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Chapter

Angular Redistribution of Diffuse Light

Unavoidable structural disorder in photonic crystals causes weak multiple scattering
of light. The consequences are extinction of incident and diffracted beams and the
generation of diffuse light. We have studied the spectral and angular properties of the
diffuse intensity transmitted by photonic crystals. The diffuse transmitted intensity
is distributed over exit directions in a strikingly non-Lambertian manner, depending
strongly on frequency. The remarkable frequency and angle dependence is quanti-
tatively explained by a model incorporating diffusion theory and band structure on
equal footing. The diffuse transmission reveals both the photonic band structure and
the frequency-dependent extrapolation length. The model also describes the angle-
dependent modification observed in emission spectra of internal sources in photonic
crystals (Chapter 3). Total transmission corrected for the internal reflections shows
a decrease of the transport mean free path slower than the characteristic Rayleigh
law for frequencies in the range of first order Bragg diffraction. Hence the effect of
structural disorder on the prospective higher order photonic band gap may be less
severe than expected from previous reports.

7.1 Introduction

As interference is at the basis of photonic crystal properties, any mechanism that de-
stroys the coherence of the composite structure may be detrimental to the advances
promised in recent literature [1, 2]. Calculations have recently shown the effects
of fluctuations in size and position of the unit cell building blocks on the photonic
band gap. A fluctuation of order ~ 5% of the unit cell size was found to be criti-
cal [3-5] in closing the band gap for inverse opals. Real two and three-dimensional
structures inevitably suffer from disorder due to size-polydispersity, roughness and
misarrangements of the building blocks. Fluctuations in size and position in cur-
rent state of the art structures range from ~ 3.5% of the nearest neighbor distance
for air spheres in inverse opals [6], to 4-7% for 2D semiconductor photonic crys-
tal slabs [7, 8] and layer-by-layer woodpile crystals {9]. In experiments these faults
result in, e.g., reduced Bragg reflection efficiency [10], apparent broadening of pho-
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Angular Redistribution of Diffuse Light

tonic stop gaps [11], and large transmission losses through crystals and incorporated
wave guides [2]. It remains unclear how to quantify structural disorder of fabricated
structures. No satisfactory theoretical framework exists to relate structural disorder
to its optical effect, which is gauged by the mean free path ¢ over which light becomes
diffuse. Furthermore, the fate of randomly scattered photons is unknown after they
leave the incoming Bloch wave, both from a theoretical and experimental point of
view. Since absorption ideally does not occur, the diffuse energy density is expected
to exceed the energy density of the incoming beam over most or all of the bulk of
any three-dimensional photonic crystal that is larger in size than £ in all three dimen-
sions. Hence, it is of prime importance to know where scattered photons go after a
mean free path, and how they leave a photonic crystal.

Small angle X-ray scattering [6] and electron microscopy have provided a quanti-
tative measure of structural disorder in terms of polydispersity and misarrangements
of the components that build up the titania inverse opals. These parameters deter-
mine the transport mean free path ¢, which was recently determined experimentally
for opals [12-14, see also Chapter 6] and inverse opals [13]. In this chapter we quan-
titatively account for the angle and frequency resolved characteristics of diffuse light
transmitted by inverse opals. We show that the diffuse light is strongly affected by in-
ternal Bragg reflection, causing a drastic frequency-dependent redistribution of dif-
fuse light over exit angles. This redistribution may be quantitatively explained by
combining diffusion theory with internal reflections resulting from stop gaps in the
photonic band structure. Our experiment also reveals the frequency dependence of
the transport mean free path in the frequency range of the first order pseudo-gap.
We find an increase of the scattering strength slower than Rayleigh’s o* law with fre-
quency. This observation is similar to the results for opals reported in Chapter 6. The
scaling points at the dominance of polydispersity, small displacements and roughness
as sources of random scattering [13], as opposed to missing spheres or grain bound-
aries [12].

7.2 Diffusion theory of angle-resolved transmission

When a light beam with an intensity spectrum I'" is incident on a photonic crystal
surface, some fraction RfS™[I" s (Bragg) reflected. The dependence on frequency o
and incidence angle y (see Fig. 7.1) is indicated by subscripts, since these parameters
are essential in the experiment, but not important in developing diffusion theory. The
remaining light that is not Bragg reflected propagates into the sample where it suffers
from extinction due to scattering by defects. The light removed from the incident
beam is multiply scattered on length scales [15] equal to the transport mean free path
¢, which we have determined to be of the order of ¢ ~ 15 um for our opals and inverse
opals, as obtained from enhanced backscattering measurements presented in Chap-
ter 6. Since the thickness L of our crystals typically exceeds the mean free path, these
crystals are opaque due to multiple scattering. In random media, the transport of
multiply scattered light is usually well accounted for by the diffusion equation [15, 16]
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7.2. Diffusion theory of angle-resolved transmission

introduced in Section 6.2. In this section, we review aspects of diffusion theory that
are relevant for the angle-resolved transmission experiment presented in this chapter.

The success of diffusion theory depends on the use of appropriate boundary con-
ditions, obtained by considering the diffuse fluxes at the sample walls. These condi-
tions require that the diffuse intensity extrapolates to 0 at a distance z,,, from the
sample walls, where the extrapolation length

2(1+RD)
o==|—=|fo 7.1
Ze, 3(1_R5) ( ( )

is determined by the polarization and angle-averaged internal reflectivity RD of the
sample boundaries [17-19]. The extrapolation length is crucial in correctly deter-
mining £ from enhanced backscattering or total transmission measurements, in which
transmitted light integrated over all angles is collected. For example, it is well known
that the total transmitted intensity I depends on the sample thickness according to

L, = BT,
- £y +2z
— infq1 _ pfrontyt® €,0
= 0-REIESE. (7.2)

Unless z,,, is accurately known, ¢, can only be determined from the total diffuse trans-
mission T, if a series of measurements with fixed R°™ is performed as a function of
sample thickness L. For photonic crystals, varying L is a challenge, hence the extra-
polation length should be known for a total transmission measurement to be useful
in determining £,,.

