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Chapter 1

Introduction

"The fact that the pieces do fit together [...] is something
you might miss from focussing too closely
on one aspect of science.”

John Gribbin - Almost Everyone’s Guide to Science (1998)

Throughout history, mankind has had an ever growing desire for increased efficiency.
Irrespective of the origin of the desire, its manifestations are manifold. For example,
the desire to efficiently disseminate ideas and information from a single source to a
large and far-ranging audience, directly led to Gutenberg’s invention of the printing
press*. In the Mid-Eighteenth Century, the desire for large-scale production resulted
in the application of power-driven machinery to manufacturing — and the Industrial
Revolution. More recently, the need for automated processing of scientific problems,
and the handling of large amounts of data, led to the advent of the Information Age.

Once its raison d’étre is demonstrated, high-speed machinery is constantly being
improved upon for ever increased efficiency. A good example is the development
of successive generations of trains. When the English inventor Richard Trevithick
introduced the steam locomotive on 21 February 1804 in Wales, it achieved a speed of
8 km/h. In 1825, Englishman George Stephenson introduced the world’s first workable
passenger train, which steamed along at 24 km/h. Today, the fastest passenger trains
fly down the tracks at a speed of approximately 550 km/h.

Part of the success of such technologies stems from the fact that successive perfor-
mance improvements generally did not result in increased user requirements. At any
time, a passenger could get onto a train, sit down pleasantly, get some sleep, read a
newspaper, do some work, and get off at any station, without ever having to worry
about the actual running of the train. If) in contrast, it would have been required

*For reasons of completeness. the author would like to stress that in his city of birth (Haarlem.
The Netherlands) many still consider Laurens Jansz. Coster to be the true inventor of printing [160].
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from anyone travelling the latest zenith in high-speed train design to have expert
knowledge regarding the train’s locomotion, passenger numbers would have dropped
dramatically. Unfortunately. it is exactly this problem that can be observed with
respect to the latest developments in high performance computer systems.

As stated. the Information Age has seen major breakthroughs in the automated
processing of scientific problems. Today, ever more complex problems are being stud-
ied using ever faster. and more complex machines. Often. the required processing
power is delivered only by arguably the most complex systems of all — i.e.. high
performance parallel computers in their myriad of forms. To effectively exploit the
available processing power. a thorough understanding of the complexity of such sys-
tems is required. As an immediate consequence. the number of "passengers’ that is
capable of riding’ such high performance parallel architectures is low.

Despite the complexity, many non-expert users are still tempted by the processing
power provided by parallel systems — often to emerge with nothing but a disappoint-
ing result. In [75] this problem is stated somewhat more dramatically as follows:

Anecdotal reports abound about researchers with scientific and engineer-
ing problems who have tried to make use of parallel processing systems,
and who have been almost fatally frustrated in the attempt.

Clearly. there is a major discrepancy between the desire to obtain high performance
with relative ease, and the potential of current high performance systems (i.e., the
combination of all software layers and the underlying hardware) to satisfy this desire.

As indicated below. the specific research area of image processing — which is
the field of focus of this thesis - also demonstrates a persistent desire to access the
speed potential of high performance computer systems. The desire partially stems
from the fact that it has been recognized for years that the application of parallelism
in image processing can be highly beneficial [161]. However. in the field of image
processing research, the observed discrepancy between desire and reality is no less
severe. Essentially, the work described in this thesis is an endeavor to resolve this
discrepancy - and to satisfy the need for easily obtainable speed in image processing.

1.1 The Need for Speed in Image Processing

The 'need for speed’ has been recognized in many areas of digital image processing
and computer vision {151]. Applications abound in which large amounts of data are
to be processed, while having to adhere to strict time constraints at the same time.
For example, a typical visual information standard such as television may generate
data at a rate of up to 120 Mbytes per second [130]. As each pixel in the information
stream generally is subjected to a multitude of processing steps. the total amount
of processing power required per time unit is huge. In many cases (e.g., when real-
time requirements are to be met), state-of-the-art sequential computers no longer can
provide the necessary performance. The only way to supply the desired processing
power (now and in the future) is by employing high performance computer systems.

A considerable diversity exists in the type of algorithms applied in imaging appli-
cations. Generally, a distinction is made between three different operation levels [118]:
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1. Low level image processing operations. These operations primarily work
on whole image data structures, and yield another image data structure. The
computations have a local nature, and are to be performed for each pixel in an
image. Examples are: basic filter operations (e.g., smoothing, edge enhance-
ment), and image transformations (e.g., rotation, scaling).

. Intermediate level image processing operations. These operations re-
duce the image data field into segments (regions of interest), and produce more
compact and symbolic image structure representations (such as lists of object
border descriptions). Examples are: region labeling, and object tracking.

. High level image processing operations. These operations primarily con-
cern the interpretation of the symbolic data structures obtained from the in-
termediate level operations. Essentially, the operations try to imitate human
cognition and decision making, according to the information contained in the
image. Examples are: object recognition, and semantic scene interpretation.

The execution of a set of low level routines is a common starting point for many
typical image processing applications. In this thesis, we restrict ourselves to this
initial processing phase. First, this is because the processing of visual data at the
pixel level is highly regular in nature, to the effect that it provides a natural source
of parallelism. More importantly, this is because the initial processing phase is by far
the most time consuming part of the bulk of image processing applications [165].

1.2 The Gap Between Computing and Imaging

In spite of the large potential performance gains (and the overwhelming desire to
obtain them), the image processing community at large does not benefit from high
performance computing on a daily basis. As will be discussed extensively in this
thesis, the problem is primarily due to the fact that no programming tool is avail-
able that can effectively help non-expert parallel programmers in the development of
image processing applications for efficient execution on high performance computing
architectures. Existing programming tools generally require the user to identify the
available parallelism at a level of detail that is beyond the skills of non-expert parallel
programmers [148]. As it is unrealistic to expect researchers in the field of image
processing to become experts in high performance computing as well, it is essential to
provide a tool that shields its users from all intrinsic complexities of parallelization.

The work described in this thesis is an attempt to effectively bridge the gap be-
tween the specific expertise of the image processing community, and the additional
expertise required for efficient employment of high performance computer architec-
tures. More specifically, the thesis describes the design and implementation of a
software architecture that allows non-expert parallel programmers to develop image
processing applications for execution on homogeneous distributed memory MIMD-
style multicomputers. As a result, this thesis addresses the following fundamental
research issue: how to design a sustainable, yet efficient, software architecture for
parallel image processing, that provides the user with a fully sequential programming
model, and hides all parallelization and optimization issues from the user completely.
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1.3 Thesis Outline

In the past. several parallelization tools have been described that. to a certain ex-
tent, serve as an aid to non-expert parallel programmers. As discussed extensively
in Chapter 2, such tools generally suffer from fundamental problems that make them
unsuitable as an acceptable long-term solution for the image processing community.
Most importantly. the tools often are provided with a programming model that does
not match the image processing researcher’s frame of reference. In addition, efficiency
of parallel execution is often far from optimal. Also, it is often hard to incorporate
extensions to deal with new hardware developments and additional user requirements.
To overcome these problems. Chapter 2 proposes a new and innovative software ar-
chitecture for user transparent parallel image processing. that excludes its users from
having to learn any skills related to parallelization and performance optimization.

