UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

First order phase transition and phase coexistence in a spin-glass model

Crisanti, A.; Leuzzi, L.

Publication date
2002

Published in
Physical Review Letters

Link to publication

Citation for published version (APA):
Crisanti, A., & Leuzzi, L. (2002). First order phase transition and phase coexistence in a spin-
glass model. Physical Review Letters, 89, 237204.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Download date:11 Nov 2022


https://dare.uva.nl/personal/pure/en/publications/first-order-phase-transition-and-phase-coexistence-in-a-spinglass-model(19ed831a-2d16-490d-b10c-b36ab1690792).html

VOLUME 89, NUMBER 23

PHYSICAL REVIEW LETTERS

2 DECEMBER 2002

First-Order Phase Transition and Phase Coexistence in a Spin-Glass Model

A. Crisanti! and L. Leuzzi’

"Dipartimento di Fisica, Universita di Roma, “La Sapienza” and INFM unita di Roma I, Piazzale A. Moro 2, 00186, Rome, Italy
2Instituut voor Theoretische Fysica and FOM, Universiteit van Amsterdam,

Valckenierstraat 65, 1018 XE, Amsterdam, The Netherlands
(Received 22 April 2002; published 18 November 2002)

We study the mean-field static solution of the Blume-Emery-Griffiths-Capel model with quenched
disorder, an Ising-spin lattice gas with random magnetic interaction. The thermodynamics is worked out
in the full replica symmetry breaking scheme. The model exhibits a high temperature/low density
paramagnetic phase. As temperature decreases or density increases, a phase transition to a full replica
symmetry breaking spin-glass phase occurs. The nature of the transition can be either of the second
order or, at temperature below a given critical value, of the first order in the Ehrenfest sense, with a
discontinuous jump of the order parameter, a latent heat, and coexistence of phases.
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The spin-glass (SG) phase plays a central role in the
understanding of disordered and complex systems. The
analysis of mean-field models revealed different possible
scenarios for the SG phase and the transition to it. Most of
the work, however, has been concentrated on just two of
them. In order of appearance, the first scenario is de-
scribed by a full replica symmetry breaking (FRSB)
solution characterized by a continuous order parameter
function [1], which continuously grows from zero by
crossing the transition. The prototype model is the
Sherrington-Kirkpatrick (SK) model [2], a fully con-
nected Ising spin model with quenched random magnetic
interactions. The second scenario, initially introduced by
Derrida [3], provides a transition with a jump in the order
parameter to a SG with one step replica symmetry break-
ing (IRSB). No discontinuity appears, however, in the
thermodynamic functions. Actually, at the transition to
the IRSB SG phase, the Edwards-Anderson order pa-
rameter can either grow continuously from zero or jump
discontinuously to a finite value. The first case includes
Potts glasses with three or four states [4], the spherical
p-spin spin glass in strong magnetic field [5], and some
spherical p-spin spin glasses with a mixture of p = 2 and
p > 3 interactions [6,7]. The latter case includes, instead,
Potts glasses with more than four states [4], quadrupolar
glasses [4,8], p-spin interaction spin glasses with p > 2
[3,9,10], and the spherical p-spin spin glass in weak
magnetic field [5]. The models belonging to this second
scenario, often referred to as ‘“‘discontinuous spin
glasses” [11], have been widely investigated in the past
because of their relevance for the structural glass tran-
sition observed in fragile glasses [10,12].

In all cases discussed so far, the transition is always
continuous in the Ehrenfest sense. To our knowledge, the
first case of a spin glass undergoing a genuine first order
thermodynamic transition is the so-called Ghatak-
Sherrington (GS) model [13]. However, besides the analy-
sis of the replica symmetry (RS) solution, the study of the
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FRSB solution for this model could be performed only
close to the continuous transition (SK-like) down to and
including the tricritical point [13,14]. We also recall that
an exactly solvable model, a generalization of Derrida’s
random energy model [3], displaying a first order phase
transition to a SG phase with latent heat, was introduced
by Mottishaw [15]. However, at difference with the GS
model, the SG phase is now 1RSB.