The extrapolation length ratio 1., = z../f, can be determined from angle-
resolved diffuse transmission (see Fig. 7.1(a)), which is determined by refraction and
reflection of the diffuse flux at the sample interface. The relation between the angle-
dependent and the angle-averaged internal-reflection coefficient, and the use of dif-
fuse transmission to study both, was first discussed by Zhu, Pine and Weitz [18].
Their argument is based on a simple flux consideration. Following their approach,
we consider a semi-infinite diffusively scattering sample bounded by a plane interface.
We assume the sample to be limited to z > 0, where the z-axis is the sample surface
normal. One may consider the flux through a small surface ds at the origin that is due
to the diffuse energy density W,,(r, ¢, @) in a volume element dV = r?sin a drd¢da
centered around a point (r, ¢, @), in spherical coordinates (see Fig. 7.1(b)). This flux
dJ,yds is set by the energy W,,,(r, ¢, @)dV contained in the volume element dV, the
subtended fractional solid angle cos azds/4nr?, and the loss exp(~r/£,,) due to scatter-
ing en route to ds:

cosads
4nr?

dJeyds = % X Wey(r, 6, 0)dV x x exp(—r/ta). (7.3)

The ratio of energy velocity vr and £, is the inverse transport mean free time asso-
ciated with the diffusion. The total flux from inside the sample onto the surface per
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FIGURE 7.1: (a) We consider a light beam I'" incident on a photonic crystal sample. Generally,
a fraction Ry I of the intensity is reflected, which depends on the frequency o and the angle of
incidence y. In the sample the light diffuses with typical step length €,. The diffuse glow on the
transmission side is measured as a function of coso. = y,. The depth of stop bands in the escape
function is determined by € and the Bragg attenuation length Ly (see Section 7.5). (b) Coordinates
used to calculate the contribution of a differential scattering volume dV = * sin(o)drdodo inside
a scattering sample to the diffuse flux through a surface ds. The z-axis is the inward normal to the
sample interface.

unit area may be found by integrating dJ,,, over the upper half space

interior UE

%) 21 /2
o = —f drf dq)f do W,,(7, 0, o) exp(—7/£,) sin o.cos c.
d 4Tt€m 0 0 0
(7.4)

It is important to note that the dominant contribution to the integral comes from the
first mean free path (z < ¢) due to the exponential term. Secondly, as W satisfies the
diffusion equation it varies only slowly on length scales comparable to £. One may
therefore replace W,,, by a first-order Taylor expansion, to find the angle-dependent
incident flux

Lo OWoy(z
(o) = %Ewm,y(z)cosasina+ UE————ﬁcoszasina atz=0

2 0z
(7.5)

interior
o,y

after integration over r and ¢ only. The total flux JiMeri°r is obtained by integrating

gf;e'i‘“(a) over a,

Vgl IWo,y(2) _
G > atz=0. (7.6)

According to the same reasoning, the total flux J&i" due to the (virtual) diffuse
intensity outside the sample reads
vEly OWoy(2)

6 T atz=0. (7.7)

i . v
Ty = 5 Worl2) +

: VE
::Vtmor = Z‘Wm,y(z) -
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7.2. Diffusion theory of angle-resolved transmission

This flux of photons entering the random medium from outside is expected to be
identically zero, unless photons originating from inside the sample are reinjected due
to internal reflection. Accordingly, one is led to define the angle-averaged reflection
coefficient RY

exterior _ pD mterlor
w,Y R 7 ( 7.8)

which sets the extrapolative boundary condition

2 1+RD oW,

3 = RD e =0 atz=20 (7.9)

(D 'Y(Z)

in agreement with the extrapolation length defined in Eq. (7.1). On the other hand,
it stands to reason that the total flux Tes exterior reinjected into the sample, is obtained
by summing the angle-dependent reﬂected flux R2(a)Jinterio () over all angles a. This
allows us to relate the angle-averaged diffuse- reﬂectlon coefficient R2 to the angle-
dependent internal-reflection coefficient RD(c). Summing over o one ﬁnds

) /2

:)z(ytenor — fo\ RD((I) mtenor(a)da (7.10)

W,

= ZECL W@+ ”Ef L0 —2  atz=0,
2 o0z
/2
with C,p = f Rg((x) cos"(a) sinada. (7.11)
0

Identifying J&err in Eq. (7.10) with RY anterior’ according to (7.8), one may solve
for RD to obtain

3C2,u, + 2C1,m

5D _
Ro = 3Cop —2C1+2 (7.12)
This appears to be the key expression to relate the angle-dependent internal-reflection
coefficient RD(a) to the angle-averaged reflection coefficient RD, and to the extrapo-
lation length ratio 7., through Eq. (7.1).

Angle-resolved diffuse transmission experiments are very useful to determine
the extrapolation length, as well as obtain information about the angle-dependent
internal-reflection coefficient R2(at). Only the fraction Jior(o)[1 — RD(c)] of the
flux incident from inside the sample onto the sample boundary is transmitted, as the
remaining fraction ]““'"'”(ot)RD (o) contributes to the reentrant flux. Using the ex-
pression (7.5) for ]'"te““(a) and the boundary condition W,,(z) = z¢,,d: We,(z), one

finds that the intensity transmitted between angles o and o + do equals

Iy \(o)do = Y 2Y 08 0 [Ze + £ocOsa] - [1 — R2(0)]sinada atz=0.

e
2 o0z
(7.13)
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Angular Redistribution of Diffuse Light

The angle-resolved diffuse transmitted intensity can be factorized

Im,y(#e)d,ue = I(i,?Tm,ypm(Fe)d.Ue (7-14)

into the total transmission T, and the probability P, (u)dp. for a diffuse photon in
the sample to be transmitted at an angle between o = cos™! g, and cos™! (u + dg.). The
total transmitted intensity

A 1 IWey(2) IWe(2) o
IT — Jin i Y — Y )
wy = I Tay 3vE€ 3 D 7 at the exit interface (7.15)
equals the flux through the sample interface given by Fick’s law. The normalized
probability distribution P, (k) is given by

Pu(i) = 3 el + ] [1 ~ RO(u). (7.16)

As P (u,) describes the distribution of photons over the available escape angles, it will
be referred to as ‘escape function. One should be aware that we have slipped in a
distinction between internal angle cos™ y;, and external angle cos™! . relative to the
z-axis into Eq. (7.16), which accounts for refraction effects at the interface.

The angular dependence of the escape function P,(u.) has been found to agree
with experiments on random media if an effective refractive index is used to model
RD(u;) according to Fresnel’s law, and to convert internal to external propagation an-
gles cos™! y; resp. cos™! g, using Snell’s law [18, 19]. As the refractive indices of con-
stituents of usual random media such as powders or macroporous sponges are barely
frequency dependent [20-22], only a weak frequency dependence of T, P and € would
be expected. For highly dispersive photonic crystals, however, the Fresnel model is
not expected to describe the internal-reflection coefficient well at all. In contrast,
light emanating from a depth z < ¢ from the crystal surface is expected to be Bragg
attenuated (i.e., internally reflected) for angles and frequencies matching the Bragg
condition [23, 24]. Hence the photonic band structure is expected to give rise to a
strongly angle and frequency-dependent internal-reflection coefficient R (), result-
ing in stop bands in the diffuse transmission. Furthermore, these stop bands cause a
frequency-dependent extrapolation length [13], as witnessed by the experiment pre-
sented in Chapter 6.