In Chapter 3. we give a detailed account of the software architecture’s design phi-
losophy. We focus on implementing the architecture such that code redundancy is
avoided as much as possible. and efficiency of execution is guaranteed. We demon-
strate that the presented design philosophy allows for long-term architecture sustain-
ability. as well as close-to-optimal performance.

In Chapter 4, we indicate how to apply a simple analytical performance model in
the process of automatic parallelization and optimization of complete image processing
applications. To this end, we present a high level abstract parallel image processing
machine (APIPM ). designed to capture typical run-time behavior of parallel low level
image operations. From its instruction set, a high level performance model is obtained
that is applicable to a relevant class of parallel platforms.

Chapter 5 addresses the problem of accurate cost estimation of the communication
primitives applied in our software architecture. It is observed that existing communi-
cation models are not powerful enough to serve as a basis for automatic and optimal
domain decomposition of the image data structures applied in typical applications.
To overcome this problem, the specific capabilities of the applied communication
primitives are combined into a new. more powerful performance model (P-3PC).

Chapter 6 deals with the problem of the automatic conversion of any sequential
image processing application into a correct and efficient parallel version. To this end.
we define a simple finite state machine specification that guarantees the conversion
process to be performed correctly at all times. As the issue of automatic optimization
of complete applications is the central problem our software architecture for user
transparent parallel image processing is confronted with, Chapter 6 combines all of
the results obtained in Chapters 3, 4, and 5.

In Chapter 7. we give an assessment of the software architecture’s effectiveness
in providing significant performance gains. We describe the implementation and au-
tomatic parallelization of three well-known example applications that contain many
operations commonly applied in image processing. In addition, we investigate how
well the performance obtained with our software architecture compares to that of
reasonable hand-coded implementations.

Finally, in Chapter 8 we summarize the results of this research, and present our
view on the developed architecture for user transparent parallel image processing.




Chapter 2

A Sequential Programming
Model for Efficient Parallel
Image Processing™

70 Freunde, nicht diese Tone!
Sondern lafit uns angenehmere anstimmen...”

Ludwig van Beethoven - Symphony No. 9 "Choral” (1824)

Parallel and distributed computing architectures, whose performance far exceeds
that of traditional sequential systems, have been available for decades. As an exam-
ple, the development of the Illiac IV [12], a machine commonly seen as the first true
parallel system, started as early as 1965. In recent years, high performance computing
systems have become more and more widespread, especially with the advent of highly
flexible Field-Programmable Gate Arrays (FPGAs [18, 24, 66]) and relatively cheap
Beowulf clusters [7, 157]. Also, specialized digital signal processing (DSP) devices
and dedicated hardware architectures have become widely available [48, 91, 127].

As discussed in Chapter 1, the processing power as provided by parallel and dis-
tributed systems is essential for many image processing applications. Also, it has been
recognized for years that the application of parallelism in imaging can be highly benefi-
cial [161]. As a result, collaboration between the research communities of high perfor-
mance computing and imaging has been commonplace, and typically resulted in spe-
cialized hardware configurations (e.g., see [47, 65, 88, 89, 107]) capable of efficiently ex-
ecuting domain-specific routines [19, 32, 134]. Yet, in spite of the importance of these
achievements, the application of parallelism in imaging research is not widespread.

*This chapter contains portions of our paper as appeared in Proceedings of the 15th International
Conference on Pattern Recognition (ICPR 2000) [140]. An extended version of this chapter is to
appear in Concurrency and Computation: Practice and Ezperience [146].
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Primarily, we ascribe the rather small user base of parallel computing within the
image processing research community to the high threshold associated with the use of
high performance computing architectures. One determinative factor for the existence
of the threshold is the relatively high cost involved in using a specific parallel machine.
In general, the image processing community can not afford to acquire and maintain
such systems, and has to rely on hardware and support provided by the computing
community. More importantly, the threshold exists due to a common characteristic
of parallel and distributed systems, namely: they are much harder to program than
sequential computers. Although several attempts have been made to alleviate the
problem of software design for parallel and distributed systems, as of yet no solution
is available that has found widespread acceptance.

As will be discussed extensively in this chapter, the latter problem is due to the
fact that no efficient parallelization tool exists that is provided with a programming
model that matches the entrance level of the average image processing practitioner.
Most existing software development tools require the user to explicitly identify the
available parallelism, often at a level of detail beyond the expertise and interest of
most image processing researchers. Hence, it is essential to provide an alternative
tool that offers a more ’familiar’ programming model.

In this chapter we argue that a parallelization tool for the image processing re-
search community is acceptable only if it hides all parallelism from the application
programmer, and produces highly efficient code in most situations. Stated differently,
we argue that a programming model is considered *familiar’ only, if it offers complete
user transparent parallel image processing.

Several solutions have been described in the literature that allow for user transpar-
ent implementation of high performance image processing applications. In all cases,
solutions are being provided in the form of an extensive software library containing
parallel versions of fundamental image processing operations. The solutions, however,
all suffer from one of several obstacles for widespread acceptance. Most significantly,
the efficiency of parallel execution of complete applications often is far from optimal.
In addition, the provided software library often does not incorporate a sufficiently high
level of sustainability, thus dramatically reducing the chance on long term success.

Given these observations, the primary research issue addressed in this chapter
is: How to provide the average image processing practitioner with a fully sequential
programming model that allows for implementation of efficient parallel imaging ap-
plications such that the user is shielded from all issues related to parallelization and
performance optimization? The second research issue addressed here is the following;:
How to incorporate such sequential programming model in an efficient parallelization
tool that allows its developers to respond to changing demands quickly and elegantly?

In this chapter we propose a complete software architecture for user transparent
parallel image processing that is specifically designed to deal with these issues. We
discuss the requirements put forward for such programming tool, and provide a gen-
eral overview of the architecture’s constituent components. Essentially, this overview
serves as a roadmap for the remaining chapters of the thesis.

This chapter is organized as follows. Section 2.1 presents a list of requirements
a potential target hardware architecture should adhere to for it to be used in image
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processing research. Based on the requirements one particular class of platforms is
indicated as being most appropriate. In Section 2.2 the notion of user transparency
is introduced, and used as a basis for an investigation of available tools for imple-
menting parallel imaging applications on the selected set of target platforms. As the
investigation shows that no existing development tool is truly satisfactory, our new
software architecture for user transparent parallel image processing is introduced in
Section 2.3. Concluding remarks are given in Section 2.4.

