
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Hybrid Systems for N-body Simulations

Spinnato, P.F.

Publication date
2003
Document Version
Final published version

Link to publication

Citation for published version (APA):
Spinnato, P. F. (2003). Hybrid Systems for N-body Simulations. Eigen Beheer.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/hybrid-systems-for-nbody-simulations(d0edabb7-ef0b-4fa8-9fe6-cda5b7b4f631).html

II Hybrid Systems H
forr IV-body Simulations

Pieroo Spinnato

Hybri dd Systems
forr iV-body Simulations

Pieroo Spinnato

Hybri dd Systems
forr iV-body Simulations

ACADEMISCHH PROEFSCHRIFT

terr verkrijging van de graad van doctor
aann de Universiteit van Amsterdam
opp gezag van de Rector Magnificus

prof.. mr. RF. van der Heijden
tenn overstaan van een door het college voor promoties ingestelde

commissie,, in het openbaar te verdedigen in de Aula der Universiteit
opp dinsdag 23 september 2003, te 12.00 uur

door r

Pietroo Fedele Spinnato

geborenn te Sant'Agata di Militell o (Italië)

PROMOTIEE COMMISSIE

Promotor:: prof. dr. P.M.A. Sloot

Co-promotor:: dr. G.D. van Albada

Overigee leden:

Faculteit: :

prof.. drs. M. Boasson
prof.. dr. A.V. Bogdanov
dr.. ir. A.J.C, van Gemund
prof.. dr. E.P.J. van den Heuvel
dr.. S.F. Portegies Zwart

Faculteitt der Natuurwetenschappen, Wiskunde en Informatica

Advance dd Schoo l tar Computin g and knagm g

Thiss work was carried out in the ASCI graduate school.
ASCII dissertation series number 87

ISBNN 905-776-1092

Printedd at Rotooffset Paganella, Trento

Detaill of a picture taken in Leiden, at the corner of Pelikaanstraat with Oude Rijn.

Contents s

Acknowledgmentss xi

11 Introductio n 1
1.11 Preliminary remarks 1

1.1.11 Thesis rationale 2
1.1.22 Chapter outline 3

1.22 The computational TV-body problem 3
1.33 Hardware for the TV-body problem 6

1.3.11 GRAPE-4 8
1.3.22 GRAPE-6 10
1.3.33 GRAPEs in different fields 12
1.3.44 Hybrid architectures for the TV-body problem 13

1.44 Software for the TV-body problem 13
1.4.11 The direct code 15
1.4.22 The treecode 16
1.4.33 The Fast Multipole Method and Particle-Mesh methods 18

1.55 Software for hybrid architectures 19
1.66 Performance modelling for the TV-body problem 20
1.77 TV-body simulations: the reason for it all 23
1.88 Hybrid codes on hybrid systems 24
1.99 Thesis outline 25

11 Performance Modelling and Simulation 27

22 TV-body Codes on Hybri d Architectures 29
2.11 Introduction 29
2.22 System description 30

2.2.11 Architecture 30
2.2.22 Application 32

2.33 Code parallelisation 34

vu u

vii ii Contents

2.3.11 The basic: individual time-step 34
2.3.22 Towards a GRAPE code: block time-step 35
2.3.33 The GRAPE code 37

2.44 Code performance 37
2.4.11 Individual time step code 38
2.4.22 Block Time-step Code 39
2.4.33 GRAPE Code 41
2.4.44 Code Comparison 44

2.55 Discussion 48

33 Modellin g and Simulation of Hybri d Architecture s 49
3.11 Introduction 49
3.22 Design considerations 51

3.2.11 Requirements 51
3.2.22 Functional model and implementation environment 52

3.33 Model implementation 53
3.3.11 Direct code 53
3.3.22 Treecode 61

3.44 Simulations 67
3.4.11 Serial direct code 68
3.4.22 Parallel direct code simulations 74
3.4.33 Parallel treecode 80
3.4.44 Direct code vs treecode 84

3.55 Discussion 86

I II Applications 89

44 Pseudo-Particle Powered Treecode 91
4.11 Introduction 91
4.22 The pseudo-particle method 93
4.33 Error evaluation 94

4.3.11 Comparisons 94
4.3.22 Worst-case error 95
4.3.33 Statistical error 97
4.3.44 The GADGET MAC 99

4.44 Moving pseudo-particle scheme 102
4.4.11 Statistical error 103

4.55 Discussion 105

55 Efficiency of Black Hole Spiral-i n 107
5.11 Introduction 107
5.22 Methods and model 109

5.2.11 Direct method 109
5.2.22 Treecode 110

ContentsContents ix

5.2.33 Particle-mesh code I l l
5.2.44 The theory of the Coulomb logarithm 112
5.2.55 The role of softening in the determination of the Coulomb logarithm 113
5.2.66 Initial condition 114

5.33 Results 116
5.3.11 Code performance 118
5.3.22 Dependence of In A on N 119
5.3.33 Comparison of the codes 122
5.3.44 The effect of softening/grid 123
5.3.55 Determination of In A 125
5.3.66 Varying black hole mass 128
5.3.77 Comparison with related work 129

5.44 Applications to star clusters 130
5.4.11 Sinking of massive black holes in the Galactic centre 131
5.4.22 Young dense clusters in the Galactic centre 131

5.55 Discussion 132

II II Conclusions 135

Bibliographyy 141

Samenvattingg 151

Listt of Publications 153

Acknowledgments s

I tt is with some degree of concern that I begin to write these acknoledgments, since I'm
awaree of the fact that this will be the first (and maybe the only) part of this dissertation
thatt people will read. For this reason, I was tempted to put the entire text of the thesis
underr this section. This would have allowed me to break the world record for the longest
acknowledgmentss ever, but it would have also induced the opposite effect, i.e., decreasing
dramaticallyy the number of my readers. Anyway, let's stop beating about the bush (sooner
orr later, it comes time for bushes to be beaten), and come to the point.

Firstt of all, I'd like to thank Peter Sloot, my supervisor, for involving me in an exciting
researchh field, at the crossroads of Algorithmics, Astrophysics, and Computer Science. The
directionn taken by my research owes much to his supervision. I'm also grateful to him
forr having involved me in teaching and refereeing activities. It was very stimulating and
instructivee to be an assistant in various courses, and also to serve as a referee for scientific
journalss and conferences where Peter occupies a steering role.

Myy thanks also go to Dick van Albada, my co-supervisor. His care for precision and
rigorouss attention to details influenced not only the research results, but also the final shape
off this dissertation, which owes a great deal to his scrutinous reading of my drafts. I'm
indebtedd to him and his family for their hospitality during my first days in the Netherlands.

II spent most of the last year and a half of my Ph.D. working with Simon Portegies
Zwart.. It has been a very enjoyable and fruitful collaboration, which resulted in the work
presentedd in chapter 5 of this thesis. His enthusiasm and exuberance has always made it a
pleasuree to work with him; his inexhaustible energy has made it almost an ordeal! I also
enjoyedd helping him with the Stochastic Simulation 2003 course; our challenge of solving the
Travellingg Salesman Problem faster is still open. I'm sure my treecode solver will beat his
Monte-Carloo one!

II gratefully acknowledge Ed van den Heuvel for having provided the funding that
supportedd the last six months of my Ph.D.

II thank the members of my Ph.D. committee for agreeing to read my dissertation, and

x i i

Xl l l Acknowledgments Acknowledgments

myy co-authors for granting me permission to include material from our joint papers in this
thesis. .

I'mm grateful to Jun Makino from the University of Tokyo for having provided the two
GRAPE-44 boards that I used for my performance analysis work, and the ASCI for the
availabilityy of the DAS cluster at the University of Asterdam, where the GRAPE boards
weree attached. I used the DAS extensively for my performance analysis work presented in
chapterr 2. Thanks to ASCI also for the availability of the new DAS-2 system, that was used
too carry out part of the simulations upon which chapter 5 is based.

I'mm grateful to Vittorio Rosato from the HPCN group of ENEA for his invitation,
whichh resulted in a very instructive visit to the ENEA centre at Casaccia. There, I was
introducedd to the APE system, and had the chance to meet the members of the HPCN
group,, who I was very pleased to see again a few months later at the SIMAI conference in
Ischia.. During that visit, I also met Roberto Capuzzo Dolcetta from the University of Rome,
whoo I'd also like to acknowledge for his activities towards strengthening and expanding the
rolee of Computational Astrophysics in Italy.

I'mm indebted to Michael Sipior for proofreading chapter 1 and part II I of this disserta-
tionn during a joint train trip to Antwerp and back. His corrections were my only achievement
off that day, for our great expectations of what brought us to Antwerp were completely frus-
trated.. And, I'm afraid that Michael's work was also in vain, as the modifications that I
introducedd subsequently certainly spoiled Michael's efforts to de-italianise my English. I'm
alsoo profoundly grateful to Roeland Merks, who accepted, and heroically fulfilled the duty of
amendingg my creative Dutch, and rendered the "samenvatting" of this thesis a decent piece
off text. My reckless offer of compensating his efforts with a beer for each mistake he would
findfind could have bankrupted me if Roeland had really counted them. I could have done better
iff I had bought an entire brewery for him! Roeland even raised the bid: he said he would
buyy a drink for each mistake he left in the "samenvatting". The error-hunting is still open!
I'mm also grateful to Amy Soller for revising the text of these acknowledgments, and Juan
Heguiabeheree for his prompt and remote help in obtaining the ISBN number of this book.

I'dd like to acknowledge Marteen de Rijke for writing the ILL C dissertation style KH^X
package,, which I used for this thesis, Roeland Merks (too many acknoledgements for you,
Roeland!!)) for providing me with his modified version of the bibliography style package used
here,, Rosella Gennari for the countless number of times when she helped me with I^I^X
relatedd problems, always reproving me for my troglodytic use of software tools. I express my
gratitudee to the great community of T ĵX and WTgfi. developers for their contributions in con-
stantlyy enhancing this formidable typesetting system, and to the initiator of this enterprise,
Donaldd Knuth, for his love of beauty and elegance.

AA dissertation is a place where scientific results of a Ph.D. are collected, hence emotional
feelingss are better kept out of it. My gratitude for the friendship and availability that my
colleaguess of the SCS group, the Institute for Informatics, the secretariat personnel, and my
friendsfriends in Amsterdam and elsewhere showed me won't be acknowledged here, but personally
too each of them.

Sincee I graduated in 1995 in Palermo, I stayed in different places around Europe, met

Acknowledgments Acknowledgments xiii i

manyy interesting people, and got in touch with different cultures. Man's real home is not
aa house, but the Road, and life itself is a journey to be walked on foot, said Chatwin, and
thiss could also be my motto. Meeting my travel mate for this journey was the greatest
achievementt of my stay in Amsterdam.

Pieroo Spinnato TVento, 5th August 2003

PSS The cover image is inspired by Phaedrus' De vulpe et uva:

FameFame coacta vulpes alta in vinea
UvamUvam appetebat summis saliens viribus;
QuamQuam tangere ut non potuit, discedens ait:
'Nondum'Nondum matura est; nolo acerbam sumere'.
Qui,Qui, facere quae non possunt verbis elevant,
AdscribereAdscribere hoc debebunt exemplum sibi.

Guessingg the metaphor that connects the above fable to this thesis is left as an exercise to
thee reader.

Chapterr 1

Introductio n n

1.11 Preliminar y remarks

Overr the past 40 years, computer systems have shown an explosive growth in their com-
putingg power, pervading and influencing almost every aspect of our society. The scientific
communityy has greatly benefited from this continuous increase in computer performance,
whichh in a way is the reward for having provided the initial impetus for the pursuit of ever
fasterr computer systems. Equally important for the scientific community is the development
off faster and increasingly sophisticated software that has gradually expanded the role of com-
puterr systems in science from a mere support tool for numerical analysis to a fully-fledged
environmentt to perform virtual experiments. The jointt availability in so-called virtual labo-
ratoriess of very powerful computer systems and very fast and accurate numerical algorithms
nowadayss permits the reproduction in silico of natural phenomena, and has resulted in the
risee of Computational Science as a modern way of carrying out scientific research.

Traditionally,, scientific investigation has been based on two pillars, theory, and exper-
iments.. The virtual laboratory, which provides the possibility of executing highly accurate
simulationss of complex natural phenomena, has led to the rise of simulation as a third pillar
off scientific research. Natural phenomena as diverse as the interactions among the molecules
thatt constitute a chemical solution, or the dynamics of stars that form a globular cluster,
orr the growth of a coral subject to environmental conditions, can be studied by means of
computerr simulations.

Computerr simulations have the great advantage of allowing the investigation of phe-
nomenaa that are very difficult, or even impossible to reproduce in a real laboratory, as in
thee cases cited above. A theoretical study of the dynamics of a chemical solution, or a star
cluster,, is not possible because the equations describing the system are unsolvable analyti-
cally.. On the other hand, observing the dynamics of the constituents of the above systems is
equallyy infeasible for an experimental scientist. The simulative approach is the only feasible
meanss to tackle the study of such phenomena.

1 1

2 2 CHAPTERCHAPTER 1. INTRODUCTION

Thee simulative approach also shares many of the difficulties with the other two ap-
proaches.. The tasks needed to set up a computer experiment are all prone to mistakes, and
requiree both experimental and theoretical expertise. First, a mathematical model of the
physicall system under study needs to be developed. Then the set of equations that con-
stitutee the model needs to be discretised, and converted into a numerical algorithm, which
iss implemented by a computer code. Finally, the computer experiment can be performed,
andd the simulation results analysed as if they were obtained from measurements in a real
laboratory. .

Thee modelling of natural phenomena, the development of software for their simulation,
togetherr with the tasks of actually performing simulations and analysing the data output
characterisee the work of a computational scientist.

1.1.11 Thesis rationale

Thiss thesis is concerned with the analysis of tools developed to make the simulation of
so-calledd "iV-body systems" fast and accurate. The molecules that constitute a chemical
solution,, or the stars that form a globular cluster are examples of TV-body systems. Our
focuss in this thesis is on iV-body systems subject to the force of gravity. The problem of
solvingg the equations describing such systems is the gravitational N-body problem (see, e.g.,
Heggiee & Hut, 2003; Hockney & Eastwood, 1988).

Thee TV-body problem is analytically unsolvable, and its numerical solution needs high
performancee computing and sophisticated algorithms. In fact, the numerical solution of the
gravitationall JV-body problem is so demanding in terms of computing power, that sophisti-
catedd fast algorithms have been devised to reduce the numerical complexity of the problem,
tradingg higher speed for lower accuracy, and dedicated hardware has been developed to speed
upp AT-body simulations requiring high numerical accuracy.

Thee central focus of this thesis is to explore the possibility of using dedicated hardware
inn connection with a powerful general purpose host, consisting of a parallel computer. We call
thesee systems hybrid architectures. We try, by integrating a fast special purpose device into
aa parallel computer, to hybridise the two approaches, generalisation versus specialisation.
Peoplee aiming at generalisation look more favourably on commodity systems, e.g. Beowulf
systemss or grid systems. The goal of the other approach is to obtain very high performance
byy means of hardware specialisation, developing, e.g., special purpose devices. Our research
aimss at bridging the gap between these two approaches, evaluating the viability of hybrid
architectures,, and their potential to solve large-scale simulation problems.

I tt is very important to understand the interplay of the parallel host, the dedicated
hardware,, and the application that runs on the hybrid architecture, in order to prevent bot-
tlenecks,, and find the optimal configuration. The tool we employ to study the interaction of
aa hybrid architecture with the software applications executed on it is performance modelling.
Byy using performance modelling, we adopt a simulative approach to study systems that are
usedd themselves to perform simulations. This meta-simulation is a core component of our re-
searchh aimed at finding the optimal interaction between fast software and hardware in order

1.2.1.2. THE COMPUTATIONAL N-BODY PROBLEM 3 3

too devise a very high performance computational environment for the ./V-body simulation.

AA main objective of this thesis is to show the potential of hybrid architectures to provide
thee optimal computing environment for the solution of specific problems. In view of this,
wee studied a numerical algorithm, and refined* it for our hybrid architecture. This algorithm
allowss us to use fast iV-body codes on dedicated hardware, with consequent computational
performancee benefits. This numerical algorithm is the software counterpart of our hybrid
architecture,, enabling a highly efficient computing environment for the iV-body problem.

Finally,, we look at the use of iV-body simulations in astrophysical research. Specifically,
wee study the infall of a massive object to the Galactic centre. JV-body simulations are an
effectivee tool to study the time-scale of this infall, giving support to (or ruling out) theoretical
modelss for the explanation of astronomical observations.

1.1.22 Chapter outline

Thee remainder of this chapter gives a brief introduction to the subjects that wil l be discussed
inn the thesis. We begin by explaining in section 1.2 why iV-body systems are an important re-
searchh subject, what computational problems they present and how these can be approached
usingg the special hardware described in section 1.3 and the software described in section 1.4.
Wee also introduce the hardware and software systems that we study in particular in this
thesis.. Namely, in section 1.3.4 we describe Hybrid Architectures, then, in section 1.5, we
introducee the code that we studied and refined to make optimal use of these architectures.
Next,, in section 1.6, we explain how the performance of this combination of hardware and
softwaree can be evaluated and how this evaluation leads to a performance model that can
bee used for prediction. Finally, in section 1.7, we present an example of the use of AT-body
simulationss in astrophysical research.

1.22 The computational iV-body problem

Inn the study of JV-body systems, Computational Science clearly demonstrates the poten-
tiall of the simulative approach to attain dramatic progress in the understanding of natural
phenomena.. In the most general formulation, an JV-body system is a mathematical model,
wheree N point-like constituents interact through a given force (see, e.g., Heggie & Hut, 2003,
p.. 15). The importance of iV-body systems in the physical sciences comes from the fact that
naturall systems, as diverse as a stellar globular cluster or a chemical solute-solvent system,
aree instances of an iV-body system. Our focus in this thesis is on ./V-body systems subject
too the force of gravity, the so-called gravitational N-body problem (see, e.g., Heggie & Hut,
2003;; Hockney & Eastwood, 1988).

Thee computational iV-body problem can be stated as follows: given the positions and
velocitiess of N point-like bodies, interacting with each other by means of a specified force,
solvee the equation of motion for each body. For the gravitational iV-body problem, the
interactionn force between particles is described by Newton's inverse square law

4 4 CHAPTERCHAPTER 1. INTRODUCTION

CC OBTAI N TH E CURRENT FORCE ON BODY I .
DOO 1 0 J « 1, N
I FF (J.EQ.I) GO T O 1 0
A(l)) = XX(J) - X I
A(2)) = XY(J) - Y I
A(3)) = XZ(J) - 2 1
A(4)) = A(1)*A(1) + A(2)*A(2) + A(3)*A(3) + EPS2
A(5)) = B0DY(J)/(A(4)*SQR T (A(4)))
Fl(l)) = Fl(l) + AC1)*A(5)
Fl(2)) = F1C2) + A(2)*A(5)
Fl(3)) = Fl(3) + A(3)*AC5)

100 CONTINUE

Figuree 1.1: A verbatim transcript of the direct code NB0DY1 force computation loop. XI, YI, and
ZII are the position coordinates of the particle on which force is currently computed (the so-called
i-particle).. XX(J), XY(J), XZ(J), and BODY(J) are the position coordinates and the mass of the
,7-thh force source particle, respectively. EPS2 is the square of the softening parameter e, a numerical
parameterr introduced to soften the interaction between very close pairs of particles. Modern versions
off the code solve these close interactions with much more accurate and sophisticated methods
(Funatoo et al., 1996; Aarseth, 1999).

Electrostaticc interactions between electrically charged particles are described by the
Coulombb force which, apart from a scaling factor, has the same form as the Newton force.
Inn fact, an algorithm that computes all particle-particle interactions directly could be used
inn both cases equally well. But computing all interactions directly is a very expensive task,
requiringg O(N) operations per particle. Thus the computational complexity of the direct
particle-particlee method is Ö(N2) per iteration. In fig. 1.1 we show the force computation
loopp of NBODY1 (Aarseth, 1963; Aarseth, 1985), one of the first direct particle-particle
methodss used to study the dynamics of astrophysical iV-body systems. This code is the
oldestt of a class of algorithms developed by the computational stellar dynamics community
forr the study of systems requiring high computational accuracy (Aarseth, 1999). NBODY1
iss one of our case-study codes; we describe it in more detail in section 1.4.1.

Inn astronomy, there is a large number of problems that can be studied as gravitational
TV-bodyy systems. At the one extreme, cosmological problems are characterised by having
aa very large number of particles, but a relatively low density and very long time-scales for
two-bodyy interactions; at the other extreme we have the study of globular clusters and the
formationn of planetary systems, which are characterised by high densities and short time-
scaless for two-body interactions. An important parameter that characterises these systems
iss the ratio of the so-called relaxation time and the age of the system. The relaxation time is
definedd as the time in which the velocity of a star is significantly changed by thee cumulative
effectss of two-body encounters with background stars. In Heggie & Hut (2003, p. 136) the

1.2.1.2. THE COMPUTATIONAL N-BODY PROBLEM 5 5

relaxationn time for average quantities inside the half mass radius r* of a star cluster is gives
as: :

__ 0.138N^rl/2

r ~~ (Gm)1/2 1n7iV

Wheree m is the mass of the individual stars, and 7 is a factor of order unity.

Thee importance of the relaxation time stems from the fact that this is the time-scale
onn which three-body encounters in the densely populated core of a star cluster can lead to
thee formation of binaries, or can cause existing binaries to become more tightly bound. The
potentiall energy that is released in the formation or tightening of the binary, which causes
thee acceleration of the third star, is an important source of kinetic energy in the system, thus
influencingg the evolution of the system as a whole (Bhattacharya k, van den Heuvel, 1991).

Ann JV-body system is classified according to its dynamics as collisional, when its lifetime
iss greater than the relaxation time, collisionless otherwise. The relaxation time of a galaxy,
whichh contains up to 1011 stars, is larger than the age of the Universe, and hence, a fortiori,
largerr than the age of the galaxy itself. Therefore, a galaxy is a collisionless system. Globular
clusterss include about one million stars. Their relaxation time is smaller than their age,
whichh is also approximately equal to the age of the Universe. Therefore globular clusters
aree collisional systems. Approximate methods cannot be used for the simulation of such
systems,, since they do not provide the necessary accuracy needed to compute the effect of
closee encounters. In the case of collisionless systems, close encounters are not relevant for the
longg term dynamics of the system, hence approximate methods can be safely used. This leads
too the apparently paradoxical situation that systems as large as galaxies or galaxy clusters
includingg billions of particles can be routinely simulated, whereas simulations of globular
clusterss are yet limited to several hundred thousand particles. Section 5.3.4 contains a
discussionn on the relaxation time for the systems studied in our JV-body simulations.

Thee Ö(N2) scaling of the direct particle-particle method leads to execution times for
realisticc values of N that are unsustainable on ordinary computers, motivating the devel-
opmentt of the special purpose devices described in section 1.3. Besides the Ö(N2) scaling
duee to force computation, a further increase in computational complexity comes from time
integration.. iV-body systems requiring high computational accuracy also require more time
stepss for time integration. See section 2.3.1 for a further discussion on this issue.

Severall software techniques that have been developed in order to reduce this compu-
tationall complexity will be discussed in 1.4. These methods, although reducing the compu-
tationall complexity of the problem to 0(N\ogN), or even O(N), introduce approximations
thatt inevitably decrease the computational accuracy. The simulation of collisional systems as
globularr clusters (see, e.g., Meylan & Heggie, 1997; Heggie & Hut, 2003) or proto-planetary
cloudss (see, e.g., Lissauer, 1993), requires a high accuracy that approximate methods do not
provide. .

Thee need to retain the direct 0(N2) method, which ensures exact force evaluation
(obviouslyy limited by machine precision) but at the cost of huge computation times, led
too the development of a hardware solution. Instead of accelerating the computation by

(1.2))

6 6 CHAPTERCHAPTER 1. INTRODUCTION

meanss of faster software, an improvement of orders of magnitude has been attained by
buildingg a Special Purpose Device (SPD) devoted to the only task of computing gravitational
interactions.. This SPD, the GRAPE (GRAvity PipelinE), is the subject of the next section.

1.33 Hardwar e for the iV-body problem

Thee GRAPE project (Sugimoto et al, 1990; Makino & Taiji, 1998), undertaken by a small
groupp of computational astrophysicists led by Jun Makino at the University of Tokyo, is one
off the most successful enterprises in the development of an SPD for scientific computing.
Thee Gordon Bell prize, awarded yearly to the fastest computer simulation in the world, has
beenn won five times in recent years by simulations run on a GRAPE machine (Makino &
Taiji,, 1995; Fukushige & Makino, 1996; Kawai et a/., 1999; Makino et al, 2000; Makino k.
Fukushige,, 2001). The GRAPE-4, completed in 1995 (Makino et al, 1997), was the first
computerr to break the Tflop/s peak speed barrier. The current configuration of the most
recentt machine of the series, GRAPE-6, reaches the 63 Tflop/s peak speed (Makino et al,
2002).. Developing an SPD has been rewarding from a price/performance perspective as
well.. The GRAPE-6 peak speed is substantially higher than that of the two fastest general
purposee computers in the world, the Japanese Earth simulator,* developed for large scale
climatee and solid earth science simulation, which has a peak speed of 40 Tflop/s and a cost
off 350 million dollars (Triendl, 2002), and the American ASCI-Q,* used for nuclear weapons
stockpilee maintenance, whose peak speed is 30 Tflop/s and its cost 215 million dollars.5 The
totall development cost of the GRAPE-6 is about five million dollars (Makino, 2001c), two
orderss of magnitude less than the cost of the two general purpose machines, see fig. 1.2.

Thee availability of GRAPE has allowed substantial progress in several fields of stel-
larr dynamics, ranging from star cluster evolution (with the first clear evidence of so-called
"gravothermal"" oscillations in the core of a globular cluster (Makino, 1996)), to the under-
standingg of black hole spiral-in in galaxy mergers (Makino & Ebisuzaki, 1996; Makino, 1997),
too structure formation processes, as in the case of planet formation from proto-planetary
cloudss (Kokubo & Ida, 1996, 1998).

Thee impressive performance of the GRAPE comes mainly from three factors: first, the
factt that the GRAPE has been developed with the purpose of performing only one specific
task,, trading generality for speed; secondly, the fact that this task consists of a small, but
veryy demanding computational core, that can be implemented very efficiently in hardware as
aa pipeline of basic operations. The third reason is that this operation needs to be performed
aa very large number of times on a relatively small number of input values, in a manner that
makess it very suitable for parallelisation.

Thee reasons stated above also explain why the GRAPE project has been able to stay
aheadd in the competition for processor performance against general purpose hardware. Since,
accordingg to Moore's famous law, commodity processors double their speed approximately

twvv.es.jamstec.go.jp/esc/eng/index.html l
*www.. l l n l . gov/asci/platf ornts/lanl.q/
W.lanl.gov/worldview/news/pdf/HighPerf.Computing.pdf f

1.3.1.3. HARDWARE FOR THEN-BODY PROBLEM 7

g g

Earthh Simulator

400 -

20 0

_L L J _ _ _L L

500 100 150 200 250
Pricee (million $)

300 0 350 0 40C C

Figuree 1.2: Price versus peak performance for the GRAPE-6 and the two fastest general purpose
computerss in the world. The physical size of the different systems can also be appreciated from
thee figure. The GRAPE-6 picture shows both the system and (on the right hand side) its main
developer,, Jun Makino.

everyy 18 months, the advantage in performance of an SPD would be soon obliterated by the
progresss in general purpose computer technology. The explanation why the GRAPE project
iss able to maintain its performance advantage comes from the relatively simple task that it
implementss in hardware. GRAPE developers are thus able to redesign a new GRAPE chip
everyy three-four years, according to the most up-to-date microprocessor technology, keeping
thee GRAPE ahead in the performance competition.

Ass mentioned above, the task that the GRAPE accomplishes is the evaluation of the
gravitationall interaction between a pair of particles. The computation of the force exerted
onn a particle i by a particle j involves 18 mathematical operations, one of which is a division,
andd another one is a square root evaluation, as shown in the verbatim transcript of the force
computationn loop of NBODY1, fig. 1.1. In order to perform this computation, only four
valuess have to be input, i.e. the position coordinates and the mass of particle j , while the
positionn of i is stored in three local registers. This sequence of operations is repeated N — I
timess for all the particles in the system except i.

Thee fact that a relatively high number of operations is performed on just four input val-
ues,, and in a simple ordered sequence, makes the hardware implementation of this sequence
ass a pipeline relatively straightforward. Moreover, this task is easily parallelisable, because
forcee on different z-particles can be computed concurrently using the same j-particle data
(itt is common practice in the N-bo&y community to call the particle that exerts force the

88 CHAPTER 1. INTRODUCTION

m j j

Figuree 1.3: The pipeline for the force computation on the GRAPE. Figure adapted from (Makino,
2001b,, fig. 4), reproduced here with author's permission. Here r-j is the position vector of the particle
onn which force is computed, stored in three pipeline registers, ij and m.j are the position vector
andd mass of the j-th source particle, stored in the board memory, e is the softening parameter
mentionedd in the caption of fig. 1.1, x, y, and z are the components of r^ — r*, q is the sum of
thee squares of x, y, z and s, and a, is the partial accumulation of the gravitational acceleration
onn particle i. GRAPE-4 also includes a similar pipeline (not shown) for the computation of the
accelerationn derivative.

j -part ic le,, and the one on which force is exerted the i-particle; we adopt this jargon here).
Inn fig. 1.3 we show a sketch of the GRAPE acceleration pipeline,* which gives the name itself
too the entire machine (GRAPE stands for GRAvity PipelinE, as mentioned above).

AA pipeline also contains the circuitry to compute the gravitational potential for the
particlee i, and the t ime derivative of the acceleration, also called jerk, which is needed for
thee high accuracy time integration according to the Hermite method (Makino & Aarseth,
1992). .

1.3.11 GRAPE-4

AA GRAPE-4 board consists of an array of 96 such pipelines.* A GRAPE-4 board also
containss a pipeline for the extrapolation of the j -par t ic le positions and velocities. The
j -part ic lee velocity is needed for the computation of the jerk. A board also contains memory
too store data for about 44 000 j -part ic les (Kawai et al., 1997). A sketch of a GRAPE-4 board
iss given in fig. 1.4.

tMoree precisely, the pipeline computes the force field at the i-particle position. This is equal to the particle
accelerationn in the case of gravitational interactions, but not in the case of, e.g., electrostatic interactions.

** Actually, a GRAPE-4 board contains 48 physical pipelines, having a clock frequency twice the board
clockk frequency. In this way the board "sees" 96 virtual pipelines. Appropriate hardwiring manages the data
exchangee between the board and the pipeline (Makino et al., 1997).

0 0 + +

ï2+y2+z2+E2l_a a
--

1.3.1.3. HARDWARE FOR THE N-BODY PROBLEM 9 9

/-particlee memory

96 6
TTi i

^ — i — —

96 6
Vi i

--

Pi i pelinee for/'-particle
extrapolation n

pipelinee for ('-particle
acceleration,, potential,
andd jerk computation

a, ,

96 6

' '

n n

—96]]

f i i

>-,>-, I I

 S

 t
.. a.

1 1

t t
1 1 1 1

JJ ^r
GO O

pipelinee for /-particle
acceleration,, potential,
andd jerk computation

--
' l l

1 1
a, ,
1 1

. .

1 1

Figuree 1.4: Sketch of a GRAPE-4 board. Force is computed on up to 96 i-particles simultaneously.
Att each cycle, a /-particle is loaded from the board memory, then its position and velocity are
extrapolatedd to the i-particle time, these data are then fed into the acceleration and jerk (i.e.
accelerationn derivative) computation pipelines.

Thee performance of a GRAPE-4 board can be determined by considering the number
off floating point operations executed by the pipelines that compute the acceleration and the
jerk.. Computing the 18 arithmetic operations of a single contribution requires 38 floating
pointt operations (Karp, 1993; Warren et at, 1997), and 19 more for the acceleration derivative
(Makinoo et al, 2000).

Thee total operation count is thus 57 floating point operations for a particle-particle
interaction.. The GRAPE-4 needs three clock cycles to perform a complete force calculation,
whereass the GRAPE-6 performs it in a single clock cycle. The performance of a pipeline
iss obtained by multiplying the number of floating point operations per cycle by the clock
frequencyy of the board. The 96 pipelines of the GRAPE-4 run at 16 MHz,* which gives
57/33 16 MHz = 304 Mflop/s per pipeline, and finally 304 Mflop/s 96 ~ 30 Gflop/s per
board.. The GRAPE-4 system in Tokyo consists of 36 boards arranged in four clusters,
whichh gives an aggregate peak performance exceeding one Tflop/s (Makino et al., 1997). A
sketchh of the GRAPE-4 system is given in fig. 1.5. Sustained performance of 332 Gflop/s has
beenn reached, and this was worth a Gordon Bell prize in 1996 (Fukushige & Makino, 1996)
forr a simulation of galaxy formation.

fInn fact, the 48 physical pipelines have a clock frequency of 32 MHz.

10 0 CHAPTERCHAPTER 1. INTRODUCTION

HOST T

hostt interface controll board

hostt interface controll board

hostt interface controll board

hostt interface controll board

processorr board

processorr board

processorr board

processorr board

Figuree 1.5: Sketch of the GRAPE-4 system at the University of Tokyo. The system consists of
366 processor boards as the one sketched in fig. 1.4, grouped in four clusters of nine boards each.
Thee i-particle set is identical for each of the 36 boards. Each of the four control boards receives
aa different j-particle subset, and gives an equal part of this subset to each of the nine processor
boardss under its control. When the force computation is completed, the control board receives nine
partiall forces per i-particle from the processor boards, and sends the sum to the host, via the host
interface.. This reduces the communication bandwidth with the host, which communicates with only
fourr peripherals, instead of 36. The host interface converts the internal GRAPE communication
protocoll to the host I/O protocol. This allows one to use the GRAPE with different hosts, changing
onlyy the host interface.

Ourr performance analysis and simulation studies, reported in chapters 2 and 3, are
basedd on GRAPE-4 boards kindly made available to us by Jun Makino.

1.3.22 GRAPE-6

Thee progress in microelectronics made it possible to include in the GRAPE-6 chip six phys-
icall pipelines, able to compute a complete force contribution in a single clock cycle at a
frequencyy of 90 MHz, whereas the GRAPE-4 needs three cycles. The peak performance of a
GRAPE-66 chip is thus 6 - 5 7 - 90 MHz = 30.8 Gflop/s, comparable to an entire GRAPE-4.
Inn fact, a single GRAPE-6 chip implements all the operations implemented in a GRAPE-4
board,, including j-particle position and velocity extrapolation. Similarly to the GRAPE-4,

1.3.1.3. HARDWARE FOR THE N-BODY PROBLEM 11 1

Gigabitt Ethernet switch

Processorr boards

Networkk board

Hostt interface
board d

Host t

Cluster r

Figuree 1.6: Sketch of the GRAPE-6 system at the University of Tokyo. Four clusters including
fourr general purpose hosts and 16 processor boards are each connected by means of a Gigabit
Ethernett switch. The processor boards in a cluster are able to communicate directly with each
otherr by means of the network boards. Each network board controls four processor boards, and is
directlyy linked with the other three boards in the cluster. In this way, each of the four hosts in a
cluster,, connected to a single network board via the host interface board, has direct access to all
thee processor boards in the cluster.

wheree 48 physical pipelines are seen as 96 virtual pipelines, the six pipelines of a GRAPE-6
chipp are seen as 48 virtual pipelines, thus a GRAPE-6 chip is able to compute force on 48
differentt i-particles per clock cycle (Makino et al., 2000).

AA GRAPE-6 processor board includes 32 chips, which gives a peak performance of
aboutt 1 Tflop/s. The j-particle memory for a GRAPE-6 board is able to store data for
2622 000 particles (Makino, 2003). The current configuration of the GRAPE-6 system in
Tokyoo includes 64 boards grouped in four clusters, for a total peak performance of 63 Tflop/s

12 2 CHAPTERCHAPTER 1. INTRODUCTION

(Makinoo et al, 2002). A sustained performance of 22.72 Tflop/s has been reached for the
simulationn of planetesimaJ dynamics in the Uranus-Neptune region during the primordial
phasee of the Solar system's evolution (Makino et al, 2002). A sketch of the GRAPE-6
systemm is given in fig. 1.6. It is much more complex than the GRAPE-4 system (shown in
fig.fig. 1.5). Now the general purpose front end of the system is a parallel computer, whose nodes
aree connected by means of a Gigabit channel. The front end nodes are Pentium-4 2.53 GHz,
overclockedd to 2.81 GHz (Makino 2003, private communication). The system is partitioned
intoo clusters including four hosts, four host interface boards, four network boards, and 16
processorr boards. A network board controls four processor boards, and is directly connected
too the other three network boards of the cluster, allowing direct exchange of data among the
boards,, with no need to involve the host for communication.

Thee architecture of GRAPE-6, with its complex organisation of interconnected boards
attachedd to a multiprocessor general purpose host, can be seen as an instantiation of the
hybridd architecture model that we study in this thesis. This model is discussed in section 1.3.4
below. .

1.3.33 GRAPEs in different fields

Thee impressive performance achievements of the GRAPE motivated the development of sim-
ilarr dedicated hardware in other contexts. The MD-GRAPE (Pukushige et al, 1996) was
developedd with the purpose of implementing the computation of inter-particle forces de-
pendingg on an arbitrary function of the particles' mutual distance. This also allows for the
computationn of the short-ranged van der Waals forces, which play a major role in Molecu-
larr Dynamics phenomena. MD-GRAPE also implements the hardware to compute inverse
squaree law interactions with the Ewald method (Ewald, 1921), that is widely used in compu-
tationall cosmology and computational chemistry to simulate systems with periodic boundary
conditions.. The recently developed MDM (Molecular Dynamics Machine) is an upgraded
versionn of the MD-GRAPE, with a target peak-performance of 100 Tflop/s (Narumi et al,
1999).. MDM won a Gordon Bell prize for performance in 2000, shared with GRAPE-6, for
aa molecular dynamics simulation of 9 million NaCl ions (Narumi et al, 2000).

Thee approach proposed in this thesis, of connecting a highly specialised SPD to a par-
allell general purpose computer, aims at expanding the range of applications of the special
hardwaree in a different way. Instead of building a new dedicated hardware with new capa-
bilitiess for performing those operations that, if executed on a serial host, would lead to a
bottleneck,, we still perform these operations on the parallel host of the hybrid architecture.
Thee bottleneck is removed by distributing the computation on the nodes of the parallel host.
Inn section 1.8 we discuss a specific case where our hybrid architecture approach could be
effectivelyy used.

Wee also expand the use of the GRAPE by means of software modifications. In sec-
tionn 1.5 we introduce a method that allows for the use of the GRAPE to compute the force
fromfrom a multipole expansion of a particle distribution. Multipole expansions give force terms
thatt have not an inverse square expression, thus the GRAPE could not be used for this com-
putation.. By converting the multipole expansion into a pseudo-particle distribution (Makino,

1.4.1.4. SOFTWARE FOR THE N-BODY PROBLEM 13 3

1999),, we obtain a force expression that can be computed on the GRAPE. In the next sec-
tion,, we look more in detail at the potential role of hybrid architectures in Computational
Science. .

