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Chapterr  1 

Introductio n n 

1.11 Preliminar y remarks 

Overr the past 40 years, computer systems have shown an explosive growth in their com-
putingg power, pervading and influencing almost every aspect of our society. The scientific 
communityy has greatly benefited from this continuous increase in computer performance, 
whichh in a way is the reward for having provided the initial impetus for the pursuit of ever 
fasterr computer systems. Equally important for the scientific community is the development 
off  faster and increasingly sophisticated software that has gradually expanded the role of com-
puterr systems in science from a mere support tool for numerical analysis to a fully-fledged 
environmentt to perform virtual experiments. The jointt availability in so-called virtual labo-
ratoriess of very powerful computer systems and very fast and accurate numerical algorithms 
nowadayss permits the reproduction in silico of natural phenomena, and has resulted in the 
risee of Computational Science as a modern way of carrying out scientific research. 

Traditionally,, scientific investigation has been based on two pillars, theory, and exper-
iments.. The virtual laboratory, which provides the possibility of executing highly accurate 
simulationss of complex natural phenomena, has led to the rise of simulation as a third pillar 
off  scientific research. Natural phenomena as diverse as the interactions among the molecules 
thatt constitute a chemical solution, or the dynamics of stars that form a globular cluster, 
orr the growth of a coral subject to environmental conditions, can be studied by means of 
computerr simulations. 

Computerr simulations have the great advantage of allowing the investigation of phe-
nomenaa that are very difficult, or even impossible to reproduce in a real laboratory, as in 
thee cases cited above. A theoretical study of the dynamics of a chemical solution, or a star 
cluster,, is not possible because the equations describing the system are unsolvable analyti-
cally.. On the other hand, observing the dynamics of the constituents of the above systems is 
equallyy infeasible for an experimental scientist. The simulative approach is the only feasible 
meanss to tackle the study of such phenomena. 

1 1 
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Thee simulative approach also shares many of the difficulties with the other two ap-
proaches.. The tasks needed to set up a computer experiment are all prone to mistakes, and 
requiree both experimental and theoretical expertise. First, a mathematical model of the 
physicall  system under study needs to be developed. Then the set of equations that con-
stitutee the model needs to be discretised, and converted into a numerical algorithm, which 
iss implemented by a computer code. Finally, the computer experiment can be performed, 
andd the simulation results analysed as if they were obtained from measurements in a real 
laboratory. . 

Thee modelling of natural phenomena, the development of software for their simulation, 
togetherr with the tasks of actually performing simulations and analysing the data output 
characterisee the work of a computational scientist. 

1.1.11 Thesis rationale 

Thiss thesis is concerned with the analysis of tools developed to make the simulation of 
so-calledd "iV-body systems" fast and accurate. The molecules that constitute a chemical 
solution,, or the stars that form a globular cluster are examples of TV-body systems. Our 
focuss in this thesis is on iV-body systems subject to the force of gravity. The problem of 
solvingg the equations describing such systems is the gravitational N-body problem (see, e.g., 
Heggiee & Hut, 2003; Hockney & Eastwood, 1988). 

Thee TV-body problem is analytically unsolvable, and its numerical solution needs high 
performancee computing and sophisticated algorithms. In fact, the numerical solution of the 
gravitationall  JV-body problem is so demanding in terms of computing power, that sophisti-
catedd fast algorithms have been devised to reduce the numerical complexity of the problem, 
tradingg higher speed for lower accuracy, and dedicated hardware has been developed to speed 
upp AT-body simulations requiring high numerical accuracy. 

Thee central focus of this thesis is to explore the possibility of using dedicated hardware 
inn connection with a powerful general purpose host, consisting of a parallel computer. We call 
thesee systems hybrid architectures. We try, by integrating a fast special purpose device into 
aa parallel computer, to hybridise the two approaches, generalisation versus specialisation. 
Peoplee aiming at generalisation look more favourably on commodity systems, e.g. Beowulf 
systemss or grid systems. The goal of the other approach is to obtain very high performance 
byy means of hardware specialisation, developing, e.g., special purpose devices. Our research 
aimss at bridging the gap between these two approaches, evaluating the viability of hybrid 
architectures,, and their potential to solve large-scale simulation problems. 

I tt is very important to understand the interplay of the parallel host, the dedicated 
hardware,, and the application that runs on the hybrid architecture, in order to prevent bot-
tlenecks,, and find the optimal configuration. The tool we employ to study the interaction of 
aa hybrid architecture with the software applications executed on it is performance modelling. 
Byy using performance modelling, we adopt a simulative approach to study systems that are 
usedd themselves to perform simulations. This meta-simulation is a core component of our re-
searchh aimed at finding the optimal interaction between fast software and hardware in order 
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too devise a very high performance computational environment for the ./V-body simulation. 

AA main objective of this thesis is to show the potential of hybrid architectures to provide 
thee optimal computing environment for the solution of specific problems. In view of this, 
wee studied a numerical algorithm, and refined*  it for our hybrid architecture. This algorithm 
allowss us to use fast iV-body codes on dedicated hardware, with consequent computational 
performancee benefits. This numerical algorithm is the software counterpart of our hybrid 
architecture,, enabling a highly efficient computing environment for the iV-body problem. 

Finally,, we look at the use of iV-body simulations in astrophysical research. Specifically, 
wee study the infall of a massive object to the Galactic centre. JV-body simulations are an 
effectivee tool to study the time-scale of this infall, giving support to (or ruling out) theoretical 
modelss for the explanation of astronomical observations. 

1.1.22 Chapter  outline 

Thee remainder of this chapter gives a brief introduction to the subjects that wil l be discussed 
inn the thesis. We begin by explaining in section 1.2 why iV-body systems are an important re-
searchh subject, what computational problems they present and how these can be approached 
usingg the special hardware described in section 1.3 and the software described in section 1.4. 
Wee also introduce the hardware and software systems that we study in particular in this 
thesis.. Namely, in section 1.3.4 we describe Hybrid Architectures, then, in section 1.5, we 
introducee the code that we studied and refined to make optimal use of these architectures. 
Next,, in section 1.6, we explain how the performance of this combination of hardware and 
softwaree can be evaluated and how this evaluation leads to a performance model that can 
bee used for prediction. Finally, in section 1.7, we present an example of the use of AT-body 
simulationss in astrophysical research. 

1.22 The computational iV-body problem 

Inn the study of JV-body systems, Computational Science clearly demonstrates the poten-
tiall  of the simulative approach to attain dramatic progress in the understanding of natural 
phenomena.. In the most general formulation, an JV-body system is a mathematical model, 
wheree N point-like constituents interact through a given force (see, e.g., Heggie & Hut, 2003, 
p.. 15). The importance of iV-body systems in the physical sciences comes from the fact that 
naturall  systems, as diverse as a stellar globular cluster or a chemical solute-solvent system, 
aree instances of an iV-body system. Our focus in this thesis is on ./V-body systems subject 
too the force of gravity, the so-called gravitational N-body problem (see, e.g., Heggie & Hut, 
2003;; Hockney & Eastwood, 1988). 

Thee computational iV-body problem can be stated as follows: given the positions and 
velocitiess of N point-like bodies, interacting with each other by means of a specified force, 
solvee the equation of motion for each body. For the gravitational iV-body problem, the 
interactionn force between particles is described by Newton's inverse square law 
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CC OBTAI N TH E CURRENT FORCE ON BODY I . 
DOO 1 0 J  «  1, N 
I FF (J.EQ.I )  GO T O 1 0 
A(l ))  =  XX(J )  -  X I 
A(2 ))  =  XY(J )  -  Y I 
A(3 ))  =  XZ(J )  -  2 1 
A(4 ))  =  A(1)*A(1 )  +  A(2)*A(2 )  +  A(3)*A(3 )  +  EPS2 
A(5 ))  =  B0DY(J)/(A(4)*SQR T (A(4)) ) 
Fl(l ))  =  Fl(l )  +  AC1)*A(5 ) 
Fl(2 ))  =  F1C2 )  +  A(2)*A(5 ) 
Fl(3 ))  =  Fl(3 )  +  A(3)*AC5 ) 

100 CONTINUE 

Figuree 1.1: A verbatim transcript of the direct code NB0DY1 force computation loop. XI, YI, and 
ZII  are the position coordinates of the particle on which force is currently computed (the so-called 
i-particle).. XX(J), XY(J), XZ(J), and BODY(J) are the position coordinates and the mass of the 
,7-thh force source particle, respectively. EPS2 is the square of the softening parameter e, a numerical 
parameterr introduced to soften the interaction between very close pairs of particles. Modern versions 
off  the code solve these close interactions with much more accurate and sophisticated methods 
(Funatoo et al., 1996; Aarseth, 1999). 

Electrostaticc interactions between electrically charged particles are described by the 
Coulombb force which, apart from a scaling factor, has the same form as the Newton force. 
Inn fact, an algorithm that computes all particle-particle interactions directly could be used 
inn both cases equally well. But computing all interactions directly is a very expensive task, 
requiringg O(N) operations per particle. Thus the computational complexity of the direct 
particle-particlee method is Ö(N2) per iteration. In fig. 1.1 we show the force computation 
loopp of NBODY1 (Aarseth, 1963; Aarseth, 1985), one of the first direct particle-particle 
methodss used to study the dynamics of astrophysical iV-body systems. This code is the 
oldestt of a class of algorithms developed by the computational stellar dynamics community 
forr the study of systems requiring high computational accuracy (Aarseth, 1999). NBODY1 
iss one of our case-study codes; we describe it in more detail in section 1.4.1. 

Inn astronomy, there is a large number of problems that can be studied as gravitational 
TV-bodyy systems. At the one extreme, cosmological problems are characterised by having 
aa very large number of particles, but a relatively low density and very long time-scales for 
two-bodyy interactions; at the other extreme we have the study of globular clusters and the 
formationn of planetary systems, which are characterised by high densities and short time-
scaless for two-body interactions. An important parameter that characterises these systems 
iss the ratio of the so-called relaxation time and the age of the system. The relaxation time is 
definedd as the time in which the velocity of a star is significantly changed by thee cumulative 
effectss of two-body encounters with background stars. In Heggie & Hut (2003, p. 136) the 
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relaxationn time for average quantities inside the half mass radius r*  of a star cluster is gives 
as: : 

__ 0.138N^rl/2 

r ~~ (Gm)1/2 1n7iV 

Wheree m is the mass of the individual stars, and 7 is a factor of order unity. 

Thee importance of the relaxation time stems from the fact that this is the time-scale 
onn which three-body encounters in the densely populated core of a star cluster can lead to 
thee formation of binaries, or can cause existing binaries to become more tightly bound. The 
potentiall  energy that is released in the formation or tightening of the binary, which causes 
thee acceleration of the third star, is an important source of kinetic energy in the system, thus 
influencingg the evolution of the system as a whole (Bhattacharya k, van den Heuvel, 1991). 

Ann JV-body system is classified according to its dynamics as collisional, when its lifetime 
iss greater than the relaxation time, collisionless otherwise. The relaxation time of a galaxy, 
whichh contains up to 1011 stars, is larger than the age of the Universe, and hence, a fortiori, 
largerr than the age of the galaxy itself. Therefore, a galaxy is a collisionless system. Globular 
clusterss include about one million stars. Their relaxation time is smaller than their age, 
whichh is also approximately equal to the age of the Universe. Therefore globular clusters 
aree collisional systems. Approximate methods cannot be used for the simulation of such 
systems,, since they do not provide the necessary accuracy needed to compute the effect of 
closee encounters. In the case of collisionless systems, close encounters are not relevant for the 
longg term dynamics of the system, hence approximate methods can be safely used. This leads 
too the apparently paradoxical situation that systems as large as galaxies or galaxy clusters 
includingg billions of particles can be routinely simulated, whereas simulations of globular 
clusterss are yet limited to several hundred thousand particles. Section 5.3.4 contains a 
discussionn on the relaxation time for the systems studied in our JV-body simulations. 

Thee Ö(N2) scaling of the direct particle-particle method leads to execution times for 
realisticc values of N that are unsustainable on ordinary computers, motivating the devel-
opmentt of the special purpose devices described in section 1.3. Besides the Ö(N2) scaling 
duee to force computation, a further increase in computational complexity comes from time 
integration.. iV-body systems requiring high computational accuracy also require more time 
stepss for time integration. See section 2.3.1 for a further discussion on this issue. 

Severall  software techniques that have been developed in order to reduce this compu-
tationall  complexity will be discussed in 1.4. These methods, although reducing the compu-
tationall  complexity of the problem to 0(N\ogN), or even O(N), introduce approximations 
thatt inevitably decrease the computational accuracy. The simulation of collisional systems as 
globularr clusters (see, e.g., Meylan & Heggie, 1997; Heggie & Hut, 2003) or proto-planetary 
cloudss (see, e.g., Lissauer, 1993), requires a high accuracy that approximate methods do not 
provide. . 

Thee need to retain the direct 0(N2) method, which ensures exact force evaluation 
(obviouslyy limited by machine precision) but at the cost of huge computation times, led 
too the development of a hardware solution. Instead of accelerating the computation by 

(1.2) ) 



6 6 CHAPTERCHAPTER 1. INTRODUCTION 

meanss of faster software, an improvement of orders of magnitude has been attained by 
buildingg a Special Purpose Device (SPD) devoted to the only task of computing gravitational 
interactions.. This SPD, the GRAPE (GRAvity PipelinE), is the subject of the next section. 

1.33 Hardwar e for  the iV-body problem 

Thee GRAPE project (Sugimoto et al, 1990; Makino & Taiji, 1998), undertaken by a small 
groupp of computational astrophysicists led by Jun Makino at the University of Tokyo, is one 
off  the most successful enterprises in the development of an SPD for scientific computing. 
Thee Gordon Bell prize, awarded yearly to the fastest computer simulation in the world, has 
beenn won five times in recent years by simulations run on a GRAPE machine (Makino & 
Taiji,, 1995; Fukushige & Makino, 1996; Kawai et a/., 1999; Makino et al, 2000; Makino k. 
Fukushige,, 2001). The GRAPE-4, completed in 1995 (Makino et al, 1997), was the first 
computerr to break the Tflop/s peak speed barrier. The current configuration of the most 
recentt machine of the series, GRAPE-6, reaches the 63 Tflop/s peak speed (Makino et al, 
2002).. Developing an SPD has been rewarding from a price/performance perspective as 
well.. The GRAPE-6 peak speed is substantially higher than that of the two fastest general 
purposee computers in the world, the Japanese Earth simulator,*  developed for large scale 
climatee and solid earth science simulation, which has a peak speed of 40 Tflop/s and a cost 
off  350 million dollars (Triendl, 2002), and the American ASCI-Q,*  used for nuclear weapons 
stockpilee maintenance, whose peak speed is 30 Tflop/s and its cost 215 million dollars.5 The 
totall  development cost of the GRAPE-6 is about five million dollars (Makino, 2001c), two 
orderss of magnitude less than the cost of the two general purpose machines, see fig. 1.2. 

Thee availability of GRAPE has allowed substantial progress in several fields of stel-
larr dynamics, ranging from star cluster evolution (with the first clear evidence of so-called 
"gravothermal""  oscillations in the core of a globular cluster (Makino, 1996)), to the under-
standingg of black hole spiral-in in galaxy mergers (Makino & Ebisuzaki, 1996; Makino, 1997), 
too structure formation processes, as in the case of planet formation from proto-planetary 
cloudss (Kokubo & Ida, 1996, 1998). 

Thee impressive performance of the GRAPE comes mainly from three factors: first, the 
factt that the GRAPE has been developed with the purpose of performing only one specific 
task,, trading generality for speed; secondly, the fact that this task consists of a small, but 
veryy demanding computational core, that can be implemented very efficiently in hardware as 
aa pipeline of basic operations. The third reason is that this operation needs to be performed 
aa very large number of times on a relatively small number of input values, in a manner that 
makess it very suitable for parallelisation. 

Thee reasons stated above also explain why the GRAPE project has been able to stay 
aheadd in the competition for processor performance against general purpose hardware. Since, 
accordingg to Moore's famous law, commodity processors double their speed approximately 

twvv.es.jamstec.go.jp/esc/eng/index.html l 
*www.. l l n l . gov/asci/platf ornts/lanl.q/ 
W.lanl.gov/worldview/news/pdf/HighPerf.Computing.pdf f 
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Figuree 1.2: Price versus peak performance for the GRAPE-6 and the two fastest general purpose 
computerss in the world. The physical size of the different systems can also be appreciated from 
thee figure. The GRAPE-6 picture shows both the system and (on the right hand side) its main 
developer,, Jun Makino. 

everyy 18 months, the advantage in performance of an SPD would be soon obliterated by the 
progresss in general purpose computer technology. The explanation why the GRAPE project 
iss able to maintain its performance advantage comes from the relatively simple task that it 
implementss in hardware. GRAPE developers are thus able to redesign a new GRAPE chip 
everyy three-four years, according to the most up-to-date microprocessor technology, keeping 
thee GRAPE ahead in the performance competition. 

Ass mentioned above, the task that the GRAPE accomplishes is the evaluation of the 
gravitationall  interaction between a pair of particles. The computation of the force exerted 
onn a particle i by a particle j involves 18 mathematical operations, one of which is a division, 
andd another one is a square root evaluation, as shown in the verbatim transcript of the force 
computationn loop of NBODY1, fig. 1.1. In order to perform this computation, only four 
valuess have to be input, i.e. the position coordinates and the mass of particle j , while the 
positionn of i is stored in three local registers. This sequence of operations is repeated N — I 
timess for all the particles in the system except i. 

Thee fact that a relatively high number of operations is performed on just four input val-
ues,, and in a simple ordered sequence, makes the hardware implementation of this sequence 
ass a pipeline relatively straightforward. Moreover, this task is easily parallelisable, because 
forcee on different z-particles can be computed concurrently using the same j-particle data 
(itt is common practice in the N-bo&y community to call the particle that exerts force the 
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m j j 

Figuree 1.3: The pipeline for the force computation on the GRAPE. Figure adapted from (Makino, 
2001b,, fig. 4), reproduced here with author's permission. Here r-j is the position vector of the particle 
onn which force is computed, stored in three pipeline registers, ij  and m.j are the position vector 
andd mass of the j-th source particle, stored in the board memory, e is the softening parameter 
mentionedd in the caption of fig. 1.1, x, y, and z are the components of r^ — r*, q is the sum of 
thee squares of x, y, z and s, and a, is the partial accumulation of the gravitational acceleration 
onn particle i. GRAPE-4 also includes a similar pipeline (not shown) for the computation of the 
accelerationn derivative. 

j -part ic le,, and the one on which force is exerted the i-particle; we adopt this jargon here). 
Inn fig. 1.3 we show a sketch of the GRAPE acceleration pipeline,*  which gives the name itself 
too the entire machine (GRAPE stands for GRAvity PipelinE, as mentioned above). 

AA pipeline also contains the circuitry to compute the gravitational potential for the 
particlee i, and the t ime derivative of the acceleration, also called jerk, which is needed for 
thee high accuracy time integration according to the Hermite method (Makino & Aarseth, 
1992). . 

1.3.11 GRAPE-4 

AA GRAPE-4 board consists of an array of 96 such pipelines.*  A GRAPE-4 board also 
containss a pipeline for the extrapolation of the j -par t ic le positions and velocities. The 
j -part ic lee velocity is needed for the computation of the jerk. A board also contains memory 
too store data for about 44 000 j -part ic les (Kawai et al., 1997). A sketch of a GRAPE-4 board 
iss given in fig. 1.4. 

tMoree precisely, the pipeline computes the force field at the i-particle position. This is equal to the particle 
accelerationn in the case of gravitational interactions, but not in the case of, e.g., electrostatic interactions. 

**  Actually, a GRAPE-4 board contains 48 physical pipelines, having a clock frequency twice the board 
clockk frequency. In this way the board "sees" 96 virtual pipelines. Appropriate hardwiring manages the data 
exchangee between the board and the pipeline (Makino et al., 1997). 

0 0 + + 
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Figuree 1.4: Sketch of a GRAPE-4 board. Force is computed on up to 96 i-particles simultaneously. 
Att each cycle, a /-particle is loaded from the board memory, then its position and velocity are 
extrapolatedd to the i-particle time, these data are then fed into the acceleration and jerk (i.e. 
accelerationn derivative) computation pipelines. 

Thee performance of a GRAPE-4 board can be determined by considering the number 
off  floating point operations executed by the pipelines that compute the acceleration and the 
jerk.. Computing the 18 arithmetic operations of a single contribution requires 38 floating 
pointt operations (Karp, 1993; Warren et at, 1997), and 19 more for the acceleration derivative 
(Makinoo et al, 2000). 

Thee total operation count is thus 57 floating point operations for a particle-particle 
interaction.. The GRAPE-4 needs three clock cycles to perform a complete force calculation, 
whereass the GRAPE-6 performs it in a single clock cycle. The performance of a pipeline 
iss obtained by multiplying the number of floating point operations per cycle by the clock 
frequencyy of the board. The 96 pipelines of the GRAPE-4 run at 16 MHz,*  which gives 
57/33  16 MHz = 304 Mflop/s per pipeline, and finally 304 Mflop/s  96 ~ 30 Gflop/s per 
board.. The GRAPE-4 system in Tokyo consists of 36 boards arranged in four clusters, 
whichh gives an aggregate peak performance exceeding one Tflop/s (Makino et al., 1997). A 
sketchh of the GRAPE-4 system is given in fig. 1.5. Sustained performance of 332 Gflop/s has 
beenn reached, and this was worth a Gordon Bell prize in 1996 (Fukushige & Makino, 1996) 
forr a simulation of galaxy formation. 

fInn fact, the 48 physical pipelines have a clock frequency of 32 MHz. 
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Figuree 1.5: Sketch of the GRAPE-4 system at the University of Tokyo. The system consists of 
366 processor boards as the one sketched in fig. 1.4, grouped in four clusters of nine boards each. 
Thee i-particle set is identical for each of the 36 boards. Each of the four control boards receives 
aa different j-particle subset, and gives an equal part of this subset to each of the nine processor 
boardss under its control. When the force computation is completed, the control board receives nine 
partiall  forces per i-particle from the processor boards, and sends the sum to the host, via the host 
interface.. This reduces the communication bandwidth with the host, which communicates with only 
fourr peripherals, instead of 36. The host interface converts the internal GRAPE communication 
protocoll  to the host I/O protocol. This allows one to use the GRAPE with different hosts, changing 
onlyy the host interface. 

Ourr performance analysis and simulation studies, reported in chapters 2 and 3, are 
basedd on GRAPE-4 boards kindly made available to us by Jun Makino. 

1.3.22 GRAPE-6 

Thee progress in microelectronics made it possible to include in the GRAPE-6 chip six phys-
icall  pipelines, able to compute a complete force contribution in a single clock cycle at a 
frequencyy of 90 MHz, whereas the GRAPE-4 needs three cycles. The peak performance of a 
GRAPE-66 chip is thus 6 - 5 7 - 90 MHz = 30.8 Gflop/s, comparable to an entire GRAPE-4. 
Inn fact, a single GRAPE-6 chip implements all the operations implemented in a GRAPE-4 
board,, including j-particle position and velocity extrapolation. Similarly to the GRAPE-4, 
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Figuree 1.6: Sketch of the GRAPE-6 system at the University of Tokyo. Four clusters including 
fourr general purpose hosts and 16 processor boards are each connected by means of a Gigabit 
Ethernett switch. The processor boards in a cluster are able to communicate directly with each 
otherr by means of the network boards. Each network board controls four processor boards, and is 
directlyy linked with the other three boards in the cluster. In this way, each of the four hosts in a 
cluster,, connected to a single network board via the host interface board, has direct access to all 
thee processor boards in the cluster. 

wheree 48 physical pipelines are seen as 96 virtual pipelines, the six pipelines of a GRAPE-6 
chipp are seen as 48 virtual pipelines, thus a GRAPE-6 chip is able to compute force on 48 
differentt i-particles per clock cycle (Makino et al., 2000). 

AA GRAPE-6 processor board includes 32 chips, which gives a peak performance of 
aboutt 1 Tflop/s. The j-particle memory for a GRAPE-6 board is able to store data for 
2622 000 particles (Makino, 2003). The current configuration of the GRAPE-6 system in 
Tokyoo includes 64 boards grouped in four clusters, for a total peak performance of 63 Tflop/s 
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(Makinoo et al, 2002). A sustained performance of 22.72 Tflop/s has been reached for the 
simulationn of planetesimaJ dynamics in the Uranus-Neptune region during the primordial 
phasee of the Solar system's evolution (Makino et al, 2002). A sketch of the GRAPE-6 
systemm is given in fig. 1.6. It is much more complex than the GRAPE-4 system (shown in 
fig.fig. 1.5). Now the general purpose front end of the system is a parallel computer, whose nodes 
aree connected by means of a Gigabit channel. The front end nodes are Pentium-4 2.53 GHz, 
overclockedd to 2.81 GHz (Makino 2003, private communication). The system is partitioned 
intoo clusters including four hosts, four host interface boards, four network boards, and 16 
processorr boards. A network board controls four processor boards, and is directly connected 
too the other three network boards of the cluster, allowing direct exchange of data among the 
boards,, with no need to involve the host for communication. 

Thee architecture of GRAPE-6, with its complex organisation of interconnected boards 
attachedd to a multiprocessor general purpose host, can be seen as an instantiation of the 
hybridd architecture model that we study in this thesis. This model is discussed in section 1.3.4 
below. . 

1.3.33 GRAPEs in different fields 

Thee impressive performance achievements of the GRAPE motivated the development of sim-
ilarr dedicated hardware in other contexts. The MD-GRAPE (Pukushige et al, 1996) was 
developedd with the purpose of implementing the computation of inter-particle forces de-
pendingg on an arbitrary function of the particles' mutual distance. This also allows for the 
computationn of the short-ranged van der Waals forces, which play a major role in Molecu-
larr Dynamics phenomena. MD-GRAPE also implements the hardware to compute inverse 
squaree law interactions with the Ewald method (Ewald, 1921), that is widely used in compu-
tationall  cosmology and computational chemistry to simulate systems with periodic boundary 
conditions.. The recently developed MDM (Molecular Dynamics Machine) is an upgraded 
versionn of the MD-GRAPE, with a target peak-performance of 100 Tflop/s (Narumi et al, 
1999).. MDM won a Gordon Bell prize for performance in 2000, shared with GRAPE-6, for 
aa molecular dynamics simulation of 9 million NaCl ions (Narumi et al, 2000). 

Thee approach proposed in this thesis, of connecting a highly specialised SPD to a par-
allell  general purpose computer, aims at expanding the range of applications of the special 
hardwaree in a different way. Instead of building a new dedicated hardware with new capa-
bilitiess for performing those operations that, if executed on a serial host, would lead to a 
bottleneck,, we still perform these operations on the parallel host of the hybrid architecture. 
Thee bottleneck is removed by distributing the computation on the nodes of the parallel host. 
Inn section 1.8 we discuss a specific case where our hybrid architecture approach could be 
effectivelyy used. 

Wee also expand the use of the GRAPE by means of software modifications. In sec-
tionn 1.5 we introduce a method that allows for the use of the GRAPE to compute the force 
fromfrom a multipole expansion of a particle distribution. Multipole expansions give force terms 
thatt have not an inverse square expression, thus the GRAPE could not be used for this com-
putation.. By converting the multipole expansion into a pseudo-particle distribution (Makino, 
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1999),, we obtain a force expression that can be computed on the GRAPE. In the next sec-
tion,, we look more in detail at the potential role of hybrid architectures in Computational 
Science. . 

1.3.44 Hybri d architectures for  the iV-body problem 

Ass already mentioned in section 1.1.1, hybrid architectures are systems consisting of a com-
binationn of a traditional parallel computer and special purpose devices. The need for such 
systemss arises when the tasks that need to be performed by the host of the SPD begin to 
exceedd the capacity of a single machine. This may be the case because the required commu-
nicationn bandwidth to the SPD exceeds that of a single host, or because the computational 
taskss that need to be performed on that host become too large. Host computing is needed, 
forr instance, for the handling of special situations, such as the modelling of binaries and 
off  three-star encounters, for the modelling of additional physical processes, such as stellar 
evolution,, and especially, when a treecode is used, for the management of the tree structure. 

Inn the sections above, we presented the JV-body problem, and the hardware techniques 
thatt the Computational Astrophysics community has developed for its solution. In section 1.2 
wee briefly mentioned that software techniques have also been developed to speed up JV-body 
simulations.. These techniques, namely the treecode, the FMM, and the PM method, will be 
describedd in section 1.4 below. The tool that we use to study the interplay of hardware and 
softwaree components in a computer system is performance modelling, which is introduced in 
sectionn 1.6. Performance modelling allows us to analyse the system, and design the optimal 
architecturee with the help of performance simulation. 

Onee of our goals in this thesis is the study of architectures where a fast method, 
namelyy the treecode, described in section 1.4.2 below, effectively profits from the use of 
aa fast dedicated SPD, namely the GRAPE. A parallel computer is planned as the SPD 
host,, in order to provide computational power that is well-matched to the other tasks of 
thee method. Otherwise the host computations would easily become the system bottleneck. 
Thee GRAPE-6 system in Tokyo, described in section 1.3, or the SIMD-MIM D architecture 
describedd by Palazzari et al. (2000); Capuzzo Dolcetta et al. (2001) are examples of this kind 
off  architecture. Part I of this thesis is devoted to the description of the research carried out in 
developingg our performance modelling environment, exploring the computational properties 
off  the hardware and software tools described above, and analysing their interaction when 
integratedd into the hybrid architecture discussed in this section. 

1.44 Software for  the iV-body problem 

Ourr research interest in this thesis is focussed on the interaction of algorithms developed for 
iV-bodyy simulations with the GRAPE hardware in hybrid architectures. Foremost among the 
numericall  algorithms developed in computational astrophysics for the solution of the grav-
itationall  AT-body problem, those that have the characteristics to exploit the computational 
powerr provided by the GRAPE are direct 0{N2) methods (Aarseth, 1999; Spurzem, 1999; 
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Portegiess Zwart et a/., 2001), and the 0(Nlog N) treecode (Barnes k Hut, 1986; Barnes, 
1990;; Warren k Salmon, 1995; Springel et a/., 2001). 

Amongg the direct codes, we focus on NBODY1 (Aarseth, 1963; Aarseth, 1985). NBODY1 
iss the progenitor of a class of direct codes, of which NBODY6 is its last offspring (Spurzem, 
1999).. The code's sophistication has grown dramatically from NBODY1 to NBODY6, pri-
marilyy in the treatment of close encounters, and stellar evolution, allowing for increasingly 
refinedd and reliable simulations of globular clusters and other collisional systems. 

Thee other main software environment developed for the simulation of collisional sys-
temss is s t ar lab (Portegies Zwart et o/., 2001), originally written by Piet Hut, and currently 
maintainedd by Steve McMillan. It includes the high order integrator k i ra, the stellar evolu-
tionn package SeBa developed by Simon Portegies Zwart, the three- and four-body scattering 
packagee sca t te r, and a number of routines for the pre- and post-processing of simulation 
data.. Al l the above modules are implemented as independent programs, and share the same 
I/ OO data structure, so that they can easily be piped together to obtain the appropriate 
programm flow for the problem under study. 

Thee inner computational core of an JV-body code, in which almost all the execution 
timee is spent, consists of the few lines shown in fig. 1.1. They have not changed since the early 
dayss of NBODY1, and are "compiled" in hardware in the GRAPE pipeline. Our interest is 
inn the interaction of iV-body codes and GRAPE devices, which can conveniently be studied 
byy using NBODY1. 

Directt codes ensure high accuracy, but at the cost of very high compute times. As 
mentionedd in section 1.2, approximate methods have been developed, that allow for the 
simulationn of collisionless systems. The approach adopted by these schemes is to group 
particless according to their spatial proximity, then evaluate a truncated multipole expansion 
off  the aggregate, and use this expansion to compute the force exerted by the aggregate, 
insteadd of evaluating directly the contribution of each single particle of the aggregate. This 
approachh allows us to reduce the number of operations needed to compute the force on a 
particlee to O(logiV). 

Twoo main algorithms that implement this approach have been developed: The Fast 
Multipolee Method (FMM) (Greengard, 1988; Carrier et al., 1988; Greengard k Rokhlin, 
1997;; Cheng et a/., 1999) used for electrostatic computations, and the treecode (Barnes 
kk Hut, 1986; Barnes, 1990; Warren k Salmon, 1995; Springel et al, 2001) employed for 
gravitationall  problems. Although both methods are used to compute inverse square law 
interactions,, neither is used in the field of the other. The FMM is more suited for systems 
wheree density is distributed homogeneously, like in plasmas, chemical solutions, and other 
Coulombb force-dominated systems. The treecode is inherently adaptive, and is well suited 
forr highly clustered systems, such as those dominated by the force of gravity. This point is 
furtherr discussed in section 1.4.3. 