2.1 High Performance Computing Architectures

A parallelization tool intended as a programming aid in imaging research is more likely
to find widespread acceptance if it is targeted towards a machine that is favored by
the image processing research community. Implicitly (i.e., by ignoring inappropri-
ate architectures), the imaging community has defined several requirements for such
machines. These are formulated as follows:

e Wide availability. To ensure that the imaging community at large can benefit
from a parallelization tool, it is essential that the target platform is widely
available. Less popular or experimental architectures tend to suffer from a lack
of continuity, thus hindering the ever present desire for hardware upgrades.

e FEase of accessibility. The target platform should be easily accessible to the
image processing practitioner. This refers to the manner in which one logs on
to the machine, how programs are to be compiled and run, and to the ease by
which a set of processing elements is obtained. The last issue is particularly
important where multiple users share a pool of processing elements.

o Unrestricted programmability. The hardware platform should not restrict the
application programmer. It should be capable of executing the various opera-
tions commonly used as a basis in image and video processing applications.

e Ready upgradability. It is essential that the software developed for the target
platform should be executable after each upgrade to the next generation of the
same architecture. In other words, the desired continuity of the target platform
requires a high degree of backward compatibility.

o High efficiency. The target platform should be capable of obtaining significant
performance gains, especially for the most common imaging operations. If no
significant improvements are to be expected, the process of accessing a parallel
machine, and implementing and optimizing code for it, would be useless.

e Low cost. Even when significant speedups are to be expected, the financial bur-
den of executing imaging software on the target platform should be kept to a
minimum. As high performance computing is not a goal in itself in imaging re-
search, the amount of money that may be spent on computing resources is small
compared to the amount of money that flows to more fundamental research.
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We are aware of the fact that additional requirements may hold in other application
areas. Here, we deem such requirements to be either inherent to parallel systems in
general (such as the desire for hardware scalability), or unimportant to most image
processing practitioners (such as the amount of control over the structure, processing
elements. operation. and evolution of a particular parallel system). Also. for specific
image processing research directions additional requirements may be of significant im-
portance. For example, in certain application areas strict limitations may be imposed
on the target platform’s size, or the amount of power consumption. In this thesis,
however. we restrict ourselves to the list as presented here. as this represents the set
of general requirements that holds for most image processing resecarch areas.

Favoring Beowulf-type Commodity Clusters

As described in [33. 78. 146]. several machines in the classes of general purpose MISD-.
SIMD-. and MIMD-style parallel architectures (Flynn [19]) are potential candidates
for high speed execution of image processing applications. Also, many special purpose
architectures (e.g., ASICs [4, 98], FPGAs [24, 46, DSPs [47. 48]), as well as several
enhanced general purpose CPUs [42. 116. 121]. have been designed to obtain even
higher performance for specific image processing tasks [33].

Irrespective of the significance of these systems. one architecture type stands out
as particularly interesting for our purposes, i.e. the class of Beowulf-type commod-
ity clusters [7, 157]. As one of the original designers of this type of architectures,
Thomas Sterling. describes in a guest editorial on the clusters@top500 website [30].
Beowulf-type systems are particularly important because "it is quite possible that
by the middle of this decade clusters in their myriad of forms will be the dominant
high-end computing architecture.” Indeed, a strong trend in high performance com-
puting is the growing use of commodity clusters. and many such systems are currently
installed at research institutes and in commercial environments around the world.

Apart from being widely available. clusters often are made easily accessible to
researchers from outside the computing community. Expected cooperation between
multiple research disciplines often is the determinative factor in obtaining funding
for such computer systems in the first place. In addition. the general-purpose nature
of the constituent computing nodes fully adheres to the requirement of "unrestricted
programmability’. In fact, the bulk of all image processing research is currently
being performed on similar computing nodes traditionally employed in a stand-alone
manner. Also, a major advantage of the use of personal computers as constituent
components is a long term continuity combined with ‘ready upgradability’.

The single characteristic that makes a cluster favorable over other systems, how-
ever, is the emphasis on price-performance. As Sterling states in the same editorial:
”for many application types, commodity clusters will deliver better, by even orders
of magnitude in many cases, price-performance with respect to alternative systems”.
From these properties, in combination with the fact that many references exist that
show significant performance gains for a multitude of different image processing ap-
plications (e.g., see [75, 79, 93, 159]), we conclude that clusters constitute the most
appropriate target platforms for our specific needs.
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2.2 Software Development Tools

Apart from its design and capabilities, the (commercial) success of any computer
architecture significantly depends on the availability of tools simplifying software de-
velopment. As an example, for many users it is often desirable to be able to de-
velop programs in a high-level language such as C or C++. Unfortunately, and in
contrast with general-purpose sequential systems, for many of the hardware archi-
tectures referred to in Section 2.1 available high-level language compilers often have
great difficulties in generating assembly code that makes use of the machine’s parallel
capabilities effectively. As a result, for highest performance the programmer often
must optimize the critical sections of a program by hand.

Whereas assembly coding or hand-optimization may be reasonable for a small
group of experts, most users prefer to dedicate their time to describing what a com-
puter should do rather than how it should do it. Consequently, many programming
tools have been developed to alleviate the problem of low level software design for
parallel and distributed systems. In all cases such tools are provided with a program-
ming model that abstracts from the idiosyncrasies of the underlying parallel hardware.
The small user base of parallel computing in the imaging community indicates, how-
ever, that no existing parallelization tool incorporates a level of abstraction that truly
matches the image processing researcher’s frame of reference.

The ideal solution would be to have a parallelization tool that abstracts from the
underlying hardware completely, allowing users to develop optimally efficient paral-
lel programs in a manner that requires no additional effort in comparison to writing
purely sequential software. Unfortunately, no such parallelization tool currently exists
and due to the many intrinsic difficulties it is commonly believed that no such tool
will be developed ever at all [17]. However, if the ideal of "obtaining optimal efficiency
without effort’ is relaxed somewhat. it may still be possible to develop a parallelization
tool that constitutes an acceptable solution for the image processing research com-
munity. The success of such a tool largely depends on the amount of effort requested
from the application programmer and the level of efficiency obtained in return.

The graph of Figure 2.1 depicts a general classification of parallelization tools
based on the two dimensions of effort and efficiency. Here, the efficiency of a par-
allelization tool is loosely defined as the average ratio between the performance of
any image processing application implemented using that particular tool and the per-
formance of an optimal hand-coded version of the same application. Similarly, the
required effort refers to (1) the amount of initial learning needed to start using a
given parallelization tool, (2) the additional expense that goes into obtaining a par-
allel program that is correct, and (3) the amount of work required for obtaining a
parallel program that is particularly efficient. In the graph, the maximum amount
of effort the average image processing practitioner generally is willing to invest into
the implementation of efficient parallel applications is represented by THRESHOLD 1.
The minimum level of efficiency a user generally expects as a return on investment is
depicted by THRESHOLD 2. To indicate that the two thresholds are not defined strictly,
and may differ between groups of researchers, both are represented by somewhat fuzzy
bars in the graph of Figure 2.1.
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THRESHOLD 2

Effort

EXPERT TOOLS EFFICIENT EXPERT TOOLS

THRESHOLD 1

USER FRIENDLY TOOLS USER TRANSPARENT TOOLS

Efficiency ———

Figure 2.1: Parallelization tools: effort versus efficiency. User transparent tools are
considered both user friendly and sufficiently efficient.