It is clear that the mean free path £ in photonic crystals can only be quantita-
tively obtained from enhanced backscattering or total transmission if the frequency-
dependence of the extrapolation length is taken into account. A reduction of the
enhanced backscattering cone width due to enhanced internal reflection has indeed
been observed for frequencies matching the first Bragg diffraction order of an inverse
opal photonic crystal [13, see Chapter 6]. Furthermore, we note that the refraction
law to convert y; to . is highly complex in photonic crystals [25]. In comparing exter-
nal reflectivity measurements with band structure calculations, reasonable agreement
has been obtained for the lowest order stop bands using Snell’s law with a geometri-
cally averaged refractive index [26, 27].
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7.3. Experiment

In this chapter we report experimentally determined escape functions Py(u.) of
inverse opals. We discuss the measured frequency-dependence of the escape function
at chosen detector angles (Section 7.4.1) in terms of photonic stop gaps. In Sec-
tion 7.4.2 a different perspective is offered by considering the angular redistribution
of diffuse light, i.e., the angle-dependence of the escape function for several chosen
frequencies. We combine the diffusion theory with a simple model for the angle and
frequency dependence of the internal-reflection coefficient RZ (1) in Section 7.5. Sub-
sequently, we discuss the agreement between the model and the experimental data
over the full angular and frequency range, and address the magnitude of the internal-
reflection coefficient. In Section 7.7, we present the total transmission measurements,
and we use the extrapolation length ratio determined from Section 7.5 to interpret the
total transmission measurements in terms of the transport mean free path.

7.3 Experiment

We have studied fcc photonic crystals consisting of air spheres in anatase TiO2 (re-
fractive index 2.7 + 0.4) with lattice parameters a = 800, 900, 930 + 20 nm. Details of
fabrication and characterization are reported in Ref. {6]. The surfaces of the samples
are parallel to the 111 crystal planes. These photonic crystals are strongly photonic,
as they have a relative frequency width of the lowest order Bragg diffraction, or L-gap,
equal to W = 0.12. The crystals studied in this chapter have larger lattice spacing
than the crystals discussed in Chapters 3, 4 and 6 (see Fig. 3.3), but are otherwise
similar. The colorful opalescence, corresponding to higher diffraction orders, indi-
cates good sample quality. Most of the structural disorder is inherited from the opal
templates. As probed by small angle X-ray scattering [6], the polydispersity and rms
displacements of the air spheres from the lattice sites are less than 3% of the nearest
neighbor distance throughout the bulk of the crystals. Together with the roughness
of the titania shells (< 10 nm [6]) this constitutes the main source of scattering deter-
mining the transport mean free path of £ ~ 15 ym [13, Chapter 6]. As the thickness
L ~ 200 ym of the samples exceeds the mean free path, diffuse transport of light is
indeed expected. Samples were mounted on a rotation stage to allow control over the
orientation of the surface normal (parallel to the 111 reciprocal lattice vector) relative
to the incident beam. As shown in Figure 7.2 the detector was mounted on a separate
concentric rotation stage, allowing the detector angle o relative to the sample surface
normal to be varied from 0 to 90 degrees, independently of the incidence angle v.
Diffuse-transmission spectra were recorded in the range 0° < a < 90° every 5°.
For spectrally resolved measurements, light from an incandescent lamp (tungsten-
halogen) was passed through a Fourier-Transform spectrometer (Biorad FTS-6000)
operated at a resolution of 32 cm™!. The beam emanating from the spectrometer was
focused onto a pinhole, acting as a point source. This point source was imaged with a
camera objective (f=50 mm) onto a spot of 0.40 mm radius encompassing many do-
mains on the sample surface. The apex angle of the incident beam (10°) was chosen to
optimize the incident power. The angular resolution for diffuse transmission is set by
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FIGURE 7.2: Overview of the diffuse-transmission setup. The output of a tungsten-halogen source
is passed through a Fourier-Transform Spectrometer (FTS). The beam is focused onto a pinhole
AP, using lens L. The pinhole acts as a point source which is imaged on the front sample surface
using lens L, and camera objective Ly. The angle of incidence yis controlled by rotating the sample.
The detector angle o is changed independently by rotating the diode together with aperture AP,
and lens Ly which determine the angular acceptance.

the aperture of the detector of 5°, and is independent of the apex angle of the incident
beam. Angle-resolved measurements of the diffuse transmitted intensity were ob-
tained in the frequency range from 5500 to 14000 cm™! by using both Si and InGaAs
photodiodes. Higher frequencies can only be probed by replacing the light source.
The diode signal yields an interferogram which is Fourier transformed to determine
the diffuse transmitted intensity I,,(ue = cos o) defined in Eq. (7.14). The total trans-
mitted intensity spectra IT, are determined by summing the angle-resolved spectra of
diffuse transmitted intensity weighted by 2nsin o da to approximate the integration
over 2r solid angle. The total transmission T, (Eq. (7.2)) is obtained by normalizing
the total transmitted intensity spectrum I}, to the lamp spectrum I'", measured by
removing the sample from the setup. The escape functions P,(u, = cos o) are deter-
mined by dividing the angle-resolved spectra I,,,(u) of diffuse transmitted intensity
by the total transmitted intensity spectrumI7 ., as expressed by Eq. (7.14). Thus, the
escape functions are independent of the lamp spectrum.

Alternatively, a HeNe (A = 632 nm) or Nd:YVO; (A0 = 1064 nm) laser beam
could be used as single-frequency probes of the diffuse transmission, using a chopper
and lock-in amplifier. The laser beam, not shown in Figure 7.2, overlapped with the
white light beam starting from lens L;. The greater sensitivity allowed the use of
cross-polarized detection, contrary to the white light experiments. Cross-polarized
detection avoids contributions of the unscattered beam to the detected signal.

7.4 Escape functions

Several raw spectra I, (1) are shown in Figure 7.3 that demonstrate the diffuse trans-
mitted intensity at chosen angles o = cos !y, = 15°, 30°, 50°, 75°, recorded for in-
cidence angle y = 0°. These data were obtained from a sample with lattice spacing
a = 930 nm and recorded using an InGaAs detector. Comparison with the lamp
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FIGURE 7.3: Raw spectra of diffuse light transmitted by a titania inverse opal with a = 930 nm,
for detection angles o. = 15,30, 50 and 75°, and incidence angle y = 0°. The spectrum of the lamp
as recorded by the same InGaAs diode, as well as the total transmitted intensity spectrum are also
shown (scaled as indicated). The detector acceptance angle, which affects the scaling factor between
raw spectra and total transmission spectrum, was 5°.

spectrum reveals several striking features. Firstly, for low frequencies ~ 6000 cm™
we observe a steady decrease in intensity with increasing angle, as would be expected
from the dominant cos o. proportionality in Eq. (7.16). For higher frequencies, the
lineshapes appear to depend on the detection angle o. Compared to the lamp spec-
trum, a wide stop band appears, centered at 8100 cm™! for o = 15°. To a large degree
this attenuation band remains at the same frequency when the detector angle is in-
creased. The total transmitted intensity spectrum I7  (dotted curve) indeed shows a
wide attenuation band at 8000 cm™. The total transmission T, will be discussed in
Section 7.7. Closer examination of the angle resolved spectra shows that spectra at
increased detection angle are further attenuated in a band shifting to larger frequency
with increasing detector angle o, compared to the o = 15° spectrum. This dependence
of o is best studied by examining the escape function.

