extrapolated to in vivo activity. For example, 

(3-lactamss are highly active in vitro but do not penetrate the intracellular compartment. 

Second,, L. pneumophila has been cultured in vitro in a number of cell lines to assess the 

intracellularr activity of antimicrobials. The third method are studies with guinea pigs that 

developp severe pneumonia when infected with L. pneumophila. Clinical efficacy in humans 

correspondss to efficacy in this animal model. In vitro data (MIC data and intracellular culture 

methods)) and guinea pig models suggested that newer macrolides and many fluoroquinolone 

agentss have superior activity against Legionella spp. compared to erythromycin. Human 

studiess are limited to case reports and small retrospective studies. 

Macrolidess and azalides: Erythromycin is widely used, but it is less active in vitro and in 

animall  models than azithromycin, clarithromycin and roxithromycin. Azithromycin is either 

bactericidall  or irreversibly inhibitory against the intracellular bacterium, whereas 

erythromycinn is only bacteriostatic. Single-dose azithromycin treatment of guinea pigs is 

muchh more effective than multiple-dose erythromycin therapy and is also more active than 

clarithromycinn [60]. When azithromycin is used in treating community-acquired Legionella, 

curee has been observed in 8 out of 8 patients with a total dose of 1.5 g given over 3-5 days 

[61].. Newer macrolides have less side effects than erythromycin [62]. On the basis of the 

availableavailable data, azithromycin appears to be the best macrolide to treat LD, followed by 

clarithromycine. . 
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Quinolones:: Fluoroquinolones probably have the best activity against L. pneumophila in 

experimentall  models with MIC values < 0.01 îg/ml [63-65]. Many quinolones kill rather than 

justt inhibit the intracellular bacterium and they readilyy concentrate within phagocytes. Animal 

studiess have confirmed that the fluoroquinolones are more effective than erythromycin [59]. 

Levofloxacinn is more active than ofloxacin and ciprofloxacin, and it can administered orally 

orr IV. Failures have occurred in patients receiving low-dose ciprofloxacin or ofloxacin 

[59,63]]  and high dosages (800-1000 mg/d) need to be administered for better effectiveness. 

Thee newer quinolones, e.g. moxifloxacin, levofloxacin and sparfloxacin, seem better choices 

thann older quinolones (ciprofloxacin and ofloxacin), but clinical comparisons are lacking. 

Otherr antimicrobials: Rifampicin is very active against extracellular and intracellular 

Legionellaa spp. In the clinical setting monotherapy is not recommended since rifampicin 

resistancee has been thought to emerge quickly. However, rifampicin resistance did not occur 

inn guinea pigs with Legionella pneumonia who were treated with rifampicin alone [66]. 

Rifampicinn has been reserved for adjunctive therapy, although there are no good clinical data 

demonstratingg the superiority of combination therapy with rifampicin. Synergism of 

erythromycinn and rifampicin has been reported in the guinea pig model [63]. 

Trimethoprim-sulfamethoxazole,, tetracyclines and chloramphenicol have been tested in vitro, 

inn animal models and in the clinical setting, but they are less active than macrolides, 

quinoloness and rifampicin [59]. 

Newerr drugs like ketolides are currently investigated [67], They are active against 

extracellularr and intracellular Legionella, but clinical data are awaited. 

Choicee of therapy: There are a number of antimicrobial agents that are active in vitro and in 

vivo,vivo, concentrate intracellularly and achieve high concentrations in lung tissue. The 

fluoroquinolones,, especially levofoxacin, have excellent activity against L. pneumophila but 

azithromycinn is a good alternative. Quinolones should be used in preference to erythromycine 

forr the treatment of patients with severe (nosocomial or community-acquired) LD and 

immunocompromisedd patients. Azithromycine can be used in patients with mild community 

acquiredd LD. Combination therapy of quinolones and azithromycine may be considered in 

severelyy ill patients who do not improve on initial therapy with a quinolone, but data 

supportingg an additional effect are lacking. 
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7.. Pathophysiology of LD 

Phagocytosiss of L. pneumophila 

Oncee Legionella enters the upper respiratory tract, clearance is effected by cilia and 

respiratoryy epithelial cells. This probably explains the increased risk of LD in smokers and in 

personss with COPD or alcoholism, in whom mucociliary clearance is impaired. 

