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Chapter r 

Angularr  Redistribution of Diffuse Light 

UnavoidableUnavoidable structural disorder in photonic crystals causes weak multiple scattering 
ofof light. The consequences are extinction of incident and diffracted beams and the 
generationgeneration of diffuse light. We have studied the spectral and angular properties of the 
diffusediffuse intensity transmitted by photonic crystals. The diffuse transmitted intensity 
isis distributed over exit directions in a strikingly non-Lambertian manner, depending 
stronglystrongly on frequency. The remarkable frequency and angle dependence is quanti-
tativelytatively explained by a model incorporating diffusion theory and band structure on 
equalequal footing. The diffuse transmission reveals both the photonic band structure and 
thethe frequency-dependent extrapolation length. The model also describes the angle-
dependentdependent modification observed in emission spectra of internal sources in photonic 
crystalscrystals (Chapter 3). Total transmission corrected for the internal reflections shows 
aa decrease of the transport mean free path slower than the characteristic Rayleigh 
lawlaw for frequencies in the range of first order Bragg diffraction. Hence the effect of 
structuralstructural disorder on the prospective higher order photonic band gap may be less 
severesevere than expected from previous reports. 

7.11 Introductio n 

Ass interference is at the basis of photonic crystal properties, any mechanism that de-
stroyss the coherence of the composite structure may be detrimental to the advances 
promisedd in recent literature [1, 2]. Calculations have recently shown the effects 
off  fluctuations in size and position of the unit cell building blocks on the photonic 
bandd gap. A fluctuation of order ~ 5% of the unit cell size was found to be criti-
call  [3-5] in closing the band gap for inverse opals. Real two and three-dimensional 
structuress inevitably suffer from disorder due to size-polydispersity, roughness and 
misarrangementss of the building blocks. Fluctuations in size and position in cur-
rentt state of the art structures range from ~ 3.5% of the nearest neighbor distance 
forr air spheres in inverse opals [6], to 4-7% for 2D semiconductor photonic crys-
tall  slabs [7, 8] and layer-by-layer woodpile crystals [9]. In experiments these faults 
resultt in, e.g., reduced Bragg reflection efficiency [10], apparent broadening of pho-
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Angularr  Redistribution of Diffuse Light 

tonicc stop gaps [11], and large transmission losses through crystals and incorporated 
wavee guides [2]. It remains unclear how to quantify structural disorder of fabricated 
structures.. No satisfactory theoretical framework exists to relate structural disorder 
too its optical effect, which is gauged by the mean free path £ over which light becomes 
diffuse.. Furthermore, the fate of randomly scattered photons is unknown after they 
leavee the incoming Bloch wave, both from a theoretical and experimental point of 
view.. Since absorption ideally does not occur, the diffuse energy density is expected 
too exceed the energy density of the incoming beam over most or all of the bulk of 
anyy three-dimensional photonic crystal that is larger in size than £ in all three dimen-
sions.. Hence, it is of prime importance to know where scattered photons go after a 
meann free path, and how they leave a photonic crystal. 

Smalll  angle X-ray scattering [6] and electron microscopy have provided a quanti-
tativee measure of structural disorder in terms of polydispersity and misarrangements 
off  the components that build up the titania inverse opals. These parameters deter-
minee the transport mean free path £, which was recently determined experimentally 
forr opals [ 12-14, see also Chapter 6] and inverse opals [13]. In this chapter we quan-
titativelyy account for the angle and frequency resolved characteristics of diffuse light 
transmittedd by inverse opals. We show that the diffuse light is strongly affected by in-
ternall  Bragg reflection, causing a drastic frequency-dependent redistribution of dif-
fusee light over exit angles. This redistribution may be quantitatively explained by 
combiningg diffusion theory with internal reflections resulting from stop gaps in the 
photonicc band structure. Our experiment also reveals the frequency dependence of 
thee transport mean free path in the frequency range of the first order pseudo-gap. 
Wee find an increase of the scattering strength slower than Rayleigh's to4 law with fre-
quency.. This observation is similar to the results for opals reported in Chapter 6. The 
scalingg points at the dominance of polydispersity, small displacements and roughness 
ass sources of random scattering [13], as opposed to missing spheres or grain bound-
ariess [12]. 

7.22 Diffusion theory of angle-resolved transmission 

Whenn a light beam with an intensity spectrum I™ is incident on a photonic crystal 
surface,, some fraction R^°ntI1  ̂ is (Bragg) reflected. The dependence on frequency co 
andd incidence angle y (see Fig. 7.1) is indicated by subscripts, since these parameters 
aree essential in the experiment, but not important in developing diffusion theory. The 
remainingg light that is not Bragg reflected propagates into the sample where it suffers 
fromm extinction due to scattering by defects. The light removed from the incident 
beamm is multiply scattered on length scales [15] equal to the transport mean free path 
££yy which we have determined to be of the order of I » 15 jum for our opals and inverse 
opals,, as obtained from enhanced backscattering measurements presented in Chap-
terr 6. Since the thickness I of our crystals typically exceeds the mean free path, these 
crystalss are opaque due to multiple scattering. In random media, the transport of 
multiplyy scattered light is usually well accounted for by the diffusion equation [ 15,16] 
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7.2.. Diffusion theory of angle-resolved transmission 

introducedd in Section 6.2. In this section, we review aspects of diffusion theory that 
aree relevant for the angle-resolved transmission experiment presented in this chapter. 

Thee success of diffusion theory depends on the use of appropriate boundary con-
ditions,, obtained by considering the diffuse fluxes at the sample walls. These condi-
tionss require that the diffuse intensity extrapolates to 0 at a distance ze,m from the 
samplee walls, where the extrapolation length 

zz e (71) 

iss determined by the polarization and angle-averaged internal reflectivity R  ̂of the 
samplee boundaries [17-19]. The extrapolation length is crucial in correctly deter-
miningg t from enhanced backscattering or total transmission measurements, in which 
transmittedd light integrated over all angles is collected. For example, it is well known 
thatt the total transmitted intensity ƒ£ depends on the sample thickness according to 

jTjT jinnr 

== CU - R^TT^T- < 7 ' 2 ' 

Unlesss 2e,tó is accurately known, t  ̂can only be determined from the total diffuse trans-
missionn r^y if a series of measurements with fixed R«°nt is performed as a function of 
samplee thickness L. For photonic crystals, varying L is a challenge, hence the extra-
polationn length should be known for a total transmission measurement to be useful 
inn determining €w. 

Thee extrapolation length ratio tew := ze/ü,/4> can be determined from angle-
resolvedd diffuse transmission (see Fig. 7.1(a)), which is determined by refraction and 
reflectionn of the diffuse flux at the sample interface. The relation between the angle-
dependentt and the angle-averaged internal-reflection coefficient, and the use of dif-
fusee transmission to study both, was first discussed by Zhu, Pine and Weitz [18], 
Theirr argument is based on a simple flux consideration. Following their approach, 
wee consider a semi-infinite diffusively scattering sample bounded by a plane interface. 
Wee assume the sample to be limited to z > 0, where the z-axis is the sample surface 
normal.. One may consider the flux through a small surface ds at the origin that is due 
too the diffuse energy density W^r, $, a) in a volume element dV - r2 sin a drd<|>da 
centeredd around a point (r,ty,a), in spherical coordinates (see Fig. 7.1(b)). This flux 
d/t^dss is set by the energy W^r,^, cc)dV contained in the volume element dV, the 
subtendedd fractional solid angle cosads/Anr2, and the loss exp(-r/£m) due to scatter-
ingg en route to ds: 