In this thesis, each tool that is considered both "user friendly’ and ’sufficiently effi-
cient’ is referred to as a tool that offers full user transparent parallel image processing.
Apart from adhering to certain levels of requested effort and obtained efficiency, an
important additional feature of any user transparent tool is that it does not require
the user to fine-tune any application in order to obtain particularly efficient parallel
code (although the tool may still allow the user to do so). Based on the above consid-
erations, we conclude that a parallelization tool constitutes an acceptable solution for
the image processing community only, if it can be considered fully user transparent.

One may argue that the thresholds in Figure 2.1 are not straight lines in each of
the two dimensions, but are better combined in a single diagonal (or curved) line.
This would be reasonable, as for a small amount of obtained efficiency the user is
probably not prepared to invest as much effort as for a much higher level of efficiency.
The presented classification is still valid, however, as we argue that it should not be
required from the user to invest any additional effort to obtain higher efficiency.

2.2.1 General Purpose Parallelization Tools

The following gives an overview of the most significant development tools that (a.o.)
can be used for implementing image processing applications on clusters. For each
tool we discuss the level of abstraction incorporated in the programming model, and
assess to what extent it adheres to the properties of full user transparency. The
discussion starts with an overview of general-purpose parallelization tools, and is
followed by an overview of tools designed specifically for developing high performance
image processing applications.
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Message Passing Libraries

Good examples of tools from the set of efficient programming aids for ezperts in
parallel computing are the many software libraries providing message passing func-
tionality [6]. Message passing is a programming paradigm based on the concept of
processes that explicitly communicate data. It is mainly intended for programming
distributed memory MIMD-style multicomputers, but the paradigm applies to shared
memory machines as well. Many efficient and portable message passing systems have
been described in the literature [102], but the sets of library routines provided by PVM
(Parallel Virtual Machine [53]) and MPI (Message Passing Interface [61, 104, 105])
have become the most widely used [54, 67].

Parallel programming on the basis of message passing requires the programmer
to personally manage the distribution and exchange of data, and to explicitly specify
the parallel execution of code on different processors. Although this approach often
produces highly efficient parallel programs, even for expert programmers it is difficult
to do correctly [29]. This is due to the fact that message passing tools do not provide
explicit support for the design and implementation of parallel data structures. Also,
deadlocks are introduced easily, and debugging is hard under critical dependencies
in the relative timing of events. Due to these problems, message passing is often
referred to as the ”assembly language of parallel computing”, since it offers "a means
for expressing parallel computation in an often painstaking, low-level, error-prone
manner” [23]. Given these observations, we conclude that message passing is not the
programming paradigm of choice for the average image processing researcher.

Shared Memory Specifications

As message passing was intended for client/server applications running across a net-
work, PVM and MPI include costly semantics (e.g., the assumption of wholly separate
memories) that are often not required on parallel systems with a globally addressable
memory. To provide a simpler, yet efficient, and portable approach to implementing
parallel programs, several shared memory specifications have been proposed, such
as CRL [76] and Midway [15]. OpenMP [25, 119], which consists of a set of com-
piler directives, library routines, and environment variables to specify shared memory
parallelism in Fortran and C/C++ programs, is the most commonly used.

Although a cluster does not fit in the class of shared-memory architectures, it
is still relevant to include shared memory specifications in this evaluation. This is
because shared memory specifications can be implemented on top of MPI, albeit
at the cost of higher latencies [41]. Also, the provided programming paradigm is
generally believed to be much simpler than MPI [57, 113],

One of the major advantages of shared memory specifications is that it is easy to
incrementally parallelize sequential code. For non-expert programmers, however, it is
still difficult to write efficient and scalable programs. In addition, the presence of both
shared and private variables often causes confusion. As a result, the amount of effort
requested from the average user still exceeds THRESHOLD 1 in Figure 2.1. Therefore
we conclude that shared memory specifications fall in the set of ’efficient expert tools’
as well, and do not adhere to the requirements of full user transparency.
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Extended High-Level Languages

An alternative to the library approach as followed by MPI and OpenMP is to provide
a small set of modifications and/or extensions to an existing high-level programming
language. Probably the most popular example of a language that has adopted this
approach is HPF (High Performance Fortran [97]). A similar approach is followed
in SPAR [128, 129], which is one of the many extended, parallel versions of Java.
Also, many alternative extensions and modifications to C++ exist [171], of which
Compositional C++ [26] and Mentat [60] are the most significant examples.

Irrespective of language design and compilation issues, for users of such languages
the most important problem is that it is often required to understand in what situa-
tions the compiler can produce efficient executable code. For example, HPF requires
that the distribution of data is specified separately from the routines operating on
that data. Consequently, a mismatch between data distribution and functionality is
easily introduced, possibly resulting in reduced performance due to huge amounts
of unnecessary communication. As state-of-the-art compilers are not capable of de-
tecting all such non-optimal behavior automatically [8, 17], much of the efficiency of
parallel execution is still in the hands of the application programmer. As a result, the
amount of effort a non-expert user must invest into writing efficient parallel codes in
an extended high-level language also exceeds THRESHOLD 1 in Figure 2.1.

Parallel Languages

Rather than extending an existing sequential language, it is also possible to design
an entirely new parallel programming language from scratch. Considering parallelism
directly in the design phase of a concurrent language offers a better chance of obtain-
ing a clean and unified parallel programming model. Also, this approach facilitates
implementation of efficient compiler optimizations, and the development of effective
debugging tools. For these reasons, many parallel languages have been described in
the literature (e.g., Ada [13], Occam [77], Orca [8, 137, 138], and Parlog [58)).

Despite years of intensive research, no parallel language has truly found widespread
acceptance, either in the imaging community or elsewhere. One reason is that it
appears to be difficult to design language features that are both generally applicable
and easy to use {120]. A more important reason is that most scientific programmers
are reluctant to learn an entirely new program development philosophy, or unfamiliar
language constructs. As the parallelism in a parallel language is always explicit, and
fine-tuning is often an inherent part of the program development process, we conclude
that the amount of effort required from the average user generally is too high.