7.4.1 Escape function versus frequency at selected angles

Escape functions P, (k) at detector angles o = cos~ 1y, = 15°, 25°, 35°, 45°, 55°, 65°,
75° for an inverse opal with lattice parameter 2 = 930 nm are shown as a function
of frequency o in Figure 7.4. These data belong to the same set as the raw spectra in
Fig. 7.3, and were obtained by dividing by the total transmitted intensity spectrum
and correcting for the angular aperture d (cos o). The frequency range was extended
by combining the dataset represented in Fig. 7.3 with complementary data obtained
by replacing the InGaAs diode with a Si detector (used for ® > 10500 cm™) . In
the common frequency window from 9000 to 11500 cm™ in which both detectors
are sensitive, the escape functions matched seamlessly within the noise for all detec-
tor angles o It should be noted that no scaling constants are involved in Figure 7.4.
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FIGURE 7.4: Photon escape function as a function of frequency for an inverse opal with lattice
parameter a = 930 nm for exit angles o = 15°,25°,35°,45°,55°,65°,75°. The incidence angle is
Y = 0°. The top axis shows normalized frequency units a/\ where \ is the wavelength in vacuum.
No relative scaling or offset was applied to the curves.

We do not find a dependence of the escape function on the incidence angle vy for
0° <y < 30°. This result validates the factorization in Eq. (7.14), as it confirms that
Po(pe) = loy(1e)/1,, is independent of y. The factorization may be understood from
the diffusive nature of the samples; as the direction of propagation is fully random-
ized, the probability for a photon to leave the sample at a specific exit angle o is not
dependent on the incidence geometry. The only effect of the incidence angle v is ex-
pected to be due to the reflectivity of the front surface (Rfon(@) in Eq. (7.2)), which
reduces the fotal transmission T,,, for frequencies and incident angles matching the
Bragg condition.

At low frequencies < 6700 cm™! the escape function is unaffected by internal re-
flection and typical for a random medium with z, ~ 2¢. As is evident in Fig. 7.4,
the escape function at an exit angle of o = 15° is significantly reduced by > 70%
in a stop band centered at ~ 8200 cm™! with full width at half maximum (FWHM)
~ 1300 cm™'. This stop band in the escape function occurs due to internal Bragg
reflections, as captured in the term [1 - RD(4)] in Eq. (7.16), and moves to higher fre-
quencies with increasing exit angle o. At angles o exceeding ~ 40°, a much wider
gap from 9000 to 12000 cm™ is evident in Figure 7.4. Similar broadening, and
the occurrence of a double-peak structure has been observed in reflectivity experi-
ments [27, 28] and luminescence experiments (Chapter 3), and has been explained in
terms of a multiple-Bragg wave coupling involving both 111 and 200 reciprocal lattice
vectors [27]. Figure 7.4 shows that the stop gap at these larger angles is preceded by a
frequency range characterized by an increase of the escape function relative to the low
frequency value. This frequency range is coincident with the stop band at small detec-
tor angles. The increase has the same origin as the enhanced escape probability in the
frequency range 9000 — 12000 cm™ evident in the escape function spectrum at small
detector angles. As escape directions within a stop gap are blocked by internal Bragg
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reflection, photons are more likely to escape in the remaining directions, giving rise to
an enhanced escape probability in directions not coincident with a stop gap. Equiva-
lently, this enhanced escape probability is accounted for in the model (7.16) for Py(y)
as an increase of the extrapolation length due to a larger average internal-reflection
coefficient.

Similar results were obtained for a multitude of samples with different lattice pa-
rameters (2 = 800,900,930 nm). The shift along the frequency-axis of the escape
functions with lattice parameter confirms the photonic origin of the redistribution of
the diffuse intensity (see Fig. 3.3). In conclusion, these observations clearly show that
the diffuse intensity possesses a pronounced angle and frequency-dependent struc-
ture due to the strongly photonic crystal. This point is particularly important in the
interpretation of common experiments, such as reflectivity or transmissivity mea-
surements. The diffuse contribution to the signal may clearly not be corrected for by
assuming a frequency independent background. In this respect a transmission mea-
surement can be particularly misleading. Even if scattering by disorder precludes any
coherent transmission (i.e., for thick samples L/ 2 5), a detector along the incom-
ing direction will still register a diffuse spectrum with an attenuation band coincident
with the photonic stop gap. Evidently, a stop gap in transmission may only be trusted
if the transmission for frequencies just outside the stop gap is close to 100%, indica-
tive of low scattering. This requires an absolute calibration of the transmission. In the
frequency range of higher order diffraction and the prospective photonic band gap,
no strongly photonic crystals with thickness less than £ but larger than two unit cells
appear to have been reported to date.

7.4.2 Strongly non-Lambertian redistribution

The redistribution of diffuse intensity over exit angles may be more fully appreci-
ated by considering the escape function as a function of angle for selected constant
frequencies, ¢f. Figure 7.5. The horizontal scale in terms of y represents the large con-
tribution of large exit angles in the distribution of intensity over the available hemi-
sphere of exit directions. For clarity, the exit angle range from 0° to 45° covering half
of the available polar exit angle range is indicated in gray. For reference we studied a
calibration sample consisting of a vial with a dilute suspension of polystyrene spheres
in water (dashed curve in Figure 7.5). In accordance with Ref. [19, 29], we find nearly
Lambertian behavior corresponding to Py (u) = 2(3 + p). Detailed analysis shows
that the escape function of the calibration sample is accurately modelled by Eq. (7.16).
A Fresnel-type model for the internal-reflection coefficient was used, assuming an ef-
fective index of 1.33 relevant for water, and taking multiple reflections in the vial walls
into account [19].

For frequencies below the L-gap (w = 6270 cm™!) the escape function of an in-
verse opal with 2 = 930 nm closely resembles the escape function measured for the
random calibration sample, as witnessed by Fig. 7.5. From a fit of diffusion theory
with a Fresnel model for the internal-reflection coefficient, we estimate an effective
refractive index of n.¢ = 1.27 + 0.15. This effective index is consistent with a 10 to
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FIGURE 7.5: Photon escape function as a function of the cosine p. of the escape angle o. for an
inverse opal with lattice parameter a = 930 nm for frequencies ® = 6270,9400, 10750, 12300 cm™
(solid circles, diamonds, squares, resp. triangles) as extracted from a white light data set. These
frequencies correspond to a/A = 0.58,0.87,1.0 and 1.14. Open diamonds show a measurement
obtained from the same sample using a Nd:YVO laser beam (o = 9400 cm™! ). For an angular scale,
refer to the top axis. The shaded region corresponds to half the available range for the exit angle o
relative to the surface normal. The dashed line partially obscured by closed circles corresponds to a
calibration measurement on a dilute colloidal suspension.