Recently, a generalization of the GS model [13] has
been considered in connection with the structural glass
transition due to the conjectured existence [16] of a “dis-
continuous’ transition, in the above mentioned sense, to a
IRSB SG phase. This possibility has raised new interest
in such a model and its finite dimensions version has been
numerically investigated in a search for evidence of a
structural glass transition scenario [17].

To clarify this issue and its compatibility with previous
results on the GS model, we have investigated the whole
phase diagram, deep in the SG phase, for the mean-field
quenched disorder variant of the Blume-Emery-Griffiths-
Capel (BEGC) model [18], introduced for the A transition
in mixtures of He3-He*, which includes the GS model.

There exist two different versions of the model: one is
the direct generalization of the BEGC model and uses
spin-1 variables o; = —1,0, 1 on each site i of a lattice
[19,20], while the other one is a lattice gas (n; = 0, 1) of
spin-1/2 variables (S; = —1, 1) [16,21]. In both cases, the
spin variables interact through quenched random cou-
plings. The two formulations are equivalent, at least as
far as static properties are concerned. By imposing o; =
S;n;, the two models can be transformed one into the
other, apart from a rescaling of the chemical potential/
crystal field [22]. In this Letter, we use the second for-
mulation described by the Hamiltonian [16]

H == JiSiSimin; = %Z"ln; w2 (D
i<j i<j i

representing an Ising-spin glass lattice gas coupled to a
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FIG. 1. T — p phase diagram for K = 1. The dot marks the
tricritical point u, = —1, T. = 1/2, p. = 1/2. See text for
discussion.

spin reservoir. The symmetric couplings J;; are quenched
Gaussian random variables of zero mean and variance
J} = J/N. The overline denotes average with respect to
disorder. Limiting cases of the model are the SK model
[2] (u/J — ), the site frustrated percolation model [23]
(K = —J,J/u — 00), and the GS model (K = 0). To keep
the level of the presentation as general as possible, we
avoid technical details and report only the main results
for the phase diagrams of the three relevant cases of the
GS model (K = 0), the frustrated Ising lattice gas
(K = —J), and the case of attracting particle-particle
interaction (K = J). We set J = 1.

Applying the standard replica method, the FRSB solu-
tion in the SG phase is described by the order parameter
function [1]

a0 = [ dypteymi ) @

and the density of occupied sites by
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FIG. 2. T — pandT — u phase diagrams for K = 0. A line at
constant u = —0.75 < u. is shown in the T — p plane.
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o0 coshBJy
= dyP(l,y) ————,
P [foo yH( y)e_®1 + coshBJy

where @, = (BJ)*[p — q(1)]/2 + B(u + Kp), and
m(x, y) and P(x, y) [24] are solutions of

3

) = =S ) + A@mGs e, @
plxy) = 1 Pt ) + ARG e )T, )

with boundary conditions m(1,y) = sinh(By)/[e”©1 +
cosh(By)], P(0, y) = exp{—y*/[2¢(0)]}/+/274(0).

The functions m(x, y) and P(x, y) are, respectively, the
local magnetization and local field probability distribu-
tion at “time scale” x € [0,1] [24], while A(x) is
Sompolinsky’s anomaly [25]. The “dot” denotes partial
derivative with respect to x while the “prime” the one
with respect to y. All thermodynamic quantities can be
written in terms of the above functions. Defining K =
K + BJ/2, the internal energy density u and the entropy
density s read

u=-2p _,U«P“‘—C](l)z f drgWAR), (6)
2 00
5= =0, = Bl1p—qp + [ avpaiy

X {log[2 + 2¢®1 cosh(BJy)] — BJym(1, y)}.  (7)

We have solved the coupled equations (2)—(5) in Parisi’s
gauge A = —BJxg(x) using the pseudospectral method
introduced in Ref. [26]. Analyzing the stability of the RS
solution one gets the critical lines

1= (BJp)* =0, (8)
1—BK(1—p)p =0, )]

above which the only solution is the paramagnetic (PM)
solution p=1/[1+¢79], gx)=0 for x€][0,1],
stable for any value of K. In the T — p plane, they are,
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FIG. 3. T — p and T — u phase diagrams for K = —1. In the
T — p plane the line at constant u = —0.57 < w.. is plotted.
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FIG. 4. Entropy density as a function of temperature for
K = 1. For u < u. = —1 the entropy is discontinuous at the
transition temperature.

