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Abstract. The Petrova (2000) model to calculate pulse profiles is extended to a variable emission height model to make it
physically self-consistent. In this context variable means that the emission height is no longer considered to be the same for
different magnetic field lines. The pulse profiles calculated using this new model seem to be less realistic due to a focusing effect
and cannot be used to fit (typical) multifrequency pulsar observations. Apart from the focusing effect the general morphology
of pulse profiles is not greatly affected by introducing a variable emission height. Additional extensions of the model will be
needed to be able to fit observations, and several suggestions are made.
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1. Introduction

Arons & Barnard (1986) have derived the dispersion relation
for three wave modes which can propagate through the plasma
of a pulsar magnetosphere: the ordinary subluminous mode
(subluminous O-mode), the ordinary superluminous mode (su-
perluminous O-mode) and the extraordinary mode (X-mode).
The X-mode does not suffer refraction, but refraction of the
subluminous O-mode can be considerable in pulsar magneto-
spheres (Barnard & Arons 1986). The subluminous O-mode
cannot escape the pulsar magnetosphere due to Landau damp-
ing, so it does not contribute directly to the observed emission.
Lyubarskii (1996) has shown that the subluminous O-mode
can be converted into the superluminous O-mode – which can
escape the magnetosphere – by induced scattering off plasma
particles. As pointed out by Barnard & Arons (1986) refraction
of the superluminous O-mode is less severe than for the sublu-
minous O-mode. It can, however, be important in the presence
of a transverse plasma density gradient.

For the superluminous O-mode Petrova (2000) (hereafter
P2000) shows how pulse profiles can be calculated taking into
account the transverse plasma density gradient. This model
demonstrated that complex profiles can be produced by a “sim-
ple” ring-shaped emission region (as predicted by Ruderman
& Sutherland 1975), and thus that the wealth of observed
pulse profile shapes may be due to different magnetospheric
conditions rather than more complex emission region-shapes.

Send offprint requests to: P. Weltevrede,
e-mail:wltvrede@science.uva.nl

Furthermore it was shown that the observed phenomenon of
high frequency core splitting could be an effect of refraction.

The emission height is an important ingredient in calcu-
lating pulse profiles. The emission height is frequency depen-
dent; i.e. there is radius-to-frequency mapping (Cordes 1978).
Plasma waves with higher frequencies are excited closer to the
star. The observed frequency dependence of pulse profiles is of-
ten very complex, perhaps more complex than can be expected
from just radius-to-frequency mapping. Because refraction it-
self is a frequency dependent phenomenon, a more complex
frequency dependence of pulse profiles can be expected if re-
fraction is important in pulsar magnetospheres. Other effects
that can be understood by taking into account refraction are the
occurrence of orthogonal polarization modes (Petrova 2001)
and the spectral breaks of pulsars (Petrova 2002).

To link the observed pulse profiles to the shape of the emis-
sion region, so as to be able to check emission theories, one
must know the refractive properties of pulsar magnetospheres.
This calls for the development of improved refraction models.
As noted by P2000, the emission surface at one observing fre-
quency should be, strictly speaking, an isodensity surface of
the plasma distribution. Yet, for simplicity, a constant emis-
sion height (CEH) was assumed in P2000, in the expectation
that the qualitative features of profile formation would not be
sensitive to that assumption. In the present paper we do adopt
a surface of constant density as required for self-consistency
of the refractive model, and we investigate the effects on the
pulse morphology. This “variable” emission height (VEH) ap-
pears to introduce a focusing effect which causes the profiles to
have unrealistically sharp edges. As a consequence, the VEH
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Fig. 1. The ray at position (r, χ) is propagating in the directionθ. This
ray was emitted at (r0, χ0) and the field line through this point is indi-
cated byχs. The plasma density peaks at the characteristic field lines
indicated byχc. The anglesχc andχs are defined atr = 1 and the
anglesχ0 andθ0 at the emission heightr0.

model cannot be used to fit multifrequency pulsar observations
without relaxing additional restrictive assumptions, a number
of which are discussed at the end of the paper.

