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Appendixx C 

Dyadicc Green and delta functions 

Thee (full) Green tensor G(r,r'.u;) of an inhomogeneous medium characterized by the 
dielectricc function s(r) is the solution of the wave equation 

- VV x V x G(r.r\u;) + s{r){u;/cfG(T.r',UJ) = 6{r - r')L (C.l) 

wheree the right-hand side is the ordinary Dirac delta function times the unit tensor. An-
otherr useful Green function (which actually is a tensor as well) can be found by projecting 
outt the left and right-hand sides of this equation with the generalized transverse delta 
functionn (4.12). In doing so, the transverse double-curl term is projected onto itself, see 
Eq.. (4.15a). The (full) Green function can therefore be uniquely projected onto its gener-
alizedd transverse part G that is the solution of 

- VV x V xGT(r , r ' ,w)+£(r)(u; /r) '2GT(r . r ' .a, ') = 6]{r'.r).  (C.2) 

Thee bar in SJ denotes the transpose. The longitudinal Green function G ' is now defined 
ass the difference between G and G , and has the form 

GL (r , r ')) = | [6(r-r')\-öJ(r'.r)  ] = * Jl'(r'.r). (C.3) 
(^/c)2f(r )) (^/c)2c{r) 

Inn the last equality of (C.3) the generalized longitudinal delta function was defined as 
thee difference between the ordinary Dirac and the generalized transverse delta, so that 
SjSj + <5,L = S\. It is not immediately clear that G is longitudinal. To prove that indeed 
itt has zero curl, one can apply the unique decomposition of generalized transverse and 
longitudinall  vector fields (as explained in appendix B) to J drG  X, where X is a general 
vectorr field. 

Thee Green tensor G of the dielectric can be expanded either in terms of the real 
modee functions h\ that were introduced in section 4.2.2, or in terms of complex mode 
functionss f A which are used in chapter 5: 

r T ,, , , - ^ h A r hA r ' 2 V U r t r> 
GG ( r . r . u ; ) =r 2 w ; j , -u  ,2 _ ,„?

 = ( Zw . ,, + .;„ï2 _,„?  <C 4> 
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Bothh these expansions are equivalent by Eq. (4.23), be it that the real and imaginary parts 
cann be read off more easily in the former form. The term it]  in (C.4) makes explicit the 
positivee and infinitesimally small imaginary part of the frequency UJ. With the positive 
sign,, (C.4) is the causal Green function which transformed back to the time-domain gives 
aa Green function G {r.r'J. - to) which is nonzero only for positive time differences 
(f.. — to): a cause at time to can only have an effect at later times. 

Forr free space, the transverse and longitudinal delta functions appearing in Eqs. (C.2) 
andd (C.3) are [85] 

SSTT(r)(r)  = T ( l - 3 r ® r ) (C.5) 
33 47rrJ 

<5L(r)) = ^ ( r ) l + 4 ^ 3 ( ' - 3 r < 2 f ). (C.6) 

wheree r is defined as r / | r |, the unit vector in the direction of r. The sum of the transverse 
andd the longitudinal delta function is simply S(r)\, since their "dipole" parts cancel. The 
dyadicc Green function Go for free space is the sum of a transverse and a longitudinal part. 
Thee transverse part is [69J 

G{ >.^<)) = - ' ~ 3 ^ r - £11 [pfar/cV + Q(i^r/c)v ® r ] . (C.7) 

withh the function P(z) defined as = (1 - z'1 + z~2) and Q(z) as ( -1 + 3 ^_ 1 - 3z~2). 
Usingg the definition (C.3) of the longitudinal Green function and the free-space transverse 
deltaa function (C.5), the longitudinal Green function is found to be 

LL l -3r<g)r S(r) , 
4i\\yjjcYr4i\\yjjcYr66

 Ó(UJ/C)Z 

Thee important delta-function term in G0 appears naturally and there was no need to add it 
"byy hand" as is done elsewhere [4,69]. Both G0 and GQ have nonretarded dipole terms, 
meaningg that a change in a source term changes instantaneously the longitudinal and trans-
versee fields elsewhere. It is only their sum that is fully retarded [85]. The same is true for 
thee Green functions G and G of inhomogeneous dielectrics. 

Inn some cases, it is physical to replace the Green functions (C.7) and (C.8) by their 
angle-averagedd values. The angle-averaged value of (ft  r )2 is simply ^. Effectively, the 
averagingg amounts to replacing f & f by i | both in Eq. (C.7) and in (C.8). The angle-
averagedd free-space Green function is simply 

iajr/c iajr/c 

{{  G0(r.u;) >av. = ~~a 1 + Tr-^(r) l . (C.9) 
birrbirr  óu>z 

Inn the limit r — 0, the imaginary part of this angle-averaged Green function still leads to 
thee correct free-space spontaneous-emission rates. 