Thee treecode, because of its reduced computational complexity, provides a dramatic 
speedupp for the Af-body simulation. Part of its computational core, as described below, is still 
thee evaluation of direct particle-particle interactions described by Newton's law, eq. (1.1). 
Thiss allows us to use the GRAPE to further accelerate this computation (see, e.g., Makino, 
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1991b).. Yet only a fraction of the treecode force evaluations are computed as particle-particle 
interactions.. This limits the speedup achievable by using the GRAPE. The treecode can be 
optimisedd in order to make full use of the GRAPE, as described later in section 1.5. We 
studyy and refine this optimised version of the treecode, in view of our research goal, where 
aa GRAPE powered hybrid architecture is used to run a treecode optimised for the use of 
GRAPE.. We give below an overview of the main features of NBODY1 and the treecode, 
inn the context of their use with the GRAPE. We discuss the direct code and the treecode 
extensively,, as they are the principal codes discussed for the remainder of this thesis. Then 
wee give a brief description of the FMM and Particle-Mesh algorithms. 

1.4.11 The direct code 

NBODYll  was one of the first codes for iV-body simulation to appear, developed by Sverre 
Aarsethh at the Institute of Astronomy in Cambridge as early as 1963 (Aarseth, 1963). It 
consistss of approximately 2000 lines of FORTRAN code (to be compared with the 34 000 
liness of NBODY6 (Aarseth, 1999)), with a very simple program flow. A fundamental feature 
off  NBODYl is that it assigns individual times to each particle, as described below. As a 
consequencee of this, particle data stored in memory refer to différent moments in time. 

Att each iteration, the particle i with the smallest update time U + At*  is selected for 
forcee computation; then positions and velocities of all the other particles are extrapolated to 
thee update time U + At*. The selection rule for the i-particle guarantees that the smallest 
updatee time ti + At» is always in the future with respect to all individual times, so that 
alll  other particle positions are extrapolated forward in time. The j-particle extrapolation 
pipelinee of the GRAPE serves precisely to this extrapolation task. 

Thenn gravitational interactions are computed, determining the values of a*  and a» at 
timee U + Ati- Finally the i-particle orbit is integrated and its new AU is determined. It is 
clearr how the GRAPE operational architecture reflects this algorithmic sequence. 

Still,, NBODYl cannot efficiently make use of the GRAPE computing power. In this 
code,, only one particle at a time is selected for force evaluation, whereas a GRAPE board is 
ablee to compute a number of force interactions concurrently, up to 96 for the GRAPE-4. In 
orderr to have a large number of particles that share the same individual time, the so-called 
blockblock time step scheme has been developed (McMillan, 1986; Makino, 1991a). In this case, 
thee time step value assigned to the particles can only be a (negative) integer power of 2. 
Thiss allows particles to have the same time step value, which makes it possible to have many 
particless per iteration that require force computation, instead of only one. 

Usingg this approach, force contributions on a large number of i-particles can be com-
putedd in parallel using the same extrapolated positions for the j-particles, i.e. the force-
exertingg particles. Then, when a GRAPE device is available, it is possible to make full use of 
thee multiple pipelines provided by the hardware, since each pipeline can compute the force 
onn a different i-particle. In this way, GRAPE provides orders of magnitude increase of per-
formancee for the direct JV-body code execution. Simulation of globular clusters containing 
1055 particles or more are possible on the GRAPE-6, and even larger numbers can be reached 
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forr the simulation of other systems (Makino, 2001a). 

AA detailed analysis of the direct code tasks, and its performance on the GRAPE-4 
boardss is given in chapter 2. iV-body simulations carried out with the direct code on 
GRAPE-66 are reported and analysed in chapter 5. 

1.4.22 The treecode 

Thee treecode (Barnes & Hut, 1986; Barnes, 1990; Warren & Salmon, 1995; Springel et ai, 
2001),, introduced by Josh Barnes and Piet Hut from the Institute for Advanced Studies in 
Princeton,, is one of the most popular numerical methods for particle simulation involving 
longg range interactions. It is widely used in the Computational Astrophysics community 
too simulate systems like single galaxies or clusters of galaxies. It reduces the computational 
complexityy of the iV-body problem from Ö(N2) to 0{N log N)t trading higher speed for lower 
accuracy.. The Q(N log N) scaling of the treecode allows the study of very large systems 
exceedingg 108 particles, as in the case of simulations of the large scale structure of the 
Universee (Warren et al., 1997). Such simulations run on general purpose supercomputers. 
Cann the use of GRAPE provide a further speedup to treecode simulations? In practice, 
usingg the GRAPE efficiently when executing the treecode is not an easy task, since particle-
particlee interactions, i.e. the computing task implemented on the GRAPE, are much less 
computationallyy relevant for the treecode, with respect to the direct code (see, e.g., Makino, 
1991b).. In fact, the superior 0{N\o%N) of the treecode is due to a decrease in the number 
off  direct particle-particle computations performed to evaluate gravitational interactions. A 
descriptionn of the main treecode procedures is given below. 

Proceduree description. The treecode approach for computing forces on a given particle i 
iss to group particles in larger and larger cells as their distance from i increases, and compute 
forcee contributions from these cells using truncated multipole expansions. The grouping is 
realisedd by inserting the particles one by one into the initially empty simulation cube. Each 
timee two particles are in the same cube, that cube is divided into eight "child" cubes, whose 
linearr size is one-half that of their parent's. This procedure is repeated until the two particles 
findd themselves in different cubes. Hierarchically connecting such cubical cells according to 
theirr parental relation leads to a hierarchical tree data structure (see fig. 1.7). 

Whenn the force on a given particle i has to be computed, the tree is traversedd searching 
forr cells that satisfy an appropriate Multipole Acceptability Criterion (MAC). If a cell satisfies 
thiss criterion, the force from the entire particle distribution within the cell is computed using 
thee cell multipole expansion, and the search skips the cell's children. Conversely, if the cell 
doess not satisfy the MAC, then its children are examined. By applying this procedure 
recursively,, starting from the tree root, i.e. the cell containing the whole system, all the cells 
satisfyingg the acceptability criterion are found. The most commonly used expression for the 
MACC (see, e.g., Barnes &; Hut, 1986) is: 

ll-<0-<0 (1.3) 
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Figuree 1.7: Sketch of the treecode space partition, and corresponding hierarchical tree data struc-
ture.. The root cell, the one that encompasses the particle distribution, is recursively subdivided, 
untill  every particle is contained in a different cell. The corresponding tree data structure is shown 
onn the right. The node corresponding to a given cell is marked with an empty circle if the cell 
iss terminal (i.e. if it contains only one particle, and hence is not further split), or a full circle if 
thee cell is not terminal. Cells containing no particles have no specific mark in the tree. The node 
correspondingg to the root cell, in spite of the name, is on top of the tree, and is connected to the 
nodess corresponding to the root's daughter cells. Mapping from cells to tree nodes is shown for the 
firstt hierarchical level of the tree. This mapping is repeated recursively while traversing the tree 
downwards. . 

wheree I is the cell size, d is the distance between i and the cell's centre of mass and 6 is an 
inputt parameter, usually 6 < 1. The MAC in eq. (1.3) has a simple physical interpretation. 
l/dl/d can be seen as a measure of the opening angle under which an object of typical size I is 
seenn from a distance d. Eq. (1.3) states that a cell is accepted if its opening angle is smaller 
thann the threshold opening angle 0. 

Theoreticall  complexity. The treecode force computation procedure scales as NlogN; 
inn order to see that, suppose we increase TV /c-fold by replacing each particle with k particles 
havingg mass l/k of the replaced particle mass. Then each cell will generate a number of 
neww cells n, where n > k. The particle i "sees" this finer subdivision only within its nearest 
neighbourhood.. The MAC is such that when a cell C is further from i than its own size 
dividedd by 0, i will still interact with C, and not with the new "children" of C. The total 
numberr of force evaluations on the t-particle as N increases is only dependent on the increase 
off  particles in the neighbourhood of i. We want to find out how this increase affects the 
numberr of tree subdivisions, and show that the latter scales as log N. 
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Thee increase of particles in the neighbourhood of i can be measured by the interparticle 
distance.. In order to show that the latter is related to the number of cell subdivisions, assume 
thatt the particles are uniformly distributed. The interparticle distance is then proportional 
too JV~3. This can also be seen as a measure of the smallest cell size. But, since the cell size 
halvess at each cell subdivision, the smallest cell size is proportional to 2"A , where A is the 
highestt tree order. Equating the two quantities gives 2~x oc N~s, and finally A oc logN. 
Thuss the cell subdivision and the number of cells opened during the force evaluation for 
aa particle scale as logiV; so that the force computation scaling for the whole system is 
0(N0(N log N). 

Interactin gg wit h the GRAPE. The tree building and traversal, that allows the algo-
rithmm to gain the ö(N\ogN) scaling, also dramatically changes the relative computational 
loadd of the different tasks of the program. Whereas in the direct method the force com-
putationn is by far the most demanding task, taking virtually 100% of the execution time, 
inn the treecode this value decreases to approximately 50% (Makino, 1991b). Moreover, the 
forcee is usuallyy computed as a multipole expansion up to the quadrupole term. The result of 
thiss is that the particle-particle interactions, i.e. the monopole term contributions, are less 
computationallyy demanding in the treecode, compared to the direct code. This decreases 
thee effectiveness of using GRAPE to accelerate the treecode execution. In fact, GRAPE is 
usedd with the treecode with good results (Makino, 1991b; Athanassoula et al., 1998), but in 
thosee cases the multipole expansion is limited to the monopole term, increasing the accuracy 
byy reducing the value of 9 in the MAC formula, eq. (1.3). 

1.4.33 The Fast Multipol e Method and Particle-Mesh methods 

Thee FMM and the PM methods are the other main schemes used in JV-body simulations 
off  systems dominated by an inverse square law. The FMM subdivides the physical space 
byy means of a regular grid, and repeats this subdivision recursively for each cell of the grid, 
terminatingg the recursion after a fixed number of steps. Multipole expansions for the lowest 
levell  cells are computed directly from the particles contained in them. Then expansions for 
thee encompassing cells are computed recursively by propagating the daughter cell expansions 
upwards.. Then cell-cell interactions are computed at the highest level for non nearest-
neighbourr sibling cells; the expression for the force exerted on each cell is then propagated 
downwardss to the cell's daughters. This force term represents the far field force inside the 
daughterr cells. The near field force is computed again as a sum of cell-cell interactions from 
nonn nearest-neighbour sibling and "cousin" cells (i.e. daughters of the parent cell's siblings). 
Thiss process is repeated for each cell until the particle level, at which point the near field 
forcee is computed directly as a sum of particle-particle interactions. 

Thiss method is suitable for homogeneous systems, but does not perform well for inho-
mogeneouss distributions. In this case adaptive methods, that refine the spatial subdivision 
accordingg to the particle density, are better suited. The treecode has been developed to 
bee adaptive. In this case, as described in section 1.4.2, particle-cell interactions are com-
putedd for the far field, and particle-particle interactions for the near field. There are no 
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cell-celll  interactions. In this way, it is easy to continue the cell subdivision further in high 
densityy regions. The FMM is claimed to be O(N), even though discussion continues on 
thiss point (Aluru, 1996). In fact, asymptotic behaviour generally is not reached in FMM 
simulations,, so that no real difference with a G(N log N) scaling is usually experienced (see, 
e.g.,, Capuzzo Dolcetta & Miocchi, 1998). 

Anotherr scheme that is often used for iV-body simulations is the particle-mesh (PM) 
methodd (Hockney, 1965; Hockney & Eastwood, 1988; Couchman et a/., 1996; Fellhauer et a/., 
2000).. In this case, the far field is not computed from multipole expansions, but by means of 
aa regular grid. Density values are computed for each grid point from the particle distribution 
off  its neighbour, then the Poisson equation is solved on the grid using fast Fourier transforms, 
soo that the gravitational (or electrostatic) potential is known for each grid point. Finally, 
fromfrom the potential value on the nearest grid point, the potential on each particle is evaluated. 

Whenn needed for additional accuracy, the near field force can be computed by means of 
directt particle-particle interactions; in this case, the method is called P3M (particle-particle 
particle-mesh).. State-of-the-art codes use a recursive, spatially adaptive grid refinement 
(Couchmann et aL, 1996; McFarland et aL, 1998; Fellhauer et aL, 2000), in order to cope with 
particle-particlee computational bottlenecks arising in high density regions. We used a multi-
gridd PM code (Fellhauer et aL, 2000) in our comparative TV-body simulations presented 
inn chapter 5. The PM method scales as Ö(N  nl), where nc is the number of cells per 
dimension.. This clearly limits the possibility of increasing the PM accuracy by means of 
meshh refinement. 

1.55 Software for  hybri d architectures 

Thee treecode, as described in section 1.4.2, provides a substantial speedup to iV-body simu-
lations.. Using it on a hybrid architecture as the one discussed in section 1.3.4 could lead on a 
furtherr substantial performance improvement. This perspective is generally applicable, and 
iss not limited to the gravitational TV-body problem. The fact that both fast software and 
dedicatedd hardware have been developed for its solution makes the JV-body problem ideal for 
studyingg the potential of hybrid architectures in Computational Science. Our aim is also to 
makee the techniques developed in Computational Astrophysics available to the much larger 
communityy that is involved in TV-body simulations. 

Forr instance, applications in science and engineering that involve Coulomb force com-
putationss could benefit from the computational environment provided by the hybrid architec-
turee that we study. The FMM, as described in section 1.4.3, provides a robust mathematical 
structure,, by means of which multipole expansions can be computed to any order, with an 
analyticallyy bound accuracy error. The treecode is much more empirical in this sense. In 
fact,, since the dominant force in astrophysics! systems, gravity, is always attractive and 
cannott be shielded, a multipole expansion of such force will have a very large monopole 
term,, and terms up to the quadrupole are usually sufficient to ensure acceptable accuracy 
inn simulations where the treecode is used (see, e.g., McMillan &; Aarseth, 1993). Multipole 
expansionss in Coulomb force-dominated problems must include a larger number of terms, be-
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causee the net effect produced by opposite-sign charges results in very small low order terms. 
Thee computation of higher multipole terms can be implemented in the treecode (McMillan 
&&  Aarseth, 1993), but then a problem arises: the computation of the force contribution from 
termss of the expansion other than the monopole cannot be done on the GRAPE, since the 
GRAPEE only computes particle-particle interactions, i.e. monopole term contributions. 

AA solution to this problem comes from a technique originally introduced in the FMM 
frameworkk by Chris Anderson of the University of California at Los Angeles (Anderson, 
1992),, and further developed by Atsushi Kawai and Jun Makino to be implemented on the 
GRAPEE (Makino, 1999; Kawai & Makino, 1999). It consists of converting the multipole 
expansionn into a pseudo-particle distribution; in other words, in finding a distribution of 
fictitiousfictitious particles that produces the same force field as the original distribution, up to a given 
multipolee term. Now, since the multipole expansion is expressed as a particle distribution, 
thee GRAPE is also able to compute the contributions of higher order terms. This allows 
uss to increase the accuracy of GRAPE based simulations performed with methods such as 
thee treecode, and paves the way for using our hybrid architecture in fields like Molecular 
Dynamics.. Chapter 4 is devoted to the description of the pseudo-particle approach, in the 
frameworkframework of our research concerned with multipole temporal expansion, and improvement 
inn method accuracy. 

Althoughh with the pseudo-particle approach the use of the GRAPE by the treecode 
iss optimised, the general purpose computer that hosts the GRAPE still has a large compu-
tationall  load, and can easily become the system bottleneck. In order to improve the host 
performance,, so that the advantages provided by the treecode and the GRAPE can be fully 
enjoyed,, it is important to understand the interplay between the GRAPE, the host and the 
treecode.. The tool that we use for this study is performance modelling, as described in the 
followingg section. 

1.66 Performance modelling for  the JV-body problem 

Performancee modelling (see, e.g., Jain, 1991; Sauer & Mani Chandri, 1981) is a useful tool 
forr the study of computer system behaviour. It allows us to estimate the performance of a 
hardwaree or software architecture by means of an abstract model, in which each task of the 
systemm under study is specified in terms of its execution time as a function of a number of 
parameters. . 

Forr a hardware system, these parameters can be basic performance measures such as 
thee processor clock speed, operations per second, or the bandwidth of a communication 
line.. For a software application, a typical parameter is the problem size. For example, for 
NBODY11 or the treecode this is the number of particles N, or an input parameter of the 
code,, such as the treecode opening angle 0. Building a performance model for the systems 
studiedd in this thesis involves the formal description of both the software and the hardware 
components. . 
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Figuree 1.8: Performance modelling process. Figure adapted from the slides of the ASCI*  course 
"Performancee Modeling of Parallel Systems", taught by Arjan van Gemund, reproduced here with 
author'ss permission. The output of the simulation model, t, is the modelled execution time. The 
rightmostt sketch represents the speedup in the execution of a parallel application, for two different 
valuess of a certain parameter N, as a function of the number of processors P. The meaning of the 
otherr symbols is explained in the text. 

Ourr modelling approach is illustrated in fig. 1.8. In the application model, each task 
off  the application is described in terms of the operations performed, and the workload that 
thesee operations produce. Workload is expressed as a function of the application parameters 
VV — {7Ti,7T2,...}. In the machine model, each architecture resource is specified in terms 
off  the time spent accomplishing the task it was designed to perform, as a function of the 
machinee parameters M. = {/xi , 112,...}. The calibration of this function is determined by 
timingg sample runs of the real application. An important layer of the model is the mapping 
off  the application tasks, each one depending on a subset P, C V, to the appropriate machine 
resources,, which depend on a subset Mi C M. The mapping interface specifies this. This 
formall  description of the system is expressed in terms of a suitable language, which in our 
casee is PAMELA, developed by Arjan van Gemund at the Delft University of Technology 
(vann Gemund, 1993, 2003). A language interpreter converts this formal description into the 
machinee executable simulation model. The output of the simulation model is the execution 
timee of the application (which depends on the P U M set of parameters), the utilisation of 
thee various hardware components, and other performance measures. 

^ASCII  is the Advanced School for Computing and Imaging (see http://www.asci.tudelft.nl). It is 
unrelated,, and predates, the homonym programme of the Department of Energy of the USA. 

http://www.asci.tudelft.nl
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AA metaphor for the performance modelling approach could be the sequence of actions 
performedd when an executable is produced from a mathematical algorithm, as described 
below. . 

Thee first step is to write a source code in the programming language of choice, that 
implementss the algorithm. Each function of the algorithm is expressed as a sequence 
off  commands in a software module. This is the analogue of building the machine 
modell  and the application model as a representation of the real machine and the real 
application. . 

Thenn the various modules are linked to produce the executable. The analogue of this 
iss the activity of the mapping model, and the resulting execution model. 

Finally,, the executable is used to perform the computation that it was designed to do. 
Correspondingly,, the execution model is run, by giving it appropriate values for the 
systemm parameters as input, and obtaining the execution time as output. 

Inn order to show how performance modelling actually works, we describe here the 
modellingg of the force evaluation task, i.e. the computation of the force exerted on a subset 
off  particles, by the particles assigned to a computing element.*  Fig. 1.9 shows how this 
taskk is modelled. A module in the application model calls the mapping interface, passing 
itt the number of particles that exert force, Nj, and the number of particles for which the 
forcee is to be computed, iV». The mapping interface selects the module that wil l accomplish 
thee task, choosing the function that models the computation on the GRAPE when present 
(nott unexpectedly this module is represented as a grape bunch in fig. 1.9), or the function 
thatt models the computation on a general purpose processor otherwise. The GRAPE model 
includess the actual force computation and the communication between the host and the 
GRAPE.. The function that simulates the time spent by the GRAPE in performing the force 
computationn depends on Nj and iV*. This time function also includes the communication 
delayss between host and GRAPE. The general purpose machine model is much simpler, 
sincee no communications are involved. The force computation model in this case consists of 
aa simple delay function. 

Analysiss of the simulation traces, in terms of appropriate metrics, e.g. speedup as in 
thee example sketched in fig. 1.8, allows us to understand which parameters are relevant 
inn affecting the system performance, and how a modification in the application or in the 
architecturee influences the final performance. 

Performancee modelling is also a very effective tool for the design of computer architec-
tures.. The actual installation of a high performance computer system is a very expensive 
enterprise,, in terms of both economic costs, and research and technology efforts for system 
planningg and implementation. Obviously, nobody wants to incur the risk of embarking on 
suchh an enterprise, to sadly discover at the end that the system as constructed is inefficient. 
AA tool that allows for fast and inexpensive prototyping is clearly desirable. Performance 

tinn the force evaluation task, a computing element is a GRAPE when the system includes it, or a common 
processorr when no GRAPEs are available. 
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Figuree 1.9: Sketch of the force evaluation task, as performed by our model. The application model 
modulee passes its parameters to the mapping module, that selects the architecture component that 
willl  perform the actual computation. 

modellingg provides a tool that simulates the planned architectures, allows one to discover 
inefficienciess in the interactions of the various system components, permits the exploration 
off  different solutions to overcome such problems, and provides an environment in which the 
optimall  architecture can be developed. 

Thee aim of our performance modelling work is to realise an environment where the 
interplayy of fast special hardware, general purpose host, and advanced software can be studied 
too determine the optimal interaction; i.e. an architecture where hardware and software are 
integratedd to provide a very efficient tool for the simulation of ./V-body systems. We describe 
ourr envisaged architecture in the following section. 

1.77 iV-body simulations: the reason for it all 

Inn chapter 5 we use the direct method, the treecode, and the particle- mesh code to perform 
iV-bodyy simulations of dynamic astronomical phenomena. Specifically, we study the infall 
off  a black hole towards the Galactic centre. This infall is due to dynamical friction (Chan-
drasekhar,, 1943), a drag force experienced by a massive body moving within a background 
populatedd by lighter bodies, and interacting with them by means of the force of gravity (see, 
e.g.,, Binney & Tremaine, 1987, sect. 7.1). The net effect of this interaction on the massive 
bodyy is a force opposite to its velocity, which effectively acts as a friction force. When the 
bodyy is orbiting around a centre of gravity, as the Galactic centre in our case-study, the 
decelerationn of the body results in a spiral-in orbit towards that centre. This process can 
explainn the presence of very young stars in the inner core of the Galaxy. These young stars 
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aree not likely to be born in the Galactic centre because it is a hostile place for star formation, 
duee to the strong tidal field that prevents interstellar gas from collapsing and forming a star. 
AA possible explanation (see, e.g., Gerhard, 2001) is that dense young clusters, formed outside 
thee Galactic inner core, spiral towards the Galactic centre due to dynamical friction, thus 
bringingg the young stars in the cluster nuclei into the Galactic core. In the work presented 
inn chapter 5 we estimate the typical infall time of an inspiraling object, which provides a 
constraintt to this model. In fact, for this model to work, the cluster must reach the Galactic 
coree before it evaporates, i.e. before the dynamical evolution of the cluster causes all the 
starss to escape from its gravitational potential well. 

Wee study the infall process for a single massive particle, which actually models the 
spiral-inn of a black hole. We carry out a comparative study of this spiral-in process, using 
aa direct code (see section 1.4.1), a treecode (see section 1.4.2), and a PM code (see sec-
tionn 1.4.3). The direct code simulations are accurate, but highly granular, i.e. limited in 
thee number of particles, because of the direct code Ö(N2) computational complexity. The 
otherr methods are inherently less accurate, but allow us to use many more particles. We 
comparee the accurate results of the direct method with the approximate results of the other 
twoo methods, in order to understand how granularity and inaccuracy affect our simulation 
results. . 

1.88 Hybri d codes on hybri d systems 

Ourr case-study is also a first step in the direction of simulating the infall of a star cluster. 
Inn order to simulate the infall of a cluster on a star-by-star basis, the use of a direct code 
iss essential. In fact, an approximate-method simulation is not able to follow the internal 
dynamicss of the cluster accurately enough during its spiral-in; the cluster would evaporate 
muchh faster than is expected from theory (see, e.g., Kim Sz Morris, 2002). On the other hand, 
aa complete direct code simulation of a cluster infall, that includes the background stars of 
thee Galactic centre, is unfeasible because of the very large number of particles involved. 
Ourr intention is to develop a hybrid code, where a direct code simulates the cluster, and a 
treecodee simulates the Galactic centre. The cluster is represented as a particle with variable 
masss in the treecode. The mass change is a consequence of the internal dynamics of the 
cluster.. The cluster mass is an input value for the treecode co-simulation, and results from 
thee direct code simulation. The input of the direct code co-simulation is the current value 
off  the tidal field of the Galaxy, which is computed by the treecode as the force acting on the 
clusterr particle. 

Thiss hybrid code not only represents a challenge with respect to its development, but 
iss also quite demanding in terms of hardware performance. In order to run it efficiently, we 
needd an architecture which is very powerful, both to compute the gravitational interactions, 
andd to perform the other general purpose tasks of the hybrid code. Our envisaged hybrid 
architecturee (cf. section 1.3.4) would be an ideal computational platform for this application, 
sincee it would efficiently run both the direct code and the treecode "phases" of the hybrid. 
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1.99 Thesis outline 

Thiss dissertation is divided into three parts. The first part is devoted to performance mod-
ellingg and simulation, and consists of two chapters. Chapter 2 reports on the performance 
analysiss of the direct code NBODY1 on our case-study architecture, which includes two 
GRAPE-44 boards connected to a distributed computer. It contains a detailed description 
off  NBODY1 tasks, and presents performance measurements and analysis of various paral-
lelisedd versions of NBODY1, running on our hybrid architecture. These measurements are 
thee basis for our performance modelling and simulation of different architectures where direct 
JV-bodyy codes and treecodes are executed. This performance modelling and simulation work 
iss presented in chapter 3. 

Thee second part of this dissertation is also divided into two chapters. Chapter 4 is 
devotedd to accuracy analysis and optimisation of the pseudo-particle treecode, which has 
beenn developed for optimal use with the GRAPE. We study the error behaviour of the 
pseudo-particlee treecode with different particle distributions, and improve the code accuracy 
inn the presence of highly inhomogeneous distributions. We also study an optimisation of the 
pseudo-particlee scheme, introducing pseudo-particle velocity, which allows us to retain the 
pseudo-particlee distributions for several time steps, whereas the standard scheme recomputes 
thee pseudo-particles at each step. 

Then,, in chapter 5, we present our comparative multi-method iV-body simulations, 
aimedd at estimating quantitatively the efficiency of the spiral-in of a black hole towards the 
Galacticc centre, and understanding the effect of particle granularity and code inaccuracy 
onn the infall efficiency. Finally, in part II I we summarise our work and discuss its future 
developments. . 





Partt I 

Performancee Modelling and 
Simulation n 





Chapterr  2 

iV-bodyy Codes on Hybrid Architectures* 

Inn this chapter we analyse NBODY1, the direct particle-particle code introduced in sec-
tionn 1.4.1, and study the performance of this AT-body code on hybrid architectures, which 
weree presented in section 1.3.4. A detailed analysis of the AT-body code performance, in 
termss of the relative weight of each task of the code, and how this weight is influenced by 
softwaree or hardware modifications, is essential to understand the interaction of the code 
withh the hardware platform that executes it. Especially the interaction with the GRAPE, 
thee dedicated device for A"-body simulation introduced in section 1.3, requires a careful per-
formancee analysis. The use of GRAPE results in a dramatic performance leap for A^-body 
simulations,, as it provides a very high performance for the computation of gravity interac-
tions,, the most expensive computational task of an AT-body code. The interaction of the 
GRAPE,, its general purpose host, and the N-body code run on the machine, gives rise to 
complexx execution patterns that need to be studied and understood to find the optimal 
configuration.. We need this performance analysis in order to acquire the necessary exper-
imentall  data, for our performance modelling and simulation research to devise a very high 
performancee computational environment for A"-body simulations. 

2.11 Introductio n 

Thee importance of ./V-body codes for the simulation of the dynamics of astrophysical sys-
temss has been discussed in chapter 1. The core of an JV-body code is the computation of 

^Thiss chapter is based on work published in: 
P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Analysis of Parallel N-Body Codes, in 

M.. Bubak; H. Afsarmanesh; R.D. Williams and L.O. Hertzberger, editors, Proceedings of the HPCN2000 
Conference,, LNCS vol. 1823, pp. 249-260. Springer-Verlag, 2000. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance of N-body Codes on Hybrid Machines, 
Futuree Generation Computer Systems, 17, 951-559, 2001. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Distributed Hybrid Archi-
tectures,tectures, IEEE Transactions on Parallel and Distributed Systems, in press, 2003. 
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thee gravitational interactions between all pairs of particles that compose the system. In sec-
tionss 1.2 and 1.4 we discussed the main algorithms developed for the computation of gravity 
interactionss between a given particle i and the rest of the system. In this chapter we study 
thee performance of the direct particle-particle method (Aarseth, 1985, 1999), which exactly 
computess the gravity force that every particle in the system exerts on i. The high accuracy 
off  the direct method is obtained at the cost of a computational load which grows as N2 per 
timee step. 

Thee huge computational requirements of the direct TV-body code led to the develop-
mentt of the GRAPE, a special purpose device for gravity force computation, described in 
sectionn 1.3. A principal objective of our research is the efficient integration of GRAPE boards 
withh a parallel general purpose host, to realise a hybrid architecture for AT-body simulations, 
ass discussed in section 1.3.4. 

Thee performance analysis research presented in this chapter aims at understanding how 
suchh architectures interact with the AT-body code. For this purpose, we use NBODY1 (Aarseth, 
1963;; Aarseth, 1985) as a reference code. NBODY1 was introduced in section 1.4.1. We use 
itt to determine the scaling properties of various parallel versions of the code, running on a hy-
bridd architecture which includes two GRAPE-4 boards connected to a distributed computer 
(seee fig. 2.1). The performance data obtained will be used in chapter 3 for the realisation and 
calibrationn of a performance model that we use to study hybrid architectures for JV-body 
simulations,, and their interaction with various types of JV-body codes. 

2.22 System description 

2.2.11 Architectur e 

Ourr hybrid architecture, sketched in fig. 2.1, is composed of a parallel general purpose mul-
ticomputer,, DAS (Bal et al., 2000), and an SPD, GRAPE (see, e.g., Makino et a/., 1997; 
Makinoo & Taiji, 1998). The DAS multicomputer is a wide-area distributed computer in-
cludingg 200 nodes in total, grouped into four clusters located at different locations in the 
Netherlands.. The cluster at the University of Amsterdam, which served as a testbed for 
ourr model, comprises 24 processors. Technical characteristics of our testbed system are 
summarisedd in table 2.1. 

Inn January 2002 the new DAS-2 came into service. DAS-2 is also a wide-area distributed 
computerr including in total 200 1-GHz dual Pentium-Ill nodes grouped in five local clusters 
interconnectedd via the Dutch university Internet backbone. Local clusters are connected by 
aa fast Myrinet network having a bandwidth of 250 GBytes/s peak-performance. We used 
thee DAS-2 for the AT-body simulations presented in chapter 5. 

Thee GRAPE project, as described in section 1.3, started in the late eighties, and 
hass produced a series of very high performance devices, mainly for the computation of the 
gravitationall  force. The GRAPE-4 system, completed in 1995, was the first computer to 
reachh the TFlop/s peak speed (Makino et a/., 1997). The current peak performance of the 
latestt machine, the GRAPE-6, is 63.6 TFlop/s (Makino et al, 2002). 
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Figuree 2.1: The DAS cluster at University of Amsterdam, including 24 processor nodes, two 
GRAPEs,, and 4 network switches. 

Wee study the performance of a system consisting of two GRAPE-4 boards, each one 
attachedd to a host processor via a PCI channel. The performance of a single GRAPE-4 
boardd can reach 30 GFlop/s. A single board comprises an array of pipelines (up to 96 per 
board).. Each pipeline performs, at each clock-cycle, the computation of the gravitational 
(orr electrostatic) interaction between a pair of particles. The main technical characteristics 
off  our system are summarised in table 2.1 below: 

locall  network 

host t 

GRAPEE board 

host-GRAPE E 
channel l 

Myrinet t 

PProo 200 MHz 

upp to 320 MFlop/s 
perr pipeline 

PCI9080 0 

1500 MBytes/s peak-
performance e 

644 MB RAM 

622 resp. 94 pipelines 

333 MHz clock 

400 /x s latency 

2.55 GB disk 

on-boardd memory for 
~~ 44 000 particles 

1333 MBytes/s 

Tablee 2.1: Technical data concerning our testbed architecture. 
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2.2.22 Application 

Th ee direct iV-body method 

AA formal solution for the JV-body problem is known only for iV = 2, making a numerical 
approachh necessary when a solution for a larger system is desired. As discussed in section 1.4, 
aa range of techniques has been developed to implement a numerical solution for the AT-body 
problemm (Aarseth, 1999; Barnes & Hut, 1986; Cheng et a/., 1999; Hockney k Eastwood, 1988). 
Wee are concerned with the direct method, which computes gravitational interactions exactly, 
andd with the treecode, which approximates this force evaluation, gaining in performance, at 
thee cost of a lower accuracy The treecode (Barnes & Hut, 1986) is able to reach a 0(N log N) 
scaling,, compared to the Ö(N2) scaling of the direct code. Other codes, as the FMM (Cheng 
etet al., 1999) of the Particle-Mesh (PM) code (Hockney k Eastwood, 1988), reach 0(N) (see 
sectionn 1.2). The FMM is routinely used in applications where the Coulomb force plays a 
centrall  role. The PM code is primarily used in Computational Cosmology. 