2. Refraction model

2.1. The ray equations

The refraction model below is essentially that of P2000, and
we refer to that paper for details. The plasma distribution and
the magnetic field are assumed to be axisymmetric around the
magnetic pole, so the refraction model can be described in two
dimensions. A position on a ray trajectory is indicated by the
polar coordinatesr andχ, and the direction along the trajectory
by θ (see Fig. 1).

The geometrical optics description applies and the time
evolution of these quantities is given by the Hamilton
equations. For a highly magnetized ultrarelativistic electron-
positron plasma, which is cold in the proper restframe, the dis-
persion relation has been derived by Arons & Barnard (1986)
and the associated Hamilton equations by Barnard & Arons
(1986). On the condition that the plasma flows with the same
velocity for all field lines and when rays are emitted parallel to
the local (dipolar) magnetic field, the dispersion law describing
the two ordinary wave modes can be written as (P2000)

η

1− 4N

f 2
0 (1+ η)2

 − 9
4
χ2

0γ
2(θn − χn)2 = 0, (1)

while from the Hamilton equations one finds

r
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2
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3
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]
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A1 = (1+ η)3 − 4(1− η)N
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0
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4η(1+ η)

3χ2
0γ

2
·

The radial plasma density derivative has been omitted, be-
cause it can be neglected for the plasma density we will adopt
(P2000). The parameterη is related to the component of the
wave vectork in the direction of the local magnetic field and is
defined as

η = 2γ2(1− n‖) (3)

with γ � 1 the Lorentz factor of the outflowing plasma,
and n‖ = ck‖/ω whereω is the frequency of the plasma
wave. The refractive index isn = (n2

‖ + n2⊥)1/2, where paral-
lel/perpendicular is with respect to the local magnetic field. It
is assumed thatn‖ is such thatη � 2γ2. The plasma waves
are assumed to be generated close to the local Lorentz-shifted
plasma frequencyωp

√
γ,

ωp =

√
4πNpe2

m
, (4)

with e the electron charge,m the electron rest mass andNp

the particle number density (electrons plus positrons) of the
plasma. The ratio

f =
ω

ωp
√
γ

(5)

should then be close to unity.
Equations (1) and (2) arenormalized, i.e. the coordinates

r, χn and θn, as well as the plasma number density distribu-
tion N, are normalized to their values at the emission height
(soχ = χ0χn andθ = θ0θn). The emission height can be dif-
ferent for different rays as will be discussed in Sect. 2.3, so in
this contextthe emission height is the emission height of the
particular ray that is being considered. The values off andχ at
the emission height are denoted asf0 andχ0 respectively. All
angles are assumed to be small compared to 1 throughout this
paper, so the propagation direction of the plasma waves should
always be nearly parallel to the magnetic axis.

For the superluminous O-mode which is considered here,
n‖ cannot be larger than 1, thereforeη is required to be positive
(or zero). At the emission height (whereθn = χn = N = 1) the
solution of the dispersion relation follows immediately and we
have for the superluminous O-mode

η0 =

{
2/ f0 − 1 for 0< f0 < 2
0 for f0 ≥ 2

(6)
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Fig. 2. Rays (dashed) with the observing frequency are generated at the emission height and are refracted toward lower plasma densities. The
scale is in units emission height and the gray scale indicates the hollow cone plasma density. The plasma density is proportional to the numbers
of the gray scale bar. The plots on the left are for the CEH model, the plots on the right are for the VEH model, the top plots are calculated with
χc = 0.03 and the bottom plots withχc = 0.01. The other input parameters are:γ = 30, f0 = 0.5, ε1 = 3, ε2 = 4.

Note thatη0 is continuous atf0 = 2. The solution of the disper-
sion relation applicable above the emission height is given by
the general solution of the cubic (A.1).