1.3.44 Hybri d architectures for the iV-body problem

Ass already mentioned in section 1.1.1, hybrid architectures are systems consisting of a com-
binationn of a traditional parallel computer and special purpose devices. The need for such
systemss arises when the tasks that need to be performed by the host of the SPD begin to
exceedd the capacity of a single machine. This may be the case because the required commu-
nicationn bandwidth to the SPD exceeds that of a single host, or because the computational
taskss that need to be performed on that host become too large. Host computing is needed,
forr instance, for the handling of special situations, such as the modelling of binaries and
off three-star encounters, for the modelling of additional physical processes, such as stellar
evolution,, and especially, when a treecode is used, for the management of the tree structure.

Inn the sections above, we presented the JV-body problem, and the hardware techniques
thatt the Computational Astrophysics community has developed for its solution. In section 1.2
wee briefly mentioned that software techniques have also been developed to speed up JV-body
simulations.. These techniques, namely the treecode, the FMM, and the PM method, will be
describedd in section 1.4 below. The tool that we use to study the interplay of hardware and
softwaree components in a computer system is performance modelling, which is introduced in
sectionn 1.6. Performance modelling allows us to analyse the system, and design the optimal
architecturee with the help of performance simulation.

Onee of our goals in this thesis is the study of architectures where a fast method,
namelyy the treecode, described in section 1.4.2 below, effectively profits from the use of
aa fast dedicated SPD, namely the GRAPE. A parallel computer is planned as the SPD
host,, in order to provide computational power that is well-matched to the other tasks of
thee method. Otherwise the host computations would easily become the system bottleneck.
Thee GRAPE-6 system in Tokyo, described in section 1.3, or the SIMD-MIM D architecture
describedd by Palazzari et al. (2000); Capuzzo Dolcetta et al. (2001) are examples of this kind
off architecture. Part I of this thesis is devoted to the description of the research carried out in
developingg our performance modelling environment, exploring the computational properties
off the hardware and software tools described above, and analysing their interaction when
integratedd into the hybrid architecture discussed in this section.

1.44 Software for the iV-body problem

Ourr research interest in this thesis is focussed on the interaction of algorithms developed for
iV-bodyy simulations with the GRAPE hardware in hybrid architectures. Foremost among the
numericall algorithms developed in computational astrophysics for the solution of the grav-
itationall AT-body problem, those that have the characteristics to exploit the computational
powerr provided by the GRAPE are direct 0{N2) methods (Aarseth, 1999; Spurzem, 1999;

14 4 CHAPTERCHAPTER 1. INTRODUCTION

Portegiess Zwart et a/., 2001), and the 0(Nlog N) treecode (Barnes k Hut, 1986; Barnes,
1990;; Warren k Salmon, 1995; Springel et a/., 2001).

Amongg the direct codes, we focus on NBODY1 (Aarseth, 1963; Aarseth, 1985). NBODY1
iss the progenitor of a class of direct codes, of which NBODY6 is its last offspring (Spurzem,
1999).. The code's sophistication has grown dramatically from NBODY1 to NBODY6, pri-
marilyy in the treatment of close encounters, and stellar evolution, allowing for increasingly
refinedd and reliable simulations of globular clusters and other collisional systems.

Thee other main software environment developed for the simulation of collisional sys-
temss is s t ar lab (Portegies Zwart et o/., 2001), originally written by Piet Hut, and currently
maintainedd by Steve McMillan. It includes the high order integrator k i ra, the stellar evolu-
tionn package SeBa developed by Simon Portegies Zwart, the three- and four-body scattering
packagee sca t te r, and a number of routines for the pre- and post-processing of simulation
data.. Al l the above modules are implemented as independent programs, and share the same
I/ OO data structure, so that they can easily be piped together to obtain the appropriate
programm flow for the problem under study.

Thee inner computational core of an JV-body code, in which almost all the execution
timee is spent, consists of the few lines shown in fig. 1.1. They have not changed since the early
dayss of NBODY1, and are "compiled" in hardware in the GRAPE pipeline. Our interest is
inn the interaction of iV-body codes and GRAPE devices, which can conveniently be studied
byy using NBODY1.

Directt codes ensure high accuracy, but at the cost of very high compute times. As
mentionedd in section 1.2, approximate methods have been developed, that allow for the
simulationn of collisionless systems. The approach adopted by these schemes is to group
particless according to their spatial proximity, then evaluate a truncated multipole expansion
off the aggregate, and use this expansion to compute the force exerted by the aggregate,
insteadd of evaluating directly the contribution of each single particle of the aggregate. This
approachh allows us to reduce the number of operations needed to compute the force on a
particlee to O(logiV).

Twoo main algorithms that implement this approach have been developed: The Fast
Multipolee Method (FMM) (Greengard, 1988; Carrier et al., 1988; Greengard k Rokhlin,
1997;; Cheng et a/., 1999) used for electrostatic computations, and the treecode (Barnes
kk Hut, 1986; Barnes, 1990; Warren k Salmon, 1995; Springel et al, 2001) employed for
gravitationall problems. Although both methods are used to compute inverse square law
interactions,, neither is used in the field of the other. The FMM is more suited for systems
wheree density is distributed homogeneously, like in plasmas, chemical solutions, and other
Coulombb force-dominated systems. The treecode is inherently adaptive, and is well suited
forr highly clustered systems, such as those dominated by the force of gravity. This point is
furtherr discussed in section 1.4.3.

Thee treecode, because of its reduced computational complexity, provides a dramatic
speedupp for the Af-body simulation. Part of its computational core, as described below, is still
thee evaluation of direct particle-particle interactions described by Newton's law, eq. (1.1).
Thiss allows us to use the GRAPE to further accelerate this computation (see, e.g., Makino,

1.4.1.4. SOFTWARE FOR THE N-BODY PROBLEM 15 5

1991b).. Yet only a fraction of the treecode force evaluations are computed as particle-particle
interactions.. This limits the speedup achievable by using the GRAPE. The treecode can be
optimisedd in order to make full use of the GRAPE, as described later in section 1.5. We
studyy and refine this optimised version of the treecode, in view of our research goal, where
aa GRAPE powered hybrid architecture is used to run a treecode optimised for the use of
GRAPE.. We give below an overview of the main features of NBODY1 and the treecode,
inn the context of their use with the GRAPE. We discuss the direct code and the treecode
extensively,, as they are the principal codes discussed for the remainder of this thesis. Then
wee give a brief description of the FMM and Particle-Mesh algorithms.

1.4.11 The direct code

NBODYll was one of the first codes for iV-body simulation to appear, developed by Sverre
Aarsethh at the Institute of Astronomy in Cambridge as early as 1963 (Aarseth, 1963). It
consistss of approximately 2000 lines of FORTRAN code (to be compared with the 34 000
liness of NBODY6 (Aarseth, 1999)), with a very simple program flow. A fundamental feature
off NBODYl is that it assigns individual times to each particle, as described below. As a
consequencee of this, particle data stored in memory refer to différent moments in time.

Att each iteration, the particle i with the smallest update time U + At* is selected for
forcee computation; then positions and velocities of all the other particles are extrapolated to
thee update time U + At*. The selection rule for the i-particle guarantees that the smallest
updatee time ti + At» is always in the future with respect to all individual times, so that
alll other particle positions are extrapolated forward in time. The j-particle extrapolation
pipelinee of the GRAPE serves precisely to this extrapolation task.

Thenn gravitational interactions are computed, determining the values of a* and a» at
timee U + Ati- Finally the i-particle orbit is integrated and its new AU is determined. It is
clearr how the GRAPE operational architecture reflects this algorithmic sequence.

Still,, NBODYl cannot efficiently make use of the GRAPE computing power. In this
code,, only one particle at a time is selected for force evaluation, whereas a GRAPE board is
ablee to compute a number of force interactions concurrently, up to 96 for the GRAPE-4. In
orderr to have a large number of particles that share the same individual time, the so-called
blockblock time step scheme has been developed (McMillan, 1986; Makino, 1991a). In this case,
thee time step value assigned to the particles can only be a (negative) integer power of 2.
Thiss allows particles to have the same time step value, which makes it possible to have many
particless per iteration that require force computation, instead of only one.

Usingg this approach, force contributions on a large number of i-particles can be com-
putedd in parallel using the same extrapolated positions for the j-particles, i.e. the force-
exertingg particles. Then, when a GRAPE device is available, it is possible to make full use of
thee multiple pipelines provided by the hardware, since each pipeline can compute the force
onn a different i-particle. In this way, GRAPE provides orders of magnitude increase of per-
formancee for the direct JV-body code execution. Simulation of globular clusters containing
1055 particles or more are possible on the GRAPE-6, and even larger numbers can be reached

16 6 CHAPTERCHAPTER 1. INTRODUCTION

forr the simulation of other systems (Makino, 2001a).

AA detailed analysis of the direct code tasks, and its performance on the GRAPE-4
boardss is given in chapter 2. iV-body simulations carried out with the direct code on
GRAPE-66 are reported and analysed in chapter 5.

1.4.22 The treecode

Thee treecode (Barnes & Hut, 1986; Barnes, 1990; Warren & Salmon, 1995; Springel et ai,
2001),, introduced by Josh Barnes and Piet Hut from the Institute for Advanced Studies in
Princeton,, is one of the most popular numerical methods for particle simulation involving
longg range interactions. It is widely used in the Computational Astrophysics community
too simulate systems like single galaxies or clusters of galaxies. It reduces the computational
complexityy of the iV-body problem from Ö(N2) to 0{N log N)t trading higher speed for lower
accuracy.. The Q(N log N) scaling of the treecode allows the study of very large systems
exceedingg 108 particles, as in the case of simulations of the large scale structure of the
Universee (Warren et al., 1997). Such simulations run on general purpose supercomputers.
Cann the use of GRAPE provide a further speedup to treecode simulations? In practice,
usingg the GRAPE efficiently when executing the treecode is not an easy task, since particle-
particlee interactions, i.e. the computing task implemented on the GRAPE, are much less
computationallyy relevant for the treecode, with respect to the direct code (see, e.g., Makino,
1991b).. In fact, the superior 0{N\o%N) of the treecode is due to a decrease in the number
off direct particle-particle computations performed to evaluate gravitational interactions. A
descriptionn of the main treecode procedures is given below.

Proceduree description. The treecode approach for computing forces on a given particle i
iss to group particles in larger and larger cells as their distance from i increases, and compute
forcee contributions from these cells using truncated multipole expansions. The grouping is
realisedd by inserting the particles one by one into the initially empty simulation cube. Each
timee two particles are in the same cube, that cube is divided into eight "child" cubes, whose
linearr size is one-half that of their parent's. This procedure is repeated until the two particles
findd themselves in different cubes. Hierarchically connecting such cubical cells according to
theirr parental relation leads to a hierarchical tree data structure (see fig. 1.7).

Whenn the force on a given particle i has to be computed, the tree is traversedd searching
forr cells that satisfy an appropriate Multipole Acceptability Criterion (MAC). If a cell satisfies
thiss criterion, the force from the entire particle distribution within the cell is computed using
thee cell multipole expansion, and the search skips the cell's children. Conversely, if the cell
doess not satisfy the MAC, then its children are examined. By applying this procedure
recursively,, starting from the tree root, i.e. the cell containing the whole system, all the cells
satisfyingg the acceptability criterion are found. The most commonly used expression for the
MACC (see, e.g., Barnes &; Hut, 1986) is:

ll-<0-<0 (1.3)

1.4.1.4. SOFTWARE FOR THE N-BODY PROBLEM 17 7

A A

J J

J J

} } + +

Figuree 1.7: Sketch of the treecode space partition, and corresponding hierarchical tree data struc-
ture.. The root cell, the one that encompasses the particle distribution, is recursively subdivided,
untill every particle is contained in a different cell. The corresponding tree data structure is shown
onn the right. The node corresponding to a given cell is marked with an empty circle if the cell
iss terminal (i.e. if it contains only one particle, and hence is not further split), or a full circle if
thee cell is not terminal. Cells containing no particles have no specific mark in the tree. The node
correspondingg to the root cell, in spite of the name, is on top of the tree, and is connected to the
nodess corresponding to the root's daughter cells. Mapping from cells to tree nodes is shown for the
firstt hierarchical level of the tree. This mapping is repeated recursively while traversing the tree
downwards. .

wheree I is the cell size, d is the distance between i and the cell's centre of mass and 6 is an
inputt parameter, usually 6 < 1. The MAC in eq. (1.3) has a simple physical interpretation.
l/dl/d can be seen as a measure of the opening angle under which an object of typical size I is
seenn from a distance d. Eq. (1.3) states that a cell is accepted if its opening angle is smaller
thann the threshold opening angle 0.

Theoreticall complexity. The treecode force computation procedure scales as NlogN;
inn order to see that, suppose we increase TV /c-fold by replacing each particle with k particles
havingg mass l/k of the replaced particle mass. Then each cell will generate a number of
neww cells n, where n > k. The particle i "sees" this finer subdivision only within its nearest
neighbourhood.. The MAC is such that when a cell C is further from i than its own size
dividedd by 0, i will still interact with C, and not with the new "children" of C. The total
numberr of force evaluations on the t-particle as N increases is only dependent on the increase
off particles in the neighbourhood of i. We want to find out how this increase affects the
numberr of tree subdivisions, and show that the latter scales as log N.

18 8 CHAPTERCHAPTER 1. INTRODUCTION

Thee increase of particles in the neighbourhood of i can be measured by the interparticle
distance.. In order to show that the latter is related to the number of cell subdivisions, assume
thatt the particles are uniformly distributed. The interparticle distance is then proportional
too JV~3. This can also be seen as a measure of the smallest cell size. But, since the cell size
halvess at each cell subdivision, the smallest cell size is proportional to 2"A , where A is the
highestt tree order. Equating the two quantities gives 2~x oc N~s, and finally A oc logN.
Thuss the cell subdivision and the number of cells opened during the force evaluation for
aa particle scale as logiV; so that the force computation scaling for the whole system is
0(N0(N log N).

Interactin gg wit h the GRAPE. The tree building and traversal, that allows the algo-
rithmm to gain the ö(N\ogN) scaling, also dramatically changes the relative computational
loadd of the different tasks of the program. Whereas in the direct method the force com-
putationn is by far the most demanding task, taking virtually 100% of the execution time,
inn the treecode this value decreases to approximately 50% (Makino, 1991b). Moreover, the
forcee is usuallyy computed as a multipole expansion up to the quadrupole term. The result of
thiss is that the particle-particle interactions, i.e. the monopole term contributions, are less
computationallyy demanding in the treecode, compared to the direct code. This decreases
thee effectiveness of using GRAPE to accelerate the treecode execution. In fact, GRAPE is
usedd with the treecode with good results (Makino, 1991b; Athanassoula et al., 1998), but in
thosee cases the multipole expansion is limited to the monopole term, increasing the accuracy
byy reducing the value of 9 in the MAC formula, eq. (1.3).

1.4.33 The Fast Multipol e Method and Particle-Mesh methods

Thee FMM and the PM methods are the other main schemes used in JV-body simulations
off systems dominated by an inverse square law. The FMM subdivides the physical space
byy means of a regular grid, and repeats this subdivision recursively for each cell of the grid,
terminatingg the recursion after a fixed number of steps. Multipole expansions for the lowest
levell cells are computed directly from the particles contained in them. Then expansions for
thee encompassing cells are computed recursively by propagating the daughter cell expansions
upwards.. Then cell-cell interactions are computed at the highest level for non nearest-
neighbourr sibling cells; the expression for the force exerted on each cell is then propagated
downwardss to the cell's daughters. This force term represents the far field force inside the
daughterr cells. The near field force is computed again as a sum of cell-cell interactions from
nonn nearest-neighbour sibling and "cousin" cells (i.e. daughters of the parent cell's siblings).
Thiss process is repeated for each cell until the particle level, at which point the near field
forcee is computed directly as a sum of particle-particle interactions.

Thiss method is suitable for homogeneous systems, but does not perform well for inho-
mogeneouss distributions. In this case adaptive methods, that refine the spatial subdivision
accordingg to the particle density, are better suited. The treecode has been developed to
bee adaptive. In this case, as described in section 1.4.2, particle-cell interactions are com-
putedd for the far field, and particle-particle interactions for the near field. There are no

1.5.1.5. SOFTWARE FOR HYBRID ARCHITECTURES 19 9

cell-celll interactions. In this way, it is easy to continue the cell subdivision further in high
densityy regions. The FMM is claimed to be O(N), even though discussion continues on
thiss point (Aluru, 1996). In fact, asymptotic behaviour generally is not reached in FMM
simulations,, so that no real difference with a G(N log N) scaling is usually experienced (see,
e.g.,, Capuzzo Dolcetta & Miocchi, 1998).

Anotherr scheme that is often used for iV-body simulations is the particle-mesh (PM)
methodd (Hockney, 1965; Hockney & Eastwood, 1988; Couchman et a/., 1996; Fellhauer et a/.,
2000).. In this case, the far field is not computed from multipole expansions, but by means of
aa regular grid. Density values are computed for each grid point from the particle distribution
off its neighbour, then the Poisson equation is solved on the grid using fast Fourier transforms,
soo that the gravitational (or electrostatic) potential is known for each grid point. Finally,
fromfrom the potential value on the nearest grid point, the potential on each particle is evaluated.

Whenn needed for additional accuracy, the near field force can be computed by means of
directt particle-particle interactions; in this case, the method is called P3M (particle-particle
particle-mesh).. State-of-the-art codes use a recursive, spatially adaptive grid refinement
(Couchmann et aL, 1996; McFarland et aL, 1998; Fellhauer et aL, 2000), in order to cope with
particle-particlee computational bottlenecks arising in high density regions. We used a multi-
gridd PM code (Fellhauer et aL, 2000) in our comparative TV-body simulations presented
inn chapter 5. The PM method scales as Ö(N nl), where nc is the number of cells per
dimension.. This clearly limits the possibility of increasing the PM accuracy by means of
meshh refinement.

1.55 Software for hybri d architectures

Thee treecode, as described in section 1.4.2, provides a substantial speedup to iV-body simu-
lations.. Using it on a hybrid architecture as the one discussed in section 1.3.4 could lead on a
furtherr substantial performance improvement. This perspective is generally applicable, and
iss not limited to the gravitational TV-body problem. The fact that both fast software and
dedicatedd hardware have been developed for its solution makes the JV-body problem ideal for
studyingg the potential of hybrid architectures in Computational Science. Our aim is also to
makee the techniques developed in Computational Astrophysics available to the much larger
communityy that is involved in TV-body simulations.

Forr instance, applications in science and engineering that involve Coulomb force com-
putationss could benefit from the computational environment provided by the hybrid architec-
turee that we study. The FMM, as described in section 1.4.3, provides a robust mathematical
structure,, by means of which multipole expansions can be computed to any order, with an
analyticallyy bound accuracy error. The treecode is much more empirical in this sense. In
fact,, since the dominant force in astrophysics! systems, gravity, is always attractive and
cannott be shielded, a multipole expansion of such force will have a very large monopole
term,, and terms up to the quadrupole are usually sufficient to ensure acceptable accuracy
inn simulations where the treecode is used (see, e.g., McMillan &; Aarseth, 1993). Multipole
expansionss in Coulomb force-dominated problems must include a larger number of terms, be-

20 0 CHAPTERCHAPTER 1. INTRODUCTION

causee the net effect produced by opposite-sign charges results in very small low order terms.
Thee computation of higher multipole terms can be implemented in the treecode (McMillan
&& Aarseth, 1993), but then a problem arises: the computation of the force contribution from
termss of the expansion other than the monopole cannot be done on the GRAPE, since the
GRAPEE only computes particle-particle interactions, i.e. monopole term contributions.

AA solution to this problem comes from a technique originally introduced in the FMM
frameworkk by Chris Anderson of the University of California at Los Angeles (Anderson,
1992),, and further developed by Atsushi Kawai and Jun Makino to be implemented on the
GRAPEE (Makino, 1999; Kawai & Makino, 1999). It consists of converting the multipole
expansionn into a pseudo-particle distribution; in other words, in finding a distribution of
fictitiousfictitious particles that produces the same force field as the original distribution, up to a given
multipolee term. Now, since the multipole expansion is expressed as a particle distribution,
thee GRAPE is also able to compute the contributions of higher order terms. This allows
uss to increase the accuracy of GRAPE based simulations performed with methods such as
thee treecode, and paves the way for using our hybrid architecture in fields like Molecular
Dynamics.. Chapter 4 is devoted to the description of the pseudo-particle approach, in the
frameworkframework of our research concerned with multipole temporal expansion, and improvement
inn method accuracy.

Althoughh with the pseudo-particle approach the use of the GRAPE by the treecode
iss optimised, the general purpose computer that hosts the GRAPE still has a large compu-
tationall load, and can easily become the system bottleneck. In order to improve the host
performance,, so that the advantages provided by the treecode and the GRAPE can be fully
enjoyed,, it is important to understand the interplay between the GRAPE, the host and the
treecode.. The tool that we use for this study is performance modelling, as described in the
followingg section.

1.66 Performance modelling for the JV-body problem

Performancee modelling (see, e.g., Jain, 1991; Sauer & Mani Chandri, 1981) is a useful tool
forr the study of computer system behaviour. It allows us to estimate the performance of a
hardwaree or software architecture by means of an abstract model, in which each task of the
systemm under study is specified in terms of its execution time as a function of a number of
parameters. .

Forr a hardware system, these parameters can be basic performance measures such as
thee processor clock speed, operations per second, or the bandwidth of a communication
line.. For a software application, a typical parameter is the problem size. For example, for
NBODY11 or the treecode this is the number of particles N, or an input parameter of the
code,, such as the treecode opening angle 0. Building a performance model for the systems
studiedd in this thesis involves the formal description of both the software and the hardware
components. .

1.6.1.6. PERFORMANCE MODELLING FOR THE N-BODY PROBLEM 21 1

applicationapplication model

machinemachine model

M*M* (Hu Ji»)

wu^Rpingg interface simuiation modei

\K \K

LH H
7 s 1 1

V ' '
«£, ,

==T\ \

t=f(n\,n%..„t=f(n\,n%..„ |ii, JJ.2,

Figuree 1.8: Performance modelling process. Figure adapted from the slides of the ASCI* course
"Performancee Modeling of Parallel Systems", taught by Arjan van Gemund, reproduced here with
author'ss permission. The output of the simulation model, t, is the modelled execution time. The
rightmostt sketch represents the speedup in the execution of a parallel application, for two different
valuess of a certain parameter N, as a function of the number of processors P. The meaning of the
otherr symbols is explained in the text.

Ourr modelling approach is illustrated in fig. 1.8. In the application model, each task
off the application is described in terms of the operations performed, and the workload that
thesee operations produce. Workload is expressed as a function of the application parameters
VV — {7Ti,7T2,...}. In the machine model, each architecture resource is specified in terms
off the time spent accomplishing the task it was designed to perform, as a function of the
machinee parameters M. = {/xi , 112,...}. The calibration of this function is determined by
timingg sample runs of the real application. An important layer of the model is the mapping
off the application tasks, each one depending on a subset P, C V, to the appropriate machine
resources,, which depend on a subset Mi C M. The mapping interface specifies this. This
formall description of the system is expressed in terms of a suitable language, which in our
casee is PAMELA, developed by Arjan van Gemund at the Delft University of Technology
(vann Gemund, 1993, 2003). A language interpreter converts this formal description into the
machinee executable simulation model. The output of the simulation model is the execution
timee of the application (which depends on the P U M set of parameters), the utilisation of
thee various hardware components, and other performance measures.

^ASCII is the Advanced School for Computing and Imaging (see http://www.asci.tudelft.nl). It is
unrelated,, and predates, the homonym programme of the Department of Energy of the USA.

http://www.asci.tudelft.nl

22 2 CHAPTERCHAPTER 1. INTRODUCTION

AA metaphor for the performance modelling approach could be the sequence of actions
performedd when an executable is produced from a mathematical algorithm, as described
below. .

Thee first step is to write a source code in the programming language of choice, that
implementss the algorithm. Each function of the algorithm is expressed as a sequence
off commands in a software module. This is the analogue of building the machine
modell and the application model as a representation of the real machine and the real
application. .

Thenn the various modules are linked to produce the executable. The analogue of this
iss the activity of the mapping model, and the resulting execution model.

Finally,, the executable is used to perform the computation that it was designed to do.
Correspondingly,, the execution model is run, by giving it appropriate values for the
systemm parameters as input, and obtaining the execution time as output.

Inn order to show how performance modelling actually works, we describe here the
modellingg of the force evaluation task, i.e. the computation of the force exerted on a subset
off particles, by the particles assigned to a computing element.* Fig. 1.9 shows how this
taskk is modelled. A module in the application model calls the mapping interface, passing
itt the number of particles that exert force, Nj, and the number of particles for which the
forcee is to be computed, iV». The mapping interface selects the module that wil l accomplish
thee task, choosing the function that models the computation on the GRAPE when present
(nott unexpectedly this module is represented as a grape bunch in fig. 1.9), or the function
thatt models the computation on a general purpose processor otherwise. The GRAPE model
includess the actual force computation and the communication between the host and the
GRAPE.. The function that simulates the time spent by the GRAPE in performing the force
computationn depends on Nj and iV*. This time function also includes the communication
delayss between host and GRAPE. The general purpose machine model is much simpler,
sincee no communications are involved. The force computation model in this case consists of
aa simple delay function.

Analysiss of the simulation traces, in terms of appropriate metrics, e.g. speedup as in
thee example sketched in fig. 1.8, allows us to understand which parameters are relevant
inn affecting the system performance, and how a modification in the application or in the
architecturee influences the final performance.

Performancee modelling is also a very effective tool for the design of computer architec-
tures.. The actual installation of a high performance computer system is a very expensive
enterprise,, in terms of both economic costs, and research and technology efforts for system
planningg and implementation. Obviously, nobody wants to incur the risk of embarking on
suchh an enterprise, to sadly discover at the end that the system as constructed is inefficient.
AA tool that allows for fast and inexpensive prototyping is clearly desirable. Performance

tinn the force evaluation task, a computing element is a GRAPE when the system includes it, or a common
processorr when no GRAPEs are available.

1.7.1.7. N-BODY SIMULATIONS: THE REASON FOR IT ALL 23 3

ApplicationApplication model MappingMapping interface MachineMachine model

Ni i
Nj j

Figuree 1.9: Sketch of the force evaluation task, as performed by our model. The application model
modulee passes its parameters to the mapping module, that selects the architecture component that
willl perform the actual computation.

modellingg provides a tool that simulates the planned architectures, allows one to discover
inefficienciess in the interactions of the various system components, permits the exploration
off different solutions to overcome such problems, and provides an environment in which the
optimall architecture can be developed.

Thee aim of our performance modelling work is to realise an environment where the
interplayy of fast special hardware, general purpose host, and advanced software can be studied
too determine the optimal interaction; i.e. an architecture where hardware and software are
integratedd to provide a very efficient tool for the simulation of ./V-body systems. We describe
ourr envisaged architecture in the following section.

1.77 iV-body simulations: the reason for it all

Inn chapter 5 we use the direct method, the treecode, and the particle- mesh code to perform
iV-bodyy simulations of dynamic astronomical phenomena. Specifically, we study the infall
off a black hole towards the Galactic centre. This infall is due to dynamical friction (Chan-
drasekhar,, 1943), a drag force experienced by a massive body moving within a background
populatedd by lighter bodies, and interacting with them by means of the force of gravity (see,
e.g.,, Binney & Tremaine, 1987, sect. 7.1). The net effect of this interaction on the massive
bodyy is a force opposite to its velocity, which effectively acts as a friction force. When the
bodyy is orbiting around a centre of gravity, as the Galactic centre in our case-study, the
decelerationn of the body results in a spiral-in orbit towards that centre. This process can
explainn the presence of very young stars in the inner core of the Galaxy. These young stars

24 4 CHAPTERCHAPTER 1. INTRODUCTION

aree not likely to be born in the Galactic centre because it is a hostile place for star formation,
duee to the strong tidal field that prevents interstellar gas from collapsing and forming a star.
AA possible explanation (see, e.g., Gerhard, 2001) is that dense young clusters, formed outside
thee Galactic inner core, spiral towards the Galactic centre due to dynamical friction, thus
bringingg the young stars in the cluster nuclei into the Galactic core. In the work presented
inn chapter 5 we estimate the typical infall time of an inspiraling object, which provides a
constraintt to this model. In fact, for this model to work, the cluster must reach the Galactic
coree before it evaporates, i.e. before the dynamical evolution of the cluster causes all the
starss to escape from its gravitational potential well.

Wee study the infall process for a single massive particle, which actually models the
spiral-inn of a black hole. We carry out a comparative study of this spiral-in process, using
aa direct code (see section 1.4.1), a treecode (see section 1.4.2), and a PM code (see sec-
tionn 1.4.3). The direct code simulations are accurate, but highly granular, i.e. limited in
thee number of particles, because of the direct code Ö(N2) computational complexity. The
otherr methods are inherently less accurate, but allow us to use many more particles. We
comparee the accurate results of the direct method with the approximate results of the other
twoo methods, in order to understand how granularity and inaccuracy affect our simulation
results. .

1.88 Hybri d codes on hybri d systems

Ourr case-study is also a first step in the direction of simulating the infall of a star cluster.
Inn order to simulate the infall of a cluster on a star-by-star basis, the use of a direct code
iss essential. In fact, an approximate-method simulation is not able to follow the internal
dynamicss of the cluster accurately enough during its spiral-in; the cluster would evaporate
muchh faster than is expected from theory (see, e.g., Kim Sz Morris, 2002). On the other hand,
aa complete direct code simulation of a cluster infall, that includes the background stars of
thee Galactic centre, is unfeasible because of the very large number of particles involved.
Ourr intention is to develop a hybrid code, where a direct code simulates the cluster, and a
treecodee simulates the Galactic centre. The cluster is represented as a particle with variable
masss in the treecode. The mass change is a consequence of the internal dynamics of the
cluster.. The cluster mass is an input value for the treecode co-simulation, and results from
thee direct code simulation. The input of the direct code co-simulation is the current value
off the tidal field of the Galaxy, which is computed by the treecode as the force acting on the
clusterr particle.

Thiss hybrid code not only represents a challenge with respect to its development, but
iss also quite demanding in terms of hardware performance. In order to run it efficiently, we
needd an architecture which is very powerful, both to compute the gravitational interactions,
andd to perform the other general purpose tasks of the hybrid code. Our envisaged hybrid
architecturee (cf. section 1.3.4) would be an ideal computational platform for this application,
sincee it would efficiently run both the direct code and the treecode "phases" of the hybrid.

1.9.1.9. THESIS OUTLINE 25 5

1.99 Thesis outline

Thiss dissertation is divided into three parts. The first part is devoted to performance mod-
ellingg and simulation, and consists of two chapters. Chapter 2 reports on the performance
analysiss of the direct code NBODY1 on our case-study architecture, which includes two
GRAPE-44 boards connected to a distributed computer. It contains a detailed description
off NBODY1 tasks, and presents performance measurements and analysis of various paral-
lelisedd versions of NBODY1, running on our hybrid architecture. These measurements are
thee basis for our performance modelling and simulation of different architectures where direct
JV-bodyy codes and treecodes are executed. This performance modelling and simulation work
iss presented in chapter 3.

Thee second part of this dissertation is also divided into two chapters. Chapter 4 is
devotedd to accuracy analysis and optimisation of the pseudo-particle treecode, which has
beenn developed for optimal use with the GRAPE. We study the error behaviour of the
pseudo-particlee treecode with different particle distributions, and improve the code accuracy
inn the presence of highly inhomogeneous distributions. We also study an optimisation of the
pseudo-particlee scheme, introducing pseudo-particle velocity, which allows us to retain the
pseudo-particlee distributions for several time steps, whereas the standard scheme recomputes
thee pseudo-particles at each step.

Then,, in chapter 5, we present our comparative multi-method iV-body simulations,
aimedd at estimating quantitatively the efficiency of the spiral-in of a black hole towards the
Galacticc centre, and understanding the effect of particle granularity and code inaccuracy
onn the infall efficiency. Finally, in part II I we summarise our work and discuss its future
developments. .

Partt I

Performancee Modelling and
Simulation n

Chapterr 2

iV-bodyy Codes on Hybrid Architectures*

Inn this chapter we analyse NBODY1, the direct particle-particle code introduced in sec-
tionn 1.4.1, and study the performance of this AT-body code on hybrid architectures, which
weree presented in section 1.3.4. A detailed analysis of the AT-body code performance, in
termss of the relative weight of each task of the code, and how this weight is influenced by
softwaree or hardware modifications, is essential to understand the interaction of the code
withh the hardware platform that executes it. Especially the interaction with the GRAPE,
thee dedicated device for A"-body simulation introduced in section 1.3, requires a careful per-
formancee analysis. The use of GRAPE results in a dramatic performance leap for A^-body
simulations,, as it provides a very high performance for the computation of gravity interac-
tions,, the most expensive computational task of an AT-body code. The interaction of the
GRAPE,, its general purpose host, and the N-body code run on the machine, gives rise to
complexx execution patterns that need to be studied and understood to find the optimal
configuration.. We need this performance analysis in order to acquire the necessary exper-
imentall data, for our performance modelling and simulation research to devise a very high
performancee computational environment for A"-body simulations.

2.11 Introductio n

Thee importance of ./V-body codes for the simulation of the dynamics of astrophysical sys-
temss has been discussed in chapter 1. The core of an JV-body code is the computation of

^Thiss chapter is based on work published in:
P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Analysis of Parallel N-Body Codes, in

M.. Bubak; H. Afsarmanesh; R.D. Williams and L.O. Hertzberger, editors, Proceedings of the HPCN2000
Conference,, LNCS vol. 1823, pp. 249-260. Springer-Verlag, 2000.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance of N-body Codes on Hybrid Machines,
Futuree Generation Computer Systems, 17, 951-559, 2001.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Distributed Hybrid Archi-
tectures,tectures, IEEE Transactions on Parallel and Distributed Systems, in press, 2003.

29 9

30 0 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

thee gravitational interactions between all pairs of particles that compose the system. In sec-
tionss 1.2 and 1.4 we discussed the main algorithms developed for the computation of gravity
interactionss between a given particle i and the rest of the system. In this chapter we study
thee performance of the direct particle-particle method (Aarseth, 1985, 1999), which exactly
computess the gravity force that every particle in the system exerts on i. The high accuracy
off the direct method is obtained at the cost of a computational load which grows as N2 per
timee step.

Thee huge computational requirements of the direct TV-body code led to the develop-
mentt of the GRAPE, a special purpose device for gravity force computation, described in
sectionn 1.3. A principal objective of our research is the efficient integration of GRAPE boards
withh a parallel general purpose host, to realise a hybrid architecture for AT-body simulations,
ass discussed in section 1.3.4.

Thee performance analysis research presented in this chapter aims at understanding how
suchh architectures interact with the AT-body code. For this purpose, we use NBODY1 (Aarseth,
1963;; Aarseth, 1985) as a reference code. NBODY1 was introduced in section 1.4.1. We use
itt to determine the scaling properties of various parallel versions of the code, running on a hy-
bridd architecture which includes two GRAPE-4 boards connected to a distributed computer
(seee fig. 2.1). The performance data obtained will be used in chapter 3 for the realisation and
calibrationn of a performance model that we use to study hybrid architectures for JV-body
simulations,, and their interaction with various types of JV-body codes.

2.22 System description

2.2.11 Architectur e

Ourr hybrid architecture, sketched in fig. 2.1, is composed of a parallel general purpose mul-
ticomputer,, DAS (Bal et al., 2000), and an SPD, GRAPE (see, e.g., Makino et a/., 1997;
Makinoo & Taiji, 1998). The DAS multicomputer is a wide-area distributed computer in-
cludingg 200 nodes in total, grouped into four clusters located at different locations in the
Netherlands.. The cluster at the University of Amsterdam, which served as a testbed for
ourr model, comprises 24 processors. Technical characteristics of our testbed system are
summarisedd in table 2.1.

Inn January 2002 the new DAS-2 came into service. DAS-2 is also a wide-area distributed
computerr including in total 200 1-GHz dual Pentium-Ill nodes grouped in five local clusters
interconnectedd via the Dutch university Internet backbone. Local clusters are connected by
aa fast Myrinet network having a bandwidth of 250 GBytes/s peak-performance. We used
thee DAS-2 for the AT-body simulations presented in chapter 5.

Thee GRAPE project, as described in section 1.3, started in the late eighties, and
hass produced a series of very high performance devices, mainly for the computation of the
gravitationall force. The GRAPE-4 system, completed in 1995, was the first computer to
reachh the TFlop/s peak speed (Makino et a/., 1997). The current peak performance of the
latestt machine, the GRAPE-6, is 63.6 TFlop/s (Makino et al, 2002).

2.2.2.2. SYSTEM DESCRIPTION 31 1

Figuree 2.1: The DAS cluster at University of Amsterdam, including 24 processor nodes, two
GRAPEs,, and 4 network switches.

Wee study the performance of a system consisting of two GRAPE-4 boards, each one
attachedd to a host processor via a PCI channel. The performance of a single GRAPE-4
boardd can reach 30 GFlop/s. A single board comprises an array of pipelines (up to 96 per
board).. Each pipeline performs, at each clock-cycle, the computation of the gravitational
(orr electrostatic) interaction between a pair of particles. The main technical characteristics
off our system are summarised in table 2.1 below:

locall network

host t

GRAPEE board

host-GRAPE E
channel l

Myrinet t

PProo 200 MHz

upp to 320 MFlop/s
perr pipeline

PCI9080 0

1500 MBytes/s peak-
performance e

644 MB RAM

622 resp. 94 pipelines

333 MHz clock

400 /x s latency

2.55 GB disk

on-boardd memory for
~~ 44 000 particles

1333 MBytes/s

Tablee 2.1: Technical data concerning our testbed architecture.

32 2 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

2.2.22 Application

Th ee direct iV-body method

AA formal solution for the JV-body problem is known only for iV = 2, making a numerical
approachh necessary when a solution for a larger system is desired. As discussed in section 1.4,
aa range of techniques has been developed to implement a numerical solution for the AT-body
problemm (Aarseth, 1999; Barnes & Hut, 1986; Cheng et a/., 1999; Hockney k Eastwood, 1988).
Wee are concerned with the direct method, which computes gravitational interactions exactly,
andd with the treecode, which approximates this force evaluation, gaining in performance, at
thee cost of a lower accuracy The treecode (Barnes & Hut, 1986) is able to reach a 0(N log N)
scaling,, compared to the Ö(N2) scaling of the direct code. Other codes, as the FMM (Cheng
etet al., 1999) of the Particle-Mesh (PM) code (Hockney k Eastwood, 1988), reach 0(N) (see
sectionn 1.2). The FMM is routinely used in applications where the Coulomb force plays a
centrall role. The PM code is primarily used in Computational Cosmology.

Inn chapter 3 we discuss our simulations of direct code and treecode performance on
hybridd architectures. In section 3.4.4 we compare the direct code with two different parallel
versionss of the treecode. In the sequel we describe the main tasks of the direct code that
wee analyse in this chapter, i.e. NBODY1 (Aarseth, 1999), introduced in section 1.4.1. The
originall serial code has been parallelised, and a number of modifications have been made, to
obtainn an optimal use of the GRAPE's capabilities, as described in section 2.3 below.