Inn chapter 3 we discuss our simulations of direct code and treecode performance on 
hybridd architectures. In section 3.4.4 we compare the direct code with two different parallel 
versionss of the treecode. In the sequel we describe the main tasks of the direct code that 
wee analyse in this chapter, i.e. NBODY1 (Aarseth, 1999), introduced in section 1.4.1. The 
originall  serial code has been parallelised, and a number of modifications have been made, to 
obtainn an optimal use of the GRAPE's capabilities, as described in section 2.3 below. 

Codee tasks 

Inn the AT-body computations, the particles that exert the force are commonly called j-particles, 
andd the particles that experience the force are the «-particles. As discussed below, for each 
iteration,, force is computed only on a small subset of particles, so that only a few particles 
aree used as i-particles. On the other hand, since all particles in the system exert force, every 
particlee plays the role of a j'-particle, including the z-particles. 

Ass mentioned in section 1.4.1, NBODY1 implements the individual time step scheme: 
particless experiencing a strong or rapidly changing force field need to be updated more 
frequentlyy than particles moving through a quiet, nearly constant potential region. NBODY1 
computess forces, and integrates orbits for each particle at the rate required by the particle 
dynamicss itself. The individual time step is described in more technical detail in section 2.3 
below. . 

AA basic task graph of NBODY1 code-flow is given in fig. 2.2, together with the mapping 
off  each task on the appropriate hardware resource, in case the GRAPE is available. If 
GRAPEE is not available, all tasks are executed on the general purpose machine. The tasks 
shownn in the figure are described in the following. 

1.. The first task of the main cycle is to find the «-particles. This is implemented as a 
searchh through a list of candidates, which is scrolled at each iteration, and rebuilt every 
DTLISTT time units, where DTLIST is the average particle time step. The i-particles are 
selectedd simply by picking those particles that need to be updated first. 
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findfind i-particles 

extrapolate e 

Figuree 2.2: Basic task graph of NBODY1, and mapping of the tasks on the hardware resources. 
Iff  the GRAPE is not available, all tasks are executed on the general purpose machine. 

2.. Then, since stored values of positions and velocities of different particles refer to differ-
entt times because of the individual time step, an extrapolation of the position values 
forr the entire set of particles is done, to "synchronise" the system to the time value of 
thee i-particles. The GRAPE also contains a pipeline to perform the extrapolation of 
thee j-particle positions (see fig. 1.4). Hence, when the GRAPE is available, this task 
iss executed on it. Still, the host has to extrapolate the i-particle positions, therefore in 
fig.fig. 2.2 the extrapolation task is mapped on the host for the z-particle extrapolation, 
andd on the GRAPE for the j-particle extrapolation. 

3.. Now accelerations are computed; when the GRAPE is available, i-particle data are 
sentt to it, and it will return the accelerations. 

4.. Finally, orbit s are integrated using the forces computed in the previous task, and 
relevantt physical quantities are evaluated and updated. 

Codee parallelisation 

Inn the parallel application, we distributed the j-particles equally between two GRAPEs, i.e. 
wee loaded the j-particle memory of each GRAPE with half of the particle set. All GRAPE 
hostss have a copy of the entire set of particles. Each SPD computes the partial force exerted 
onn the i-particles by the j-particles that it stores; these values are then communicated to 
thee host. A global sum done by the hosts makes the total force on each i-particle available 
too all processors, that finally integrate the i-particle orbits. When the GRAPE boards are 
nott available, the algorithm works in a very similar fashion. In this case the j-particles are 
distributedd by assigning each processor a different subset of particles, so that a processor 
wil ll  evaluate only forces exerted by its own j-particles. In section 2.3 below, we describe in 
detaill  the parallel codes that we studied. 

,paru< < &» &» 
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Figuree 2.3: Sketch depicting the individual time step machinery. The update time is determined 
ass the smallest U + Atj (which in this figure is the value of particle #3). Particle positions are then 
extrapolatedd from i, to the update time, in order to compute force on particle #3, and integrate 
itss orbit to the update time. Finally, the new At for particle #3 is computed, and the next update 
timee is determined. In the figure above, the next update time will probably be <4 + Ar.4, unless the 
neww A^3 is very small. 

2.33 Code parallelisation 

Inn this section, we describe the parallelisation of the various flavours of the direct ./V-body 
codee used for our performance analysis and simulation. We chose NBODY1 (Aarseth, 1963) 
ass the instantiation of a direct ./V-body code to experiment with, because it is a rather 
simplee code, but uses almost all the functionalities of GRAPE. This allows us to evaluate 
thee performance of our system. A number of modifications have been made to the code, in 
orderr to parallelise it, and to let it make full use of the functionalities of GRAPE. 

Ann overview on the code is given below. We made use of MPI communication primi-
tivess (Message Passing Interface Forum, 1997) to parallelise it. 

2.3.11 The basic: individual time-step 

Ass already mentioned in section 1.4.1, NBODY1 uses individual time-steps. Each particle is 
assignedd a different time at which the force will be computed. Fig. 2.3 depicts this procedure. 
Thee time-step value of each particle At, sketched in fig. 2.3 for each particle as a segment, 
dependss on the particle dynamics (Aarseth, 1999). Smaller At values are assigned to particles 
havingg faster dynamics (i.e. those particles which have large values in the higher order time 
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derivativess of their acceleration) according to the formula (see, e.g., Aarseth, 2001) 

== h+m + W , 

wheree 77 is an accuracy parameter of order unity. At each iteration, the code selects that 
particlee having the smallest t + At value (particle 3 in fig. 2.3), and integrates only the orbit 
off  that particle. This reduces the computational complexity, with respect to a code where 
aa single global time step is used. The individual time step approach reduces the temporal 
complexityy to Ö(N1/3), whereas the global time step approach is Ö(N2^) (Makino & Hut, 
1988).11 This temporal complexity refers to the computational effort needed to integrate the 
systemm for a dynamical time, i.e. the average time taken by a particle to cross the system. 

Ann effect of individual times is that, for each particle, values stored in memory refer 
too a different moment in time, i.e. the moment of the particle's last orbit integration. This 
meanss that, before force on particle i is computed, an extrapolation of the other particle 
positionss to time U + Ati is needed. The time value U + Ati is marked in fig. 2.3 by the 
"updatee time" line. 

Parallelisation n 

Sincee contributions to the gravity force on a given particle i are computed from all the other 
particless using eq. (1.1), regardless of their distance from i, a uniform distribution of particles 
too each processing element (PE), i.e. to each DAS node, suffices to assure load balancing. 
Thee force computation is done by broadcasting the coordinates of the currently selected 
particlee i. Then each PE computes the partial component to the force on i, by accumulating 
contributionss from its own particles. Finally such components are sent back to the PE which 
hostss i, where the force resultant is computed, the particle's orbit is integrated, and the new 
valuess are stored. 

Too identify the particle i on which force will be computed, a global reduction operation 
iss done, in order to find which particle has the least U + AU value, and which PE owns it. 
Thiss information is broadcast to all PEs, since they must know the extrapolation time, and 
thee i-particle owner. 

2.3.22 Towards a GRAPE code: block time-step 

Sincee its introduction, NBODY1 has evolved to newer versions, which include several refine-
mentss and improvements (see, e.g., Aarseth, 1999). In the version of NBODY1 used in our 
studyy we implemented the so called hierarchical block time-step scheme (McMillan, 1986; 
Makino,, 1991a). In this case, after computing the new Ati, the value actually assigned is the 
valuee of the largest power of 2 smaller than At  ̂ This allows for more than one particle to 
havee the same At, which makes it possible to have many i-particles per time step, instead of 

11 These figures for the temporal complexity are valid for a uniformly distributed configuration. More real-
isticc distributions show a more complicated dependence on N, although quantitatively only slightly different. 
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sendd all particles data as j-particles 
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sendd i-particles data to GRAPE 

Waitt  for  GRAPE to compute forces 

Retrievee results 
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i-particless are those particles 
onn which force is computed. 
GRAPEE needs position, velo-
cityy and mass of those parti-
cless to compute forces and 
forcee derivatives. 

j-particless are those particles 
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needss position, velocity, ac-
acceleration,, ace. derivative, 
masss and individual time of 
thosee particles to extrapolate 
theirr  positions and velocities 
att  current time, and compute 
forces s 

Figuree 2.4: Basic sketch of NBODY1 interfaced with GRAPE. Diagonal arrows symbolise com-
municationn with GRAPE. 

onlyy one. Using this approach, force contributions on a, possibly large, number of i-particles 
cann be computed in parallel using the same extrapolated positions for the force-exerting 
particles,, hereafter called jf-particles. Moreover, when a GRAPE device is available, it is 
possiblee to make full use of its array of pipelines, since each pipeline can compute the force 
onn a different particle concurrently. 

Parallelisation n 

Havingg many i-particles, instead of just one, makes it profitable to use a somewhat different 
parallell  code structure. If the i-particles reside on different processors, distributing the 
particless as in the individual time-step case could result in complex communication patterns, 
withh consequential increase of code complexity. Therefore, we chose to let every PE have 
aa local copy of all particle data. The force computation is done in parallel by making each 
PEE compute force contributions only from its own set of j-particles, assigned to it during 
initialisation.. A global reduction operation sums up partial forces, and distributes the result 
too all PEs. Then each PE integrates the orbits of all i-particles, and stores results in its own 
memory.. Concerning the search for i-particles, each PE searches only among its j-particles, 
too determine a set of i-particles candidates. Then a global reduction operation is performed 
onn the union of these sets, in order to determine the real i-particles, i.e. those having the 
smallestt time. The resulting set is scattered to all PEs for the force computation. Since 
everyy PE owns a local copy of ail particle data, only a set of labels identifying the i-particles 
iss scattered, reducing the communication time. 



2.4.2.4. CODE PERFORMANCE 37 7 

2.3.33 The GRAPE code 

Thee software library interface for the GRAPE hardware consists of a number of function 
calls,, the most relevant for performance analysis being those which involve communications 
off  particles data to and from the GRAPE. Such communication operations include sending 
j-particlee data to GRAPE, sending i-particle data to GRAPE, and receiving results from 
GRAPE.. A sketch of the program flow for an JV-body code which uses GRAPE is given in 
fig.fig. 2.4. 

Parallelisation n 

Thee presence of the GRAPE boards introduces a certain degree of complexity with respect 
too code parallelisation. The GRAPE-hosts obviously play a special role within the PEs 
set.. This asymmetry somehow breaks the SPMD paradigm that parallel MPI programs 
aree expected to comply with. Besides the asymmetry in the code structure, also the data 
distributionn among PEs is no more symmetric. The force computation using GRAPE is 
performed,, similarly to the non-GRAPE case, by assigning an equal number of j-particles to 
eachh GRAPE. The GRAPE computes the partial force exerted by the j-particles assigned 
too it on the i-particle set, which is the same for all GRAPEs. After that, a global sum on 
thee partial results, performed on the parallel host, will finally give the total force. 

Sincee force computations and j-particle position extrapolations are done on the GRAPE, 
thee only relevant work to execute in parallel by the PE set is the search for i-particle candi-
dates,, which is accomplished exactly as in the code described in section 2.3.2 above. 

2.44 Code performance 

Wee describe and analyse in this section the measurements that we carried out for the per-
formancee evaluation of the codes described in section 2.3. Our measurements are intended 
too explore the scalability of parallel JV-body codes. We performed runs varying both the 
numberr of particles N and the number of processors PEs; we scaled N from 1024 to 16 384, 
andd PEs from 1 to 24. NBODY1 does not need a large amount of run-time memory, just 
aboutt 200 bytes per particle, but is heavily compute-bound (Hut, 1996). Our timings were 
carriedd out in order to show the relative computational requirements of the various code 
tasks,, and how these change as a function of N and PEs. Reported values are averages of 
thee values measured for each processor. These measurements showed a negligible deviation, 
whichh is thus not reported on the figures below. 

Ourr runs were started having a Plummer model distribution (Plummer, 1915) as initial 
condition,, in which density decreases outward as the fifth power of the distance from the 
clusterr centre. The gravity force is modified by introducing a softening parameter, which 
iss a constant term, having the dimension of a length, whose squared value is inserted in 
thee denominator of the gravity force expression eq. (1.1) (see also caption of fig. 1.1). The 
softeningg parameter reduces the strength of the force in case of close encounters and thus 
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Figuree 2.5: Global timings for the parallel individual time-step code, running for 1000 iterations. 

preventss the formation of tightly-bound binaries. In this way very short time steps and 
correspondinglyy long simulation times are avoided. In our runs, this parameter was set equal 
too 0.004. As a reference, the mean inter-particle distance in the central core of the cluster, 
whenn N = 16384, is approximately equal to 0.037 in TV-body units (Heggie & Mathieu, 
1985). . 

2.4.11 Individual time step code 

Thee essential tasks of this version of the code (hereafter called IND) are shown in the code 
flowflow sketched in fig. 2.2. As described in section 2.3.1, the parallel version of this code 
implementss communications in the i-particle search task, then when the i-particle position is 
broadcast,, and when partial forces are gathered by the PE that owns the i-particle. Fig. 2.5 
showss the timings, and fig. 2.6 the performance of the parallel version of the IND code. 

Thee metric we use to quantify the code performance is the parallel efficiency, defined 
as: : 

PP =- iL -
n-- tn 

wheree n is the number of PEs used, and tn the execution time when using n PEs. The 
timingss shown in the figures refer to 1000 iterations of the code. The tn values depend about 
linearlyy on N, since the number of operations to compute the force on a given particle scales 
linearlyy with N, and in each run the same number of force computations is performed, i.e. 
1000,, independently of the total number of particles. An interesting super-linear speedup is 
visiblee in fig. 2.6, which can be explained with an optimised cache utilisation. The IND code, 
whenn the work-load is high (N > 8192), is highly compute-intense, as fig. 2.8 clearly shows. 
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Figuree 2.6: Performance of the parallel individual time-step code, running for 1000 iterations. 
Onee iteration consists of advancing a single particle per time step. A super-linear speedup effect, 
discussedd in the main text, can be seen for intermediate values of the work-load per processor. 

Inn this case, also when the number of processors is high, thus with relative small number 
off  particles per processor, the communication overhead is still small. Since the number of 
particless per processor decreases as PEs increases, the number of cache misses decreases 
too,, thus the cache is better exploited as PEs increases. This effect, combined with the 
limitedd importance of the communication overhead for the high workload cases, leads to the 
super-linearr speedup visible in fig. 2.6. 

Fig.. 2.7 and 2.8 show the fractional time shares of each task, and how these shares 
changee as the number of PEs changes. Fig. 2.7 shows the time shares for runs with TV = 1024, 
andd fig. 2.8 for runs with TV = 16384. Fig. 2.7 clearly shows how the IND code suffers 
fromm a communication overhead when the computational work-load is light. On the other 
hand,, as shown in fig. 2.8, the code performs quite satisfactorily when this ratio is high, 
thankss to the compute-intense characteristics of the TV-body code, and the high performance 
communicationn network of our architecture. 

2.4.22 Block Time-step Code 

Thee basic tasks of this version of the code (BLOCK hereafter) are the same as the IND code. 
Thee only difference is that now the number of i-particles per iteration can be larger than 
one.. As stated in section 2.3.2, this optimises the force computation procedure, also in view 
off  the use of GRAPE, but, on the other hand, increases the communication traffic, since 
informationn about many more particles must be exchanged at each time step. 
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Figuree 2.9: Global timings for the parallel block time-step code. In this case, at each time step, 
forcee is computed on many particles. 

N N 

1024 4 

2048 8 

4096 6 

8192 2 

16384 4 

(M) ) 
35.0 5 5 

43.9 1 1 

111.1 6 6 

207.5 2 2 

351.1 4 4 

Thee effect of this is clearly shown in the figures presented here. 
Fig.. 2.9 shows total timings, and fig. 2.10 shows performance of this 
code.. In this case the execution time grows as a function of ./V2 

becausee the number of i-particles, i.e. the number of force compu-
tations,, grows approximately linearly with N. Since the computa-
tionall  cost for the force on each particle also grows linearly with 
N,N, the resulting total cost is 0{N2). The mean number of force 
computationss per iteration as a function of N is given in table 2.2. 

Tablee 2.2: Mean num- - , . „ » , „  k _ V _ r t t  t.u- J  i * 
berr of i-particles per iter- *  l&  2- ̂  shows how the performance gam of this code is less spectac-
ationn in the BLOCK ular than the gain of the IND code, since communication overhead 
codee runs. plays a larger role in the total execution time. This large overhead 

cann be seen in fig. 2.11 and 2.12, that show how the execution time 
sharess evolve as a function of PEs number. These figures show that for the BLOCK code, 
almostt all the computational part of the execution time is spent in the force computation 
task.. The j'-particles extrapolation, that takes roughly 25% to 30% of the total time in the 
INDD code (see figures 2.7 and 2.8), is reduced to less than one percent. 

2.4.33 GRAPE Code 

Thee code version which makes use of GRAPE boards will be called GRP hereafter. We 
presentt performance results of both the serial, and the parallel implementation. The com-
municationn overhead of the parallel version is composed of host-GRAPE communication 
andd network communications. The parallel code runs have been done by using only the DAS 
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Figuree 2.10: Performance of the parallel block time-step code. 
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particles. . 
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Figuree 2.12: Execution time shares vs number of processors for the BLOCK code. Runs with 
166 384 particles. 

nodess connected to the GRAPE boards at our disposal, thus the maximum number of PEs 
inn this case is 2. 

Itt is clear from fig. 2.13 that the parallel performance is very poor. In that figure, 
GRAPEOO refers to the GRAPE with 62 pipelines, and GRAPE1 to the GRAPE with 94 
pipelines.. Fig. 2.13 also shows that runs on GRAPE1 are a bit faster, thanks to the larger 
numberr of pipelines available. The low parallel performance shown in fig. 2.13 can be ex-
plainedd by the low number of z-particles, especially for the low-TV runs, that prevents the 
GRAPEE boards to be fully exploited. Moreover, a large communication overhead dominates 
thee GRP code, as fig. 2.14 for the GRAPEO case, fig. 2.15 for the GRAPE1 case, and 2.16 
forr the parallel case show. These figures also show that the time share spent in GRAPE 
computationss (i.e. force computations) is quite low, resulting in a low efficiency of this code 
inn terms of GRAPE exploitation. One reason for that is of course the very high speed of 
thee GRAPE. This device is by far faster in accomplishing its task than its host and the 
communicationn link between them. 

Anotherr effect that can be seen in the figures is the increase of the time share of the 
orbitt integration task when N goes from 2048 to 4192. This can be explained by the increase 
off  cache misses when this task is executed. The cache size of a node is 256 Kbytes, which 
makess it able to contain data for about 1000 particles (each particle carries about 200 bytes 
off  data). The orbit integration task works on data which are located randomly on the 
memory,, thus the chance of a cache miss when the cache does not contain the whole data 
sett is relatively high. This effect produces the increase of the orbit integration time share 
betweenn N = 2048 and TV = 4192. Subsequently, the timings are more and more dominated 
byy the increase of the GRAPE computation time share. 

otherr tasks 

forcee computation 
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Figuree 2.13: Execution time for 1000 iterations of the GRP code. 

Thee figures clearly show that for our hardware configuration the capabilities of the 
GRAPEE will only be fully utilised for problems involving over 40 000 particles per GRAPE. 
Thiss number is, however, limited by the GRAPE on-board memory for j-particles, which is 
onlyy slightly higher than 40 000. 

Ourr measurements of the low level host-GRAPE communication routines show that 
aa large amount of time spent in communication is due to software overhead in copy opera-
tionss and format conversions. As an example, we show in fig. 2.17 measurements done on 
thee j-particle send operation. Similar measurements (Kawai et al, 1997), performed on a 
fasterr host, showed a higher communication speed, linearly dependent on the host processor 
clockk speed. Nevertheless, even though the GRAPE boards are not exploited optimally, the 
executionn times for the GRP code are by far shorter than those for the BLOCK code. The 
heaviestt run on 2 GRAPEs is about one order of magnitude faster than the heaviest run 
off  the BLOCK code on 24 PEs. Considering the total amount of computing power used in 
thesee two cases, i.e. the execution time times the number of processors used, shows that the 
BLOCKK code needs about 140 times more computing time to perform the same amount of 
workk as the GRP code. A global comparison of the throughput of all codes studied here is 
givenn in section 2.4.4 below. 

2.4.44 Code Comparison 

Inn order to evaluate the relative performance of the three versions of the A-body code studied 
inn this chapter, a series of runs has been made, where both a 8192 particles system, and a 
322 768 particles system were simulated for 7200 seconds. We compare the performance of 

JJ I 1 I I L 
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Figuree 2.14: Execution time shares vs number of particles for the GRP code. Runs on GRAPEO 
(622 pipelines). 
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Figuree 2.15: Execution time shares vs number of particles for the GRP code. Runs on GRAPE1 
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Figuree 2.16: Execution time shares vs number of particles for the GRP code. Runs on both 
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Figuree 2.17: Software overhead in the j-particle send operation. The difference between the 
top-mostt timing (the cumulative task timing) and the timing immediately below is due to format 
conversion.. The other differences are mainly due to copy operations. 
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Figuree 2.18: Performance comparison for the three versions of the TV-body code. Runs with 8192 
particles.. The IND and BLOCK codes are run on 24 processors, the GRP code is run on two 
processorss each connected to a GRAPE. 

thee GRP code, with respect to the other codes run on the general purpose host, against 
ann increasing computational load. The fastest hardware configuration is used in each case, 
i.e.. 24 PEs for the IND and BLOCK code runs, and 2 PEs (and hence 2 GRAPEs) for the 
GRPP run. Fig. 2.18 and 2.19 show the evolution of the simulation time, as a function of the 
wallclockk time. In this way, the performance of each code is specified in terms of how long 
onee should wait before a simulation reaches a certain A^-body time. Those figures show that 
thee GRP code outperforms the other two codes by a factor 8, when the computational load 
iss lighter, and by a factor 20, with a heavier computational load. In both cases, the BLOCK 
codee is 1.5 times faster than the IND code, thanks to the optimisation of the j-particles 
extrapolationn step. Fig. 2.19 shows an initial overlapping of these two codes performance 
curves,, due to a start-up phase, which is not visible in fig. 2.18, because at the first timing 
eventt (after 60 s) this system is already stabilised. 

Fig.. 2.18 and 2.19 clearly show the large performance gain obtained with GRAPE. 
Usingg only two PEs, an order of magnitude better performance was attained compared 
too the BLOCK code on 24 PEs. Due to the reduction in the time needed for the force 
calculation,, the communication overhead for the GRP code accounts for approximately 50% 
off  the total execution time (see fig. 2.15 and 2.16). Hence an even larger relative gain may 
bee expected for larger problems, as the relative weight of the communication overhead will 
decrease.. The difference in performance between the two cases shown respectively in fig. 2.18 
andd 2.19 clearly illustrates this effect. 
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Figuree 2.19: Same as fig. 2.18. Runs with 32 768 particles. 

2.55 Discussion 

Ourr performance analysis reveals a very good parallel performance of the BLOCK and espe-
ciallyy the IND code. We also show that the use of GRAPE leads to a dramatic performance 
gain,, even at a low efficiency in terms of GRAPE boards exploitation. Such low efficiency 
iss mainly due to a very high communication overhead, even for the largest problem studied. 
Thiss overhead can be greatly reduced by the use of a faster host, and by the development 
off  an interface requiring fewer format conversions. The GRAPE-hosts in the system studied 
inn this chapter have a 200 MHz clock speed. Nowadays standard clock speeds are up to 
onee order of magnitude faster. The use of a state-of-the-art processor would reduce the host 
andd communication times significantly. The low utilisation of GRAPE, shown in fig. 2.14, 
2.155 and 2.16, suggests that the problem size has to be increased to attain a optimal SPD 
utilisation. . 

Thee measurements described in this chapter are the basis for the calibration and vali-
dationn of our performance simulation model. In chapter 3 our model will be described, and 
usedd to simulate different classes of TV-body codes, running on different hybrid architectures. 



Chapterr  3 

Modellin gg and Simulation of Hybri d 
Architectures* * 

3.11 Introductio n 

Inn this chapter the performance model that we developed to simulate the behaviour of hybrid 
architecturess is introduced. Hybrid architectures were presented in section 1.3.4 as systems 
wheree a high performance general purpose computer is coupled to one or more Special Pur-
posee Devices (SPDs). They can be seen as a special case of computer systems described 
byy the heterogeneous computing paradigm (Preund &: Siegel, 1996; Palazzari et al., 2000). 
Inn section 1.3.4 we also discussed why such a system can be the optimal choice for several 
fieldsfields of Computational Science. The relevance of the GRAPE in the field of Numerical 
Astrophysicss has been discussed in section 1.3. Quantum Chromodynamics is another field 
thatt has benefited substantially from the use of SPDs. In a recent review on Computational 
Quantumm Chromodynamics the state of the art for the use of dedicated computers in that 
fieldfield has been presented, with the Japanese CP-PACS computer (Aoki et al., 1999), the 

tThiss chapter is based on work published in: 
P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: A Simulator for Parallel Hybrid Computer Systems, in 

R.L.. Lagendijk; J.W.J. Heijnsdijk; A.D. Pimentel and M.H.F. Wilkinson, editors, Proceedings of the seventh 
annuall  conference of the Advanced School for Computing and Imaging, pp. 210-219. ASCI, 2001. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Prediction of N-body Simulations on a 
HybridHybrid Architecture, Computer Physics Communications, 139, 34-44, 2001. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: A Versatile Simulation Model for Hierarchical 
Treecodes,Treecodes, in P.M.A. Sloot; C.J.K. Tan; J.J. Dongarra and A.G. Hoekstra, editors, Proceedings of the 
ICCS20022 Conference, LNCS vol. 2329, pp. 176-185. Springer Verlag, 2002. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Hierarchical N-body Codes 
RunningRunning on Hybrid Architectures, in E.F. Deprettere; A.S.Z. Belloum; J.W.J. Heijnsdijk and F. van der 
Stappen,, editors, Proceedings of the eighth annual conference of the Advanced School for Computing and 
Imaging,, pp. 211-218. ASCI, 2002. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Distributed Hybrid Archi-
tectures,tectures, IEEE Transactions on Parallel and Distributed Systems, in press, 2003. 
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QCDSPP machine built in the USA (Mawhinney, 1999), and the APE system developed in 
Europee (Tripiccione, 1999). 

Configuringg a hybrid system and finding the optimal mapping of the application tasks 
ontoo the hybrid machine often is not straightforward. Performance modelling, which we 
discussedd in section 1.6, provides a tool to tackle and solve these problems. We developed a 
performancee model to simulate a hybrid architecture consisting of a parallel multiprocessor 
wheree some nodes are the host of a GRAPE board. GRAPE, introduced in section 1.3, is a 
veryy high performance SPD used in Computational Astrophysics. 

Wee present here the general modelling framework, and the methodological approach 
thatt we used to build our model. Based on this modelling background, and on the experi-
mentall  data presented in chapter 2, we developed the performance models described in this 
chapter.. We present here the details of the implementation of both the model used for 
thee simulation of the direct code, introduced in section 1.4.1 and discussed in detail in sec-
tionn 2.2.2, and the model for the simulation of the treecode, introduced in section 1.4.2. We 
validatee the accuracy and versatility of our models by simulating existing configurations, and 
usee them to forecast the performance of other architectures, in order to assess the optimal 
hardware-softwaree configuration. 

Forecastingg and analysing the performance of a hybrid architecture is not trivial. Per-
formancee modelling can provide a solution to this problem. The range of applications of 
performancee modelling in Computer Science is vast. Recently, in a review of performance 
modellingg research, applications were presented spanning the range from scheduling in global 
computingg systems (Aida et al, 2000) to modelling of large-scale scientific applications (Adve 
&&  Sakellariou, 2000), based on both the analytical approach (e.g., Gunther, 2000; Hoisie et al., 
2000)) and on simulation (e.g., Kurc et al, 2000). 

Analyticc models (see, e.g., Cremonesi Sz Gennaro, 2002) easily become intractable due 
too the complexity of the simulated system, and usually show a limited flexibility.  Simulation 
modelss (Bagrodia et al, 1998; Adve et al., 2000) allow for the study of very complex systems. 
Theirr high degree of versatility makes it possible to estimate the performance of hardware 
orr software architectures during the various phases of their development (see, e.g., Pimentel 
etet al, 2001). 

Wee have built a performance model, based on functional task modelling (Dikaiakos 
etet al, 1996). Our model simulates the behaviour of a parallel multiprocessor, where specific 
nodess can act as the host of an SPD. This helps us to understand the interactions between the 
SPD,, the host, and the application that is run on the hybrid system. Our aim is to have the 
possibilityy to adapt and modify the hardware model, in order to find the configuration that 
givess the best performance, and to simulate a different software application just by changing 
thee higher level software specifications. Hence we developed a model able to make predictions 
off  the performance of the system for a given algorithm, and to tell us how hardware and 
softwaree can be adapted to one another to obtain the best performance. 

Thee hybrid system that we used to validate our model consists of a local cluster of 
thee DAS parallel computer (Bal et al, 2000), where two nodes are the host of a GRAPE 
board.. A direct summation N-boAy code (Aarseth, 1999) that, as described in chapter 2, 
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wee parallelised and adapted for use with the GRAPE, was executed on this system. We val-
idatedd our performance model on this architecture, and used the model to make predictions 
onn the system behaviour, when both hardware and software modifications are introduced. 
Furthermore,, we also studied the behaviour of a treecode (Barnes & Hut, 1986) on such a 
system. . 

3.22 Design considerations 

3.2.11 Requirements 

Hybridd Architectures can be complex to design, and expensive to realise. Performance mod-
ellingg is an effective tool to estimate their performance rapidly and inexpensively. We aimed 
too build a versatile model, able to simulate different applications running on different com-
puterr architectures. Therefore, we have structured our model so as to separate the modelling 
off  the hardware from the modelling of the algorithm. This allows us to modify the model of 
thee application, leaving intact the underlying model of the machine, and vice versa. 

Scopee of our  model 

Generally,, performance models are designed to simulate an application or a hardware archi-
tecturee in great detail, and need powerful simulation environments, such as POEMS (Adve 
etet al., 2000), a comprehensive environment for the study of complex computer systems, or 
Artemiss (Pimentel et aL, 2001), specifically developed for embedded systems design and 
analysis.. In our case, we do not aim at simulating our application down to the single in-
structionn level, or our machine at the single electronic component level. We focus on the 
interactionn of the SPD with the parallel host, and the interplay of those two components with 
thee application executed on them. We use an iterative refinement approach, starting coarse, 
and,, if necessary, refining those modules that produce unacceptable errors. For this pur-
pose,, we found it sufficient to model the system components at a functional level (Dikaiakos 
etet a/., 1996). This approach involves much less model complexity, still giving us sufficiently 
accuratee results. 

Levell  of granularit y 

Thee level of granularity of our model is dictated by the accuracy that we want to reach 
inn our simulations, taking into account that the aim of our performance analysis research 
iss the optimal performance of the software application, typically achieved by balancing the 
hardwaree components' workload for a given set of software application tasks. As shown 
below,, we get a satisfactory accuracy with a rather "coarse grained" functional model. The 
basicc unit of our abstract algorithm is the task, defined as a code block which encompasses a 
sett of instructions performing a specific operation. This operation is characterised by having 
aa non negligible execution time, accessing a set of resources which is constant in time, and 
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dependingg on a limited number of application parameters. Similarly, the model granularity 
forr the architectural components has been set at the level where the atomic units are the 
majorr computing elements, such as the SPD and the host node. 

Modell  structur e 

Thee computational environment that we model is specified, at the more abstract level, by a 
numberr of formal entities. These are the algorithm, the hybrid machine, and the mapping 
interface.. In the specific case described here, the algorithm computes the numerical solution 
off  the gravitational iV-body problem. The algorithm model generates simulation parameters, 
andd activates basic operations. The different operations of this code have different demands 
forr computational power, the force computation being by far the most demanding task. The 
designn of the hybrid architecture on which this algorithm is executed matches these require-
ments,, by including a model of a specialised hardware for the gravitational force evaluation. 
AA sequence of tasks describes the behaviour of each component, and the concurrent access 
too machine components by a set of application tasks is treated as a critical section. 