Equations (1) and (2) describe, to first order inχn andθn,
the refraction of an ordinary (both the sub- and superluminous)
plasma wave. The two differential equations forχn(r) andθn(r)
can be solved numerically ifη(r) is known. As noted above,η
can be calculated analytically from the dispersion equation. We
use a fourth order Runge-Kutta method with adaptive stepsize
control (Press et al. 1986) to solve the set of differential equa-
tions. For the plasma density distribution we adopt the hollow
cone model (P2000)

Np =
N?
r3

exp

−ε
( |χ| − χc

√
r

χc
√

r

)2 , (7)

whereN? is the particle number density at (r = 1, χ = χc).
This plasma density is Gaussian shaped around a “character-
istic field line” indicated byχc. The decrease of the plasma
density may be different for the inner and outer regions, so we
set

ε =

{
ε1 for |χ| ≤ χc

√
r

ε2 for |χ| ≥ χc
√

r
. (8)

Equations (2) do not containr0, so the whole problem is inde-
pendent of the scaling ofr. However, in Eq. (7)χc is defined at
r = 1. The normalized plasma density is given by

N(χ, r) =
Np(χ, r)

Np(χ0, r0)
(9)

and its derivative with respect toχn is

∂ ln N
∂χn

= −2εχ0
χ − χc

√
r sign(χ)

(χc
√

r)2
· (10)

The parameters required to calculate a single ray trajectory are
those of the plasma density distribution (χc, ε1 and ε2), the
plasma outflow Lorentz factorγ, the frequency of the plasma
wave (expressed inf0) and the start positionχ0 of the ray.
Solving Eqs. (1) and (2) with the start conditionχn = θn = 1
will give the ray trajectory.

Plasma waves are refracted toward lower plasma densities
in the magnetosphere until refraction becomes inefficient due
to the decreasing plasma density along its trajectory. As can be
seen in Fig. 2 refraction results in a redistribution of rays; i.e.
the rays are no longer equi-spaced above the emission height
and two “conal components” of outer rays and a “core compo-
nent” of inner rays are formed.

2.2. Calculation of the pulse profiles

The effect of refraction is quantified in a plot of the final ray
direction (Fig. 3). Here the propagation directionθf at a height
where refraction has become inefficient is plotted versusχs.
The initial ray position (r0, χ0) corresponds to a value ofχs by
tracing back the field line from the emission height tor = 1
(see Fig. 1).

Both inside and outside the characteristic field line cone
refraction is toward lower plasma densities, which results in a
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Fig. 3. The final propagation directionθf versusχs for both the VEH and the CEH model, for two values ofχc. In these plotsχs ranges from
χc/5 to 5χc/2 and the other parameters are the same as for Fig. 2. The final propagation directionθf is in radians andχs in unitsχc.

steepening of the final ray direction plot nearχs = χc. Inside
the plasma cone the rays are refracted toward the magnetic axis
and the innermost rays may even intersect the magnetic axis; in
that case the final ray direction plot crosses the lineθf = 0.

For small values ofθf , rays originating from several discrete
values ofχs leave the magnetosphere in the same direction and
at the corresponding pulse longitude different parts of the emis-
sion ring can be observed simultaneously. Note that the final
ray direction curve for the opposite half of the emission ring is
found by mirroring the curve with respect to the lineθf = 0. If
the final ray direction plot crosses this line, some parts of both
sides of the emission ring have the sameθf . In that case both
sides of the emission ring can be observed simultaneously, if
the impact angleβ is small enough.

If the curve in Fig. 3 is horizontal at theθ f value corre-
sponding to the line of sight (θLOS), a large part of the emis-
sion surface is observed simultaneously while if the curve is
steep only a small part is observed. This means that the ob-
served intensity in the pulse profile is proportional to the value
of dχs/dθf at θf = θLOS which is just an energy conservation
argument (P2000).

Apart from refraction effects the pulse profile will depend
on the intensity distribution at the emission height. If the pair
production is somehow related to the observed coherent mi-
crowave radiation (Ruderman & Sutherland 1975), then simi-
lar distributions for the plasma density and the intensity at the
emission height can be expected such as (P2000)

Wr0 = exp

−εΥ
( |χs| − χc

χc

)2 · (11)

This corresponds to an emission ring which peaks at the char-
acteristic field lines and its thickness is set byΥ. ForΥ = 1
the intensity distribution follows exactly the plasma density
distribution. The shape is Gaussian as a function of the field
line parameterχs, but the choice of another parameter (such
as the length along the emission surface) is also conceivable.
However for simplicity the parameterχs is used. As will be dis-
cussed later on, the conclusions do not depend on this choice.