Codee tasks

Inn the AT-body computations, the particles that exert the force are commonly called j-particles,
andd the particles that experience the force are the «-particles. As discussed below, for each
iteration,, force is computed only on a small subset of particles, so that only a few particles
aree used as i-particles. On the other hand, since all particles in the system exert force, every
particlee plays the role of a j'-particle, including the z-particles.

Ass mentioned in section 1.4.1, NBODY1 implements the individual time step scheme:
particless experiencing a strong or rapidly changing force field need to be updated more
frequentlyy than particles moving through a quiet, nearly constant potential region. NBODY1
computess forces, and integrates orbits for each particle at the rate required by the particle
dynamicss itself. The individual time step is described in more technical detail in section 2.3
below. .

AA basic task graph of NBODY1 code-flow is given in fig. 2.2, together with the mapping
off each task on the appropriate hardware resource, in case the GRAPE is available. If
GRAPEE is not available, all tasks are executed on the general purpose machine. The tasks
shownn in the figure are described in the following.

1.. The first task of the main cycle is to find the «-particles. This is implemented as a
searchh through a list of candidates, which is scrolled at each iteration, and rebuilt every
DTLISTT time units, where DTLIST is the average particle time step. The i-particles are
selectedd simply by picking those particles that need to be updated first.

2.2.2.2. SYSTEM DESCRIPTION 33

generall purpose host

findfind i-particles

extrapolate e

Figuree 2.2: Basic task graph of NBODY1, and mapping of the tasks on the hardware resources.
Iff the GRAPE is not available, all tasks are executed on the general purpose machine.

2.. Then, since stored values of positions and velocities of different particles refer to differ-
entt times because of the individual time step, an extrapolation of the position values
forr the entire set of particles is done, to "synchronise" the system to the time value of
thee i-particles. The GRAPE also contains a pipeline to perform the extrapolation of
thee j-particle positions (see fig. 1.4). Hence, when the GRAPE is available, this task
iss executed on it. Still, the host has to extrapolate the i-particle positions, therefore in
fig.fig. 2.2 the extrapolation task is mapped on the host for the z-particle extrapolation,
andd on the GRAPE for the j-particle extrapolation.

3.. Now accelerations are computed; when the GRAPE is available, i-particle data are
sentt to it, and it will return the accelerations.

4.. Finally, orbit s are integrated using the forces computed in the previous task, and
relevantt physical quantities are evaluated and updated.

Codee parallelisation

Inn the parallel application, we distributed the j-particles equally between two GRAPEs, i.e.
wee loaded the j-particle memory of each GRAPE with half of the particle set. All GRAPE
hostss have a copy of the entire set of particles. Each SPD computes the partial force exerted
onn the i-particles by the j-particles that it stores; these values are then communicated to
thee host. A global sum done by the hosts makes the total force on each i-particle available
too all processors, that finally integrate the i-particle orbits. When the GRAPE boards are
nott available, the algorithm works in a very similar fashion. In this case the j-particles are
distributedd by assigning each processor a different subset of particles, so that a processor
wil ll evaluate only forces exerted by its own j-particles. In section 2.3 below, we describe in
detaill the parallel codes that we studied.

,paru< < &» &»

34 4 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

t t

- t]] II K T- _ t5 5
k k

-t7 7

-tg g Lt, ,

-tin n

- t i i i

Figuree 2.3: Sketch depicting the individual time step machinery. The update time is determined
ass the smallest U + Atj (which in this figure is the value of particle #3). Particle positions are then
extrapolatedd from i, to the update time, in order to compute force on particle #3, and integrate
itss orbit to the update time. Finally, the new At for particle #3 is computed, and the next update
timee is determined. In the figure above, the next update time will probably be <4 + Ar.4, unless the
neww A^3 is very small.

2.33 Code parallelisation

Inn this section, we describe the parallelisation of the various flavours of the direct ./V-body
codee used for our performance analysis and simulation. We chose NBODY1 (Aarseth, 1963)
ass the instantiation of a direct ./V-body code to experiment with, because it is a rather
simplee code, but uses almost all the functionalities of GRAPE. This allows us to evaluate
thee performance of our system. A number of modifications have been made to the code, in
orderr to parallelise it, and to let it make full use of the functionalities of GRAPE.

Ann overview on the code is given below. We made use of MPI communication primi-
tivess (Message Passing Interface Forum, 1997) to parallelise it.

2.3.11 The basic: individual time-step

Ass already mentioned in section 1.4.1, NBODY1 uses individual time-steps. Each particle is
assignedd a different time at which the force will be computed. Fig. 2.3 depicts this procedure.
Thee time-step value of each particle At, sketched in fig. 2.3 for each particle as a segment,
dependss on the particle dynamics (Aarseth, 1999). Smaller At values are assigned to particles
havingg faster dynamics (i.e. those particles which have large values in the higher order time

2.3.2.3. CODE PARALLELISATION 35 5

derivativess of their acceleration) according to the formula (see, e.g., Aarseth, 2001)

== h+m + W ,

wheree 77 is an accuracy parameter of order unity. At each iteration, the code selects that
particlee having the smallest t + At value (particle 3 in fig. 2.3), and integrates only the orbit
off that particle. This reduces the computational complexity, with respect to a code where
aa single global time step is used. The individual time step approach reduces the temporal
complexityy to Ö(N1/3), whereas the global time step approach is Ö(N2^) (Makino & Hut,
1988).11 This temporal complexity refers to the computational effort needed to integrate the
systemm for a dynamical time, i.e. the average time taken by a particle to cross the system.

Ann effect of individual times is that, for each particle, values stored in memory refer
too a different moment in time, i.e. the moment of the particle's last orbit integration. This
meanss that, before force on particle i is computed, an extrapolation of the other particle
positionss to time U + Ati is needed. The time value U + Ati is marked in fig. 2.3 by the
"updatee time" line.

Parallelisation n

Sincee contributions to the gravity force on a given particle i are computed from all the other
particless using eq. (1.1), regardless of their distance from i, a uniform distribution of particles
too each processing element (PE), i.e. to each DAS node, suffices to assure load balancing.
Thee force computation is done by broadcasting the coordinates of the currently selected
particlee i. Then each PE computes the partial component to the force on i, by accumulating
contributionss from its own particles. Finally such components are sent back to the PE which
hostss i, where the force resultant is computed, the particle's orbit is integrated, and the new
valuess are stored.

Too identify the particle i on which force will be computed, a global reduction operation
iss done, in order to find which particle has the least U + AU value, and which PE owns it.
Thiss information is broadcast to all PEs, since they must know the extrapolation time, and
thee i-particle owner.

2.3.22 Towards a GRAPE code: block time-step

Sincee its introduction, NBODY1 has evolved to newer versions, which include several refine-
mentss and improvements (see, e.g., Aarseth, 1999). In the version of NBODY1 used in our
studyy we implemented the so called hierarchical block time-step scheme (McMillan, 1986;
Makino,, 1991a). In this case, after computing the new Ati, the value actually assigned is the
valuee of the largest power of 2 smaller than At ̂ This allows for more than one particle to
havee the same At, which makes it possible to have many i-particles per time step, instead of

11 These figures for the temporal complexity are valid for a uniformly distributed configuration. More real-
isticc distributions show a more complicated dependence on N, although quantitatively only slightly different.

36 6 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

sendd all particles data as j-particles

findd new i-particles and extrapolate
i-particles'' positions at current time

sendd i-particles data to GRAPE

Waitt for GRAPE to compute forces

Retrievee results

integr.. i-ptcls orbits and store results

sendd updated ptcls' data as j-ptcls

i-particless are those particles
onn which force is computed.
GRAPEE needs position, velo-
cityy and mass of those parti-
cless to compute forces and
forcee derivatives.

j-particless are those particles
whichh exert force. GRAPE
needss position, velocity, ac-
acceleration,, ace. derivative,
masss and individual time of
thosee particles to extrapolate
theirr positions and velocities
att current time, and compute
forces s

Figuree 2.4: Basic sketch of NBODY1 interfaced with GRAPE. Diagonal arrows symbolise com-
municationn with GRAPE.

onlyy one. Using this approach, force contributions on a, possibly large, number of i-particles
cann be computed in parallel using the same extrapolated positions for the force-exerting
particles,, hereafter called jf-particles. Moreover, when a GRAPE device is available, it is
possiblee to make full use of its array of pipelines, since each pipeline can compute the force
onn a different particle concurrently.

Parallelisation n

Havingg many i-particles, instead of just one, makes it profitable to use a somewhat different
parallell code structure. If the i-particles reside on different processors, distributing the
particless as in the individual time-step case could result in complex communication patterns,
withh consequential increase of code complexity. Therefore, we chose to let every PE have
aa local copy of all particle data. The force computation is done in parallel by making each
PEE compute force contributions only from its own set of j-particles, assigned to it during
initialisation.. A global reduction operation sums up partial forces, and distributes the result
too all PEs. Then each PE integrates the orbits of all i-particles, and stores results in its own
memory.. Concerning the search for i-particles, each PE searches only among its j-particles,
too determine a set of i-particles candidates. Then a global reduction operation is performed
onn the union of these sets, in order to determine the real i-particles, i.e. those having the
smallestt time. The resulting set is scattered to all PEs for the force computation. Since
everyy PE owns a local copy of ail particle data, only a set of labels identifying the i-particles
iss scattered, reducing the communication time.

2.4.2.4. CODE PERFORMANCE 37 7

2.3.33 The GRAPE code

Thee software library interface for the GRAPE hardware consists of a number of function
calls,, the most relevant for performance analysis being those which involve communications
off particles data to and from the GRAPE. Such communication operations include sending
j-particlee data to GRAPE, sending i-particle data to GRAPE, and receiving results from
GRAPE.. A sketch of the program flow for an JV-body code which uses GRAPE is given in
fig.fig. 2.4.

Parallelisation n

Thee presence of the GRAPE boards introduces a certain degree of complexity with respect
too code parallelisation. The GRAPE-hosts obviously play a special role within the PEs
set.. This asymmetry somehow breaks the SPMD paradigm that parallel MPI programs
aree expected to comply with. Besides the asymmetry in the code structure, also the data
distributionn among PEs is no more symmetric. The force computation using GRAPE is
performed,, similarly to the non-GRAPE case, by assigning an equal number of j-particles to
eachh GRAPE. The GRAPE computes the partial force exerted by the j-particles assigned
too it on the i-particle set, which is the same for all GRAPEs. After that, a global sum on
thee partial results, performed on the parallel host, will finally give the total force.

Sincee force computations and j-particle position extrapolations are done on the GRAPE,
thee only relevant work to execute in parallel by the PE set is the search for i-particle candi-
dates,, which is accomplished exactly as in the code described in section 2.3.2 above.

2.44 Code performance

Wee describe and analyse in this section the measurements that we carried out for the per-
formancee evaluation of the codes described in section 2.3. Our measurements are intended
too explore the scalability of parallel JV-body codes. We performed runs varying both the
numberr of particles N and the number of processors PEs; we scaled N from 1024 to 16 384,
andd PEs from 1 to 24. NBODY1 does not need a large amount of run-time memory, just
aboutt 200 bytes per particle, but is heavily compute-bound (Hut, 1996). Our timings were
carriedd out in order to show the relative computational requirements of the various code
tasks,, and how these change as a function of N and PEs. Reported values are averages of
thee values measured for each processor. These measurements showed a negligible deviation,
whichh is thus not reported on the figures below.

Ourr runs were started having a Plummer model distribution (Plummer, 1915) as initial
condition,, in which density decreases outward as the fifth power of the distance from the
clusterr centre. The gravity force is modified by introducing a softening parameter, which
iss a constant term, having the dimension of a length, whose squared value is inserted in
thee denominator of the gravity force expression eq. (1.1) (see also caption of fig. 1.1). The
softeningg parameter reduces the strength of the force in case of close encounters and thus

388 CHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

0.11 ' ' ' ' ' 1
10000 10000

N N

Figuree 2.5: Global timings for the parallel individual time-step code, running for 1000 iterations.

preventss the formation of tightly-bound binaries. In this way very short time steps and
correspondinglyy long simulation times are avoided. In our runs, this parameter was set equal
too 0.004. As a reference, the mean inter-particle distance in the central core of the cluster,
whenn N = 16384, is approximately equal to 0.037 in TV-body units (Heggie & Mathieu,
1985). .

2.4.11 Individual time step code

Thee essential tasks of this version of the code (hereafter called IND) are shown in the code
flowflow sketched in fig. 2.2. As described in section 2.3.1, the parallel version of this code
implementss communications in the i-particle search task, then when the i-particle position is
broadcast,, and when partial forces are gathered by the PE that owns the i-particle. Fig. 2.5
showss the timings, and fig. 2.6 the performance of the parallel version of the IND code.

Thee metric we use to quantify the code performance is the parallel efficiency, defined
as: :

PP =- iL -
n-- tn

wheree n is the number of PEs used, and tn the execution time when using n PEs. The
timingss shown in the figures refer to 1000 iterations of the code. The tn values depend about
linearlyy on N, since the number of operations to compute the force on a given particle scales
linearlyy with N, and in each run the same number of force computations is performed, i.e.
1000,, independently of the total number of particles. An interesting super-linear speedup is
visiblee in fig. 2.6, which can be explained with an optimised cache utilisation. The IND code,
whenn the work-load is high (N > 8192), is highly compute-intense, as fig. 2.8 clearly shows.

2.4.2.4. CODE PERFORMANCE 39 9

NN = 819 2 —* -
NN = 409 6 —
NN = 204 8 e -
NN = 102 4

PES S
10 0

Figuree 2.6: Performance of the parallel individual time-step code, running for 1000 iterations.
Onee iteration consists of advancing a single particle per time step. A super-linear speedup effect,
discussedd in the main text, can be seen for intermediate values of the work-load per processor.

Inn this case, also when the number of processors is high, thus with relative small number
off particles per processor, the communication overhead is still small. Since the number of
particless per processor decreases as PEs increases, the number of cache misses decreases
too,, thus the cache is better exploited as PEs increases. This effect, combined with the
limitedd importance of the communication overhead for the high workload cases, leads to the
super-linearr speedup visible in fig. 2.6.

Fig.. 2.7 and 2.8 show the fractional time shares of each task, and how these shares
changee as the number of PEs changes. Fig. 2.7 shows the time shares for runs with TV = 1024,
andd fig. 2.8 for runs with TV = 16384. Fig. 2.7 clearly shows how the IND code suffers
fromm a communication overhead when the computational work-load is light. On the other
hand,, as shown in fig. 2.8, the code performs quite satisfactorily when this ratio is high,
thankss to the compute-intense characteristics of the TV-body code, and the high performance
communicationn network of our architecture.

2.4.22 Block Time-step Code

Thee basic tasks of this version of the code (BLOCK hereafter) are the same as the IND code.
Thee only difference is that now the number of i-particles per iteration can be larger than
one.. As stated in section 2.3.2, this optimises the force computation procedure, also in view
off the use of GRAPE, but, on the other hand, increases the communication traffic, since
informationn about many more particles must be exchanged at each time step.

40 0 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

0.8 8

33 0.6
o o

.11 0.4
o o
co o

0.2 2

t' . .

--

11 '
otherr tasks

^-extrapolatioii;;: :

forcee computation

11

communicationn overhead

--

— —

^^~-~-^^ ~~~—~~~ 1

100 15

PES S

20 0

Figuree 2.7: Execution time shares vs number of processors for the IND code. Runs with 1024
particles. .

1 1
s s
o o
o o
c c
o o
o o
co o

11 !

0.8 8

0.6 6

0.4 4

0.2 2

n n

otherr tasks ""

" "

' '

——a— ' . . __;;—— commun. overhead

extrapolation n

"" :

forcee computation

ii i i

100 15
PES S

20 0

Figuree 2.8: Execution time shares vs number of processors for the IND code. Runs with 16384
particles. .

2.4.2.4. CODE PERFORMANCE 41 1

10000 0

1000 0

100 0

100 ,

1000 0

|| 1 P E — ' —
00 PF c - - * -
44 PE S «

ff 1 6 PE S "* — ~™:: :
!! 2 4 PE S - * -

: :
::::::::::::::: : :

•• • : - • • i •. .

\^\^rr^^r r

^\"^\" j& :
•• ^-"" l ! * - - T I

I::::::::::::::::::::::::::::::::::" "" * ^^r
.--' "" .:-' "

. - - " "" . > • - '

^ * ^ ^^

..--' ** [,jn

' ^^ , • ' • ' ' ' - G

. - ' ' " "" . - — - — — •

. - r - " " " * * " '' ^ - • ^ " ' " ' ^ • ' " • ' ^ , " '

 ^ - 7 ^ - - ^ " ' ::: ::;"; : '•;::: ;;-; :;:':-.::;-:!-;;::: :.:: ;

! !

... . .

N N
10000 0

Figuree 2.9: Global timings for the parallel block time-step code. In this case, at each time step,
forcee is computed on many particles.

N N

1024 4

2048 8

4096 6

8192 2

16384 4

(M))
35.0 5 5

43.9 1 1

111.1 6 6

207.5 2 2

351.1 4 4

Thee effect of this is clearly shown in the figures presented here.
Fig.. 2.9 shows total timings, and fig. 2.10 shows performance of this
code.. In this case the execution time grows as a function of ./V2

becausee the number of i-particles, i.e. the number of force compu-
tations,, grows approximately linearly with N. Since the computa-
tionall cost for the force on each particle also grows linearly with
N,N, the resulting total cost is 0{N2). The mean number of force
computationss per iteration as a function of N is given in table 2.2.

Tablee 2.2: Mean num- - , . „ » , „ k _ V _ r t t t.u- J i *
berr of i-particles per iter- * l& 2- ̂ shows how the performance gam of this code is less spectac-
ationn in the BLOCK ular than the gain of the IND code, since communication overhead
codee runs. plays a larger role in the total execution time. This large overhead

cann be seen in fig. 2.11 and 2.12, that show how the execution time
sharess evolve as a function of PEs number. These figures show that for the BLOCK code,
almostt all the computational part of the execution time is spent in the force computation
task.. The j'-particles extrapolation, that takes roughly 25% to 30% of the total time in the
INDD code (see figures 2.7 and 2.8), is reduced to less than one percent.

2.4.33 GRAPE Code

Thee code version which makes use of GRAPE boards will be called GRP hereafter. We
presentt performance results of both the serial, and the parallel implementation. The com-
municationn overhead of the parallel version is composed of host-GRAPE communication
andd network communications. The parallel code runs have been done by using only the DAS

42 2 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

1.2 2

0.8 8

II 0.6
I I
ftft 0.4

0.2 2

--

—tt *

" "

k^ --

NN = 8192
NN = 4096
NN = 2048
NN = 1024

"~—i i
1 1

«
II v> ^ --

—*— —
-*-* *

3 3

\ j j

i~—*<T^ ^
"*"%"." "

1 \\

II : ' \

--
""""X X

"*k," "

"13.. .

' S S

PEs s
10 0

Figuree 2.10: Performance of the parallel block time-step code.

E E

C C
o o
'o o
2 2

1 1

0.8 8

0.6 6

0.4 4

0.2 2

V--

--

"Nv v

\ v . .

communicationn overhead

--

^^ other tasks

forcee computation "~—— ;

ii i i i

100 15
PEs s

20 0

Figuree 2.11: Execution time shares vs number of processors for the BLOCK code. Runs with 1024
particles. .

2.4.2.4. CODE PERFORMANCE 43 3

1 1

0.8 8
a> >
.E E

II 0.6
o o
'S S

II 4

3 3 g g

0.2 2

0 0
55 10 15 20

PEs s

Figuree 2.12: Execution time shares vs number of processors for the BLOCK code. Runs with
166 384 particles.

nodess connected to the GRAPE boards at our disposal, thus the maximum number of PEs
inn this case is 2.

Itt is clear from fig. 2.13 that the parallel performance is very poor. In that figure,
GRAPEOO refers to the GRAPE with 62 pipelines, and GRAPE1 to the GRAPE with 94
pipelines.. Fig. 2.13 also shows that runs on GRAPE1 are a bit faster, thanks to the larger
numberr of pipelines available. The low parallel performance shown in fig. 2.13 can be ex-
plainedd by the low number of z-particles, especially for the low-TV runs, that prevents the
GRAPEE boards to be fully exploited. Moreover, a large communication overhead dominates
thee GRP code, as fig. 2.14 for the GRAPEO case, fig. 2.15 for the GRAPE1 case, and 2.16
forr the parallel case show. These figures also show that the time share spent in GRAPE
computationss (i.e. force computations) is quite low, resulting in a low efficiency of this code
inn terms of GRAPE exploitation. One reason for that is of course the very high speed of
thee GRAPE. This device is by far faster in accomplishing its task than its host and the
communicationn link between them.

Anotherr effect that can be seen in the figures is the increase of the time share of the
orbitt integration task when N goes from 2048 to 4192. This can be explained by the increase
off cache misses when this task is executed. The cache size of a node is 256 Kbytes, which
makess it able to contain data for about 1000 particles (each particle carries about 200 bytes
off data). The orbit integration task works on data which are located randomly on the
memory,, thus the chance of a cache miss when the cache does not contain the whole data
sett is relatively high. This effect produces the increase of the orbit integration time share
betweenn N = 2048 and TV = 4192. Subsequently, the timings are more and more dominated
byy the increase of the GRAPE computation time share.

otherr tasks

forcee computation

44 4 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

18 8

16 6

14 4

12 2

-o"" 1 0
<D D
CO O

rr 8

6 6

4 4

2 2

0 0
00 200 0 400 0 600 0 800 0 1000 0 1200 0 1400 0 1600 0 1800 0

N N

Figuree 2.13: Execution time for 1000 iterations of the GRP code.

Thee figures clearly show that for our hardware configuration the capabilities of the
GRAPEE will only be fully utilised for problems involving over 40 000 particles per GRAPE.
Thiss number is, however, limited by the GRAPE on-board memory for j-particles, which is
onlyy slightly higher than 40 000.

Ourr measurements of the low level host-GRAPE communication routines show that
aa large amount of time spent in communication is due to software overhead in copy opera-
tionss and format conversions. As an example, we show in fig. 2.17 measurements done on
thee j-particle send operation. Similar measurements (Kawai et al, 1997), performed on a
fasterr host, showed a higher communication speed, linearly dependent on the host processor
clockk speed. Nevertheless, even though the GRAPE boards are not exploited optimally, the
executionn times for the GRP code are by far shorter than those for the BLOCK code. The
heaviestt run on 2 GRAPEs is about one order of magnitude faster than the heaviest run
off the BLOCK code on 24 PEs. Considering the total amount of computing power used in
thesee two cases, i.e. the execution time times the number of processors used, shows that the
BLOCKK code needs about 140 times more computing time to perform the same amount of
workk as the GRP code. A global comparison of the throughput of all codes studied here is
givenn in section 2.4.4 below.

2.4.44 Code Comparison

Inn order to evaluate the relative performance of the three versions of the A-body code studied
inn this chapter, a series of runs has been made, where both a 8192 particles system, and a
322 768 particles system were simulated for 7200 seconds. We compare the performance of

JJ I 1 I I L

2.4.2.4. CODE PERFORMANCE 45 5

0.8 8
a a
E E
rara 0.6
o o

oo 0.4

0.2 2

-— —

-- ;;;-- :-""" i-part.

commun n

 .gXttapr"

jearch—-— —

withh GRAPE

— "" orbit integr. ...;;:-
;;-"

;:- ;:; "" ^ ^ ^

GRAPEE computations

1000 0 10000 0

N N

Figuree 2.14: Execution time shares vs number of particles for the GRP code. Runs on GRAPEO
(622 pipelines).

0.8 8
m m
E E
]BB 0.6
o o

.22 0.4
T5 5
ra ra

0.2 2

0 0
1000 0

commun.. with GRAPE

orbitt integr.

extrap;.;: :

"i-part.. search

GRAPEE computations

10000 0

N N

Figuree 2.15: Execution time shares vs number of particles for the GRP code. Runs on GRAPE1
(944 pipelines).

46 6 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

0.8 8
<u u
E E

«« 0.6
o o

II °-4

o o
to o

commun.. with GRAPE

networkk commun.
orbitt integr.

GRAPEE computations

1000 0 10000 0
N N

Figuree 2.16: Execution time shares vs number of particles for the GRP code. Runs on both
GRAPEs. .

0.77 r

0.6 6

0.5 5

j-particless send: timings of all calls

top-mostt routine: packet prep.
calll to h3mjpdma_indirect

FORTRAN-CC interface
upperr level driver: indexes copy

handshakingg with PCI
writingg on PCI memory

400 50 60
particless sent

100 0

Figuree 2.17: Software overhead in the j-particle send operation. The difference between the
top-mostt timing (the cumulative task timing) and the timing immediately below is due to format
conversion.. The other differences are mainly due to copy operations.

2.4.2.4. CODE PERFORMANCE 47

100 0

10 0

0> >

E E
- :: 1
E E
co o

0.1 1

0.01 1
1000 1000 10000

t(sec))

Figuree 2.18: Performance comparison for the three versions of the TV-body code. Runs with 8192
particles.. The IND and BLOCK codes are run on 24 processors, the GRP code is run on two
processorss each connected to a GRAPE.

thee GRP code, with respect to the other codes run on the general purpose host, against
ann increasing computational load. The fastest hardware configuration is used in each case,
i.e.. 24 PEs for the IND and BLOCK code runs, and 2 PEs (and hence 2 GRAPEs) for the
GRPP run. Fig. 2.18 and 2.19 show the evolution of the simulation time, as a function of the
wallclockk time. In this way, the performance of each code is specified in terms of how long
onee should wait before a simulation reaches a certain A^-body time. Those figures show that
thee GRP code outperforms the other two codes by a factor 8, when the computational load
iss lighter, and by a factor 20, with a heavier computational load. In both cases, the BLOCK
codee is 1.5 times faster than the IND code, thanks to the optimisation of the j-particles
extrapolationn step. Fig. 2.19 shows an initial overlapping of these two codes performance
curves,, due to a start-up phase, which is not visible in fig. 2.18, because at the first timing
eventt (after 60 s) this system is already stabilised.

Fig.. 2.18 and 2.19 clearly show the large performance gain obtained with GRAPE.
Usingg only two PEs, an order of magnitude better performance was attained compared
too the BLOCK code on 24 PEs. Due to the reduction in the time needed for the force
calculation,, the communication overhead for the GRP code accounts for approximately 50%
off the total execution time (see fig. 2.15 and 2.16). Hence an even larger relative gain may
bee expected for larger problems, as the relative weight of the communication overhead will
decrease.. The difference in performance between the two cases shown respectively in fig. 2.18
andd 2.19 clearly illustrates this effect.

48 8 CHAPTERCHAPTER 2. N-BODY CODES ON HYBRID ARCHITECTURES

10 0

1 1

E E
'~~ 0.1
E E

co o

0.01 1

0.001 1
1000 1000 10000

t(sec))

Figuree 2.19: Same as fig. 2.18. Runs with 32 768 particles.

2.55 Discussion

Ourr performance analysis reveals a very good parallel performance of the BLOCK and espe-
ciallyy the IND code. We also show that the use of GRAPE leads to a dramatic performance
gain,, even at a low efficiency in terms of GRAPE boards exploitation. Such low efficiency
iss mainly due to a very high communication overhead, even for the largest problem studied.
Thiss overhead can be greatly reduced by the use of a faster host, and by the development
off an interface requiring fewer format conversions. The GRAPE-hosts in the system studied
inn this chapter have a 200 MHz clock speed. Nowadays standard clock speeds are up to
onee order of magnitude faster. The use of a state-of-the-art processor would reduce the host
andd communication times significantly. The low utilisation of GRAPE, shown in fig. 2.14,
2.155 and 2.16, suggests that the problem size has to be increased to attain a optimal SPD
utilisation. .

Thee measurements described in this chapter are the basis for the calibration and vali-
dationn of our performance simulation model. In chapter 3 our model will be described, and
usedd to simulate different classes of TV-body codes, running on different hybrid architectures.

Chapterr 3

Modellin gg and Simulation of Hybri d
Architectures* *

3.11 Introductio n

Inn this chapter the performance model that we developed to simulate the behaviour of hybrid
architecturess is introduced. Hybrid architectures were presented in section 1.3.4 as systems
wheree a high performance general purpose computer is coupled to one or more Special Pur-
posee Devices (SPDs). They can be seen as a special case of computer systems described
byy the heterogeneous computing paradigm (Preund &: Siegel, 1996; Palazzari et al., 2000).
Inn section 1.3.4 we also discussed why such a system can be the optimal choice for several
fieldsfields of Computational Science. The relevance of the GRAPE in the field of Numerical
Astrophysicss has been discussed in section 1.3. Quantum Chromodynamics is another field
thatt has benefited substantially from the use of SPDs. In a recent review on Computational
Quantumm Chromodynamics the state of the art for the use of dedicated computers in that
fieldfield has been presented, with the Japanese CP-PACS computer (Aoki et al., 1999), the

tThiss chapter is based on work published in:
P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: A Simulator for Parallel Hybrid Computer Systems, in

R.L.. Lagendijk; J.W.J. Heijnsdijk; A.D. Pimentel and M.H.F. Wilkinson, editors, Proceedings of the seventh
annuall conference of the Advanced School for Computing and Imaging, pp. 210-219. ASCI, 2001.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Prediction of N-body Simulations on a
HybridHybrid Architecture, Computer Physics Communications, 139, 34-44, 2001.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: A Versatile Simulation Model for Hierarchical
Treecodes,Treecodes, in P.M.A. Sloot; C.J.K. Tan; J.J. Dongarra and A.G. Hoekstra, editors, Proceedings of the
ICCS20022 Conference, LNCS vol. 2329, pp. 176-185. Springer Verlag, 2002.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Hierarchical N-body Codes
RunningRunning on Hybrid Architectures, in E.F. Deprettere; A.S.Z. Belloum; J.W.J. Heijnsdijk and F. van der
Stappen,, editors, Proceedings of the eighth annual conference of the Advanced School for Computing and
Imaging,, pp. 211-218. ASCI, 2002.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Distributed Hybrid Archi-
tectures,tectures, IEEE Transactions on Parallel and Distributed Systems, in press, 2003.

49 9

500 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

QCDSPP machine built in the USA (Mawhinney, 1999), and the APE system developed in
Europee (Tripiccione, 1999).

Configuringg a hybrid system and finding the optimal mapping of the application tasks
ontoo the hybrid machine often is not straightforward. Performance modelling, which we
discussedd in section 1.6, provides a tool to tackle and solve these problems. We developed a
performancee model to simulate a hybrid architecture consisting of a parallel multiprocessor
wheree some nodes are the host of a GRAPE board. GRAPE, introduced in section 1.3, is a
veryy high performance SPD used in Computational Astrophysics.

Wee present here the general modelling framework, and the methodological approach
thatt we used to build our model. Based on this modelling background, and on the experi-
mentall data presented in chapter 2, we developed the performance models described in this
chapter.. We present here the details of the implementation of both the model used for
thee simulation of the direct code, introduced in section 1.4.1 and discussed in detail in sec-
tionn 2.2.2, and the model for the simulation of the treecode, introduced in section 1.4.2. We
validatee the accuracy and versatility of our models by simulating existing configurations, and
usee them to forecast the performance of other architectures, in order to assess the optimal
hardware-softwaree configuration.

Forecastingg and analysing the performance of a hybrid architecture is not trivial. Per-
formancee modelling can provide a solution to this problem. The range of applications of
performancee modelling in Computer Science is vast. Recently, in a review of performance
modellingg research, applications were presented spanning the range from scheduling in global
computingg systems (Aida et al, 2000) to modelling of large-scale scientific applications (Adve
&& Sakellariou, 2000), based on both the analytical approach (e.g., Gunther, 2000; Hoisie et al.,
2000)) and on simulation (e.g., Kurc et al, 2000).

Analyticc models (see, e.g., Cremonesi Sz Gennaro, 2002) easily become intractable due
too the complexity of the simulated system, and usually show a limited flexibility. Simulation
modelss (Bagrodia et al, 1998; Adve et al., 2000) allow for the study of very complex systems.
Theirr high degree of versatility makes it possible to estimate the performance of hardware
orr software architectures during the various phases of their development (see, e.g., Pimentel
etet al, 2001).

Wee have built a performance model, based on functional task modelling (Dikaiakos
etet al, 1996). Our model simulates the behaviour of a parallel multiprocessor, where specific
nodess can act as the host of an SPD. This helps us to understand the interactions between the
SPD,, the host, and the application that is run on the hybrid system. Our aim is to have the
possibilityy to adapt and modify the hardware model, in order to find the configuration that
givess the best performance, and to simulate a different software application just by changing
thee higher level software specifications. Hence we developed a model able to make predictions
off the performance of the system for a given algorithm, and to tell us how hardware and
softwaree can be adapted to one another to obtain the best performance.

Thee hybrid system that we used to validate our model consists of a local cluster of
thee DAS parallel computer (Bal et al, 2000), where two nodes are the host of a GRAPE
board.. A direct summation N-boAy code (Aarseth, 1999) that, as described in chapter 2,

3.2.3.2. DESIGN CONSIDERATIONS 51 1

wee parallelised and adapted for use with the GRAPE, was executed on this system. We val-
idatedd our performance model on this architecture, and used the model to make predictions
onn the system behaviour, when both hardware and software modifications are introduced.
Furthermore,, we also studied the behaviour of a treecode (Barnes & Hut, 1986) on such a
system. .

3.22 Design considerations

3.2.11 Requirements

Hybridd Architectures can be complex to design, and expensive to realise. Performance mod-
ellingg is an effective tool to estimate their performance rapidly and inexpensively. We aimed
too build a versatile model, able to simulate different applications running on different com-
puterr architectures. Therefore, we have structured our model so as to separate the modelling
off the hardware from the modelling of the algorithm. This allows us to modify the model of
thee application, leaving intact the underlying model of the machine, and vice versa.

Scopee of our model

Generally,, performance models are designed to simulate an application or a hardware archi-
tecturee in great detail, and need powerful simulation environments, such as POEMS (Adve
etet al., 2000), a comprehensive environment for the study of complex computer systems, or
Artemiss (Pimentel et aL, 2001), specifically developed for embedded systems design and
analysis.. In our case, we do not aim at simulating our application down to the single in-
structionn level, or our machine at the single electronic component level. We focus on the
interactionn of the SPD with the parallel host, and the interplay of those two components with
thee application executed on them. We use an iterative refinement approach, starting coarse,
and,, if necessary, refining those modules that produce unacceptable errors. For this pur-
pose,, we found it sufficient to model the system components at a functional level (Dikaiakos
etet a/., 1996). This approach involves much less model complexity, still giving us sufficiently
accuratee results.

Levell of granularit y

Thee level of granularity of our model is dictated by the accuracy that we want to reach
inn our simulations, taking into account that the aim of our performance analysis research
iss the optimal performance of the software application, typically achieved by balancing the
hardwaree components' workload for a given set of software application tasks. As shown
below,, we get a satisfactory accuracy with a rather "coarse grained" functional model. The
basicc unit of our abstract algorithm is the task, defined as a code block which encompasses a
sett of instructions performing a specific operation. This operation is characterised by having
aa non negligible execution time, accessing a set of resources which is constant in time, and

522 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

dependingg on a limited number of application parameters. Similarly, the model granularity
forr the architectural components has been set at the level where the atomic units are the
majorr computing elements, such as the SPD and the host node.

Modell structur e

Thee computational environment that we model is specified, at the more abstract level, by a
numberr of formal entities. These are the algorithm, the hybrid machine, and the mapping
interface.. In the specific case described here, the algorithm computes the numerical solution
off the gravitational iV-body problem. The algorithm model generates simulation parameters,
andd activates basic operations. The different operations of this code have different demands
forr computational power, the force computation being by far the most demanding task. The
designn of the hybrid architecture on which this algorithm is executed matches these require-
ments,, by including a model of a specialised hardware for the gravitational force evaluation.
AA sequence of tasks describes the behaviour of each component, and the concurrent access
too machine components by a set of application tasks is treated as a critical section.

3.2.22 Functional model and implementation environment

Ourr functional model approach has been presented in section 1.6, where we described how
wee identify the main constituents of the modelling environment. We make a model of the
softwaree application in the application model, where we specify the time spent on each task
%% as a function of the application parameters TT,. Similarly, in the machine model, the
characteristicss of the hardware resources Tlj depend on the machine parameters ^». The
mappingmapping interface maps each % of the application model on the appropriate Hj of the
machinee model. The resulting simulation model returns the simulated execution time, which
dependss on both the 7r» and fa. In this way, we can study the performance of existing systems,
andd forecast the performance of the systems under design.

Thee simulation language used to implement our model is PAMELA (PerformAnce Mod-
Elingg LAnguage) (van Gemund, 1993, 2003), developed by Arjan van Gemund at the Delft
Universityy of Technology, aimed at either simulation or analytic performance analysis. PAMELA
iss a C-style procedure-oriented simulation language where a number of operators model the
basicc features of a set of concurrent processes. In a procedure-oriented language, concurrent
processs interaction takes place via shared variables, in contrast to message-oriented lan-
guages,, which describe communications in terms of explicit messages between interacting
processes. .

Thee execution time of a process is modelled by the delay statement; the sequential
executionn of processes is implemented by the seq (prefix) or ; (infix) construct. Parallelism
iss specified by means of the par (prefix) and I I (infix) constructs, which are implemented
inn a fork/join fashion (i.e. with implicit synchronisation). Explicit synchronisation between
aa couple of processes is implemented with the wait and s ignal operators, while mutual
exclusionn is realised with the P and V semaphore statements, which implement Dijkstra's
classicall solution to the resource contention problem (see, e.g., Tanenbaum, 2001, § 2.3.5).

3.3.3.3. MODEL IMPLEMENTATION 53 3

PAMELAA models the execution of processes in terms of the Discrete Event Simulation
paradigm,, as the use of the delay primitive suggests. A model can be material-oriented,
whenn the execution flow of the process is specified in terms of the various system resources
thatt the process will access, or machine-oriented, where the emphasis is on the resource, with
aa specification of the series of operations that each resource should accomplish. PAMELA is
moree suited for the first procedural approach, although machine-oriented models can also be
builtt within this framework.

Inn order to show how PAMELA is typically used to describe a parallel system, we give as
ann example the model of a client-server system, where C concurrent clients execute N iter-
ationss each. An iteration consists of local processing with duration rj , followed by a request
too access the server s which, once accessed, is used for a time rB. Such system is modelled by:

p a r (p = l . . . C))
seqq (i = 1 . .. N)

{de lay(r i) ;; P(«) ; delayfo) ; V(s) }

wheree line breaks and indentations are used for the sake of clarity, and have no syntactic
meaning.. A detailed overview on PAMELA is given in van Gemund (1993).

3.33 Model implementation

Inn this section we describe how our performance model reproduces the tasks of the codes
underr study. The direct code tasks have been described in section 2.2.2. Here we specify the
dependencee of the execution time of each task on the application parameters, like Nt, the
numberr of i-particles, and Nj, the number of ^-particles.1

3.3.11 Direct code

Ourr application model for the direct code is modelled as a sequence of tasks, as sketched in
fig.fig. 3.1. Each computation task is implemented by a delay statement (see section 3.2.2),
possiblyy followed by a support function that sets the value of time dependent parameters,
ass Ni and Nj. As described in section 2.3, there are communication operations at the end
off the i-particle search and force compute tasks, and both are global all-to-all operations.
Theyy are implemented in the model by means of a synchronisation operation, followed by
aa delay statement. The delays in the model of each task depend on the model parameters
accordingg to the formulae reported in table 3.1. These expressions have been obtained by
analysingg the data presented in chapter 2, and inferring the dependence of the execution
timee of each task on the model parameters. In the following section we describe the subset
ViVi of application parameters that affect the performance of each task %.