3.2.22 Functional model and implementation environment 

Ourr functional model approach has been presented in section 1.6, where we described how 
wee identify the main constituents of the modelling environment. We make a model of the 
softwaree application in the application model, where we specify the time spent on each task 
%% as a function of the application parameters TT,. Similarly, in the machine model, the 
characteristicss of the hardware resources Tlj depend on the machine parameters ^». The 
mappingmapping interface maps each % of the application model on the appropriate Hj of the 
machinee model. The resulting simulation model returns the simulated execution time, which 
dependss on both the 7r» and fa. In this way, we can study the performance of existing systems, 
andd forecast the performance of the systems under design. 

Thee simulation language used to implement our model is PAMELA (PerformAnce Mod-
Elingg LAnguage) (van Gemund, 1993, 2003), developed by Arjan van Gemund at the Delft 
Universityy of Technology, aimed at either simulation or analytic performance analysis. PAMELA 
iss a C-style procedure-oriented simulation language where a number of operators model the 
basicc features of a set of concurrent processes. In a procedure-oriented language, concurrent 
processs interaction takes place via shared variables, in contrast to message-oriented lan-
guages,, which describe communications in terms of explicit messages between interacting 
processes. . 

Thee execution time of a process is modelled by the delay statement; the sequential 
executionn of processes is implemented by the seq (prefix) or ; (infix) construct. Parallelism 
iss specified by means of the par  (prefix) and I I (infix) constructs, which are implemented 
inn a fork/join fashion (i.e. with implicit synchronisation). Explicit synchronisation between 
aa couple of processes is implemented with the wait and s ignal operators, while mutual 
exclusionn is realised with the P and V semaphore statements, which implement Dijkstra's 
classicall  solution to the resource contention problem (see, e.g., Tanenbaum, 2001, § 2.3.5). 
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PAMELAA  models the execution of processes in terms of the Discrete Event Simulation 
paradigm,, as the use of the delay primitive suggests. A model can be material-oriented, 
whenn the execution flow of the process is specified in terms of the various system resources 
thatt the process will access, or machine-oriented, where the emphasis is on the resource, with 
aa specification of the series of operations that each resource should accomplish. PAMELA is 
moree suited for the first procedural approach, although machine-oriented models can also be 
builtt within this framework. 

Inn order to show how PAMELA is typically used to describe a parallel system, we give as 
ann example the model of a client-server system, where C concurrent clients execute N iter-
ationss each. An iteration consists of local processing with duration rj , followed by a request 
too access the server s which, once accessed, is used for a time rB. Such system is modelled by: 

p a r ( p = l . . . C) ) 
seqq (i = 1 . .. N) 

{de lay( r i ) ;; P(«) ; delayfo) ; V(s) } 

wheree line breaks and indentations are used for the sake of clarity, and have no syntactic 
meaning.. A detailed overview on PAMELA is given in van Gemund (1993). 

3.33 Model implementation 

Inn this section we describe how our performance model reproduces the tasks of the codes 
underr study. The direct code tasks have been described in section 2.2.2. Here we specify the 
dependencee of the execution time of each task on the application parameters, like Nt, the 
numberr of i-particles, and Nj, the number of ^-particles.1 

3.3.11 Direct code 

Ourr application model for the direct code is modelled as a sequence of tasks, as sketched in 
fig.fig. 3.1. Each computation task is implemented by a delay statement (see section 3.2.2), 
possiblyy followed by a support function that sets the value of time dependent parameters, 
ass Ni and Nj. As described in section 2.3, there are communication operations at the end 
off  the i-particle search and force compute tasks, and both are global all-to-all operations. 
Theyy are implemented in the model by means of a synchronisation operation, followed by 
aa delay statement. The delays in the model of each task depend on the model parameters 
accordingg to the formulae reported in table 3.1. These expressions have been obtained by 
analysingg the data presented in chapter 2, and inferring the dependence of the execution 
timee of each task on the model parameters. In the following section we describe the subset 
ViVi of application parameters that affect the performance of each task %. 

1Wee recall that t-particles are the particles on which force is computed, whereas ^'-particles are the 
particless from which force is computed. 
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Figuree 3.1: Basic sketch of the direct iV-body code tasks. 
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Tablee 3.1: Synopsis of the application tasks, and the modelling formulae for their time dependence 
onn the model parameters, whose values are given in table 3.2. Here, G is the total number of 
GRAPEE boards, rijpee is the number of pipelines in a GRAPE board, Pmax is the maximal number 
off  pipelines in a GRAPE board; for the GRAPE-4 Pmax = 96 (see section 1.3 for details). The 
otherr variables are defined in the text. 
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Applicatio nn model 

Forr an A/-body code, the most important parameter is obviously N, the total number of 
particles,, which is a measure of the problem size. Moreover, the dynamical parameter that 
affectss the performance of each task in a block time step code is Nit the number of particles 
forr which force is going to be computed. We observed a highly oscillatory behaviour for this 
parameter,, shown in fig. 3.2. This oscillation of Ni between high and low values can be due 
too a small number of binary stars, which have a strong mutual interaction, requiring a small 
timee step, or to close encounters between pairs of stars. The high occurence of low values 
off  Ni between iteration #60 and iteration #300, implying that one or two particles evolve 
withh a low time step, is an indication of the presence of a binary system in that simulation. 
Thee number of particles having a larger time step is also larger; when they are selected as 
i-particles,, the value of Ni becomes much higher. We give the value of Ni at each iteration, 
obtainedd from the trace of real runs, as an input to our simulator. 

i-particl ee search. The task of finding the Ni particles is modelled as a linear function 
off  N, since the search is done over a set of candidates, whose number is a nearly constant 
fractionn of JV. In the parallel case, each processor searches a local list of candidates, which 
iss a subset of the local particle set. The actual i-particles are chosen after this local search 
iss completed, again by selecting from the candidates those particles with the smallest time 
value. . 

Thiss global search uses a collective communication. The measured communication time 
showss both a linear dependence on the number of processors P, and on N  ̂ The Ni scaling 
factorr is modulated by a term proportional to log P. Based on our measurements, we used 
thee fitting formula given in fig. 3.3 to model the global search task. 

Fig.. 3.3 shows the dependence of this task on Ni, for three different representative sets 
off  values for N and P. A data point in this graph is the average value of the timings on 
eachh processor at a given iteration of the code. Occasionally, values much higher than the 
averagee have been measured, as shown in the figure, arguably due to external data traffic in 
thee network. The fitting formula is not affected by these spurious values. 

Extrapolation .. The extrapolation phase, in the non-GRAPE case, consists of a fixed 
numberr of operations done on every particle in the system. Each processor extrapolates only 
itss own j-particle positions, thus the extrapolation time shows a linear dependence on N/P, 
i.e.. the workload per processor. A sketch of the dependence of the execution time for this 
taskk on N/P is given in fig. 3.4. Each point here is the average value over the entire run, 
forr a given pair (JV, P). This figure shows a jump in the dependence of t on N/P, due to 
aa cache effect.2 We chose to model only the out-of-cache behaviour, because we are more 
interestedd in situations characterised by a large workload. 

2Thee cache size of our system is 256 Kbytes per processor, and each particle carries about 200 bytes of 
data.. Then a workload per processor larger than about 1000 particles will cause the problem to run out of 
cache. . 
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machinee parameters 

flp flp 

VL VL 

V>B V>B 

fJ-s fJ-s 

V>G V>G 

Vc Vc 

(fjs(fjs to perform a processor cycle) 

(networkk latency in /is) 

(//ss to transmit a byte over the network) 

(fis(fis to startup the GRAPE pipeline) 

(/js(/js for the GRAPE to compute a force interaction) 

(^ss to transmit a byte on the GRAPE-host channel) ) 

1/200 0 

40 0 

1/150 0 

75.6 6 

0.19 9 

1/133 3 

applicationn parameters 

TTsrc c 

Kxtr Kxtr 

Kfrc Kfrc 

^orb ^orb 

ïïprep ïïprep 

computations s 

(i-particle e 
search) ) 

(part.. pos. 
extrapola--
tion) ) 

(forcee compu-
tation) ) 

(orbitt inte-
gration) ) 

(format t 
conversions s 
inn packet 
preparation) ) 

54 4 

260 0 

260 0 

420 0 

480 0 

networkk communications 

KigiKigi  (i-particle 
commum. . 
startup) ) 

itirditird  (i-particle 
transmission) ) 

iTfiiTfi  (force data 
transmission) ) 

no,no, (i-particle 
broadcast) ) 

7T/&&  (force broad-
cast) ) 

3.5 5 

0.0025 5 

0.5 5 

22.5 5 

105 5 

host-GRAPE E 
communications s 

KjpaHKjpaH O'-part- send 
too GRAPE) 

KipartKipart («-part, send 
too GRAPE) 

7rrecc (receive re-
suitss from 
GRAPE) ) 

80 0 

40 0 

130 0 

Tablee 3.2: Values of the performance parameters appearing in the modelling formulae in table 3.1. 

Whenn GRAPE is used, the application code has to perform the extrapolation only for 
thee i-particles. The GRAPE contains an extrapolation pipeline for the j-particles, but it 
doess not extrapolate the i-particle positions; the host must perform this operation. Hence, in 
thiss case, the extrapolation task is modelled as a linear function of A^, and is mapped on the 
host.. Since every host must extrapolate all the z-particle positions, there is no dependence 
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Figuree 3.2: Time evolution of N% for a simulation with N = 32 768. The first 20 values are 
connectedd by a line, to make the oscillation clear. The unity (or twice the unity) value that can be 
seenn on the bottom-right side is a hint of the presence of a binary star. 

onn P. The GRAPE performs the j-particle extrapolation simultaneously with the force 
computation.. When the GRAPE computes the force exerted by a certain particle j \ , the 
ji'i-dataa fetched from the GRAPE memory are passed through to the extrapolation pipeline. 
Thee pipeline outputs the extrapolated position of j \ , which is input to the force pipeline. 
Thee timing of the force computation task also includes the extrapolation. This is why there 
iss no separate modelling for the j-particle extrapolation done on the GRAPE in table 3.1. 

Forcee computation. The force computation task in the non-GRAPE case scales linearly 
withh Ni  N/P. Fig. 3.5 shows this dependence for a representative set of runs. Also in this 
casee a data point refers to a single iteration, and is the average value of the timings for all 
thee processors. 

Whenn forces are computed on the GRAPE, it does this task on Np particles at the same 
time,, using its array of pipelines. Then the same amount of time is spent to compute forces, 
forr a number of i particles ranging from 1 to Np. This time scales linearly with N/G (see 
fig.fig. 3.8) where G is the number of GRAPEs available, since the force computation consists 
inn an iteration on the N/G particles constituting the particle subset assigned to a GRAPE. 
Thee operation of receiving the result data from GRAPE is similar to the i-particle send, 
showingg the same step behaviour. 

Thee force computation task performed on the GRAPE shows a rather complicated 
structure.. A number of communication procedures between the GRAPE board and the host 
mustt be performed, besides the actual force computation task. Figures 3.6, 3.7, and 3.8 
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Figuree 3.3: Timings averages of the global communication operation associated with 
thee i-particles search. The formula we obtain by fitting the measurement values, 
whichh is used in the simulation model, and reproduced here as a continuous curve, is: 
tt = 0.14 + 0.038  P + (0.97  10- 4 + 0.15  10~3  log(P))  Nt (see parameterised expression in ta-
blee 3.1). 
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Figuree 3.4: Timings of the extrapolation task for the non-GRAPE case, and fitting formula used 
intoo the model. A cache effect is clearly visible at N/P = 1024. We are interested in situations 
withh high workload, thus we fit only the out-of-cache subset. 
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Figuree 3.5: Timings and fitting formula for the local force computation in the non-GRAPE case, 
forr a set of representative runs. 

illustratee these tasks. Before GRAPE computes forces, the host sends it the j-particle 
positionss that have changed in the last iterations. Since GRAPE stores the j-particle data 
inn its internal memory, only the updated j-particle data need to be sent to it. Moreover, 
alsoo the time-advanced position of the i-particles need to be sent in the same packet as the 
j-particles.. In this way GRAPE avoids computing the self-interaction for the i-particles. 
Thee actual delivery of data is done in packets of up to 90 particles, and shows a linear 
dependencee on the amount of data sent, plus a fixed latency time for each actual send 
operation.. The j-particles send step is then a function of Ni and Nj. Fig. 3.6 shows the 
measuredd performance of this operation as a function of the data sent. 

Anotherr send operation is performed to send the z-particles to GRAPE. The actual 
dataa delivery is done in packets of Np particles, where Np is the number of active pipelines 
onn the GRAPE board (up to 96). The time dependence of this operation with respect to AT,, 
thee number of particles sent, is then a simple step function. Fig. 3.7 shows this dependence, 
forr Np = 62. 

Besidess the local force computation, a global communication is also needed for the 
parallell  GRAPE code, as the total force computation requires a global sum. The execution 
off  this operation does not differ between the GRAPE and non-GRAPE codes. Measurements 
off  this operation from real runs show a communication time linear in Nt  log P, as shown in 
tablee 3.1. 

i-particl ee update. The final operation, i.e. orbit integration, updating and storing of the 
particless physical quantities, is a linear function of Ni: with no dependency on P, since every 
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Figuree 3.6: GRAPE related tasks. Timings of the j-particle send task as a function of the workload 
aree shown. Measurements of the communication tasks show some occasional spike due to external 
processes,, e.g. operating system function calls. A GRAPE with 62 pipelines is used for these 
measurements. . 
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Figuree 3.7: Same as fig. 3.6; here we show timings of the t-particle send task. 
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Figuree 3.8: Same as fig. 3.6; here we show timings of the force computation task. The pipeline 
startupp latency [Ms — 75/us is clearly visible. 

processorr performs this task for all the i-particles. 

3.3.22 Treecode 

Thee treecode, introduced in section 1.4.2, is widely used in Computational Astrophysics for 
thee simulation of systems that do not require high computational accuracy. By trading lower 
accuracyy with higher speed, the treecode is able to reduce the computational complexity of 
thee TV-body problem from the Ö(N2) scaling of the direct code to Ö(N log N). 

Thee treecode computes force on a given particle i by grouping particles in larger and 
largerr cells as their distance from i increases, force contributions from such cells being trun-
catedd multipole expansions. A simple pseudo-code sketching the basic tasks of the treecode 
iss given in fig. 3.9. 

Thee first task of a treecode iteration is to build a tree structure by hierarchically 
connectingg each cell to the "child" cells that the cell encompasses (see section 1.4.2 for details). 
Thenn force is computed for each i-particle by traversing the tree, and looking for cells that 
satisfyy an appropriate acceptability criterion (see section 1.4.2 and chapter 4 for details on 
acceptabilityy criteria). 

Thee original treecode algorithm has been modified in several ways to improve its per-
formance.. An optimisation of the tree traversal phase has been realised by grouping particles 
accordingg to their spatial proximity (Barnes, 1990). Then a single traversal for each group is 
performed,, whereas the original algorithm performs a tree traversal for each particle. This 
drasticallyy reduces the number of tree traversals, and allows for concurrent force computa-
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tt  =  0 
whil ee ( t  <  t_end ) 

buil dd tre e 
fo rr  eac h i-particl e 

travers ee tre e t o 
integrat ee orbit s 
tt  =  t  +  A t 

comput e e force s s 

Figuree 3.9: Pseudocode sketching the basic tasks in a treecode. 

tionn on vector machines. This optimisation is also suited for the use of the treecode with 
GRAPE,, because each pipeline of the array contained in a GRAPE board can compute 
forcee on a different particle simultaneously. The drawback of this technique is an increase in 
memoryy use. In fact, for each particle group, an interaction list containing the information 
concerningg all the cells interacting with the group must be written and stored in memory. 

Thee use of interaction lists is also useful for parallelisation on distributed systems, 
ass in the parallel treecode (Warren &: Salmon, 1993, 1995). The possibility of decoupling 
treee traversal and force computation through interaction list compilation, allows for the 
implementationn of latency hiding algorithms for the retrieval of cell information stored in a 
remotee processor memory (Warren & Salmon, 1995; Salmon & Warren, 1997). We will refer 
too this version of the parallel treecode as HOT, the acronym of Hashed Oct-Tree, as the code 
wass called by Salmon and Warren. 

Anotherr modification, introduced in the code GADGET (Springel, Yoshida, &; White, 
2001),, consists in implementing the individual time step scheme, originally introduced in 
thee direct Af-body code, as described earlier in sections 1.4.1 and 2.3.1. In this manner, 
eachh particle is assigned an individual time step, and at each iteration only those particles 
havingg an update time below a certain time are selected for force evaluation (Springel et a/., 
2001),, so that force is computed only on a small fraction of the N particles. In this code, 
aa different approach for remote interactions computation is also implemented: data of the 
selectedd particles are sent to the remote processors, interactions are computed remotely, and 
resultss are received back. A further modification consists in rebuilding the local tree less 
frequentlyy than at every iteration. This version wil l be referred as GDT, which is a short for 
GADGET.. In fig. 3.10 we give a pseudo-code representation of the generic algorithm that 
ourr model simulates. 

Applicatio nn model 

Manyy different versions of the treecode have been proposed, implementing different tools 
andd techniques. A recent report on this is given in (Springel et a/., 2001). Our performance 
modell  is designed to reproduce the behaviour of state-of-the-art parallel treecodes, running 
onn distributed architectures, and able to make use of dedicated hardware. In this section, 
wee describe each task of our application model, together with their modelling expressions. 
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exchang ee dat a t o buil d globa l  tre e 

i ff  cod e i s GDT 
forr each se lected p a r t i c le 

t raversee local t r ee to compute local forces 
sendd par t i c le s t o remote nodes 
receivee par t i c le s from remote node 
computee force on remote p a r t i c l es 
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forr  each group 

forr each p a r t i c le i n group 
computee forces 

in tegra tee o rb i ts 
tt = t + A t 

Figuree 3.10: Pseudocode sketching the generic parallel treecode tasks. HOT and GDT are the 
twoo versions of the treecode modelled in this work. Tasks involving communication are highlighted 
usingg |i=gëpr background;. 

Tablee 3.3 shows a synopsis of the modelling expressions, given as functions of the appropriate 
applicationn parameters. 

Treee building . The tree building task consists of two operations: particle insertion into 
thee tree structure, and computation of multipole terms for each cell of the tree. Both opera-
tions,, as long as local trees are concerned, do not require communication among processors. 
Thee particle insertion operation scales as nlog(n), where n is the number of particles per 
processor.. The multipole terms computation depends linearly on the number of cells per 
processorr nc, which is set equal to 0.1 n divided by the number of particles per leaf cell. 
Eachh computing node processes all the particles independently to build a local tree. When 
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task k 

buildd local tree 

dataa exchange 
forr HOT global 
tree e 

treee traversal 

dataa exchange 
forr HOT global 
lists s 

computee forces 

dataa exchange 
forr GDT remote 
forces s 

remotee i-parti-
clee data sent to 
GRAPEE hosts 

forcee data sent 
backk by GRAPE 
hosts s 

integratee orbits 

parameterr  definitio n 

n:: number of particles per processor 

nc:: number of cells per processor 

n-mp-n-mp- operations per cell to compute multi-
poles s 

P:P: number of processors 

m:: fraction of particles selected for force 
computationn (= 1 if code is HOT) 

nngg::  number of groups per processor 

jioc'.jioc'. number of local force sources per 
group p 

$:$: opening angle (accuracy parameter 
forr the force computation) 

KjtKjt  scaling coefficient for force sources 

j r m t :: number of sources per group from re-
motee processors 

j :: total number of force sources per 
group p 

AT:: total number of particles 

forfor parameter definition see above 

forfor parameter definition see above 

forfor parameter definition see above 

forfor parameter definition see above 

modellingg formul a 

nn  log(7Tfc  n)+ 

TTtt-m-ng-TTtt-m-ng- jioc 

jiocjioc = Krd-3-\og(e3-n) 

jmajma = Kr6~3-logP 

7rcc ƒ  m  n  j 

jj  = Kr6-3-\og(63-N) 

Mrf^m^M^l^P Mrf^m^M^l^P 

::î ;f» ii  »;*#.:%) 

KgtKgt''  ui* » 

 'Vd'U 

Tablee 3.3: Synopsis of the modelling expressions for each task of the application model. All n 
termss are constant factors depending on the operations per particle performed, or the bytes per 
particlee transmitted. Communication task expressions are highlighted using a grey background . 
Parameterr values are given in table 3.4. 
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thee tree building task is accomplished, the local tree contains all the particles which are lo-
catedd within the geometrical domain assigned to the processor. GDT uses only local trees for 
thee force computation task, hence it does not execute other operations to complete the tree 
buildingg task after the local tree building. Conversely, the HOT code exchanges information 
amongg the processors after the local tree building, so that each processor is able to build a 
globall  tree. In this way, no communication will be necessary during the force computation 
task.. The data exchanged to build the global tree, the so-called local essential tree, are 
assumedd to be equal for each processor, so that this operation is assumed to scale linearly 
withh the number of processors P. 

Treee traversal. This task is performed by HOT before the force computation, while GDT 
performs,, for each i-particle, tree traversal and force computation as the same task. Namely, 
HOTT first traverses the tree in order to build an interaction list for each group of nearby 
particless (an input parameter states how many particles make up a group), then uses the 
listt to compute forces on each particle of the group (see also section 3.3.2 above). GDT 
instead,, for each particle selected for force computation, traverses the tree and computes 
forcee simultaneously. The local tree traversal has to be done once for each particle group 
(GDTT does not use groups, so in this case the number of groups is equal to the num-
berr of particles). It depends linearly on the number of local force sources. An expression 
forr the total number of force sources j was found by Makino (Makino, 1991b), who gives 
jj  <x 0~3 log^JV), where 8 is the opening parameter (see equation 1.3 in section 1.4.2). The 
numberr of local force sources is then ju>c <*  #- 3 logfö3iV/P), and the number of remote force 
sourcess is jrmt = 3 — jioc oc 0~z log P. GDT performs this operation only for a fraction m of 
thee particles per processor n. In the case of HOT, we simply set m = 1. 

Thee HOT code completes this task with a communication operation, where informa-
tionn concerning remote force sources is received by each processor. This operation depends 
linearlyy on the number of groups, and on the number of remote force sources jma-

Forcee computat ion. The cost of the force computation task on each processor is propor-
tionall  to the number of t-particles per processor m  n, times the number of force sources j . 
Forr the HOT code, this task does not require communication, since all information about 
remotee force sources has been exchanged in the tree traversal task. In the GDT case, lo-
call  i-particles are sent to the remote processors, then remote partial forces are retrieved to 
finallyfinally  obtain the total force on each i-particle. This operations are global communication 
operations,, and are assumed to depend on log P, consistently with the modelling formulae of 
thee global communication tasks of the direct code model in section 3.3.1 (see also table 3.1). 
Thiss task also depends linearly on the total amount of data exchanged, i.e. on the total 
numberr of i-particles m- N. 

Iff  GRAPEs are used, the force computation task is performed only by the GRAPE 
hosts.. As a consequence, the communication operation executed in the HOT case during the 
treee build task in order to build the global tree, is executed only by the GRAPE hosts. As 
farr as the actual force computation is concerned, the GRAPE hosts first compute force on 
theirr local particles, then receive remote i-particles and corresponding interaction lists from 
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HO TT on Delta GDTT  on T3E seq.. tree on GRAPE-5 

machinee parameters 

VPVP [gsy 

»"»" [hfel 
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0.05 5 

1 1 

0.002 2 

1.67 7 

n/a a 

codee dependent application parameters 

m m 

nn9 9 

1 1 

n n 

0.02 2 

n n 

1 1 

nn  0.0005 

codee independent application parameters 

KjKj  (force sources in tree traversal) 

7rww (build local tree) 

KmpKmp (compute multipoles in local tree) 

TTgtTTgt (HOT global tree) 

nntttt (tree traversal) 

7T7Tglgl (HOT global lists) 

trtr ccff (compute forces) 

7rr// (GDT remote forces) 

iTgriTgr (remote i-part. sent to GRAPE hosts) 

TTTTg3g3 (forces sent back by GRAPE hosts) 

iToriTor (integrate orbits) 

100 0 

0.15 5 

10 0 

3200 0 

0.4 4 

32 2 

0.15 5 

48 8 

32 2 

24 4 

0.3 3 

Tablee 3.4: Values of the performance parameters appearing in the modelling formulae in table 3.3 

thee "un-graped" processors, compute force on remote i-particles, and finally send back forces 
too the remote processors. 

Thee actual force computation operation on the GRAPE is modelled using the same 
expressionn as in table 3.1, where the number of i-particles is in the present case put equal to 
thee number of particles per group n/ng, and the number of ^'-particles (JV/GRAPEs in the 
formulaa in table 3.1) now is equal to the total number of force sources per group j . 

Thee cost of the communication operation to send remote particle data to the GRAPE 
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hostt is proportional to the amount of bytes which are sent, which is proportional to the 
numberr of i-particles sent, plus the length of the correspondent interaction lists. Hence it 
iss modelled as a linear function of the number of «-particles m  n plus the number of force 
sourcess for all groups j-ng. The cost of sending back the forces is proportional to the number 
off  i-particles m  n. 

Orbi tt  integration. This task consists in the updating of the i-particles positions, and 
doess not require communication. It is modelled as a linear function of the i-particles per 
processorr m  n. 

Computerr  architectur e 

Thee parallel system simulated in our machine model is a generic distributed multicomputer, 
wheree given nodes can be connected to one or more SPDs. When SPDs are present, the 
appropriatee task is executed on them. The application model needs no modification in this 
case.. According to an input parameter which tells whether SPDs are present, the mapping 
interfacee chooses the routine that maps the task to the SPD, or to the general purpose 
processor.. Since we are interested in SPDs dedicated to the gravity force computation, the 
machinee model of the SPD reproduces the GRAPE activity, and its communication with the 
host.. The modelling of the fairly complicated data exchange machinery between GRAPE 
andd its host is discussed in section 3.3.1. 

Thee hardware characteristics of the simulated multicomputer are parameterised by two 
constants,, ftp and /x^, where \ip accounts for the processor speed, in nanoseconds per floating 
pointt operations, and /ijv accounts for the network speed, its value being the transfer rate 
inn /is/B. In the execution model, each computation-related function will be multiplied by 
fip,fip, and each communication-related function (those highlighted with a gray background 
inn table 3.3) will be multiplied by /iff. Parameter values for the simulations presented in 
sectionn 3.4.3 below are given in table 3.4. 

3.44 Simulations 

Inn section 3.3 the modelling of the various application tasks of the AT-body codes that we 
studyy have been described. In this section, we show how our models reproduce the real 
system,, and simulate possible modifications. The models consist in a sequence of tasks, as 
describedd in section 3.3, each one specifying, by means of appropriate delay operations, how 
muchh wall-clock time is spent to perform them. The access to GRAPE is controlled by a 
semaphore.. Model results are compared with data obtained from the performance analysis 
studyy of our system reported in section 2.4. 
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Figuree 3.11: Model validation. Points indicate the data obtained from actual timings, lines are 
simulationn results. GRAPEO refers to the system where the GRAPE has 62 pipelines. 

3.4.11 Serial direct code 

Validation n 

Thee reliability of our model has been checked by making a comparison between the simulation 
results,, and the actual measurements of a set of runs of NBODY1 on a system consisting of 
aa GRAPE connected to its host, which is a node of the DAS, as described in section 2.2.1. 
Twoo separate series of runs have been performed, on each GRAPE at our disposal. The 
GRAPEE board with 62 pipelines is labelled GRAPEO; the other board, with 94 pipelines, 
GRAPE1.. Each run consists of 300 iterations, with N ranging from 1024 to 32 768. The 
initiall  condition is a Plummer model (Plummer, 1915), i.e. a star distribution with density 
decreasingg as the fifth power of the distance from the cluster centre (see, e.g., Spitzer, 1987, 
p.. 13). In section 3.3.1 we compared measurements with simulation for single tasks. Now, 
inn fig. 3.11 and 3.12, we present a global comparison, where we show how each task scales 
withh N. In these figures we plot the time share spent by the application in accomplishing 
eachh task. These figures show that our model produces results in good agreement with the 
reall  measurements. These measurements are presented in section 2.4.3. 

Itt can easily be seen how the system performance is strongly penalised by communica-
tionn overhead, unless the workload is high (i.e. TV > 16384). Even in such cases, GRAPE is 
nott fully exploited yet, due to the large time-share taken by host computations. It is clear 
fromm this that a faster host and an improved communication interface are needed to achieve 
ann optimal GRAPE utilisation. A comparison between fig. 3.11 and 3.12 shows that the time 
sharee for the force computation is smaller for GRAPE1. This is due to the higher number of 
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Figuree 3.12: Model validation. Same as fig. 3.11. GRAPE1 refers to the GRAPE where the 
numberr of pipelines is 94. 

pipeliness in this GRAPE board, which makes the force computation faster. See also fig. 2.14 
andd 2.15 on page 45, where the same performance data for the real system are presented. 

Too test the versatility of our model, we also validated it with respect to a system 
configurationn without GRAPE. In this case the mapping interface of the model, instead of 
selectingg the procedure where the use of GRAPE is modelled, maps the force computation 
taskk on a different procedure, where the force computation task is modelled as a linear 
functionn of Nt  N. The user selects whether the force computation will be modelled as a 
hostt related task, or as a task involving the use of GRAPE, simply by changing an input 
parameter.. Fig. 3.13 shows the task time shares, while fig. 3.14 shows the total execution time 
forr the application that does not make use of GRAPE. Measurements data and simulation 
resultss are compared. 

Fig.. 3.13 shows that the force computation task dominates the system activity. From 
aa comparison with fig. 3.11, where the force computation share is remarkably smaller, it 
becomess clear how effective is GRAPE in optimising this task. In fig. 3.14 the execution 
timee for the code that uses GRAPE1 is also plotted to show how large is the speedup achieved 
thankss to the GRAPE. 

Predictions s 

Thee above discussion highlights the need for a faster host and communication interface. Our 
modell  has been used to forecast the benefit obtainable by operating such improvements. 

Wee modified our model to simulate a host twice as fast as our present host, and with 
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Figuree 3.13: Model validation for a system not using GRAPE. Since the force computation time 
sharee for this code is by far larger than the other task shares, the y-axis scale has been changed to 
makee data more readable. 
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Figuree 3.14: Model validation for a system not using GRAPE. Comparison of the total execution 
timess of the GRAPE system and the non-GRAPE system. 
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Figuree 3.15: Simulated time shares for a system with a faster host and communication interface, 
butt with the same GRAPE board as GRAPE1. 

communicationn performance two times faster as well.3 In this manner we try to reproduce 
thee system measured in Kawai et al. (1997), consisting of a DEC workstation 500MHz, 
usingg a GRAPE board with 94 pipelines of the GRAPE-4 cluster. The time-shares, and a 
comparisonn of the estimated performance gain of the simulated system with respect to the 
systemm described in the previous section are given respectively in fig. 3.15 and 3.16. 

Thesee figures show that the GRAPE board is used more efficiently now, and the overall 
systemm performance benefits of this. Nevertheless, it appears that when the workload is high, 
thiss performance gain decreases. This is predictable, since in this case the relevance of the 
hostt and the communication interface is not as large as with a lighter workload. The estimate 
inn Kawai et al. (1997) is in agreement with ours, it only attributes a larger time share to the 
hostt computation tasks at small values of N. This discrepancy can be explained considering 
thatt they model JVj = 1.6  N1?2, with no oscillation. In this way, when N < 3600, Ar

i is 
alwayss smaller than 96, i.e. the maximal number of pipelines in a GRAPE board. Now, 
sincee the force computation and communication step is always done in a single iteration, the 
relevancee of GRAPE and the communication interface is reduced. Conversely, if the value of 
N(N( can oscillate and assume values greater than the number of pipelines in a GRAPE board, 
ass it happens in our model, two or more iterations are necessary, increasing the relative load 
off  the communication and GRAPE computation tasks. 

Anotherr use of our model is the estimation of the performance gain that can be reached 
byy improving the communication operations. As mentioned above, the i-particle send and 

3Moree precisely, the performance is set to be two times faster for the send operations, and five times 
fasterr for the receive operations, in order to reproduce in any aspect the performance figures given in Kawai 
etet al. (1997). 
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Figuree 3.16: Simulated performance gain for a system with a faster host and communication 
interface,, but with the same GRAPE board as GRAPE1. 

thee result retrieval are performed in a buffered fashion, where data are sent for a number 
off  particles always equal to Np, also when TVj is less than Np. For the result retrieval, the 
situationn is even worse; in that case, the operation is performed always for 96 particles, i.e. 
thee maximal number of GRAPE pipelines. 

Onee may then wonder how much the system performance could benefit, if this communi-
cationn protocol is improved. We simulated a situation where the send and receive operations 
aree accomplished by transmitting a variable size packet of up to Np particles per time, in 
aa fashion similar to the j-particle send. However, an extra amount is added to the packets 
too represent the defective pipelines in the GRAPE board. Every GRAPE board includes 96 
pipelines,, but some of those can be defective. We assume the worst-case situation, in which 
thee Nd = 96 — Np defective pipelines are the first ones to be accessed. Assuming that data 
regardingg N, = N particles have to be transmitted, the operation that we model consists in 
writingg to (or reading from) the first AT non-defective pipelines. Then our packet contains 
NNdd + N items. 