Fully Automatic Parallelizing Compilers and Parallelizing Pre-Compilers

As opposed to the parallelization tools discussed so far, an efficient automatic par-
allelizing compiler would constitute an ideal solution. It would allow programmers
to develop parallel software by using a sequential high-level language without having
to learn additional parallel constructs or compiler directives [10]. However, a funda-
mental problem is that many user-defined algorithms contain data dependencies that
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prevent efficient parallelization. This problem is particularly severe for languages
supporting pointers [2]. In addition, techniques for automatic dependency analysis
and algorithm transformation are still in their infancy. Although interesting solutions
have been reported that require the user to be conservative in application development
(e.g., to allow efficient parallelization of loop constructs [52]), fully automatic paral-
lelizing compilers that can produce efficient parallel code for any type of application
do not exist — and a real breakthrough is not expected in the near future [17].

As an alternative, effort is currently being put into semi-automatic tools (such
as FORGE [5]) that require the programmer to help the compiler interactively in
the parallelization process. Although, in principle, this approach could allow user
transparent implementation of parallel imaging applications, it can not be considered
an acceptable solution. This is because the approach does not eliminate the burden of
specifying the available parallelism; it merely pushes the problem forward to a later
stage in the program development process.

2.2.2 Tools for Parallel Image Processing

The regular evaluation patterns in many low level image processing operations often
make it easy to determine how to parallelize such routines efficiently. Also, because
many different image operations incorporate similar data access patterns, a small
number of alternative parallelization strategies often need to be considered. These
observations have led to the creation of software development tools that are specifically
tailored to image processing applications. Such tools may provide higher abstraction
levels to the user than general-purpose tools, and are potentially much more eflicient
as important domain-specific assumptions often can be incorporated.

Programming Languages for Parallel Image Processing

One approach to integrating domain-specific knowledge is to design a programming
language for parallel image processing specifically. Apply [64, 164] was one of the first
attempts in this direction. It is a simple, architecture-independent language restricted
to local image operations, such as edge detection, smoothing, and point operations.
It is based on the observation that many operations follow a stereotypical form:

for each row
for each column
produce an output pixel based on a window of pixels around
the current row and column in the input image

Apply exploits this idea by requiring the programmer to write only the innermost
'per pixel’ portion of the computation. The iteration is then implicit and can easily
be made parallel. Apply’s restricted programming model allows easy implementation
of quite an extensive set of operations. The programmer simply has to describe the
program in terms of the smallest meaningful unit — namely, a window taken around
a pixel in an image. Because a program is specified in this way, the compiler needs
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only to divide the images among processors and then iterate the Apply program over
the image sections allocated to each processor. Despite the fact that the language
was capable of providing significant speedups for many applications, the programming
model proved to be too restricted for practical use.

In a different language, called Adapt [165]. the basic principles of Apply are ex-
tended to incorporate global operations as well. In such operations an output pixel
can depend on many or all pixels in the input image. Adapt is based on the split-
and-merge programming model, in which data structures are split according to data
position, and separately computed adjacent results are then merged. The program-
mer has to describe both the operation to be performed at every pixel of the image
(as in Apply). as well as a combining operation to merge two results produced in-
dependently at different processors. Although the language certainly allows for an
efficient parallel implementation of many important image processing applications.
the programming model is not ideal. This is because the programmer is personally
responsible for data partitioning and merging. albeit at quite a high level. For this
reason we categorize Apply as an ’efficient expert parallelization tool™ as well. Yet, it
may constitute an acceptable solution for quite a large group of users.

An alternative approach is taken in a language called IAL (Iinage Algebra Lan-
guage [35. 37]). TAL is based on the abstractions of Image Algebra [131]. a mathe-
matical notation for specifying image processing algorithms. IAL provides operations
at the complete image level. with no access to individual pixels. For example, the
Sobel edge detector is implemented in AL as a single statement:

OutputIm := (abs (InputIm % S;) + abs (InputIm = S,.)) >= threshold;

where S, and S, are the horizontal and vertical Sobel masks, and & represents con-
volution. The language proved to be useful for a wide range of tasks. but was limited
in its expressive power. Two extended versions of IAL, -BOL [20] and Tulip [155]
provide a more flexible and more powerful notation. The languages permit access to
data at either the pixel level or at the neighborhood level. without being architecture-
specific. Although the languages hide all parallelism from the user, a major disadvan-
tage is that it proved to be difficult to incorporate a global application optimization
scheme to ensure efficiency of complete programs at all times. Another disadvantage
is that the syntax of the languages differs quite somewhat from C and C++ — arguably
the most popular languages applied in the image processing community.

Parallel Image Processing Libraries

An alternative to the language approach is to provide an extensive set of parallel image
processing operations in library form — possibly as part of a complete framework that
deals with additional issues, such as global application optimization. In principle,
this approach allows the programmer to write applications in a familiar sequential
language, and make use of the abstractions as provided by the library. Due to the
relative ease of implementation. many parallel image processing libraries have been
described in the literature, and here we will shortly discuss the most important ones.
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One particularly interesting data parallel library implementation is described by
Taniguchi et al. [159]. This software platform is applicable to both SIMD- and MIMD-
style architectures, and incorporates a data structure abstraction known as DID,
for distributed image data. The DID-abstraction is intended as an image data type
declaration, without exposing the actual distribution of data. For example, a DID
structure for binary image data may be declared as:

Image2D Binary bimage(Horizontal, "pictl.jpg");

to indicate that a binary image "pictl.jpg" is read into a horizontally distributed
image data structure, which can be referred to through bimage. Although a DID
declaration is easy to understand for programmers unfamiliar to parallel computing,
it has the disadvantage of making the user responsible for the type of data distribution.

Another library-based approach applicable to both SIMD- and MIMD-style ar-
chitectures is developed by Olk et al. [118]. The library provides a fully sequential
interface to the user, and incorporates data parallel data structure abstractions such
as images, kernels, neighborhoods, queues, buckets, etcetera. The programmer ad-
dresses a data structure as a single entity, with no concern of the implementation and
parallel execution of an operation. However, to obtain efficient executables the user
needs to implement in Compositional C++ [26] (see Section 2.2.1). Clearly, this is
approach is not ideal, as it still requires the programmer to personally identify part
of the available parallelisin.

The library-based environment described by Jamieson et al. [73, 74, 75, 168] also
provides a fully sequential interface to the user. At the heart of the environment is
a set of algorithm libraries, along with abstract information about the performance
characteristics of each library routine. In addition, the environment contains a dy-
namic scheduler for optimization of full applications, an interactive environment for
developing parallel algorithms, and a graph matcher for mapping algorithms onto
parallel hardware. Although this environment proved to be quite successful, its sus-
tainability proved to be problematic. Partially, this is because it is required to provide
multiple implementations for an algorithm, one for each target parallel machine.