1Wee recall that t-particles are the particles on which force is computed, whereas ^'-particles are the
particless from which force is computed.

544 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

initialisation n

Andd new particles to be updated

extrapolatee all particles' positions

computee force

integr.. particles orbits and store results -»-<Cif (not exj

Figuree 3.1: Basic sketch of the direct iV-body code tasks.

tasks s

i-particlee local search

z-particlee global communication

extrapolationn on host (non-GRAPE
case))

extrapolationn on host (GRAPE case)

locall force (non-GRAPE case)

locall force (GRAPE case)

j-particlee send to GRAPE

i-particlee send to GRAPE

receivee results from GRAPE

forcee global communication

orbitt integration

modellingg formulae

MPP ' TTsrc ' N/P

V>LV>L Kigl +fJ>L-P+{VL- 7Ti«i + flB ' ^ib ' l o g (P)) Nt

fipfip N/P

MPP Ti t r Ni

tiptip 7Tfrc Nt N/P

(ps(ps + MG N/G)

1*>P1*>P Kprep " 90 0

PCPC Kipart '

t*Ct*C TTres "

Ni Ni

++ MC Tjport " fy

*i*i .

"" '''pipes

'' Pmax

(l*L(l*L If f I + MB ' *fb l 0 g (P)) Nt

MPP Korb ^

Tablee 3.1: Synopsis of the application tasks, and the modelling formulae for their time dependence
onn the model parameters, whose values are given in table 3.2. Here, G is the total number of
GRAPEE boards, rijpee is the number of pipelines in a GRAPE board, Pmax is the maximal number
off pipelines in a GRAPE board; for the GRAPE-4 Pmax = 96 (see section 1.3 for details). The
otherr variables are defined in the text.

3.3.3.3. MODEL IMPLEMENTATION 55 5

Applicatio nn model

Forr an A/-body code, the most important parameter is obviously N, the total number of
particles,, which is a measure of the problem size. Moreover, the dynamical parameter that
affectss the performance of each task in a block time step code is Nit the number of particles
forr which force is going to be computed. We observed a highly oscillatory behaviour for this
parameter,, shown in fig. 3.2. This oscillation of Ni between high and low values can be due
too a small number of binary stars, which have a strong mutual interaction, requiring a small
timee step, or to close encounters between pairs of stars. The high occurence of low values
off Ni between iteration #60 and iteration #300, implying that one or two particles evolve
withh a low time step, is an indication of the presence of a binary system in that simulation.
Thee number of particles having a larger time step is also larger; when they are selected as
i-particles,, the value of Ni becomes much higher. We give the value of Ni at each iteration,
obtainedd from the trace of real runs, as an input to our simulator.

i-particl ee search. The task of finding the Ni particles is modelled as a linear function
off N, since the search is done over a set of candidates, whose number is a nearly constant
fractionn of JV. In the parallel case, each processor searches a local list of candidates, which
iss a subset of the local particle set. The actual i-particles are chosen after this local search
iss completed, again by selecting from the candidates those particles with the smallest time
value. .

Thiss global search uses a collective communication. The measured communication time
showss both a linear dependence on the number of processors P, and on N ̂ The Ni scaling
factorr is modulated by a term proportional to log P. Based on our measurements, we used
thee fitting formula given in fig. 3.3 to model the global search task.

Fig.. 3.3 shows the dependence of this task on Ni, for three different representative sets
off values for N and P. A data point in this graph is the average value of the timings on
eachh processor at a given iteration of the code. Occasionally, values much higher than the
averagee have been measured, as shown in the figure, arguably due to external data traffic in
thee network. The fitting formula is not affected by these spurious values.

Extrapolation .. The extrapolation phase, in the non-GRAPE case, consists of a fixed
numberr of operations done on every particle in the system. Each processor extrapolates only
itss own j-particle positions, thus the extrapolation time shows a linear dependence on N/P,
i.e.. the workload per processor. A sketch of the dependence of the execution time for this
taskk on N/P is given in fig. 3.4. Each point here is the average value over the entire run,
forr a given pair (JV, P). This figure shows a jump in the dependence of t on N/P, due to
aa cache effect.2 We chose to model only the out-of-cache behaviour, because we are more
interestedd in situations characterised by a large workload.

2Thee cache size of our system is 256 Kbytes per processor, and each particle carries about 200 bytes of
data.. Then a workload per processor larger than about 1000 particles will cause the problem to run out of
cache. .

566 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

machinee parameters

flp flp

VL VL

V>B V>B

fJ-s fJ-s

V>G V>G

Vc Vc

(fjs(fjs to perform a processor cycle)

(networkk latency in /is)

(//ss to transmit a byte over the network)

(fis(fis to startup the GRAPE pipeline)

(/js(/js for the GRAPE to compute a force interaction)

(^ss to transmit a byte on the GRAPE-host channel))

1/200 0

40 0

1/150 0

75.6 6

0.19 9

1/133 3

applicationn parameters

TTsrc c

Kxtr Kxtr

Kfrc Kfrc

^orb ^orb

ïïprep ïïprep

computations s

(i-particle e
search))

(part.. pos.
extrapola--
tion))

(forcee compu-
tation))

(orbitt inte-
gration))

(format t
conversions s
inn packet
preparation))

54 4

260 0

260 0

420 0

480 0

networkk communications

KigiKigi (i-particle
commum. .
startup))

itirditird (i-particle
transmission))

iTfiiTfi (force data
transmission))

no,no, (i-particle
broadcast))

7T/&& (force broad-
cast))

3.5 5

0.0025 5

0.5 5

22.5 5

105 5

host-GRAPE E
communications s

KjpaHKjpaH O'-part- send
too GRAPE)

KipartKipart («-part, send
too GRAPE)

7rrecc (receive re-
suitss from
GRAPE))

80 0

40 0

130 0

Tablee 3.2: Values of the performance parameters appearing in the modelling formulae in table 3.1.

Whenn GRAPE is used, the application code has to perform the extrapolation only for
thee i-particles. The GRAPE contains an extrapolation pipeline for the j-particles, but it
doess not extrapolate the i-particle positions; the host must perform this operation. Hence, in
thiss case, the extrapolation task is modelled as a linear function of A^, and is mapped on the
host.. Since every host must extrapolate all the z-particle positions, there is no dependence

3.3.3.3. MODEL IMPLEMENTATION 57 7

100 000

1000 0

100 0

10 0

1 1

--

--

: :

4 4

+ +

** / i

VV l

I I
!'' + i:

jj j | l

!! (Illi

++ + + + +

++ + + + + + +

++ + + + + + + + + ++-M-K*+H+**t _

jj * '

-t~KH- ++++t,4.-«***^^ ™

* *

" '' - :

10 0
iteration n

100 0

Figuree 3.2: Time evolution of N% for a simulation with N = 32 768. The first 20 values are
connectedd by a line, to make the oscillation clear. The unity (or twice the unity) value that can be
seenn on the bottom-right side is a hint of the presence of a binary star.

onn P. The GRAPE performs the j-particle extrapolation simultaneously with the force
computation.. When the GRAPE computes the force exerted by a certain particle j \ , the
ji'i-dataa fetched from the GRAPE memory are passed through to the extrapolation pipeline.
Thee pipeline outputs the extrapolated position of j \ , which is input to the force pipeline.
Thee timing of the force computation task also includes the extrapolation. This is why there
iss no separate modelling for the j-particle extrapolation done on the GRAPE in table 3.1.

Forcee computation. The force computation task in the non-GRAPE case scales linearly
withh Ni N/P. Fig. 3.5 shows this dependence for a representative set of runs. Also in this
casee a data point refers to a single iteration, and is the average value of the timings for all
thee processors.

Whenn forces are computed on the GRAPE, it does this task on Np particles at the same
time,, using its array of pipelines. Then the same amount of time is spent to compute forces,
forr a number of i particles ranging from 1 to Np. This time scales linearly with N/G (see
fig.fig. 3.8) where G is the number of GRAPEs available, since the force computation consists
inn an iteration on the N/G particles constituting the particle subset assigned to a GRAPE.
Thee operation of receiving the result data from GRAPE is similar to the i-particle send,
showingg the same step behaviour.

Thee force computation task performed on the GRAPE shows a rather complicated
structure.. A number of communication procedures between the GRAPE board and the host
mustt be performed, besides the actual force computation task. Figures 3.6, 3.7, and 3.8

588 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

globall find

10 0

o o
en n

II 1

0.1 1
0.1 1

++ P = 24, N = 16 384
xx P = 8, N = 8192
** P = 2, N

10 0 100 0
Ni i

10000 10 000 100 000

Figuree 3.3: Timings averages of the global communication operation associated with
thee i-particles search. The formula we obtain by fitting the measurement values,
whichh is used in the simulation model, and reproduced here as a continuous curve, is:
tt = 0.14 + 0.038 P + (0.97 10- 4 + 0.15 10~3 log(P)) Nt (see parameterised expression in ta-
blee 3.1).

100 0

10 0

0.1 1

0.01 1

extrapolation n

xx averages of measurement values
—— t=.00132*N/P

10 0 100 0 1000 0
N/P P

100 000 100 000

Figuree 3.4: Timings of the extrapolation task for the non-GRAPE case, and fitting formula used
intoo the model. A cache effect is clearly visible at N/P = 1024. We are interested in situations
withh high workload, thus we fit only the out-of-cache subset.

3.3.3.3. MODEL IMPLEMENTATION 59 9

loca ll forc e

1e+0 6 6

1e+0 5 5

100 00 0

ff 100 0
t o o

§•• 10 0

10 0

1 1

0.1 1
1000 100 0 1 0 00 0 1e+0 5 1e+0 6 1e+0 7 1e+0 8 1e+0 9

Nii * N / P

Figuree 3.5: Timings and fitting formula for the local force computation in the non-GRAPE case,
forr a set of representative runs.

illustratee these tasks. Before GRAPE computes forces, the host sends it the j-particle
positionss that have changed in the last iterations. Since GRAPE stores the j-particle data
inn its internal memory, only the updated j-particle data need to be sent to it. Moreover,
alsoo the time-advanced position of the i-particles need to be sent in the same packet as the
j-particles.. In this way GRAPE avoids computing the self-interaction for the i-particles.
Thee actual delivery of data is done in packets of up to 90 particles, and shows a linear
dependencee on the amount of data sent, plus a fixed latency time for each actual send
operation.. The j-particles send step is then a function of Ni and Nj. Fig. 3.6 shows the
measuredd performance of this operation as a function of the data sent.

Anotherr send operation is performed to send the z-particles to GRAPE. The actual
dataa delivery is done in packets of Np particles, where Np is the number of active pipelines
onn the GRAPE board (up to 96). The time dependence of this operation with respect to AT,,
thee number of particles sent, is then a simple step function. Fig. 3.7 shows this dependence,
forr Np = 62.

Besidess the local force computation, a global communication is also needed for the
parallell GRAPE code, as the total force computation requires a global sum. The execution
off this operation does not differ between the GRAPE and non-GRAPE codes. Measurements
off this operation from real runs show a communication time linear in Nt log P, as shown in
tablee 3.1.

i-particl ee update. The final operation, i.e. orbit integration, updating and storing of the
particless physical quantities, is a linear function of Ni: with no dependency on P, since every

600 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

j-particless send

900 100

Figuree 3.6: GRAPE related tasks. Timings of the j-particle send task as a function of the workload
aree shown. Measurements of the communication tasks show some occasional spike due to external
processes,, e.g. operating system function calls. A GRAPE with 62 pipelines is used for these
measurements. .

0.34 4

0.32 2

0.3 3

0.28 8

0.266 -

0.24 4

0.222 -

0.2 2

0.188 h

-particless send

measurements s

0-166 \m08mm<mmmmm<X<88m®&mm

0.14 4
00 10 20 30 40 50 0

Ni i
600 70 80 90 100

Figuree 3.7: Same as fig. 3.6; here we show timings of the t-particle send task.

3.3.3.3. MODEL IMPLEMENTATION 61 1

05 5 g g

2 2

1.8 8

1.6 6

1.4 4

1.2 2

1 1

0.8 8

0.6 6

0.4 4

0.2 2

0 0
00 100 0 200 0 300 0 400 0 500 0 600 0 700 0 800 0 900 0 1000 0

N N

Figuree 3.8: Same as fig. 3.6; here we show timings of the force computation task. The pipeline
startupp latency [Ms — 75/us is clearly visible.

processorr performs this task for all the i-particles.

3.3.22 Treecode

Thee treecode, introduced in section 1.4.2, is widely used in Computational Astrophysics for
thee simulation of systems that do not require high computational accuracy. By trading lower
accuracyy with higher speed, the treecode is able to reduce the computational complexity of
thee TV-body problem from the Ö(N2) scaling of the direct code to Ö(N log N).

Thee treecode computes force on a given particle i by grouping particles in larger and
largerr cells as their distance from i increases, force contributions from such cells being trun-
catedd multipole expansions. A simple pseudo-code sketching the basic tasks of the treecode
iss given in fig. 3.9.

Thee first task of a treecode iteration is to build a tree structure by hierarchically
connectingg each cell to the "child" cells that the cell encompasses (see section 1.4.2 for details).
Thenn force is computed for each i-particle by traversing the tree, and looking for cells that
satisfyy an appropriate acceptability criterion (see section 1.4.2 and chapter 4 for details on
acceptabilityy criteria).

Thee original treecode algorithm has been modified in several ways to improve its per-
formance.. An optimisation of the tree traversal phase has been realised by grouping particles
accordingg to their spatial proximity (Barnes, 1990). Then a single traversal for each group is
performed,, whereas the original algorithm performs a tree traversal for each particle. This
drasticallyy reduces the number of tree traversals, and allows for concurrent force computa-

measurementss x

X X
ii X

X X
X X

L*11 1

X
 X

X

 X

X
 X

ii i i x x ;] !
:: X X *

"~u^?TT ! | ! |

622 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

tt = 0
whil ee (t < t_end)

buil dd tre e
fo rr eac h i-particl e

travers ee tre e t o
integrat ee orbit s
tt = t + A t

comput e e force s s

Figuree 3.9: Pseudocode sketching the basic tasks in a treecode.

tionn on vector machines. This optimisation is also suited for the use of the treecode with
GRAPE,, because each pipeline of the array contained in a GRAPE board can compute
forcee on a different particle simultaneously. The drawback of this technique is an increase in
memoryy use. In fact, for each particle group, an interaction list containing the information
concerningg all the cells interacting with the group must be written and stored in memory.

Thee use of interaction lists is also useful for parallelisation on distributed systems,
ass in the parallel treecode (Warren &: Salmon, 1993, 1995). The possibility of decoupling
treee traversal and force computation through interaction list compilation, allows for the
implementationn of latency hiding algorithms for the retrieval of cell information stored in a
remotee processor memory (Warren & Salmon, 1995; Salmon & Warren, 1997). We will refer
too this version of the parallel treecode as HOT, the acronym of Hashed Oct-Tree, as the code
wass called by Salmon and Warren.

Anotherr modification, introduced in the code GADGET (Springel, Yoshida, &; White,
2001),, consists in implementing the individual time step scheme, originally introduced in
thee direct Af-body code, as described earlier in sections 1.4.1 and 2.3.1. In this manner,
eachh particle is assigned an individual time step, and at each iteration only those particles
havingg an update time below a certain time are selected for force evaluation (Springel et a/.,
2001),, so that force is computed only on a small fraction of the N particles. In this code,
aa different approach for remote interactions computation is also implemented: data of the
selectedd particles are sent to the remote processors, interactions are computed remotely, and
resultss are received back. A further modification consists in rebuilding the local tree less
frequentlyy than at every iteration. This version wil l be referred as GDT, which is a short for
GADGET.. In fig. 3.10 we give a pseudo-code representation of the generic algorithm that
ourr model simulates.

Applicatio nn model

Manyy different versions of the treecode have been proposed, implementing different tools
andd techniques. A recent report on this is given in (Springel et a/., 2001). Our performance
modell is designed to reproduce the behaviour of state-of-the-art parallel treecodes, running
onn distributed architectures, and able to make use of dedicated hardware. In this section,
wee describe each task of our application model, together with their modelling expressions.

3.3.3.3. MODEL IMPLEMENTATION 63

tt = 0
whil ee (t < t_end)

i ff cod e i s GDT
i ff i t i s tim e to rebuil d tre e

buil dd loca l tre e
els ee i f cod e i s HOT

buil dd loca l tre e
exchang ee dat a t o buil d globa l tre e

i ff cod e i s GDT
forr each se lected p a r t i c le

t raversee local t r ee to compute local forces
sendd par t i c le s t o remote nodes
receivee par t i c le s from remote node
computee force on remote p a r t i c l es
sendd forces t o remote nodes
receivee forces from remote nodes

elsee if code i s HOT
forr each group

(communication(communication needed for remote data retrieval)
forr each group

forr each p a r t i c le i n group
computee forces

in tegra tee o rb i ts
tt = t + A t

Figuree 3.10: Pseudocode sketching the generic parallel treecode tasks. HOT and GDT are the
twoo versions of the treecode modelled in this work. Tasks involving communication are highlighted
usingg |i=gëpr background;.

Tablee 3.3 shows a synopsis of the modelling expressions, given as functions of the appropriate
applicationn parameters.

Treee building . The tree building task consists of two operations: particle insertion into
thee tree structure, and computation of multipole terms for each cell of the tree. Both opera-
tions,, as long as local trees are concerned, do not require communication among processors.
Thee particle insertion operation scales as nlog(n), where n is the number of particles per
processor.. The multipole terms computation depends linearly on the number of cells per
processorr nc, which is set equal to 0.1 n divided by the number of particles per leaf cell.
Eachh computing node processes all the particles independently to build a local tree. When

644 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

task k

buildd local tree

dataa exchange
forr HOT global
tree e

treee traversal

dataa exchange
forr HOT global
lists s

computee forces

dataa exchange
forr GDT remote
forces s

remotee i-parti-
clee data sent to
GRAPEE hosts

forcee data sent
backk by GRAPE
hosts s

integratee orbits

parameterr definitio n

n:: number of particles per processor

nc:: number of cells per processor

n-mp-n-mp- operations per cell to compute multi-
poles s

P:P: number of processors

m:: fraction of particles selected for force
computationn (= 1 if code is HOT)

nngg:: number of groups per processor

jioc'.jioc'. number of local force sources per
group p

$:$: opening angle (accuracy parameter
forr the force computation)

KjtKjt scaling coefficient for force sources

j r m t :: number of sources per group from re-
motee processors

j :: total number of force sources per
group p

AT:: total number of particles

forfor parameter definition see above

forfor parameter definition see above

forfor parameter definition see above

forfor parameter definition see above

modellingg formul a

nn log(7Tfc n)+

TTtt-m-ng-TTtt-m-ng- jioc

jiocjioc = Krd-3-\og(e3-n)

jmajma = Kr6~3-logP

7rcc ƒ m n j

jj = Kr6-3-\og(63-N)

Mrf^m^M^l^P Mrf^m^M^l^P

::î ;f» ii »;*#.:%)

KgtKgt'' ui* »

 'Vd'U

Tablee 3.3: Synopsis of the modelling expressions for each task of the application model. All n
termss are constant factors depending on the operations per particle performed, or the bytes per
particlee transmitted. Communication task expressions are highlighted using a grey background .
Parameterr values are given in table 3.4.

3.3.3.3. MODEL IMPLEMENTATION 65 5

thee tree building task is accomplished, the local tree contains all the particles which are lo-
catedd within the geometrical domain assigned to the processor. GDT uses only local trees for
thee force computation task, hence it does not execute other operations to complete the tree
buildingg task after the local tree building. Conversely, the HOT code exchanges information
amongg the processors after the local tree building, so that each processor is able to build a
globall tree. In this way, no communication will be necessary during the force computation
task.. The data exchanged to build the global tree, the so-called local essential tree, are
assumedd to be equal for each processor, so that this operation is assumed to scale linearly
withh the number of processors P.

Treee traversal. This task is performed by HOT before the force computation, while GDT
performs,, for each i-particle, tree traversal and force computation as the same task. Namely,
HOTT first traverses the tree in order to build an interaction list for each group of nearby
particless (an input parameter states how many particles make up a group), then uses the
listt to compute forces on each particle of the group (see also section 3.3.2 above). GDT
instead,, for each particle selected for force computation, traverses the tree and computes
forcee simultaneously. The local tree traversal has to be done once for each particle group
(GDTT does not use groups, so in this case the number of groups is equal to the num-
berr of particles). It depends linearly on the number of local force sources. An expression
forr the total number of force sources j was found by Makino (Makino, 1991b), who gives
jj <x 0~3 log^JV), where 8 is the opening parameter (see equation 1.3 in section 1.4.2). The
numberr of local force sources is then ju>c <* #- 3 logfö3iV/P), and the number of remote force
sourcess is jrmt = 3 — jioc oc 0~z log P. GDT performs this operation only for a fraction m of
thee particles per processor n. In the case of HOT, we simply set m = 1.

Thee HOT code completes this task with a communication operation, where informa-
tionn concerning remote force sources is received by each processor. This operation depends
linearlyy on the number of groups, and on the number of remote force sources jma-

Forcee computat ion. The cost of the force computation task on each processor is propor-
tionall to the number of t-particles per processor m n, times the number of force sources j .
Forr the HOT code, this task does not require communication, since all information about
remotee force sources has been exchanged in the tree traversal task. In the GDT case, lo-
call i-particles are sent to the remote processors, then remote partial forces are retrieved to
finallyfinally obtain the total force on each i-particle. This operations are global communication
operations,, and are assumed to depend on log P, consistently with the modelling formulae of
thee global communication tasks of the direct code model in section 3.3.1 (see also table 3.1).
Thiss task also depends linearly on the total amount of data exchanged, i.e. on the total
numberr of i-particles m- N.

Iff GRAPEs are used, the force computation task is performed only by the GRAPE
hosts.. As a consequence, the communication operation executed in the HOT case during the
treee build task in order to build the global tree, is executed only by the GRAPE hosts. As
farr as the actual force computation is concerned, the GRAPE hosts first compute force on
theirr local particles, then receive remote i-particles and corresponding interaction lists from

666 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

HO TT on Delta GDTT on T3E seq.. tree on GRAPE-5

machinee parameters

VPVP [gsy

»"»" [hfel

12.5 5

0.05 5

1 1

0.002 2

1.67 7

n/a a

codee dependent application parameters

m m

nn9 9

1 1

n n

0.02 2

n n

1 1

nn 0.0005

codee independent application parameters

KjKj (force sources in tree traversal)

7rww (build local tree)

KmpKmp (compute multipoles in local tree)

TTgtTTgt (HOT global tree)

nntttt (tree traversal)

7T7Tglgl (HOT global lists)

trtr ccff (compute forces)

7rr// (GDT remote forces)

iTgriTgr (remote i-part. sent to GRAPE hosts)

TTTTg3g3 (forces sent back by GRAPE hosts)

iToriTor (integrate orbits)

100 0

0.15 5

10 0

3200 0

0.4 4

32 2

0.15 5

48 8

32 2

24 4

0.3 3

Tablee 3.4: Values of the performance parameters appearing in the modelling formulae in table 3.3

thee "un-graped" processors, compute force on remote i-particles, and finally send back forces
too the remote processors.

Thee actual force computation operation on the GRAPE is modelled using the same
expressionn as in table 3.1, where the number of i-particles is in the present case put equal to
thee number of particles per group n/ng, and the number of ^'-particles (JV/GRAPEs in the
formulaa in table 3.1) now is equal to the total number of force sources per group j .

Thee cost of the communication operation to send remote particle data to the GRAPE

3.4.3.4. SIMULATIONS 67 7

hostt is proportional to the amount of bytes which are sent, which is proportional to the
numberr of i-particles sent, plus the length of the correspondent interaction lists. Hence it
iss modelled as a linear function of the number of «-particles m n plus the number of force
sourcess for all groups j-ng. The cost of sending back the forces is proportional to the number
off i-particles m n.

Orbi tt integration. This task consists in the updating of the i-particles positions, and
doess not require communication. It is modelled as a linear function of the i-particles per
processorr m n.

Computerr architectur e

Thee parallel system simulated in our machine model is a generic distributed multicomputer,
wheree given nodes can be connected to one or more SPDs. When SPDs are present, the
appropriatee task is executed on them. The application model needs no modification in this
case.. According to an input parameter which tells whether SPDs are present, the mapping
interfacee chooses the routine that maps the task to the SPD, or to the general purpose
processor.. Since we are interested in SPDs dedicated to the gravity force computation, the
machinee model of the SPD reproduces the GRAPE activity, and its communication with the
host.. The modelling of the fairly complicated data exchange machinery between GRAPE
andd its host is discussed in section 3.3.1.

Thee hardware characteristics of the simulated multicomputer are parameterised by two
constants,, ftp and /x^, where \ip accounts for the processor speed, in nanoseconds per floating
pointt operations, and /ijv accounts for the network speed, its value being the transfer rate
inn /is/B. In the execution model, each computation-related function will be multiplied by
fip,fip, and each communication-related function (those highlighted with a gray background
inn table 3.3) will be multiplied by /iff. Parameter values for the simulations presented in
sectionn 3.4.3 below are given in table 3.4.

3.44 Simulations

Inn section 3.3 the modelling of the various application tasks of the AT-body codes that we
studyy have been described. In this section, we show how our models reproduce the real
system,, and simulate possible modifications. The models consist in a sequence of tasks, as
describedd in section 3.3, each one specifying, by means of appropriate delay operations, how
muchh wall-clock time is spent to perform them. The access to GRAPE is controlled by a
semaphore.. Model results are compared with data obtained from the performance analysis
studyy of our system reported in section 2.4.

688 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

GRAPEO O

1 1

0.8 8

co o

££ 0.6
CO O
£ £
co o
CD D

EE 0.4

0.2 2

0 0
10000 10000

N N

Figuree 3.11: Model validation. Points indicate the data obtained from actual timings, lines are
simulationn results. GRAPEO refers to the system where the GRAPE has 62 pipelines.

3.4.11 Serial direct code

Validation n

Thee reliability of our model has been checked by making a comparison between the simulation
results,, and the actual measurements of a set of runs of NBODY1 on a system consisting of
aa GRAPE connected to its host, which is a node of the DAS, as described in section 2.2.1.
Twoo separate series of runs have been performed, on each GRAPE at our disposal. The
GRAPEE board with 62 pipelines is labelled GRAPEO; the other board, with 94 pipelines,
GRAPE1.. Each run consists of 300 iterations, with N ranging from 1024 to 32 768. The
initiall condition is a Plummer model (Plummer, 1915), i.e. a star distribution with density
decreasingg as the fifth power of the distance from the cluster centre (see, e.g., Spitzer, 1987,
p.. 13). In section 3.3.1 we compared measurements with simulation for single tasks. Now,
inn fig. 3.11 and 3.12, we present a global comparison, where we show how each task scales
withh N. In these figures we plot the time share spent by the application in accomplishing
eachh task. These figures show that our model produces results in good agreement with the
reall measurements. These measurements are presented in section 2.4.3.

Itt can easily be seen how the system performance is strongly penalised by communica-
tionn overhead, unless the workload is high (i.e. TV > 16384). Even in such cases, GRAPE is
nott fully exploited yet, due to the large time-share taken by host computations. It is clear
fromm this that a faster host and an improved communication interface are needed to achieve
ann optimal GRAPE utilisation. A comparison between fig. 3.11 and 3.12 shows that the time
sharee for the force computation is smaller for GRAPE1. This is due to the higher number of

3.4.3.4. SIMULATIONS 69 9

GRAPE1 1

comm m
a a

10000 10000

N N

Figuree 3.12: Model validation. Same as fig. 3.11. GRAPE1 refers to the GRAPE where the
numberr of pipelines is 94.

pipeliness in this GRAPE board, which makes the force computation faster. See also fig. 2.14
andd 2.15 on page 45, where the same performance data for the real system are presented.

Too test the versatility of our model, we also validated it with respect to a system
configurationn without GRAPE. In this case the mapping interface of the model, instead of
selectingg the procedure where the use of GRAPE is modelled, maps the force computation
taskk on a different procedure, where the force computation task is modelled as a linear
functionn of Nt N. The user selects whether the force computation will be modelled as a
hostt related task, or as a task involving the use of GRAPE, simply by changing an input
parameter.. Fig. 3.13 shows the task time shares, while fig. 3.14 shows the total execution time
forr the application that does not make use of GRAPE. Measurements data and simulation
resultss are compared.

Fig.. 3.13 shows that the force computation task dominates the system activity. From
aa comparison with fig. 3.11, where the force computation share is remarkably smaller, it
becomess clear how effective is GRAPE in optimising this task. In fig. 3.14 the execution
timee for the code that uses GRAPE1 is also plotted to show how large is the speedup achieved
thankss to the GRAPE.

Predictions s

Thee above discussion highlights the need for a faster host and communication interface. Our
modell has been used to forecast the benefit obtainable by operating such improvements.

Wee modified our model to simulate a host twice as fast as our present host, and with

0.8 8

CO O

ffff 0.6
CO O

CO O

CD D

EE 0.4

0.2 2

700 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

no-GRAPEE system

0.98 8

££ 0.96
CO O

co o
CD D
EE 0.94

0.92 2

0.9 9
1000 0

I I

** - """find-x-
.. —" e x t r ^

--

force e

. .

--

10000 0

N N

Figuree 3.13: Model validation for a system not using GRAPE. Since the force computation time
sharee for this code is by far larger than the other task shares, the y-axis scale has been changed to
makee data more readable.

Executionn time

10 0

1 1

0.1 1

0.01 1

0.001 1

0.0001 1

measurementss x
simulation n

1000 0 10000 0

Figuree 3.14: Model validation for a system not using GRAPE. Comparison of the total execution
timess of the GRAPE system and the non-GRAPE system.

3.4.3.4. SIMULATIONS 71 1

Fasterr system
1 1

0.8 8

22 0.6
CO O

sz sz
CO O

<D D

|| 0.4

0.2 2

0 0
10000 10000

N N

Figuree 3.15: Simulated time shares for a system with a faster host and communication interface,
butt with the same GRAPE board as GRAPE1.

communicationn performance two times faster as well.3 In this manner we try to reproduce
thee system measured in Kawai et al. (1997), consisting of a DEC workstation 500MHz,
usingg a GRAPE board with 94 pipelines of the GRAPE-4 cluster. The time-shares, and a
comparisonn of the estimated performance gain of the simulated system with respect to the
systemm described in the previous section are given respectively in fig. 3.15 and 3.16.

Thesee figures show that the GRAPE board is used more efficiently now, and the overall
systemm performance benefits of this. Nevertheless, it appears that when the workload is high,
thiss performance gain decreases. This is predictable, since in this case the relevance of the
hostt and the communication interface is not as large as with a lighter workload. The estimate
inn Kawai et al. (1997) is in agreement with ours, it only attributes a larger time share to the
hostt computation tasks at small values of N. This discrepancy can be explained considering
thatt they model JVj = 1.6 N1?2, with no oscillation. In this way, when N < 3600, Ar

i is
alwayss smaller than 96, i.e. the maximal number of pipelines in a GRAPE board. Now,
sincee the force computation and communication step is always done in a single iteration, the
relevancee of GRAPE and the communication interface is reduced. Conversely, if the value of
N(N(can oscillate and assume values greater than the number of pipelines in a GRAPE board,
ass it happens in our model, two or more iterations are necessary, increasing the relative load
off the communication and GRAPE computation tasks.

Anotherr use of our model is the estimation of the performance gain that can be reached
byy improving the communication operations. As mentioned above, the i-particle send and

3Moree precisely, the performance is set to be two times faster for the send operations, and five times
fasterr for the receive operations, in order to reproduce in any aspect the performance figures given in Kawai
etet al. (1997).

722 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

Executionn time
100000 0

10000 0

1000 0

100 0
10000 10000

N N

Figuree 3.16: Simulated performance gain for a system with a faster host and communication
interface,, but with the same GRAPE board as GRAPE1.

thee result retrieval are performed in a buffered fashion, where data are sent for a number
off particles always equal to Np, also when TVj is less than Np. For the result retrieval, the
situationn is even worse; in that case, the operation is performed always for 96 particles, i.e.
thee maximal number of GRAPE pipelines.

Onee may then wonder how much the system performance could benefit, if this communi-
cationn protocol is improved. We simulated a situation where the send and receive operations
aree accomplished by transmitting a variable size packet of up to Np particles per time, in
aa fashion similar to the j-particle send. However, an extra amount is added to the packets
too represent the defective pipelines in the GRAPE board. Every GRAPE board includes 96
pipelines,, but some of those can be defective. We assume the worst-case situation, in which
thee Nd = 96 — Np defective pipelines are the first ones to be accessed. Assuming that data
regardingg N, = N particles have to be transmitted, the operation that we model consists in
writingg to (or reading from) the first AT non-defective pipelines. Then our packet contains
NNdd + N items.

Thee results of this simulation are shown in fig. 3.17 and 3.18. The simulated board
hass 94 pipelines working, and 2 defective. It can be seen how littl e influence the discussed
modificationn has on the system performance. In this case, the model forecast discourages
thee enterprise of implementing such a modification in the real system. This example shows
howw performance modelling can be useful in evaluating whether a new project is promising,
or,, as in this case, it is likely to be unsuccessful.

~>> f i !

ii 1 i 1

I:.:::::::::::::::::::::::::::::::: : :

:::;:: :: ::::: __

ii i :

originall system .;
fasterr system

;; ! Li. ^-"'C--' " : - - .
II i : „.:....:.:^^::::;::::^^...:;::.::::;::;i::.:;:;;::;:;;;:;;i:;;::;;:::: ;

---jprfzf-j-J?** ---jprfzf-j-J?**

^ ^ ^ T - .. --'- '""-

3.4.3.4. SIMULATIONS 73 3

1000 0

Modifiedd communication protocol

10000 0
N N

Figuree 3.17: Simulated time shares for a system with modified communication operations. The
GRAPEE board is the same as GRAPE1.

Executionn time
100000 0

10000 0

1000 0

100 0

improvedd comm.

ii i i

ii '

^^z^\ ^^z^\

4ee ;

: :
|| ;

II -

-- - :

1000 0 10000 0

Figuree 3.18: Simulated performance gain for a system with modified communication operations.
Thee GRAPE board is the same as GRAPE 1.

744 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

Performancee comparisons
1e+07 7

1e+06 6

o o
II 100 000

100 000

1000 0
10000 10 000

N N

Figuree 3.19: Model validation: comparisons of the overall execution times (real and simulated).

3.4.22 Parallel direct code simulations

Validatio n n

Inn order to check the validity and the versatility of our model, we compare our simulation
resultss with the performance analysis data presented in section 2.4. In the first case, we
considerr a situation with 2 processors, each one connected to a GRAPE; in the second case,
wee scale up to 24 processors. This corresponds to the architecture at our disposal, described
inn section 2.2.1. Each run, either real or simulated, consists of 300 iterations, with N ranging
fromm 1024 to 16 384 for the non-GRAPE case, and to 32 768 for the GRAPE case. As initial
conditionn in the real runs we used, as in the serial case, a Plummer model (Plummer, 1915).

Timingg results for the overall execution time are presented in fig. 3.19. We show results
forr the non-GRAPE case, with two different values of P, and for the GRAPE case with the
twoo GRAPEs each attached to its own host. The ability of our model to fit the measurement
valuess can be readily inferred from this figure. The worst case error amounts to ~ 40% for
thee non-GRAPE case with P = 24, N = 2048 (a case that lies well outside the parameter
rangee that we are really interested in), whereas the average error is ~ 10%.

Besidess the overall timing, we also show the fraction of time spent to perform each
task.. Fig. 3.20 and 3.21 are for the non-GRAPE case, and fig. 3.22 is for the GRAPE case.
Itt can be seen in figures 3.20 and 3.21 how the different application tasks scale with N, i.e.
withh the total workload. For the case with P = 24, shown in fig. 3.21, a large communication
overheadd at low values of N is visible.

Thee large share of execution time taken by the force computation task is a clear evidence

3.4.3.4. SIMULATIONS 75 5

Taskk timings, P = 2

w w

E E

0.8 8

locall force

1000 0 100 000

N N

Figuree 3.20: Model validation for the parallel non-GRAPE system. For each task, the ratio
Uask/UotUask/Uot is shown, as a function of N. Here a system with two processors is shown. Points are
measurementt data from test runs, lines are simulation results. The scale on the y-axis does not
startt from 0 (cf. fig. 3.13 for the serial case).

Taskk timings, P = 24

globall comm.

locall force

1000 0 100 000
N N

Figuree 3.21: Model validation for the non-GRAPE system. Same as fig. 3.20. In this case a system
withh 24 processors is shown.

766 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

Taskk timings, P =2, GRAPEs = 2
1 1

0.8 8

CO O

S>> 0.6
to o
sz sz
CO O

<D D

EE 0.4

0.2 2

0 0

10000 10 000
N N

Figuree 3.22: Model validation: time shares of the GRAPE system. See also fig. 2.16 on page 46
forr the performance measurements of the real system.

off the need for a tool to accomplish this task faster. Fig. 3.22 shows how effectively GRAPE
solvess this problem. The relative importance of the force computation task has been drasti-
callyy reduced by using GRAPE, even though at the cost of a large communication overhead
withh the SPD.

Systemm comparison. Fig. 3.19 shows that the GRAPE system is two orders of magnitude
fasterr than the non-GRAPE system having the same number of processors, while with re-
spectt to the most powerful non-GRAPE configuration available, the one with 24 processors,
thee performance gain is still about one order of magnitude. Our model can reproduce the
behaviourr of both systems quite satisfactorily. In the following, we use our model to predict
howw this behaviour changes as a consequence of system modifications.

Predictions s

Inn this section we present some examples of the use of our model in order to predict the
performancee of systems where either hardware or software modifications have been carried
out.. Performance estimation and algorithmic design are the main fields of application that
ourr simulation model is designed to serve.

Clusteredd GRAPEs vs distribute d GRAPEs. A fundamental question that we want
too answer is whether it is more efficient to connect several GRAPEs to the same host node,
orr to have a network with several nodes, each one being the host of a GRAPE. The first

comm.. with GRAPE

3.4.3.4. SIMULATIONS 77 7

Performancee comparisons
2 2

1.8 8
C C

ii ie
:: 1.4

1.2 2

1 1

10000 10 000 100 000
N N

Figuree 3.23: Simulation of different host-GRAPEs configurations. The execution time for each
simulatedd configurations is divided by the timings of the fastest run, which is in all cases the one
withh P = 1 and GRAPEs = 4. The actual time range can be inferred from fig. 3.19.

configuration,, which also reflects the original system architecture for this device,4 does not
exploitt a multiprocessor host in order to perform the particle search in parallel but, on the
otherr hand, does not incur any overhead cost for the two global communications required
byy the parallel code. The configurations that we simulated contain 1, 2 or 4 GRAPEs,
eitherr connected to one single host, or distributed one GRAPE per host. The result of our
simulationn is shown in fig. 3.23. The total number of particles is increased up to 32 768
particless per GRAPE board. It can be seen that the performances are almost equal for all
casess having the same number of GRAPEs. The gain for the multiprocessor configuration to
distributee the local search, is roughly of the same amount as the loss due to communication
overhead.. It can be inferred that both hardware configurations analysed here, i.e. localised
SPDss versus distributed SPDs, perform about equally well, the single host configuration
performingg slightly better.