ITT 1 VE m , v ,,, cos ads ,„  , . 
d/^dss = — x W^r, 4>,a)dV x  ̂ x exp(-r/^). (7.3) 

Thee ratio of energy velocity VE and 4> is the inverse transport mean free time asso-
ciatedd with the diffusion. The total flux from inside the sample onto the surface per 
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FIGUREE 7.1: (a) We consider a light beam I™ incident on a photonic crystal sample. Generally, 
aa fraction R™"'l™ of the intensity is reflected, which depends on the frequency co and the angle of 
incidenceincidence y. In the sample the light diffuses with typical step length £a. The diffuse glow on the 
transmissiontransmission side is measured as a function of cos a = /ue. The depth of stop bands in the escape 
functionfunction is determined by £ and the Bragg attenuation length LB (see Section 7.5). (b) Coordinates 
usedused to calculate the contribution of a differential scattering volume dV = r2 sin(a)drd<t>dcx inside 
aa scattering sample to the diffuse flux through a surface ds. The z-axis is the inward normal to the 
samplesample interface. 

unitt area may be found by integrating d /^ over the upper half space 

-»ooo s*2n rn/2 

^ e r i 0 r = 4 ^ JJ drJ d * J daWffi >,<t>,a)exp(-r / t^)) sin a cos a. 

(7.4) ) 

Itt is important to note that the dominant contribution to the integral comes from the 
firstt mean free path (2 < £) due to the exponential term. Secondly, as W satisfies the 
diffusionn equation it varies only slowly on length scales comparable to (. One may 
thereforee replace Wm7 by a first-order Taylor expansion, to find the angle-dependent 
incidentt flux 

rinterior// v VE TA , , , . , VEL dW^Z) 2 . 

JJ art (°0 = ~7T y^a,y(z) cos a sin a + —— - —- cos as i na at 2 = 0 dz dz 
(7.5) ) 

afterr integration over r and $ only. The total flux JJ^!fuor is obtained by integrating 
/J0

n;enor(ot)) over a, 

^ i n t e r i orr = ElW {̂z) + 
vvEE((mm dWa,(z) 

66 dz 
att 2 = 0. (7.6) ) 

Accordingg to the same reasoning, the total flux J"£x
Y

tenor due to the (virtual) diffuse 
intensityy outside the sample reads 

VE, VE, rT-extenorr _ I £ w (z\ _ 
^->^-> a>,y A v'a,y\^-) 

VELVEL dWa,y(z) 

66 dz 
att 2 = 0. (7.7) (7.7) 
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7.2.. Diffusion theory of angle-resolved transmission 

Thiss flux of photons entering the random medium from outside is expected to be 
identicallyy zero, unless photons originating from inside the sample are reinjected due 
too internal reflection. Accordingly, one is led to define the angle-averaged reflection 
coefficientt R^ 

JS™JS™==^3i:?^3i:? noTnoT,, (7.8) 

whichh sets the extrapolative boundary condition 

inn agreement with the extrapolation length defined in Eq. (7.1). On the other hand, 
itt stands to reason that the total flux J~^eT10T reinjected into the sample, is obtained 
byy summing the angle-dependent reflected flux R£(a)/^eno r(a) over all angles a. This 
allowss us to relate the angle-averaged diffuse-reflection coefficient R^ to the angle-
dependentt internal-reflection coefficient R„  (a). Summing over a one finds 

J"Se r i orr = f ^(a)/ j ;e r i O T(a)da (7.10) 
Jo o 

y C i ^ W ^ z )) + — - C2, t 0-^— at 2 = 0, 

withh Q „ = I R£(a)cos"(a)sinada. (7-11) 

Identifyingg J£*ter ior in Eq. (7.10) with R£jJ2e r i or according to (7.8), one may solve 
forr RD to obtain 

RRDD = 2'm + 2C\,W j - ^\ 
3C2,ü>> — 2Ci,(ü + 2 

Thiss appears to be the key expression to relate the angle-dependent internal-reflection 
coefficientt R^ (a )t o m e angle-averaged reflection coefficient R j, and to the extrapo-
lationn length ratio xe>a through Eq. (7.1). 

Angle-resolvedd diffuse transmission experiments are very useful to determine 
thee extrapolation length, as well as obtain information about the angle-dependent 
internal-reflectionn coefficient R£(<x). Only the fraction 7™{erior(a)[l - RjJ(a)] of the 
fluxflux incident from inside the sample onto the sample boundary is transmitted, as the 
remainingg fraction /£*erior(a)R£(a) contributes to the reentrant flux. Using the ex-
pressionn (7.5) for /™*erior(ot), and the boundary condition Waiy(z) = 2e/W^2 WW/Y(z), one 
findsfinds that the intensity transmitted between angles a and a + da equals 

Jo,, v(a)da = ——r—- cos a [ze>Kt + £m cos a]  [1 - R%(a)] sin a da at z = 0. 
22 ÓZ 

(7.13) ) 
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Angularr  Redistribution of Diffuse Light 

Thee angle-resolved diffuse transmitted intensity can be factorized 

Uy(Me)dlJUy(Me)dlJee = J^T^PMdtle (7.14) 

intoo the total transmission T ŷ and the probability P^(jue)d ê for a diffuse photon in 
thee sample to be transmitted at an angle between a = cos-1 & and cos-1 (jje + dye). The 
totall  transmitted intensity 

CC = CTo>,7 = ^vE£ 'Y = D J'yV at the exit interface (7.15) 

equalss the flux through the sample interface given by Fick's law. The normalized 
probabilityy distribution P^ive) is given by 

P»MP»M = 2* fc.« + «] * [1 -*2(w)] . (7.16) 

Ass Paive) describes the distribution of photons over the available escape angles, it wil l 
bee referred to as 'escape function'. One should be aware that we have slipped in a 
distinctionn between internal angle cos"1 /*,-, and external angle cos-1 pe relative to the 
z-axiss into Eq. (7.16), which accounts for refraction effects at the interface. 

Thee angular dependence of the escape function Pm(pe) has been found to agree 
withh experiments on random media if an effective refractive index is used to model 
R^(jJi)R^(jJi) according to Fresnel's law, and to convert internal to external propagation an-
gless cos- 1 fij  resp. cos~Ve> using SnelFs law [18, 19]. As the refractive indices of con-
stituentss of usual random media such as powders or macroporous sponges are barely 
frequencyy dependent [20-22], only a weak frequency dependence of 7\ P and t would 
bee expected. For highly dispersive photonic crystals, however, the Fresnel model is 
nott expected to describe the internal-reflection coefficient well at all. In contrast, 
lightt emanating from a depth z < £ from the crystal surface is expected to be Bragg 
attenuatedd (i.e., internally reflected) for angles and frequencies matching the Bragg 
conditionn [23, 24]. Hence the photonic band structure is expected to give rise to a 
stronglyy angle and frequency-dependent internal-reflection coefficient R^(pi)y result-
ingg in stop bands in the diffuse transmission. Furthermore, these stop bands cause a 
frequency-dependentt extrapolation length [13], as witnessed by the experiment pre-
sentedd in Chapter 6. 