The refraction model is axisymmetric around the magnetic
axis, so the beam-pattern of the pulsar is also axisymmetric
around the same axis. The shape of observed pulse profiles de-
pends on how the line of sight cuts the magnetic pole of the star.
We only consider the most simple geometry; i.e. the magnetic
axis is orthogonal to the rotation axis (α = 90◦) and the line of
sight cuts the magnetic pole centrally (impact angleβ = 90◦).

For this geometry the pulse longitudeφ is equal to the final
ray directionθf . Because of this choice of geometry and the
axisymmetry, all the information of the beam-pattern is in the
calculated pulse profiles. The model itself is independent ofα
andβ, only the mapping betweenφ andθf changes.

2.3. Variable emission height model

The model described above may be applied with both a con-
stant (CEH) and a variable emission height (VEH), but (as we
will argue) a VEH is needed to make the model self-consistent.
The requirement of a VEH was not met in P2000; it is the basic
conceptual difference between the model presented here and
the P2000 model. Its effect on the pulse profiles turns out to be
appreciable, as discussed below.

The emission height can be derived when a plasma density
distribution has been specified. The plasma density decreases
asr−3, so the local plasma frequency decreases away from the
star resulting in the excitation of plasma waves with higher fre-
quencies closer to the star. This results in rays propagating in
a direction which is more aligned with the magnetic axis at the
emission height. But there is another effect involved in the fre-
quency dependence of the pulse profile morphology: refraction
becomes more prominent.

The assumption that bothf0 and γ are constant implies
that plasma waves of one particular frequency are generated at
one particular equi-plasma density surface (Eqs. (4) and (5)).
Because a transverse plasma density gradient is needed for re-
fraction, the emission height of a given frequency varies with
polar angleχ0. If the magnetic field is dipolar, we have

χ0 = χs
√

r0, (12)

where χs is shown in Fig. 1. Combining the plasma den-
sity (Eq. (7)) with Eqs. (4) and (5) at the emission height,
and using Eq. (12) leads to the following expression for
the emission height

r3
0 = R3 exp

−ε
( |χs| − χc

χc

)2
R3 =

4πγe2 f 2
0 N?

mω2
· (13)

Becauseγ and f0 are assumed to be constant,R should be con-
stant andr0 is not constant. As noted earlier, the whole prob-
lem is independent of the scale ofr, soR can be set equal to 1.
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Fig. 4. Pulse profiles for differentχc (a smallχc corresponds to a high observing frequency) for both the CEH and the VEH model. For the top
row χs ranges fromχc/2 to 3χc/2 withΥ = 0 (all field lines having equal intensity) and for the bottom rowχs ranges fromχc/5 to 5χc/2 with
Υ = 1 (intensity coupled to the plasma density). The other parameters are the same as in Figs. 2 and 3. The scale is such that the integrated
intensity is the same for all profiles.

The frequency dependence of the pulse profiles is then in the
parameterχc (P2000)

χc ∝ ω−1/3. (14)

The ray trajectory is solved as a function of the distance to
the star, expressed in units of the emission height and different
χc correspond to relative observing frequencies. The physical
emission height can be calculated from Eq. (13) whenN? and
ω are specified.

The emission surface specified by Eq. (13) corresponds to
an isodensity surface, so the plasma density distribution has
a more prominent role in this VEH model than in the CEH
model. Apart from causing refraction, it also determines the
shape of the emission surface.

Refraction becomes more severe for the inner and outer
rays in the VEH model, because the plasma gradients are larger
at lower emission heights. Moreover a lower emission height
implies that the rays are emitted closer to, and are initially prop-
agating more aligned with the magnetic axis. For the inner rays
this means that the rays can intersect the magnetic axis more
easily. For the outer rays there are two counteracting effects. A
lower emission height implies that the rays are refracted in a
more outward direction, but at the same time the rays are also
emitted more aligned to the magnetic axis.