Alveolarr macrophages (AM) phagocytose L. pneumophila by an unusual process termed 

"coilingg phagocytosis" [68]. When Legionella bacteria are opsonized with complement C3, 

phagocytosiss is enhanced by binding to complement receptor (CR) 1 and 3 on human 

monocytess [17,69]. CR1 and CR3 recognize fragments of C3; CR1 is the primary receptor for 

C3bb and CR3 is the primary receptor for iC3b. Phagocytosis is serum dependent and C3 binds 

selectivelyy to the major outer membrane protein of L. pneumophila [70]. Others, have 

identifiedd LPS as the surface molecule that primarily activates the classical pathway [71]. 

However,, complement levels in the human lung are normally low and therefore it is likely 

thatt in early infection L. pneumophila attaches to phagocytes by another mechanism. Indeed, 

inn the absence of complement or antibodies, the microorganism still binds to phagocytic 

mononuclearr cells (PMC) that express Fcy-receptors and CR1 and CR3 receptors. 

Furthermore,, bacterial growth after complement-independent attachment (pre-incubation with 

monoclonall  antibodies against CR1 and CR3) has been observed in guinea pig alveolar 

macrophagess and different cell lines [72]. Thus the mechanism of binding is not yet 

elucidatedd and does not appear to influence the intracellular fate of Legionella bacteria [73]. 

Afterr L. pneumophila has entered the phagocyte, they survive in a ribosome-lined 

phagosome,, which does not fuse with lysosomes and therefore evades the antimicrobial 

defensess of mononuclear cells [17]. The bacteria multiply in this phagosome and ultimately 

destroyy the host cell and parasite newly recruited cells. Infection of macrophages with 

Legionellaa results in rapid multiplication of the bacteria. Within 24-48 hours, there is a 100-

10000 fold increase in the number of bacteria in infected cultured macrophages. Therefore, 

intracellularr replication within macrophages and, as recently shown, within alveolar epithelial 

cellss [74] is an important hallmark of LD. The magnitude of intracellular replication in 

epitheliall  cells and the contribution to disease are not known. 
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Recognitionn of L. pneumophila: the role of toll-like receptors 

L.L. pneumophila is a gram-negative bacterium that possesses a variety of antigens usual 

forr gram-negative bacteria, such as LPS, heat-shock proteins (Hsp60), outer membrane 

proteinss (OmpS), flagella and fimbria. These antigens are known to stimulate immune cells to 

producee a number of cytokines. 

Tolll  like receptors (TLR) are thought to be an important link between pathogen detection and 

thee induction of innate immunity [75,76]. The TLR family consists of transmembrane proteins 

withh leucin-rich motifs in their extracellular domain and a cytoplasmic domain which is 

homologouss to the signaling domain of the IL-1 receptor. Expression of TLR has been found 

inn monocytes/macrophages, B-cells, T-cells and dendritic cells [77]. To date, at least 10 

TLR'ss have been identified of which TLR4 is the predominant, if not the exclusive, receptor 

forr LPS and TLR5 selectively recognizes flagellin on gram-negative and gram-positive 

bacteriaa [78]. Activation via TLR4 has been shown to induce an intracellular signaling 

cascadee involving the MyD88, IL-1R accessory protein kinase (IRAK), TNFR-associated 

factorr 6 (TRAF-6) and NF-KB-inducing kinase, leading to the activation of NF-KB and 

subsequentt transcription of NF-KB controlled genes resulting in immune activation [79,80]. 

Signall  transfer requires several other factors such as LBP, the LPS binding protein, MD-2 and 

thee CD 14 receptor on the surface of PMC [81]. 

Itt is not known whether TLR's are involved in cellular recognition of Legionella antigens. 

Activationn of host cells by L. pneumophila LPS might pass off via TLR4 resulting in NF-KB 

activationn and the production of pro-inflammatory cytokines as has been demonstrated for 

severall  other gram-negative bacteria and mycobacteria [75,76,82]. However, LPS of L. 

pneumophilapneumophila has an unique structure: the O-chain is highly hydrophobic as is the outer core 

oligosaccharide.. The lipid A moiety consists of unusually long, branched-chain fatty acids, 

whichh could be responsible for the observed low endotoxicity. Legionella LPS is a weak 

inducerr of pro-inflammatory cytokines by PMC in vitro and in vivo compared to 

enterobacteriall  LPS [83,84]. Moreover, LPS of Legionella does not bind to CD14 or soluble 

CDD 14, which in the presence of a secreted protein MD-2 results in activation of TLR4 [84]. 