Itt is clear that the mean free path £ in photonic crystals can only be quantita-
tivelyy obtained from enhanced backscattering or total transmission if the frequency-
dependencee of the extrapolation length is taken into account. A reduction of the 
enhancedd backscattering cone width due to enhanced internal reflection has indeed 
beenn observed for frequencies matching the first Bragg diffraction order of an inverse 
opall  photonic crystal [13, see Chapter 6]. Furthermore, we note that the refraction 
laww to convert m to ye is highly complex in photonic crystals [25]. In comparing exter-
nall  reflectivity measurements with band structure calculations, reasonable agreement 
hass been obtained for the lowest order stop bands using Snell's law with a geometri-
callyy averaged refractive index [26, 27]. 
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7.3.. Experiment 

Inn this chapter we report experimentally determined escape functions PJ ê) of 
inversee opals. We discuss the measured frequency-dependence of the escape function 
att chosen detector angles (Section 7.4.1) in terms of photonic stop gaps. In Sec-
tionn 7.4.2 a different perspective is offered by considering the angular redistribution 
off  diffuse light, i.e., the angle-dependence of the escape function for several chosen 
frequencies.. We combine the diffusion theory with a simple model for the angle and 
frequencyy dependence of the internal-reflection coefficient R^{pt) in Section 7.5. Sub-
sequently,, we discuss the agreement between the model and the experimental data 
overr the full angular and frequency range, and address the magnitude of the internal-
reflectionn coefficient. In Section 7.7, we present the total transmission measurements, 
andd we use the extrapolation length ratio determined from Section 7.5 to interpret the 
totall  transmission measurements in terms of the transport mean free path. 

7.33 Experiment 

Wee have studied fee photonic crystals consisting of air spheres in anatase TiÜ2 (re-
fractivee index 2.7  0.4) with lattice parameters a = 800,900, 930  20 nm. Details of 
fabricationn and characterization are reported in Ref. [6]. The surfaces of the samples 
aree parallel to the 111 crystal planes. These photonic crystals are strongly photonic, 
ass they have a relative frequency width of the lowest order Bragg diffraction, or L-gap, 
equall  to ^ = 0.12. The crystals studied in this chapter have larger lattice spacing 
thann the crystals discussed in Chapters 3, 4 and 6 (see Fig. 3.3), but are otherwise 
similar.. The colorful opalescence, corresponding to higher diffraction orders, indi-
catess good sample quality. Most of the structural disorder is inherited from the opal 
templates.. As probed by small angle X-ray scattering [6], the polydispersity and rms 
displacementss of the air spheres from the lattice sites are less than 3% of the nearest 
neighborr distance throughout the bulk of the crystals. Together with the roughness 
off  the titania shells (< 10 nm [6]) this constitutes the main source of scattering deter-
miningg the transport mean free path of I ~ 15 ^m [13, Chapter 6], As the thickness 
LL ~ 200 ftm of the samples exceeds the mean free path, diffuse transport of light is 
indeedd expected. Samples were mounted on a rotation stage to allow control over the 
orientationn of the surface normal (parallel to the 111 reciprocal lattice vector) relative 
too the incident beam. As shown in Figure 7.2 the detector was mounted on a separate 
concentricc rotation stage, allowing the detector angle a relative to the sample surface 
normall  to be varied from 0 to 90 degrees, independently of the incidence angle 7. 

Diffuse-transmissionn spectra were recorded in the range 0° < a < 90° every 5°. 
Forr spectrally resolved measurements, light from an incandescent lamp (tungsten-
halogen)) was passed through a Fourier-Transform spectrometer (Biorad FTS-6000) 
operatedd at a resolution of 32 cm-1. The beam emanating from the spectrometer was 
focusedd onto a pinhole, acting as a point source. This point source was imaged with a 
cameraa objective (f=50 mm) onto a spot of 0.40 mm radius encompassing many do-
mainss on the sample surface. The apex angle of the incident beam (10°) was chosen to 
optimizee the incident power. The angular resolution for diffuse transmission is set by 
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FTS S 

sample e 

diode e 

FIGUREE 7.2: Overview of the diffuse-transmission setup. The output of a tungsten-halogen source 
isis passed through a Fourier-Transform Spectrometer (FTS). The beam is focused onto a pinhole 
APiAPi using lens L\. The pinhole acts as a point source which is imaged on the front sample surface 
usingusing lens L2 and camera objective L3. The angle of incidence y is controlled by rotating the sample. 
TheThe detector angle a is changed independently by rotating the diode together with aperture AP2 

andand lens L4 which determine the angular acceptance. 

thee aperture of the detector of 5°, and is independent of the apex angle of the incident 
beam.. Angle-resolved measurements of the diffuse transmitted intensity were ob-
tainedd in the frequency range from 5500 to 14000 cm"1 by using both Si and InGaAs 
photodiodes.. Higher frequencies can only be probed by replacing the light source. 
Thee diode signal yields an interferogram which is Fourier transformed to determine 
thee diffuse transmitted intensity lail(pe = cos a) defined in Eq. (7.14). The total trans-
mittedd intensity spectra I^y are determined by summing the angle-resolved spectra of 
diffusee transmitted intensity weighted by 2JC sin a da to approximate the integration 
overr 2TT solid angle. The total transmission Tm/Y (Eq. (7.2)) is obtained by normalizing 
thee total transmitted intensity spectrum l£ to the lamp spectrum J™, measured by 
removingg the sample from the setup. The escape functions Pa(pe - cos a) are deter-
minedd by dividing the angle-resolved spectra Ia,y(fie) of diffuse transmitted intensity 
byy the total transmitted intensity spectrum l£ , as expressed by Eq. (7.14). Thus, the 
escapee functions are independent of the lamp spectrum. 

Alternatively,, a HeNe (X = 632 nm) or Nd:YV04 (X = 1064 nm) laser beam 
couldd be used as single-frequency probes of the diffuse transmission, using a chopper 
andd lock-in amplifier. The laser beam, not shown in Figure 7.2, overlapped with the 
whitee light beam starting from lens Lj . The greater sensitivity allowed the use of 
cross-polarizedd detection, contrary to the white light experiments. Cross-polarized 
detectionn avoids contributions of the unscattered beam to the detected signal. 

7.44 Escape functions 

Severall  raw spectra Ia,y(jj e) are shown in Figure 7.3 that demonstrate the diffuse trans-
mittedd intensity at chosen angles a = cos-1/!,. = 15°, 30°, 50°, 75°, recorded for in-
cidencee angle y = 0°. These data were obtained from a sample with lattice spacing 
aa = 930 nm and recorded using an InGaAs detector. Comparison with the lamp 
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lamp/150 0 
total/25 5 

| | 

6000 0 9000 0 12000 0 

Frequencyy (cm"1) 

FIGUREE 7.3: Raw spectra of diffuse light transmitted by a titania inverse opal with a = 930 nm, 
forfor detection angles a = 15,30,50 and 75°, and incidence angle y = 0°. The spectrum of the lamp 
asas recorded by the same InGaAs diode, as well as the total transmitted intensity spectrum are also 
shownshown (scaled as indicated). The detector acceptance angle, which affects the scaling factor between 
rawraw spectra and total transmission spectrum, was 5°. 

spectrumm reveals several striking features. Firstly, for low frequencies ~ 6000 cm"1 

wee observe a steady decrease in intensity with increasing angle, as would be expected 
fromm the dominant cos a proportionality in Eq. (7.16). For higher frequencies, the 
lineshapess appear to depend on the detection angle a. Compared to the lamp spec-
trum,, a wide stop band appears, centered at 8100 cm"1 for a = 15°. To a large degree 
thiss attenuation band remains at the same frequency when the detector angle is in-
creased.. The total transmitted intensity spectrum j£Y (dotted curve) indeed shows a 
widee attenuation band at 8000 cm"1. The total transmission T  ̂ wil l be discussed in 
Sectionn 7.7. Closer examination of the angle resolved spectra shows that spectra at 
increasedd detection angle are further attenuated in a band shifting to larger frequency 
withh increasing detector angle a, compared to the a = 15° spectrum. This dependence 
off  a is best studied by examining the escape function. 