3. Results

Model calculations of pulse profiles for both a VEH and a CEH
are presented in Fig. 4 for the most simple geometry (β = 0◦
andα = 90◦). For this geometry the pulse longitudeφ is equal
to the final ray directionθf .

Observationally the core component behaves differently
from conal components, both in the frequency dependence of
its morphology and in its polarization properties. This is what
can be expected from refraction (P2000), because the core

component consists of “mixed” rays; i.e. the order of the beams
changes. This is true for both a VEH and a CEH.

In Fig. 2 one can see that refraction becomes more promi-
nent for higher frequencies (lowerχc). This can also be seen
in Fig. 3 where the final propagation direction of rays versus
χs is plotted. The curve becomes more complex for lowerχc.
Besides this refractive effect, a lower emission height implies
smaller propagation anglesθ at the emission height, resulting in
narrower pulse profiles with increasing frequency (decreasing
χc) in Fig. 4. This is again true for both a VEH and a CEH.

The pulse profiles in Fig. 4 for a CEH are more spiky than
the pulse profiles presented in P2000. The main reason for this
is the higher resolution of the calculations presented here.

There are three reasons why the profiles, for both a VEH
and a CEH, are spiky. First of all, if the intensity distribution
at the emission height is flat, the emission ring has sharp edges
resulting in sharp edges in the pulse profile. This effect can be
reduced by makingΥ larger (see Eq. (11)), as is seen in the bot-
tom row of Fig. 4. Making the parameterΥ larger results in the
edge of the intensity distribution becoming Gaussian blurred.

The second effect is caused by rays crossing the magnetic
axis, so this applies especially to the core component. This
means that at certain pulse longitude both sides of the emission
ring can be seen simultaneously. When the number of sides vis-
ible changes at a particular pulse longitude, a step in intensity
appears in the pulse profile. This effect can again be reduced by
increasingΥ as can be seen in the bottom row of Fig. 4.

The last effect contributing to the spikiness of the profiles is
a focusing effect. If a large patch of the emission ring is focused
at one pulse longitude, a peak is observed. This focusing effect
corresponds to a horizontal part in the final ray direction curve;
rays emitted at a range ofχs are focused to a singleθf . At high
frequencies this can be seen for the innermost rays (Fig. 3),
causing peaks in the core component.
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Fig. 5. Pulse profiles calculated for the case of no refraction. For the
top rowχs ranges fromχc/2 to 3χc/2 with Υ = 0 and for the bottom
rowχs ranges fromχc/5 to 5χc/2 withΥ = 1. These profiles have been
calculated forχc = 0.02. The other parameters and the normalization
of the profiles are the same as in Fig. 4.

By comparing the pulse profiles for the VEH and the CEH
model in Fig. 4, the most striking difference is the conal com-
ponents. The edges of the VEH profiles are very sharp, and in-
troducing a largeΥ will not reduce their sharpness. The reason
can be found in Fig. 3. The curves for the VEH model show a
global maximum atχs ≈ 1.5. Because it is a maximum, there is
focusing and because the maximum is global, the peaks occur
at the edges of the profile.

As discussed in Sect. 2.3, there are two counteracting ef-
fects for the outer rays in the VEH model. A lower emission
height makes the outward directed refraction stronger, but the
propagation angle is more aligned with the magnetic axis at
the emission height. The reason for the global maximum is that
the latter effect dominates for the outermost rays.

This focusing effect due to the variable emission height is
also visible in the pulse profiles of Fig. 5, which were calcu-
lated without using refraction. The focusing is caused by the
geometry of the emission surface, not by the intensity distri-
bution at the emission height (Eq. (11)). This means that this
focusing is independent of the precise form of Eq. (11), and
therefore also of the choice to use the field line parameterχs

instead of for example the length along the emission surface in
this equation.