20% volume fraction of solid material, depending on whether the effective index is
assumed to correspond to the volume averaged index or volume averaged dielectric
constant. The nearly Lambertian distributions for low frequencies should be con-
trasted to the strongly non-Lambertian distributions observed for higher frequencies.
As an example we discuss the angular distribution of emitted photons at a frequency
of 9400 cm™!, to the blue of the L-gap, shown in Figure 7.5. The escape function
at this frequency is clearly reduced in the range from o = 10° to 40°, and enhanced
both for near-normal exit angles and for exit angles exceeding 40°. These features,
as extracted from the white-light experiment, are excellently reproduced in an addi-
tional single-frequency measurement using a Nd:YVOy, laser beam (A = 1.064 ym),
also shown in Fig. 7.5. For increasing frequency (o0 = 10750, and 12300 cm™!) the
angular range of suppression relative to the Lambertian distribution shifts to larger a,
leaving a central cone around the surface normal within which the escape probability
is strongly enhanced by a factor up to ~ 2.
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FIGURE 7.6: (a) Contour plot of the measured photon escape function as a function of exit angle
o and optical frequency corresponding to an inverse opal with a = 930 nm. (b) Contour plot of
the fitted escape function, according to the diffusion model Eq. (7.16) combined with an internal-
reflection coefficient derived from the band structure Eq. (7.17). The lowest 6 bands along the LU
direction are plotted in white, using the effective index to transform internal propagation angles
into external propagation angles. The band structure alone can not fully explain the frequency
and angle dependence of the escape function. Features not expected from the band structure are,
for instance, the enhanced escape probability for o < 30° and 9000 < o < 12000 crm™, and for
a > 30° and 7500 < < 9000 cm™1. The common gray scale is displayed on the far right.

7.5 Diffuse internal-reflection model

The full dataset to which Figure 7.4 corresponds is presented as a contour plot in
Figure 7.6(a). For angles below ~ 40° the shift of the stop gap to higher frequency
with increasing exit angle is clearly discerned, as well as the widening of the stop gap
for larger exit angles due to multiple Bragg wave coupling [27]. The concomitant
enhancement of the escape function is evident in the range 9000-12000 cm™! for
small angles o < 30° and in the range 7500-9000 cm™! for large exit angles 30° < o <
60°. In this section we proceed with a quantitative description of the data in terms of
a semi-empirical model that combines diffusion theory with a model derived from a
band structure calculation for the internal-reflection coefficient RE (u).

7.5.1 Internal-reflection coefficient

The internal-reflection coefficient of the inverse opals is modelled as the sum of two
Gaussian reflection peaks

(0 — o1 (1))?
2A 01 (1)?

(0 wo))?

mm@=RmmapL 280, ()2

+ Ro(u;) exp[ ], (7.17)
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with angle-dependent peak reflectivities R; »(u) and widths Aw; ;. We expect such a
model to capture the essential frequency dependence of the multiple Bragg wave cou-
pling [24, 27] if the center frequencies w 2(u) are chosen consistent with the photonic
band structure.

We use the band structure for a model consisting of close-packed air spheres (ra-
diusr = § V2a) on an fcc lattice surrounded by high-index (¢ = 6.5) spherical shells
with outer radius 1.097, connected by cylindrical windows of radius 0.4r (see Chap-
ter 3). The window size and the volume fraction of solid material are in agreement
with structural data [6], and the resulting band structure has been found to agree
with reflectivity bands in both the frequency range of first and second Bragg diffrac-
tion order [27, 30]. Previously, it has been observed that the band structure along the
LU-line in reciprocal space (extended outside the first Brillouin zone) describes the
angle-dependent reflectivity of polycrystalline samples satisfactorily [27]. Therefore
we have calculated the dispersion relation along the LU-line, and determined @ (x)
and o, (u) from the calculated stop band edges. To convert internal to external prop-
agation angle we have used Snell’s law!. An average refractive index n = 1.28 was
chosen, consistent with the volume averaged dielectric constant for a titania volume
fraction of 11%.

Contrary to the fixed reflection band center frequencies w; 2(u), we have adjusted
the reflection peak widths Aw; 2(u), and the reflection peak heights R; »(u) to obtain
an optimal fit of the diffusion model Eq. (7.16) with internal reflection Eq. (7.17)
to the data. We expect the parameter functions R; »(y) and Ae; > to vary smoothly
with angle, and approximate them using cubic polynomials in u4. The polynomial
coefficients are determined using a nonlinear least-squares minimization algorithm
to optimally fit Eq. (7.16) to the data. In Section 7.5.2, we will discuss the agreement
between the data and the simple model outlined above, and the angle dependence of
the fitted lowest order peak reflectivity. In Section 7.7 we will review the frequency
dependence of the extrapolation length ratio specified by the fitted R (y) through
Eq. (7.1).

7.5.2 Escape functions and band structure

In Figure 7.6(b) both the fit to the data in Fig. 7.6(a) and the lowest six calculated
bands are displayed. The average difference between measured and calculated escape
function is between 5 and 10%. The excellent correspondence of the model to the
experimental data is more clearly displayed for two key frequencies in Figures 7.8(a)
and (c). The agreement between the data and the model Egs. (7.16, 7.17) is striking,
given the simplicity of the model for the internal-reflection coefficient, the empirical
nature of the escape function theory, and the limitations on the validity of diffusion
theory imposed by the modest optical sample thickness (2 < L/€ < 10).

Refraction may be more accurately taken into account by using parallel momentum conservation at
the interface. Within the theory of diffusion with internal reflections, the effective index will always remain
a source of inconsistency, since it is unclear how to deal with the associated Fresnel reflections.
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FIGURE 7.7: Solid line: the fitted peak internal-reflection coefficient RY versus exit angle o for
frequency o coincident with the lowest order stop band center frequency wi(cosa). This curve
corresponds to the fit (see Fig. 7.6(b)) to the experimental data shown in Fig. 7.4, 7.5 and 7.6(a).
The peak internal-reflection coefficient decreases as cos(a) (dashed line).

Figure 7.6(b) clearly demonstrates that for quantitative understanding of the
angle-resolved diffuse transmission, the band structure is useful but not sufficient.
Although the lowest diffraction order at near-normal incidence in the band struc-
ture evidently corresponds to the attenuation band in the diffuse transmission, the
enhanced transmission probability for wave vectors outside a stop band can not be
explained from the dispersion relation alone. The extrapolation length ratio t, is the
essential parameter determining the redistribution of intensity over exit directions.
The frequency dependence of the extrapolation length ratio will be discussed in Sec-
tion 7.7.