respectively, the straight line and the left branch of the
spinodal line shown in Figs. 1-3 (for K = 1,0, —1, re-
spectively). The two lines meet at the tricritical point

-3/2+K++K>*—K+9/4
T.=p, = 1
¢ = Pec 2K , (10)
1 1
e = —=— pC[K + 10g<— — 1)} (11)
2 Pe

By crossing the critical line (8) above the tricritical
point (p > p., T > T,., u > w. ), the system undergoes a
continuous phase transition of the SK-type to a FRSB SG
phase, with a nontrivial continuous order parameter func-
tion g(x) which smoothly grows from zero.

Below the tricritical point, the scenario is completely
different with a transition from the PM phase to a FRSB
SG phase with g(x) which discontinuously jumps from

-0.81—
- spinodal

(PM)

spinodal =7
(SG)

FIG. 5. u — p phase diagram for K = 1. Three isothermal
lines are plotted, two above and one below the tricritical
temperature T.= 1/2. For T =0.3 also the metastable
branches are shown, both in the RS PM phase and in the
FRSB SG phase. They reach the spinodal lines with zero de-
rivative. In this plane of conjugated thermodynamic variables, a
Maxwell construction can be explicitly performed.
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FIG. 6. T — p phase diagram for K = 1.

zero to a nontrivial (continuous) function. At the critical
temperature the entropy is discontinuous (see Fig. 4) and,
hence, a latent heat is involved in the transformation,
implying that the transition is of the first order in the
Ehrenfest sense. The transition line is determined by the
free energy balance between the PM and the SG phase
[15], and it is shown as a broken line in the phase dia-
grams. The line (9) where the PM solution becomes un-
stable, and the equivalent line from the SG side, are
the spinodal lines. This can be better appreciated in the
pm — p plane. From Fig. 5 we indeed see that the isother-
mal lines cross the instability lines with zero de-
rivative and, hence, a diverging compressibility « =
(1/p*)dp/du occurs.

It can be shown that the first order transition line can be
determined in the & — p plane from the isothermal and
spinodal lines by using a Maxwell construction. In the
region between the first order transition line and
the spinodal line, the pure phase is metastable. Below
the spinodal lines (inthe T — p plane) no pure phase can
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FIG. 7. p — p phase diagram for K = 0. The dot marks the
tricritical point u, = —0.731, T, = p, = 1/3. The isothermal
at T =0.27 is plotted, together with its metastable parts
(dotted line) both in the SG and in the PM phase.
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FIG. 8. u — p phase diagram for K = —1, with isothermal at
T = 0.2. The dot marks the tricritical point w,. = —0.559,
T, = p.=0.219.

exist and the system is in a mixture of PM and SG phase
(phase coexistence). Finally, the phase diagram in the
T — p plane, for K = 1, is shown in Fig. 6.

By varying K the scenario remains qualitatively un-
changed. The only effect of a strong repulsive particle-
particle interaction is to increase the phase diagram zone
where the empty system (p = 0) is the only stable solu-
tion. In order to find further phases, e.g., an antiquadru-
polar phase [16], a generalization of the present analysis
to a two component magnetic model [27], including
quenched disorder, has to be carried out [28]. In Figs. 2,
3,7, and 8 we show the phase diagrams for K = 0, the GS
model [13], and K = —1 the frustrated lattice gas [17].

In conclusion, we have discussed the complete phase
diagram of the disordered BEGC model in the mean-field
limit, solving the FRSB equations in the whole SG phase
with the pseudospectral method developed in Ref. [26].
Our results rule out the possibility of a 1RSB phase: the
SG phase is always of FRSB type. The transition between
the PM phase and the SG phase can be either of the SK-
type or, below the tricritical temperature, a first order
thermodynamic phase transition. In the latter case, as in
the gas-liquid transition, a latent heat is involved in the
transformation. Moreover, for a certain range of parame-
ters (between the spinodal lines), no pure phase is achiev-
able, not even as a metastable one, and the two phases
coexist.

A.C. acknowledges support from the INFM-SMC
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