AA more realistic AT-body code. The code modelled in the preceding sections is a basic
A-bodyy code. State-of-the-art astrophysical codes will contain additional functionality, e.g.
too model close encounters to binary stars and the evolution of stars. In state-of-the-art direct
A-bodyy codes, a binary star is treated as a single entity. When a third star approaches the
binary,, the motion of the two components of the binary, plus the encountering star, is resolved
analytically,, by means of a rather complex procedure (Funato et al., 1996). This additional
functionalityy must be provided by the host, leading to an additional workload. In this case,

4I.e.. the GRAPE-4 system at the University of Tokyo, consisting of 36 GRAPE boards connected, in a
hierarchicall fashion, to a single workstation (see section 1.3 and fig. 1.5).

PP = 1 , GRAPEs = 1
PP = 2 , GRAPEs = 2
PP = 1 , GRAPEs = 2
PP = 4 , GRAPEs = 4
PP = 1 , GRAPEs = 4

788 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

Extraa task

--

forcee time

ii i i i

P=.1.... -:

totall time P = 4

P = 1 . - -- -

00 0.01 0.02 0.03 0.04 0.05

o o

CD D

355 000

300 000

255 000

200 000

155 000

100 000

5000 0

extraa time coefficient (msec)

Figuree 3.24: System performance comparison when an extra task, modelled as t = r/ Ni/P,
iss added, where rj is an experimental factor of proportionality. In this case is N = 32 768.

itt is interesting to see when the multiple host configuration begins to outperform the single
hostt configuration. This extra task is assumed to be linearly dependent on Nt through a
coefficientt rj, and perfectly parallelisable. This last condition is likely to hold in reality as
longg as P remains reasonably small.

Wee simulated the case with N = 32 768, and compared the "clustered" case where
onee processor hosts four GRAPEs to the "distributed" case where four processors host one
GRAPEE each. From the previous section, the clustered configuration is faster when the
algorithmm without the extra task is used. The results are shown in fig. 3.24. We can see that
thee configuration with P — 4 begins to perform better at r\ ~ 0.01, when the time spent in
thee extra task is still negligible compared to that spent in the force task (at least for the
distributedd case). In order to compare r\ with the parameters reported in table 3.2, we have
too divide it by the processor time cycle, which is 0.5 10- 5 ms. This results in TV ~ 2000, i.e.
aboutt ten times the value of the extrapolation or local force task parameter in table 3.2. The
amountt of computations for the close encounters procedure mentioned above, is of this order
off magnitude. This example shows that the multiple host configuration is more appealing
becausee of its better performance potential.

Distribute dd GRAPEs load balancing. A problem in the distributed GRAPEs config-
urationn is the load balancing of the force computation task. When the number of pipelines
perr board is not the same for all the boards, the boards with the highest number of pipelines
aree faster in performing the force computation, because they handle more i-particles per
unitt time. In our case, the idle time is up to 10% of the total averaged time of the two

3.4.3.4. SIMULATIONS 79 9

Workloadd optimisation
266 000

255 500

255 000

u u
11 24 500

244 000

233 500

233 000

X X

-- I — —

X X

totall execution time x

X X
i i

X X

££ X

1.2 2 1.44 1.6
workloadd ratio

1.8 8

Figuree 3.25: Load balance optimisation. Workload imbalance for a configuration with two
GRAPEss on different hosts.

GRAPEE boards, which means that the fastest board is idle for about 20% of the time. For
thee sake of readability, the idle time was not shown explicitly in fig. 3.22, but was included in
thee communication with GRAPE task. We used our performance model to find the optimal
partitioningg of particles between the two GRAPEs in the distributed configuration, where
eachh GRAPE is connected to its own host.

Fig.. 3.25 shows the result of this study. The configuration analysed here includes a
GRAPEE with 62 pipelines, called GO, and a GRAPE with 94 pipelines, Gl. The total num-
berr of particles is 32 768. The figure shows how the total execution time changes, as the
numberr of j-particles on Gl is increased in order to better exploit its higher computational
potential.. The optimal distribution, i.e. the one with the minimal idle time, is not reached
whenn the ratio r between the j-particles on the two GRAPEs is equal to 94/62 ~ 1.52, i.e.
thee ratio between the pipelines, but at a slightly higher value of r. Unbalance between the
twoo GRAPEs is due to both computation and communication. When r = 94/62, only com-
putationn is balanced. The host-GRAPE communication time is faster for Gl, because the
timee cost of the receive result operation is inversely proportional to the number of pipelines
(seee table 3.1). Then, at r = 94/62, Gl is still faster than GO, because of its better com-
municationn performance. A further slight overload of Gl, such that r ~ 1.6, balances the
overalll execution time of the two devices.

Thiss somehow unexpected result, produced by the complex dependence of the compu-
tationn and communication tasks on Nt and Nj, illustrates how a detailed simulation is useful
too analyse the behaviour of a hybrid architecture.

800 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

HOTT on Delta

real l

112 2

528 8

864 4

--

simulated d

144 4

955 5

1433 3

--

GDTT on T3E

real l

0.175 5

0.394 4

--

simulated d

0.145 5

0.468 8

--

seq.. tree on GRAPE-5

real l

3.00 0

2.00 0

6.90 0

3.11 1

simulated d

4.07 7

2.03 3

9.57 7

4.99 9

buildd tree

traversee tree

computee force

host-GRAPEE commun.

Tablee 3.5: Comparison of the timings breakdown between the real measurements and the simula-
tionn risults. Timings are in seconds for a single code iteration. The HOT on Delta case refers to a
8.88 million particle run on 32 i860 40 MHz processors;; GDT on T3E refers to a 0.5 million particle
runn on 16 Alpha 300 MHz processors, and seq. tree on GRAPE-5 to a one million particle run
onn a 500 MHz Alpha processor connected to a GRAPE-5 board.

3.4.33 Parallel treecode

Modell validation

Wee present here the result of running our simulation model of the treecode, described in
sectionn 3.3.2. We use this model with parameter values such that performance measurements
reportedd in the literature are reproduced. We show for each case the scaling with the total
particlee number N of each task of the code, compared with the corresponding real system
timings,, as reported by the measurements authors. Finally we present a plot comparing
thee total compute time for a code iteration of each configuration. We had to deal with
thee fact that in most cases data were available only for one measurement run. Therefore a
conclusionn on the ability of our performance model to reproduce the scaling behaviour of the
simulatedd system can only be incomplete from these data. The partial information that we
obtainn from this work is nevertheless fundamental to provide us the main guidelines for the
realisationn of a parallel environment for the simulation of JV-body systems, as reported in the
sectionn on model forecasts. Once this environment will be realised, we will be able to validate
ourr performance model thoroughly, having a system of our own to carry out performance
measurements.. In table 3.5 we show the comparison between the timings breakdown of the
reall measurements and our simulation results. In fig. 3.27 the compare the global timings of
thee various cases.

HO TT on Touchstone Delta. The Touchstone Delta was a one-of-a-kind machine installed
att Caltech in the early nineties. It consisted of 512 i860 computing nodes running at 40 MHz,
andd connected by a 20 MB/s network. The performance measurements reported in (Warren
&& Salmon, 1993) are based on a run using the whole 512 nodes system, and consist in a timing
breakdownn of a code iteration taken during the early stage of evolution of a cosmological
simulation,, when the particle distribution is close to uniform. The total number of particles
iss N = 8.8 106. Implementation limitations prevented our performance model to simulate
5122 concurrent processes, so that we limited our simulation to 32 processes, and scaled

3.4.3.4. SIMULATIONS 81 1

timingg breakdown

10000 -

tt (ms)

100 0

sim.. travs. + force
sim.. tree build

meas.. travs. + force
meas.. tree build $ $

Processors s

Figuree 3.26: Timings of the GDT tasks. The real system timings are also reported. The hardware
architecturee is a Cray T3E. Performance scaling with the number of processors, with N = 500000.

downn 16-fold the measured compute time reported in (Warren & Salmon, 1993). Since the
communicationn overhead for that run was just ~ 6%, we assumed a linear scalability of the
code.. The timings breakdown of our simulation is presented in table 3.5. The real system
measurementss are reported for comparison.

Thee table shows that the force computation task and the tree traversal are the most
expensivee tasks. The relative computational weight of each task is qualitatively well repro-
ducedd by our model. Quantitatively, a large discrepancy between our model and the real
systemm timings originates from an over-estimation of the tree traversal and the force compu-
tationn tasks, which also results in over-estimating the total time, as shown in fig. 3.27. We
mustt conclude that in this case our model is not sufficiently well matched.

GDTT on T3E. This case reproduces the configuration described in (Springel et al., 2001),
wheree the GADGET code is run on the T3E hosted at the supercomputing centre in Garch-
ing,, Germany. Each computing node has a frequency of 300 MHz, and the communication
networkk has a throughput of 500 MB/s. Three cases are reported in (Springel et al., 2001),
eachh running the same cosmological simulation, where a system of 500 000 particles is evolved
forr 3350 time steps. The difference among the three cases is in the number of processors used.
Sincee in this case measurements from three different hardware configuration are reported, we
couldd compare our model results with a larger set of timing values. As reported in (Springel
etet al., 2001), we assumed that only 5% of the particles are selected on average at each time
stepp for force computation. Similarly, we assumed that the local tree is rebuilt each 10 time
steps.. Timing breakdowns are shown in fig. 3.26 and in table 3.5.

Fig.. 3.26 shows the performance gain as the number of processors increases. The trend

822 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

inn the measurements suggests a saturation in the attained performance, arguably due to
ann increasing load imbalance. This trend is not visible in our model results, because load
imbalancee is not modelled. Data in table 3.5 show that, with respect to the HOT case, now
thee tree build task is more expensive, despite the fact that it is performed only every ten
iterations.. This is to be expected, since the tree build task is performed for all particles,
whilee the tree traversal and force computation tasks are performed only for a small fraction
(5%)) of the selected particles. Also in this case our model results match the real system
timings.. Springel et al. (2001) did not provide separate values for the tree traversal and the
forcee computation tasks, so that only the aggregate value can be reported on the plot.

Sequentiall treecode on GRAPE-5. Here we simulate the configuration described in
(Kawaii et a/., 2000). In that case, a modified treecode is used to simulate a system containing
onee million particles, and groups of ~ 2000 particles share the same interaction list. This
codee is run on a Compaq workstation with a 500 MHz Alpha 21264 processor, connected
too a GRAPE-5 board containing 96 virtual pipelines,5 each one able to compute a force
interactionn in 75 ns. Estimating a force interaction as 30 flops, the aggregate performance
off a GRAPE-5 board is 38.4 Gflop/s. Table 3.5 shows the results of our simulation model,
comparedd with the real system timings, as reported in Kawai et aL (2000).

Inn this case, the force computation task is performed by the GRAPE. An important
fractionn of the total timing is taken by the communication between the host and the GRAPE.
Thee decrease of importance of the tree traversal task, due to the particle grouping technique,
iss clearly observable.

Casess comparison. We compare here the three cases presented above. We show in
fig.fig. 3.27 a plot of the time taken by a code iteration versus N, as obtained from our simulation
model,, compared with the real system measurements. The value for the HOT code on the
Touchstonee Delta is 16 times greater than the value reported in Warren &; Salmon (1993),
inn order to scale their 512 processor run to our 32 processor simulation. Conversely, scaling
ourr simulation data for 32 processors to 512 processors, would have resulted in simulation
valuess overlapping the values for the GRAPE case.

Thee simulation values match within approximately a factor 2 the real system measure-
ments.. In the next section we present results of a performance simulation, where our model
iss used to forecast the behaviour of other configurations.

Modell forecasts

Inn this section we explore the possibility of using a hybrid architecture consisting of a dis-
tributedd general purpose system, where single nodes host zero or more GRAPE boards. We
spann the two-dimensional parameter space defined by the two quantities P, the number

55 A GRAPE-5 board contains in fact 16 physical pipelines, each one running at 80 MHz, which is 6 times
thee speed of the board bus. The board "sees" 16*6 = 96 logical pipelines, running at 80/6 MHz. Appropriate
hardwiringg manages the data exchange between the pipelines and the board.

3.4.3.4. SIMULATIONS 83 3

comparativee timings
le+07 7

le+06 6

100000 0
tt (ms)

10000 0

1000 0

100 0

1000000 le+06 le+07
N N

Figuree 3.27: Predictions of a code iteration for the three simulated configurations. Note that
GADGETT moves only 5% of all particles on average in a time step, and the HOT case refers to a
systemm with 32 processors, instead of the 512 of the original system.

off nodes, and G, the number of GRAPEs. We assign to those quantities values as follows:
PP € {1,2,4,8,12,16,20,24}, G e {0,1,2,4,8,12,16}. We simulate the same software config-
urationn as described in the previous section with respect to the case related to the sequential
treecodee on GRAPE-5. The SPD we simulate in this case is the GRAPE-4 (Makino et al,
1997),, whose performance per board is 30 G9op/s, comparable to GRAPE-5's. It provides
aa higher accuracy with respect to GRAPE-5, and is used in fields as Globular Cluster dy-
namicss on Planetesimal evolution (Hut & Makino, 1999), where high computing precision is
required.. The general purpose nodes are assumed to perform a floating point operation in
22 ns, and the communication network is assumed to have a 100 MB/s throughput.

Whenn a node of the distributed system is a GRAPE host, forces on its local particles
cann be computed on the GRAPE that it hosts. Forces on particles residing on nodes that
doo not host GRAPEs can be computed on remote GRAPEs, provided that both particle
positionss and particle interaction lists be sent to the appropriate GRAPE host. This implies
aa very large communication traffic. With our simulation we try to evaluate the effect of this
communicationn overhead.

Fig.. 3.28 shows our results. It is clear that, as long as all nodes are connected to
onee or more GRAPEs, a significant performance gain is obtained. For comparison, we also
providee timings of a system without GRAPEs. When not all nodes are GRAPE hosts,
thee very large communication overhead due to sending particle and interaction list data is
disruptivee for performance. This result suggests that the communication task needs a very
carefull analysis, in order to design an efficient parallel treecode for hybrid architectures.
Heree we assumed that an "un-graped" node sends all its data to a single "graped" node. We

ADGETT on T3E, 16 PEs

844 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

comparativee timings

100000 ' ' ' ' 1 '
1 55 10 15 20 25

Processors s

Figuree 3.28: Timings for a system with P processors and G GRAPEs. Comparison with a system
withoutt GRAPEs (marked as 0 G) is also provided. The software configuration is the same as in
thee treecode on GRAPE-5 described above. The total number of particles is Â = 1000 000 .

discusss this point further in the next section. The plot in fig. 3.28 also features an oscillatory
behaviour,, particularly evident in the case with 8 GRAPEs. The local minima (i.e. better
performances)) correspond to configurations where P is an exact multiple of G. In this case
thee computational load on the GRAPEs is perfectly balanced, whereas in the other cases
somee GRAPE bears a higher computational load from remote data.

3.4.44 Direct code vs treecode

AA main goal of our research is to develop a distributed hybrid architecture optimised for the
treecode.. The treecode does not compute all particle-particle interactions directly. Instead, it
computess partial forces on a given z-particle from a truncated multipole expansion of groups
off particles, see section 1.4.2. The force interaction from a group is computed if the group is
farr enough, according to a Multipole Acceptability Criterion (MAC). Groups become larger
andd larger as their distance from the i-particle increases. This technique allows a decrease in
thee computing time of the force evaluation to ö(N\ogN), at the cost of a reduced accuracy,
duee to the truncated multipole expansion. Moreover, this asymptotic performance is reached
forr large values of N. Because of this, the treecode is widely used to simulate systems like
clusterss of galaxies, or large scale structures, where high accuracy is not needed, and N is
large. .

Forr a sufficiently large problem a treecode can outperform a direct code also for the
simulationn of systems that require high accuracy. In order to increase the treecode accuracy,
wee can tune two parameters: the highest term of the multipole expansion, and the MAC

3.4.3.4. SIMULATIONS 85 5

parameterr that decides if a group is far enough to compute the interaction. As already
discussedd in section 1.4.2, the most widely used MAC (see, e.g., Barnes & Hut, 1986) states
thatt a multipole expansion is accepted if

ll-<e-<e (3.i)

wheree / is the size of the cell containing the group, d is the distance of the i-particle from the
cell,, and 6 is the MAC parameter. For the low accuracy computations that usually involve
thee treecode, is 6 < 1. A more accurate code will run more slowly.

Inn order to have a higher accuracy code, 0 has to be smaller. A realistic choice for
aa multipole expansions up to the quadrupole term, is 6 = 0.2. For a comparable accuracy
withh a multipole expansion up to the octupole term, we have to set 6 = 0.5 (McMillan &:
Aarseth,, 1993). There is a trade-off between the two choices. A smaller 6 implies a much
largerr amount of interactions to compute; it has been shown that the number of interactions
scaless as 0~3 (Makino, 1991b). On the other hand, a multipole expansion up to the octupole
termm implies a larger number of computations to obtain the multipole terms, and a larger
numberr of computation to evaluate the force contributions from the octupoles. With our
model,, we can simulate the two cases, and obtain an indication of the most effective choice.
InIn our simulations, we assume that also the force contributions from the multipoles can be
computedd on the GRAPE, by means of a pseudo-particle transformation (see chapter 4). In
thiss case, multipole expansions are converted to pseudo-particle distributions that produce
thee same force. In this way, GRAPE can also compute force contributions from the multipole
terms. .

Moreover,, we compare the performance of two different parallel treecodes, i.e. the HOT
andd GDT codes described in section 3.3.2. The main difference between the two codes is
thatt in HOT, i.e. the parallel treecode originally developed in Warren & Salmon (1995), each
processorr computes forces only on the local i-particles. Information about remote particle
groups,, the so-called local essential tree, is obtained before the force computation starts.

Conversely,, in the GADGET code (Springel et al., 2001) (referred here as GDT), pro-
cessorss do not exchange information about remote particle groups. Instead, local i-particles
aree sent to remote processors. With our model, we can see which approach is better suited
forr a distributed hybrid architecture.

Ourr comparison has the goal to assess whether a system size exists at which treecodes
outperformm the direct code for the simulations of systems requiring high accuracy. Then
wee use our performance model to find which hardware-software combination gives the best
performance,, provided that high accuracy is ensured from the treecodes, either by decreasing
8,8, or increasing the multipole order. Therefore, we choose for each method the most suitable
hybridd architecture. Namely, we simulate the direct code running on a system including a
singlee host with 16 GRAPEs attached to it, since the clustered configuration has the best
performance,, as shown in section 3.4.2. As treecodes place a higher load on the host, the
optimall system for them is a distributed 16 processor hybrid machine, each node hosting a
GRAPEE board. High accuracy from treecodes is obtained by setting 0 = 0.5 with octupole
termm expansion, and 6 — 0.2 with expansions up to the quadrupole term.

866 CHAPTER 3. MODELLING AND SIMULATION OF HYBRID ARCHITECTURES

1e+06 6

-- 10000 0

10000 0
10000 00 1e+0 6

N N

Figuree 3.29: Performance of the treecode, compared to the direct code. We report here the
simulatedd execution times of 300 code iterations. The direct code runs on a single host connected
too a 16 GRAPE cluster, the treecodes run on a 16 processor machine, each node hosting a GRAPE.
Quadd refers to multipole expansions up to the quadrupole term, with 6 = 0.2, and Oct to octupole
expansions,, with 6 = 0.5. Other symbols are explained in the text.

Fig.. 3.29 shows the results of our simulation. We can see in the figure how the direct
codee performs better for low TV, but is eventually outperformed by the treecodes. The two
treecodee implementations show a very similar performance. Both perform better than the
directt code for high particle numbers, and are faster when an expansion up to the octupole
termm is used. We can conclude that a distributed hybrid architecture can be the system
off choice for the simulation of large astrophysical systems requiring a high accuracy, such
ass stellar globular clusters. A treecode equipped with the software tools for the accurate
treatmentt of close encounters could supersede the direct code for the realistic simulation
off phenomena such as globular cluster secular evolution, or black hole binary formation in
mergingg galaxies (Hut & Makino, 1999).

3.55 Discussion

AA hybrid architecture is a system with a high degree of heterogeneity among its components,
whosee complex interplay requires an appropriate tool in order to be understood and opti-
mised.. Performance modelling is an important tool to study the behaviour of such complex
systems.. We implemented and tested a simulation model able to reproduce the behaviour
off hybrid architectures. We validated this model against our GRAPE-DAS system, both

Directt code
GDTT Quad
HOTT Quad

GDTT Oct
HOTT Oct

3.5.3.5. DISCUSSION 87 7

forr the serial and the parallel case. We showed some examples of its use for predicting the
performancee of other configurations, where hardware and/or software modifications have
beenn introduced. We simulated the use of several different hardware systems, and numerical
algorithmss for the solution of the TV-body problem, as the direct particle-particle code, and
thee treecode. We showed that performance simulation allows us to discover unexpected be-
haviourss of a complex computer system, as in the case described at the end of section 3.4.2.
Inn our case-studies, distributed hybrid architectures show their superior computational po-
tential,, as compared to "clustered" configurations, when large problems, at the higher limi t
off the available computational capability, are considered.

Ourr research is particularly focussed on the efficient integration of treecodes and hybrid
architectures.. This could lead to a very high performance computational environment for
thee solution of the TV-body problem. We validated our treecode model by simulating existing
configurationss and comparing our results to real system measurements, even though very few
measurementt data were available, limiting the accuracy of our model calibration. We used
ourr model to evaluate the performance of a hybrid architecture used to run the treecode,
andd highlighted that an efficient implementation of the treecode on such architecture is
madee difficult by an intrinsically high communication overhead. Issues like latency hiding,
orr partial redistribution of work to remove load imbalance, could help to solve this problem,
andd will be the object of further research. The model would also benefit from an accurate
parameterisationn of load imbalance.

Inn the next chapter, we describe our research in the framework of the aforementioned
efficientt integration of treecodes and hybrid architectures. We have implemented a version
off the treecode, which makes use of pseudo-particles (Makino, 1999; Kawai &; Makino, 2001)
inn order to represent the multipole expansion of the gravitational potential. This approach
allowss us to make use of the GRAPE not only for the computation of the force from the
monopolee term. The pseudo-particle scheme allows the GRAPE to compute force contribu-
tionss from all terms of the multipole expansion. In chapter 4 the pseudo-particle method will
bee described, together with the accuracy and performance improvements that we introduced.

Partt I I

Application s s

Chapterr 4

Pseudo-Particlee Powered Treecode: Erro r
Analysiss and Optimisation*

Inn this chapter we study the pseudo-particle scheme, which makes it possible to model
higherr order multipole moments for the treecode on the GRAPE. The treecode, introduced
inn section 1.4.2, offers excellent scaling for the simulation of self-gravitating systems, but at
thee cost of limited accuracy. The pseudo-particle approach, where a multipole expansion is
expressedd in terms of a particle distribution, provides an accuracy that it is easy to tune,
andd is suitable for making full use of the ultra fast GRAPE Special Purpose Device for the
gravityy force computation. The GRAPE is introduced in section 1.3 and extensively studied
inn part I of this thesis. We study the error behaviour of this approach, comparing it with
thee standard treecode, and introduce improvements that reduce the errors. Furthermore we
presentt an extension of the pseudo-particle scheme, where pseudo-particles are not fixed in
space,, but move following the physical particle distribution. This extension decreases the
computationall overhead due to pseudo-particle recomputation, and optimises the scheme for
thee use on GRAPE and on parallel systems.

4.11 Introductio n

Thee treecode (Barnes & Hut, 1986), introduced in section 1.4.2, is one of the most popular
numericall methods for particle simulation involving long range interactions in astrophysical
contexts.. Its operation count scales as Ö(N log N), which is a great improvement compared

^Thiss chapter is based on work published in:
P.F.. Spinnato; S.F. Portegies Zwart; M. Fellhauer; G.D. van Albada and P.M.A. Sloot: Tools and Tech-

niquesniques for N-body Simulations, in Ft. Capuzzo Dolcetta, editor, Proceedings of the 1st workshop on Com-
putationall Astrophysics in Italy: Methods and Tools, MemSAIt Suppl. Series vol. 1, pp. 54-65. Societa
Astronomicaa Italiana, 2003.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Pseudo-Particle Powered Treecode: Error Analysis
andand Optimisation, to be submitted to Journal of Computational Physics, 2003.

91 1

92 2 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

withh the 0{N2) scaling of the direct particle-particle method, where the force on a particle
iss computed by directly evaluating the contributions of all other particles (see section 1.4.1
andd 2.2.2). The treecode speedup is obtained at the cost of a reduced accuracy. The treecode
groupss particles together according to a tree data structure, where each node of the tree is
associatedd with a cubical cell in three-dimensional space, and a cell corresponding to a given
nodee consists of the eight cells corresponding to the eight subnodes hierarchically connected
too the given node. The treecode attains its 0(N log N) scaling by computing force on a
particlee i from larger and larger cells as their distance from i gets bigger and bigger. In order
too decide whether a cell is far enough to be accepted for such force computation, a suitable
Multipolee Acceptability Criterion (MAC) must be provided. In section 4.3 below MACs are
discussedd further.

Thee force contribution is evaluated from a multipole expansion of the particle distribu-
tionn contained in the cell. The accuracy of the evaluation depends on the highest term in the
multipolee expansion, on the MAC used, and on the actual value chosen for the MAC parame-
ter.. Usually, expansions are truncated at the quadrupole term, leading to an accuracy in the
forcee in the order of 1% (Salmon & Warren, 1994) for commonly used MAC settings. This
makess treecodes unsuitable for applications that require a high numerical accuracy. Better
accuraciess can be obtained by using different MAC settings, but this will greatly increase
thee computing cost.

Researchh has been carried out in order to improve the treecode accuracy, by increasing
thee maximal multipole expansion order (McMillan & Aarseth, 1993). We aim at developing
aa version of the treecode that allows a tunable accuracy, while limiting the impact on code
performance.. We design our code in order to be optimally run on a parallel platform that
includess the GRAPE boards (Makino & Taiji, 1998). GRAPE, as described in section 1.3,
iss a special purpose device implementing an array of fully hardwired pipelines, each one
computingg the gravitational interaction between two particles in a single clock cycle.

Ourr code derives from the pseudo-particle approach proposed by Makino (1999), and
implementedd by Kawai & Makino (2001), developing an early idea of Anderson (1992).
Makinoo and Kawai implemented a serial pseudo-particle treecode that makes use of GRAPE
(Kawai,, 1999; Kawai & Makino, 2001). The algorithm that they propose places the pseudo-
particless in fixed positions on a spherical surface surrounding the physical distribution, and
computess the pseudo-particle masses as weighted sums of the physical particle masses (see
eq.. (4.1) below). The pseudo-particle approach allows the treecode to take advantage of both
thee very high computing speed offered by the GRAPE, and makes it very easy to increase
thee code accuracy by increasing the maximal multipole order. In the standard treecode,
multipoless are computed in terms of series expansions (see, e.g., McMillan & Aarseth, 1993).
Mathematicall expressions of the higher moment terms are increasingly cumbersome, and
nott easy to implement. Conversely, in the pseudo-particle scheme, increasing the maximal
multipolee order of the expansion is simply a matter of increasing the number of pseudo-
particless that make up the expansion.

Whenn one runs a code using multipole expansions, such as the treecode, with the
GRAPE,, a fundamental problem arises. GRAPE can only compute particle-particle inter-
actions,, hence the advantage of lumping particles to obtain a single multipole expansion is

4.2.4.2. THE PSEUDO-PARTICLE METHOD 93 3

wasted:: in the standard treecode formulation, such expansions are expressed in terms of
spatiall derivatives of 1/r2, consequently GRAPE cannot compute particle-multipole interac-
tions.. This implies that all interactions involving a multipole term must be evaluated by the
hostt computer. The key idea of the pseudo-particle approach is to use the Anderson (1992)
formulationn for the multipole expansion which, instead of a complicated polynomial, is given
inn terms of a pseudo-particle distribution. In this way, GRAPE is able to compute also the
forcee contribution from higher multipole terms, since they are now expressed in terms of a
particlee distribution.

Inn order to have a quantitative estimate of the accuracy in the pseudo-particle scheme,
wee have carried out an error analysis study, comparing the accuracy of the pseudo-particle
codee with two implementations of the standard treecode. We compare our code with the code
off Salmon & Warren (1994), and with GADGET (Springel et a/., 2001). We introduce a mod-
ificationn in the method that improves its accuracy when the physical particle distribution is
highlyy inhomogeneous. Moreover, we modify the Makino and Kawai pseudo-particle method
byy introducing pseudo-particle position extrapolation, in order to decrease the overhead due
too pseudo-particle re-evaluation. Instead of recomputing the pseudo-particle expansion at
eachh iteration, we extrapolate the pseudo-particle positions for a number of time-steps; in or-
derr to accomplish this, we define a pseudo-particle velocity. Such scheme is suited for use on
parallell systems hosting GRAPE boards, as discussed in section 3.4.4. We first present the
pseudo-particlee method, and discuss the improvement that we introduce. We continue with
thee error evaluation, then present the moving pseudo-particle scheme, and finally discuss our
resultss and future work.

4.22 The pseudo-particle method

Thee pseudo-particle method approximates the multipole expansion of a given set of particles
byy means of a pseudo-particle distribution. The pseudo-particle positions are fixed, and lie
onn a spherical surface surrounding the real particle distribution (Makino, 1999; Kawai, 1999).
Optimisedd distributions, with minimal number of pseudo-particles, have been obtained up to
thee quadrupole moment (Kawai, 1999; Kawai &; Makino, 2001). The mass of each pseudo-
particlee is given by:

11 N p i
M** = 7cE,m;E,Gr) (2«+i)fl(«*7i*) , (4.i)

ii 3 o

wheree M* is the mass of pseudo-particle k, K is the total number of pseudo-particles, N
iss the number of real particles from which the pseudo-particle expansion is computed, rrij
iss the mass of the real particle j , p is the maximal order of the multipole expansion, Tj is
thee norm of the position vector of particle j , o is the radius of the pseudo-particle sphere,
PiPi is the modified Legendre polynomial of order Z, and finally 7jfc is the angle between the
positionn vectors of particle j and pseudo-particle k.

Ass will be shown later, the pseudo-particle approximation based on a spherical dis-
tributionn suffers from limitations in representing non-uniform mass distributions. In order

94 4 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

too solve this problem, we introduce a simple modification, that substantially improves the
accuracyy of the method. It consists in retaining the spherical pseudo-particle distribution,
withh pseudo-particle masses that now represent only the higher multipole moments of the
reall particle distribution 71, starting from the quadrupole moment. An extra pseudo-particle
iss added at the centre of mass of 71, with mass equal to the total mass of 71. The extra
pseudo-particlee accounts for the monopole and dipole moment, and improves the ability of
thee pseudo-particle distribution to represent non-uniform real distributions.

Thee higher order expansion of 71, i.e. the part that does not contains the monopole
andd dipole terms, is obtained with a simple expedient. It consists in computing the pseudo-
particlee masses still using equation (4.1), but adding to the N particles of 72- a "virtual"
particlee which has the effect of removing the monopole and dipole moments from the expan-
sionn of 71. This virtual particle is placed at the centre of mass of 71, and has a mass equal
too the opposite of the total mass of 71. The pseudo-particle distribution resulting from this
combinationn of the N real particles and the negative mass particle accounts for the higher
orderr expansion of 71. Finally, we obtain the complete multipole expansion by adding to this
pseudo-particlee distribution the extra pseudo-particle located at the centre of mass of 71.

4.33 Erro r evaluation

4.3.11 Comparisons

Firstt we validate our implementation of the unmodified pseudo-particle method against the
implementationn of Kawai and Makino. In Kawai & Makino (1999) the error on the potential
generatedd by pseudo-particle expansions up to a given multipole order p is presented. The real
particlee distribution consists of a single particle i of unit mass placed at position p = (1,0,0)
inn spherical coordinates. The potential 4» = — l / |r — p| generated by i is computed along
aa straight line, at points r = (r, 2TT/3,0), for r varying within a certain range. The relative
errorr | ($p — $) / $ |, where $p is the potential given by the pseudo-particle expansion up to
orderr p, is presented in fig. 4.1 for both our implementation and the one of Kawai & Makino
(1999). .

Ourr values, labelled "PP", are in very good agreement with Kawai and Makino's values,
labelledd "KM" . Irregularities in the error profiles lead to local differences, arguably due to
differencess in the exact positions of the pseudo-particles between the two implementations,
whichh result in local differences in the value of the potential. The global trend is however
veryy similar in the two cases.

Inn the next section we will study the worst-case error behaviour of our implementation,
comparingg our results with a similar analysis carried out in Salmon & Warren (1994).

4.3.4.3. ERROR EVALUATION 95 5

0.01 1

0.0001 1

1e-06 6

1e-08 8

1e-10 0

Figuree 4.1: Relative error in the evaluation of the potential generated by a unit mass particle placed
att position p = (1,0,0) in spherical coordinates. The error is measured at position r = (r, 27r/3,0),
andd plotted as a function of r. Values from our implementation are plotted with solid lines, and
labelledd as PP. Values from Kawai & Makino (1999) are plotted with dashed lines, and labelled as
KM.. p is the maximal multipole expansion order. The pseudo-particle sphere radius is o = 1.

4.3.22 Worst-case error

I tt is important to analyse the behaviour of the method in the worst case configuration, i.e.
thee situation leading to the highest error in a force evaluation, even though this situation is
unlikelyy to arise in actual simulations. This analysis gives upper bounds to the code error,
andd provides a good test for comparative analysis of different multipole acceptability criteria.
Inn order to perform the worst-case analysis of our code, we follow the same procedure as
Salmonn & Warren (1994) (referred as SW hereafter). The worst-case configuration consists
off two point particles placed at two opposite corners of a cubic cell.

Preliminaryy tests showed that the highest error occurs when the mass mi of the particle
closerr to the evaluation point is much lower than the other particle mass. We set then
mii = 10- 5 and m ̂ = 1 — m\. We compute the gravitational acceleration exerted by the two
particless along a straight line overlapping with the diagonal of the cell where the particles
aree located. We compute both the exact acceleration a, and the acceleration given by the
pseudo-particlee expansion up to a given multipole, a^,. From that, the error is evaluated as:

__ | a - ap |
(4.2))

966 CHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

1 1

0.1 1

0.01 1

0.001 1

0.0001 1
0.11 1

e e

Figuree 4.2: Comparison of the worst-case errors in the acceleration. Data are plot as a function
off the opening parameter 6. Results from our implementations are labelled PP for the canonical
pseudo-particlee method, and PPmod, for the modified method where an extra pseudo-particle is
added.. The Salmon & Warren (1994) results are labelled SW; p is the maximal multipole expansion
order. .

Thee Multipole Acceptability Criterion (MAC) we adopt is the Minimal Distance (MD)
criterionn (Salmon k. Warren, 1994). According to the MD MAC, a multipole expansion is
acceptedd if

ll-<e-<e (4.3)

wheree I is the cell size, d is the minimal distance of the evaluation point from the cell, and
99 is an input parameter, usually 9 < 1. The original Barnes & Hut (1986) MAC differs
fromm the MD MAC in the definition of d. Barnes and Hut define d as the distance of the
evaluationn point from the centre of mass of the cell.

Wee evaluated the error defined in eq. (4.2) for p £ {1,2,4,8}, and compared our results
withh the results presented by SW, fig. 5. The results are shown in fig. 4.2. Data are plotted
ass a function of the opening parameter 9, in order to show what is the largest error to
bee expected for a given value of 9. We plot our results, labelled "PP", and SW's results,
labelledd "SW". Data for the case p = 2 are omitted for the sake of readability. We also
plott the error of our modified pseudo-particle method, described above. Results from this
methodd are labelled "PPmod". Since our modified method adapts very well to highly non-
uniformm distributions, the distribution used for the PP method is not the worst case for the
PPmodd method. Numerical tests showed that the worst case is now when mi is about one
orderr of magnitude smaller than 7712, with very littl e dependence of the errors on the precise
valuee of the masses. We thus chose mj = 0.1. In all cases, the cell size is I = 1, and the

4.3.4.3. ERROR EVALUATION 97 7

pseudo-particlee sphere radius is a = 1.

Thee PP curves are in very good agreement with the SW curves, with a tendency for the
PPP curves to have smaller errors for lower values of 0 in the high precision cases (p € {4,8}) .
Thee agreement of our results with the MD case of Salmon and Warren is not surprising,
sincee we adopt the same criterion and the same geometry for the error analysis. The PPmod
resultss are always better than the PP and SW cases, especially for the low precision cases.
Thee improvement obtained with the PPmod method will be also observed in the statistical
errorr analysis.

4.3.33 Statistical error

Wee compare the statistical error of the pseudo-particle code with the standard treecode
resultss presented in Salmon k Warren (1994). We use this implementation as our benchmark,
sincee multipole terms are computed there with the standard method, i.e. by means of series
expansions.. Specifically, we compare our results with the isolated halo case of SW. In that
experiment,, 4942 particles were chosen at random from a high density core distribution, and
thee error analysis was performed on them, using eq. (4.2) for the error estimation. Our
results,, obtained using the MD MAC (in)eq. (4.3), and opening angle 0 = 1.1, are compared
withh the same case presented in Salmon & Warren (1994), fig. 11. The configuration that
wee used includes 4096 particles. In our implementation of the pseudo-particle treecode, each
non-terminall cell is associated with a pseudo-particle distribution located on the surface of
aa sphere whose radius is one half of the cell size. A sphere radius smaller than the cell size
givess a better accuracy (Kawai, 1999), and preliminary tests gave us one half of the cell size
ass the optimal value for the sphere radius. The pseudo-particle distribution of a parent cell
iss obtained recursively from the distributions of its child cells. A particle-cell interaction now
becomess a set of particle-particle interactions between the particle and the pseudo-particle
distributionn of that cell. The multipole expansion is computed up to the quadrupole moment.

Thee error distribution of the pseudo-particle scheme is shown in fig. 4.3. We computed
thee relative error (eq. (4.2)) for the force on each particle, then obtained the cumulative
percentilee distribution shown in the figure. This method of analysing the error gives much
moree insight into the accuracy of the code, than for instance rms or maximal error. An
optimall code has a flat error distribution, so that the great majority of errors have about the
samee value. A code with a wide spread in error values leads to a waste of compute time, since
increasingg the accuracy in order to reduce large errors, results in unnecessary refinement for
thosee force computations whose error was already small. See Salmon & Warren (1994) for a
moree extensive discussion.

Thee "PP" case in fig. 4.3 shows how much larger are the errors in the unmodified
PPP code with respect to the standard code. These tests are performed on a dark halo
distributionn (Hernquist, 1990), which is a highly inhomogeneous particle distribution, having
aa radial density p(r) oc [r (1 + r3)] - 1 .1 A dark halo is the result of the gravitational collapse

1Nowadayss p(r) oc [r (1 + r) 2] - 1 (Navarro et ai, 1997) is the most accepted density profile. We chose to
usee the other profile, to be consistent with the profile used by Salmon k Warren (1994).