One data parallel environment that indeed can be considered fully user transparent
is developed by Lee et al. [93]. An interesting aspect of this work is that it incorporates
simple performance models to ensure efficiency of execution of complete applications.
However, the environment is too limited in functionality to constitute a true solution,
as it supports point operations and a small set of window operations only. Two
similar environments, presented in [79, 80, 81] and [86, 87| respectively, are much
more extensive in functionality. However, in both cases the performance models as
designed in relation with the library operations are not used as a basis for optimization
of complete programs, but serve as an indication to library users only.

An interesting environment based on the abstractions of Image Algebra [131],
that to a large extent adheres to the requirements of user transparency, is described
in {109]. It is targeted towards homogeneous MIMD-style multicomputers, and is
implemented in a combination of C++ and MPIL. One of the important features of
this environment is the so-called self-optimizing class library, which is extended au-
tomatically with optimized parallel operations. During program execution, a syntax
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graph is constructed for each statement in the program. and evaluated only when an
assignment operator is met. At first execution of a program. each syntax graph is tra-
versed. and an instruction stream is generated and executed. In addition, any syntax
graph for combinations of primitive instructions (i.e., those incorporated as a single
routine within the library) is written out for later consideration by an off-line opti-
mizer. On subsequent runs of the program a check is made to decide if an optimized
routine is available for a given sequence of library calls. An important drawback of
this approach, however, is that it may guarantee optimal performance of sequences
of library routines, but not necessarily of complete programs.

The MIRTIS system, described in [108], is the most efficient and extensive library-
based environment for user transparent parallel image processing designed to date.
MIRTIS is targeted towards homogeneous NIMD-style architectures. and provides
operations at the complete image level. Programs are parallelized automatically by
partitioning sequential data flows into computational blocks. to be decomposed in
either a spatial or a temporal manner. Issues related to data decomposition. commu-
nication routing. and scheduling are dealt with by using simple performance models.
In the modeling of the execution time of a certain application. MIRTIS relies on em-
pirically gathered benchmarks. Although. from a programmer’s perspective. NIRTIS
constitutes an ideal solution, its implementation suffers from poor maintainability
and extensibility. Also, the provided MIRTIS implementation suffers from reduced
portability as the applied communication kernels are too architecture specific.

From this overview we conclude that, although several library-based user transpar-
ent systems exist, none of these is truly satisfactory. As indicated in the discussion,
this is because it is not sufficient to offer user transparency as is. Issues relating to
the design and implementation of a parallelization tool. such as maintainability, ex-
tensibility. and portability of the provided software library. play an important role as
well. A discussion of these issues follows in the remainder of this chapter.

2.2.3 Discussion

In Figure 2.2 we have positioned all classes of parallelization tools presented in this
section in a single effort-efficiency graph similar to that of Figure 2.1. The figure
shows that the amount of effort required for using any type of general-purpose par-
allelization tool generally exceeds THRESHOLD 1 (the class of automatic parallelizing
compilers being the only exception). Also, the higher the efficiency provided by such
general-purpose tool, the higher the amount of effort required from the application
programmer. Although the introduction of domain-specific knowledge reduces the
required amount of user effort, parallel image processing languages are generally still
too specialized for widespread acceptance. From the two classes of tools that are
considered 'user-friendly’ by the image processing community (i.e.. automatic paral-
lelizing compilers and parallel image processing libraries). only a small subset of all
library-based tools provides a sufficiently high level of efficiency as well.

Despite the fact that some of the library-based systems adhere to all requirements
of user transparency (especially those described by Lee et al. [93], Moore et al. [108],
and Morrow et al. [109]), none of these has found widespread acceptance. One may
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Figure 2.2: Generalized view of effort versus efficiency of existing parallelization tools.
From the set of tools only a subset of all parallel image processing libraries can be
considered truly user transparent.

argue that this is due to the fact that they are still relatively new, and may need some
more time to make a significant impact on the imaging community. We feel, however,
that the tools still do not constitute a solution that is acceptable on the long term.

As we have discussed extensively in the previous sections, user transparency in
itself is the decisive property that matches a tool’s programming model to the image
processing researcher’s frame of reference. In this respect, any tool that adheres to
the requirements of user transparency is acceptable in that it can always be used
immediately, without much effort from the application programmer. However, a par-
allelization tool is not a static product. It is essential for such tool to be able to deal
with new hardware developments and additional user requirements. If the design of
a parallelization tool makes it ever more difficult or even impossible for its developers
to respond to changing demands quickly and elegantly, users will loose interest in the
product almost immediately.

If we refer back to the graph of Figure 2.1, perpendicular to the two dimensions of
effort and efficiency we can add a third axis that represents a tool’s level of sustain-
ability. This term incorporates all issues relating to the extensibility, maintainability,
applicability, and portability of a given parallelization tool, and indicates how easily
a tool can be adapted to changing demands and environments. As before, a critical
threshold can be identified for the level of sustainability, below which no tool is ex-
pected to survive on the long term. We feel that none of the existing user transparent
tools incorporates an acceptable sustainability level as well. For this reason we have
designed a new parallelization tool that, apart from adhering to the requirements of
full user transparency, also offers a sufficiently high level of sustainability.
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2.3 A Sustainable Software Architecture for User
Transparent Parallel Image Processing

The discussion of the applicability of existing hardware and software architectures
in the field of image processing research has led to several important conclusions.
First. the most appropriate class of hardware architectures to be applied in image
processing research is that of Beowulf clusters — most importantly due to its emphasis
on price-performance. Second, software development tools based on a library of pre-
parallelized routines offer a solution that is most likely to be acceptable to the image
processing community — especially because it has shown to be possible to provide
such tool with a programming model that offers full user transparency. Finallv. no
user transparent tool currently exists that indeed provides an acceptable long term
solution. as none incorporates a sufficiently high level of sustainability.

In this section we present an overview of our new library-based architecture for user
transparent parallel image processing on homogeneous clusters. Due to its innovative
design we expect the architecture to constitute an acceptable solution for the image
processing community on the long term.

2.3.1 Architecture Requirements

We argue that a library-based software architecture. which is to serve as a paralleliza-
tion aid for the image processing research community. must adhere to the following
list of requirements:

I. User transparency. As discussed in Section 2.2, user transparency refers to a
combination of ‘user friendliness’ and ’high efficiency’. For a library-based par-
allelization tool. this terminology translates to the following two requirements:

1. Availability of an extensive sequential API. To ensure that the parallel li-
brary is of great value to the image processing community. it must contain
an extensive set of data types and associated operations commonly ap-
plied in image processing research. The application programming interface
(API) should disclose as little as possible information about the library’s
parallel processing capabilities. Preferably, the API is made identical to
that of an existing sequential image processing library.