7.4.11 Escape function versus frequency at selected angles 

Escapee functions PM at detector angles a = cos"1 He = 15°, 25°, 35°, 45°, 55°, 65°, 
75°° for an inverse opal with lattice parameter a = 930 nm are shown as a function 
off  frequency co in Figure 7.4. These data belong to the same set as the raw spectra in 
Fig.. 7.3, and were obtained by dividing by the total transmitted intensity spectrum 
andd correcting for the angular aperture d (cos a). The frequency range was extended 
byy combining the dataset represented in Fig. 7.3 with complementary data obtained 
byy replacing the InGaAs diode with a Si detector (used for co > 10500 cm"1) . In 
thee common frequency window from 9000 to 11500 cm- 1 in which both detectors 
aree sensitive, the escape functions matched seamlessly within the noise for all detec-
torr angles a. It should be noted that no scaling constants are involved in Figure 7.4. 
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Frequencyy (cm"1) 

FIGUREE 7.4: Photon escape function as a function of frequency for an inverse opal with lattice 
parameterparameter a = 930 nm for exit angles a = 15°,25°, 35°, 45°, 55°, 65°, 75°. The incidence angle is 
yy = 0°. The top axis shows normalized frequency units a/X where X is the wavelength in vacuum. 
NoNo relative scaling or offset was applied to the curves. 

Wee do not find a dependence of the escape function on the incidence angle y for 
0°° < y < 30°. This result validates the factorization in Eq. (7.14), as it confirms that 
P(o(Me)P(o(Me) = L,y(jje)/Il,y is independent of y. The factorization may be understood from 
thee diffusive nature of the samples; as the direction of propagation is fully random-
ized,, the probability for a photon to leave the sample at a specific exit angle a is not 
dependentt on the incidence geometry. The only effect of the incidence angle y is ex-
pectedd to be due to the reflectivity of the front surface (R^ont(<a) in Eq. (7.2)), which 
reducess the total transmission TW/Ï for frequencies and incident angles matching the 
Braggg condition. 

Att low frequencies < 6700 cm"1 the escape function is unaffected by internal re-
flectionn and typical for a random medium with ze « l€. As is evident in Fig. 7.4, 
thee escape function at an exit angle of a = 15° is significantly reduced by > 70% 
inn a stop band centered at ~ 8200 cm- 1 with full width at half maximum (FWHM) 
~~ 1300 cm"1. This stop band in the escape function occurs due to internal Bragg 
reflections,, as captured in the term [1 - R%)] in Eq. (7.16), and moves to higher fre-
quenciess with increasing exit angle a. At angles a exceeding ~ 40°, a much wider 
gapp from 9000 to 12000 cm"1 is evident in Figure 7.4. Similar broadening, and 
thee occurrence of a double-peak structure has been observed in reflectivity experi-
mentss [27, 28] and luminescence experiments (Chapter 3), and has been explained in 
termss of a multiple-Bragg wave coupling involving both 111 and 200 reciprocal lattice 
vectorss [27]. Figure 7.4 shows that the stop gap at these larger angles is preceded by a 
frequencyy range characterized by an increase of the escape function relative to the low 
frequencyy value. This frequency range is coincident with the stop band at small detec-
torr angles. The increase has the same origin as the enhanced escape probability in the 
frequencyy range 9000 - 12000 cm"1 evident in the escape function spectrum at small 
detectorr angles. As escape directions within a stop gap are blocked by internal Bragg 
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7.4.. Escape functions 

reflection,, photons are more likely to escape in the remaining directions, giving rise to 
ann enhanced escape probability in directions not coincident with a stop gap. Equiva-
lently,, this enhanced escape probability is accounted for in the model (7.16) for P^iji) 
ass an increase of the extrapolation length due to a larger average internal-reflection 
coefficient. . 

Similarr results were obtained for a multitude of samples with different lattice pa-
rameterss (a = 800,900,930 nm). The shift along the frequency-axis of the escape 
functionss with lattice parameter confirms the photonic origin of the redistribution of 
thee diffuse intensity (see Fig. 3.3). In conclusion, these observations clearly show that 
thee diffuse intensity possesses a pronounced angle and frequency-dependent struc-
turee due to the strongly photonic crystal. This point is particularly important in the 
interpretationn of common experiments, such as reflectivity or transmissivity mea-
surements.. The diffuse contribution to the signal may clearly not be corrected for by 
assumingg a frequency independent background. In this respect a transmission mea-
surementt can be particularly misleading. Even if scattering by disorder precludes any 
coherentt transmission {i.e., for thick samples Lit £ 5), a detector along the incom-
ingg direction will still register a diffuse spectrum with an attenuation band coincident 
withh the photonic stop gap. Evidently, a stop gap in transmission may only be trusted 
iff  the transmission for frequencies just outside the stop gap is close to 100%, indica-
tivee of low scattering. This requires an absolute calibration of the transmission. In the 
frequencyfrequency range of higher order diffraction and the prospective photonic band gap, 
noo strongly photonic crystals with thickness less than £ but larger than two unit cells 
appearr to have been reported to date. 

7.4.22 Strongly non-Lambertian redistributio n 

Thee redistribution of diffuse intensity over exit angles may be more fully appreci-
atedd by considering the escape function as a function of angle for selected constant 
frequencies,, cf. Figure 7.5. The horizontal scale in terms of y represents the large con-
tributionn of large exit angles in the distribution of intensity over the available hemi-
spheree of exit directions. For clarity, the exit angle range from 0° to 45° covering half 
off  the available polar exit angle range is indicated in gray. For reference we studied a 
calibrationn sample consisting of a vial with a dilute suspension of polystyrene spheres 
inn water (dashed curve in Figure 7.5). In accordance with Ref. [ 19, 29], we find nearly 
Lambertiann behavior corresponding to Pi{tie) = \ve{\ + Ve)- Detailed analysis shows 
thatt the escape function of the calibration sample is accurately modelled by Eq. (7.16). 
AA Fresnel-type model for the internal-reflection coefficient was used, assuming an ef-
fectivee index of 1.33 relevant for water, and taking multiple reflections in the vial walls 
intoo account [19]. 

Forr frequencies below the L-gap (to = 6270 cm"1) the escape function of an in-
versee opal with a - 930 nm closely resembles the escape function measured for the 
randomm calibration sample, as witnessed by Fig. 7.5. From a fit of diffusion theory 
withh a Fresnel model for the internal-reflection coefficient, we estimate an effective 
refractivee index of neff = 1.27  0.15. This effective index is consistent with a 10 to 
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FIGUREE 7.5: Photon escape function as a function of the cosine /je of the escape angle a for an 
inverseinverse opal with lattice parameter a = 930 nm for frequencies a> = 6270,9400,10750,12300 cm'1 

(solid(solid circles, diamonds, squares, resp. triangles) as extracted from a white light data set. These 
frequenciesfrequencies correspond to a/X = 0.58,0.87,1.0 and 1.14. Open diamonds show a measurement 
obtainedobtained from the same sample using a Nd:YVO laser beam fco = 9400 cm'1). For an angular scale, 
referrefer to the top axis. The shaded region corresponds to half the available range for the exit angle a 
relativerelative to the surface normal. The dashed line partially obscured by closed circles corresponds to a 
calibrationcalibration measurement on a dilute colloidal suspension. 