98 8 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

0.1 1

0.01 1

0.001 1

0.0001 1
00 20 40 60 80 100

percentile e

Figuree 4.3: Error distribution for the PP code, compared with Salmon & Warren data (Salmon
&& Warren, 1994). "PP" refers to the unmodified code, "PPmod" refers to the code with the extra
pseudo-particlee placed at the centre of mass. "PPmod + CSL MAC" refers to the modified PP code
withh the MAC according to (in)eq. 4.4. The multipole expansion is up to the quadrupole moment.

off intergalactic gas due to random density peaks. Tests performed with more homogeneous
particlee distributions showed that the PP code accuracy is much better is those cases. The
samee tests, performed with the standard code, showed that the canonical treecode is less
sensitivee to the spatial distribution of the particles. Indeed, errors are higher for the uniform
distribution,, which, conversely, is the best case for the pseudo-particle code.

Thee pseudo-particle expansion accuracy suffers strongly from a non-uniform distribu-
tionn of particles. For this reason, as already mentioned, we modified it by introducing in
thee multipole expansion an extra pseudo-particle located at the centre of mass of the distri-
bution.. This allows us to represent highly inhomogeneous distributions much better. The
"PPmod"" case in fig. 4.3 shows the error behaviour of our modified pseudo-particle treecode.
Thee errors are now much smaller than the ones for the unmodified code. Yet, errors are still
higherr than the ones of the standard treecode.

Wee observed that most of the large errors come from distant cells. In order to control
thiss error, we modified the MAC in such a way that a multipole expansion is accepted if:

4 zz < 9 , (4.4)
Vd+l Vd+l

wheree symbols have the same meaning as in (in)eq. (4.3). The opening criterion in (in)eq. (4.4)
reducess the acceptability of far-away (hence large) cells, at the cost of an increased com-
putationall load. This new Cell Size Limiting (CSL) criterion, applied to the modified
pseudo-particlee code, gives a remarkable improvement in the code accuracy, as shown in

PPmod d
PPmodd + CSL MAC

SWW data

4.3.4.3. ERROR EVALUATION 99 9

uniformm distribution
0.1 1

0.01 1

u -- 0.001

0.0001 1

1e-05 5
00 20 40 60 80 100

percentile e

Figuree 4.4: Comparison of the error distributions for our code (labelled PPmod) and the treecode
GADGETT (labelled GDT), where multipoles are computed in the standard way. The MAC of
(in)eq.. 4.5 is used here. For consistency with the standard treecode, cell-particle distances in our
codee are not minimal distances as in the previous cases, but are measured with respect to the cell
centree of mass. The multipole expansion is up to the quadrupole moment.

thee "PPmod + CSL MAC" case in fig. 4.3. Now the error of the pseudo-particle code is
beloww the error of the standard treecode.

Ann extra factor that increases the pseudo-particle code accuracy is the fact that in our
implementationn a multipole contribution is evaluated only if there are more particles in the
celll than the pseudo-particles used to represent the multipole expansion. In the present case,
withh expansions truncated at the quadrupole term, each expansion has 13 pseudo-particles.
Thee pseudo-particle code accuracy benefits from this, since force from cells containing 13
particless or fewer is always computed exactly. Moreover, we also gain in performance, since
fewerr interactions are computed in this way. The effect of this feature of the pseudo-particle
codee will be studied further in next section.

4.3.44 The GADGET MA C

Thee criterion in (in)eq. (4.3) and the modified CSL version in (in)eq. (4.4) are based on the
principlee that the error from a certain cell will be small if that cell is "seen" under a small
openingg angle. A criterion that directly estimates the error that the cell expansion will intro-
ducee if accepted, could lead to a more efficient MAC. This approach was proposed in Salmon
&& Warren (1994), and is implemented in the recently developed treecode GADGET (Springel
etet al., 2001), which we already studied in our performance modelling studies presented in
chapterr 3. According to the MAC discussed in Springel et al. (2001), a multipole expansion

100 0 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

darkk halo
0.1 1

0.01 1

0.001 1

0.0001 1

1e-05 5
00 20 40 60 80 100

percentile e

Figuree 4.5: Comparison of the error distributions for a highly clustered configuration. Symbols
aree the same as in fig. 4.4. The multipole expansion is up to the quadrupole moment.

iss accepted if:

^ j -- < a|ao«d| , (4.5)

wheree M is the cell mass, I is the cell size, d is the particle-cell distance, a a numerical
coefficient,, and a0;<2 the previous value of the acceleration on the particle currently dealt
with.. The left hand side of the above expression can be seen as a rough estimate of the
forcee contribution from the hexadecapole moment of the cell (Springel et al., 2001), and
&& 00idid is an estimate of the true current value of the particle acceleration. An estimate of
thee error introduced by truncating a multipole expansion at a certain order, is given by the
contributionn of the first term not included in the expansion. In the case of GADGET, the
truncationn is at the quadrupole term. The octupole term should then be chosen. However,
thee octupole term vanishes for uniform distributions, in those cases the hexadecapole term
shouldd be used. The authors chose to use the estimate of the hexadecapole term contribution
inn all cases. This improves accuracy, and is also cheaper to compute, because it does not
involvee square root evaluations. The criterion in (in)eq. (4.5), states that a cell is accepted
iff the estimate of the hexadecapole term contribution is less than a small fraction of the
totall force on the particle. If higher accuracy is required, the estimate of a higher multipole
termm should be used in the left hand side of (in)eq. (4.5). This MAC opens a cell only if the
expectedd error from the cell is large. Nearby cells that would be opened with the canonical
MACC (in)eq. (4.3) because they are "seen" under a large opening angle, now are not opened
iff their effect on the total force error is small. Because a0id is not defined in the first code
iteration,, the very first force evaluation is still performed using the canonical MAC.

;; GDT data
PPmodd data

JJ L

4.3.4.3. ERROR EVALUATION 101 1

accuracyy difference

0.0001 1 0.001 1 0.01 1

Figuree 4.6: Relative difference between the error values of the two codes, measured at the 50%
percentile,, as a function of the accuracy parameter a.

Wee implemented the criterion defined in the (in)eq. 4.5, and compared our results with
thee standard treecode for two different particle configurations: a uniform distribution, and a
highlyy concentrated (dark halo) distribution. Our results are presented in fig. 4.4 and 4.5 for
threee representative values of a. Except for the low accuracy case in the highly concentrated
distribution,, the pseudo-particle code shows a better accuracy than the GADGET code,
especiallyy in the uniform distribution case. This confirms the tendency of the pseudo-particle
codee to give better results with homogeneous distributions.

Inn the uniform distribution case, the relative separation

rrGDT GDT
00 = —— e: pp\ pp\

(^rr + £PP) / 2
(4.6))

betweenn the results of the two codes seems to be dependent on a. In fig. 4.6 we show the
valuess of 5, measured according to eq. (4.6) at the 50% percentile value of ep. Measures for
twoo more values of a have been added in this case. The relative difference between the two
codess tends to decrease and saturate with a. This can be explained by the fact that a smaller
valuee of a causes a smaller size of the accepted cells. Smaller cells contain fewer particles,
andd if the number of particles is 13 or less (see discussion at the end of previous section),
thee PPmod code computes forces from the cell directly, hence with perfect accuracy. This
explainss why the accuracy of the PPmod code is higher for smaller values of a.

Thee effect of this feature of the PPmod code will be less pronounced if the number of
particless is increased. In this case, fewer cells, among those that pass the MAC (in)eq. (4.5)
wil ll contain 13 particles or fewer. If the total number of particles is increased by a factor n,
thee number of particles in a given cell is also increased by the same factor. The fraction of

102 2 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

uniformm distribution, 16 384 particles
0.1 1

0.01 1

0.001 1

0.0001 1

1e-05 5
00 20 40 60 80 100

percentile e

Figuree 4.7: Comparison of the error distributions for a uniform distribution, and 16 384 particles.
Symbolss are the same as in fig. 4.4. The multipole expansion is up to the quadrupole moment.

acceptedd cells whose force will be computed exactly by the PPmod code will then decrease,
soo that the accuracy gain of the PPmod code with respect to the standard code will decrease.
Fig.. 4.7 shows a comparison of the PPmod code and the standard code with 16 384 particles.
Thee separation between the results of the two codes is clearly smaller with respect to the
onee in fig. 4.4. For larger numbers of particles the separation between the two codes is likely
too become negligible.

Wee used our pseudo-particle code to compare the two MACs of (in)eqs. (4.4) and (4.5),
inn order to show the error profile that they produce, as a function of the accuracy parameter.
Ourr results are presented in fig. 4.8. We compare the two MACs using cases having the same
accuracy,, measured according to the respective accuracy parameters, i.e. the opening angle
66 of the CSL MAC (see (in)eq. (4.4)), and the accuracy parameter a of the GADGET MAC
(seee (in)eq. (4.5)). It is clear how the GADGET MAC gives better results in terms of flatness
off the error profile. The total computational load, measured in terms of the mean number
off interactions per particle K, is of the same order for cases having comparable accuracy.

4.44 Moving pseudo-particle scheme

Thee evaluation of the pseudo-particle masses is computationally expensive, especially when a
highh multipole order is required (Kawai, 1999; Makino, 1999). Moreover, when the GRAPE
hardwaree is used, the recomputed pseudo-particle data must be reloaded at each iteration.
Thiss introduces an high overhead, limiting the convenience of the pseudo-particle approach.
Wee propose a scheme that does not require a re-evaluation of the pseudo-particle masses

GDTT data
PPmodd data

4.4.4.4. MOVING PSEUDO-PARTICLE SCHEME 103

0.01 1

0.001 1

0.0001 1

1e-05 5
00 20 40 60 80 100

percentile e

Figuree 4.8: Comparison of the error profiles of the two MACs of (in)eqs. (4.4) and (4.5). 0 is the
openingg angle of the CSL MAC of (in)eq. (4.4), a is the accuracy parameter of the GDT MAC of
(in)eq.. (4.5), K is the mean number of interactions per particle.

att each iteration. Instead, we assign a velocity to the pseudo-particles, and let them move
withh this velocity. Velocities must be assigned so that the pseudo-particles' motion cor-
rectlyy reproduces the changes in the moment distribution for each cell. The advantage of
thiss approach is that pseudo-particle data must be recomputed less frequently. Moreover,
whenn GRAPE is used, no reload is necessary, since GRAPE contains the hardware needed
too extrapolate particle positions. We compute the pseudo-particle momenta adapting the
formulaa used to compute the pseudo-particle mass eq. (4.1):

11 N p i

??k=k=KK £ ; Pj S (ï) (2/ + 1} P,(C0S ljk) (4-7)
ll J o

Heree p^ is the momentum of pseudo-particle k, Pj is the momentum of the real particle
j ,, all other symbols have the same meaning as in eq. (4.1).

Wee present below a statistical error analysis of our moving pseudo-particle scheme,
similarr to the analysis presented in the previous section.

4.4.11 Statistical error

Inn order to carry out a statistical error analysis of the moving pseudo-particle scheme, we used
heree a dark halo configuration. In this case, we used a configuration with 40 000 particles, in
orderr to reduce the fraction of cells containing 13 particles or less. In this way we increase the

aa = 0.0035, K = 2370
aa = 0.0015, K= 2510

aa = 0.0005, K = 2730

GDTT MAC
CSLL MAC

6=1.1,KK = 2260

66 = 0.9, K = 2530

'-66 = 0.7, K = 2810

104 4 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

0.01 1

0.001 1

0.0001 1
400 60

percentile e
100 0

Figuree 4.9: Error distribution for the moving pseudo-particle code. The error profile at various
extrapolationn times is compared with a canonical treecode error profile. We use the MAC defined
inn eq. (4.5), with a = 0.002. The time interval between each error profile is equal to 0.04. In this
casee is N = 40000.

fractionn of contributions from multipoles with respect to contributions from single particles.
Forr each cell, the pseudo-particle expansion is computed only at the first iteration. After
thatt pseudo-particle positions are extrapolated using the velocities obtained according to
eq.. (4.7). We set the time step At = 0.01, to be compared with min(|v|/|a|) ~ 0.04.

Fig.. 4.9 shows the error percentiles for the configuration as a function of time, compared
withh the SW data used as a benchmark in the previous sections. Initially the extrapolated
pseudo-particless reproduce the real particle dynamical configuration with an accuracy com-
parablee with the static pseudo-particle expansion (the error profile after 0.04 time units is
veryy close to the initial profile). Subsequently, accuracy worsens, and after 0.2 time units
errorss are considerably larger, with a fraction of large errors increasingly bigger (i.e. an error
profilee increasingly steeper). From t = 0 to t = 0.2, the particles having ep < 0.002 decrease
fromm 99.53% to 64.35%. Particles contributing with large errors to the error profile in fig. 4.9
aree those located in the inner core of the distribution. Those are also the particles experienc-
ingg higher accelerations. This suggests that the pseudo-particle temporal expansion could
bee improved by adding a term, similar to eq. (4.7), that accounts for the pseudo-particle
acceleration. .

4.5.4.5. DISCUSSION 105 5

4.55 Discussion

Inn this chapter we presented an error analysis of both the pseudo-particle treecode, and the
movingg pseudo-particle scheme that we propose to reduce the compute time, and optimise
thee use of this method with the GRAPE. We showed the error behaviour of this method,
andd compared it with previous work on the standard treecode.

Wee modified the pseudo-particle distribution, by adding an extra pseudo-particle lo-
catedd at the cell centre of mass, which led to a one order of magnitude error decrease. Yet,
thee pseudo-particle scheme tends to be more accurate with homogeneous particle configura-
tions.. This is promising for the simulation of systems subject to the Coulomb force, which
aree usually characterised by nearly uniform density distributions. We also introduced a tem-
porall expansion for the pseudo-particle scheme and showed that, as long as particles are not
subjectt to high accelerations, the error remains close to the error of the standard case up to
aboutt 20 time steps. In order to improve the accuracy for particles with high acceleration,
wee are extending the pseudo-particle temporal expansion to include an acceleration term.

Thee implementation of a pseudo-particle treecode fine-tuned for the use of the GRAPE
iss currently under development. The internal architecture of a GRAPE board, where an array
off pipelines (up to 96 for GRAPE-4 (Makino et ai, 1997), and up to 48 for the most recent
GRAPE-66 (Makino et al, 2000), see section 1.3) computes force concurrently on an equal
numberr of particles, is an ideal hardware counterpart of the algorithmic strategies developed
too group particles together in order to use the same list of force sources, namely the sinking
strategyy in Warren & Salmon (1995), or the equivalent grouping strategy in Barnes (1990).
Moreover,, the internal particle memory of the GRAPE board acts as a cache, which can
containn up to about 44000 particles for the GRAPE-4 (Kawai et al, 1997), and 262000
particless for the GRAPE-6 (Makino, 2003). Therefore the caching strategies developed in,
e.g.,, Salmon & Warren (1997), where force sources are carefully grouped in logical pages such
thatt data in the same page are likely to be accessed shortly, can be applied here in a natural
way.. The same force sources set can be used for several reloads of the GRAPE pipelines,
andd this could considerably reduce the host-GRAPE communication overhead. The use
off the pseudo-particle method with the GRAPE can be improved by our pseudo-particle
extrapolationn scheme. Moreover, this scheme is also suitable for optimal parallelisation,
becausee it allows to retain the multipole expansion of remote cells for a number of iterations,
resultingg in a substantial decrease of communication among processors.

Wee aim at using our moving pseudo-particle scheme as the computational core of a
parallell treecode running on a hybrid architecture that includes the GRAPE. Performance
simulationss of this kind of hardware/software configuration were presented in section 3.4.4.
Wee showed there that a pseudo-particle powered treecode running on the GRAPE can out-
performm the direct code even in case of high accuracy simulations, since the pseudo-particle
treecodee is able to use the GRAPE also for the evaluation of the force contribution from
higher-orderr multipole terms. In chapter 5, we present a stellar dynamics study of a black
holee spiralling in towards the Galactic centre. This study is a first step in the direction of
simulatingg the infall of a star cluster. As discussed in chapter 5 and in section 1.7 above,
thiss problem is very difficult to treat using either the treecode or the direct code. We plan

106 6 CHAPTERCHAPTER 4. PSEUDO-PARTICLE POWERED TREECODE

too develop a hybrid code to solve it. The pseudo-particle treecode is very well suited for
playingg the role of the treecode "phase" of this hybrid code, especially in view of using the
hybridd code on a hybrid architecture including GRAPEs.

Chapterr 5

Thee Efficiency of the Spiral-in of a Black Hole
too the Galactic Centre*

Inn this chapter, we use the direct particle-particle method, the treecode, and the particle-
meshh code, introduced in section 1.2 and 1.4, to study the efficiency at which a black hole
orr dense star cluster spirals in to the Galactic centre. As introduced in section 1.7, this
processs is driven by a drag force, called dynamical friction, that results from the combined
gravitationall pull exerted by a star distribution on a massive body moving through the
system. .

Thiss phenomenon takes place on a dynamical friction time scale, which depends on the
valuee of the so-called Coulomb logarithm (In A). We determine the accurate value of this
parameterr using the three methods mentioned above with up to two million plus one particles.
Wee find that the three different techniques are in excellent agreement. Our result for the
Coulombb logarithm appears to be independent of the number of particles. We conclude that
Inn A = 6.6 0.6 for a massive point particle in the inner few parsec of the Galactic bulge.
Forr an extended object, like a dense star cluster, In A is smaller, with a value of the logarithm
argumentt A inversely proportional to the object size.

5.11 Introductio n

Thee region near the Galactic centre is populated by very young objects, such as the Quin-
tuplett star cluster (Nagata et a/., 1990; Okuda et a/., 1990), the Arches cluster (Nagata
etet a/., 1995) and the central star cluster (Tamblyn k Rieke, 1993; Krabbe et af., 1995),
whichh are of considerable interest for the astronomical community. One of the more inter-
estingg conundrums is the presence of stars as young as few Myr (Tamblyn & Rieke, 1993;

tThiss chapter is based on work published in:
P.F.. Spinnato; M. Fellhauer and S.F. Portegies Zwart: The Efficiency of the Spiral-in of a Black Hok to

thethe Galactic Centre, Monthly Notices of the Royal Astronomical Society, in press, 2003.

107 7

108 8 CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

Krabbee et ai, 1995) within a parsec from the Galactic centre (Gerhard, 2001). In situ for-
mationn is problematic, due to the strong tidal field of the Galaxy, which makes this region
inhospitablee for star formation. One possible solution is provided by Gerhard (2001), who
proposess that a star cluster of 106 M©, where M 0 is a solar mass, spirals in to the Galactic
centree within a few million years from a distance > 30 pc. The infall process is driven by dy-
namicall friction (Chandrasekhar, 1943). A quantitative analysis of this model by McMillan
&& Portegies Zwart (2003) confirms Gerhard's results. The main uncertainty in the efficiency
off dynamical friction, and therewith the time scale for spiral-in, is hidden in a single pa-
rameter,, called the Coulomb logarithm In A. Accurate determination of this parameter is
cruciall for understanding this process. Nevertheless, a precise value of In A for the Galactic
centrall region is not available. In the work presented in this chapter, we determine In A for
thee Galactic centre. We focus on the efficiency of the interaction between an intermediate
masss black hole (BH hereafter) and the stars in the Galactic central region. In section 5.4
wee comment on how this approach can be applied to star clusters that sink to the Galactic
centre. .

Dynamicall friction is important for a large variety of astronomical phenomena, e.g.
planett migration (Goldreich & Tremaine 1980; Cionco & Brunini 2002), core collapse in
densee star clusters (Portegies Zwart et a/., 1999) or mergers in galaxy clusters (Makino 1997;
Coraa et al. 1997; van den Bosch et al. 1999). The physics of the infall process of a satellite
inn the parent galaxy is basically the same as in the case of a BH spiralling in to the Galactic
centre.. The relevant parameters, however, are quite different in the two cases. For example,
ann inspiraling galaxy has finite size, whereas a BH is a point mass. Dynamical friction also
playss an important role in the evolution of the black hole binary formed after the merging of
twoo galaxies both hosting a BH at their centre (Milosavljevic & Merritt, 2001). In this case,
dynamicall friction is important in the early phase of galaxy merging, when the BHs orbits
convergee and become bound.

Inn the classical study of Chandrasekhar (1943), dynamical friction is driven by the
dragg force experienced by a point mass moving through an infinite medium of homogeneous
density.. The consequences of finiteness and non-homogeneity have been analysed in various
workss (see Maoz 1993; Milosavljevic & Merritt 2001). Just & Penarrubia (2003) carried out
ann analytical study of dynamical friction in inhomogeneous systems, leading to a value of the
Coulombb logarithm that depends on the infalling object position. Colpi & Pallavicini (1998)
developedd a general theoretical framework for the interaction of a satellite with a primary
galaxy,, able to describe dynamical friction in finite, inhomogeneous systems. They applied
theirr theory of linear response to orbital decay of satellites onto a spherical galaxy (Colpi,
1998)) and short-lived encounters with a high-speed secondary (Colpi Sz Pallavicini, 1998).
Theyy studied evolution of satellites in isothermal spherical haloes with cores (Colpi et a/.,
1999),, extended in Taffoni et al. (2003), treating satellite finite size and mass loss. Still,
thee original expression of Chandrasekhar is used to model dynamical friction in many astro-
nomicall situations (see Binney & Tremaine 1987, §7.1; Hashimoto et al. 2003). The cases
wee study here are characterised by a point mass, with a very small mass compared to the
primaryy system. Therefore Chandrasekhar's formulation is appropriate in our cases.

Wee determine the value of In A for a BH spiralling-in to the Galactic centre by means

5.2.5.2. METHODS AND MODEL 109 9

off self-consistent iV-body simulations. This is by far not an easy task. AT-body models either
lackk in the number of particles (a direct AT-body code can treat up to about 105 particles,
comparedd to 108 for the real system) or have to introduce softening (Aarseth, 1963) and
approximationn of the force calculation (treecode (Barnes & Hut, 1986) or particle-mesh
codee (Hockney & Eastwood, 1988)). The softening parameter e was introduced to limit the
strengthh of the mutual gravitational interaction during close stellar encounters. Without
softening,, the very high accelerations experienced by the encountering bodies would cause
veryy tiny integration steps, which would result in a n effective freeze of the global system
evolution,, with consequent dramatic performance degradation. The use of this approximation
shouldd not invalidate the numerical results, as long as the simulated system is studied on
aa time scale shorter than the relaxation time scale (Binney & Tremaine 1987, ch. 4, see
alsoo discussion in section 5.3.4 below). The dynamical friction time scale of the systems
wee simulate is in all cases shorter than the relaxation time scale, so we can safely use the
approximatee methods.

Nevertheless,, since close encounters have an important effect on dynamical friction,
decreasingg their strength by means of softening also decreases the strength of dynamical
friction,, i.e. lowers the value of In A. The same role of softening is played, in the particle-
meshh code, by the grid cell size I.

Ourr methodological approach for the present work (see fig. 5.1) consists of comparing
thee "exact" results obtained with the direct method for low particle numbers (up to 80 000)
withh the results of the treecode, which are less accurate and are influenced by force softening,
too understand how the softening e influences the results and how they have to be scaled
accordingg to the value of e. Then the results of the treecode are compared to the results of
thee particle-mesh code, to see how softening (tree) and grid-resolution / (particle-mesh) can
bee compared and scaled. Finally, having the right scaling between the different codes, we wil l
bee able to perform high particle number simulations (up to 4 • 107) with the particle-mesh
codee to obtain the value of the Coulomb logarithm for the inner Galactic Bulge.

5.22 Methods and model

5.2.11 Direct method

Forr our direct N-body calculations we used the k i r a integrator module of the Starlab soft
waree environment1 (Portegies Zwart et a/., 2001), introduced in section 1.4. Conceived and
writtenn as an independent alternative to Aarseth's NBODY4 and NBODY5 (Aarseth, 1985,
1999),, the workhorses of collisional AT-body calculations for the past 25 years, k i r a is a
high-orderr predictor-corrector scheme designed for simulations of collisional stellar systems.
Thiss integrator incorporates a Hermite integration scheme (Makino & Aarseth, 1992) and a
blockk time step scheduler (McMillan, 1986) that allows homogeneous treatment of all objects
inn the system.

Whilee kir a is designed to operate efficiently on general-purpose computers, it achieves
1See:: http://manybody.org

http://manybody.org

1100 CHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

PMM code

PPP code

i i i i

e e

Figuree 5.1: A sketch of the strategy that we adopt in order to explore the e-N parameter space.

byy far its greatest speed when combined with GRAPE-6 special purpose hardware2 (see
sectionn 1.3). For the work presented here we performed simulations with the GRAPE-6
systemm at the University of Tokyo with up to 80 000 particles.

5.2.22 Treecode

Thee hierarchical treecode is widely used for the simulation of collisionless systems. We
describedd it in section 1.4.2, and studied it extensively in chapter 3 and 4. Our treecode sim-
ulationss were initially performed with both a code written by Jun Makino (Makino, 1991b),
andd with GADGET (Springel et al, 2001). We also used GADGET in the performance sim-
ulationn work described in section 3.4.3, and in the pseudo-particle treecode accuracy analysis
inn section 4.3.4. In GADGET each particle is assigned an individual time-step, and at each
iterationn only those particles having an update time below a certain time are selected for
forcee evaluation. This criterion was originally introduced in the direct A^-body code (see
sectionn 2.3.1).

Thiss code is parallelized using MPI (Message Passing Interface Forum, 1997). In the
parallell version, the geometrical domain is partitioned, and each processor hosts the particles
locatedd in the domain partition assigned to it. The computation of forces on the selected
i-particless is performed by scattering the particle data to remote processors. Then partial
forcess from the particles hosted by the remote processors are computed locally. Finally,
calculatedd forces are received back by the i-particle host, and added up resulting in the total
forcee on the i-particles. We run our parallel treecode simulations on the DAS-2 distributed
supercomputer,, mentioned in section 2.2.1.

2See:: http://www.astrogrape.org

http://www.astrogrape.org

5.2.5.2. METHODS AND MODEL 111 1

]] ^PO l l e e

Rout t

** * R system

Figuree 5.2: The different grids of SUPERBOX for a number of cells per dimension n = 4. The finest
andd intermediate grids are focussed on the object of interest. Each grid is surrounded by a layer of
twoo halo cells. Such haloes are not shown here.

5.2.33 Particle-mesh code

Too perform calculations using several millions of particles we use a particle-mesh (PM) code
namedd SUPERBOX (Fellhauer et al., 2000). As mentioned in section 1.2, in the particle-
meshh technique densities are derived on Cartesian grids. Using a fast Fourier transform
algorithmm these densities are converted into a grid-based potential. Forces acting on the
particless are calculated using these grid-based potentials, making the code nearly collisionless.
SUPERBOXX in particular completely neglects two-body relaxation, causing it to retain only
aa small amount of grid-based relaxation (Fellhauer et al., 2000).

Thee adopted implementation incorporates some differences to standard PM-codes.
State-of-the-artt PM codes use a cloud-in-cell (CIC) scheme to assign the masses of the
particless to the grid cells. Therefore the mass of a particle i is split up into neighbouring
cellss according to its distance to the centre of the cell. Forces are then calculated by adding
upp the same fractions of the forces from all cells to particle i. In contrast, SUPERBOX uses the
"old-fashioned"" nearest-grid-point scheme, where the total mass of the particle is assigned to
thee grid cell the particle is located in. Forces acting on the particle are then calculated only
fromm the forces acting on this particular cell. To achieve similar precision as CIC, SUPERBOX

usess space derivatives up to the second order to compute the forces.

Too achieve high resolution at the places of interest, SUPERBOX incorporates for every
simulatedd object (e.g. each galaxy and/or star cluster or disc, bulge and halo) two levels
off sub-grids co-moving with the objects of interest while the latter are moving through the

112 2 CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

simulatedd area (see fig. 5.2). This provides higher resolution only where it is necessary.

5.2.44 The theory of the Coulomb logarithm

Dynamicall friction affects a mass moving in a background sea of lower mass objects. A
practicall expression for the strength of the drag force on a point particle with mass MBH is
(Binneyy & Tremaine 1987, p. 424):

—-—— = — 4TTG In XpMsH^i—
dtdt vBH

2X2X _X2
erf(X)) - —= e

v71" "
(5.i; ;

Heree X = VBH/(V^CT), where a is the Maxwellian velocity dispersion, and p the background
stellarr density.

Thee classical value of A is (Binney & Tremaine 1987, p. 423)

AA V*<*
G{MG{MBBHH + m)

Heree bmax is the largest possible impact parameter for an encounter between the massive
pointt particle and a member of the background population, vtyp is the typical speed of the
objectss in the background population, and m is the mass of each of the background stars.
Eq.. (5.2) can then be generalised to

A = £ = SS . (5.3)
Umin Umin

Heree bmin is the distance below which an encountering particle is captured, instead of being
scatteredd by the massive object. It is somewhat smaller than the 90° turn-around distance.
Withh the direct TV-body technique, A can be measured precisely. However, with approxi-
matee N-body methods, such as the treecode or the PM code, we have to take care of the
interferencee of the softening length/cell size with bmin, as discussed in section 5.2.5.

McMillann & Portegies Zwart (2003) obtained an analytic expression for the distance
r(t)r(t) of the BH to the Galactic centre, with the assumptions that the BH's orbits are nearly
circular,, and the mass profile of the Galaxy is given by a power law:

Theyy obtained:

1 --

erff f

M(R) M(R)

a(aa(a + 3)
a +11)

m-?* *

== AR°.

11 G
\j\j AR%+3

~x22 and

XX ^BH In A t

x~x~VBHVBH .

2 2
3+ +

(5.4))

r(t)r(t) = Ro 1 - I, , -, \l AW+zXMBH\nkt , (5.5)

where e
'~'~c/c/ VN —= e axiu J\ = —=— ,

5.2.5.2. METHODS AND MODEL 113

aa being the velocity dispersion. In McMillan &; Portegies Zwart (2003) the value of X in
thee Galactic centre is also computed, resulting in X = y/2 — a. Finally, we take RQ equal
too the half-mass radius of our system H/,m (see section 5.2.6). The best fit of eq. (5.5) on
thee simulation data gives the value of In A for that simulation. The values obtained, for all
simulationn performed, are reported in the last column of tables 5.3, 5.4 and 5.5.

5.2.55 The role of softening in the determination of the Coulomb
logarithm m

Softeningg was introduced in numerical stellar dynamics to limi t the strength of mutual forces
duringg close stellar encounters, mainly for computational performance purposes. It consists
inn a modification of the Newton law for the gravity exerted by a particle j on a particle i,
ass follows:

*** = G(r? - + e2)(3/2)r v » (5-6)

wheree r^ = r, — r*, and e is the softening parameter. As r^ —• 0, the presence of e causes
thee force to change from inverse square to elastic, with constant Gmirrij/^. In this way the
strengthh of the mutual force between encountering particles is limited.

Softeningg was first used by Aarseth (1963) in a particle-particle (PP) context (see
fig.fig. 1.1 and caption therein). Accuracy requirements soon led to a more precise treatment
off close encounters and binaries by means of an analytic approach (Kustaanheimo &: Stiefel
1965;; Aarseth 1972; Mikkola & Aarseth 1990). The softened force in eq. (5.6) is used in the
treecode,, where high accuracy in close encounters treatment is not essential. Here we will
usee the softening both in the treecode simulations, where it is necessary, and in the PP code
simulations,, where it is used to compare the results of the two codes, in order to study the
relationn between e and In A.

Forr the PM code, as described in section 5.2.3, force is not computed by using the
Newtonn force, or the softened force in eq. (5.6). Instead, the fact that the gravitational
potentiall on each grid point of the mesh is obtained from a density field defined on the same
mesh,, leads to an accuracy for the force on each particle limited by the cell size of the grid,
I I

Here,, we are concerned with the accuracy of the computation of the encounters ex
periencedd by a black hole spiralling-in to the Galactic centre. Since the softening (PP and
treecode)) and the cell size (PM code) affect this accuracy, we will use e and I to quantify
thee accuracy decrement in our simulations. In section 5.3.5 we will study quantitatively the
dependencee of In A on e and I.

Thee reference value for e in the work presented here will be €o = 0.003 735 (units given
beloww in table 5.1). This value, according to Athanassoula et al. (2000), is of the same order
off magnitude as the optimal softening for a Dehnen sphere distribution (Dehnen, 1993). This
distributionn is similar to the power law distribution that we use, at least for what concerns
thee high central density peak, which is the key physical factor in the determination of the
optimall softening. For an 80000 particle distribution, e0 is about 15 times smaller than

1144 CHAPTERS. EFFICIENCY OF BLACK HOLE SPIRAL-IN

particle-meshh code

treecode e

PPP code
xx X

•• • * • •

le+044 le+05 le+06 le-K)7
N N

Figuree 5.3: Particle ranges for the simulations performed by each method. Crosses denote the
particlee values used.

thee mean inter-particle distance £ at the initial BH position RQ ~ 0.87 (see section 5.2.6).
Thiss value for e is small enough to avoid spurious effects in the force between a star and its
neighbours,, but is sufficient to inhibit very close encounters. The expression for £ can be
obtainedd as:

wheree n is the star number density, and

11 dM = Aa 3
pp AnR? dR 4TT

Wee used the expression in eq. (5.4) for M, and the fact that the TV stars in the system have
thee same mass m = 1/N.

Onee of the effects of softening is a damping in the BH infall at very small values of
thee galactocentric distance, more noticeable as N increases. This can be explained with the
factt that the inter-particle distance £ decreases as the BH approaches the Galactic centre
(seee eq. 5.7). When £ becomes comparable to 2e, the role of softening in the force equation
becomess dominant, since particles begin to "overlap". With N = 400 000, we get £ = 2eo
whenn R ~ 0.064, which is close to the value at which the damping arises, as fig. 5.13 below
clearlyy shows.

5.2.66 Initia l condition

Wee generate the initial mass distribution according to the power law given by eq. (5.4),
withh a = 1.2, which reproduces the mass distribution in the centre of the Galaxy, according
too Mezger et al. (1999). The scale factor is A = 4.25 • 106M®, corresponding to 0.44 in the
iV-bodyy standard units (Heggie & Mathieu, 1985), which are reported in table 5.1. We use
thee standard units hereafter, unless other units are explicitly reported. The distributions

5.2.5.2. METHODS AND MODEL 115 5

GG = 1[V]2[L]/[M]

== 4.3007 • 10"3 km2pc/s2M0

== 4.49842 • 10 - 3 pc3 /Myr2M0

11 [L] = 8 pc

11 [M] = 1.18 • 108 M 0

11 J = 251.86 km/s
11 [LJ

11 ^ = 0.031 Myr
GG • 1 [M]

Tablee 5.1: Conversion table between the iV-body units used in our work, and physical units.
Heree [L], [M], [T], and [V] are respectively the length, mass, time, and velocity units. The
iV-bodyy units are such that G = 1, Mu>t = 1, and Etat = —0.25.

thatt we generate are truncated at R — 1.7 = 13.6 pc, with a total mass within this radius
MtotMtot — 1. The particles have equal mass m. Particles are assigned Maxwellian velocities,
thenn the system is virialised to dynamical equilibrium. Then, before inserting the black hole
(BH)) particle, we let the system evolve for a few crossing times. The system reaches a stable
configuration,, whose mass profile is no more perfectly reproduced by Eq. 5.4. The best fit
forr A and a on the mass profile of the stable configuration gives:

AA = 0.53, (5.8)

aa = 0.9 .

Inn fact, the mass profile having these coefficients diverges from the original one as the
distancee R increases. On the other hand, in the region R < 2, where we study the BH
infall,, the discrepancy between the two mass profiles is small. The relaxed profile values are
withinn 10% of the initial profile values. Nevertheless, for consistency we will use the values
inn eq. (5.8) for A and a hereafter. This results in values of In A ~ 10% smaller than the ones
givenn by a mass profile with coefficients a = 1.2 and A = 0.44.

Thee BH particle is placed at the half-mass radius Rhm — 0.87 with a circular orbit
velocity,, and its mass is MBH = 0.000 528. The background particles number varies from
160000 to 2 million. The low particle number simulations are performed with the PP code,
thee intermediate and high number simulations with the treecode and the PM code. Fig. 5.3
showss the range of N for each code. This allows us to span a large range in particle number,
soo that the influence of granularity in the BH motion towards the Galaxy centre can be
studied. .

InIn contrast to the other models, we choose physical units for the PM code simulations.
Thee conversion factors from physical units to iV-body units are shown in table 5.1, where

1166 CHAPTERS. EFFICIENCY OF BLACK HOLE SPIRAL-IN

nn outer middle inner
~~322 TÖÖÖ Ö69 ÖTT

644 4.67 0.32 0.08
1288 2.26 0.15 0.04

Tablee 5.2: Resolutions (i.e. cell sizes) of the different grid levels for the different choices of n
inn the PM code, n denotes the number of cells per dimension. The cell sizes of the different
grid-levelss (outer, middle and inner) are given in pc.

[L]] denotes the unit length in iV-body units, [M] the unit mass, [V] the unit velocity and [T]
thee unit time.

Thee parameters of the PM calculations are chosen in the following way: the grid sizes
aree kept constant at

^systemm = 140.0 pC

iïoutt = 9.6 pc (5.9)

iücoree = 2 .4 pC

andd are focussed on the center of mass of the "bulge" model, as sketched in fig. 5.2. To
changee the resolution we alter the number of grid cells per dimension from 32 up to 128.
Withh this choice the cell sizes listed in table 5.2 are achieved.

Too speed up the simulations, the time step in the PM code simulations should be as
largee as possible, but small enough to prevent spurious results. Therefore we started with a
timee step of 1000 yr and reduced it to 200 and 50 yr. The results of the 200 yr and 50 yr
timee step do not differ from each other, therefore the global time step is chosen to be 200 yr.
Conversely,, the time step in the treecode and direct code simulations is variable and different
forr each particle. Time step values are in this case in the range 2-30 000 yr, with about 90%
off them in the range 100-300 yr.

5.33 Results

Wee will now study the dependence of our results on the number of particles N in section 5.3.2,
andd compare the various iV-body methods with identical initial realisations in section 5.3.3.
Afterr having convinced ourselves that the various techniques produce consistent results, we
continuee by studying the effect of softening/cell size (section 5.3.4) and black hole mass
(sectionn 5.3.6) on the value of the Coulomb logarithm in the inner part of the Galaxy.

Ourr simulations aimed at several goals. 1) understanding the scaling of the system
dynamicss with respect to the number of particles N, and within this scaling, how results
fromfrom different methods compare with each other. 2) How, at a fixed value of N, the softening
parameterr influences the dynamics, changing the value of In A. The particle-mesh method
doess not make use of softening. The cell size in the PM code can be seen in this context as a

5.3.5.3. RESULTS 117 7

NN c/e0 MBH/m e/bmin In A
16K K
16K K
80K K
80K K
80K K
80K K
80K K
80K K
80K K

0 0
1 1
0 0

0.01 1
0.1 1

1 1
2 2
8 8

16 6

8.5 5
8.5 5

42.3 3
42.3 3
42.3 3
42.3 3
42.3 3
42.3 3
42.3 3

0 0
2.6 6

0 0
0.03 3
0.3 3
2.6 6
5.3 3

21.2 2
42.4 4

3.8 8
3.6 6
6.6 6
6.0 0
5.3 3
4.8 8
3.5 5
2.8 8
1.8 8

Tablee 5.3: Overview of the PP runs. N is the number of particles, e is the softening param-
eter,, €o = 0.003735, MBH/TTI is the ratio between the BH mass and a particle mass, and
c/bminc/bmin the ratio between the softening parameter and the minimal impact parameter.