Thee results of this simulation are shown in fig. 3.17 and 3.18. The simulated board 
hass 94 pipelines working, and 2 defective. It can be seen how littl e influence the discussed 
modificationn has on the system performance. In this case, the model forecast discourages 
thee enterprise of implementing such a modification in the real system. This example shows 
howw performance modelling can be useful in evaluating whether a new project is promising, 
or,, as in this case, it is likely to be unsuccessful. 
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Figuree 3.17: Simulated time shares for a system with modified communication operations. The 
GRAPEE board is the same as GRAPE1. 
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Figuree 3.18: Simulated performance gain for a system with modified communication operations. 
Thee GRAPE board is the same as GRAPE 1. 
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Figuree 3.19: Model validation: comparisons of the overall execution times (real and simulated). 

3.4.22 Parallel direct code simulations 

Validatio n n 

Inn order to check the validity and the versatility of our model, we compare our simulation 
resultss with the performance analysis data presented in section 2.4. In the first case, we 
considerr a situation with 2 processors, each one connected to a GRAPE; in the second case, 
wee scale up to 24 processors. This corresponds to the architecture at our disposal, described 
inn section 2.2.1. Each run, either real or simulated, consists of 300 iterations, with N ranging 
fromm 1024 to 16 384 for the non-GRAPE case, and to 32 768 for the GRAPE case. As initial 
conditionn in the real runs we used, as in the serial case, a Plummer model (Plummer, 1915). 

Timingg results for the overall execution time are presented in fig. 3.19. We show results 
forr the non-GRAPE case, with two different values of P, and for the GRAPE case with the 
twoo GRAPEs each attached to its own host. The ability of our model to fit the measurement 
valuess can be readily inferred from this figure. The worst case error amounts to ~ 40% for 
thee non-GRAPE case with P = 24, N = 2048 (a case that lies well outside the parameter 
rangee that we are really interested in), whereas the average error is ~ 10%. 

Besidess the overall timing, we also show the fraction of time spent to perform each 
task.. Fig. 3.20 and 3.21 are for the non-GRAPE case, and fig. 3.22 is for the GRAPE case. 
Itt can be seen in figures 3.20 and 3.21 how the different application tasks scale with N, i.e. 
withh the total workload. For the case with P = 24, shown in fig. 3.21, a large communication 
overheadd at low values of N is visible. 

Thee large share of execution time taken by the force computation task is a clear evidence 
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Figuree 3.20: Model validation for the parallel non-GRAPE system. For each task, the ratio 
Uask/UotUask/Uot is shown, as a function of N. Here a system with two processors is shown. Points are 
measurementt data from test runs, lines are simulation results. The scale on the y-axis does not 
startt from 0 (cf. fig. 3.13 for the serial case). 
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Figuree 3.21: Model validation for the non-GRAPE system. Same as fig. 3.20. In this case a system 
withh 24 processors is shown. 
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Figuree 3.22: Model validation: time shares of the GRAPE system. See also fig. 2.16 on page 46 
forr the performance measurements of the real system. 

off  the need for a tool to accomplish this task faster. Fig. 3.22 shows how effectively GRAPE 
solvess this problem. The relative importance of the force computation task has been drasti-
callyy reduced by using GRAPE, even though at the cost of a large communication overhead 
withh the SPD. 

Systemm comparison. Fig. 3.19 shows that the GRAPE system is two orders of magnitude 
fasterr than the non-GRAPE system having the same number of processors, while with re-
spectt to the most powerful non-GRAPE configuration available, the one with 24 processors, 
thee performance gain is still about one order of magnitude. Our model can reproduce the 
behaviourr of both systems quite satisfactorily. In the following, we use our model to predict 
howw this behaviour changes as a consequence of system modifications. 

Predictions s 

Inn this section we present some examples of the use of our model in order to predict the 
performancee of systems where either hardware or software modifications have been carried 
out.. Performance estimation and algorithmic design are the main fields of application that 
ourr simulation model is designed to serve. 

Clusteredd GRAPEs vs distribute d GRAPEs. A fundamental question that we want 
too answer is whether it is more efficient to connect several GRAPEs to the same host node, 
orr to have a network with several nodes, each one being the host of a GRAPE. The first 

comm.. with GRAPE 
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Figuree 3.23: Simulation of different host-GRAPEs configurations. The execution time for each 
simulatedd configurations is divided by the timings of the fastest run, which is in all cases the one 
withh P = 1 and GRAPEs = 4. The actual time range can be inferred from fig. 3.19. 

configuration,, which also reflects the original system architecture for this device,4 does not 
exploitt a multiprocessor host in order to perform the particle search in parallel but, on the 
otherr hand, does not incur any overhead cost for the two global communications required 
byy the parallel code. The configurations that we simulated contain 1, 2 or 4 GRAPEs, 
eitherr connected to one single host, or distributed one GRAPE per host. The result of our 
simulationn is shown in fig. 3.23. The total number of particles is increased up to 32 768 
particless per GRAPE board. It can be seen that the performances are almost equal for all 
casess having the same number of GRAPEs. The gain for the multiprocessor configuration to 
distributee the local search, is roughly of the same amount as the loss due to communication 
overhead.. It can be inferred that both hardware configurations analysed here, i.e. localised 
SPDss versus distributed SPDs, perform about equally well, the single host configuration 
performingg slightly better. 

AA more realistic AT-body code. The code modelled in the preceding sections is a basic 
A-bodyy code. State-of-the-art astrophysical codes will contain additional functionality, e.g. 
too model close encounters to binary stars and the evolution of stars. In state-of-the-art direct 
A-bodyy codes, a binary star is treated as a single entity. When a third star approaches the 
binary,, the motion of the two components of the binary, plus the encountering star, is resolved 
analytically,, by means of a rather complex procedure (Funato et al., 1996). This additional 
functionalityy must be provided by the host, leading to an additional workload. In this case, 

4I.e.. the GRAPE-4 system at the University of Tokyo, consisting of 36 GRAPE boards connected, in a 
hierarchicall  fashion, to a single workstation (see section 1.3 and fig. 1.5). 

PP =  1 ,  GRAPEs =  1 
PP =  2 ,  GRAPEs =  2 
PP =  1 ,  GRAPEs =  2 
PP =  4 ,  GRAPEs =  4 
PP =  1 ,  GRAPEs =  4 
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Figuree 3.24: System performance comparison when an extra task, modelled as t = r/  Ni/P, 
iss added, where rj  is an experimental factor of proportionality. In this case is N = 32 768. 

itt is interesting to see when the multiple host configuration begins to outperform the single 
hostt configuration. This extra task is assumed to be linearly dependent on Nt through a 
coefficientt rj, and perfectly parallelisable. This last condition is likely to hold in reality as 
longg as P remains reasonably small. 

Wee simulated the case with N = 32 768, and compared the "clustered" case where 
onee processor hosts four GRAPEs to the "distributed" case where four processors host one 
GRAPEE each. From the previous section, the clustered configuration is faster when the 
algorithmm without the extra task is used. The results are shown in fig. 3.24. We can see that 
thee configuration with P — 4 begins to perform better at r\ ~ 0.01, when the time spent in 
thee extra task is still negligible compared to that spent in the force task (at least for the 
distributedd case). In order to compare r\ with the parameters reported in table 3.2, we have 
too divide it by the processor time cycle, which is 0.5  10- 5 ms. This results in TV ~ 2000, i.e. 
aboutt ten times the value of the extrapolation or local force task parameter in table 3.2. The 
amountt of computations for the close encounters procedure mentioned above, is of this order 
off  magnitude. This example shows that the multiple host configuration is more appealing 
becausee of its better performance potential. 

Distribute dd GRAPEs load balancing. A problem in the distributed GRAPEs config-
urationn is the load balancing of the force computation task. When the number of pipelines 
perr board is not the same for all the boards, the boards with the highest number of pipelines 
aree faster in performing the force computation, because they handle more i-particles per 
unitt time. In our case, the idle time is up to 10% of the total averaged time of the two 
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Figuree 3.25: Load balance optimisation. Workload imbalance for a configuration with two 
GRAPEss on different hosts. 

GRAPEE boards, which means that the fastest board is idle for about 20% of the time. For 
thee sake of readability, the idle time was not shown explicitly in fig. 3.22, but was included in 
thee communication with GRAPE task. We used our performance model to find the optimal 
partitioningg of particles between the two GRAPEs in the distributed configuration, where 
eachh GRAPE is connected to its own host. 

Fig.. 3.25 shows the result of this study. The configuration analysed here includes a 
GRAPEE with 62 pipelines, called GO, and a GRAPE with 94 pipelines, Gl. The total num-
berr of particles is 32 768. The figure shows how the total execution time changes, as the 
numberr of j-particles on Gl is increased in order to better exploit its higher computational 
potential.. The optimal distribution, i.e. the one with the minimal idle time, is not reached 
whenn the ratio r between the j-particles on the two GRAPEs is equal to 94/62 ~ 1.52, i.e. 
thee ratio between the pipelines, but at a slightly higher value of r. Unbalance between the 
twoo GRAPEs is due to both computation and communication. When r = 94/62, only com-
putationn is balanced. The host-GRAPE communication time is faster for Gl, because the 
timee cost of the receive result operation is inversely proportional to the number of pipelines 
(seee table 3.1). Then, at r = 94/62, Gl is still faster than GO, because of its better com-
municationn performance. A further slight overload of Gl, such that r ~ 1.6, balances the 
overalll  execution time of the two devices. 

Thiss somehow unexpected result, produced by the complex dependence of the compu-
tationn and communication tasks on Nt and Nj, illustrates how a detailed simulation is useful 
too analyse the behaviour of a hybrid architecture. 



800 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES 

HOTT on Delta 

real l 

112 2 

528 8 

864 4 

--

simulated d 

144 4 

955 5 

1433 3 

--

GDTT on T3E 

real l 

0.175 5 

0.394 4 

--

simulated d 

0.145 5 

0.468 8 

--

seq.. tree on GRAPE-5 

real l 

3.00 0 

2.00 0 

6.90 0 

3.11 1 

simulated d 

4.07 7 

2.03 3 

9.57 7 

4.99 9 

buildd tree 

traversee tree 

computee force 

host-GRAPEE commun. 

Tablee 3.5: Comparison of the timings breakdown between the real measurements and the simula-
tionn risults. Timings are in seconds for a single code iteration. The HOT on Delta case refers to a 
8.88 million particle run on 32 i860 40 MHz processors;; GDT on T3E refers to a 0.5 million particle 
runn on 16 Alpha 300 MHz processors, and seq. tree on GRAPE-5 to a one million particle run 
onn a 500 MHz Alpha processor connected to a GRAPE-5 board. 

3.4.33 Parallel treecode 

Modell  validation 

Wee present here the result of running our simulation model of the treecode, described in 
sectionn 3.3.2. We use this model with parameter values such that performance measurements 
reportedd in the literature are reproduced. We show for each case the scaling with the total 
particlee number N of each task of the code, compared with the corresponding real system 
timings,, as reported by the measurements authors. Finally we present a plot comparing 
thee total compute time for a code iteration of each configuration. We had to deal with 
thee fact that in most cases data were available only for one measurement run. Therefore a 
conclusionn on the ability of our performance model to reproduce the scaling behaviour of the 
simulatedd system can only be incomplete from these data. The partial information that we 
obtainn from this work is nevertheless fundamental to provide us the main guidelines for the 
realisationn of a parallel environment for the simulation of JV-body systems, as reported in the 
sectionn on model forecasts. Once this environment will be realised, we will be able to validate 
ourr performance model thoroughly, having a system of our own to carry out performance 
measurements.. In table 3.5 we show the comparison between the timings breakdown of the 
reall  measurements and our simulation results. In fig. 3.27 the compare the global timings of 
thee various cases. 

HO TT on Touchstone Delta. The Touchstone Delta was a one-of-a-kind machine installed 
att Caltech in the early nineties. It consisted of 512 i860 computing nodes running at 40 MHz, 
andd connected by a 20 MB/s network. The performance measurements reported in (Warren 
&&  Salmon, 1993) are based on a run using the whole 512 nodes system, and consist in a timing 
breakdownn of a code iteration taken during the early stage of evolution of a cosmological 
simulation,, when the particle distribution is close to uniform. The total number of particles 
iss N = 8.8  106. Implementation limitations prevented our performance model to simulate 
5122 concurrent processes, so that we limited our simulation to 32 processes, and scaled 
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Figuree 3.26: Timings of the GDT tasks. The real system timings are also reported. The hardware 
architecturee is a Cray T3E. Performance scaling with the number of processors, with N = 500000. 

downn 16-fold the measured compute time reported in (Warren & Salmon, 1993). Since the 
communicationn overhead for that run was just ~ 6%, we assumed a linear scalability of the 
code.. The timings breakdown of our simulation is presented in table 3.5. The real system 
measurementss are reported for comparison. 

Thee table shows that the force computation task and the tree traversal are the most 
expensivee tasks. The relative computational weight of each task is qualitatively well repro-
ducedd by our model. Quantitatively, a large discrepancy between our model and the real 
systemm timings originates from an over-estimation of the tree traversal and the force compu-
tationn tasks, which also results in over-estimating the total time, as shown in fig. 3.27. We 
mustt conclude that in this case our model is not sufficiently well matched. 

GDTT  on T3E. This case reproduces the configuration described in (Springel et al., 2001), 
wheree the GADGET code is run on the T3E hosted at the supercomputing centre in Garch-
ing,, Germany. Each computing node has a frequency of 300 MHz, and the communication 
networkk has a throughput of 500 MB/s. Three cases are reported in (Springel et al., 2001), 
eachh running the same cosmological simulation, where a system of 500 000 particles is evolved 
forr 3350 time steps. The difference among the three cases is in the number of processors used. 
Sincee in this case measurements from three different hardware configuration are reported, we 
couldd compare our model results with a larger set of timing values. As reported in (Springel 
etet al., 2001), we assumed that only 5% of the particles are selected on average at each time 
stepp for force computation. Similarly, we assumed that the local tree is rebuilt each 10 time 
steps.. Timing breakdowns are shown in fig. 3.26 and in table 3.5. 

Fig.. 3.26 shows the performance gain as the number of processors increases. The trend 
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inn the measurements suggests a saturation in the attained performance, arguably due to 
ann increasing load imbalance. This trend is not visible in our model results, because load 
imbalancee is not modelled. Data in table 3.5 show that, with respect to the HOT case, now 
thee tree build task is more expensive, despite the fact that it is performed only every ten 
iterations.. This is to be expected, since the tree build task is performed for all particles, 
whilee the tree traversal and force computation tasks are performed only for a small fraction 
(5%)) of the selected particles. Also in this case our model results match the real system 
timings.. Springel et al. (2001) did not provide separate values for the tree traversal and the 
forcee computation tasks, so that only the aggregate value can be reported on the plot. 

Sequentiall  treecode on GRAPE-5. Here we simulate the configuration described in 
(Kawaii  et a/., 2000). In that case, a modified treecode is used to simulate a system containing 
onee million particles, and groups of ~ 2000 particles share the same interaction list. This 
codee is run on a Compaq workstation with a 500 MHz Alpha 21264 processor, connected 
too a GRAPE-5 board containing 96 virtual pipelines,5 each one able to compute a force 
interactionn in 75 ns. Estimating a force interaction as 30 flops, the aggregate performance 
off  a GRAPE-5 board is 38.4 Gflop/s. Table 3.5 shows the results of our simulation model, 
comparedd with the real system timings, as reported in Kawai et aL (2000). 

Inn this case, the force computation task is performed by the GRAPE. An important 
fractionn of the total timing is taken by the communication between the host and the GRAPE. 
Thee decrease of importance of the tree traversal task, due to the particle grouping technique, 
iss clearly observable. 

Casess comparison. We compare here the three cases presented above. We show in 
fig.fig. 3.27 a plot of the time taken by a code iteration versus N, as obtained from our simulation 
model,, compared with the real system measurements. The value for the HOT code on the 
Touchstonee Delta is 16 times greater than the value reported in Warren &; Salmon (1993), 
inn order to scale their 512 processor run to our 32 processor simulation. Conversely, scaling 
ourr simulation data for 32 processors to 512 processors, would have resulted in simulation 
valuess overlapping the values for the GRAPE case. 

Thee simulation values match within approximately a factor 2 the real system measure-
ments.. In the next section we present results of a performance simulation, where our model 
iss used to forecast the behaviour of other configurations. 

Modell  forecasts 

Inn this section we explore the possibility of using a hybrid architecture consisting of a dis-
tributedd general purpose system, where single nodes host zero or more GRAPE boards. We 
spann the two-dimensional parameter space defined by the two quantities P, the number 

55 A GRAPE-5 board contains in fact 16 physical pipelines, each one running at 80 MHz, which is 6 times 
thee speed of the board bus. The board "sees" 16*6 = 96 logical pipelines, running at 80/6 MHz. Appropriate 
hardwiringg manages the data exchange between the pipelines and the board. 
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Figuree 3.27: Predictions of a code iteration for the three simulated configurations. Note that 
GADGETT moves only 5% of all particles on average in a time step, and the HOT case refers to a 
systemm with 32 processors, instead of the 512 of the original system. 

off  nodes, and G, the number of GRAPEs. We assign to those quantities values as follows: 
PP € {1,2,4,8,12,16,20,24}, G e {0,1,2,4,8,12,16}. We simulate the same software config-
urationn as described in the previous section with respect to the case related to the sequential 
treecodee on GRAPE-5. The SPD we simulate in this case is the GRAPE-4 (Makino et al, 
1997),, whose performance per board is 30 G9op/s, comparable to GRAPE-5's. It provides 
aa higher accuracy with respect to GRAPE-5, and is used in fields as Globular Cluster dy-
namicss on Planetesimal evolution (Hut & Makino, 1999), where high computing precision is 
required.. The general purpose nodes are assumed to perform a floating point operation in 
22 ns, and the communication network is assumed to have a 100 MB/s throughput. 

Whenn a node of the distributed system is a GRAPE host, forces on its local particles 
cann be computed on the GRAPE that it hosts. Forces on particles residing on nodes that 
doo not host GRAPEs can be computed on remote GRAPEs, provided that both particle 
positionss and particle interaction lists be sent to the appropriate GRAPE host. This implies 
aa very large communication traffic. With our simulation we try to evaluate the effect of this 
communicationn overhead. 

Fig.. 3.28 shows our results. It is clear that, as long as all nodes are connected to 
onee or more GRAPEs, a significant performance gain is obtained. For comparison, we also 
providee timings of a system without GRAPEs. When not all nodes are GRAPE hosts, 
thee very large communication overhead due to sending particle and interaction list data is 
disruptivee for performance. This result suggests that the communication task needs a very 
carefull  analysis, in order to design an efficient parallel treecode for hybrid architectures. 
Heree we assumed that an "un-graped" node sends all its data to a single "graped" node. We 

ADGETT on T3E, 16 PEs 
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Figuree 3.28: Timings for a system with P processors and G GRAPEs. Comparison with a system 
withoutt GRAPEs (marked as 0 G) is also provided. The software configuration is the same as in 
thee treecode on GRAPE-5 described above. The total number of particles is Â  = 1000 000 . 

discusss this point further in the next section. The plot in fig. 3.28 also features an oscillatory 
behaviour,, particularly evident in the case with 8 GRAPEs. The local minima (i.e. better 
performances)) correspond to configurations where P is an exact multiple of G. In this case 
thee computational load on the GRAPEs is perfectly balanced, whereas in the other cases 
somee GRAPE bears a higher computational load from remote data. 

3.4.44 Direct code vs treecode 

AA main goal of our research is to develop a distributed hybrid architecture optimised for the 
treecode.. The treecode does not compute all particle-particle interactions directly. Instead, it 
computess partial forces on a given z-particle from a truncated multipole expansion of groups 
off  particles, see section 1.4.2. The force interaction from a group is computed if the group is 
farr enough, according to a Multipole Acceptability Criterion (MAC). Groups become larger 
andd larger as their distance from the i-particle increases. This technique allows a decrease in 
thee computing time of the force evaluation to ö(N\ogN), at the cost of a reduced accuracy, 
duee to the truncated multipole expansion. Moreover, this asymptotic performance is reached 
forr large values of N. Because of this, the treecode is widely used to simulate systems like 
clusterss of galaxies, or large scale structures, where high accuracy is not needed, and N is 
large. . 

Forr a sufficiently large problem a treecode can outperform a direct code also for the 
simulationn of systems that require high accuracy. In order to increase the treecode accuracy, 
wee can tune two parameters: the highest term of the multipole expansion, and the MAC 
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parameterr that decides if a group is far enough to compute the interaction. As already 
discussedd in section 1.4.2, the most widely used MAC (see, e.g., Barnes & Hut, 1986) states 
thatt a multipole expansion is accepted if 

ll-<e-<e (3.i) 

wheree / is the size of the cell containing the group, d is the distance of the i-particle from the 
cell,, and 6 is the MAC parameter. For the low accuracy computations that usually involve 
thee treecode, is 6 < 1. A more accurate code will run more slowly. 

Inn order to have a higher accuracy code, 0 has to be smaller. A realistic choice for 
aa multipole expansions up to the quadrupole term, is 6 = 0.2. For a comparable accuracy 
withh a multipole expansion up to the octupole term, we have to set 6 = 0.5 (McMillan &: 
Aarseth,, 1993). There is a trade-off between the two choices. A smaller 6 implies a much 
largerr amount of interactions to compute; it has been shown that the number of interactions 
scaless as 0~3 (Makino, 1991b). On the other hand, a multipole expansion up to the octupole 
termm implies a larger number of computations to obtain the multipole terms, and a larger 
numberr of computation to evaluate the force contributions from the octupoles. With our 
model,, we can simulate the two cases, and obtain an indication of the most effective choice. 
InIn our simulations, we assume that also the force contributions from the multipoles can be 
computedd on the GRAPE, by means of a pseudo-particle transformation (see chapter 4). In 
thiss case, multipole expansions are converted to pseudo-particle distributions that produce 
thee same force. In this way, GRAPE can also compute force contributions from the multipole 
terms. . 

Moreover,, we compare the performance of two different parallel treecodes, i.e. the HOT 
andd GDT codes described in section 3.3.2. The main difference between the two codes is 
thatt in HOT, i.e. the parallel treecode originally developed in Warren & Salmon (1995), each 
processorr computes forces only on the local i-particles. Information about remote particle 
groups,, the so-called local essential tree, is obtained before the force computation starts. 

Conversely,, in the GADGET code (Springel et al., 2001) (referred here as GDT), pro-
cessorss do not exchange information about remote particle groups. Instead, local i-particles 
aree sent to remote processors. With our model, we can see which approach is better suited 
forr a distributed hybrid architecture. 

Ourr comparison has the goal to assess whether a system size exists at which treecodes 
outperformm the direct code for the simulations of systems requiring high accuracy. Then 
wee use our performance model to find which hardware-software combination gives the best 
performance,, provided that high accuracy is ensured from the treecodes, either by decreasing 
8,8, or increasing the multipole order. Therefore, we choose for each method the most suitable 
hybridd architecture. Namely, we simulate the direct code running on a system including a 
singlee host with 16 GRAPEs attached to it, since the clustered configuration has the best 
performance,, as shown in section 3.4.2. As treecodes place a higher load on the host, the 
optimall  system for them is a distributed 16 processor hybrid machine, each node hosting a 
GRAPEE board. High accuracy from treecodes is obtained by setting 0 = 0.5 with octupole 
termm expansion, and 6 — 0.2 with expansions up to the quadrupole term. 
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Figuree 3.29: Performance of the treecode, compared to the direct code. We report here the 
simulatedd execution times of 300 code iterations. The direct code runs on a single host connected 
too a 16 GRAPE cluster, the treecodes run on a 16 processor machine, each node hosting a GRAPE. 
Quadd refers to multipole expansions up to the quadrupole term, with 6 = 0.2, and Oct to octupole 
expansions,, with 6 = 0.5. Other symbols are explained in the text. 

Fig.. 3.29 shows the results of our simulation. We can see in the figure how the direct 
codee performs better for low TV, but is eventually outperformed by the treecodes. The two 
treecodee implementations show a very similar performance. Both perform better than the 
directt code for high particle numbers, and are faster when an expansion up to the octupole 
termm is used. We can conclude that a distributed hybrid architecture can be the system 
off  choice for the simulation of large astrophysical systems requiring a high accuracy, such 
ass stellar globular clusters. A treecode equipped with the software tools for the accurate 
treatmentt of close encounters could supersede the direct code for the realistic simulation 
off  phenomena such as globular cluster secular evolution, or black hole binary formation in 
mergingg galaxies (Hut & Makino, 1999). 

3.55 Discussion 

AA hybrid architecture is a system with a high degree of heterogeneity among its components, 
whosee complex interplay requires an appropriate tool in order to be understood and opti-
mised.. Performance modelling is an important tool to study the behaviour of such complex 
systems.. We implemented and tested a simulation model able to reproduce the behaviour 
off  hybrid architectures. We validated this model against our GRAPE-DAS system, both 

Directt  code 
GDTT Quad 
HOTT Quad 

GDTT Oct 
HOTT Oct 
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forr the serial and the parallel case. We showed some examples of its use for predicting the 
performancee of other configurations, where hardware and/or software modifications have 
beenn introduced. We simulated the use of several different hardware systems, and numerical 
algorithmss for the solution of the TV-body problem, as the direct particle-particle code, and 
thee treecode. We showed that performance simulation allows us to discover unexpected be-
haviourss of a complex computer system, as in the case described at the end of section 3.4.2. 
Inn our case-studies, distributed hybrid architectures show their superior computational po-
tential,, as compared to "clustered" configurations, when large problems, at the higher limi t 
off  the available computational capability, are considered. 

Ourr research is particularly focussed on the efficient integration of treecodes and hybrid 
architectures.. This could lead to a very high performance computational environment for 
thee solution of the TV-body problem. We validated our treecode model by simulating existing 
configurationss and comparing our results to real system measurements, even though very few 
measurementt data were available, limiting the accuracy of our model calibration. We used 
ourr model to evaluate the performance of a hybrid architecture used to run the treecode, 
andd highlighted that an efficient implementation of the treecode on such architecture is 
madee difficult by an intrinsically high communication overhead. Issues like latency hiding, 
orr partial redistribution of work to remove load imbalance, could help to solve this problem, 
andd will be the object of further research. The model would also benefit from an accurate 
parameterisationn of load imbalance. 

Inn the next chapter, we describe our research in the framework of the aforementioned 
efficientt integration of treecodes and hybrid architectures. We have implemented a version 
off  the treecode, which makes use of pseudo-particles (Makino, 1999; Kawai &; Makino, 2001) 
inn order to represent the multipole expansion of the gravitational potential. This approach 
allowss us to make use of the GRAPE not only for the computation of the force from the 
monopolee term. The pseudo-particle scheme allows the GRAPE to compute force contribu-
tionss from all terms of the multipole expansion. In chapter 4 the pseudo-particle method will 
bee described, together with the accuracy and performance improvements that we introduced. 
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Chapterr  4 

Pseudo-Particlee Powered Treecode: Erro r 
Analysiss and Optimisation* 

Inn this chapter we study the pseudo-particle scheme, which makes it possible to model 
higherr order multipole moments for the treecode on the GRAPE. The treecode, introduced 
inn section 1.4.2, offers excellent scaling for the simulation of self-gravitating systems, but at 
thee cost of limited accuracy. The pseudo-particle approach, where a multipole expansion is 
expressedd in terms of a particle distribution, provides an accuracy that it is easy to tune, 
andd is suitable for making full use of the ultra fast GRAPE Special Purpose Device for the 
gravityy force computation. The GRAPE is introduced in section 1.3 and extensively studied 
inn part I of this thesis. We study the error behaviour of this approach, comparing it with 
thee standard treecode, and introduce improvements that reduce the errors. Furthermore we 
presentt an extension of the pseudo-particle scheme, where pseudo-particles are not fixed in 
space,, but move following the physical particle distribution. This extension decreases the 
computationall  overhead due to pseudo-particle recomputation, and optimises the scheme for 
thee use on GRAPE and on parallel systems. 

4.11 Introductio n 

Thee treecode (Barnes & Hut, 1986), introduced in section 1.4.2, is one of the most popular 
numericall  methods for particle simulation involving long range interactions in astrophysical 
contexts.. Its operation count scales as Ö(N log N), which is a great improvement compared 

^Thiss chapter is based on work published in: 
P.F.. Spinnato; S.F. Portegies Zwart; M. Fellhauer; G.D. van Albada and P.M.A. Sloot: Tools and Tech-

niquesniques for N-body Simulations, in Ft. Capuzzo Dolcetta, editor, Proceedings of the 1st workshop on Com-
putationall  Astrophysics in Italy: Methods and Tools, MemSAIt Suppl. Series vol. 1, pp. 54-65. Societa 
Astronomicaa Italiana, 2003. 

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Pseudo-Particle Powered Treecode: Error Analysis 
andand Optimisation, to be submitted to Journal of Computational Physics, 2003. 
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withh the 0{N2) scaling of the direct particle-particle method, where the force on a particle 
iss computed by directly evaluating the contributions of all other particles (see section 1.4.1 
andd 2.2.2). The treecode speedup is obtained at the cost of a reduced accuracy. The treecode 
groupss particles together according to a tree data structure, where each node of the tree is 
associatedd with a cubical cell in three-dimensional space, and a cell corresponding to a given 
nodee consists of the eight cells corresponding to the eight subnodes hierarchically connected 
too the given node. The treecode attains its 0(N log N) scaling by computing force on a 
particlee i from larger and larger cells as their distance from i gets bigger and bigger. In order 
too decide whether a cell is far enough to be accepted for such force computation, a suitable 
Multipolee Acceptability Criterion (MAC) must be provided. In section 4.3 below MACs are 
discussedd further. 

Thee force contribution is evaluated from a multipole expansion of the particle distribu-
tionn contained in the cell. The accuracy of the evaluation depends on the highest term in the 
multipolee expansion, on the MAC used, and on the actual value chosen for the MAC parame-
ter.. Usually, expansions are truncated at the quadrupole term, leading to an accuracy in the 
forcee in the order of 1% (Salmon & Warren, 1994) for commonly used MAC settings. This 
makess treecodes unsuitable for applications that require a high numerical accuracy. Better 
accuraciess can be obtained by using different MAC settings, but this will greatly increase 
thee computing cost. 

Researchh has been carried out in order to improve the treecode accuracy, by increasing 
thee maximal multipole expansion order (McMillan & Aarseth, 1993). We aim at developing 
aa version of the treecode that allows a tunable accuracy, while limiting the impact on code 
performance.. We design our code in order to be optimally run on a parallel platform that 
includess the GRAPE boards (Makino & Taiji, 1998). GRAPE, as described in section 1.3, 
iss a special purpose device implementing an array of fully hardwired pipelines, each one 
computingg the gravitational interaction between two particles in a single clock cycle. 

Ourr code derives from the pseudo-particle approach proposed by Makino (1999), and 
implementedd by Kawai & Makino (2001), developing an early idea of Anderson (1992). 
Makinoo and Kawai implemented a serial pseudo-particle treecode that makes use of GRAPE 
(Kawai,, 1999; Kawai & Makino, 2001). The algorithm that they propose places the pseudo-
particless in fixed positions on a spherical surface surrounding the physical distribution, and 
computess the pseudo-particle masses as weighted sums of the physical particle masses (see 
eq.. (4.1) below). The pseudo-particle approach allows the treecode to take advantage of both 
thee very high computing speed offered by the GRAPE, and makes it very easy to increase 
thee code accuracy by increasing the maximal multipole order. In the standard treecode, 
multipoless are computed in terms of series expansions (see, e.g., McMillan & Aarseth, 1993). 
Mathematicall  expressions of the higher moment terms are increasingly cumbersome, and 
nott easy to implement. Conversely, in the pseudo-particle scheme, increasing the maximal 
multipolee order of the expansion is simply a matter of increasing the number of pseudo-
particless that make up the expansion. 

Whenn one runs a code using multipole expansions, such as the treecode, with the 
GRAPE,, a fundamental problem arises. GRAPE can only compute particle-particle inter-
actions,, hence the advantage of lumping particles to obtain a single multipole expansion is 
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wasted:: in the standard treecode formulation, such expansions are expressed in terms of 
spatiall  derivatives of 1/r2, consequently GRAPE cannot compute particle-multipole interac-
tions.. This implies that all interactions involving a multipole term must be evaluated by the 
hostt computer. The key idea of the pseudo-particle approach is to use the Anderson (1992) 
formulationn for the multipole expansion which, instead of a complicated polynomial, is given 
inn terms of a pseudo-particle distribution. In this way, GRAPE is able to compute also the 
forcee contribution from higher multipole terms, since they are now expressed in terms of a 
particlee distribution. 