2. Combined intra-operation efficiency and inter-operation efficiency. It is
essential for the software architecture to provide significant performance
gains for a wide range of image processing application types. For this rea-
son it is required to obtain a level of efficiency that generally compares well
to that of 'reasonable’ hand-coded parallel implementations. Efficiency, in
this respect, refers to the execution of each library operation in isolation
(intra-operation efficiency). as well as to the execution of multiple opera-
tions applied in sequence (inter-operation efficiency).
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II. Long term sustainability. To ensure longevity, the design and implementation of
the software architecture must be such that extensions are easily dealt with. In
this respect, long term sustainability refers to the following four requirements:

3. Architecture maintainability. To minimize the coding effort in case of chang-
ing demands and environments, care must be taken in the architecture’s de-
sign to avoid unnecessary code redundancy, to enhance operation reusabil-
ity. In this respect, it is preferable to implement any set of operations with
similar behavior as a single generic routine, to be instantiated at will to
obtain the desired functionality. Also, to avoid implementing operations
for all data types generic implementations are preferred.

4. Architecture extensibility. As no library can contain all functionality ap-
plied in image processing research, it is required to allow the user to in-
sert new operations. In case an additional operation maps onto a generic
operation present in the library, insertion should be straightforward, not
requiring any parallelization effort from the user.

5. Applicability to homogeneous Beowulf clusters. As we have identified clus-
ters as the most appropriate type of hardware architecture for image pro-
cessing research (see Section 2.1), the complete software architecture must
be applicable to this type of machines. All general and distinctive prop-
erties of such machines can therefore explicitly be incorporated in the im-
plementation of the software architecture. Optimized functionality for any
other machine type should not be incorporated.

6. Architecture portability. To ensure portability to all target machines it is
essential to implement the software architecture in a high-level language
such as C or C++. For any constituent component in a cluster a high qual-
ity C or C++ compiler is generally available — and upgrades are released
frequently. Although the properties of Beowulfs can be incorporated in all
implementations, care should be taken not to incorporate any assumptions
about a specific interconnection network topology.

2.3.2 Architecture Overview

The complete software architecture consists of six components (see Figure 2.3). This
section presents a general overview of each of the components, and design choices are
related to the requirements of Section 2.3.1.

Component 1: Parallel Image Processing Library

The core of our software architecture consists of an extensive software library of data
types and associated operations commonly applied in image processing research. In
accordance with the first requirement of Section 2.3.1, the library’s application pro-
gramming interface is made identical to that of an existing sequential image process-
ing library: Horus [84]. More specifically, rather than implementing a completely new
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Figure 2.3: Simplified architecture overview.

library from scratch, the parallel functionality is integrated with the Horus implemen-
tation in such a manner that all existing sequential code remains intact. Apart from
reducing the required parallel implementation effort, this approach has the advantage
that the important properties of the Horus library (i.e., maintainability, extensibility,
and portability) to a large extent transfer to the parallel version of the library as well.

Similar to other libraries discussed in Section 2.2.2, the sequential Horus imple-
mentation is based on abstractions of Image Algebra [131], a mathematical notation
for specifying image processing algorithms. Image Algebra is an important basis for
the design of an extensive, maintainable, and extensible image processing library, as it
recognizes that a small set of operation classes can be identified that covers the bulk of
all commonly applied image processing functionality. Within the Horus library each
such operation class is implemented as a generic algorithm, using the C++ function
template mechanism [158]. Each operation that maps onto the functionality as pro-
vided by such algorithm is implemented by instantiating the generic algorithm with
the proper parameters, including the function to be applied to the individual data
elements. From this, it follows that the desired architectural properties of maintain-
ability, extensibility, and portability, constitute an integral aspect the Horus design.
As will be discussed in more detail in Chapter 3, the Horus library also covers a large
majority of all common image processing operations. As a result, Horus fully adheres
to requirements 1, 3, 4, and 6 of Section 2.3.1.

In extending the Horus library for parallel operation we have focused on adher-
ing to the remaining requirements 2 and 5: i.e., the architecture’s efficiency and its
applicability to Beowulfs. To this end, and also to have full control over the commu-
nication behavior of the library operations, the parallel extensions are implemented
using MPI [104]. Also, to sustain a high maintainability level, each parallel image
processing operation is implemented by concatenating data communication routines
with sequential code blocks from the Horus library. In this manner, the source code
for each sequential generic algorithm is fully reused in the implementation of its par-
allel counterpart, thus avoiding unnecessary code redundancy as much as possible.
For a more detailed description of the library implementation, we refer to Chapter 3.
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The design and implementation of the parallel library ensures that our paralleliza-
tion tool adheres to all requirements of Section 2.3.1, with the exception of require-
ment 2. To also guarantee efficiency of execution of (1) operations that are applied
in isolation, and (2) applications or algorithms that contain sequences of library op-
erations, five additional architectural components are designed and implemented in
close connection with the software library itself. These additional components are
described in the remainder of this section.

Component 2: Performance Models

In contrast to other library-based environments (e.g., [75]), our library contains not
more than one parallel implementation for each generic algorithm. To still guarantee
intra-operation efficiency on all target platforms, the parallel generic algorithms are
implemented such that they are capable of adapting to the performance characteristics
of the parallel machine at hand. As an example, the manner in which data structures
are decomposed at run time is not fixed in the implementations, as the efficiency of
each decomposition type may differ for each specific target machine. Also, the optimal
number of processing units may vary.

To make a machine’s performance characteristics explicit, each library operation
is annotated with a domain specific performance model. For applicability to clusters,
the models are based on an abstract machine definition (the APIPM, or: Abstract

Parallel Image Processing Machine) that captures the hardware and software aspects
of image processing operations executing on such a system. An overview of the
APIPM, as well as a formal definition of the APIPM-based models for sequential
operation, is presented in Chapter 4. A detailed description of the model that captures
the additional communication aspects of parallel execution is given in Chapter 5.

Component 3: Benchmarking Tool

Performance values for the model parameters are obtained by running a set of bench-
marking operations that is contained in a separate architectural component. The
combination of the high-level APIPM-based performance models and the specialized
set of benchmarking routines allows us to follow a semi-empirical modeling approach,
that has proven to be highly successful in other research as well (e.g., see [108, 172]).
In this approach, essential but implicit cost factors are incorporated by performing
actual experiments on a small set of sample data. Apart from its relative simplicity,
the main advantage of the semi-empirical modeling approach is that it fully complies
with the requirements of applicability and portability to clusters. The performance
models and benchmarking results allow intra-operation optimization to be performed
automatically, fully transparent to the user. This optimization is performed by the
architecture’s scheduling component, described below.

Chapter 4 gives a thorough description of the approach of semi-empirical modeling,
as well as an overview of the benchmarking strategy applied for the measurement
of sequential operations. An overview of the measurement strategy relating to the
communication aspects of parallel execution is given in Chapter 5.
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Component 4: Database of Benchmarking Results

All benchmarking results are stored in a database of performance values. Although
the design and implementation of such database is of significant importance (especially
in case it must be accessed frequently at run time), this topic is too far outside the
scope of this thesis for extensive discussion.