The edges of the profiles are produced by rays emitted from
χs ≈ 1.5 and the rays are focused, so there should be only very
little radiation produced atχs ≈ 1.5 to avoid the sharp edge.
This means that the emission ring should be very thin, soΥ

should be large. At high frequenciesΥ should be at least≈5
and at the lowest frequencies (χc = 0.03)Υ should be at least
≈15. A largeΥ physically means that only the middle part of
the emission ring is producing coherent microwave radiation,
although the whole ring is producing streams of particles. Such
a scenario is in conflict with the expectation that pair produc-
tion and coherent emission are related.

A VEH leads to stronger refraction. Besides introducing a
VEH refraction can also be increased by changing the values of
ε1, ε2, f0 orγ in the CEH model. Experimenting with a range of
values of these parameters did not lead to the formation of the
sharp edge of the profiles with a CEH. Therefore the focusing
effect is a typical property of the VEH model.

4. Discussion

Contrary to the expectation expressed in P2000, the qualita-
tive features of profile formation turn out to be different for
the VEH and the CEH refraction models. Although the VEH
is a physical improvement in the sense that it makes the emis-
sion model self-consistent, the profiles obtained are less realis-
tic. The model, therefore, needs further improvements before it
can serve as a tool to fit (typical) multifrequency pulsar obser-
vations.

The most pronounced difference between the CEH and the
VEH model is that for the VEH model the rays emitted at
the outside of the emission surface do not form the edges of
the pulse profile. The edges of the pulse profiles in the VEH
model are generated by a focusing effect causing the edges to
be sharp. If the thickness of the emission ring at the emission
height were much thinner than the thickness of the plasma cone
at the emission height the sharp edges would disappear, but this
seems physically unrealistic.

It must be noted that the results depend strongly on the
plasma distribution adopted. The density profile not only
causes refraction, but it also determines the shape of the emis-
sion surface. If the plasma density falls offmore slowly than the
Gaussian distribution assumed here, the results may be more
realistic although in that case refraction will be less prominent.

Several other effects could contribute to smoother pulse
profiles. There are probably more frequencies generated at one
point in the magnetosphere, so there would be af0 range rather
than a fixed f0 value. Also the rays are not emitted strictly
aligned with the magnetic field lines, rather there will be an
elementary beam pattern of finite angular width. A beam pat-
tern with a width ofγ−1 can be considerable compared with the
pulse width (for a plasma outflow Lorentz factorγ ≈ 30 the
beam is about 2◦ wide). If the outflow Lorentz factor is differ-
ent for different field lines, the shape of the emission surface is
changed. Moreover refraction becomes more complex, because
it depends on gradients of theγ factor as well as gradients in
the plasma density (Barnard & Arons 1986).

Appendix A: Analytical solution of the normalized
dispersion relation

The normalized dispersion relation (1) is of the third degree
in η, so the analytical solution ofη is given by the cubic.
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The solution for the superluminous O-mode (the solution with
positiveη at the emission height) is

η = s+ + s− − a2

3
, (A.1)

where

s± =
(
r ± √

q3 + r2
)1/3

q =
a1

3
− a2

2

9

r =
1
6

(a1a2 − 3a0) −
a3

2

27

(A.2)

and

a2 = 2+ a0

a1 = 1− 4
N

f 2
0

+ 2a0 (A.3)

a0 = −9
4
χ2

0γ
2(θn − χn)2.

Acknowledgements.We thank Svetlana Petrova for making available
her code and for her valuable comments as referee of this article. We
also thank her as well as Joeri van Leeuwen, Ramachandran and John
Barnard for constructive discussions.

References

Arons, J., & Barnard, J. J. 1986, ApJ, 302, 120
Barnard, J. J., & Arons, J. 1986, ApJ, 302, 138
Cordes, J. M. 1978, ApJ, 222, 1006
Lyubarskii, Y. E. 1996, A&A, 308, 809
Petrova, S. A. 2000, A&A, 360, 592
Petrova, S. A. 2001, A&A, 378, 883
Petrova, S. A. 2002, A&A, 383, 1067
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling,

W. T. 1986, Numerical Recipes: The Art of Scientific Computing
(Cambridge: Cambridge University Press)

Ruderman, M. A., & Sutherland, P. G. 1975, ApJ, 196, 51