20%% volume fraction of solid material, depending on whether the effective index is 
assumedd to correspond to the volume averaged index or volume averaged dielectric 
constant.. The nearly Lambertian distributions for low frequencies should be con-
trastedd to the strongly non-Lambertian distributions observed for higher frequencies. 
Ass an example we discuss the angular distribution of emitted photons at a frequency 
off  9400 cm-1, to the blue of the L-gap, shown in Figure 7.5. The escape function 
att this frequency is clearly reduced in the range from a = 10° to 40°, and enhanced 
bothh for near-normal exit angles and for exit angles exceeding 40°. These features, 
ass extracted from the white-light experiment, are excellently reproduced in an addi-
tionall  single-frequency measurement using a Nd:YVC>4 laser beam (X - 1.064 /urn), 
alsoo shown in Fig. 7.5. For increasing frequency (co = 10750, and 12300 cm-1) the 
angularr range of suppression relative to the Lambertian distribution shifts to larger a, 
leavingg a central cone around the surface normal within which the escape probability 
iss strongly enhanced by a factor up to ~ 2. 

3. . 
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FIGUREE 7.6: (a) Contour plot of the measured photon escape function as a function of exit angle 
aa and optical frequency corresponding to an inverse opal with a = 930 nm. (b) Contour plot of 
thethe fitted escape function, according to the diffusion model Eq. (7.16) combined with an internal-
reflectionreflection coefficient derived from the band structure Eq. (7.17). The lowest 6 bands along the LU 
directiondirection are plotted in white, using the effective index to transform internal propagation angles 
intointo external propagation angles. The band structure alone can not fully explain the frequency 
andand angle dependence of the escape function. Features not expected from the band structure are, 
forfor instance, the enhanced escape probability for a < 30° and 9000 < co < 12000 cm'1, and for 
aa > 30° and 7500 < co < 9000 cm'1. The common gray scale is displayed on the far right. 

7.55 Diffuse internal-reflection model 

Thee full dataset to which Figure 7.4 corresponds is presented as a contour plot in 
Figuree 7.6(a). For angles below ~ 40° the shift of the stop gap to higher frequency 
withh increasing exit angle is clearly discerned, as well as the widening of the stop gap 
forr larger exit angles due to multiple Bragg wave coupling [27]. The concomitant 
enhancementt of the escape function is evident in the range 9000-12000 cm"1 for 
smalll  angles a < 30° and in the range 7500-9000 cm"1 for large exit angles 30° < a < 
60°.. In this section we proceed with a quantitative description of the data in terms of 
aa semi-empirical model that combines diffusion theory with a model derived from a 
bandd structure calculation for the internal-reflection coefficient R^(JJ). 

7.5.11 Internal-reflectio n coefficient 

Thee internal-reflection coefficient of the inverse opals is modelled as the sum of two 
Gaussiann reflection peaks 

R%R%ii)) = R1(Mi)exp 
(co-coifc,))2 2 

'' 2Aco1(w)2 
++ R2(w)exp 

(coo - (O2U))2 

'' 2Aco2(w)2 (7.17) ) 
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withh angle-dependent peak reflectivities R\,2(p) and widths Acoi .̂ We expect such a 
modell  to capture the essential frequency dependence of the multiple Bragg wave cou-
plingg [24, 27] if the center frequencies 0)1,2(/*) are chosen consistent with the photonic 
bandd structure. 

Wee use the band structure for a model consisting of close-packed air spheres (ra-
diuss r = \ V2A) on an fee lattice surrounded by high-index (e = 6.5) spherical shells 
withh outer radius 1.09r, connected by cylindrical windows of radius 0.4r (see Chap-
terr 3). The window size and the volume fraction of solid material are in agreement 
withh structural data [6], and the resulting band structure has been found to agree 
withh reflectivity bands in both the frequency range of first and second Bragg diffrac-
tionn order [27, 30]. Previously, it has been observed that the band structure along the 
LU-lin ee in reciprocal space (extended outside the first Brillouin zone) describes the 
angle-dependentt reflectivity of polycrystalline samples satisfactorily [27]. Therefore 
wee have calculated the dispersion relation along the LU-line, and determined (0\(JJ) 

andd 0)2(/J) from the calculated stop band edges. To convert internal to external prop-
agationn angle we have used Snell's law1. An average refractive index n = 1.28 was 
chosen,, consistent with the volume averaged dielectric constant for a titania volume 
fractionn of 11%. 

Contraryy to the fixed reflection band center frequencies oiî O"), we have adjusted 
thee reflection peak widths AO)I /2(/J), and the reflection peak heights Ri^ip) to obtain 
ann optimal fit  of the diffusion model Eq. (7.16) with internal reflection Eq. (7.17) 
too the data. We expect the parameter functions Ri^ip) and Ao)i,2 to vary smoothly 
withh angle, and approximate them using cubic polynomials in /j. The polynomial 
coefficientss are determined using a nonlinear least-squares minimization algorithm 
too optimally fit  Eq. (7.16) to the data. In Section 7.5.2, we wil l discuss the agreement 
betweenn the data and the simple model outlined above, and the angle dependence of 
thee fitted lowest order peak reflectivity. In Section 7.7 we wil l review the frequency 
dependencee of the extrapolation length ratio specified by the fitted K^ip) through 
Eq.(7.1). . 

7.5.22 Escape functions and band structur e 

Inn Figure 7.6(b) both the fit  to the data in Fig. 7.6(a) and the lowest six calculated 
bandss are displayed. The average difference between measured and calculated escape 
functionn is between 5 and 10%. The excellent correspondence of the model to the 
experimentall  data is more clearly displayed for two key frequencies in Figures 7.8(a) 
andd (c). The agreement between the data and the model Eqs. (7.16, 7.17) is striking, 
givenn the simplicity of the model for the internal-reflection coefficient, the empirical 
naturee of the escape function theory, and the limitations on the validity of diffusion 
theoryy imposed by the modest optical sample thickness (2 < L/€ < 10). 

11 Refraction may be more accurately taken into account by using parallel momentum conservation at 
thee interface. Within the theory of diffusion with internal reflections, the effective index will always remain 
aa source of inconsistency, since it is unclear how to deal with the associated Fresnel reflections. 
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FIGUREE 7.7: Solid line: the fitted peak internal-reflection coefficient R° versus exit angle a for 
frequencyfrequency co coincident with the lowest order stop hand center frequency coj (cos a). This curve 
correspondscorresponds to the fit (see Fig. 7.6(b)) to the experimental data shown in Fig. 7.4, 7.5 and 7.6(a). 
TheThe peak internal-reflection coefficient decreases as cos(a) (dashed line). 

Figuree 7.6(b) clearly demonstrates that for quantitative understanding of the 
angle-resolvedd diffuse transmission, the band structure is useful but not sufficient. 
Althoughh the lowest diffraction order at near-normal incidence in the band struc-
turee evidently corresponds to the attenuation band in the diffuse transmission, the 
enhancedd transmission probability for wave vectors outside a stop band can not be 
explainedd from the dispersion relation alone. The extrapolation length ratio ze is the 
essentiall  parameter determining the redistribution of intensity over exit directions. 
Thee frequency dependence of the extrapolation length ratio will  be discussed in Sec-
tionn 7.7. 