It is interesting to monitor the magnitude of the fitted internal-reflection coeffi-
cient of the lowest stop gap as a function of the photon escape angle o. As shown in
Figure 7.7 for the fit to the experimental data in Fig. 7.6(a), we find a decrease of the
reflection coefficient of the lowest gap with increasing angle which follows a cosine
behavior over a large angular range. This supports our earlier report [24] in Chap-
ter 3, stating that the stop gap depth for a = 0° in luminescence spectra (i.e., using an
internal source of diffuse light) is determined by the ratio of Bragg attenuation length
and the transport mean free path ¢. Briefly, diffuse photons emanating from a depth
z < £ from the crystal-air interface propagate ballistically to the interface. Photons
may be redirected into Bragg directions by scattering off defects in the surface layer
z < ¢. Since ¢ is larger than the Bragg attenuation length Lg ~ 0.2¢, light scattered
at z < Lp is hardly Bragg attenuated, while light scattered in Lp < z < ¢ results in
a stop band (¢f. Fig. 7.1). The stop band depth for o = 0° is therefore estimated as
1 —Rgc (o = 0) ~ 1—Lg/¢, where . is the stop band center frequency. This geometrical
argument may be generalized by noting that for larger exit angles o, the path length
to the crystal air interface increases with cos . This increases the probability of being
scattered at z < Lg, and reduces the internal-reflection coefficient to ~ Lg cos /¢, in
agreement with Fig. 7.7. We conclude that the mechanism of diffusion and internal
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reflection proposed for the angular redistribution of fluorescence from sources inside
strongly photonic crystals [24] is confirmed by the present results and analysis.

7.6 Diffusion in case of a band gap: beyond Kossel lines

The exemplary agreement between the diffusion model and the experimental data is
more clearly shown for two key frequencies in Figure 7.8(a) and (c). For a frequency
in the L-gap, o = 8200 cm™, both the data and the diffusion model of the escape
function are strongly reduced relative to the Lambertian distribution P, in the range
from o = 0 to 35° (Fig. 7.8(a)). This range is shifted to larger angle in Fig. 7.8(c),
corresponding to a frequency of 9300 cm™. If the diffuse intensity corresponding to
the escape function profile for = 8200 cm™! would be projected on a screen, one
would find a dark disk concentric with the sample normal, with radius corresponding
to o = 35°. For a beyond 35° the intensity would be slightly in excess of P;. For
the frequency @ = 9300 cm™' above the L-gap, one would rather find a dark ring,
surrounding a bright disk. We illustrate these concepts, by considering stereographic
plots of the photon excess distribution

APy (ue) = Po(ue) — Pr(ue) (7.18)

versus exit angle in Figure 7.8(b),(d). In the stereographic plots, a polar coordi-
nate (r, ¢) corresponds to an azimuthal exit angle ¢ and polar exit angle o such that
r(a) = sino/(cos o + 1). A measurement on single crystal samples would show an
azimuthal dependence of the escape function, since the 200 family of reciprocal lat-
tice vectors oblique to the sample surface is involved in the Bragg diffraction. This
dependence is lost in our experiment due to polycrystalline averaging. Azimuthally
independent grey scales in Fig. 7.8(b),(d) have been generated from the model func-
tion plotted in (a) and (c). The dark disk in Fig. 7.8(b), and the forbidden ring with
inner radius o = 34° and outer radius o = 50° in (d) are reminiscent of Kossel lines.
Dark Kossel lines in diffuse transmission have been reported for weakly photonic
crystals [31, 32]. These lines should in fact be called Seemann lines, as they are solely
due to internal Bragg diffraction of diffuse light, and do not involve the subtle inten-
sity features occurring in the X-ray fluorescence lines discovered by Kossel [33, 34].
Despite the distinction, we will use the term Kossel lines to remain consistent with
current practice in the field of photonic crystals. Weakly photonic colloidal single
crystals cause narrow Kossel lines in diffuse transmission. In such cases, the nearly
free-photon approximation can be used to determine the crystal symmetry and ori-
entation based on the geometry of the dark circles and hyperbolas. For strongly pho-
tonic inverse opals, the dark areas are not necessarily circles or hyperbolas, and the
width of the internal reflection lines is extraordinarily large. The dark rings evident
in Figure 7.5 and 7.8 can extend over 2 30% of the 2 sr solid angle, and the geome-
try of the internal reflection is strongly affected by multiple Bragg wave coupling. A
geometrical analysis [31, 32] of dark lines in diffuse transmission to obtain the crys-
tal symmetry is therefore not viable, but the full band structure should be used for
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FIGURE 7.8: Photon exit distribution P(u,) for frequencies o = 8200 cm™ (a), resp. 9300 cm™
(c) measured for an inverse opal with a = 930 nm. Both the data (dots) and the adapted diffusion
model (solid curves in (a) and (c)) strongly differ from the Lambertian distribution P, (dashed
curves). Grey areas indicate forbidden exit angles according to the dispersion surface analysis. (b)
and (d): stereographic plots of the photon excess distribution AP(u.) = P(ue)— Py (1), corresponding
to the model in (a) resp. (c). Solid curves in (b) and (d) indicate boundaries of regions in exit angle
space, numbered with the band index, for which coupling to a photonic single crystal is possible.
Bands 2 and 4 are nearly polarization degenerate with bands 1 resp. 3, and similar to within the
line thickness. In panels (e) and (f) predictions are shown for the photon exit distribution for an
inverse opal e = 11.9 cut along a 100 plane (instead of a 111 plane, as in panels (b,d)). The only
allowed exit angles are in the white pockets, belonging to band 8 (wa/2nc = 0.776) for frequencies
below the full band gap, panel (e), resp. band 9 (wa/2rc = 0.816 above the band gap, panel (f)).
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interpretation. In addition, the large angular extent of the internal reflection lines
of strongly photonic crystals and the associated large enhancements cause a strongly
non-Lambertian distribution of diffuse intensity over exit directions. In contrast, the
angular distribution of photons for weakly photonic crystals is practically equal to
the Lambertian distribution P; for angles outside the narrow internal reflection lines,
since the extrapolation length is barely affected by internal reflection.

In a general analysis of the range of suppressed diffuse transmission at a specific
frequency, it is necessary to determine the set of exit directions for which photons are
blocked by internal reflection, i.e., directions that do not couple to any Bloch mode.
Such an analysis is outlined in Chapter 2.8, and is based on (i) photon dispersion
surfaces in the photonic crystal, (ii) parallel momentum conservation at the inter-
face, and (ii1) causality requirements on the direction of the group velocity. We have
determined dispersion surfaces and group velocities by interpolating from eigenfre-
quencies calculated on a dense k-grid within the volume of the irreducible wedge of
the first Brillouin zone, and on the facets of the Brillouin zone?. In Figure 7.8(b),(d)
the solid lines show results of solving the refraction problem for the two frequencies
corresponding to the data. For clarity, only the boundaries of the forbidden regions
in exit-angle space are indicated. For the frequency in the L-gap (o = 8200 cm™,
Fig. 7.8(b)) coupling is only allowed to band 1 and the nearly polarization degenerate
band 2, and is limited to o > 33°, in perfect agreement with the data. For a higher
frequency’ above the L-gap (o = 9300 cm™!, Fig. 7.8(d)) coupling to bands 1 and 2
is only allowed in 6 small lobes in exit angle space. For angles o < 34.5° coupling
occurs to bands 3 and 4. For larger angles o > 51°, 6 parabolas delimit angular ranges
in which coupling from band 3 and 4 to air is allowed. The only angles to which dif-
fuse light inside the samples can not couple are contained in a ring concentric with
the origin, and 6 patches with 80° < o < 90° and azimuthal width < 6°, too small
to affect the experimental azimuthal average. The boundaries of the ring are sixfold
symmetric, but not circular. Overall, the agreement of the central forbidden ring with
the experimental data is gratifying. _