Studiess with TLRA deficient mice (C3H/HeJ) that are hyporesponsive to LPS showed that 

TLR44 plays an important role in host defense mechanisms against at least some gram-

negativee bacteria [85,86]. The role of TLR4 in host defense against L. pneumophila infection 

iss not known. It might be that LPS or other Legionella cell wall components, like flagellin, are 

ablee to activate PMC via other (toll-like) receptors. Recently, it has been shown that TLR5 
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recognizess bacterial flagellin from both gram-positive and gram-negative bacteria, and that 

activationn of the receptor mobilizes the nuclear factor NF-KB [78]. 

Macrophagee apoptosis 

Apoptosiss is a highly regulated process of cell death that is found in response to 

infectionss with many organisms, including I. pneumophila. L. pneumophila is capable of 

inducingg apoptosis in macrophages and alveolar epithelial cells within a few hours after 

infectionn [87]. Apoptosis of AM could be an effective weapon of the host to kill or restrict 

intracellularr growth of Legionella bacteria, but it could also be beneficial to the bacterium by 

blockingg the immune functions that are critical for host defense. In a mice model with M. 

tuberculosistuberculosis AM depletion led to improved clearance and survival of M. tuberculosis 

infectionn [88]. This is supported by observations of an inverse relationship between apoptosis 

inductionn and virulence in M. tuberculosis [89]. Selective depletion of activated macrophages 

ledd to impaired resistance to M. tuberculosis, suggesting that host-induced apoptosis is 

directedd against non-activated macrophages (J. Leemans et al., submitted). 

Legionellaa serogroup 1 induces the highest amount of apoptosis [90] and it has the highest 

cytotoxicityy to macrophages compared to other serogroups. In this way, the induction of 

apoptosiss may serve as a pathogen-encoded virulence determinant. 

Resolutionn of L. pneumophila', cytokine production 

Pro-inflammatoryPro-inflammatory cytokines: IFN-y, TNF-aandIL-12 

Limitationn of multiplication in alveolar macrophages and monocytes is the key 

defensee mechanism against LD. In general, mice are resistant to L. pneumophila infection, but 

thee A/J mouse strain is permissive for growth of Legionella bacteria. Nevertheless, mortality 

iss only slightly higher than in other mouse strains [91]. Therefore, this is a suitable model to 

studyy the inflammatory response during Legionella infection. A/J mice have a recessive 

mutationn on chromosome 13, called the lgn\ gene. Encoded in this region is the murine 

homologg of the gene encoding neuronal apoptosis inhibitory protein (NAIP). These genes are 

alsoo expressed in macrophages [17]. A/J mouse tissue contains less NAIP RNA and protein 

thann does resistant wild type mouse. In addition, impaired IFN-y production by macrophages 

off  A/J mice has also been implicated to play a role in the susceptibility of these mice [92]. In 

A/JJ mouse, the course of infection can be divided into an early phase, during which a rapid 

multiplicationn and inflammatory response can be observed, and a second phase, after 2-3 days 
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post-infection,, with a decrease in the pulmonary bacterial count. The early inflammatory 

responsee mainly consists of influx of monocytes/macrophages, lymphocytes and NK cells 

[93]]  and these cells represent a first and effective line of defense against infection by 

producingg cytokines and chemokines that limit the growth of bacteria in macrophages. 

Figuree 1. The immune 
responsee to L. pneumophila 

*-<SJJ*-<SJJ IFN-Y 

TNF-a,, mainly produced by macrophages, has been shown to enhance the bactericidal 

activityy of macrophages and to protect against a variety of intracellular bacterial infections 

[94].. TNF-a is produced during replicative Legionella pneumonia and depletion of TNF-a in 

aa rat model resulted in limited recruitment of monocytes to the lung and failure to clear 

Legionellaa bacteria from the lungs [94]. It has been shown that treatment of macrophages 

withh r-TNF-a caused a decrease in the ability of L. pneumophila to replicate within these cells 

[95],, indicating that TNF-a is crucial for resistance to Legionella infection. On the other 

hand,, systemic high levels of TNF-a during illness are associated with adverse outcome [96]. 