Inn order to have a quantitative estimate of the accuracy in the pseudo-particle scheme, 
wee have carried out an error analysis study, comparing the accuracy of the pseudo-particle 
codee with two implementations of the standard treecode. We compare our code with the code 
off  Salmon & Warren (1994), and with GADGET (Springel et a/., 2001). We introduce a mod-
ificationn in the method that improves its accuracy when the physical particle distribution is 
highlyy inhomogeneous. Moreover, we modify the Makino and Kawai pseudo-particle method 
byy introducing pseudo-particle position extrapolation, in order to decrease the overhead due 
too pseudo-particle re-evaluation. Instead of recomputing the pseudo-particle expansion at 
eachh iteration, we extrapolate the pseudo-particle positions for a number of time-steps; in or-
derr to accomplish this, we define a pseudo-particle velocity. Such scheme is suited for use on 
parallell  systems hosting GRAPE boards, as discussed in section 3.4.4. We first present the 
pseudo-particlee method, and discuss the improvement that we introduce. We continue with 
thee error evaluation, then present the moving pseudo-particle scheme, and finally discuss our 
resultss and future work. 

4.22 The pseudo-particle method 

Thee pseudo-particle method approximates the multipole expansion of a given set of particles 
byy means of a pseudo-particle distribution. The pseudo-particle positions are fixed, and lie 
onn a spherical surface surrounding the real particle distribution (Makino, 1999; Kawai, 1999). 
Optimisedd distributions, with minimal number of pseudo-particles, have been obtained up to 
thee quadrupole moment (Kawai, 1999; Kawai &; Makino, 2001). The mass of each pseudo-
particlee is given by: 

11 N p i 
M**  = 7cE,m;E,Gr ) (2«+i)fl(«*7i*) , (4.i) 

ii  3 o 

wheree M* is the mass of pseudo-particle k, K is the total number of pseudo-particles, N 
iss the number of real particles from which the pseudo-particle expansion is computed, rrij 
iss the mass of the real particle j , p is the maximal order of the multipole expansion, Tj is 
thee norm of the position vector of particle j , o is the radius of the pseudo-particle sphere, 
PiPi is the modified Legendre polynomial of order Z, and finally 7jfc is the angle between the 
positionn vectors of particle j and pseudo-particle k. 

Ass will be shown later, the pseudo-particle approximation based on a spherical dis-
tributionn suffers from limitations in representing non-uniform mass distributions. In order 
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too solve this problem, we introduce a simple modification, that substantially improves the 
accuracyy of the method. It consists in retaining the spherical pseudo-particle distribution, 
withh pseudo-particle masses that now represent only the higher multipole moments of the 
reall  particle distribution 71, starting from the quadrupole moment. An extra pseudo-particle 
iss added at the centre of mass of 71, with mass equal to the total mass of 71. The extra 
pseudo-particlee accounts for the monopole and dipole moment, and improves the ability of 
thee pseudo-particle distribution to represent non-uniform real distributions. 

Thee higher order expansion of 71, i.e. the part that does not contains the monopole 
andd dipole terms, is obtained with a simple expedient. It consists in computing the pseudo-
particlee masses still using equation (4.1), but adding to the N particles of 72- a "virtual" 
particlee which has the effect of removing the monopole and dipole moments from the expan-
sionn of 71. This virtual particle is placed at the centre of mass of 71, and has a mass equal 
too the opposite of the total mass of 71. The pseudo-particle distribution resulting from this 
combinationn of the N real particles and the negative mass particle accounts for the higher 
orderr expansion of 71. Finally, we obtain the complete multipole expansion by adding to this 
pseudo-particlee distribution the extra pseudo-particle located at the centre of mass of 71. 

4.33 Erro r  evaluation 

4.3.11 Comparisons 

Firstt we validate our implementation of the unmodified pseudo-particle method against the 
implementationn of Kawai and Makino. In Kawai & Makino (1999) the error on the potential 
generatedd by pseudo-particle expansions up to a given multipole order p is presented. The real 
particlee distribution consists of a single particle i of unit mass placed at position p = (1,0,0) 
inn spherical coordinates. The potential 4» = — l / |r — p| generated by i is computed along 
aa straight line, at points r = (r, 2TT/3,0), for r varying within a certain range. The relative 
errorr | ($p — $ ) / $ |, where $p is the potential given by the pseudo-particle expansion up to 
orderr p, is presented in fig. 4.1 for both our implementation and the one of Kawai & Makino 
(1999). . 

Ourr values, labelled "PP", are in very good agreement with Kawai and Makino's values, 
labelledd "KM" . Irregularities in the error profiles lead to local differences, arguably due to 
differencess in the exact positions of the pseudo-particles between the two implementations, 
whichh result in local differences in the value of the potential. The global trend is however 
veryy similar in the two cases. 

Inn the next section we will study the worst-case error behaviour of our implementation, 
comparingg our results with a similar analysis carried out in Salmon & Warren (1994). 
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Figuree 4.1: Relative error in the evaluation of the potential generated by a unit mass particle placed 
att position p = (1,0,0) in spherical coordinates. The error is measured at position r = (r, 27r/3,0), 
andd plotted as a function of r. Values from our implementation are plotted with solid lines, and 
labelledd as PP. Values from Kawai & Makino (1999) are plotted with dashed lines, and labelled as 
KM.. p is the maximal multipole expansion order. The pseudo-particle sphere radius is o = 1. 

4.3.22 Worst-case error 

I tt is important to analyse the behaviour of the method in the worst case configuration, i.e. 
thee situation leading to the highest error in a force evaluation, even though this situation is 
unlikelyy to arise in actual simulations. This analysis gives upper bounds to the code error, 
andd provides a good test for comparative analysis of different multipole acceptability criteria. 
Inn order to perform the worst-case analysis of our code, we follow the same procedure as 
Salmonn & Warren (1994) (referred as SW hereafter). The worst-case configuration consists 
off  two point particles placed at two opposite corners of a cubic cell. 

Preliminaryy tests showed that the highest error occurs when the mass mi of the particle 
closerr to the evaluation point is much lower than the other particle mass. We set then 
mii  = 10- 5 and m  ̂ = 1 — m\. We compute the gravitational acceleration exerted by the two 
particless along a straight line overlapping with the diagonal of the cell where the particles 
aree located. We compute both the exact acceleration a, and the acceleration given by the 
pseudo-particlee expansion up to a given multipole, a^,. From that, the error is evaluated as: 

__ | a - ap | 
(4.2) ) 
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Figuree 4.2: Comparison of the worst-case errors in the acceleration. Data are plot as a function 
off  the opening parameter 6. Results from our implementations are labelled PP for the canonical 
pseudo-particlee method, and PPmod, for the modified method where an extra pseudo-particle is 
added.. The Salmon & Warren (1994) results are labelled SW; p is the maximal multipole expansion 
order. . 

Thee Multipole Acceptability Criterion (MAC) we adopt is the Minimal Distance (MD) 
criterionn (Salmon k. Warren, 1994). According to the MD MAC, a multipole expansion is 
acceptedd if 

ll-<e-<e (4.3) 

wheree I is the cell size, d is the minimal distance of the evaluation point from the cell, and 
99 is an input parameter, usually 9 < 1. The original Barnes & Hut (1986) MAC differs 
fromm the MD MAC in the definition of d. Barnes and Hut define d as the distance of the 
evaluationn point from the centre of mass of the cell. 

Wee evaluated the error defined in eq. (4.2) for p £ {1,2,4,8}, and compared our results 
withh the results presented by SW, fig. 5. The results are shown in fig. 4.2. Data are plotted 
ass a function of the opening parameter 9, in order to show what is the largest error to 
bee expected for a given value of 9. We plot our results, labelled "PP", and SW's results, 
labelledd "SW". Data for the case p = 2 are omitted for the sake of readability. We also 
plott the error of our modified pseudo-particle method, described above. Results from this 
methodd are labelled "PPmod". Since our modified method adapts very well to highly non-
uniformm distributions, the distribution used for the PP method is not the worst case for the 
PPmodd method. Numerical tests showed that the worst case is now when mi is about one 
orderr of magnitude smaller than 7712, with very littl e dependence of the errors on the precise 
valuee of the masses. We thus chose mj = 0.1. In all cases, the cell size is I = 1, and the 
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pseudo-particlee sphere radius is a = 1. 

Thee PP curves are in very good agreement with the SW curves, with a tendency for the 
PPP curves to have smaller errors for lower values of 0 in the high precision cases (p € {4,8}) . 
Thee agreement of our results with the MD case of Salmon and Warren is not surprising, 
sincee we adopt the same criterion and the same geometry for the error analysis. The PPmod 
resultss are always better than the PP and SW cases, especially for the low precision cases. 
Thee improvement obtained with the PPmod method will be also observed in the statistical 
errorr analysis. 

4.3.33 Statistical error 

Wee compare the statistical error of the pseudo-particle code with the standard treecode 
resultss presented in Salmon k Warren (1994). We use this implementation as our benchmark, 
sincee multipole terms are computed there with the standard method, i.e. by means of series 
expansions.. Specifically, we compare our results with the isolated halo case of SW. In that 
experiment,, 4942 particles were chosen at random from a high density core distribution, and 
thee error analysis was performed on them, using eq. (4.2) for the error estimation. Our 
results,, obtained using the MD MAC (in)eq. (4.3), and opening angle 0 = 1.1, are compared 
withh the same case presented in Salmon & Warren (1994), fig. 11. The configuration that 
wee used includes 4096 particles. In our implementation of the pseudo-particle treecode, each 
non-terminall  cell is associated with a pseudo-particle distribution located on the surface of 
aa sphere whose radius is one half of the cell size. A sphere radius smaller than the cell size 
givess a better accuracy (Kawai, 1999), and preliminary tests gave us one half of the cell size 
ass the optimal value for the sphere radius. The pseudo-particle distribution of a parent cell 
iss obtained recursively from the distributions of its child cells. A particle-cell interaction now 
becomess a set of particle-particle interactions between the particle and the pseudo-particle 
distributionn of that cell. The multipole expansion is computed up to the quadrupole moment. 

Thee error distribution of the pseudo-particle scheme is shown in fig. 4.3. We computed 
thee relative error (eq. (4.2)) for the force on each particle, then obtained the cumulative 
percentilee distribution shown in the figure. This method of analysing the error gives much 
moree insight into the accuracy of the code, than for instance rms or maximal error. An 
optimall  code has a flat error distribution, so that the great majority of errors have about the 
samee value. A code with a wide spread in error values leads to a waste of compute time, since 
increasingg the accuracy in order to reduce large errors, results in unnecessary refinement for 
thosee force computations whose error was already small. See Salmon & Warren (1994) for a 
moree extensive discussion. 

Thee "PP" case in fig. 4.3 shows how much larger are the errors in the unmodified 
PPP code with respect to the standard code. These tests are performed on a dark halo 
distributionn (Hernquist, 1990), which is a highly inhomogeneous particle distribution, having 
aa radial density p(r) oc [r  (1 + r3) ] - 1 .1 A dark halo is the result of the gravitational collapse 

1Nowadayss p(r) oc [r  (1 + r ) 2 ] - 1 (Navarro et ai, 1997) is the most accepted density profile. We chose to 
usee the other profile, to be consistent with the profile used by Salmon k Warren (1994). 
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Figuree 4.3: Error distribution for the PP code, compared with Salmon & Warren data (Salmon 
&&  Warren, 1994). "PP" refers to the unmodified code, "PPmod" refers to the code with the extra 
pseudo-particlee placed at the centre of mass. "PPmod + CSL MAC" refers to the modified PP code 
withh the MAC according to (in)eq. 4.4. The multipole expansion is up to the quadrupole moment. 

off  intergalactic gas due to random density peaks. Tests performed with more homogeneous 
particlee distributions showed that the PP code accuracy is much better is those cases. The 
samee tests, performed with the standard code, showed that the canonical treecode is less 
sensitivee to the spatial distribution of the particles. Indeed, errors are higher for the uniform 
distribution,, which, conversely, is the best case for the pseudo-particle code. 

Thee pseudo-particle expansion accuracy suffers strongly from a non-uniform distribu-
tionn of particles. For this reason, as already mentioned, we modified it by introducing in 
thee multipole expansion an extra pseudo-particle located at the centre of mass of the distri-
bution.. This allows us to represent highly inhomogeneous distributions much better. The 
"PPmod""  case in fig. 4.3 shows the error behaviour of our modified pseudo-particle treecode. 
Thee errors are now much smaller than the ones for the unmodified code. Yet, errors are still 
higherr than the ones of the standard treecode. 

Wee observed that most of the large errors come from distant cells. In order to control 
thiss error, we modified the MAC in such a way that a multipole expansion is accepted if: 

4 zz < 9 , (4.4) 
Vd+l Vd+l 

wheree symbols have the same meaning as in (in)eq. (4.3). The opening criterion in (in)eq. (4.4) 
reducess the acceptability of far-away (hence large) cells, at the cost of an increased com-
putationall  load. This new Cell Size Limiting (CSL) criterion, applied to the modified 
pseudo-particlee code, gives a remarkable improvement in the code accuracy, as shown in 

PPmod d 
PPmodd + CSL MAC 

SWW data 
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Figuree 4.4: Comparison of the error distributions for our code (labelled PPmod) and the treecode 
GADGETT (labelled GDT), where multipoles are computed in the standard way. The MAC of 
(in)eq.. 4.5 is used here. For consistency with the standard treecode, cell-particle distances in our 
codee are not minimal distances as in the previous cases, but are measured with respect to the cell 
centree of mass. The multipole expansion is up to the quadrupole moment. 

thee "PPmod + CSL MAC" case in fig. 4.3. Now the error of the pseudo-particle code is 
beloww the error of the standard treecode. 

Ann extra factor that increases the pseudo-particle code accuracy is the fact that in our 
implementationn a multipole contribution is evaluated only if there are more particles in the 
celll  than the pseudo-particles used to represent the multipole expansion. In the present case, 
withh expansions truncated at the quadrupole term, each expansion has 13 pseudo-particles. 
Thee pseudo-particle code accuracy benefits from this, since force from cells containing 13 
particless or fewer is always computed exactly. Moreover, we also gain in performance, since 
fewerr interactions are computed in this way. The effect of this feature of the pseudo-particle 
codee will be studied further in next section. 

4.3.44 The GADGET MA C 

Thee criterion in (in)eq. (4.3) and the modified CSL version in (in)eq. (4.4) are based on the 
principlee that the error from a certain cell will be small if that cell is "seen" under a small 
openingg angle. A criterion that directly estimates the error that the cell expansion will intro-
ducee if accepted, could lead to a more efficient MAC. This approach was proposed in Salmon 
&&  Warren (1994), and is implemented in the recently developed treecode GADGET (Springel 
etet al., 2001), which we already studied in our performance modelling studies presented in 
chapterr 3. According to the MAC discussed in Springel et al. (2001), a multipole expansion 



100 0 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE 

darkk halo 
0.1 1 

0.01 1 

0.001 1 

0.0001 1 

1e-05 5 
00 20 40 60 80 100 

percentile e 

Figuree 4.5: Comparison of the error distributions for a highly clustered configuration. Symbols 
aree the same as in fig. 4.4. The multipole expansion is up to the quadrupole moment. 

iss accepted if: 

^ j -- < a|ao«d| , (4.5) 

wheree M is the cell mass, I is the cell size, d is the particle-cell distance, a a numerical 
coefficient,, and a0;<2 the previous value of the acceleration on the particle currently dealt 
with.. The left hand side of the above expression can be seen as a rough estimate of the 
forcee contribution from the hexadecapole moment of the cell (Springel et al., 2001), and 
&& 00idid is an estimate of the true current value of the particle acceleration. An estimate of 
thee error introduced by truncating a multipole expansion at a certain order, is given by the 
contributionn of the first term not included in the expansion. In the case of GADGET, the 
truncationn is at the quadrupole term. The octupole term should then be chosen. However, 
thee octupole term vanishes for uniform distributions, in those cases the hexadecapole term 
shouldd be used. The authors chose to use the estimate of the hexadecapole term contribution 
inn all cases. This improves accuracy, and is also cheaper to compute, because it does not 
involvee square root evaluations. The criterion in (in)eq. (4.5), states that a cell is accepted 
iff  the estimate of the hexadecapole term contribution is less than a small fraction of the 
totall  force on the particle. If higher accuracy is required, the estimate of a higher multipole 
termm should be used in the left hand side of (in)eq. (4.5). This MAC opens a cell only if the 
expectedd error from the cell is large. Nearby cells that would be opened with the canonical 
MACC (in)eq. (4.3) because they are "seen" under a large opening angle, now are not opened 
iff  their effect on the total force error is small. Because a0id is not defined in the first code 
iteration,, the very first force evaluation is still performed using the canonical MAC. 

;; GDT data 
PPmodd data 

JJ L 
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Figuree 4.6: Relative difference between the error values of the two codes, measured at the 50% 
percentile,, as a function of the accuracy parameter a. 

Wee implemented the criterion defined in the (in)eq. 4.5, and compared our results with 
thee standard treecode for two different particle configurations: a uniform distribution, and a 
highlyy concentrated (dark halo) distribution. Our results are presented in fig. 4.4 and 4.5 for 
threee representative values of a. Except for the low accuracy case in the highly concentrated 
distribution,, the pseudo-particle code shows a better accuracy than the GADGET code, 
especiallyy in the uniform distribution case. This confirms the tendency of the pseudo-particle 
codee to give better results with homogeneous distributions. 

Inn the uniform distribution case, the relative separation 

rrGDT GDT 
00 = —— e: pp\ pp\ 

(^rr + £PP) / 2 
(4.6) ) 

betweenn the results of the two codes seems to be dependent on a. In fig. 4.6 we show the 
valuess of 5, measured according to eq. (4.6) at the 50% percentile value of ep. Measures for 
twoo more values of a have been added in this case. The relative difference between the two 
codess tends to decrease and saturate with a. This can be explained by the fact that a smaller 
valuee of a causes a smaller size of the accepted cells. Smaller cells contain fewer particles, 
andd if the number of particles is 13 or less (see discussion at the end of previous section), 
thee PPmod code computes forces from the cell directly, hence with perfect accuracy. This 
explainss why the accuracy of the PPmod code is higher for smaller values of a. 

Thee effect of this feature of the PPmod code will be less pronounced if the number of 
particless is increased. In this case, fewer cells, among those that pass the MAC (in)eq. (4.5) 
wil ll  contain 13 particles or fewer. If the total number of particles is increased by a factor n, 
thee number of particles in a given cell is also increased by the same factor. The fraction of 
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Figuree 4.7: Comparison of the error distributions for a uniform distribution, and 16 384 particles. 
Symbolss are the same as in fig. 4.4. The multipole expansion is up to the quadrupole moment. 

acceptedd cells whose force will be computed exactly by the PPmod code will then decrease, 
soo that the accuracy gain of the PPmod code with respect to the standard code will decrease. 
Fig.. 4.7 shows a comparison of the PPmod code and the standard code with 16 384 particles. 
Thee separation between the results of the two codes is clearly smaller with respect to the 
onee in fig. 4.4. For larger numbers of particles the separation between the two codes is likely 
too become negligible. 

Wee used our pseudo-particle code to compare the two MACs of (in)eqs. (4.4) and (4.5), 
inn order to show the error profile that they produce, as a function of the accuracy parameter. 
Ourr results are presented in fig. 4.8. We compare the two MACs using cases having the same 
accuracy,, measured according to the respective accuracy parameters, i.e. the opening angle 
66 of the CSL MAC (see (in)eq. (4.4)), and the accuracy parameter a of the GADGET MAC 
(seee (in)eq. (4.5)). It is clear how the GADGET MAC gives better results in terms of flatness 
off  the error profile. The total computational load, measured in terms of the mean number 
off  interactions per particle K, is of the same order for cases having comparable accuracy. 

4.44 Moving pseudo-particle scheme 

Thee evaluation of the pseudo-particle masses is computationally expensive, especially when a 
highh multipole order is required (Kawai, 1999; Makino, 1999). Moreover, when the GRAPE 
hardwaree is used, the recomputed pseudo-particle data must be reloaded at each iteration. 
Thiss introduces an high overhead, limiting the convenience of the pseudo-particle approach. 
Wee propose a scheme that does not require a re-evaluation of the pseudo-particle masses 

GDTT data 
PPmodd data 
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Figuree 4.8: Comparison of the error profiles of the two MACs of (in)eqs. (4.4) and (4.5). 0 is the 
openingg angle of the CSL MAC of (in)eq. (4.4), a is the accuracy parameter of the GDT MAC of 
(in)eq.. (4.5), K is the mean number of interactions per particle. 

att each iteration. Instead, we assign a velocity to the pseudo-particles, and let them move 
withh this velocity. Velocities must be assigned so that the pseudo-particles' motion cor-
rectlyy reproduces the changes in the moment distribution for each cell. The advantage of 
thiss approach is that pseudo-particle data must be recomputed less frequently. Moreover, 
whenn GRAPE is used, no reload is necessary, since GRAPE contains the hardware needed 
too extrapolate particle positions. We compute the pseudo-particle momenta adapting the 
formulaa used to compute the pseudo-particle mass eq. (4.1): 

11 N p i 

??k=k=KK £ ; Pj S (ï) (2/ + 1} P,(C0S ljk)  (4-7) 
ll  J o 

Heree p^ is the momentum of pseudo-particle k, Pj is the momentum of the real particle 
j ,, all other symbols have the same meaning as in eq. (4.1). 

Wee present below a statistical error analysis of our moving pseudo-particle scheme, 
similarr to the analysis presented in the previous section. 

4.4.11 Statistical error 

Inn order to carry out a statistical error analysis of the moving pseudo-particle scheme, we used 
heree a dark halo configuration. In this case, we used a configuration with 40 000 particles, in 
orderr to reduce the fraction of cells containing 13 particles or less. In this way we increase the 

aa = 0.0035, K = 2370 
aa = 0.0015, K= 2510 

aa = 0.0005, K = 2730 

GDTT MAC 
CSLL MAC 

6=1.1,KK = 2260 

66 = 0.9, K = 2530 

'-66 = 0.7, K = 2810 
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Figuree 4.9: Error distribution for the moving pseudo-particle code. The error profile at various 
extrapolationn times is compared with a canonical treecode error profile. We use the MAC defined 
inn eq. (4.5), with a = 0.002. The time interval between each error profile is equal to 0.04. In this 
casee is N = 40000. 

fractionn of contributions from multipoles with respect to contributions from single particles. 
Forr each cell, the pseudo-particle expansion is computed only at the first iteration. After 
thatt pseudo-particle positions are extrapolated using the velocities obtained according to 
eq.. (4.7). We set the time step At = 0.01, to be compared with min(|v|/|a|) ~ 0.04. 

Fig.. 4.9 shows the error percentiles for the configuration as a function of time, compared 
withh the SW data used as a benchmark in the previous sections. Initially the extrapolated 
pseudo-particless reproduce the real particle dynamical configuration with an accuracy com-
parablee with the static pseudo-particle expansion (the error profile after 0.04 time units is 
veryy close to the initial profile). Subsequently, accuracy worsens, and after 0.2 time units 
errorss are considerably larger, with a fraction of large errors increasingly bigger (i.e. an error 
profilee increasingly steeper). From t = 0 to t = 0.2, the particles having ep < 0.002 decrease 
fromm 99.53% to 64.35%. Particles contributing with large errors to the error profile in fig. 4.9 
aree those located in the inner core of the distribution. Those are also the particles experienc-
ingg higher accelerations. This suggests that the pseudo-particle temporal expansion could 
bee improved by adding a term, similar to eq. (4.7), that accounts for the pseudo-particle 
acceleration. . 
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4.55 Discussion 

Inn this chapter we presented an error analysis of both the pseudo-particle treecode, and the 
movingg pseudo-particle scheme that we propose to reduce the compute time, and optimise 
thee use of this method with the GRAPE. We showed the error behaviour of this method, 
andd compared it with previous work on the standard treecode. 

Wee modified the pseudo-particle distribution, by adding an extra pseudo-particle lo-
catedd at the cell centre of mass, which led to a one order of magnitude error decrease. Yet, 
thee pseudo-particle scheme tends to be more accurate with homogeneous particle configura-
tions.. This is promising for the simulation of systems subject to the Coulomb force, which 
aree usually characterised by nearly uniform density distributions. We also introduced a tem-
porall  expansion for the pseudo-particle scheme and showed that, as long as particles are not 
subjectt to high accelerations, the error remains close to the error of the standard case up to 
aboutt 20 time steps. In order to improve the accuracy for particles with high acceleration, 
wee are extending the pseudo-particle temporal expansion to include an acceleration term. 

Thee implementation of a pseudo-particle treecode fine-tuned for the use of the GRAPE 
iss currently under development. The internal architecture of a GRAPE board, where an array 
off  pipelines (up to 96 for GRAPE-4 (Makino et ai, 1997), and up to 48 for the most recent 
GRAPE-66 (Makino et al, 2000), see section 1.3) computes force concurrently on an equal 
numberr of particles, is an ideal hardware counterpart of the algorithmic strategies developed 
too group particles together in order to use the same list of force sources, namely the sinking 
strategyy in Warren & Salmon (1995), or the equivalent grouping strategy in Barnes (1990). 
Moreover,, the internal particle memory of the GRAPE board acts as a cache, which can 
containn up to about 44000 particles for the GRAPE-4 (Kawai et al, 1997), and 262000 
particless for the GRAPE-6 (Makino, 2003). Therefore the caching strategies developed in, 
e.g.,, Salmon & Warren (1997), where force sources are carefully grouped in logical pages such 
thatt data in the same page are likely to be accessed shortly, can be applied here in a natural 
way.. The same force sources set can be used for several reloads of the GRAPE pipelines, 
andd this could considerably reduce the host-GRAPE communication overhead. The use 
off  the pseudo-particle method with the GRAPE can be improved by our pseudo-particle 
extrapolationn scheme. Moreover, this scheme is also suitable for optimal parallelisation, 
becausee it allows to retain the multipole expansion of remote cells for a number of iterations, 
resultingg in a substantial decrease of communication among processors. 

Wee aim at using our moving pseudo-particle scheme as the computational core of a 
parallell  treecode running on a hybrid architecture that includes the GRAPE. Performance 
simulationss of this kind of hardware/software configuration were presented in section 3.4.4. 
Wee showed there that a pseudo-particle powered treecode running on the GRAPE can out-
performm the direct code even in case of high accuracy simulations, since the pseudo-particle 
treecodee is able to use the GRAPE also for the evaluation of the force contribution from 
higher-orderr multipole terms. In chapter 5, we present a stellar dynamics study of a black 
holee spiralling in towards the Galactic centre. This study is a first step in the direction of 
simulatingg the infall of a star cluster. As discussed in chapter 5 and in section 1.7 above, 
thiss problem is very difficult to treat using either the treecode or the direct code. We plan 
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too develop a hybrid code to solve it. The pseudo-particle treecode is very well suited for 
playingg the role of the treecode "phase" of this hybrid code, especially in view of using the 
hybridd code on a hybrid architecture including GRAPEs. 



Chapterr  5 

Thee Efficiency of the Spiral-in of a Black Hole 
too the Galactic Centre* 

Inn this chapter, we use the direct particle-particle method, the treecode, and the particle-
meshh code, introduced in section 1.2 and 1.4, to study the efficiency at which a black hole 
orr dense star cluster spirals in to the Galactic centre. As introduced in section 1.7, this 
processs is driven by a drag force, called dynamical friction, that results from the combined 
gravitationall  pull exerted by a star distribution on a massive body moving through the 
system. . 

Thiss phenomenon takes place on a dynamical friction time scale, which depends on the 
valuee of the so-called Coulomb logarithm (In A). We determine the accurate value of this 
parameterr using the three methods mentioned above with up to two million plus one particles. 
Wee find that the three different techniques are in excellent agreement. Our result for the 
Coulombb logarithm appears to be independent of the number of particles. We conclude that 
Inn A = 6.6  0.6 for a massive point particle in the inner few parsec of the Galactic bulge. 
Forr an extended object, like a dense star cluster, In A is smaller, with a value of the logarithm 
argumentt A inversely proportional to the object size. 

5.11 Introductio n 

Thee region near the Galactic centre is populated by very young objects, such as the Quin-
tuplett star cluster (Nagata et a/., 1990; Okuda et a/., 1990), the Arches cluster (Nagata 
etet a/., 1995) and the central star cluster (Tamblyn k Rieke, 1993; Krabbe et af., 1995), 
whichh are of considerable interest for the astronomical community. One of the more inter-
estingg conundrums is the presence of stars as young as few Myr (Tamblyn & Rieke, 1993; 

tThiss chapter is based on work published in: 
P.F.. Spinnato; M. Fellhauer and S.F. Portegies Zwart: The Efficiency of the Spiral-in of a Black Hok to 

thethe Galactic Centre, Monthly Notices of the Royal Astronomical Society, in press, 2003. 
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Krabbee et ai, 1995) within a parsec from the Galactic centre (Gerhard, 2001). In situ for-
mationn is problematic, due to the strong tidal field of the Galaxy, which makes this region 
inhospitablee for star formation. One possible solution is provided by Gerhard (2001), who 
proposess that a star cluster of 106 M©, where M 0 is a solar mass, spirals in to the Galactic 
centree within a few million years from a distance > 30 pc. The infall process is driven by dy-
namicall  friction (Chandrasekhar, 1943). A quantitative analysis of this model by McMillan 
&&  Portegies Zwart (2003) confirms Gerhard's results. The main uncertainty in the efficiency 
off  dynamical friction, and therewith the time scale for spiral-in, is hidden in a single pa-
rameter,, called the Coulomb logarithm In A. Accurate determination of this parameter is 
cruciall  for understanding this process. Nevertheless, a precise value of In A for the Galactic 
centrall  region is not available. In the work presented in this chapter, we determine In A for 
thee Galactic centre. We focus on the efficiency of the interaction between an intermediate 
masss black hole (BH hereafter) and the stars in the Galactic central region. In section 5.4 
wee comment on how this approach can be applied to star clusters that sink to the Galactic 
centre. . 

Dynamicall  friction is important for a large variety of astronomical phenomena, e.g. 
planett migration (Goldreich & Tremaine 1980; Cionco & Brunini 2002), core collapse in 
densee star clusters (Portegies Zwart et a/., 1999) or mergers in galaxy clusters (Makino 1997; 
Coraa et al. 1997; van den Bosch et al. 1999). The physics of the infall process of a satellite 
inn the parent galaxy is basically the same as in the case of a BH spiralling in to the Galactic 
centre.. The relevant parameters, however, are quite different in the two cases. For example, 
ann inspiraling galaxy has finite size, whereas a BH is a point mass. Dynamical friction also 
playss an important role in the evolution of the black hole binary formed after the merging of 
twoo galaxies both hosting a BH at their centre (Milosavljevic & Merritt, 2001). In this case, 
dynamicall  friction is important in the early phase of galaxy merging, when the BHs orbits 
convergee and become bound. 

Inn the classical study of Chandrasekhar (1943), dynamical friction is driven by the 
dragg force experienced by a point mass moving through an infinite medium of homogeneous 
density.. The consequences of finiteness and non-homogeneity have been analysed in various 
workss (see Maoz 1993; Milosavljevic & Merritt 2001). Just & Penarrubia (2003) carried out 
ann analytical study of dynamical friction in inhomogeneous systems, leading to a value of the 
Coulombb logarithm that depends on the infalling object position. Colpi & Pallavicini (1998) 
developedd a general theoretical framework for the interaction of a satellite with a primary 
galaxy,, able to describe dynamical friction in finite, inhomogeneous systems. They applied 
theirr theory of linear response to orbital decay of satellites onto a spherical galaxy (Colpi, 
1998)) and short-lived encounters with a high-speed secondary (Colpi Sz Pallavicini, 1998). 
Theyy studied evolution of satellites in isothermal spherical haloes with cores (Colpi et a/., 
1999),, extended in Taffoni et al. (2003), treating satellite finite size and mass loss. Still, 
thee original expression of Chandrasekhar is used to model dynamical friction in many astro-
nomicall  situations (see Binney & Tremaine 1987, §7.1; Hashimoto et al. 2003). The cases 
wee study here are characterised by a point mass, with a very small mass compared to the 
primaryy system. Therefore Chandrasekhar's formulation is appropriate in our cases. 

Wee determine the value of In A for a BH spiralling-in to the Galactic centre by means 
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off  self-consistent iV-body simulations. This is by far not an easy task. AT-body models either 
lackk in the number of particles (a direct AT-body code can treat up to about 105 particles, 
comparedd to 108 for the real system) or have to introduce softening (Aarseth, 1963) and 
approximationn of the force calculation (treecode (Barnes & Hut, 1986) or particle-mesh 
codee (Hockney & Eastwood, 1988)). The softening parameter e was introduced to limit the 
strengthh of the mutual gravitational interaction during close stellar encounters. Without 
softening,, the very high accelerations experienced by the encountering bodies would cause 
veryy tiny integration steps, which would result in a n effective freeze of the global system 
evolution,, with consequent dramatic performance degradation. The use of this approximation 
shouldd not invalidate the numerical results, as long as the simulated system is studied on 
aa time scale shorter than the relaxation time scale (Binney & Tremaine 1987, ch. 4, see 
alsoo discussion in section 5.3.4 below). The dynamical friction time scale of the systems 
wee simulate is in all cases shorter than the relaxation time scale, so we can safely use the 
approximatee methods. 