Interesting possibilities are offered at frequencies near photonic band gap edges.
For frequencies near the edge of any photonic band gap that closes away from the
center of the Brillouin zone, all modes have wave vectors in pockets away from the
k-space origin. In such cases, diffuse light may exit the photonic crystal only along
isolated directions. As the shape of dispersion surfaces for frequencies near a band
gap is nearly ellipsoidal, an effective mass approximation is well suited to predict the
directionality of diffuse transmission. As an example which may soon be realized, we
consider an inverse opal with a full photonic band gap, assuming a ¢ = 11.9 backbone
containing fcc close-packed air spheres. In Figure 7.8(e) the solution of the refraction
problem for a 100 cleaved crystal [35] is shown for a frequency & = wa/2nc just below
the band gap. In the frequency range from & = 0.748 up to the band gap edge & =
0.778, the only allowed modes are in band 8, and the dispersion surfaces are ellipsoids

2We used 2992 equidistant k-points within the irreducible part of the Brillouin zone, 1816 points on
the 111 facet and 1255 on the 200 facet of the Brillouin zone.
3Deeper analysis of the refraction problem is contained in Section 2.8 and Fig. 2.8.
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around the W point. Diffuse light inside the crystal can only couple into a symmetric
quadruplet of beams, with exit angles a relative to the sample normal around 40°.
For frequencies above the band gap (limited by band 9 at the X-point) emission is
directed into a central beam along the surface normal, with a width proportional to
the square root of the detuning from the gap edge. Internal reflection causes the four
beams at grazing exit angle (Fig. 7.8(f)) not to appear in a small frequency range just
above the gap edge. In this frequency range, all light inside the crystal, be it multiply
scattered from an external source or emission from inside the crystal, may only leave
the crystal in one single narrow beam of diffuse light. Directional diffuse beams will
occur for all band gap crystals for which the gap closes away from the k-space origin,
including diamond, fcc, hep and bec structures.

7.7 Extrapolation length and total transmission

In this section we return to the experimental data of diffuse transmission of titania
inverse opals. We use the extrapolation length ratio that results from the fit to the
measured escape function to interpret the total transmission T,,, of the titania in-
verse opals in terms of their transport mean free path. First, we present total diffuse-
transmission measurements in Subsection 7.7.1. In Subsection 7.7.2 we analyze the
frequency dependence of the extrapolation length ratio, and discuss total transmis-
sion corrected for internal reflections.

7.7.1 Total transmission

The total transmission of a sample with 2 = 930 nm as a function of frequency is
shown in Figure 7.9(a) for incidence angles y = 0°, 15° and 30°. The most apparent
features are (1) a decrease of the total transmission with increasing frequency visible in
all three traces and (i) the occurrence of a band of reduced total transmission which
shifts from 8100 cm™! to higher frequencies with increasing angle of incidence y. The
center frequency of the angle-dependent band of reduced total transmission coincides
with the photonic stop band measured in a reflectivity measurement and with the
stop band in the escape function. The center frequency of the stop band is inversely
proportional to the lattice parameter, as demonstrated by the blue shifted spectrum
for a sample with 2 = 800 nm in Fig. 7.9(a). As less light enters the sample for wave
vectors matching the Bragg reflection condition, the diffuse intensity injected into
the sample is reduced in a frequency region matching the stop band for the incident
direction. This reduction of the total transmission is caused by the reflectivity of the
front surface, the factor [1 — Rf™] in Eq. (7.2). The stop band width in the total
transmission measurement is larger than the photonic width due to the large angular
width Ay ~ 10° of the incident beam. The stop band depth in total transmission
is limited by the external reflectivity RT™, which amounts to 50 to 70% for a wide
beam spanning many domains. The stop gap minimum of 0.09 at y = 0° in the total
transmission is indeed only 2 to 3 times less than the value just outside the stop gap
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FIGURE 7.9: (a) Measured total diffuse transmission as a function of optical frequency for a
sample with lattice parameter a = 930 nm for incidence anglesy = 0°, 15°, 30° (solid lines, black,
gray, light gray). For a sample with a = 800 nm the stop band aty = 0° (L-gap) is shifted to higher
frequency (data indicated by the dashed line). Lower panel in (b): extrapolation length ratio
1. = z./{ pertaining to the fit to the data in Fig. 7.6. Upper panel in (b): T* = T/(1 + 1.[1 — 2T])
versus w, i.e., total transmission data T in (a) corrected for the frequency-dependent extrapolation
length (model, lower panel) for incidence anglesy = 0°,15°,30° (black, dark gray and light gray
curves). Dashed lines represent the power laws o™ (short dashes), and o=* (long dashes).

of roughly 0.3. This should be contrasted to the typical attenuation of several decades
for stop gaps in characteristic ‘coherent transmission’ measurements, in which the
intensity transmitted along the direction of the incident beam is monitored. As the
coherent transmission decays exponentially with £,/L such measurements are only
feasible in thin (i.e., small L [36]) or near-index matched (i.e., large € [12]) photonic
crystals. The stop gap in coherent transmission is determined by diffraction from all
the differently oriented crystallites encountered along the trajectory of the forward
beam. The cumulative effect of all crystallites in the bulk causes a stop gap with
high attenuation, and a width larger than the intrinsic photonic width [23]. This
broadening of the stop gap in coherent transmission is not only limited by the angular
spread of the incident beam, however, but mainly caused by misaligned and strained
crystallites [11].

The decrease of the total transmission with increasing frequency is caused by a
decrease of the mean free path £, due to increasing scattering strength of defects at
larger frequencies. We recognize two regimes in the total transmission, depending on
the magnitude of the mean free path. Below @ = 7200 cm™! the total transmission
of T ~ 0.3 indicates that the sample thickness L ~ 200 ym is at most a few transport
mean free paths (£, ~ 60 yum). In this regime the sample is not truly multiple scatter-
ing, causing deviations from the diffusion law Eq. (7.2) which relates ¢, to the total
transmission. For higher frequencies, we find a steeper decrease of the total trans-
mission to ~ 0.05 at ® = 15000 cm™!, typical of £, ~ 10 um. As the thickness L of
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the samples is not well known, accurate values for the mean free path £ can not be
extracted. Though the values £ = 10 to 60 ym agree with enhanced backscattering
experiments on other samples, we focus only on the scaling of T with frequency. In
the frequency range » > 7200 cm™, the mean free path is sufficiently small compared
to the sample thickness to expect the Ohmic diffuse-transmission law Eq. (7.2) to
hold. As the lowest Bragg diffraction overlaps with this frequency range, the analysis
of total transmission in terms of the mean free path is complicated by the frequency
dependence of the extrapolation length ratio.