Thee role of cell-mediated immunity (CMI) in L. pneumophila infection is known to be 

criticall  for outcome[97]. In patients with LD a relative predominance of Thl type cytokines 

wass found [98]. A T helper 1 (Thl) response is characterized by IFN-y production; IFN-y 

playss a critical role in activation of monocytes and alveolar macrophages in a dose and time 

dependentt way, such that it inhibits intracellular multiplication of L. pneumophila (figure 2) 

[99-102].. IFN-y can be produced, in low levels, by macrophages itself and the autocrine 

biologicall  functions of IFN-y on the macrophage include up-regulation of MHC class II and 

thee activation to a non-permissive state. 

23 3 



ChapterChapter 1 

IL-122 is a pivotal denominator of the balance between Thl and Th2 lymphocyte 

subsets,, as it drives naive T cells into a Thl direction [103]. IL-12 is mainly produced by 

monocytess and polymorphonuclear cells (PMN) [97]. Mice depleted of IL-12 have 

significantlyy more Legionella bacteria in their lungs compared to control mice and a 

significantt decrease in intrapulmonary TNF-a activity within the first 24 hours of infection 

[97,104].. In addition, pre-treatment of mice with anti-IL-12 and anti- IL-18 antibodies 

resultedd in a 97% decrease of IFN-y levels at 72 hours after infection and more bacteria were 

recoveredd from the lungs [105]. In vitro viable L. pneumophila selectively suppress IL-12 

productionn by macrophages of A/J mice at the level of both mRNA and protein secretion by 

ann MCP (monocyte chemotactic protein)-l independent mechanism [106]. This maybe one of 

thee mechanisms which Legionella bacteria use to escape from innate immune responses. 

Figuree 2. Model of 
inductionn of Thl and Th2 
cells.cells. Naive T cells 
differentiatee into Thl or 
Th22 cells depending on the 
cytokinee mileu provided by 
antigenn oresenting cells. IL-
122 promotes TH1 cells and 
IL-44 promotes TH2 cells. 
IFN-yy and IL-4 can act as 
autocrinee growth factors 
andd can inhibit the opposite 
Thh subset. Thl cells 
mediatee the elimination of 
Legionellaa bacteria by 
inducingg a strong CMI. 

Despitee the activation of macrophages by IFN-y and TNF-a, they do not kil l the 

intracellularr bacteria, even in the presence of specific antibodies [100]. Instead, activated 

macrophagess only restrict replication. IFN-y activated macrophages inhibit intracellular 

multiplicationn by limiting the availability of intracellular iron [107]. This is the result of down 

regulationn of transferrin receptor expression on monocytes and a decrease of the concentration 

off  intracellular ferritin [108,109]. On the other hand, iron also plays a major role in 

phagocyticc cell interactions with pathogens serving as a catalyst in the generation of toxic 

oxygenn metabolites (respiratory burst) used in anti-microbial defense. Ferric iron reacts with 

hydrogenn peroxide to produce hydroxyl radical (Fenton reaction) and in vitro this is one of the 

macrophage e 

II.-4,, IL-5, IL-10 

suppressedd CMI strong CMI 
strongg humural immunity weak humural immunity 
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mostt active oxidative metabolites against Legionella. Since activated phagocytic cells do not 

kil ll  L. pneumophila, the respiratory burst may not play a significant role in host defense 

againstt L. pneumophila. 

Activationn of macrophages by IFN-y also induces synthesis of nitric oxide (NO) from 

L-argininee [110]. NO release leads to cell damage but also to the death of many pathogens. 

Endogenouss NO seems to play a role in IFN-y mediated resolution of L. pneumophila 

infectionn in a susceptible host [111], but IFN-y mediated inhibition in a resistant murine strain 

iss NO-independent [102]. 