Itt is interesting to monitor the magnitude of the fitted internal-reflection coeffi-
cientt of the lowest stop gap as a function of the photon escape angle a. As shown in 
Figuree 7.7 for the fit to the experimental data in Fig. 7.6(a), we find a decrease of the 
reflectionn coefficient of the lowest gap with increasing angle which follows a cosine 
behaviorr over a large angular range. This supports our earlier report [24] in Chap-
terr 3, stating that the stop gap depth for a = 0° in luminescence spectra (i.e., using an 
internall  source of diffuse light) is determined by the ratio of Bragg attenuation length 
andd the transport mean free path (. Briefly, diffuse photons emanating from a depth 
zz < ( from the crystal-air interface propagate ballistically to the interface. Photons 
mayy be redirected into Bragg directions by scattering off defects in the surface layer 
22 < I. Since I is larger than the Bragg attenuation length LB « 0.2£ light scattered 
att 2 < LB is hardly Bragg attenuated, while light scattered in Lg < z < € results in 
aa stop band (cf. Fig. 7.1). The stop band depth for a = 0° is therefore estimated as 
1-JR*?? (a = 0) ~ 1-LB/{, where coc is the stop band center frequency. This geometrical 
argumentt may be generalized by noting that for larger exit angles a, the path length 
too the crystal air interface increases with cos ex. This increases the probability of being 
scatteredd at 2 < LB, and reduces the internal-reflection coefficient to ~ Lg coscc/f, in 
agreementt with Fig. 7.7. We conclude that the mechanism of diffusion and internal 
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reflectionn proposed for the angular redistribution of fluorescence from sources inside 
stronglyy photonic crystals [24] is confirmed by the present results and analysis. 

7.66 Diffusion in case of a band gap: beyond Kossel lines 

Thee exemplary agreement between the diffusion model and the experimental data is 
moree clearly shown for two key frequencies in Figure 7.8(a) and (c). For a frequency 
inn the L-gap, to = 8200 cm"1, both the data and the diffusion model of the escape 
functionn are strongly reduced relative to the Lambertian distribution PL in the range 
fromfrom a = 0 to 35° (Fig. 7.8(a)). This range is shifted to larger angle in Fig. 7.8(c), 
correspondingg to a frequency of 9300 cm"1. If the diffuse intensity corresponding to 
thee escape function profile for to = 8200 cm-1 would be projected on a screen, one 
wouldd find a dark disk concentric with the sample normal, with radius corresponding 
too a = 35°. For a beyond 35° the intensity would be slightly in excess of Pi. For 
thee frequency co = 9300 cm"1 above the L-gap, one would rather find a dark ring, 
surroundingg a bright disk. We illustrate these concepts, by considering stereographic 
plotss of the photon excess distribution 

APMAPM = PM - PL(pe) (7.18) 

versuss exit angle in Figure 7.8(b),(d). In the stereographic plots, a polar coordi-
natee (r, (J)) corresponds to an azimuthal exit angle ty and polar exit angle a such that 
r(<x)) = s ina/(cosa -I- 1). A measurement on single crystal samples would show an 
azimuthall  dependence of the escape function, since the 200 family of reciprocal lat-
ticee vectors oblique to the sample surface is involved in the Bragg diffraction. This 
dependencee is lost in our experiment due to polycrystalline averaging. Azimuthally 
independentt grey scales in Fig. 7.8(b),(d) have been generated from the model func-
tionn plotted in (a) and (c). The dark disk in Fig. 7.8(b), and the forbidden ring with 
innerr radius a = 34° and outer radius a = 50° in (d) are reminiscent of Kossel lines. 
Darkk Kossel lines in diffuse transmission have been reported for weakly photonic 
crystalss [31, 32]. These lines should in fact be called Seemann lines, as they are solely 
duee to internal Bragg diffraction of diffuse light, and do not involve the subtle inten-
sityy features occurring in the X-ray fluorescence lines discovered by Kossel [33, 34]. 
Despitee the distinction, we wil l use the term Kossel lines to remain consistent with 
currentt practice in the field of photonic crystals. Weakly photonic colloidal single 
crystalss cause narrow Kossel lines in diffuse transmission. In such cases, the nearly 
free-photonn approximation can be used to determine the crystal symmetry and ori-
entationn based on the geometry of the dark circles andd hyperbolas. For strongly pho-
tonicc inverse opals, the dark areas are not necessarily circles or hyperbolas, and the 
widthh of the internal reflection lines is extraordinarily large. The dark rings evident 
inn Figure 7.5 and 7.8 can extend over > 30% of the 2n sr solid angle, and the geome-
tryy of the internal reflection is strongly affected by multiple Bragg wave coupling. A 
geometricall  analysis [31, 32] of dark lines in diffuse transmission to obtain the crys-
tall  symmetry is therefore not viable, but the full band structure should be used for 
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FIGUREE 7.8: Photon exit distribution P(jie) for frequencies co = 8200 cm'1 (a), resp. 9300 cm'1 

(c)(c) measured for an inverse opal with a = 930 nm. Both the data (dots) and the adapted diffusion 

modelmodel (solid curves in (a) and (c)) strongly differ from the Lambertian distribution PL (dashed 

curves).curves). Grey areas indicate forbidden exit angles according to the dispersion surface analysis, (b) 

andand (d): stereographic plots of the photon excess distribution AP(jje) - P(^ie)-PL(jj e), corresponding 

toto the model in (a) resp. (c). Solid curves in (b) and (d) indicate boundaries of regions in exit angle 

space,space, numbered with the band index, for which coupling to a photonic single crystal is possible. 

BandsBands 2 and 4 are nearly polarization degenerate with bands 1 resp. 3, and similar to within the 

lineline thickness. In panels (e) and (f) predictions are shown for the photon exit distribution for an 

inverseinverse opal E = 11.9 cut along a 100 plane (instead of a 111 plane, as in panels (b,d)). The only 

allowedallowed exit angles are in the white pockets, belonging to band 8 (aa/liic = 0.776) for frequencies 

belowbelow the full band gap, panel (e), resp. band 9 (a>a/2nc = 0.816 above the band gap, panel (f)). 
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interpretation.. In addition, the large angular extent of the internal reflection lines 
off  strongly photonic crystals and the associated large enhancements cause a strongly 
non-Lambertiann distribution of diffuse intensity over exit directions. In contrast, the 
angularr distribution of photons for weakly photonic crystals is practically equal to 
thee Lambertian distribution Pi for angles outside the narrow internal reflection lines, 
sincee the extrapolation length is barely affected by internal reflection. 

Inn a general analysis of the range of suppressed diffuse transmission at a specific 
frequency,, it is necessary to determine the set of exit directions for which photons are 
blockedd by internal reflection, i.e., directions that do not couple to any Bloch mode. 
Suchh an analysis is outlined in Chapter 2.8, and is based on (i) photon dispersion 
surfacess in the photonic crystal, (it) parallel momentum conservation at the inter-
face,, and (in) causality requirements on the direction of the group velocity. We have 
determinedd dispersion surfaces and group velocities by interpolating from eigenfre-
quenciess calculated on a dense k-grid within the volume of the irreducible wedge of 
thee first Brillouin zone, and on the facets of the Brillouin zone2. In Figure 7.8(b),(d) 
thee solid lines show results of solving the refraction problem for the two frequencies 
correspondingg to the data. For clarity, only the boundaries of the forbidden regions 
inn exit-angle space are indicated. For the frequency in the L-gap (co = 8200 cm"1, 
Fig.. 7.8(b)) coupling is only allowed to band 1 and the nearly polarization degenerate 
bandd 2, and is limited to a > 33°, in perfect agreement with the data. For a higher 
frequency33 above the L-gap (co = 9300 cm-1, Fig. 7.8(d)) coupling to bands 1 and 2 
iss only allowed in 6 small lobes in exit angle space. For angles a < 34.5° coupling 
occurss to bands 3 and 4. For larger angles a > 51°, 6 parabolas delimit angular ranges 
inn which coupling from band 3 and 4 to air is allowed. The only angles to which dif-
fusee light inside the samples can not couple are contained in a ring concentric with 
thee origin, and 6 patches with 80° < a < 90° and azimuthal width <; 6°, too small 
too affect the experimental azimuthal average. The boundaries of the ring are sixfold 
symmetric,, but not circular. Overall, the agreement of the central forbidden ring with 
thee experimental data is gratifying. 