N N

80K K
400K K

2M M
80K K
80K K
80K K
80K K
80K K
80K K
80K K

400K K
400K K

c/eo o
1 1
1 1
1 1

0.1 1
2 2
8 8

16 6
32 2

1 1
1 1
1 1
1 1

MMBBH/m H/m

42.3 3
211.3 3

1056.5 5
42.3 3
42.3 3
42.3 3
42.3 3
42.3 3
84.5 5

169.0 0
422.6 6
845.2 2

e/&min n

2.6 6
2.6 6
2.6 6
0.3 3
5.3 3

21.2 2
42.4 4
84.7 7
1.3 3
0.7 7
1.3 3
0.7 7

Inn A

4.7 7
5.0 0
4.9 9
5.7 7
4.1 1
3.0 0
2.0 0
1.6 6
5.4 4
4.6 6
4.6 6
4.2 2

Tablee 5.4: Overview of the treecode runs. Meaning of symbols is the same as in table 5.3
above. .

softeningg length. In our framework, it is crucial to understand the relation between the PP
codee and treecode softening parameter and the PM code cell size. 3) We also study how the
BHH mass influences the infall time. We doubled and quadrupled the BH mass, and observed
howw this affects the value of In A.

AA resume of all the runs that we performed is reported in table 5.3 for the PP code
runs,, table 5.4 for the treecode runs, and finally table 5.5 for the PM code runs. In all of
ourr runs, the system remains in equilibrium during the whole BH infall, with no significant
masss loss from stellar escapes, and a mass profile independent of time.

CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

N N

80K K
80K K

400K K
2M M

80K K
400K K

2M M
80K K

400K K
2M M
2M M

n n

16 6
32 2

64 4

128 8

256 6

m m

[Mo]]
1475 5
1475 5
295 5
59 9

1475 5
295 5
59 9

1475 5
295 5
59 9
59 9

[pc]]
1.60 0
0.69 9
0.69 9
0.69 9
0.32 2
0.32 2
0.32 2
0.15 5
0.15 5
0.15 5

0.076 6

NNc c

ii mi l J
46.3 3
3.6 6

18.2 2
91.1 1
0.4 4
1.9 9
9.3 3

0.04 4
0.2 2
1.0 0
0.1 1

Lr« l l J J

68287.0 0
5375.4 4
5375.4 4
5375.4 4
546.3 3
546.3 3
546.3 3
61.9 9
61.9 9
61.9 9
7.4 4

MBH MBH
fflc fflc

0.9 9
11.6 6
11.6 6
11.6 6

114.5 5
114.5 5
114.5 5
1011 1
1011 1
1011 1
8483 3

i i

114.3 3
49.3 3
49.3 3
49.3 3
22.9 9
22.9 9
22.9 9
10.7 7
10.7 7
10.7 7
5.4 4

Inn A

n/a a
1.9 9
2.1 1
2.2 2
3.0 0
3.4 4
3.0 0
2.8 8
3.7 7
3.8 8
4.1 1

Tablee 5.5: Overview of the PM runs. N is the number of particles, n the number of grid cells
perr dimension, m the particle mass, I the intermediate grid cell size, Nc the average number
off particles per cell, mc the average mass of a cell, MBH^C the ratio between the BH mass
andd the cell mass, and finally l/bmin the ratio between the cell size and the minimal impact
parameter. .

Beforee we start with the analysis of the results of our simulations, we report on the
performancee of the PP code and the treecode runs.

5.3.11 Code performance

Inn table 5.6 we give the average time, in seconds, needed to evolve the system for one JV-body
timee unit (TV-body time units are given in table 5.1). We report the data concerning the
runss with N = 80000 and MBH = 0.000 528, for both the PP and the treecode runs. The
PPP runs have been executed on a partition of the GRAPE-6 (see section 1.3.2) including
fourr GRAPE boards, for a peak-performance of about four TFlop/s. The treecode runs have
beenn executed on the DAS-2 (mentioned in section 2.2.1), using a varying number of nodes,
ass reported in table 5.6. This varying number of PEs obviously affects the performance
figuresfigures of the treecode runs; in order to obtain an homogeneous set of data, we normalised
thee figures to 32 PEs assuming a linear scaling, i.e. we halved the timing values measured
onn 16 PEs, and doubled the values measured on 64 PEs. The peak performance of the
normalisedd system is 32 GFlop/s.

Thee normalised data are plotted in fig. 5.4, together with the PP code values (note
thee shift in the X-axis, in order to show the value for e = 0 on a log-log plot). We can see
fromm the figure that the normalised treecode data are not heavily influenced by e, while the
PPP code runs are much faster as e increases. A possible explanation for this is that, as c
getss bigger, the chance for a close encounter gets smaller. Since the role of e is to reduce
thee strength of the gravitational interaction at low interparticle distance to prevent close

5.3.5.3. RESULTS 119 9

c/co o
0 0

0.1 1
1 1
2 2
8 8
16 6

PPP code

s/[T]]
14000 400
13000 200
10388 19
7855 15

485.33 7.9
440.55 4.8

e/e0 0

0.1 1
1 1
2 2
8 8
16 6
32 2

treecode e

s/[T]]
1833 11
5299 4

126.33 5.2
3499 8

213.88 4.3
2233 12

PEs s
32 2
16 6
64 4
16 6
32 2
32 2

Tablee 5.6: Performance of the PP and the treecode runs. We report the averaged number of
secondss needed to advance the system for one JV-body unit. For all runs we have N = 80 000
andd MBH = 0.000 528. The reference value for the accuracy parameter is eo = 0.003 735.

encounters,, a larger e implies a lower chance for close encounters to occur. The time advance
off the PP code is heavily affected by close encounters, as its high numerical precision can
onlyy be assured by a detailed, and costly, treatment of particle trajectories during close
encounters.. Hence, a reduced frequency of close encounters speeds up the execution of the
PPP code. The treecode does not include a special treatment for close encounters, hence its
executionn speed is not affected by a change in the close encounters frequency.

Fig.. 5.4 also shows that the runs with the treecode are faster than those with the PP
code,, especially for low e values. This effect is even much larger if we take into account that
thee PP runs have been performed on a four TFlop/s system, while the normalised treecode
runss have been performed on a 32 GFlop/s system. Normalising the PP code runs on this
performancee would result in values 125 times slower. This is again the price of the high
numericall precision of the PP code. In return for this, the energy conservation of the PP
codee is in the order of 10-6, while the treecode conserves the energy within about 1%.

5.3.22 Dependence of In A on N

Inn order to obtain a precise measure of In A, ideally one would run a direct iV-body simulation
withh N of the order of the number of stars in the Galactic bulge, which amounts to ~ 108.
Suchh high number makes a direct simulation unfeasible, and imposes the use of approximate
methodss instead. In order to evaluate the reliability of the approximate methods, we com-
paredd the PP code runs with the treecode runs. The PP code runs give a reliable picture
off the system dynamics at low particle numbers, i.e. at high granularity. Using the treecode
wee can reach a much higher number of particles, up to two million, which still is two orders
off magnitude lower than the real system. A comparison of the results from the two methods
allowss us to estimate the validity of the treecode runs, up to 2 million particles. Then we
cann compare the treecode runs and the PM runs, in order to validate the results from the
latter,, which has the capability to simulate systems of about 100 million stars. In this way
wee wil l eventually be able to study the infall of a BH into the Galactic centre in a simulation

1200 CHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

• • 1 1

1 1

• •

]]

a a

I I

E E

1 1

PPP code -
treecodee *-

a a

i i

• •

)((t

• •

. .

ï ï

11 10

e/eoo +1

Figuree 5.4: Performance of the PP and the treecode runs. We plot here the averaged number of
secondss needed to advance the system for one A-body unit. For all runs we have N = 80000 and
MBHMBH = 0.000 528. The PP code runs are executed on a GRAPE-6 partition including four GRAPE
boards,, the treecode runs are executed on the DAS-2, with varying number of nodes. The values
plottedd here are normalised to 32 PEs. Note the shift in the X-axis, where we plot e/eo + 1-

environmentt with a realistic value of N.

Inn fig. 5.5 we show the evolution of the BH distance from the centre of mass of the
systemm for three treecode simulations. N varies from 80 000 to 400 000 and 2 million, with
ee = eo = 0.003 735, corresponding to about 0.03 pc. In fig. 5.6 we present a similar figure from
PMM code simulations. Here is TV e {80 000,400 000,2 000 000}, with 32 cells per dimension,
resultingg in a cell size of about 0.69 pc.

Fig.. 5.5 and 5.6 show that increasing N results in a much smoother motion of the BH
inn its infall towards the centre of the Galaxy. The BH infall rate (though very different in
thee two cases) is not much affected by a change in N. Accordingly, the value of In A for
eachh of the two sets above is consistent, as values in table 5.4 (first three rows) and table 5.5
(rowss with I = 0.69) show.

Inn order to study further the extent of the influence of N on the infall rate of the BH,
andd hence in In A, we compare in fig. 5.7 results from PM code simulations with increasing
gridd refinement, and extreme difference in N. To quantify the grid resolution, we use the cell
lengthh at intermediate refinement, which is the cell length pertaining to the physical region
wheree the BH evolves for most of its infall. We measure this length in units of e0 = 0.003 735,
whichh makes the comparison with the softening parameter of the treecode easier. N has no
strongg influence on the infall rate, except for the case where the cell size is / = 0.15 pc ~ 5eo-
Inn this case the simulation with A = 80 000 (data not reported in the figure), shows an
incorrectt BH infall, comparable to the case I = 0.32 ~ 10e0. This can be explained by the

5.3.5.3. RESULTS 121 1

er r
er r

NN = 80 000
NN = 400 000

NN = 2 000 000

:&$fitf&Z.:&$fitf&Z. ::#\ #\

250 0 300 0

Figuree 5.5: Time evolution of the radial distance of the black hole to the Galactic centre. The
variouss curves (identified in the top right corner) present results obtained with the treecode. the
X-axiss is presented in iV-body time units: one iV-body time unit corresponds to about 0.031 Myr.
Thee distance of the black hole to the Galactic centre (Y-axis) is given in terms of its initial distance.
Inn these simulations is e = 0.003 735 ~ 0.03 pc and MBH = 0.000528.

Figuree 5.6: Same as fig. 5.5 above, but for PM code simulations. The intermediate grid cell size is
heree I = 0.69 pc, and MBH = 0.000528.

122 2 CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

00 10 0 20 0 30 0 40 0 50 0 60 0

t t

Figuree 5.7: Black hole infall at various cell sizes, and large difference in N. Results here are from
PMM code simulations. The case N = 80000, / ~ 5eo is not shown for readability reasons, since it
wouldd overlap with the I ~ 10eo results.

factt that in the low I, low N case, the cells are so small, and the particles so few, that many
cellss in the PM grid are empty (see also the Nc column in table 5.5, which gives the average
numberr of particles per cell). When JVC<1, the density field is incorrect, with many grid
pointss having a null value, because the corresponding cell is empty. In this condition, the
gravityy field computed by the PM code becomes unreliable, affecting the numerical results,
ass in the simulation with TV = 80 000 and / ~ 5eo-

5.3.33 Comparison of the codes

Inn this section we compare the results obtained from the various codes, to check their con-
sistency.. The comparison of the PM results with the two other codes results is particularly
critical,, since the PM code computes forces using a different mathematical approach, i.e.
aa grid based force derivation vs a direct particle-particle computation for the PP code, or
particle-multipolee computation for the treecode. A consequence of this is a different param-
eterr to tune the accuracy of the simulation, namely the cell size I for the PM code, and the
softeningg length e for the other two codes. We will study here how these two parameters
influencee the black hole infall.

Inn fig. 5.8 we show the time evolution of the galactocentric BH distance R simulated
byy the PP code, accompanied by a plot of the time evolution of AR/Rpp for treecode and
PMM simulations, where AR = (R - RPP). The relative difference AR/Rpp remains small
forr a large fraction of the infall, and the final discrepancy is mostly due to the small values of
thee quantities at that point, which are likely to amplify relative differences. As the following

5.3.5.3. RESULTS 123 3

o o
CC CC

0--

1.1 1
1 1

0.9 9
0.8 8
0.7 7
0.6 6
0.5 5
0.4 4
0.3 3
0.2 2
0.1 1
0.5 5

0.25 5
0 0

-0.25 5
-0.5 5

00 5 0 10 0 15 0 20 0 25 0 30 0 35 0 40 0

t t

Figuree 5.8: Top panel shows a black hole infall simulated by the PP code, with N = 80000,
MBHMBH = 0.000528 and e = 8eo- Bottom panel shows a comparison of the PP results with treecode
andd PM results. Parameter values are in all cases the same, except for the PM cell size, which is
// = 10eo- Plotted values are averages over 10 time units.

figuress also show, the BH infall is predicted with very good consistency between the codes.

Inn fig. 5.9 selected treecode runs with TV = 80 000 and increasing e are compared with
thee direct code runs having the same values of TV and e. At the same time, the figure shows
howw the infall time increases (and implicitly how In A decreases), as e increases. Fig. 5.9 and
tablee 5.7 show that the results from the treecode, the PP code, and the PM code are in good
agreement.. The agreement of the results from the three methods, and the scaling of In A
withh e, will be further studied quantitatively in section 5.3.5.

Inn order to understand how the cell length I of the PM code and the softening parameter
ee of the PP code and treecode relate with each other, we compare in fig. 5.10 the results
fromm the PM code and treecode simulations with 80 000 particles. The BH infall as shown
inn fig. 5.10 depends on the value of I or e. Remarkably, I and e seem to play the same role
nott only qualitatively, but also quantitatively: in a PM run, a given value of / induces an
infalll which is very similar to the infall, in a treecode run, with e assuming that same value.
Inn section 5.3.5 this relation will be studied further.

5.3.44 The effect of softening/grid

Thee influence of the softening parameter on the BH dynamics has been studied by running a
numberr of simulations with the three codes. In table 5.7 we report the value of In A obtained
fromm our simulations. For the PP code and treecode simulations, we increase e from 0 to
32e00 = 0.1195 ~ 0.96 pc. For the PM code, we increase / from 2.5 e0 to 23 e0. In all cases is

PMM code
__ treecode

124 4 CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

Figuree 5.9: Comparison of results from the PP code with results from the treecode, at different
valuess of e. For all cases shown here is N = 80000 and MBH = 0.000528. The PP simulation with
€€ = 8eo has been already shown in fig. 5.8.

Figuree 5.10: Comparison of PM results with treecode results. PM simulations have cell size I equal
too resp. 10eo and 23eo; softening parameters in the treecode runs are resp. 8eo and 16eo- In all the
abovee cases, is N = 80000 and MBH = 0.000 528.

5.3.5.3. RESULTS 125 5

e/cpp PP code treecode f/cp PM code

0 0
0.01 1
0.1 1
1 1
2 2
8 8
16 6
32 2

6.6 6
6.0 0
5.3 3
4.8 8
3.5 5
2.8 8
1.8 8

5.7 7
4.7 7
4.1 1
3.0 0
2.0 0
1.6 6

Tablee 5.7: In A versus e from PP code, treecode, and PM code runs. For the PP code and
treecodee runs is N = 80 000. For the PM code runs is N = 2 million. The reference value
forr the accuracy parameter is €Q = 0.003 735.

MMBHBH = 0.528 • 10"3 ~ 623OOM0.

Forr the PP code and the treecode, we selected N = 80 000 as a suitable value. The
relaxationn time eq. (1.2) is for this value of N tr ~ 0.1 JV/ In N • i?3/2 ~ 2000, about one order
off magnitude larger than the typical BH infall time, so that the system is collisionless, and
wee can confidently use the treecode to simulate it. With this choice for JV, the BH mass
iss MBH/™> — 42.3, (see table 5.4). As a cross-check, we ran two PP runs with N = 16000
which,, as expected, gave incorrect results (see table 5.3). This is due to both a too small
MBH/™MBH/™ ratio, and a too short relaxation time (tr ~ 400 in this case). We did not increase
ee above 32 eo, since at this point e is already much bigger than 6mjn (see table 5.4), and the
infalll time is now close to tr.

Forr the PM code simulations, we used N = 2 million in order to have enough parti
cless to fill all the cells, even for the simulations with a small I. As table 5.5 shows, for
// = 0.076 pc ~ 2.5 €o the average number of particles per cell is already Nc = 0.1. Since a
PMM simulation gives incorrect results for Nc<g.l (see also the discussion at the end of sec
tionn 5.3.2), we did not decrease / below 2.5 eo-

Thee decrease of the value of In A as e or I increases is clear from table 5.7. In the next
sectionn we focus on the relation between A and c, and provide a fitting formula for In A(e).
Wee use hereafter e to refer either to the softening length of the PP and treecode, or the cell
sizee of the PM code. As shown on fig. 5.10 and discussed above, these two parameters play
thee same role even quantitatively in affecting In A. In this respect, we refer to e as a generic
accuracyy parameter.

5.3.55 Determination of In A

Wee will study here the relation between e and In A. As just said above, in this context c will
bee used as the accuracy parameter, and it will refer to either the softening length used in
thee PP and treecode, or to the cell size in the PM code.

1266 CHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

7 7

6 6

5 5

4 4
< <

3 3

2 2

1 1

0 0
00 5 10 15 20 25 30

e/eo o

Figuree 5.11: In A vs e, and best fit for In A = K — ln(o + e). Values for K and a are given in ta-
blee 5.8. The inset in the figure is a magnification of the low e region. In all cases is MBH = 0.000 528.
Forr the PP and treecode runs is N = 80000, for the PM code runs is N = 2000000. Error bars are
omittedd from the PP values to improve readability. For the same reason, In A values for e/eo < 1
aree shown only in the inset.

AA mathematical expression for the relation between e and In A can be found by consid-
eringg how softening affects two body scattering. The role of e is to prevent too close stellar
encounters.. In this respect, the effect of introducing a softening length is to increase the min-
imall impact parameter. Hence, we can define an effective impact parameter 6e// = 6TOm + e,
andd we modify eq. (5.3) to become:

lnAA = l n ^ = l n / m a x . (5.10)
"eff"eff "min + C

Wee will now fit this equation with the values reported in table 5.7. In order to perform the
fit,fit, we change eq. (5.10) in a more suitable form, as follows:

Inn A = In bmax - ln(6min + e) = K - In (a + e). (5-11)

Wee will refer to bmax and bmin as the theoretical values of the maximal and minimal im-
pactt parameters, as they can be obtained from eq.s (5.2) and (5.3), and K and a as the
correspondingg experimental values obtained with the fit.

Thee best fits for K and a with respect to simulation values are reported in table 5.8
forr all codes. Such fits have been performed with a fixed value for RQ, i.e. the RQ = Rhm- In
fact,, the not perfectly circular orbit of the BH results in an oscillatory behaviour for the BH

TT I I i r

JJ I I I L

5.3.5.3. RESULTS 127 7

PPP code treecode PM code

KK -0.94 0.21 -0.64 0.10 -0.59 0.05
aa • 10"3 0.80 0.28 0.88 0.20 0.74 0.08
A(lnA)) 0.6 0.3 0.2

Tablee 5.8: Best values for the parameters K and a, and error on In A for the fit of
lnAA = ü r - l n (a + c).

galactocentricc radius. In this case, having RQ fixed could not be an appropriate choice for the
fit.. We checked whether having RQ as a free parameter in the fit leads to different results in
Inn A. We obtained values for In A within the error bars in fig. 5.11, and values for RQ within
RhmRhm 0.05. We can conclude that, although the galactocentric BH radius does not decrease
smoothly,, but in an oscillatory fashion, having RQ fixed to the actual initial BH radius in
thee simulations leads to correct fits for the value of In A. With respect to the PM values,
aa further peculiarity is that when the BH enters the finest grid area, i.e. approximately at
RR = 0.3, the value of / decreases (see section 5.2.3 and fig. 5.2). This causes beff to become
smaller,, increasing the value of In A. In fact, a fit of the PM data limited to values of R > 0.3
givess values of In A systematically higher by ~ 0.3 ~ 2 A (In A).

Fromm the PP code value of K in table 5.8 we obtain for bmax the experimental value
hfiuu.hfiuu. = eK ~ 0.39. This value is much smaller than what one would expect. Since bmax has
thee meaning of the maximal impact parameter, a natural choice is to assign it a value of the
orderr of the system size, which in our case would result in bmax = 2. The maximal radius for
dynamicall friction in our system is then about one quarter of what it is customarily assumed.
PMM and treecode values are slightly higher, but still much smaller than bmax = 2. Also a
iss smaller than the theoretical value bmin = G • (MBH + m)folyp = 1-41 • 10~3, by a factor 3.
Thee a value for all codes is perfectly consistent.

Ann explanation for the discrepancy between the values of bmax and b^^ is that the BH,
whilee moving to the Galactic centre, is off-centre with respect to the density peak (in fact
thee BH is spiralising towards it). With respect to the BH position, the density distribution
iss then asymmetric. This density peak clearly has a greater influence on the BH dynamics,
contributingg more than the other regions of the system to the dynamical friction on the
BH.. This leads to a value of bmax affected by the galactocentric BH radius. This approach
iss studied in detail by Hashimoto et al. (2003), who propose the galactocentric radius as a
valuee for bmax in the context of the spiral-in of satellite galaxies.

Inn our simulations, the galactocentric radius varies from R ~ 0.9 at the beginning of a
simulation,, to R ~ 0 at the end of it. The value of 6^, . that we find is within this range, and
itt can be interpreted as an order 0 estimate of a maximal impact parameter that depends
onn the galactocentric BH radius.

Inn order to explore this aspect further, we simulated the infall of the same BH, starting
att the quarter mass radius Rqm ~ 0.43, for e ranging from 0 to 16eo. What we expect is a
smallerr value of 6 ^ . , hence smaller values of In A. All simulations are performed with the
treecode,, except for the e = 0 case, which is simulated with the PP code. Our results are

128 8 CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

8 8

7 7

6 6

5 5

2 2

1 1

0 0
00 2 4 6 8 10 12 14 16

e/eo o

Figuree 5.12: Comparison of In A vs e at different initial galactocentric BH radii. The smaller
valuess of In A for the cases with RQ = Rqm indicate that bmax is influenced by the galactocentric
BHH radius.

inn fig. 5.12. We can see there that the values of In A are smaller for the cases when the
BHH starts at the quarter mass radius. A fit on these data gives K —1.1, which implies
bmaxbmax — 0-33, which is smaller than the value of bmax obtained for the BH starting from the
halff mass radius. Our findings support the argument of Hashimoto et al. (2003).

5.3.66 Varying black hole mass

Wee also studied the effect of a variable BH mass on the value of In A. We simulated, using
thee treecode, the infall of a BH of mass two times and four times larger than the default
masss M0 = 0.000 528 ~ 0.62 • 1O5M0. We studied this infall in both the 80 000 particles
configuration,, and the 400 000 particles configuration. In all cases, we used our standard
valuee for e, i.e. eo = 0.003 735. In fig. 5.13 the distance r of the BH from the centre of mass
off the system is shown for all the cases mentioned above, together with the MBH = M>
cases.. From eq. (5.11) and table 5.8, the appropriate value for In A in the above cases is:

Inn A = # - l n (a + A =

-0.644 - ln(0.000 88 + 0.003 735) 0.3 ~ 4.7 0.3 .

Wee also show in fig. 5.13 the analytic curve r(t), as given by eq. (5.5), with In A = 4.7. An er
rorr bar gives, for each analytical curve, the spread corresponding to a variance A(ln A) = 0.3.

Thee results shown in fig. 5.13 are consistent with the hypothesis that a variation in
thee BH mass has a little effect in the value of In A. In fact, In A shows a logarithmic depen
dencee on MBu through the parameter bmin, which depends linearly on MBH (see eq.s (5.2)

--

<< ^
•• x^

--

--

--

XX ~" "" ~ -x - _ ~~~~~~~^^_ _
X-- - -

Roo = Rhm data'
R 00 - Rhm •"

----II "

O O

X X

--

--

--

~&~-~&~-

--

5.3.5.3. RESULTS 129 9

1 1

0.8 8

oo 0.6
cc c
cc c

0.4 4

0.2 2

0 0
00 50 100 150 200 250 300

t t

Figuree 5.13: Black hole infall for different values of the BH mass, and different values of N.
Simulationss are performed with the treecode. Simulation results are compared with the analytic
solution,, eq. (5.5), with In A obtained from eq. (5.11) and table 5.8. The error bars at the bottom
off the analytic curves correspond to a variance A(ln A) = .

andd (5.3)). Assuming that also the experimental value a depends linearly on MBH, we obtain
Inn A ~ 4.6 0.3, and In A ~ 4.4 0.3 respectively for the 2 MBH case and the 4 MBH case.
Thiss results in a small displacement towards the right of the corresponding analytic curves
inn fig. 5.13, which does not affect the conclusions that can be drawn from the figure. The
theoreticall curve fits very well with the M = 2M0, N — 400 000 case. The other simulation
curvess are within, or very close to, the error in r(t) associated to the error in In A. We can
concludee that a variation in the mass of the infalling object has littl e influence in the value
off In A, which is important in view of extending this work to the case of the infall of a star
cluster. .

Thee fitting formula for In A vs e was obtained from simulations with MBH = Mo- This
formulaa predicts In A for the cases with MBH > M0 with a very good accuracy, showing that
itt can be applied in a more general context, in order to forecast the value of the Coulomb
logarithm. .

Fig.. 5.13 also shows a damping in the BH infall at very small values of R, especially for
thee N = 400 000 case. This effect, described in section 5.2.5, is clearer in the N = 400 000
case,, since the particle density is higher in this case, compared to the N = 80 000 case.

5.3.77 Comparison with related work

Milosavljevicc & Merritt (2001) study the dynamical evolution of two black holes, each one

NN = 80 000
NN = 400 000
analyticc sol.

yiuiyiui MM fcMggfcgw,

130 0 CHAPTERCHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAI^IN

att the centre of a power law cusped galaxy core. They simulate the merging of the two
galaxies,, and observe the evolution of the two black holes, which form a hard binary at the
centree of the merged galaxy. In section 3 of their paper they discuss the value of In A in
theirr simulations. They measure the decay rate of the two black holes, and compare this
valuee with theoretical estimates. When they compare their experimental decay rate with an
estimatee for the case of the infall of an isolated black hole, they find a theoretical estimate
aboutt 6 times lower than the measured value, under the assumption that In A ~ 1.6. If the
valuee of In A is not theoretically pre-determined, and is instead obtained from the decay rate
equation,, the result is In A ~ 10. Similarly, they compare the experimental value with an
estimatee for the case of two mutually spiralling spherical distributions of matter. In this case
theyy assume In A ~ 1.0, and obtain an estimate for the decay rate about a factor of 2 lower
thann the observed value. Determining In A from the measurement would give in this case
Inn A ~ 1.87. The values of In A that we find are between the two values above.

Thee value for In A ~ 1 that they assume in their theoretical estimates, comes from a
derivationn that they present in appendix A of the same work. This derivation is based on
resultss of Maoz (1993). Under the assumption that the stellar density obeys a power law
centeredd on the BH position:

P(P(rr)) = Po(z!-) a , (5-12)
\Omin/ \Omin/

theyy obtain A ~ \(a ~ 1, which actually implies ^Wr — bmin, whereas it is customary to
considerr 6m ai » bmin-

Theirr assumption in fact is valid only when the BH is close to the centre of the power
laww distribution. In their context this is true when: 1) the separation between the two BHs
iss much larger than the half mass radius of the two galaxies. In this case each BH is at the
centree of its own galaxy, and at the same time its motion is not yet heavily perturbed by the
otherr galaxy. 2) the BH binary has hardened, and occupies the centre of the merged galaxy.

Duringg the transient phase, when the two BHs have not yet formed a binary, the density
distributionn that affects the motion of the BHs is double-cusped, with a BH in each of the two
cusps.. This is substantially different from the density distribution modelled by eq. (5.12).

Thiss qualitative argument would make the density distribution in eq. (5.12) inapplica-
blee during the transient phase, and could explain why Milosavljevic & Merritt (2001) find
aa higher than expected value of In A in the transient. The analytical evaluation of In A ac-
cordingg to the technique used by them is by no means trivial, when symmetry arguments
cannott be straightforwardly applied. We will address this issue in future developments of
thee present work; the theory of linear response of Colpi & Pallavicini (1998) could be very
usefull in this context.

5.44 Applications to star clusters

Recentt observations of the Galactic Centre have revealed a population of very young clusters
withh ages less than 10 Myr. The presence of such stars inside the inner parsec of the Galaxy

5.4.5.4. APPLICATIONS TO STAR CLUSTERS 131 1

iss puzzling, as the strong tidal field in the Galactic centre easily prevents star formation. The
originn of these stars is therefore debated (Gerhard, 2001; McMillan &: Portegies Zwart, 2003).
Morriss (1993) proposed that a star cluster at some distance from the Galactic centre could
spiral-inn due to dynamical friction (see also Gerhard, 2001). The efficiency of dynamical
frictionfriction depends sensitively on the actual value of the Coulomb logarithm In A.

5.4.11 Sinking of massive black holes in the Galactic centre

Wee performed N-body simulations for a large range of conditions. In section 5.3.2 we varied
thee number of particles, in section 5.3.4 we varied the size of the object, and in section 5.3.6
wee varied its mass. With direct iV-body simulations we measured the actual value of the
Coulombb logarithm In A. We study the behaviour of In A for various types of Af-body solvers
andd particle numbers. We also study the behaviour of In A as a function of the softening
lengthh e. Only the direct AT-body code can perform a true measurement of the Coulomb
logarithm,, because it is able to resolve even the smallest length scales and time scales. This,
however,, makes the direct code very slow and, even using the very fast GRAPE-6 special
purposee device, we are able to perform simulations with only 105 particles. This is a small
numberr compared to the actual number of stars in the Galactic centre. With approximate
methodss (treecode and particle-mesh) we are able to increase the number of particles up to
22 million. The cost of this is a lower accuracy in calculating stellar motion below a typical
lengthh scale e. We studied how this length scale influences In A, by affecting the value of the
minimall impact parameter.

5.4.22 Young dense clusters in the Galactic centre

Thee study of the dependence of In A on e described above is also of astronomical interest,
becausee e can be interpreted as the typical length of a finite size infalling object. Based on
this,, our analysis of the dependence of In A on € can be seen as a first approach to the study
off the infall of a star cluster of typical size c toward the Galactic centre. We found (see
fig.fig. 5.11) that the value of In A decreases quite rapidly as e increases, with the logarithm
argumentt A oc 1/e. The typical size of the compact young clusters observed in the Galactic
bulgee is ~ 0.3pc (Figer et a/., 1999), which corresponds to € ~ 10eo. With this value of e,
fromfrom eq. (5.11) and table 5.8, we obtain In A ~ 2.9, about 60% less than the value for a point
mass.. The infall time is roughly doubled. For our choice of object mass, M ~ 62 300 M 0, and
initiall galactocentric radius, RQ ~ 7 pc, we have an infall time that increases from ~ 6 Myr
forr the point mass, to ~ 12.5 Myr for an object of typical size ~ lOeo ^ 0.3 pc.

Wee also studied the uncertainty associated with the maximal impact parameter bmax.
Wee found that for an infall to the Galactic centre, the infalling object is mostly influenced
byy the density peak at the Galactic centre itself. A good choice for bmax is then bmax ~ @RQ,
wheree RQ is the initial galactocentric radius, and (3 ~ 0.5

1322 CHAPTER 5. EFFICIENCY OF BLACK HOLE SPIRAL-IN

5.55 Discussion

Wee simulated the evolution of a massive particle in a sea of lighter particles in a self gravitat-
ingg system. The main goal of this simulations is to obtain an accurate value of the Coulomb
logarithmm (In A). This helps us to understand the dynamics of the Galactic bulge and the
ratee at which intermediate mass black holes sink to the Galactic centre. We also study the
effectt of the finite size of the inspiraling object.

Wee ran both iV-body particle-particle (PP) simulations, softened treecode simulations,
andd particle-mesh (PM) simulations. The comparative simulations are performed for 80 000
particles,, and all result in the same value of In A. For a point particle near the Galactic
centree we find In A = 6.6 0.6. In addition we measure the change in the Coulomb logarithm
withh respect to the softening parameter e, which reveals A oc 1/e. We argue that e can be
interpretedd as the typical length of a finite size object, such as a star cluster, so that In A
ass a function of e can be seen as a first approximation of the dependence of the Coulomb
logarithmm on the size of an infalling star cluster.

Wee also observed a value of the maximal impact parameter bmax different from the
customarilyy assumed value, which is proportional to the system size. We found that our
resultss are more consistent to a value of bmax linearly dependent on the BH galactocentric
radius,, which is in agreement with Hashimoto et al. (2003).

Wee performed simulations with up to two million particles using a treecode. The
obtainedd value of In A does not depend on the number of particles. Apparently, 80000
particless is already enough to eliminate any granularity for our choice of initial conditions.
Thee results of the treecode, at the low AMimit , are in excellent agreement with the PP
simulations,, and we find the same scaling with respect to e. Increasing the black hole mass
reducess the time scale for spiral-in as expected from theory (see McMillan & Portegies Zwart,
2003). .

Finallyy we compared the results of our PP and treecode simulations with a particle
meshh (PM) method. We compared the methods for N up to two million. The results of our
PP,, treecode, and PM calculations are in good agreement. The cell size in the PM model is
directlyy comparable to the softening length e in the PP and tree methods.

Thiss work is a first step in the direction of performing a simulative study of the infall
off a young star cluster to the Galactic centre (see section 5.4.2). As discussed in section 1.7,
aa star-by-star simulation of a cluster infall is problematic. The total number of particles,
includingg both the cluster particles and the Galactic centre particles, is by far larger than
thee number a direct code can manage. On the other hand, the use of a treecode would lead
too an incorrect treatment of the cluster dynamics, resulting in a too fast, unrealistic cluster
evaporation.. A solution for this problem is the development of a hybrid code, consisting of a
directt code "phase" that is responsible of the simulation of the cluster, and a treecode "phase"
thatt simulates the galactic centre. The data exchange between the two phases is negligible:
thee treecode input is the current mass of the cluster, and the direct code input is the current
valuee of the galactic gravitational force.

AA hybrid architecture of the kind described in part I is an ideal hardware platform for

5.5.5.5. DISCUSSION 133

thiss hybrid code simulations, and the pseudo-particle treecode described in chapter 4 lends
itselff very well to being included in the hybrid code as its low accuracy component.

Partt II I

Conclusions s

Inn this thesis we studied the use of hybrid architectures as a tool to accelerate the numerical
solutionn of the iV-body problem. We can define the AT-body problem as the challenge to
understandd the motion of N point-like particles, subject to their mutual interactions. This
definitionn is inspired by the one given on page 14 of the profound and delightful book on the
gravitationall million body problem, written by Douglas Heggie and Piet Hut (2003). In this
thesis,, we also focus on the gravitational AT-body problem because of its highly demanding
computationall requirements, that make it interesting and stimulating for a computational
scientistt to examine the computational characteristics, and explore the possible avenues to
speed-upp the problem's numerical solution.

Thee analytic insolubility of the gravitational AT-body problem for N > 2 led to the
developmentt of numerical techniques to study it, as discussed in section 1.2. The need to
retainn the full 0(N2) direct particle-particle scheme for the simulation of collisional sys-
tems,, i.e. systems requiring high computational accuracy (see section 1.2), led in turn to
thee development of the GRAPE, specialised hardware to accelerate the computation of the
gravitationall force interactions, introduced in section 1.3.

Thee gravitational force computational kernel of the Ö(N2) scheme is so demanding in
termss of hardware power, that its execution on the one Tflop/s GRAPE-4 can be driven
byy a host workstation which is about 104 times slower (see section 1.2, fig. 1.5, and our
performancee analysis work presented in chapter 2).

Ourr research aims at exploring the possibilities of using the GRAPE to boost N-
bodyy simulations other than those of astronomical collisional systems, which is the native
domainn of application of the GRAPE. For the simulation of collisionless systems, fast and
moree sophisticated methods like the treecode, the FMM (Fast Multipole Method), or the
PMM (Particle-Mesh), have been developed, as described in section 1.2. They reduce the
computationall complexity of the AT-body problem to 0(N log N), and even O(N), trading
higherr speed for lower accuracy.

Usingg the GRAPE with these methods is not straightforward, since the particle-particle
forcee computation, while still relevant, is no longer the most computationally expensive task
off the application. In this case, the relatively high computational load of the GRAPE-host

137 7

138 8 CONCLUSIONS CONCLUSIONS

couldd make the host activity the system bottleneck.

Thee use of Performance Modelling techniques allows us to study the interplay of the
generall purpose host, the special purpose device, and the application executed on the hybrid
architecture.. Chapter 3 describes our performance models of hybrid architectures which
includee GRAPE boards to accelerate the execution of direct particle-particle codes and
treecodes.. We show that a distributed hybrid architecture running a treecode optimised for
thee GRAPE has the potential to outperform a serial-host GRAPE4-like monolithic system
runningg a direct code, even for simulations requiring high computational accuracy.

Thiss supports our idea of hybrid architectures as an effective tool to speed up the
executionn of applications characterised by a heavy and small computational kernel, which is
amenablee to hardware implementation, but also including auxiliary relevant computational
requirements.. Further support for the hybrid architecture paradigm comes from the fact
thatt the GRAPE-6 architecture (see section 1.3) is essentially an instance of this class of
computerr systems.

Inn order to efficiently use the hybrid architecture, the software application that is run on
itt needs to be fine-tuned. A fine-tuning of the treecode to run optimally on a platform which
includess the GRAPE is the pseudo-particle scheme (see chapter 4). In this formulation, the
gravitationall potential of the particle aggregates created by the treecode domain partition,
iss converted from multipole expansion to a pseudo-particle distribution. In this way, the
GRAPEE is also able to compute the force due to particle aggregates, allowing for an optimal
executionn of the treecode on the hybrid machine.

Inn chapter 4 we described the pseudo-particle approach, and presented the accuracy
improvementt that we developed. We showed that the original pseudo-particle formulation
(Makino,, 1999; Kawai & Makino, 2001) is less accurate than the canonical multipole-based
treecode,, especially in the case of highly inhomogeneous matter distributions. We introduced
ann improvement, consisting in an extra particle added to the pseudo-particle set, located at
thee centre of mass of the real particle distribution. In such a way the pseudo-particles ap-
proximatee inhomogeneous real particle distributions more closely, with a significant accuracy
benefit. .

Wee also developed a temporal expansion scheme for the pseudo-particle approach,
wheree we define a pseudo-particle velocity. In this way, we do not re-compute the pseudo-
particless at each time step, but we let them move, following the real particle evolution. This
nott only reduces the overhead from calculating the pseudo-particle, but also optimises the
communicationn with the GRAPE. The GRAPE needs to know the pseudo-particle expansion
off particle aggregates, which must be communicated by the host at each time step. With our
scheme,, pseudo-particle expansions can be retained in the GRAPE memory for a number of
timee steps, and evolved locally by the GRAPE extrapolation pipeline (see section 1.3 and
fig.fig. 1.4), because pseudo-particles now have a velocity assigned to them.