Anti-inflammatoryAnti-inflammatory cytokines: IL-10 andIL-4 

Thee role of IL-10 and IL-4 in L. pneumophila infection is rather complicated. IL-10 

suppressess TNF-a and IFN-y production and macrophage activation in vitro [112]. IL-10 is 

producedd by alveolar macrophages, monocytes and Th2 lymphocytes. In a BALB/c mouse 

model,, IL-10 could not be detected in ex vivo splenocyte cultures after an intravenous 

challengee with L. pneumophila [113]. In A/J mice with a pulmonary Legionella infection IL-

100 and IL-4 were not induced [97,113]. On the other hand, IL-4 deficient mice were found to 

bee more susceptible (higher mortality) to Legionella infection than wild type Balb/c mice and 

splenocytee cultures of wild type mice demonstrated an early transient production of IL-4 (3-5 

hourss post-infection) [113]. IL-4 deficient mice also produce more TNF-a, IL-1(3 and IL-6, 

suggestingg that IL-4 attenuates the mobilization of acute-phase cytokines during the early 

immunee response [113]. Thus, IL-4 and IL-10 may regulate acute-phase cytokines, especially 

TNF-a. . 

Chemokines Chemokines 

Chemokiness are a family of small chemotactic proteins that play an important role in 

migrationn to the site of infection and activation of inflammatory cells [114]. They are divided 

intoo several families based on their structural differences. The two major families are the CC 

andd CXC chemokine families: the latter can be further distinguished by the presence or 

absencee of an amino-acid sequence, glutamine acid-leucine-arginine (the ERL-motif). IFN-y -

induciblee protein IP-10 is a non ERL-CXC chemokine which bind to the CXCR3 receptor and 

specificallyy targets T-lymphocytes and natural killer (NK) cells [115]. The production of IP-

100 by various cell types is associated with diseases in which IFN-y production is increased. 

IP-100 also is a part of the innate immune response to bacterial infection, probably by 

25 5 



ChapterChapter 1 

attractingg CXCR3 positive Thl cells to the site of inflammation [116]. The role of IP-10 in L. 

pneumophilapneumophila has not been examined thus far. The ERL-containing CXC chemokines, KC 

(keratonocyte-derivedd chemokine), MIP-2 (macrophage inflammatory protein 2) and LIX 

(lipopolysaccharide-inducedd CXC chemokine), induce neutrophil chemotaxis and stimulate 

neutrophill  activation in inflammatory responses. Tateda et al demonstrated that blocking the 

receptorr for ERL-positive CXC chemokines (CXCR2) dramatically sensitized mice to L. 

pneumophilapneumophila and decreased the levels of IL-12 [117]. 

Resolutionn of L. pneumophila: cell types involved 

Earlyy recruitment of PMNs was found to be crucial for survival after pulmonary L. 

pneumophilapneumophila infection in mice and determined the subsequent Thl/Th2 cytokine ratio by 

producingg IL-12 [97,117]. Although mononuclear cells can not be activated by IFN-y to kill 

intracellularr L. pneumophila, IFN-y and/or TNF-oc can activate PMNs to kill extracellular L. 

pneumophilapneumophila [118]. It is unknown whether the phagocytic function of PMN contribute to the 

resolutionn of Legionella pneumonia. 

T-lymphocytess are required for the cell-mediated immune response to Legionella 

infection.. Cytokines as IL-12 and IFN-y promote the development of a Thl response. 

Legionellaa antigens presented on antigen presenting cells are readily accessible to MHC class 

III  molecules, leading to activation of CD4+ T cells. Depletion of CD4+ (T helper cells) in 

A/JJ mice resulted in an increase of infection lethality [93]. This is probably the result of an 

impairedd production of cytokines (IFN-y) and the supportive role of T-cells on humoral 

immunityy and specific T cell mediated immunity. 

Severall  studies showed that delayed-type hypersensitivity and cell mediated immune 

reactionss of lymphoid cells from either immunized animals or patients who had recovered 

fromm LD could be readily detected [119,120]. 

CD8++ T cells (cytotoxic T-cells) recognize antigens that are processed and presented on cell 

surfacess in a MHC class I restricted fashion, which then bind to the T-cell. The precise role of 

CD8++ T cells in Legionella infection is not clear, but mice depleted of CD8+ T cells had an 

impairmentt of bacterial clearance from the lungs [93]. 