7.7.2 Extrapolation length ratio and scattering strength

In Figure 7.9(b) the extrapolation length ratio 1., = z./f, pertaining to the fit to
the data in Fig. 7.6 is presented as a function of frequency. In the small frequency
limit, the extrapolation length ratio equals 2/3, as there are no internal reflections®.
As the optical frequency reaches the L-gap, the extrapolation length ratio grows to
a maximum of nearly 1.8, corresponding to a maximum average internal-reflection
coefficient R ~ 45%. This maximum is reached at the blue edge of the L-gap, where
the largest fraction of solid angle is covered by stop gaps [26]. The avoided crossing
of two stop bands at o > 30° enlarges the angle-averaged internal reflection in the
same frequency window. For higher frequencies ® > 9500 cm™’, the extrapolation
length ratio diminishes, as the range of internally reflected angles decreases. Though
the qualitative behavior of the extrapolation length ratio may be explained by the
band structure, the numerical value of the maximum, and details of the functional
dependence are determined by, e.g., the depth of the stop gaps involved.

From Eq. (7.2) it is clear that for frequencies outside a stop gap for the incident
direction v, for which Rggm = 0, the inverse optical thickness £,,/L may be expressed
in terms of T, and 7., as

fo ) T,

oo to 7.19
L R A N I (7.19)

Using the extrapolation length ratio 7., plotted in Fig. 7.9(b), we extract T;, from the
total transmission spectra presented in Fig. 7.9(a). We proceed to discuss the scaling
behavior of the decrease of T}, with increasing frequency. As T, equals £,/L for fre-
quencies outside a stop gap in total transmission, one might expect a w™* law typical
for the scattering strength of particles much smaller than the wavelength, as reported
for opals by Vlasov and coworkers [12]. Enhanced backscattering experiments on
opals presented in Chapter 6, however, point at a scattering mechanism dominated
by polydispersity and displacements. As scattering essentially occurs off thin ‘differ-
ence’ shells with size comparable to the wavelength, the associated scaling of the mean
free path reaches into the quadratic Rayleigh-Gans regime for frequencies of the or-
der of and above the lowest order Bragg diffraction. In this experiment, we find a
decrease of £,,/L which appears faster than w2 and slower than o> (dashed lines in

4The Fresnel reflection due to the effective refractive index is neglected in this analysis.
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Fig. 7.9(b)). This observation holds for all the samples with 2 = 930,900 and 800 nm,
and was reproduced on samples with much smaller lattice parameters a = 690 and
500 nm. The latter samples are optically thicker, and the probe frequencies in the
range of the experiment remain below the L-gap, i.e., in the long wavelength regime.
Though the frequency dependence of ¢ remains partly obscured due to the stop gaps
in total transmission, the scattering does not increase as fast as Rayleigh’s o* law pre-
dicts. This is consistent with the scattering mechanism proposed in Chapter 6. One
should bear in mind that the frequencies below and in the L-gap may belong to the
cross-over regime from Rayleigh’s ®™* to Rayleigh-Gans’s o2 scaling, in contrast to
the higher frequencies used in Chapter 6. This may explain why ¢ decreases with fre-
quency faster than »=2 and slower than ™. The fabrication of periodic structures
with template-assisted self-assembly [6, 35, 37—39]), lithographic [7, 8] and layer-by-
layer microfabrication methods [9] all involve displacements, roughness and poly-
dispersity of the same magnitude. Hence we expect the random scattering in all the
current state of the art photonic structures to be comparable.

7.8 Conclusion

We have presented frequency-resolved measurements of the angular distribution of
diffuse transmitted light from strongly photonic crystals. We find a drastic frequency-
dependent angular redistribution of diffuse transmitted light due to internal Bragg
reflection. Though the ranges of strong internal reflection are governed by gaps in the
dispersion relation, it is imperative for accurate modelling to take the redistribution
into angles not contained in a stop gap into account. The relevant parameter, i.e., the
extrapolation length ratio, can not be derived from the band structure, but requires
a diffusion model. We have presented the first model combining diffusion and the
photonic internal reflection due to the band structure. The extrapolation length ratio
which we calculate has a broader relevance in interpreting standard experiments such
as enhanced backscattering or total transmission aimed at determining the transport
mean free path in the frequency range of photonic stop gaps. Application to the
total transmission of strongly photonic crystals reveals a mean free path decreasing
from ~ 60 to ~ 10 um as the frequency increases from below the first stop gap to just
below the second order Bragg reflection. This decrease is surprisingly slower than o™,
indicating that polydispersity, roughness and site displacements of photonic building
blocks form the dominant scattering mechanism.

The data and model presented here are especially relevant for the interpretation
of emission measurements (see Chapters 3 and 4). The mechanism causing the angu-
lar dependence in emission spectra is the same diffuse internal reflection quantified
here. Inspection of the stop bands in emission (Figure 3.2) show similar stop gap
width, dispersion and depth as revealed by the escape function. Enhancement due to
the extrapolation length may even be discerned in Figure 3.2(b). The internal reflec-
tivity of the samples studied in this chapter (maximum ~ 80% for o = 0°) is some-
what higher than the stop gap depth ~ 50 to 70% quoted in Chapter 3. We therefore

148




References

expect the extrapolation length ratio to be ~ 1.35¢ (i.e. RY = 34%) in the emission
experiments. This is consistent with the estimate in Chapter 4. In Chapters 3 and
4 the angular dependence was separated from the angle integrated emission power
spectra based on prior knowledge of external reflectivity experiments. Especially the
fact that exit angles occur for which no stop gap overlaps the emission spectrum was
instrumental in the analysis. Furthermore the spontaneous emission inhibition could
only be estimated from the data to within the limits set by the magnitude of the extra-
polation length ratio. Escape function measurements using externally injected light
are useful to separate the angular dependence of emission spectra from the angle-
integrated emission without prior knowledge of the dispersion. We expect that spec-
trally resolved emission measurements in the range of second order Bragg diffraction
will require such complementary escape function measurements. In this frequency
range (near bands 8 and 9), a multitude of reflectivity bands that barely shift with
angle occur [30], causing a concomitant complicated frequency dependence of the
extrapolation length ratio.

Finally, we would like to point out the similarity between the general analysis of
the angle-resolved diffuse intensity distribution in Section 7.6 and high-resolution
angle-resolved photoemission spectroscopy. This powerful technique is instrumen-
tal in the study of surface and projected bulk electronic band structures and Fermi
surfaces in, e.g., metals or high T, superconductors [40, 41]. With this technique,
the electron ‘dispersion’ surface (isoenergy surface) at the Fermi level translates into
a structured angular distribution of photoelectrons. The analogy holds if the optical
probe frequency is identified with the Fermi energy of the electron. Moreover, the
optical experiment should be considered a zero temperature analogon of the elec-
tronic case. Experimentally, the probe depth in the photonic crystals, £ < 10 unit
cells, appears less restricted to the surface than in photoemission. Angle-resolved
diffuse transmission on single crystal photonic crystals may prove to be a powerful
technique for studying photonic dispersion. Theoretical analysis beyond the refrac-
tion construction (Fig. 7.8) may certainly benefit from electron theory developed for
photoemission spectroscopy.
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