Interestingg possibilities are offered at frequencies near photonic band gap edges. 
Forr frequencies near the edge of any photonic band gap that closes away from the 
centerr of the Brillouin zone, all modes have wave vectors in pockets away from the 
k-spacee origin. In such cases, diffuse light may exit the photonic crystal only along 
isolatedd directions. As the shape of dispersion surfaces for frequencies near a band 
gapp is nearly ellipsoidal, an effective mass approximation is well suited to predict the 
directionalityy of diffuse transmission. As an example which may soon be realized, we 
considerr an inverse opal with a full photonic band gap, assuming a e = 11.9 backbone 
containingg fee close-packed air spheres. In Figure 7.8(e) the solution of the refraction 
problemm for a 100 cleaved crystal [35] is shown for a frequency co = (aa/2nc just below 
thee band gap. In the frequency range from co = 0.748 up to the band gap edge co = 
0.778,, the only allowed modes are in band 8, and the dispersion surfaces are ellipsoids 

22 We used 2992 equidistant k-points within the irreducible part of the Brillouin zone, 1816 points on 
thee 111 facet and 1255 on the 200 facet of the Brillouin zone. 

3Deeperr analysis of the refraction problem is contained in Section 2.8 and Fig. 2.8. 
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aroundd the W point. Diffuse light inside the crystal can only couple into a symmetric 
quadruplett of beams, with exit angles a relative to the sample normal around 40°. 
Forr frequencies above the band gap (limited by band 9 at the X-point) emission is 
directedd into a central beam along the surface normal, with a width proportional to 
thee square root of the detuning from the gap edge. Internal reflection causes the four 
beamss at grazing exit angle (Fig. 7.8(f)) not to appear in a small frequency range just 
abovee the gap edge. In this frequency range, all light inside the crystal, be it multiply 
scatteredd from an external source or emission from inside the crystal, may only leave 
thee crystal in one single narrow beam of diffuse light. Directional diffuse beams will 
occurr for all band gap crystals for which the gap closes away from the k-space origin, 
includingg diamond, fee, hep and bee structures. 

7.77 Extrapolation length and total transmission 

InIn this section we return to the experimental data of diffuse transmission of titania 
inversee opals. We use the extrapolation length ratio that results from the fit to the 
measuredd escape function to interpret the total transmission Ttó/Y of the titania in-
versee opals in terms of their transport mean free path. First, we present total diffuse-
transmissionn measurements in Subsection 7.7.1. In Subsection 7.7.2 we analyze the 
frequencyy dependence of the extrapolation length ratio, and discuss total transmis-
sionn corrected for internal reflections. 

7.7.11 Total transmission 

Thee total transmission of a sample with a = 930 nm as a function of frequency is 
shownn in Figure 7.9(a) for incidence angles y = 0°, 15° and 30°. The most apparent 
featuress are (i) a decrease of the total transmission with increasing frequency visible in 
alll  three traces and (ii)  the occurrence of a band of reduced total transmission which 
shiftss from 8100 cm- 1 to higher frequencies with increasing angle of incidence y. The 
centerr frequency of the angle-dependent band of reduced total transmission coincides 
withh the photonic stop band measured in a reflectivity measurement and with the 
stopp band in the escape function. The center frequency of the stop band is inversely 
proportionall  to the lattice parameter, as demonstrated by the blue shifted spectrum 
forr a sample with a = 800 nm in Fig. 7.9(a). As less light enters the sample for wave 
vectorss matching the Bragg reflection condition, the diffuse intensity injected into 
thee sample is reduced in a frequency region matching the stop band for the incident 
direction.. This reduction of the total transmission is caused by the reflectivity of the 
frontfront surface, the factor [1 - R^°nt] in Eq. (7.2). The stop band width in the total 
transmissionn measurement is larger than the photonic width due to the large angular 
widthh Ay ~ 10° of the incident beam. The stop band depth in total transmission 
iss limited by the external reflectivity Rfront, which amounts to 50 to 70% for a wide 
beamm spanning many domains. The stop gap minimum of 0.09 at y = 0° in the total 
transmissionn is indeed only 2 to 3 times less than the value just outside the stop gap 
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F IGUREE 7.9: (a) Measured total diffuse transmission as a function of optical frequency for a 

samplesample with lattice parameter a = 930 nm for incidence angles y = 0°, 15°, 30° (solid lines, black, 

gray,gray, light gray). For a sample with a = 800 nm the stop band at y = 0° (L-gap) is shifted to higher 

frequencyfrequency (data indicated by the dashed line). Lower panel in (b): extrapolation length ratio 

xxee = zeIt pertaining to the fit to the data in Fig. 7.6. Upper panel in (b): T' = T/(l + xe[l  - 2T\) 

versusversus co, i.e., total transmission data T in (a) corrected for the frequency-dependent extrapolation 

lengthlength (model, lower panel) for incidence angles 7 = 0°,15°,30o (black, dark gray and light gray 

curves).curves). Dashed lines represent the power laws co-3 (short dashes), and co-2 (long dashes). 

off  roughly 0.3. This should be contrasted to the typical attenuation of several decades 
forr stop gaps in characteristic 'coherent transmission' measurements, in which the 
intensityy transmitted along the direction of the incident beam is monitored. As the 
coherentt transmission decays exponentially with Ca/L such measurements are only 
feasiblee in thin (i.e., small L [36]) or near-index matched (i.e., large £ [12]) photonic 
crystals.. The stop gap in coherent transmission is determined by diffraction from all 
thee differently oriented crystallites encountered along the trajectory of the forward 
beam.. The cumulative effect of all crystallites in the bulk causes a stop gap with 
highh attenuation, and a width larger than the intrinsic photonic width [23]. This 
broadeningg of the stop gap in coherent transmission is not only limited by the angular 
spreadd of the incident beam, however, but mainly caused by misaligned and strained 
crystallitess [11]. 

Thee decrease of the total transmission with increasing frequency is caused by a 
decreasee of the mean free path tw due to increasing scattering strength of defects at 
largerr frequencies. We recognize two regimes in the total transmission, depending on 
thee magnitude of the mean free path. Below co = 7200 cm- 1 the total transmission 
off  T ~ 0.3 indicates that the sample thickness L ~ 200 yum is at most a few transport 
meann free paths {€a « 60 yum). In this regime the sample is not truly multiple scatter-
ing,, causing deviations from the diffusion law Eq. (7.2) which relates tm to the total 
transmission.. For higher frequencies, we find a steeper decrease of the total trans-
missionn to ~ 0.05 at co = 15000 cm-1, typical of 4> ~ 10 /jm. As the thickness L of 
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thee samples is not well known, accurate values for the mean free path t can not be 
extracted.. Though the values i = 10 to 60 pm agree with enhanced backscattering 
experimentss on other samples, we focus only on the scaling of T with frequency. In 
thee frequency range to > 7200 cm"1, the mean free path is sufficiently small compared 
too the sample thickness to expect the Ohmic diffuse-transmission law Eq. (7.2) to 
hold.. As the lowest Bragg diffraction overlaps with this frequency range, the analysis 
off  total transmission in terms of the mean free path is complicated by the frequency 
dependencee of the extrapolation length ratio. 