Nevertheless,, since close encounters have an important effect on dynamical friction, 
decreasingg their strength by means of softening also decreases the strength of dynamical 
friction,, i.e. lowers the value of In A. The same role of softening is played, in the particle-
meshh code, by the grid cell size I. 

Ourr methodological approach for the present work (see fig. 5.1) consists of comparing 
thee "exact" results obtained with the direct method for low particle numbers (up to 80 000) 
withh the results of the treecode, which are less accurate and are influenced by force softening, 
too understand how the softening e influences the results and how they have to be scaled 
accordingg to the value of e. Then the results of the treecode are compared to the results of 
thee particle-mesh code, to see how softening (tree) and grid-resolution / (particle-mesh) can 
bee compared and scaled. Finally, having the right scaling between the different codes, we wil l 
bee able to perform high particle number simulations (up to 4 • 107) with the particle-mesh 
codee to obtain the value of the Coulomb logarithm for the inner Galactic Bulge. 

5.22 Methods and model 

5.2.11 Direct method 

Forr our direct N-body calculations we used the k i r a integrator module of the Starlab soft
waree environment1 (Portegies Zwart et a/., 2001), introduced in section 1.4. Conceived and 
writtenn as an independent alternative to Aarseth's NBODY4 and NBODY5 (Aarseth, 1985, 
1999),, the workhorses of collisional AT-body calculations for the past 25 years, k i r a is a 
high-orderr predictor-corrector scheme designed for simulations of collisional stellar systems. 
Thiss integrator incorporates a Hermite integration scheme (Makino & Aarseth, 1992) and a 
blockk time step scheduler (McMillan, 1986) that allows homogeneous treatment of all objects 
inn the system. 

Whilee kir a is designed to operate efficiently on general-purpose computers, it achieves 
1See::  http://manybody.org 

http://manybody.org
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Figuree 5.1: A sketch of the strategy that we adopt in order to explore the e-N parameter space. 

byy far its greatest speed when combined with GRAPE-6 special purpose hardware2 (see 
sectionn 1.3). For the work presented here we performed simulations with the GRAPE-6 
systemm at the University of Tokyo with up to 80 000 particles. 

5.2.22 Treecode 

Thee hierarchical treecode is widely used for the simulation of collisionless systems. We 
describedd it in section 1.4.2, and studied it extensively in chapter 3 and 4. Our treecode sim-
ulationss were initially performed with both a code written by Jun Makino (Makino, 1991b), 
andd with GADGET (Springel et al, 2001). We also used GADGET in the performance sim-
ulationn work described in section 3.4.3, and in the pseudo-particle treecode accuracy analysis 
inn section 4.3.4. In GADGET each particle is assigned an individual time-step, and at each 
iterationn only those particles having an update time below a certain time are selected for 
forcee evaluation. This criterion was originally introduced in the direct A^-body code (see 
sectionn 2.3.1). 

Thiss code is parallelized using MPI (Message Passing Interface Forum, 1997). In the 
parallell  version, the geometrical domain is partitioned, and each processor hosts the particles 
locatedd in the domain partition assigned to it. The computation of forces on the selected 
i-particless is performed by scattering the particle data to remote processors. Then partial 
forcess from the particles hosted by the remote processors are computed locally. Finally, 
calculatedd forces are received back by the i-particle host, and added up resulting in the total 
forcee on the i-particles. We run our parallel treecode simulations on the DAS-2 distributed 
supercomputer,, mentioned in section 2.2.1. 

2See:: http://www.astrogrape.org 

http://www.astrogrape.org
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Figuree 5.2: The different grids of SUPERBOX for a number of cells per dimension n = 4. The finest 
andd intermediate grids are focussed on the object of interest. Each grid is surrounded by a layer of 
twoo halo cells. Such haloes are not shown here. 

5.2.33 Particle-mesh code 

Too perform calculations using several millions of particles we use a particle-mesh (PM) code 
namedd SUPERBOX (Fellhauer et al., 2000). As mentioned in section 1.2, in the particle-
meshh technique densities are derived on Cartesian grids. Using a fast Fourier transform 
algorithmm these densities are converted into a grid-based potential. Forces acting on the 
particless are calculated using these grid-based potentials, making the code nearly collisionless. 
SUPERBOXX  in particular completely neglects two-body relaxation, causing it to retain only 
aa small amount of grid-based relaxation (Fellhauer et al., 2000). 

Thee adopted implementation incorporates some differences to standard PM-codes. 
State-of-the-artt PM codes use a cloud-in-cell (CIC) scheme to assign the masses of the 
particless to the grid cells. Therefore the mass of a particle i is split up into neighbouring 
cellss according to its distance to the centre of the cell. Forces are then calculated by adding 
upp the same fractions of the forces from all cells to particle i. In contrast, SUPERBOX uses the 
"old-fashioned""  nearest-grid-point scheme, where the total mass of the particle is assigned to 
thee grid cell the particle is located in. Forces acting on the particle are then calculated only 
fromm the forces acting on this particular cell. To achieve similar precision as CIC, SUPERBOX 

usess space derivatives up to the second order to compute the forces. 

Too achieve high resolution at the places of interest, SUPERBOX incorporates for every 
simulatedd object (e.g. each galaxy and/or star cluster or disc, bulge and halo) two levels 
off  sub-grids co-moving with the objects of interest while the latter are moving through the 
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simulatedd area (see fig. 5.2). This provides higher resolution only where it is necessary. 

5.2.44 The theory of the Coulomb logarithm 

Dynamicall  friction affects a mass moving in a background sea of lower mass objects. A 
practicall  expression for the strength of the drag force on a point particle with mass MBH is 
(Binneyy & Tremaine 1987, p. 424): 

—-—— = — 4TTG In XpMsH^i— 
dtdt vBH 

2X2X _X2 
erf(X)) - —= e 

v71" " 
(5.i; ; 

Heree X = VBH/(V^CT), where a is the Maxwellian velocity dispersion, and p the background 
stellarr density. 

Thee classical value of A is (Binney & Tremaine 1987, p. 423) 

AA V*<* 
G{MG{MBBHH + m) 

Heree bmax is the largest possible impact parameter for an encounter between the massive 
pointt particle and a member of the background population, vtyp is the typical speed of the 
objectss in the background population, and m is the mass of each of the background stars. 
Eq.. (5.2) can then be generalised to 

A = £ = SS . (5.3) 
Umin Umin 

Heree bmin is the distance below which an encountering particle is captured, instead of being 
scatteredd by the massive object. It is somewhat smaller than the 90° turn-around distance. 
Withh the direct TV-body technique, A can be measured precisely. However, with approxi-
matee N-body methods, such as the treecode or the PM code, we have to take care of the 
interferencee of the softening length/cell size with bmin, as discussed in section 5.2.5. 

McMillann & Portegies Zwart (2003) obtained an analytic expression for the distance 
r(t)r(t)  of the BH to the Galactic centre, with the assumptions that the BH's orbits are nearly 
circular,, and the mass profile of the Galaxy is given by a power law: 

Theyy obtained: 
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where e 
'~'~c/c/ VN —= e axiu J\ = —=— , 
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aa being the velocity dispersion. In McMillan &; Portegies Zwart (2003) the value of X in 
thee Galactic centre is also computed, resulting in X = y/2 — a. Finally, we take RQ equal 
too the half-mass radius of our system H/,m (see section 5.2.6). The best fit  of eq. (5.5) on 
thee simulation data gives the value of In A for that simulation. The values obtained, for all 
simulationn performed, are reported in the last column of tables 5.3, 5.4 and 5.5. 

5.2.55 The role of softening in the determination of the Coulomb 
logarithm m 

Softeningg was introduced in numerical stellar dynamics to limi t the strength of mutual forces 
duringg close stellar encounters, mainly for computational performance purposes. It consists 
inn a modification of the Newton law for the gravity exerted by a particle j on a particle i, 
ass follows: 

***  = G( r? - + e2)(3/2)r v » (5-6) 

wheree r^ = r, — r*, and e is the softening parameter. As r^ —• 0, the presence of e causes 
thee force to change from inverse square to elastic, with constant Gmirrij/^. In this way the 
strengthh of the mutual force between encountering particles is limited. 

Softeningg was first used by Aarseth (1963) in a particle-particle (PP) context (see 
fig.fig. 1.1 and caption therein). Accuracy requirements soon led to a more precise treatment 
off close encounters and binaries by means of an analytic approach (Kustaanheimo &: Stiefel 
1965;; Aarseth 1972; Mikkola & Aarseth 1990). The softened force in eq. (5.6) is used in the 
treecode,, where high accuracy in close encounters treatment is not essential. Here we will 
usee the softening both in the treecode simulations, where it is necessary, and in the PP code 
simulations,, where it is used to compare the results of the two codes, in order to study the 
relationn between e and In A. 

Forr the PM code, as described in section 5.2.3, force is not computed by using the 
Newtonn force, or the softened force in eq. (5.6). Instead, the fact that the gravitational 
potentiall on each grid point of the mesh is obtained from a density field defined on the same 
mesh,, leads to an accuracy for the force on each particle limited by the cell size of the grid, 
I I 

Here,, we are concerned with the accuracy of the computation of the encounters ex
periencedd by a black hole spiralling-in to the Galactic centre. Since the softening (PP and 
treecode)) and the cell size (PM code) affect this accuracy, we will use e and I to quantify 
thee accuracy decrement in our simulations. In section 5.3.5 we will study quantitatively the 
dependencee of In A on e and I. 

Thee reference value for e in the work presented here will be €o = 0.003 735 (units given 
beloww in table 5.1). This value, according to Athanassoula et al. (2000), is of the same order 
off magnitude as the optimal softening for a Dehnen sphere distribution (Dehnen, 1993). This 
distributionn is similar to the power law distribution that we use, at least for what concerns 
thee high central density peak, which is the key physical factor in the determination of the 
optimall softening. For an 80000 particle distribution, e0 is about 15 times smaller than 
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Figuree 5.3: Particle ranges for the simulations performed by each method. Crosses denote the 
particlee values used. 

thee mean inter-particle distance £ at the initial BH position RQ ~ 0.87 (see section 5.2.6). 
Thiss value for e is small enough to avoid spurious effects in the force between a star and its 
neighbours,, but is sufficient to inhibit very close encounters. The expression for £ can be 
obtainedd as: 

wheree n is the star number density, and 

11 dM = Aa 3 
pp AnR? dR 4TT 

Wee used the expression in eq. (5.4) for M, and the fact that the TV stars in the system have 
thee same mass m = 1/N. 

Onee of the effects of softening is a damping in the BH infall at very small values of 
thee galactocentric distance, more noticeable as N increases. This can be explained with the 
factt that the inter-particle distance £ decreases as the BH approaches the Galactic centre 
(seee eq. 5.7). When £ becomes comparable to 2e, the role of softening in the force equation 
becomess dominant, since particles begin to "overlap". With N = 400 000, we get £ = 2eo 
whenn R ~ 0.064, which is close to the value at which the damping arises, as fig. 5.13 below 
clearlyy shows. 

5.2.66 Initia l condition 

Wee generate the initial mass distribution according to the power law given by eq. (5.4), 
withh a = 1.2, which reproduces the mass distribution in the centre of the Galaxy, according 
too Mezger et al. (1999). The scale factor is A = 4.25 • 106M®, corresponding to 0.44 in the 
iV-bodyy standard units (Heggie & Mathieu, 1985), which are reported in table 5.1. We use 
thee standard units hereafter, unless other units are explicitly reported. The distributions 
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GG = 1[V]2[L]/[M ] 

== 4.3007 • 10"3 km2pc/s2M0 

== 4.49842 • 10 - 3 pc3 /Myr2M0 

11 [L] = 8 pc 

11 [M] = 1.18 • 108 M 0 

11 J = 251.86 km/s 
11 [LJ 

11 ^ = 0.031 Myr 
GG • 1 [M] 

Tablee 5.1: Conversion table between the iV-body units used in our work, and physical units. 
Heree [L], [M], [T], and [V] are respectively the length, mass, time, and velocity units. The 
iV-bodyy units are such that G = 1, Mu>t = 1, and Etat = —0.25. 

thatt we generate are truncated at R — 1.7 = 13.6 pc, with a total mass within this radius 
MtotMtot — 1. The particles have equal mass m. Particles are assigned Maxwellian velocities, 
thenn the system is virialised to dynamical equilibrium. Then, before inserting the black hole 
(BH)) particle, we let the system evolve for a few crossing times. The system reaches a stable 
configuration,, whose mass profile is no more perfectly reproduced by Eq. 5.4. The best fit 
forr A and a on the mass profile of the stable configuration gives: 

AA = 0.53, (5.8) 

aa = 0.9 . 

Inn fact, the mass profile having these coefficients diverges from the original one as the 
distancee R increases. On the other hand, in the region R < 2, where we study the BH 
infall,, the discrepancy between the two mass profiles is small. The relaxed profile values are 
withinn 10% of the initial profile values. Nevertheless, for consistency we will use the values 
inn eq. (5.8) for A and a hereafter. This results in values of In A ~ 10% smaller than the ones 
givenn by a mass profile with coefficients a = 1.2 and A = 0.44. 

Thee BH particle is placed at the half-mass radius Rhm — 0.87 with a circular orbit 
velocity,, and its mass is MBH = 0.000 528. The background particles number varies from 
160000 to 2 million. The low particle number simulations are performed with the PP code, 
thee intermediate and high number simulations with the treecode and the PM code. Fig. 5.3 
showss the range of N for each code. This allows us to span a large range in particle number, 
soo that the influence of granularity in the BH motion towards the Galaxy centre can be 
studied. . 

InIn contrast to the other models, we choose physical units for the PM code simulations. 
Thee conversion factors from physical units to iV-body units are shown in table 5.1, where 
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nn outer middle inner 
~~322 TÖÖÖ Ö69 ÖTT 

644 4.67 0.32 0.08 
1288 2.26 0.15 0.04 

Tablee 5.2: Resolutions (i.e. cell sizes) of the different grid levels for the different choices of n 
inn the PM code, n denotes the number of cells per dimension. The cell sizes of the different 
grid-levelss (outer, middle and inner) are given in pc. 

[L]]  denotes the unit length in iV-body units, [M] the unit mass, [V] the unit velocity and [T] 
thee unit time. 

Thee parameters of the PM calculations are chosen in the following way: the grid sizes 
aree kept constant at 

^systemm = 140.0 pC 

iïoutt = 9.6 pc (5.9) 

iücoree = 2 .4 pC 

andd are focussed on the center of mass of the "bulge" model, as sketched in fig. 5.2. To 
changee the resolution we alter the number of grid cells per dimension from 32 up to 128. 
Withh this choice the cell sizes listed in table 5.2 are achieved. 

Too speed up the simulations, the time step in the PM code simulations should be as 
largee as possible, but small enough to prevent spurious results. Therefore we started with a 
timee step of 1000 yr and reduced it to 200 and 50 yr. The results of the 200 yr and 50 yr 
timee step do not differ from each other, therefore the global time step is chosen to be 200 yr. 
Conversely,, the time step in the treecode and direct code simulations is variable and different 
forr each particle. Time step values are in this case in the range 2-30 000 yr, with about 90% 
off  them in the range 100-300 yr. 

5.33 Results 

Wee will now study the dependence of our results on the number of particles N in section 5.3.2, 
andd compare the various iV-body methods with identical initial realisations in section 5.3.3. 
Afterr having convinced ourselves that the various techniques produce consistent results, we 
continuee by studying the effect of softening/cell size (section 5.3.4) and black hole mass 
(sectionn 5.3.6) on the value of the Coulomb logarithm in the inner part of the Galaxy. 

Ourr simulations aimed at several goals. 1) understanding the scaling of the system 
dynamicss with respect to the number of particles N, and within this scaling, how results 
fromfrom different methods compare with each other. 2) How, at a fixed value of N, the softening 
parameterr influences the dynamics, changing the value of In A. The particle-mesh method 
doess not make use of softening. The cell size in the PM code can be seen in this context as a 
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NN c/e0 MBH/m e/bmin In A 
16K K 
16K K 
80K K 
80K K 
80K K 
80K K 
80K K 
80K K 
80K K 

0 0 
1 1 
0 0 

0.01 1 
0.1 1 

1 1 
2 2 
8 8 

16 6 

8.5 5 
8.5 5 

42.3 3 
42.3 3 
42.3 3 
42.3 3 
42.3 3 
42.3 3 
42.3 3 

0 0 
2.6 6 

0 0 
0.03 3 
0.3 3 
2.6 6 
5.3 3 

21.2 2 
42.4 4 

3.8 8 
3.6 6 
6.6 6 
6.0 0 
5.3 3 
4.8 8 
3.5 5 
2.8 8 
1.8 8 

Tablee 5.3: Overview of the PP runs. N is the number of particles, e is the softening param-
eter,, €o = 0.003735, MBH/TTI is the ratio between the BH mass and a particle mass, and 
c/bminc/bmin the ratio between the softening parameter and the minimal impact parameter. 

N N 

80K K 
400K K 

2M M 
80K K 
80K K 
80K K 
80K K 
80K K 
80K K 
80K K 

400K K 
400K K 

c/eo o 
1 1 
1 1 
1 1 

0.1 1 
2 2 
8 8 

16 6 
32 2 

1 1 
1 1 
1 1 
1 1 

MMBBH/m H/m 

42.3 3 
211.3 3 

1056.5 5 
42.3 3 
42.3 3 
42.3 3 
42.3 3 
42.3 3 
84.5 5 

169.0 0 
422.6 6 
845.2 2 

e/&min n 

2.6 6 
2.6 6 
2.6 6 
0.3 3 
5.3 3 

21.2 2 
42.4 4 
84.7 7 
1.3 3 
0.7 7 
1.3 3 
0.7 7 

Inn A 

4.7 7 
5.0 0 
4.9 9 
5.7 7 
4.1 1 
3.0 0 
2.0 0 
1.6 6 
5.4 4 
4.6 6 
4.6 6 
4.2 2 

Tablee 5.4: Overview of the treecode runs. Meaning of symbols is the same as in table 5.3 
above. . 

softeningg length. In our framework, it is crucial to understand the relation between the PP 
codee and treecode softening parameter and the PM code cell size. 3) We also study how the 
BHH mass influences the infall time. We doubled and quadrupled the BH mass, and observed 
howw this affects the value of In A. 

AA resume of all the runs that we performed is reported in table 5.3 for the PP code 
runs,, table 5.4 for the treecode runs, and finally table 5.5 for the PM code runs. In all of 
ourr runs, the system remains in equilibrium during the whole BH infall, with no significant 
masss loss from stellar escapes, and a mass profile independent of time. 
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N N 

80K K 
80K K 

400K K 
2M M 

80K K 
400K K 

2M M 
80K K 

400K K 
2M M 
2M M 

n n 

16 6 
32 2 

64 4 

128 8 

256 6 

m m 

[Mo] ] 
1475 5 
1475 5 
295 5 
59 9 

1475 5 
295 5 
59 9 

1475 5 
295 5 
59 9 
59 9 

[pc] ] 
1.60 0 
0.69 9 
0.69 9 
0.69 9 
0.32 2 
0.32 2 
0.32 2 
0.15 5 
0.15 5 
0.15 5 

0.076 6 

NNc c 

ii  mi l J 
46.3 3 
3.6 6 

18.2 2 
91.1 1 
0.4 4 
1.9 9 
9.3 3 

0.04 4 
0.2 2 
1.0 0 
0.1 1 

Lr« l l J J 

68287.0 0 
5375.4 4 
5375.4 4 
5375.4 4 
546.3 3 
546.3 3 
546.3 3 
61.9 9 
61.9 9 
61.9 9 
7.4 4 

MBH MBH 
fflc fflc 

0.9 9 
11.6 6 
11.6 6 
11.6 6 

114.5 5 
114.5 5 
114.5 5 
1011 1 
1011 1 
1011 1 
8483 3 

i i 

114.3 3 
49.3 3 
49.3 3 
49.3 3 
22.9 9 
22.9 9 
22.9 9 
10.7 7 
10.7 7 
10.7 7 
5.4 4 

Inn A 

n/a a 
1.9 9 
2.1 1 
2.2 2 
3.0 0 
3.4 4 
3.0 0 
2.8 8 
3.7 7 
3.8 8 
4.1 1 

Tablee 5.5: Overview of the PM runs. N is the number of particles, n the number of grid cells 
perr dimension, m the particle mass, I the intermediate grid cell size, Nc the average number 
off  particles per cell, mc the average mass of a cell, MBH^C the ratio between the BH mass 
andd the cell mass, and finally l/bmin the ratio between the cell size and the minimal impact 
parameter. . 

Beforee we start with the analysis of the results of our simulations, we report on the 
performancee of the PP code and the treecode runs. 

5.3.11 Code performance 

Inn table 5.6 we give the average time, in seconds, needed to evolve the system for one JV-body 
timee unit (TV-body time units are given in table 5.1). We report the data concerning the 
runss with N = 80000 and MBH = 0.000 528, for both the PP and the treecode runs. The 
PPP runs have been executed on a partition of the GRAPE-6 (see section 1.3.2) including 
fourr GRAPE boards, for a peak-performance of about four TFlop/s. The treecode runs have 
beenn executed on the DAS-2 (mentioned in section 2.2.1), using a varying number of nodes, 
ass reported in table 5.6. This varying number of PEs obviously affects the performance 
figuresfigures of the treecode runs; in order to obtain an homogeneous set of data, we normalised 
thee figures to 32 PEs assuming a linear scaling, i.e. we halved the timing values measured 
onn 16 PEs, and doubled the values measured on 64 PEs. The peak performance of the 
normalisedd system is 32 GFlop/s. 

Thee normalised data are plotted in fig. 5.4, together with the PP code values (note 
thee shift in the X-axis, in order to show the value for e = 0 on a log-log plot). We can see 
fromm the figure that the normalised treecode data are not heavily influenced by e, while the 
PPP code runs are much faster as e increases. A possible explanation for this is that, as c 
getss bigger, the chance for a close encounter gets smaller. Since the role of e is to reduce 
thee strength of the gravitational interaction at low interparticle distance to prevent close 
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c/co o 
0 0 

0.1 1 
1 1 
2 2 
8 8 
16 6 

PPP code 

s/[T] ] 
14000  400 
13000  200 
10388  19 
7855  15 

485.33  7.9 
440.55  4.8 

e/e0 0 

0.1 1 
1 1 
2 2 
8 8 
16 6 
32 2 

treecode e 

s/[T] ] 
1833  11 
5299 4 

126.33  5.2 
3499 8 

213.88  4.3 
2233  12 

PEs s 
32 2 
16 6 
64 4 
16 6 
32 2 
32 2 

Tablee 5.6: Performance of the PP and the treecode runs. We report the averaged number of 
secondss needed to advance the system for one JV-body unit. For all runs we have N = 80 000 
andd MBH = 0.000 528. The reference value for the accuracy parameter is eo = 0.003 735. 

encounters,, a larger e implies a lower chance for close encounters to occur. The time advance 
off  the PP code is heavily affected by close encounters, as its high numerical precision can 
onlyy be assured by a detailed, and costly, treatment of particle trajectories during close 
encounters.. Hence, a reduced frequency of close encounters speeds up the execution of the 
PPP code. The treecode does not include a special treatment for close encounters, hence its 
executionn speed is not affected by a change in the close encounters frequency. 

Fig.. 5.4 also shows that the runs with the treecode are faster than those with the PP 
code,, especially for low e values. This effect is even much larger if we take into account that 
thee PP runs have been performed on a four TFlop/s system, while the normalised treecode 
runss have been performed on a 32 GFlop/s system. Normalising the PP code runs on this 
performancee would result in values 125 times slower. This is again the price of the high 
numericall  precision of the PP code. In return for this, the energy conservation of the PP 
codee is in the order of 10-6, while the treecode conserves the energy within about 1%. 

5.3.22 Dependence of In A on N 

Inn order to obtain a precise measure of In A, ideally one would run a direct iV-body simulation 
withh N of the order of the number of stars in the Galactic bulge, which amounts to ~ 108. 
Suchh high number makes a direct simulation unfeasible, and imposes the use of approximate 
methodss instead. In order to evaluate the reliability of the approximate methods, we com-
paredd the PP code runs with the treecode runs. The PP code runs give a reliable picture 
off  the system dynamics at low particle numbers, i.e. at high granularity. Using the treecode 
wee can reach a much higher number of particles, up to two million, which still is two orders 
off  magnitude lower than the real system. A comparison of the results from the two methods 
allowss us to estimate the validity of the treecode runs, up to 2 million particles. Then we 
cann compare the treecode runs and the PM runs, in order to validate the results from the 
latter,, which has the capability to simulate systems of about 100 million stars. In this way 
wee wil l eventually be able to study the infall of a BH into the Galactic centre in a simulation 
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Figuree 5.4: Performance of the PP and the treecode runs. We plot here the averaged number of 
secondss needed to advance the system for one A-body unit. For all runs we have N = 80000 and 
MBHMBH = 0.000 528. The PP code runs are executed on a GRAPE-6 partition including four GRAPE 
boards,, the treecode runs are executed on the DAS-2, with varying number of nodes. The values 
plottedd here are normalised to 32 PEs. Note the shift in the X-axis, where we plot e/eo + 1-

environmentt with a realistic value of N. 

Inn fig. 5.5 we show the evolution of the BH distance from the centre of mass of the 
systemm for three treecode simulations. N varies from 80 000 to 400 000 and 2 million, with 
ee = eo = 0.003 735, corresponding to about 0.03 pc. In fig. 5.6 we present a similar figure from 
PMM code simulations. Here is TV e {80 000,400 000,2 000 000}, with 32 cells per dimension, 
resultingg in a cell size of about 0.69 pc. 

Fig.. 5.5 and 5.6 show that increasing N results in a much smoother motion of the BH 
inn its infall towards the centre of the Galaxy. The BH infall rate (though very different in 
thee two cases) is not much affected by a change in N. Accordingly, the value of In A for 
eachh of the two sets above is consistent, as values in table 5.4 (first three rows) and table 5.5 
(rowss with I = 0.69) show. 

Inn order to study further the extent of the influence of N on the infall rate of the BH, 
andd hence in In A, we compare in fig. 5.7 results from PM code simulations with increasing 
gridd refinement, and extreme difference in N. To quantify the grid resolution, we use the cell 
lengthh at intermediate refinement, which is the cell length pertaining to the physical region 
wheree the BH evolves for most of its infall. We measure this length in units of e0 = 0.003 735, 
whichh makes the comparison with the softening parameter of the treecode easier. N has no 
strongg influence on the infall rate, except for the case where the cell size is / = 0.15 pc ~ 5eo-
Inn this case the simulation with A = 80 000 (data not reported in the figure), shows an 
incorrectt BH infall, comparable to the case I = 0.32 ~ 10e0. This can be explained by the 
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er r 
er r 

NN = 80 000 
NN = 400 000 

NN = 2 000 000 
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Figuree 5.5: Time evolution of the radial distance of the black hole to the Galactic centre. The 
variouss curves (identified in the top right corner) present results obtained with the treecode. the 
X-axiss is presented in iV-body time units: one iV-body time unit corresponds to about 0.031 Myr. 
Thee distance of the black hole to the Galactic centre (Y-axis) is given in terms of its initial distance. 
Inn these simulations is e = 0.003 735 ~ 0.03 pc and MBH = 0.000528. 

Figuree 5.6: Same as fig. 5.5 above, but for PM code simulations. The intermediate grid cell size is 
heree I = 0.69 pc, and MBH = 0.000528. 
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Figuree 5.7: Black hole infall at various cell sizes, and large difference in N. Results here are from 
PMM code simulations. The case N = 80000, / ~ 5eo is not shown for readability reasons, since it 
wouldd overlap with the I ~ 10eo results. 

factt that in the low I, low N case, the cells are so small, and the particles so few, that many 
cellss in the PM grid are empty (see also the Nc column in table 5.5, which gives the average 
numberr of particles per cell). When JVC<1, the density field is incorrect, with many grid 
pointss having a null value, because the corresponding cell is empty. In this condition, the 
gravityy field computed by the PM code becomes unreliable, affecting the numerical results, 
ass in the simulation with TV = 80 000 and / ~ 5eo-

5.3.33 Comparison of the codes 

Inn this section we compare the results obtained from the various codes, to check their con-
sistency.. The comparison of the PM results with the two other codes results is particularly 
critical,, since the PM code computes forces using a different mathematical approach, i.e. 
aa grid based force derivation vs a direct particle-particle computation for the PP code, or 
particle-multipolee computation for the treecode. A consequence of this is a different param-
eterr to tune the accuracy of the simulation, namely the cell size I for the PM code, and the 
softeningg length e for the other two codes. We will study here how these two parameters 
influencee the black hole infall. 

Inn fig. 5.8 we show the time evolution of the galactocentric BH distance R simulated 
byy the PP code, accompanied by a plot of the time evolution of AR/Rpp for treecode and 
PMM simulations, where AR = (R - RPP). The relative difference AR/Rpp remains small 
forr a large fraction of the infall, and the final discrepancy is mostly due to the small values of 
thee quantities at that point, which are likely to amplify relative differences. As the following 
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Figuree 5.8: Top panel shows a black hole infall simulated by the PP code, with N = 80000, 
MBHMBH = 0.000528 and e = 8eo- Bottom panel shows a comparison of the PP results with treecode 
andd PM results. Parameter values are in all cases the same, except for the PM cell size, which is 
// = 10eo- Plotted values are averages over 10 time units. 

figuress also show, the BH infall is predicted with very good consistency between the codes. 

Inn fig. 5.9 selected treecode runs with TV = 80 000 and increasing e are compared with 
thee direct code runs having the same values of TV and e. At the same time, the figure shows 
howw the infall time increases (and implicitly how In A decreases), as e increases. Fig. 5.9 and 
tablee 5.7 show that the results from the treecode, the PP code, and the PM code are in good 
agreement.. The agreement of the results from the three methods, and the scaling of In A 
withh e, will be further studied quantitatively in section 5.3.5. 

Inn order to understand how the cell length I of the PM code and the softening parameter 
ee of the PP code and treecode relate with each other, we compare in fig. 5.10 the results 
fromm the PM code and treecode simulations with 80 000 particles. The BH infall as shown 
inn fig. 5.10 depends on the value of I or e. Remarkably, I and e seem to play the same role 
nott only qualitatively, but also quantitatively: in a PM run, a given value of / induces an 
infalll  which is very similar to the infall, in a treecode run, with e assuming that same value. 
Inn section 5.3.5 this relation will be studied further. 

5.3.44 The effect of softening/grid 

Thee influence of the softening parameter on the BH dynamics has been studied by running a 
numberr of simulations with the three codes. In table 5.7 we report the value of In A obtained 
fromm our simulations. For the PP code and treecode simulations, we increase e from 0 to 
32e00 = 0.1195 ~ 0.96 pc. For the PM code, we increase / from 2.5 e0 to 23 e0. In all cases is 

PMM code 
__ treecode 
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Figuree 5.9: Comparison of results from the PP code with results from the treecode, at different 
valuess of e. For all cases shown here is N = 80000 and MBH = 0.000528. The PP simulation with 
€€ = 8eo has been already shown in fig. 5.8. 

Figuree 5.10: Comparison of PM results with treecode results. PM simulations have cell size I equal 
too resp. 10eo and 23eo; softening parameters in the treecode runs are resp. 8eo and 16eo- In all the 
abovee cases, is N = 80000 and MBH = 0.000 528. 
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e/cpp PP code treecode f/cp PM code 

0 0 
0.01 1 
0.1 1 
1 1 
2 2 
8 8 
16 6 
32 2 

6.6 6 
6.0 0 
5.3 3 
4.8 8 
3.5 5 
2.8 8 
1.8 8 

5.7 7 
4.7 7 
4.1 1 
3.0 0 
2.0 0 
1.6 6 

Tablee 5.7: In A versus e from PP code, treecode, and PM code runs. For the PP code and 
treecodee runs is N = 80 000. For the PM code runs is N = 2 million. The reference value 
forr the accuracy parameter is €Q = 0.003 735. 

MMBHBH = 0.528 • 10"3 ~ 623OOM0. 

Forr the PP code and the treecode, we selected N = 80 000 as a suitable value. The 
relaxationn time eq. (1.2) is for this value of N tr ~ 0.1 JV/ In N • i?3/2 ~ 2000, about one order 
off magnitude larger than the typical BH infall time, so that the system is collisionless, and 
wee can confidently use the treecode to simulate it. With this choice for JV, the BH mass 
iss MBH/™> — 42.3, (see table 5.4). As a cross-check, we ran two PP runs with N = 16000 
which,, as expected, gave incorrect results (see table 5.3). This is due to both a too small 
MBH/™MBH/™ ratio, and a too short relaxation time (tr ~ 400 in this case). We did not increase 
ee above 32 eo, since at this point e is already much bigger than 6mjn (see table 5.4), and the 
infalll time is now close to tr. 