Inn chapter 5 we presented an actual example of JV-body simulative study. Namely, we
carriedd out a comparative study of the infall of a massive black hole towards the Galactic
centre,, in order to measure the Coulomb logarithm. The Coulomb logarithm is the parameter
thatt quantifies the efficiency of a massive body slow-down due to its gravitational interaction

CONCLUSIONS CONCLUSIONS 139 9

withh a background of lighter stars. If the body is orbiting a centre of gravity, as in our case,
itss deceleration results in an inspiraling trajectory.

Wee used a direct particle-particle code, a treecode, and a particle-mesh code for our
simulations,, in order to understand how particle granularity and code inaccuracy influence
thee measure of the Coulomb logarithm. The direct code is accurate, but limited in the
numberr of particles because of its 0{N2) scaling. The other codes are less accurate, but
allowallow for higher numbers of particles, hence low particle granularity, which gives a smoother
representationn of the gravity field. Our measure of the Coulomb logarithm appears to be
independentt of the number of particles, at least for the range of physical parameters chosen.
Thee parameter that quantifies the numerical inaccuracy influences the value of the Coulomb
logarithm.. The logarithm argument is inversely proportional to the inaccuracy parameter.

Futur ee work

Thee work presented in chapter 5 is the first step towards the study of the infall of a star
cluster,, i.e. an extended object. As described in section 1.7, phenomena of this kind, con-
sistingg of the interaction of a collisional and a collisionless system, are not straightforward
too simulate, either with a direct code or an approximate method. Our solution is to devise
aa hybrid code, where the star cluster collisional "phase" is simulated by the direct code, and
thee Galactic centre collisionless "phase" is simulated by the treecode.

Thiss hybrid code makes high demands of the host computing platform, which must
providee both high computational power for the gravitational force evaluation, and compara-
blyy high power for the other tasks of the software, otherwise the treecode execution would
becomee the system bottleneck. A hybrid architecture of the kind discussed in this thesis
wouldd be an ideal solution for this problem.

Ourr group is planning to realise a hybrid system including GRAPE-6 boards, configured
too optimally run the hybrid code. The computational asymmetry inherent in the coexistence
off a direct code "phase" and a treecode "phase" calls for a corresponding asymmetry in
thee hardware architecture. The direct code requires a large computational power for the
gravitationall force kernel evaluation, and has few requirements for the other tasks. A single
hostt having a number of GRAPE boards connected to it would fulfil l these needs. On the
otherr hand, the treecode has a relatively lower need for the force evaluation part, but needs
moree power for the other general purpose tasks. A homogeneous distributed configuration
withh each node of a parallel host connected to the same number of GRAPEs would be more
appropriatee in this case.

Thee ideal architecture to run the hybrid code would then be an amalgam of the two
platforms.. One node should be connected to a higher number of GRAPEs with respect to
thee other nodes. A performance model wil l be very useful to configure this system, and
fine-tunefine-tune it to obtain the best performance when running the hybrid code. Our work on
performancee modelling that was presented in part I will be the basis of this model.

Wee have presented an example of the potential of hybrid architectures to solve specific,

140 0 CONCLUSIONS CONCLUSIONS

highlyy demanding computational problems. We focussed on hybrid architectures for the
gravitationall iV-body problem, but other fields of Computational Science can profit from this
architecturall paradigm. The use of special hardware like the APE series (Tripiccione, 1999)
developedd for Quantum Chromo-Dynamics simulations, or the MDM machine (Narumi et cd.,
1999,, 2000), the sibling of GRAPE used for Molecular Dynamics simulations and mentioned
inn section 1.3.3, can be enhanced by a hybrid architecture approach. We believe that hybrid
architecturess can be the platform of choice for a sizable number of computational scientists.
Withh this thesis we hope to contribute to a move in this direction.

Bibliograph y y

Aarseth,, S. J. (1963). Dynamical evolution of clusters of galaxies, I. Monthly Notices of the
RoyalRoyal Astronomical Society 126, 223-255.

Aarseth,, S. J. (1972). In M. Lecar (Ed.), The Gravitational N-body Problem, Dordrecht, pp.
373.. Reidel.

Aarseth,, S. J. (1985). Direct methods for AT-body simulations. In J. Brackhill & B. Cohen
(Eds.),, Multiple Time Scales, Orlando, pp. 377-418. Academic Press.

Aarseth,, S. J. (1999). Prom NBODY1 to NBODY6: The growth of an industry. Publications
ofof the Astronomical Society of the Pacific 111, 1333-1346.

Aarseth,, S. J. (2001). NBODY2: A direct AT-body integration code. New Astronomy 6,
277-291. .

Adve,, V. S., Bagrodia, R., Browne, J. C, Deelman, E., Dube, A., Houstis, E. N., Rice, J. R.,
Sakellariou,, R., Sundaram-Stukel, D. J., Teller, P. J., & Vernon, M. K. (2000). POEMS:
End-to-endd performance design of large parallel adaptive computational systems. IEEE
TransactionsTransactions on Parallel and Distributed Systems 26, 1027.

Adve,, V. S. & Sakellariou, R. (2000). Application representations for multiparadigm per-
formancee modeling of large-scale parallel scientific codes. International Journal of High
PerformancePerformance Computing Applications 14, 304.

Aida,, K., Takefusa, A., Nakada, H., Matsuoka, S., Sekiguchi, S., & Nagashima, U. (2000).
Performancee evaluation model for scheduling in global computing systems. International
JournalJournal of High Performance Computing Applications 14, 268.

Alum,, S. (1996). Greengard's JV-body algorithm is not order N. SIAM Journal of Scientific
ComputingComputing 17, 773-776.

141 1

142 2 BIBLIOGRAPHY BIBLIOGRAPHY

Anderson,, C. R. (1992). An implementation of the Fast Multipole Method without multi-
poles.. SIAM Journal of Scientific and Statistical Computing 13, 923-947.

Aoki,, S., Burkhalter, R., Kanaya, T., Yoshié, T., Boku, T., Nakamura, H., & Yamashita,
Y.. (1999). Performance of lattice QCD programs on CP-PACS. Parallel Computing 25,
1243-1255. .

Athanassoula,, E., Bosma, A., Lambert, J.-C, & Makino, J. (1998). Performance and accu-
racyy of a GRAPE-3 system for collisionless JV-body simulations. Monthly Notices of the
RoyalRoyal Astronomical Society 293, 369-380.

Athanassoula,, E., Fady, E., Lambert, J.-C, &; Bosma, A. (2000). Optimal softening for force
calculationss in collisionless iV-body simulations. Monthly Notices of the Royal Astronom
icalical Society 314, 475-488.

Bagrodia,, R., Meyer, R., Takai, M., Chen, Y., Zeng, X., Martin, J., &: Ha Yoon Song, H. Y.
(1998).. Parsec: A parallel simulation environment for complex systems. Computer 31
(10),, 77.

Bal,, H. et al. (2000). The distributed ASCI supercomputer project. ACM Computing Sur
veysveys 34, 76-96.

Barnes,, J. E. (1990). A modified tree code: Don't laugh, it runs. Journal of Computational
PhysicsPhysics 87, 161.

Barnes,, J. E. & Hut, P. (1986). A hierarchical 0(iV log iV) force-calculation algorithm.
NatureNature 324, 446-449.

Bhattacharya,, D. & van den Heuvel, E. P. J. (1991). Formation and evolution of binary and
millisecondd radio pulsars. Physics Reports 203, 1-124.

Binney,, J. & Tremaine, S. (1987). Galactic Dynamics. Princeton, NJ (USA): Princeton
Universityy Press.

Capuzzoo Dolcetta, R. & Miocchi, P. (1998). A comparison between the Fast Multipole Algo-
rithmm and the tree-code to evaluate gravitational forces in 3-D. Journal of Computational
PhysicsPhysics 143, 29-48.

Capuzzoo Dolcetta, R., Pucello, N., Rosato, V., & Saraceni, F. (2001). On the use of a
heterogeneouss MIMD-SIM D platform to simulate the dynamics of globular clusters with
aa central massive object. Journal of Computational Physics 174, 208-225.

Carrier,, J., Greengard, L., & Rokhlin, V. (1988). A fast adaptive multipole algorithm for
particlee simulations. SIAM Journal of Scientific and Statistical Computing 9, 669-686.

Chandrasekhar,, S. (1943). Dynamical friction I. general considerations: the coefficient of
dynamicall friction. Astrophysical Journal 97, 255-262.

BIBLIOGRAPHY BIBLIOGRAPHY 143 3

Cheng,, H., Greengard, L., & Rokhlin, V. (1999). A fast adaptive multipole algorithm in
threee dimensions. Journal of Computational Physics 155, 468-498.

Cionco,, R. &; Brunini, A. (2002). Orbital migrations in planetesimal discs: JV-body simu-
lationss and the resonant dynamical friction. Monthly Notices of the Royal Astronomical
SocietySociety 334, 77-86.

Colpi,, M. (1998). Accretion of a satellite onto a spherical galaxy: Binary evolution and
orbitall decay. Astrophysical Journal 502, 167-176.

Colpi,, M-, Mayer, L., h Governato, F. (1999). Dynamical friction and the evolution of
satellitess in virialized halos: the theory of linear response. Astrophysical Journal 525,
720-733. .

Colpi,, M. &; Pallavicini, A. (1998). Drag on a satellite moving across a spherical galaxy:
Tidall and frictional forces in short-lived encounters. Astrophysical Journal 502, 150-166.

Cora,, S. A., Muzzio, J. C, & Vergne, M. M. (1997). Orbital decay of galactic satellites as
aa result of dynamical friction. Monthly Notices of the Royal Astronomical Society 289,
253-262. .

Couchman,, H., Thomas, P., & Pearce, F. (1996). Hydra: an adaptive-mesh implementation
off P3M-SPH. Astrophysical Journal 452, 797-813.

Cremonesi,, P. & Gennaro, C. (2002). Integrated performance models for SPMD applications
andd MIM D architectures. IEEE Transactions on Parallel and Distributed Systems 13,
745. .

Dehnen,, W. (1993). A family of potential-density pairs for spherical galaxies and bulges.
MonthlyMonthly Notices of the Royal Astronomical Society 265, 250-256.

Dikaiakos,, M. D., Rogers, A., & Steiglitz, K. (1996). Functional algorithm simulation of the
Fastt Multipole Method: Architectural implications. Parallel Processing Letters 6, 55.

Ewald,, P. P. (1921). Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen
derder Physik 64, 253-287.

Fellhauer,, M., Kroupa, P., Baumgardt, H., Bien, R., Boily, C, Spurzem, R., &; Wassmer, N.
(2000).. SUPERBOX - an efficient code for collisionless galactic dynamics. New Astron
omyomy 5, 305-326.

Figer,, D. F., Kim, S. S., Morris, M., Serabyn, E., Rich, R. M., k McLean, I. S. (1999).
HubbleHubble Space Telescope/NICMOS observations of massive stellar clusters near the galactic
center.. Astrophysical Journal 525, 750-758.

Freund,, R. F. k Siegel, H. J. (1996). Heterogeneous processing. Computer 26 (6), 13.

Fukushige,, T. & Makino, J. (1996). iV-body simulation of galaxy formation on the GRAPE-4
speciall purpose computer. In Proc. of Supercomputing '96 Conference. ACM press.

144 4 BIBLIOGRAPHY BIBLIOGRAPHY

Fukushige,, T., Taiji, M., Makino, J., Ebisuzaki, T., k Sugimoto, D. (1996). A highly
parallelizedd special-purpose computer for many-body simulations with an arbitrary central
force:: MD-GRAPE. Astrophysical Journal 468, 51-61.

Funato,, Y., Hut, P., McMillan, S. L. W., k Makino, J. (1996). Time-symmetrized
Kustaanheimo-Stiefell regularization. Astronomical Journal 112, 1697.

Gerhard,, O. (2001). The galactic center He I stars: Remains of a dissolved young cluster.
AstrophysicalAstrophysical Journal 546, L39-L42.

Goldreich,, P. & Tremaine, S. (1980). Disk-satellite interactions. Astrophysical Journal 241,
425. .

Greengard,, L. (1988). The Rapid Evaluation of Potential Fields in Particle Systems. Cam-
bridge,, MA (USA): MIT Press.

Greengard,, L. k Rokhlin, V. (1997). A new version of the fast multipole method for the
Laplacee equation in three dimensions. Acta Numerica 6, 229-269.

Guntt her, N. J. (2000). The dynamics of performance collapse in large-scale networks and
computers.. International Journal of High Performance Computing Applications 14, 367.

Hashimoto,, Y., Funato, Y., k Makino, J. (2003). To circularize or not to circularize? -
orbitall evolution of satellite galaxies. Astrophysical Journal 582, 196-201.

Heggie,, D. C. k Hut, P. (2003). The Gravitational Million Body Problem. Cambridge,
Englandd (UK): Cambridge University Press.

Heggie,, D. C. Sz Mathieu, R. D. (1985). Standardised units and time scales. In S. L. W.
McMillann k P. Hut (Eds.), The Use of Supercomputers in Stellar Dynamics, Berlin, pp.
233-235.. Springer Verlag.

Hernquist,, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical
JournalJournal 356, 359-364.

Hockney,, R. W. (1965). A fast direct solution of Poisson's equation using Furier analysis.
JournalJournal of the ACM 12, 95-113.

Hockney,, R. W. k Eastwood, J. W. (1988). Computer Simulation Using Particles. Bristol,
Englandd (UK): IOP Publishing.

Hoisie,, A., Lubeck, O., k Wassermann, H. (2000). Performance and scalability analysis of
teraflop-scalee parallel architectures using multidimentional wavefront applications. Inter
nationalnational Journal of High Performance Computing Applications 14, 330.

Hut,, P. (1996). The role of binaries in the dynamical evolution of globular clusters. In
E.. Milone k J.-C. Mermilliod (Eds.), Origins, Evolution, and Destinies of Binary Stars in
Clusters.Clusters. ASP Conference Proceedings Series, vol. 90. Astronomical Society of the Pacific
press,, astro-ph/9602158

BIBLIOGRAPHY BIBLIOGRAPHY 145 5

Hut,, P. & Makino, J. (1999). Astrophysics on the GRAPE family of special purpose com-
puters.. Science 283, 501-505.

Jain,, R. (1991). The Art of Computer Systems Performance Analysis. New York, NY (USA):
Johnn Waley & Sons.

Just,, A. & Penarrubia, J. (2003). Dynamical friction in inhomogeneous systems. Astronomy
andand Astrophysics submitted.

Karp,, A. H. (1993). Speeding up AT-body calculations on machines without hardware square
root.. Scientific Programming 1, 133-140.

Kawai,, A. (1999, December). Implementation of the Barnes-Hut Treecode on GRAPE
Special-PurposeSpecial-Purpose Computers. Ph. D. thesis, University of Tokyo. Available at:
h t t p:: / / a t l a s. r iken. go. j p /~a tsush i / pape r /d - thes i s. ps.

Kawai,, A., Pukushige, T., &; Makino, J. (1999). $7.0/Mflops astrophysical iV-body simulation
withh treecode on GRAPE-5. In Proc. of Supercomputing99 Conference. ACM press.

Kawai,, A., Fukushige, T., Makino, J., & Makoto, T. (2000). GRAPE-5: A special-purpose
computerr for AT-body simulations. Publications of the Astronomical Society of Japan 52,
659-676. .

Kawai,, A., Fukushige, T., Taiji, M., Makino, J., Sz Sugimoto, D. (1997). The PCI interface
forr GRAPE systems: PCI-HIB. Publications of the Astronomical Society of Japan 49,
607-618. .

Kawai,, A. & Makino, J. (1999). A simple formulation of the Fast Multipole Method:
Pseudo-particlee multipole method. In B. Hendrickson et al. (Eds.), Proceedings of the
NinethNineth SIAM Conference on Parallel Processing for Scientific Computing. SIAM press.
astro-ph/9812431 1

Kawai,, A. & Makino, J. (2001). Pseudoparticle multipole method: A simple method to
implementt high-accuracy treecode. Astrophysical Journal 550, L143-L146.

Kim,, S. S. & Morris, M. (2002). Dynamical friction on star clusters near the galactic center.
inin preparation.

Kokubo,, E. Sz Ida, S. (1996). On runaway growth of planetesimals. Icarus 123, 180-191.

Kokubo,, E. & Ida, S. (1998). Oligarchic growth of protoplanets. Icarus 131, 171-178.

Krabbe,, A., Genzel, R., Eckart, A., Najarro, F., Lutz, D., Cameron, M., Kroker, H., Tacconi-
Garman,, L. E., Thatte, N., Weitzel, L., Drapatz, S., Geballe, T., Sternberg, A., k, Ku-
dritzki,, R. (1995). The nuclear cluster of the Milk y Way: Star formation and velocity
dispersionn in the central 0.5 parsec. Astrophysical Journal 447, L95.

146 6 BIBLIOGRAPHY BIBLIOGRAPHY

Kurc,, T., Uysal, M., Eom, H., Hollingsworth, J., Saltz, J., k Sussman, A. (2000). Efficient
performancee prediction for large-scale, data-intensive applications. International Journal
ofof High Performance Computing Applications 14, 216.

Kustaanheimo,, P. h Stiefel, E. (1965). Perturbation theory of Kepler motion based on spinor
regularization.. Journal fur die Reine und Angewandte Mathematik 218, 204-219.

Lissauer,, J. J. (1993). Planet formation. Annual Review of Astronomy and Astrophysics 31,
12&-174. .

Makino,, J. (1991a). A modified Aarseth code for GRAPE and vector processors. Publications
ofof the Astronomical Society of Japan 43, 859-876.

Makino,, J. (19916). Treecode with a special-purpose processor. Publications of the Astro
nomicalnomical Society of Japan 43, 621-638.

Makino,, J. (1996). Postcollapse evolution of globular clusters. Astrophysical Journal 471,
796-803. .

Makino,, J, (1997). Merging of galaxies with central black holes. II . evolution of the black
holee binary and the structure of the core. Astrophysical Journal 478, 58-65.

Makino,, J. (1999). Yet another Fast Multipole Method without multipoles — pseudoparticle
multipolee method. Journal of Computational Physics 151, 910-920.

Makino,, J. (2001a). Direct simulation of dense stellar systems with GRAPE-6. In S. Deiters,
B.. Fuchs, A. Just, R. Spurzem, &; R. Wielen (Eds.), Dynamics of Star Clusters and the
MilkyMilky Way. ASP Conference Proceedings Series, vol. 228. Astronomical Society of the
Pacificc press, astro-ph/0007084

Makino,, J. (20016). GRAPE project: special-purpose computers for many-body simulations.
ComputerComputer Physics Communications 139, 45-54.

Makino,, J. (2001c). Next-generation massively parallel computers — massively parallel
computerr for particle-based simulations. In Proceedings of the Fourth Symposium on
ComputationalComputational Science and Engineering. Japan Society for the Promotion of Science,
http :: / /grape. c. u-tokyo. ac. jp/~inakino/papers/cse2001. ps. gz

Makino,, J. (2003, April) . GRAPE-6 User's Guide - Multi-Cluster ver
sionsion without monolithic configuration. Version 0.71a. University of Tokyo,
http:/ /grape.astron.s.u-tokyo.ac. jp/~makino/softwares/GRAPE6/ /

Makino,, J. k Aarseth, S. J. (1992). On a Hermite integrator with Ahmad-Cohen scheme for
gravitationall many-body problems. Publications of the Astronomical Society of Japan 44,
141-151. .

Makino,, J. & Ebisuzaki, T. (1996). Merging of galaxies with central black hole I. hierarchical
mergingss of equal-mass galaxies. Astrophysical Journal 465, 527-533.

http://grape.astron.s.u-tokyo.ac.jp/~makino/softwares/GRAPE6/

BIBLIOGRAPHY BIBLIOGRAPHY 147 7

Makino,, J. &i Fukushige, T. (2001). A 11.55 tflops simulation of black holes in a galactic
centerr on GRAPE-6. In Proc. of Supercomputing 2001 Conference. ACM press.

Makino,, J., Fukushige, T., h Koga, M. (2000). A 1.349 tflops simulation of black holes in a
galacticc center on GRAPE-6. In Proc. of Supercomputing 2000 conference. ACM press.

Makino,, J. & Hut, P. (1988). Performance analysis of direct ./V-body calculations. Astro-
physicalphysical Journal Supplement Series 68, 833-856.

Makino,, J., Kokubo, E., Fukushige, T., & Daisaka, H. (2002). A 22.72 Tflops simulation of
planetesimalss in Uranus-Neptune region on GRAPE-6. In Proc. of Supercomputing 2002
Conference.Conference. ACM press.

Makino,, J. & Taiji, M. (1995). Astrophysical N-body simulations on GRAPE-4 special-
purposee computer. In Proc. of Supercomputing '95 Conference. ACM press.

Makino,, J. & Taiji, M. (1998). Scientific Simulations with Special-Purpose Computers. Chich-
ester,, England (UK): Waley.

Makino,, J., Taiji, M., Ebisuzaki, T., & Sugimoto, D. (1997). GRAPE-4: a massively parallel
special-purposee computer for collisional AT-body simulations. Astrophysical Journal 480,
432-446. .

Maoz,, E. (1993). A fluctuation-dissipation approach to dynamical friction in non-
homogeneouss backgrounds. Monthly Notices of the Royal Astronomical Society 263, 75-85.

Mawhinney,, R. D. (1999). The 1 Teraflops QCDSP computer. Parallel Computing 25,
1281-1296. .

McFarland,, T., Couchman, H., Pearce, F., h Pichlmeier, J. (1998). A new parallel P3M code
forr very large-scale cosmological simulations. New Astronomy 3, 687-705.

McMillan,, S. L. W. (1986). The vectorization of small-iV integrators. In S. L. W. McMillan
k.k. P. Hut (Eds.), The Use of Supercomputers in Stellar Dynamics, Berlin, pp. 156-161.
Springerr Verlag.

McMillan,, S. L. W. & Aarseth, S. J. (1993). An 0(Nlog N) integration scheme for collisional
systems.. Astrophysical Journal 414, 200-212.

McMillan,, S. L. W. & Portegies Zwart, S. F. (2003). The fate of star clusters near the
galacticc center I: Analytic calculations. Astrophysical Journal accepted.

Messagee Passing Interface Forum (1997). MP 1-2: Extensions to the Message-Passing Inter
face.face. Knoxville, TN (USA): University of Tennessee.

Meylan,, G. & Heggie, D. C. (1997). Internal dynamics of globular clusters. Astronomy and
AstrophysicsAstrophysics Review 8, 1-127.

Mezger,, P., Zylka, R., Philipp, S., & Launhardt, R. (1999). The nuclear bulge of the galaxy.
AstronomyAstronomy and Astrophysics 348, 457-465.

148 8 BIBLIOGRAPHY BIBLIOGRAPHY

Mikkola,, S. & Aarseth, S. J. (1990). A chain regularization method for the few-body problem.
CelestialCelestial Mechanics and Dynamical Astronomy 47, 375-390.

Milosavljevic,, M. & Merritt, D. (2001). Formation of galactic nuclei. Astrophysical Jour
nalnal 563, 34-62.

Morris,, M. (1993). Massive star formation near the galactic center and the fate of the stellar
remnants.. Astrophysical Journal 408, 496-506.

Nagata,, T., Woodward, C. E., Shure, M., & Kobayashi, N. (1995). Object 17: Another
clusterr of emission-line stars near the galactic center. Astronomical Journal 109, 1676.

Nagata,, T., Woodward, C. E., Shure, M., Pipher, J. L., & Okuda, H. (1990). AFGL 2004 -
ann infrared quintuplet near the galactic center. Astrophysical Journal 351, 83.

Narumi,, T., Susukita, R., Ebisuzaki, T., McNiven, G., &: Elmegreen, B. (1999). Molecu-
larr Dynamics Machine: Special-purpose computer for Molecular Dynamics simulations.
MolecularMolecular Simulation 21, 401-415.

Narumi,, T., Susukita, R., Koishi, T., Yasuoka, K., Furusawa, H., Kawai, A., h Ebisuzaki,
T.. (2000). 1.34 Tflops Molecular Dynamics simulation for NaCl with a special-purpose
computer:: MDM. In Proceedings of Supercomputing 2000 conference. ACM Press.

Navarro,, J. F., Frenk, C. S., & White, S. D. M. (1997). A universal density profile from
hierarchicall clustering. Astrophysical Journal 490, 493-508.

Okuda,, H., Shibai, H., Nakagawa, T., Matsuhara, H., Kobayashi, Y., Kaifu, N., Nagata,
T.,, Gatley, I., k, Geballe, T. (1990). An infrared quintuplet near the galactic center.
AstrophysicalAstrophysical Journal 351, 89.

Palazzari,, P., Arcipiani, L., Celino, M., Guadagni, R., Marongiu, A., Mathis, A., Novelli, P.,
&& Rosato, V. (2000). Heterogeneity as key feature of high performance computing: the
PQE11 prototype. In Proceedings of the nineth Heterogeneous Computing Workshop, pp.
17-30.. IEEE Computer Society Press.

Pimentel,, A. D., Hertzberger, L. O., Lieverse, P., van der Wolf, P., & Deprettere, E. F.
(2001).. Exploring embedded-systems architectures with Artemis. Computer 34 (11), 57.

Plummer,, H. C. (1915). The distribution of stars in globular clusters. Monthly Notices of
thethe Royal Astronomical Society 76, 107-121.

Portegiess Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. (1999). Star cluster ecology.
III .. runaway collisions in young compact star clusters. Astronomy and Astrophysics 348,
117-126. .

Portegiess Zwart, S. F., McMillan, S. L. W., Hut, P., & Makino, J. (2001). Star cluster
ecologyy - IV. dissection of an open star cluster: Photometry. Monthly Notices of the Royal
AstronomicalAstronomical Society 321, 199-226.

BIBLIOGRAPHY BIBLIOGRAPHY 149 9

Salmon,, J. K. & Warren, M. S. (1994). Skeletons from the treecode closet. Journal of
ComputationalComputational Physics 111, 136-155.

Salmon,, J. K. & Warren, M. S. (1997). Parallel, out-of-core methods for iV-body simulation.
Inn Proc. of the eigth SIAM conference on Parallel Processing for Scientific Computing.
SIAMM press.

Sauer,, C. H. & Mani Chandri, K. (1981). Computer Systems Performance Modeling. Engle-
woodd Cliffs, NJ (USA): Prentice-Hall.

Spitzer,, L. (1987). Dynamical Evolution of Globular Clusters. Princeton, NJ (USA): Prince-
tonn University Press.

Springel,, V., Yoshida, N., & White, S. D. M. (2001). GADGET: a code for collisionless and
gasdynamicall cosmological simulations. New Astronomy 6, 79-117.

Spurzem,, R. (1999). Direct iV-body simulations. Journal of Computational and Applied
MathematicsMathematics 109, 407-432.

Sugimoto,, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T., & Umemura, M. (1990). A
special-purposee computer for gravitational many-body problems. Nature 345, 33-35.

Taffoni,, G., Mayer, L., Colpi, M., & Governato, F. (2003). On the life and death of satellite
haloes.. Monthly Notices of the Royal Astronomical Society 341, 434-448.

Tamblyn,, P. & Rieke, G. H. (1993). IRS 16 - the galaxy's central wimp? Astrophysical
JournalJournal 414, 573.

Tanenbaum,, A. S. (2001). Modern Operating Systems, 2nd ed. Upper Saddle River,
NJJ (USA): Prentice-Hall

Triendl,, R. (2002). Our virtual planet. Nature 416, 579-580.

Tripiccione,, R. (1999). APEmille. Parallel Computing 25, 1297-1309.

vann den Bosch, F. C., Lewis, G. F., Lake, G., &c Stadel, J. (1999). Substructure in dark
halos:: Orbital eccentricities and dynamical friction. Astrophysical Journal 515, 50-68.

vann Gemund, A. (1993). Performance prediction of parallel processing systems: The PAMELA

methodology.. In Proceedings of seventh ACM International Conference on Supercomput-
ing.ing. ACM press.

vann Gemund, A. (2003). Symbolic performance modeling of parallel systems. IEEE Trans
actionsactions on Parallel and Distributed Systems 14, 154-165.

Warren,, M. S. & Salmon, J. K. (1993). A parallel hashed oct-tree iV-body algorithm. In
Proc.Proc. of Supercomputing '93 conference, pp. 12-21. ACM press.

Warren,, M. S. & Salmon, J. K. (1995). A portable parallel particle program. Computer
PhysicsPhysics Communications 87, 266-290.

150 0 BIBLIOGRAPHY BIBLIOGRAPHY

Warren,, M. S., Salmon, J. K., Becker, D. J., Goda, M. P., Sterling, T., & Winckelmans,
G.. S. (1997). Pentium Pro inside: I. A treecode at 430 Gigaflops on ASCI Red, II .
Price/performancee of $50/Mflop on Loki and Hyglac. In Proc. of Supercomputing '97
conference.conference. ACM press.

Samenvatting g

Inn dit proefschrift analyseren we hulpmiddelen die ontwikkeld zijn om de snelheid en de ac-
curatessee van zogenaamde "JV-body simulaties" te verhogen. De moleculen in een chemische
oplossing,, of de sterren in een sterrenhoop zijn voorbeelden van dergelijke JV-body syste-
men.. In dit proefschrift richten we ons op JV-body systemen die gedreven worden door de
zwaartekracht,, zoals die worden toepast in de sterrenkunde.

JV-bodyy problemen zijn analytisch onoplosbaar. Met behulp van high-performance
computingg technieken en geavanceerde algoritmen kunnen ze echter wel numeriek worden
aangepakt.. Deze numerieke oplossingen vereisen zoveel computationeel vermogen, dat er
geavanceerdee algoritmen nodig zijn om het JV-body probleem te versnellen. Hierbij wordt
echterr op de nauwkeurigheid van de oplossing ingeleverd. Een andere aanpak is het gebruik
vann gespecialiseerde hardware, die zich leent voor JV-body problemen die meer numerieke
accuratessee vereisen. Hiermee kan de numerieke oplossing van het JV-body probleem met
behoudd van accuratesse worden versneld.

Inn dit proefschrift onderzoeken we de mogelijkheid om deze twee benaderingen te com-
bineren,, door de snelle, gespecialiseerde hardware in een conventionele, parallelle computer te
integreren.. We noemen dergelijke systemen hybride architecturen. Veel onderzoekers streven
naarr generalisatie en zijn meer gecharmeerd van conventionele systemen, die worden opge-
bouwdd uit gewone hardware (PC's), zoals de Beowulf of het Grid. In de andere benadering
streeftt men ernaar zeer hoge prestaties door middel van hardwarespecialisatie te verkrijgen.
Hett doel van ons onderzoek is, deze twee benaderingen te overbruggen. We onderzoeken de
levensvatbaarheidd van hybride architecturen, en evalueren hun potentieel om grootschalige
simulatieproblemenn op te lossen.

Dee gespecialiseerde hardware die we bestuderen is de GRAPE. Dit is een zeer krachtige
machinee die wordt gebruikt voor de simulatie van sterrenkundige JV-body systemen. Op
GRAPEE uitgevoerde simulaties hebben vijf keer in de laatste acht jaar de Gordon Bell prijs
gewonnen,, die jaarlijks wordt toegekend aan de snelste simulatie ter wereld.

Hett is belangrijk om de interactie te begrijpen tussen de parallelle machine en de
gespecialiseerdee hardware enerzijds, en anderzijds de softwaretoepassing die op de hybride

151 1

152 2 Samenvatting g

architectuurr wordt uitgevoerd. Zo kunnen knelpunten in het verloop van de simulatie worden
gelocaliseerd,, en kan de optimale configuratie worden gevonden. Om deze interactie te
bestuderenn maken we gebruik van performance modelling. In deze techniek worden simulaties
gebruiktt om de prestaties van simulatiesystemen te bestuderen. Deze meta-simulatie is de
kernn van ons onderzoek, en richt zich op het vinden van de optimale interactie tussen snelle
softwaree en hardware die uiteindeijk zal kunnen leiden tot de ontwikkeling van een zeer snelle
simulatieomgevingg voor JV-body systemen.

Eenn belangrijk doel van dit proefschrift is om de potentie van hybride architecturen als
optimalee berekeningsomgeving voor de oplossing van specifieke problemen aan te tonen. In
ditt licht hebben we een numeriek algoritme bestudeerd en aangepast aan de hybride archi-
tectuur.. Dit algoritme maakt het mogelijk om geavanceerde iV-body codes te gebruiken op
gespecialiseerdee hardware. Dit numerieke algoritme is het softwarematige deel van de hybri-
dee architectuur, en vormt de basis voor de ontwikkeling van een efficiënte simulatieomgeving
voorr het JV-body probleem.

Tenn slotte bestuderen we de toepassing van de AT-body simulaties in sterrenkundig
onderzoek.. We bestuderen de val van een massief object (een zwart gat) naar het centrum
vann het melkwegstelsel.

TV-bodyy simulaties zijn een effectief hulpmiddel om de tijdschaal van deze val te be-
studeren;; ze kunnen ondersteuning (of bezwaren) bieden aan theoretische modellen voor de
verklaringg van astronomische observaties.

Ditt proefschrift bestaat uit drie delen. Het eerste deel behandelt de performance mo
dellingdelling en de simulatie hiervan, en bestaat uit twee hoofdstukken. In hoofdstuk 2 analyseren
wee de prestatie van de iV-body-code NBODY1 op onze experimentele hybride architectuur,
diee bestaat uit twee GRAPE-4-borden en een parallelle computer. Het bevat een uitvoerige
beschrijvingg van de taken van NBODY1, en bevat prestatiemetingen en een analyse van een
aantall versies van NBODY1 op onze hybride architectuur. Deze metingen vormen de ba-
siss voor de performance modelling en simulatie van de architecturen waarop 7V-body-codes
wordenn uitgevoerd. Dit performance modelling and simulation werk wordt geïntroduceerd in
hoofdstukk 3.

Deell twee van dit proefschrift bestaat ook uit twee hoofdstukken. Hoofdstuk 4 behan-
deltt de nauwkeurigheidsanalyse en optimalisering van een hybride JV-body-code, die voor
optimaall gebruik met de GRAPE ontwikkeld is. Wij bestuderen de foutpropagatie in de
codee bij verschillende deeltjesverdelingen, en verbeteren de nauwkeurigheid van de code
wanneerr ze gebruikt wordt bij zeer inhomogene distributies.

Inn hoofdstuk 5 introduceren we onze vergelijkende multi-methode JV-body simulaties.
Mett behulp van deze simulaties beogen we kwantitatieve schattingen te doen van de effici-
ëntiee van de spiralisering van een zwart gat naar het centrum van het melkwegstelsel. We
proberenn het effect van deeltjesgranulariteit en codeonnauwkeurigheid op de valefficiëntie
vann de zwarte gat te begrijpen. Tot slot, vatten we in deel II I ons werk samen en bespreken
wee de toekomstige ontwikkelingen.

Listt of Publications

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance modelling of hybrid
parallelparallel systems, Proceedings of the TUG99 meeting, Barcelona, 1999.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Analysis of Parallel
N-BodyN-Body Codes, in M. Bubak; H. Afsarmanesh; R.D. Williams and L.0. Hertzberger,
editors,, Proceedings of the HPCN2000 Conference, LNCS vol. 1823, pp. 249-260.
Springer-Verlag,, 2000.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance analysis of parallel
N-bodyN-body codes, in L.J. van Vliet; J.W.J. Heijnsdijk; T. Kielmann and P.M.W. Knijnen-
burg,, editors, Proceedings of the sixth annual conference of the Advanced School for
Computingg and Imaging, pp. 213-220. ASCI, 2000.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance modelling of hybrid
architectures,architectures, in U. Barberis et al., editors, Proceedings of the SIMAI 2000 confer-
ence,, Sommari - Abstracts, pp. 73-74. Societa Italiana di Matematica Applicata e
Industriale,, Rome, 2000.

Bal,, A., et al., The distributed ASCI supercomputer project, Operating Systems Review,
vol.. 34 (4), pp. 76-96. Association for Computing Machinery, Special Interest Group
onn Operating Systems, 2000.

P.M.A.. Sloot; P.F. Spinnato and G.D. van Albada: N-body simulation on hybrid ar
chitectures,chitectures, in V.N. Alexandrov; J.J. Dongarra; B.A. Juliano; R.S. Renner and C.J.K.
Tan,, editors, Proceedings of the ICCS 2001 conference, LNCS vol. 2074, pp. 883-892.
Springerr Verlag, 2001.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance of N-body Codes on
HybridHybrid Machines, Future Generation Computer Systems, 17, 951-959, 2001.

153 3

ListList of Publications

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Prediction of N-body
SimulationsSimulations on a Hybrid Architecture, Computer Physics Communications, 139, 34-44,
2001. .

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: A Simulator for Parallel Hybrid
ComputerComputer Systems, in R.L. Lagendijk; J.W.J. Heijnsdijk; A.D. Pimentel and M.H.F.
Wilkinson,, editors, Proceedings of the seventh annual conference of the Advanced
Schooll for Computing and Imaging, pp. 210-219. ASCI, 2001.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: A Versatile Simulation Model for
HierarchicalHierarchical Treecodes, in P.M.A. Sloot; C.J.K. Tan; J.J. Dongarra and A.G. Hoek-
stra,, editors, Proceedings of the ICCS2002 conference, LNCS vol. 2329, pp. 176-185.
Springerr Verlag, 2002.

P.F.. Spinnato and S.F. Portegies Zwart, The Infall of Dense Star Clusters in the Galac
tictic Centre, Proceedings of the 57th annual conference of the NAC (Dutch Astronomers
Club),, 2002.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Hier
archicalarchical N-body Codes Running on Hybrid Architectures, in E.F. Deprettere; A.S.Z.
Belloum;; J.W.J. Heijnsdijk and F. van der Stappen, editors, Proceedings of the eighth
annuall conference of the Advanced School for Computing and Imaging, pp. 211-218.
ASCI,, 2002.

P.F.. Spinnato; S.F. Portegies Zwart; M. Fellhauer; G.D. van Albada and P.M.A. Sloot:
ToolsTools and Techniques for N-body Simulations, in R. Capuzzo Dolcetta, editor, Pro-
ceedingss of the 1st workshop on Computational Astrophysics in Italy: Methods and
Tools,, MemSAIt Suppl. Series vol. 1, pp. 54-65. Societa Astronomica Italiana, 2003.

P.F.. Spinnato; M. Fellhauer and S.F. Portegies Zwart: The Efficiency of the Spiral-in
ofof a Black Hole to the Galactic Centre, Monthly Notices of the Royal Astronomical
Society,, in press, 2003.

P.F.. Spinnato; G.D. van Albada and P.M.A. Sloot: Performance Modelling of Dis
tributedtributed Hybrid Architectures, IEEE Transactions on Parallel and Distributed Systems,
inn press, 2003.

1 1

	Cover
	Titlepage
	Contents
	Acknowledgments
	Chapter 1 Introduction
	Part I Performance Modelling and Simulation
	Chapter 2 N-body Codes on Hybrid Architectures
	Chapter 3 Modelling and Simulation of Hybrid Architectures
	Part II Applications
	Chapter 4 Pseudo-Particle Powered Treecode: Error Analysis and Optimisation
	Chapter 5 The Efficiency of the Spiral-in of a Black Hole to the Galactic Centre
	Part III Conclusions
	Bibliography
	Samenvatting
	List of Publications
	Cover