Naturall  killer (NK) cells probably play a dual role in L. pneumophila infection. In 

additionn to killing harmful targets these cells are also important early sources of cytokines. It 

hass been shown that NK-cells respond to L. pneumophila antigen stimulation in vitro and in 
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vivovivo by producing IFN-y and by becoming activated to kill L. pneumophila-mfccted 

macrophagee targets [121,122]. 

Humorall  immunity probably plays a role as a second line of defense since specific 

antibodiess are produced late in the course of the disease [123]. In addition, the 

immunopathologicall  role of antibodies in Legionella infection is not clear, since antibodies 

promotee uptake in macrophages rather than promote elimination. 

Inn summary, studies in human and animals suggest that the host response to L. 

pneumophilapneumophila contains features of both innate and CMI. Legionella bacteria are phagocytosed 

byy alveolar macrophages and they survive in a phagosome, which does not fuse with 

lysosomess and therefore evades the anti-microbial defenses of mononuclear cells. The 

bacteriaa multiply in this phagosome and ultimately destroy the host cell via necrosis and 

apoptosiss and subsequently parasite newly recruited cells. Legionella antigens induce a non-

specificc inflammatory response, resulting in activation of macrophages and restriction of 

intracellularr multiplication. Thl cells, that produce Thl class cytokines such as IFN-7 are 

pivotall  in resolution of Legionella pneumonia. However, besides activation of macrophages 

byy cytokines that help to restrict intracellular multiplication, the lysis of infected macrophages 

byy cytotoxic cells may also be an effective way of elimination of bacteria and exposing the 

bacteriaa to other bactericidal cells such as neutrophils. 
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8.. Outline of the thesis 

Inn March 1999 one of the largest outbreaks of Legionnaires' disease since the first 

describedd outbreak in Philadelphia [6] occurred in the Netherlands. The outbreak originated at 

thee Westfrisian Flora, an annual flower show combined with a consumer products exhibition. 

AA case-control study, an environmental investigation and a serological cohort study among 

exhibitorss identified the source of the outbreak: a whirlpool spa (Chapter 2). The size of the 

outbreakk provided the unique opportunity to determine which clinical factors on hospital 

admissionn predict ICU admission or mortality. We also evaluated whether the rapid urinary 

antigenn test can help identify those patients with LD for whom adequate antibiotic therapy 

cannott be delayed (Chapter 3). 

Onee year after the outbreak many patients still had health complaints and in Chapter 4 and 5 

wee describe the persistence of symptoms, the health related quality of life and the presence of 

posttraumaticc stress disorder in survivors of the outbreak. The persistence of pulmonary 

radiologicall  and functional abnormalities was also evaluated. 

Thee urinary antigen test combines reasonable sensitivity and high specificity with rapid test 

results.. To assess the value of the urinary antigen test in an outbreak situation, we evaluated 

threee urinary antigen tests with the urine specimens from the patients and determined the 

influencee of clinical severity of disease on test sensitivity (Chapter 6). 

Predisposingg factors that increase susceptibility to L. pneumophila infection have been 

identifiedd earlier but impairments in cytokine mediated immune responses leading to 

increasedd susceptibility have not yet been studied. We measured in vitro cytokine production 

afterr whole blood stimulation with aspecific and specific stimuli in patients recovered from 

LDD and in controls (Chapter 7). L. pneumophila has a definite requirement for iron and the 

protectivee role of IFN-y is at least partly mediated via limitation of intracellular iron. In 

Chapterr 8 we determined whether serum iron status, haptoglobine phenotype and mutations 

inn the haemochromatosis gene influenced susceptibility for and outcome in LD patients 

comparedd to two control groups. 

Ann effective host defense requires the detection of foreign pathogens and the Toll-like 

receptorss have been identified as the link between pathogens and the mobilization of innate 

immunee responses. We used a mouse model to determine the role of TLR4 in the host defense 

againstt L. pneumophila infection (Chapter 9). Legionella bacteria are intracellular pathogens 

thatt have macrophages as their primary hostt cell. However, macrophages are also the first line 

off  defense. This raises questions as to the exact role of macrophages and macrophage 
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apoptosiss during Legionella infection. In Chapter 10 we studied in a mouse model the role of 

alveolarr macrophages and apoptosis of these cells in the pulmonary host response to infection. 

Al ll  findings are discussed in Chapter 11. 
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