Forr the PM code simulations, we used N = 2 million in order to have enough parti
cless to fill all the cells, even for the simulations with a small I. As table 5.5 shows, for 
// = 0.076 pc ~ 2.5 €o the average number of particles per cell is already Nc = 0.1. Since a 
PMM simulation gives incorrect results for Nc<g.l (see also the discussion at the end of sec
tionn 5.3.2), we did not decrease / below 2.5 eo-

Thee decrease of the value of In A as e or I increases is clear from table 5.7. In the next 
sectionn we focus on the relation between A and c, and provide a fitting formula for In A(e). 
Wee use hereafter e to refer either to the softening length of the PP and treecode, or the cell 
sizee of the PM code. As shown on fig. 5.10 and discussed above, these two parameters play 
thee same role even quantitatively in affecting In A. In this respect, we refer to e as a generic 
accuracyy parameter. 

5.3.55 Determination of In A 

Wee will study here the relation between e and In A. As just said above, in this context c will 
bee used as the accuracy parameter, and it will refer to either the softening length used in 
thee PP and treecode, or to the cell size in the PM code. 
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Figuree 5.11: In A vs e, and best fit  for In A = K — ln(o + e). Values for K and a are given in ta-
blee 5.8. The inset in the figure is a magnification of the low e region. In all cases is MBH = 0.000 528. 
Forr the PP and treecode runs is N = 80000, for the PM code runs is N = 2000000. Error bars are 
omittedd from the PP values to improve readability. For the same reason, In A values for e/eo < 1 
aree shown only in the inset. 

AA mathematical expression for the relation between e and In A can be found by consid-
eringg how softening affects two body scattering. The role of e is to prevent too close stellar 
encounters.. In this respect, the effect of introducing a softening length is to increase the min-
imall  impact parameter. Hence, we can define an effective impact parameter 6e// = 6TOm + e, 
andd we modify eq. (5.3) to become: 

lnAA = l n ^ = l n / m a x . (5.10) 
"eff"eff "min + C 

Wee will now fit this equation with the values reported in table 5.7. In order to perform the 
fit,fit,  we change eq. (5.10) in a more suitable form, as follows: 

Inn A = In bmax - ln(6min + e) = K - In (a + e). (5-11) 

Wee will refer to bmax and bmin as the theoretical values of the maximal and minimal im-
pactt parameters, as they can be obtained from eq.s (5.2) and (5.3), and K and a as the 
correspondingg experimental values obtained with the fit. 

Thee best fits for K and a with respect to simulation values are reported in table 5.8 
forr all codes. Such fits have been performed with a fixed value for RQ, i.e. the RQ = Rhm- In 
fact,, the not perfectly circular orbit of the BH results in an oscillatory behaviour for the BH 
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PPP code treecode PM code 

KK -0.94  0.21 -0.64  0.10 -0.59  0.05 
aa • 10"3 0.80  0.28 0.88  0.20 0.74  0.08 
A(lnA)) 0.6 0.3 0.2 

Tablee 5.8: Best values for the parameters K and a, and error on In A for the fit of 
lnAA = ü r - l n ( a + c). 

galactocentricc radius. In this case, having RQ fixed could not be an appropriate choice for the 
fit.. We checked whether having RQ as a free parameter in the fit leads to different results in 
Inn A. We obtained values for In A within the error bars in fig. 5.11, and values for RQ within 
RhmRhm  0.05. We can conclude that, although the galactocentric BH radius does not decrease 
smoothly,, but in an oscillatory fashion, having RQ fixed to the actual initial BH radius in 
thee simulations leads to correct fits for the value of In A. With respect to the PM values, 
aa further peculiarity is that when the BH enters the finest grid area, i.e. approximately at 
RR = 0.3, the value of / decreases (see section 5.2.3 and fig. 5.2). This causes beff to become 
smaller,, increasing the value of In A. In fact, a fit of the PM data limited to values of R > 0.3 
givess values of In A systematically higher by ~ 0.3 ~ 2 A (In A). 

Fromm the PP code value of K in table 5.8 we obtain for bmax the experimental value 
hfiuu.hfiuu. = eK ~ 0.39. This value is much smaller than what one would expect. Since bmax has 
thee meaning of the maximal impact parameter, a natural choice is to assign it a value of the 
orderr of the system size, which in our case would result in bmax = 2. The maximal radius for 
dynamicall friction in our system is then about one quarter of what it is customarily assumed. 
PMM and treecode values are slightly higher, but still much smaller than bmax = 2. Also a 
iss smaller than the theoretical value bmin = G • (MBH + m)folyp = 1-41 • 10~3, by a factor 3. 
Thee a value for all codes is perfectly consistent. 

Ann explanation for the discrepancy between the values of bmax and b^^ is that the BH, 
whilee moving to the Galactic centre, is off-centre with respect to the density peak (in fact 
thee BH is spiralising towards it). With respect to the BH position, the density distribution 
iss then asymmetric. This density peak clearly has a greater influence on the BH dynamics, 
contributingg more than the other regions of the system to the dynamical friction on the 
BH.. This leads to a value of bmax affected by the galactocentric BH radius. This approach 
iss studied in detail by Hashimoto et al. (2003), who propose the galactocentric radius as a 
valuee for bmax in the context of the spiral-in of satellite galaxies. 

Inn our simulations, the galactocentric radius varies from R ~ 0.9 at the beginning of a 
simulation,, to R ~ 0 at the end of it. The value of 6^, . that we find is within this range, and 
itt can be interpreted as an order 0 estimate of a maximal impact parameter that depends 
onn the galactocentric BH radius. 

Inn order to explore this aspect further, we simulated the infall of the same BH, starting 
att the quarter mass radius Rqm ~ 0.43, for e ranging from 0 to 16eo. What we expect is a 
smallerr value of 6 ^ . , hence smaller values of In A. All simulations are performed with the 
treecode,, except for the e = 0 case, which is simulated with the PP code. Our results are 
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Figuree 5.12: Comparison of In A vs e at different initial galactocentric BH radii. The smaller 
valuess of In A for the cases with RQ = Rqm indicate that bmax is influenced by the galactocentric 
BHH radius. 

inn fig. 5.12. We can see there that the values of In A are smaller for the cases when the 
BHH starts at the quarter mass radius. A fit on these data gives K  —1.1, which implies 
bmaxbmax — 0-33, which is smaller than the value of bmax obtained for the BH starting from the 
halff  mass radius. Our findings support the argument of Hashimoto et al. (2003). 

5.3.66 Varying black hole mass 

Wee also studied the effect of a variable BH mass on the value of In A. We simulated, using 
thee treecode, the infall of a BH of mass two times and four times larger than the default 
masss M0 = 0.000 528 ~ 0.62 • 1O5M0. We studied this infall in both the 80 000 particles 
configuration,, and the 400 000 particles configuration. In all cases, we used our standard 
valuee for e, i.e. eo = 0.003 735. In fig. 5.13 the distance r of the BH from the centre of mass 
off the system is shown for all the cases mentioned above, together with the MBH = M> 
cases.. From eq. (5.11) and table 5.8, the appropriate value for In A in the above cases is: 

Inn A = # - l n ( a + A = 

-0.644 - ln(0.000 88 + 0.003 735)  0.3 ~ 4.7  0.3 . 

Wee also show in fig. 5.13 the analytic curve r(t), as given by eq. (5.5), with In A = 4.7. An er
rorr bar gives, for each analytical curve, the spread corresponding to a variance A(ln A) = 0.3. 

Thee results shown in fig. 5.13 are consistent with the hypothesis that a variation in 
thee BH mass has a little effect in the value of In A. In fact, In A shows a logarithmic depen
dencee on MBu through the parameter bmin, which depends linearly on MBH (see eq.s (5.2) 
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Figuree 5.13: Black hole infall for different values of the BH mass, and different values of N. 
Simulationss are performed with the treecode. Simulation results are compared with the analytic 
solution,, eq. (5.5), with In A obtained from eq. (5.11) and table 5.8. The error bars at the bottom 
off  the analytic curves correspond to a variance A(ln A) = . 

andd (5.3)). Assuming that also the experimental value a depends linearly on MBH, we obtain 
Inn A ~ 4.6  0.3, and In A ~ 4.4  0.3 respectively for the 2 MBH case and the 4 MBH case. 
Thiss results in a small displacement towards the right of the corresponding analytic curves 
inn fig. 5.13, which does not affect the conclusions that can be drawn from the figure. The 
theoreticall  curve fits very well with the M = 2M0, N — 400 000 case. The other simulation 
curvess are within, or very close to, the error in r(t) associated to the error in In A. We can 
concludee that a variation in the mass of the infalling object has littl e influence in the value 
off  In A, which is important in view of extending this work to the case of the infall of a star 
cluster. . 

Thee fitting formula for In A vs e was obtained from simulations with MBH = Mo- This 
formulaa predicts In A for the cases with MBH > M0 with a very good accuracy, showing that 
itt can be applied in a more general context, in order to forecast the value of the Coulomb 
logarithm. . 

Fig.. 5.13 also shows a damping in the BH infall at very small values of R, especially for 
thee N = 400 000 case. This effect, described in section 5.2.5, is clearer in the N = 400 000 
case,, since the particle density is higher in this case, compared to the N = 80 000 case. 

5.3.77 Comparison with related work 

Milosavljevicc & Merritt (2001) study the dynamical evolution of two black holes, each one 

NN = 80 000 
NN = 400 000 
analyticc sol. 

yiuiyiui  MM fcMggfcgw, 
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att the centre of a power law cusped galaxy core. They simulate the merging of the two 
galaxies,, and observe the evolution of the two black holes, which form a hard binary at the 
centree of the merged galaxy. In section 3 of their paper they discuss the value of In A in 
theirr simulations. They measure the decay rate of the two black holes, and compare this 
valuee with theoretical estimates. When they compare their experimental decay rate with an 
estimatee for the case of the infall of an isolated black hole, they find a theoretical estimate 
aboutt 6 times lower than the measured value, under the assumption that In A ~ 1.6. If the 
valuee of In A is not theoretically pre-determined, and is instead obtained from the decay rate 
equation,, the result is In A ~ 10. Similarly, they compare the experimental value with an 
estimatee for the case of two mutually spiralling spherical distributions of matter. In this case 
theyy assume In A ~ 1.0, and obtain an estimate for the decay rate about a factor of 2 lower 
thann the observed value. Determining In A from the measurement would give in this case 
Inn A ~ 1.87. The values of In A that we find are between the two values above. 

Thee value for In A ~ 1 that they assume in their theoretical estimates, comes from a 
derivationn that they present in appendix A of the same work. This derivation is based on 
resultss of Maoz (1993). Under the assumption that the stellar density obeys a power law 
centeredd on the BH position: 

P(P(rr)) = Po(z!-) a , (5-12) 
\Omin/ \Omin/ 

theyy obtain A ~ \(a ~ 1, which actually implies ^Wr — bmin, whereas it is customary to 
considerr 6m ai » bmin-

Theirr assumption in fact is valid only when the BH is close to the centre of the power 
laww distribution. In their context this is true when: 1) the separation between the two BHs 
iss much larger than the half mass radius of the two galaxies. In this case each BH is at the 
centree of its own galaxy, and at the same time its motion is not yet heavily perturbed by the 
otherr galaxy. 2) the BH binary has hardened, and occupies the centre of the merged galaxy. 

Duringg the transient phase, when the two BHs have not yet formed a binary, the density 
distributionn that affects the motion of the BHs is double-cusped, with a BH in each of the two 
cusps.. This is substantially different from the density distribution modelled by eq. (5.12). 

Thiss qualitative argument would make the density distribution in eq. (5.12) inapplica-
blee during the transient phase, and could explain why Milosavljevic & Merritt (2001) find 
aa higher than expected value of In A in the transient. The analytical evaluation of In A ac-
cordingg to the technique used by them is by no means trivial, when symmetry arguments 
cannott be straightforwardly applied. We will address this issue in future developments of 
thee present work; the theory of linear response of Colpi & Pallavicini (1998) could be very 
usefull  in this context. 

5.44 Applications to star  clusters 

Recentt observations of the Galactic Centre have revealed a population of very young clusters 
withh ages less than 10 Myr. The presence of such stars inside the inner parsec of the Galaxy 
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iss puzzling, as the strong tidal field in the Galactic centre easily prevents star formation. The 
originn of these stars is therefore debated (Gerhard, 2001; McMillan &: Portegies Zwart, 2003). 
Morriss (1993) proposed that a star cluster at some distance from the Galactic centre could 
spiral-inn due to dynamical friction (see also Gerhard, 2001). The efficiency of dynamical 
frictionfriction depends sensitively on the actual value of the Coulomb logarithm In A. 

5.4.11 Sinking of massive black holes in the Galactic centre 

Wee performed N-body simulations for a large range of conditions. In section 5.3.2 we varied 
thee number of particles, in section 5.3.4 we varied the size of the object, and in section 5.3.6 
wee varied its mass. With direct iV-body simulations we measured the actual value of the 
Coulombb logarithm In A. We study the behaviour of In A for various types of Af-body solvers 
andd particle numbers. We also study the behaviour of In A as a function of the softening 
lengthh e. Only the direct AT-body code can perform a true measurement of the Coulomb 
logarithm,, because it is able to resolve even the smallest length scales and time scales. This, 
however,, makes the direct code very slow and, even using the very fast GRAPE-6 special 
purposee device, we are able to perform simulations with only 105 particles. This is a small 
numberr compared to the actual number of stars in the Galactic centre. With approximate 
methodss (treecode and particle-mesh) we are able to increase the number of particles up to 
22 million. The cost of this is a lower accuracy in calculating stellar motion below a typical 
lengthh scale e. We studied how this length scale influences In A, by affecting the value of the 
minimall  impact parameter. 

5.4.22 Young dense clusters in the Galactic centre 

Thee study of the dependence of In A on e described above is also of astronomical interest, 
becausee e can be interpreted as the typical length of a finite size infalling object. Based on 
this,, our analysis of the dependence of In A on € can be seen as a first approach to the study 
off  the infall of a star cluster of typical size c toward the Galactic centre. We found (see 
fig.fig. 5.11) that the value of In A decreases quite rapidly as e increases, with the logarithm 
argumentt A oc 1/e. The typical size of the compact young clusters observed in the Galactic 
bulgee is ~ 0.3pc (Figer et a/., 1999), which corresponds to € ~ 10eo. With this value of e, 
fromfrom eq. (5.11) and table 5.8, we obtain In A ~ 2.9, about 60% less than the value for a point 
mass.. The infall time is roughly doubled. For our choice of object mass, M ~ 62 300 M 0, and 
initiall  galactocentric radius, RQ ~ 7 pc, we have an infall time that increases from ~ 6 Myr 
forr the point mass, to ~ 12.5 Myr for an object of typical size ~ lOeo ^ 0.3 pc. 

Wee also studied the uncertainty associated with the maximal impact parameter bmax. 
Wee found that for an infall to the Galactic centre, the infalling object is mostly influenced 
byy the density peak at the Galactic centre itself. A good choice for bmax is then bmax ~ @RQ, 
wheree RQ is the initial galactocentric radius, and (3 ~ 0.5 
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5.55 Discussion 

Wee simulated the evolution of a massive particle in a sea of lighter particles in a self gravitat-
ingg system. The main goal of this simulations is to obtain an accurate value of the Coulomb 
logarithmm (In A). This helps us to understand the dynamics of the Galactic bulge and the 
ratee at which intermediate mass black holes sink to the Galactic centre. We also study the 
effectt of the finite size of the inspiraling object. 

Wee ran both iV-body particle-particle (PP) simulations, softened treecode simulations, 
andd particle-mesh (PM) simulations. The comparative simulations are performed for 80 000 
particles,, and all result in the same value of In A. For a point particle near the Galactic 
centree we find In A = 6.6  0.6. In addition we measure the change in the Coulomb logarithm 
withh respect to the softening parameter e, which reveals A oc 1/e. We argue that e can be 
interpretedd as the typical length of a finite size object, such as a star cluster, so that In A 
ass a function of e can be seen as a first approximation of the dependence of the Coulomb 
logarithmm on the size of an infalling star cluster. 

Wee also observed a value of the maximal impact parameter bmax different from the 
customarilyy assumed value, which is proportional to the system size. We found that our 
resultss are more consistent to a value of bmax linearly dependent on the BH galactocentric 
radius,, which is in agreement with Hashimoto et al. (2003). 

Wee performed simulations with up to two million particles using a treecode. The 
obtainedd value of In A does not depend on the number of particles. Apparently, 80000 
particless is already enough to eliminate any granularity for our choice of initial conditions. 
Thee results of the treecode, at the low AMimit , are in excellent agreement with the PP 
simulations,, and we find the same scaling with respect to e. Increasing the black hole mass 
reducess the time scale for spiral-in as expected from theory (see McMillan & Portegies Zwart, 
2003). . 

Finallyy we compared the results of our PP and treecode simulations with a particle 
meshh (PM) method. We compared the methods for N up to two million. The results of our 
PP,, treecode, and PM calculations are in good agreement. The cell size in the PM model is 
directlyy comparable to the softening length e in the PP and tree methods. 

Thiss work is a first step in the direction of performing a simulative study of the infall 
off  a young star cluster to the Galactic centre (see section 5.4.2). As discussed in section 1.7, 
aa star-by-star simulation of a cluster infall is problematic. The total number of particles, 
includingg both the cluster particles and the Galactic centre particles, is by far larger than 
thee number a direct code can manage. On the other hand, the use of a treecode would lead 
too an incorrect treatment of the cluster dynamics, resulting in a too fast, unrealistic cluster 
evaporation.. A solution for this problem is the development of a hybrid code, consisting of a 
directt code "phase" that is responsible of the simulation of the cluster, and a treecode "phase" 
thatt simulates the galactic centre. The data exchange between the two phases is negligible: 
thee treecode input is the current mass of the cluster, and the direct code input is the current 
valuee of the galactic gravitational force. 

AA hybrid architecture of the kind described in part I is an ideal hardware platform for 
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thiss hybrid code simulations, and the pseudo-particle treecode described in chapter 4 lends 
itselff  very well to being included in the hybrid code as its low accuracy component. 





Partt  II I 

Conclusions s 





Inn this thesis we studied the use of hybrid architectures as a tool to accelerate the numerical 
solutionn of the iV-body problem. We can define the AT-body problem as the challenge to 
understandd the motion of N point-like particles, subject to their mutual interactions. This 
definitionn is inspired by the one given on page 14 of the profound and delightful book on the 
gravitationall  million body problem, written by Douglas Heggie and Piet Hut (2003). In this 
thesis,, we also focus on the gravitational AT-body problem because of its highly demanding 
computationall  requirements, that make it interesting and stimulating for a computational 
scientistt to examine the computational characteristics, and explore the possible avenues to 
speed-upp the problem's numerical solution. 

Thee analytic insolubility of the gravitational AT-body problem for N > 2 led to the 
developmentt of numerical techniques to study it, as discussed in section 1.2. The need to 
retainn the full 0(N2) direct particle-particle scheme for the simulation of collisional sys-
tems,, i.e. systems requiring high computational accuracy (see section 1.2), led in turn to 
thee development of the GRAPE, specialised hardware to accelerate the computation of the 
gravitationall  force interactions, introduced in section 1.3. 

Thee gravitational force computational kernel of the Ö(N2) scheme is so demanding in 
termss of hardware power, that its execution on the one Tflop/s GRAPE-4 can be driven 
byy a host workstation which is about 104 times slower (see section 1.2, fig. 1.5, and our 
performancee analysis work presented in chapter 2). 

Ourr research aims at exploring the possibilities of using the GRAPE to boost N-
bodyy simulations other than those of astronomical collisional systems, which is the native 
domainn of application of the GRAPE. For the simulation of collisionless systems, fast and 
moree sophisticated methods like the treecode, the FMM (Fast Multipole Method), or the 
PMM (Particle-Mesh), have been developed, as described in section 1.2. They reduce the 
computationall  complexity of the AT-body problem to 0(N log N), and even O(N), trading 
higherr speed for lower accuracy. 

Usingg the GRAPE with these methods is not straightforward, since the particle-particle 
forcee computation, while still relevant, is no longer the most computationally expensive task 
off  the application. In this case, the relatively high computational load of the GRAPE-host 
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couldd make the host activity the system bottleneck. 

Thee use of Performance Modelling techniques allows us to study the interplay of the 
generall  purpose host, the special purpose device, and the application executed on the hybrid 
architecture.. Chapter 3 describes our performance models of hybrid architectures which 
includee GRAPE boards to accelerate the execution of direct particle-particle codes and 
treecodes.. We show that a distributed hybrid architecture running a treecode optimised for 
thee GRAPE has the potential to outperform a serial-host GRAPE4-like monolithic system 
runningg a direct code, even for simulations requiring high computational accuracy. 

Thiss supports our idea of hybrid architectures as an effective tool to speed up the 
executionn of applications characterised by a heavy and small computational kernel, which is 
amenablee to hardware implementation, but also including auxiliary relevant computational 
requirements.. Further support for the hybrid architecture paradigm comes from the fact 
thatt the GRAPE-6 architecture (see section 1.3) is essentially an instance of this class of 
computerr systems. 

Inn order to efficiently use the hybrid architecture, the software application that is run on 
itt needs to be fine-tuned. A fine-tuning of the treecode to run optimally on a platform which 
includess the GRAPE is the pseudo-particle scheme (see chapter 4). In this formulation, the 
gravitationall  potential of the particle aggregates created by the treecode domain partition, 
iss converted from multipole expansion to a pseudo-particle distribution. In this way, the 
GRAPEE is also able to compute the force due to particle aggregates, allowing for an optimal 
executionn of the treecode on the hybrid machine. 

Inn chapter 4 we described the pseudo-particle approach, and presented the accuracy 
improvementt that we developed. We showed that the original pseudo-particle formulation 
(Makino,, 1999; Kawai & Makino, 2001) is less accurate than the canonical multipole-based 
treecode,, especially in the case of highly inhomogeneous matter distributions. We introduced 
ann improvement, consisting in an extra particle added to the pseudo-particle set, located at 
thee centre of mass of the real particle distribution. In such a way the pseudo-particles ap-
proximatee inhomogeneous real particle distributions more closely, with a significant accuracy 
benefit. . 

Wee also developed a temporal expansion scheme for the pseudo-particle approach, 
wheree we define a pseudo-particle velocity. In this way, we do not re-compute the pseudo-
particless at each time step, but we let them move, following the real particle evolution. This 
nott only reduces the overhead from calculating the pseudo-particle, but also optimises the 
communicationn with the GRAPE. The GRAPE needs to know the pseudo-particle expansion 
off  particle aggregates, which must be communicated by the host at each time step. With our 
scheme,, pseudo-particle expansions can be retained in the GRAPE memory for a number of 
timee steps, and evolved locally by the GRAPE extrapolation pipeline (see section 1.3 and 
fig.fig. 1.4), because pseudo-particles now have a velocity assigned to them. 

Inn chapter 5 we presented an actual example of JV-body simulative study. Namely, we 
carriedd out a comparative study of the infall of a massive black hole towards the Galactic 
centre,, in order to measure the Coulomb logarithm. The Coulomb logarithm is the parameter 
thatt quantifies the efficiency of a massive body slow-down due to its gravitational interaction 
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withh a background of lighter stars. If the body is orbiting a centre of gravity, as in our case, 
itss deceleration results in an inspiraling trajectory. 

Wee used a direct particle-particle code, a treecode, and a particle-mesh code for our 
simulations,, in order to understand how particle granularity and code inaccuracy influence 
thee measure of the Coulomb logarithm. The direct code is accurate, but limited in the 
numberr of particles because of its 0{N2) scaling. The other codes are less accurate, but 
allowallow for higher numbers of particles, hence low particle granularity, which gives a smoother 
representationn of the gravity field. Our measure of the Coulomb logarithm appears to be 
independentt of the number of particles, at least for the range of physical parameters chosen. 
Thee parameter that quantifies the numerical inaccuracy influences the value of the Coulomb 
logarithm.. The logarithm argument is inversely proportional to the inaccuracy parameter. 

Futur ee work 

Thee work presented in chapter 5 is the first step towards the study of the infall of a star 
cluster,, i.e. an extended object. As described in section 1.7, phenomena of this kind, con-
sistingg of the interaction of a collisional and a collisionless system, are not straightforward 
too simulate, either with a direct code or an approximate method. Our solution is to devise 
aa hybrid code, where the star cluster collisional "phase" is simulated by the direct code, and 
thee Galactic centre collisionless "phase" is simulated by the treecode. 

Thiss hybrid code makes high demands of the host computing platform, which must 
providee both high computational power for the gravitational force evaluation, and compara-
blyy high power for the other tasks of the software, otherwise the treecode execution would 
becomee the system bottleneck. A hybrid architecture of the kind discussed in this thesis 
wouldd be an ideal solution for this problem. 

Ourr group is planning to realise a hybrid system including GRAPE-6 boards, configured 
too optimally run the hybrid code. The computational asymmetry inherent in the coexistence 
off  a direct code "phase" and a treecode "phase" calls for a corresponding asymmetry in 
thee hardware architecture. The direct code requires a large computational power for the 
gravitationall  force kernel evaluation, and has few requirements for the other tasks. A single 
hostt having a number of GRAPE boards connected to it would fulfil l these needs. On the 
otherr hand, the treecode has a relatively lower need for the force evaluation part, but needs 
moree power for the other general purpose tasks. A homogeneous distributed configuration 
withh each node of a parallel host connected to the same number of GRAPEs would be more 
appropriatee in this case. 

Thee ideal architecture to run the hybrid code would then be an amalgam of the two 
platforms.. One node should be connected to a higher number of GRAPEs with respect to 
thee other nodes. A performance model wil l be very useful to configure this system, and 
fine-tunefine-tune it to obtain the best performance when running the hybrid code. Our work on 
performancee modelling that was presented in part I will be the basis of this model. 

Wee have presented an example of the potential of hybrid architectures to solve specific, 
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highlyy demanding computational problems. We focussed on hybrid architectures for the 
gravitationall  iV-body problem, but other fields of Computational Science can profit from this 
architecturall  paradigm. The use of special hardware like the APE series (Tripiccione, 1999) 
developedd for Quantum Chromo-Dynamics simulations, or the MDM machine (Narumi et cd., 
1999,, 2000), the sibling of GRAPE used for Molecular Dynamics simulations and mentioned 
inn section 1.3.3, can be enhanced by a hybrid architecture approach. We believe that hybrid 
architecturess can be the platform of choice for a sizable number of computational scientists. 
Withh this thesis we hope to contribute to a move in this direction. 
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Samenvatting g 

Inn dit proefschrift analyseren we hulpmiddelen die ontwikkeld zijn om de snelheid en de ac-
curatessee van zogenaamde "JV-body simulaties" te verhogen. De moleculen in een chemische 
oplossing,, of de sterren in een sterrenhoop zijn voorbeelden van dergelijke JV-body syste-
men.. In dit proefschrift richten we ons op JV-body systemen die gedreven worden door de 
zwaartekracht,, zoals die worden toepast in de sterrenkunde. 

JV-bodyy problemen zijn analytisch onoplosbaar. Met behulp van high-performance 
computingg technieken en geavanceerde algoritmen kunnen ze echter wel numeriek worden 
aangepakt.. Deze numerieke oplossingen vereisen zoveel computationeel vermogen, dat er 
geavanceerdee algoritmen nodig zijn om het JV-body probleem te versnellen. Hierbij wordt 
echterr op de nauwkeurigheid van de oplossing ingeleverd. Een andere aanpak is het gebruik 
vann gespecialiseerde hardware, die zich leent voor JV-body problemen die meer numerieke 
accuratessee vereisen. Hiermee kan de numerieke oplossing van het JV-body probleem met 
behoudd van accuratesse worden versneld. 

Inn dit proefschrift onderzoeken we de mogelijkheid om deze twee benaderingen te com-
bineren,, door de snelle, gespecialiseerde hardware in een conventionele, parallelle computer te 
integreren.. We noemen dergelijke systemen hybride architecturen. Veel onderzoekers streven 
naarr generalisatie en zijn meer gecharmeerd van conventionele systemen, die worden opge-
bouwdd uit gewone hardware (PC's), zoals de Beowulf of het Grid. In de andere benadering 
streeftt men ernaar zeer hoge prestaties door middel van hardwarespecialisatie te verkrijgen. 
Hett doel van ons onderzoek is, deze twee benaderingen te overbruggen. We onderzoeken de 
levensvatbaarheidd van hybride architecturen, en evalueren hun potentieel om grootschalige 
simulatieproblemenn op te lossen. 

Dee gespecialiseerde hardware die we bestuderen is de GRAPE. Dit is een zeer krachtige 
machinee die wordt gebruikt voor de simulatie van sterrenkundige JV-body systemen. Op 
GRAPEE uitgevoerde simulaties hebben vijf keer in de laatste acht jaar de Gordon Bell prijs 
gewonnen,, die jaarlijks wordt toegekend aan de snelste simulatie ter wereld. 

Hett is belangrijk om de interactie te begrijpen tussen de parallelle machine en de 
gespecialiseerdee hardware enerzijds, en anderzijds de softwaretoepassing die op de hybride 
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architectuurr wordt uitgevoerd. Zo kunnen knelpunten in het verloop van de simulatie worden 
gelocaliseerd,, en kan de optimale configuratie worden gevonden. Om deze interactie te 
bestuderenn maken we gebruik van performance modelling. In deze techniek worden simulaties 
gebruiktt om de prestaties van simulatiesystemen te bestuderen. Deze meta-simulatie is de 
kernn van ons onderzoek, en richt zich op het vinden van de optimale interactie tussen snelle 
softwaree en hardware die uiteindeijk zal kunnen leiden tot de ontwikkeling van een zeer snelle 
simulatieomgevingg voor JV-body systemen. 

Eenn belangrijk doel van dit proefschrift is om de potentie van hybride architecturen als 
optimalee berekeningsomgeving voor de oplossing van specifieke problemen aan te tonen. In 
ditt licht hebben we een numeriek algoritme bestudeerd en aangepast aan de hybride archi-
tectuur.. Dit algoritme maakt het mogelijk om geavanceerde iV-body codes te gebruiken op 
gespecialiseerdee hardware. Dit numerieke algoritme is het softwarematige deel van de hybri-
dee architectuur, en vormt de basis voor de ontwikkeling van een efficiënte simulatieomgeving 
voorr het JV-body probleem. 

Tenn slotte bestuderen we de toepassing van de AT-body simulaties in sterrenkundig 
onderzoek.. We bestuderen de val van een massief object (een zwart gat) naar het centrum 
vann het melkwegstelsel. 

TV-bodyy simulaties zijn een effectief hulpmiddel om de tijdschaal van deze val te be-
studeren;; ze kunnen ondersteuning (of bezwaren) bieden aan theoretische modellen voor de 
verklaringg van astronomische observaties. 

Ditt proefschrift bestaat uit drie delen. Het eerste deel behandelt de performance mo
dellingdelling en de simulatie hiervan, en bestaat uit twee hoofdstukken. In hoofdstuk 2 analyseren 
wee de prestatie van de iV-body-code NBODY1 op onze experimentele hybride architectuur, 
diee bestaat uit twee GRAPE-4-borden en een parallelle computer. Het bevat een uitvoerige 
beschrijvingg van de taken van NBODY1, en bevat prestatiemetingen en een analyse van een 
aantall  versies van NBODY1 op onze hybride architectuur. Deze metingen vormen de ba-
siss voor de performance modelling en simulatie van de architecturen waarop 7V-body-codes 
wordenn uitgevoerd. Dit performance modelling and simulation werk wordt geïntroduceerd in 
hoofdstukk 3. 

Deell  twee van dit proefschrift bestaat ook uit twee hoofdstukken. Hoofdstuk 4 behan-
deltt de nauwkeurigheidsanalyse en optimalisering van een hybride JV-body-code, die voor 
optimaall  gebruik met de GRAPE ontwikkeld is. Wij bestuderen de foutpropagatie in de 
codee bij verschillende deeltjesverdelingen, en verbeteren de nauwkeurigheid van de code 
wanneerr ze gebruikt wordt bij zeer inhomogene distributies. 

Inn hoofdstuk 5 introduceren we onze vergelijkende multi-methode JV-body simulaties. 
Mett behulp van deze simulaties beogen we kwantitatieve schattingen te doen van de effici-
ëntiee van de spiralisering van een zwart gat naar het centrum van het melkwegstelsel. We 
proberenn het effect van deeltjesgranulariteit en codeonnauwkeurigheid op de valefficiëntie 
vann de zwarte gat te begrijpen. Tot slot, vatten we in deel II I ons werk samen en bespreken 
wee de toekomstige ontwikkelingen. 
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