7.7.22 Extrapolation length rati o and scattering strength 

Inn Figure 7.9(b) the extrapolation length ratio xei(0 - zei(a/£a pertaining to the fit  to 
thee data in Fig. 7.6 is presented as a function of frequency. In the small frequency 
limit ,, the extrapolation length ratio equals 2/3, as there are no internal reflections4. 
Ass the optical frequency reaches the L-gap, the extrapolation length ratio grows to 
aa maximum of nearly 1.8, corresponding to a maximum average internal-reflection 
coefficientt R® ~ 45%. This maximum is reached at the blue edge of the L-gap, where 
thee largest fraction of solid angle is covered by stop gaps [26]. The avoided crossing 
off  two stop bands at a > 30° enlarges the angle-averaged internal reflection in the 
samee frequency window. For higher frequencies to > 9500 cm-1, the extrapolation 
lengthh ratio diminishes, as the range of internally reflected angles decreases. Though 
thee qualitative behavior of the extrapolation length ratio may be explained by the 
bandd structure, the numerical value of the maximum, and details of the functional 
dependencee are determined by, e.g., the depth of the stop gaps involved. 

Fromm Eq. (7.2) it is clear that for frequencies outside a stop gap for the incident 
directionn y, for which R^°nt = 0, the inverse optical thickness tJL may be expressed 
inn terms of Tm and xe>(i> as 

ff T 
—— = T = — (7.19) 
II  * 1 +z - 2 t T V-A7, 

Usingg the extrapolation length ratio xer(0 plotted in Fig. 7.9(b), we extract Tw from the 
totall  transmission spectra presented in Fig. 7.9(a). We proceed to discuss the scaling 
behaviorr of the decrease of T*m with increasing frequency. As 7^ equals £a/l for fre-
quenciess outside a stop gap in total transmission, one might expect a to"4 law typical 
forr the scattering strength of particles much smaller than the wavelength, as reported 
forr opals by Vlasov and coworkers [12]. Enhanced backscattering experiments on 
opalss presented in Chapter 6, however, point at a scattering mechanism dominated 
byy polydispersity and displacements. As scattering essentially occurs off thin 'differ-
ence'' shells with size comparable to the wavelength, the associated scaling of the mean 
freee path reaches into the quadratic Rayleigh-Gans regime for frequencies of the or-
derr of and above the lowest order Bragg diffraction. In this experiment, we find a 
decreasee of t^jh which appears faster than to-2 and slower than to"3 (dashed lines in 

4Thee Fresnel reflection due to the effective refractive index is neglected in this analysis. 
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Fig.. 7.9(b)). This observation holds for all the samples with a = 930,900 and 800 nm, 
andd was reproduced on samples with much smaller lattice parameters a = 690 and 
5000 nm. The latter samples are optically thicker, and the probe frequencies in the 
rangee of the experiment remain below the L-gap, i.e., in the long wavelength regime. 
Thoughh the frequency dependence of t remains partly obscured due to the stop gaps 
inn total transmission, the scattering does not increase as fast as Rayleigh's to4 law pre-
dicts.. This is consistent with the scattering mechanism proposed in Chapter 6. One 
shouldd bear in mind that the frequencies below and in the L-gap may belong to the 
cross-overr regime from Rayleigh's co-4 to Rayleigh-Gans's oT2 scaling, in contrast to 
thee higher frequencies used in Chapter 6. This may explain why t decreases with fre-
quencyy faster than co-2 and slower than or3. The fabrication of periodic structures 
withh template-assisted self-assembly [6, 35,37-39]), lithographic [7, 8] and layer-by-
layerr microfabrication methods [9] all involve displacements, roughness and poly-
dispersityy of the same magnitude. Hence we expect the random scattering in all the 
currentt state of the art photonic structures to be comparable. 

7.88 Conclusion 

Wee have presented frequency-resolved measurements of the angular distribution of 
diffusee transmitted light from strongly photonic crystals. We find a drastic frequency-
dependentt angular redistribution of diffuse transmitted light due to internal Bragg 
reflection.. Though the ranges of strong internal reflection are governed by gaps in the 
dispersionn relation, it is imperative for accurate modelling to take the redistribution 
intoo angles not contained in a stop gap into account. The relevant parameter, 'i.e., the 
extrapolationn length ratio, can not be derived from the band structure, but requires 
aa diffusion model. We have presented the first model combining diffusion and the 
photonicc internal reflection due to the band structure. The extrapolation length ratio 
whichh we calculate has a broader relevance in interpreting standard experiments such 
ass enhanced backscattering or total transmission aimed at determining the transport 
meann free path in the frequency range of photonic stop gaps. Application to the 
totall  transmission of strongly photonic crystals reveals a mean free path decreasing 
fromm ~ 60 to ~ 10 ym as the frequency increases from below the first stop gap to just 
beloww the second order Bragg reflection. This decrease is surprisingly slower than co-4, 
indicatingg that polydispersity, roughness and site displacements of photonic building 
blockss form the dominant scattering mechanism. 

Thee data and model presented here are especially relevant for the interpretation 
off  emission measurements (see Chapters 3 and 4). The mechanism causing the angu-
larr dependence in emission spectra is the same diffuse internal reflection quantified 
here.. Inspection of the stop bands in emission (Figure 3.2) show similar stop gap 
width,, dispersion and depth as revealed by the escape function. Enhancement due to 
thee extrapolation length may even be discerned in Figure 3.2(b). The internal reflec-
tivit yy of the samples studied in this chapter (maximum ~ 80% for a = 0°) is some-
whatt higher than the stop gap depth ~ 50 to 70% quoted in Chapter 3. We therefore 
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expectt the extrapolation length ratio to be ~ 1.35̂  (i.e. R  ̂ = 34%) in the emission 
experiments.. This is consistent with the estimate in Chapter 4. In Chapters 3 and 
44 the angular dependence was separated from the angle integrated emission power 
spectraa based on prior knowledge of external reflectivity experiments. Especially the 
factt that exit angles occur for which no stop gap overlaps the emission spectrum was 
instrumentall  in the analysis. Furthermore the spontaneous emission inhibition could 
onlyy be estimated from the data to within the limits set by the magnitude of the extra-
polationn length ratio. Escape function measurements using externally injected light 
aree useful to separate the angular dependence of emission spectra from the angle-
integratedd emission without prior knowledge of the dispersion. We expect that spec-
trallyy resolved emission measurements in the range of second order Bragg diffraction 
wil ll  require such complementary escape function measurements. In this frequency 
rangee (near bands 8 and 9), a multitude of reflectivity bands that barely shift with 
anglee occur [30], causing a concomitant complicated frequency dependence of the 
extrapolationn length ratio. 

Finally,, we would like to point out the similarity between the general analysis of 
thee angle-resolved diffuse intensity distribution in Section 7.6 and high-resolution 
angle-resolvedd photoemission spectroscopy. This powerful technique is instrumen-
tall  in the study of surface and projected bulk electronic band structures and Fermi 
surfacess in, e.g.-, metals or high Tc superconductors [40, 41]. With this technique, 
thee electron 'dispersion' surface (isoenergy surface) at the Fermi level translates into 
aa structured angular distribution of photoelectrons. The analogy holds if the optical 
probee frequency is identified with the Fermi energy of the electron. Moreover, the 
opticall  experiment should be considered a zero temperature analogon of the elec-
tronicc case. Experimentally, the probe depth in the photonic crystals, t < 10 unit 
cells,, appears less restricted to the surface than in photoemission. Angle-resolved 
diffusee transmission on single crystal photonic crystals may prove to be a powerful 
techniquee for studying photonic dispersion. Theoretical analysis beyond the refrac-
tionn construction (Fig. 7.8) may certainly benefit from electron theory developed for 
photoemissionn spectroscopy. 
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