Component 5: Program Specification

Apart from incorporating an intra-operation optimization strategy. to obtain high
efficiency it is essential to perform inter-operation optimization (or: optimization
across library calls) as well. As it is often possible to combine the communication steps
of multiple library operations applied in sequence, the cost of data transfer among the
nodes in a parallel machine generally can be reduced considerably. Our architecture
performs inter-operation optimization in case global information is available on the
order in which library operations are applied in a given application. Essentially, this
information is obtainable from the original program code. As implementation of a
complete parser is not an essential part of this research. however. we currently assume
that a complete algorithm specification is provided in addition to the program itself.
Such specification closely resembles a concatenation of library calls, and does not
require any parallelism to be introduced by the application programmer.

Component 6: Scheduler

Once the performance models. the benchmarking results. and the algorithm specifi-
cation are available, a scheduling component is applied to find an optimal solution
for the application at hand. The scheduler performs the tasks of intra-operation opti-
mization and inter-operation optimization by removing all redundant communication
steps. and by choosing: (1) the logical processor grid to map data structures onto
(i.e., the actual domain decomposition), (2) the routing pattern for the distribution
of data, (3) the number of processing units, and (4) the type of data distribution (e.g.,
broadcast instead of scatter).

As described in detail in Chapter 6, the scheduler’s task of automatically convert-
ing any sequential image processing application into a correct and efficient parallel
version, is performed on the basis of a simple finite state machine definition. First. the
finite state machine allows for a straightforward and cheap run time method {called
lazy parallelization) for communication cost minimization. If desired, the scheduler
can be instructed to perform further optimization at compile-time. In this case, the fi-
nite state machine is used in the construction of an application state transition graph,
that fully characterizes an application’s run time behavior, and incorporates all pos-
sible parallelization and optimization decisions. As each decision is annotated with a
run time cost estimation obtained from the APIPM-based performance models, the
fastest version of the program is represented by the cheapest branch in the applica-
tion state transition graph. In the library implementation of each parallel generic
algorithm, requests for scheduling results are performed in order to correctly execute
the optimizations prescribed by the application state transition graph.
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2.4 Conclusions

In this chapter, we have investigated the applicability of existing hardware and soft-
ware architectures in the field of image processing research. Based on a set of archi-
tecture requirements we have indicated that homogeneous Beowulf clusters constitute
the most appropriate class of target platforms for application in image processing re-
search. Apart from the fact that many references exist in the literature indicating
significant performance gains for typical image processing applications executing on
clusters, the foremost reason for favoring such architectures over other appropriate
systems was found to be the fact that these deliver the best combination of price and
performance.

Our investigation of software tools for implementing image processing applications
on clusters has shown that library-based parallelization tools offer a solution that is
most likely to be acceptable to the image processing research community. First,
this is because such tools allow the programmer to write applications in a familiar
programming language, and make use of the high level abstractions as provided by
the library. More importantly, this is because library-based environments are most
easily provided with a programming model that offers full user transparency — or, in
other words: sufficiently high levels of 'user friendliness’ and 'efficiency of execution’.
Due to insufficient sustainability levels, no existing user transparent tool was found
to provide an acceptable long term solution as well.

On the basis of these considerations we have proposed a new library-based soft-
ware architecture for parallel image processing on clusters. We have presented a list
of requirements such tool must adhere to for it to serve as an acceptable long term
solution. In addition, we have given an overview of each of the architecture’s con-
stituent components, and we have touched upon the most prominent design issues for
each of these. The architecture’s innovative design and implementation ensures that
it fully adheres to the requirements of user transparency and long term sustainability.
Consequently, we believe our architecture for user transparent parallel image process-
ing to constitute an acceptable long term solution for the image processing research
community at large.







Chapter 3

Parallelizable Patterns in
Low Level Image Processing

Algorithms®

"One gets to the heart of the matter by a series
of experiences in the same pattern,
but in different colors.”

Robert Graves (1895 - 1985)

As discussed in the previous chapter, a multitude of software libraries for parallel
low level image processing has been described in the literature [75, 80, 93, 108, 109,
112, 118, 153, 159]. An important design goal in much of this research is to provide
operations that have optimal efficiency on a range of parallel machines. In general,
this is achieved by hard-coding a number of different parallel implementations for each
operation, one for each platform. Unfortunately, the creation of a parallel library in
this manner has several major drawbacks. First, manually creating multiple parallel
versions of the many operations commonly applied in image processing research is
a laborious task. Second, obeying to requests for library extensions becomes even
more troublesome than in the sequential case. Third, as new target platforms are
made available at regular intervals, code maintenance becomes hard — if not im-
possible — on the long term. Finally, with each library expansion it becomes ever
more difficult to incorporate a single elegant optimization strategy that can guarantee
intra-operation efficiency as well as inter-operation efficiency. For these reasons we
take a different approach.

*This chapter combines our papers published in Proceedings of the 15th International Parallel €
Distributed Processing Symposium (IPDPS 2001) [141] and Parallel Computing [149].
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In the design of our parallel library we strive to minimize the implementation ef-
fort, without compromising on the efficiency of execution. The first step in achieving
this goal is recognizing that there is a limited number of ways in which the pixels in
an image can be processed to produce meaningful results. Important in this respect
is the classification of low level image processing operations made in Image Alge-
bra [131]. Originating from this classification, the sequential Horus image processing
library [84] (which serves as a basis for the core component of our software architec-
ture, see Section 2.3.2) provides a small set of so-called algorithmic patterns. As will
be explained in this chapter, the primary importance of the algorithmic patterns is
that each serves as a template operation for a large set of image processing operations
with comparable behavior. Also, the algorithmic patterns abstract from the actual
datatype each operation is applied upon, to avoid a combinatorial explosion of code
that deals with all possible kinds of image datatypes.

The next important step in achieving our goal is recognizing that, for parallel
implementation of each algorithmic pattern, much of the related sequential code can
be reused. To that end, for each sequential algorithmic pattern present in the Horus
library we have defined a so-called parallelizable pattern. Such pattern constitutes
the maximum amount of code of an algorithmic pattern that can be performed both
sequentially and in parallel — in the latter case without having to communicate to
obtain data residing on other processing units.

The final step in reaching our goalis to implement all parallel operations such that
they are capable of adapting to the performance characteristics of a parallel machine
at hand. As machine-specific performance characteristics should not be incorporated
explicitly in any library implementation, an additional automatic code optimization
phase is required to be performed at compile time or even at run time.

Hence, apart from giving a detailed overview of the design philosophy of our soft-
ware library, this chapter primarily focuses on the following research issue: How to
implement a parallel image processing library such that code redundancy is avoided
as much as possible, and efficiency of execution on all target platforms is guaranteed.
We present a solution to the problem in the form of a generic description of paral-
lelizable patterns. Based on the description, we show how parallel versions of many
commonly used image processing operations are obtained by concatenating high-level
communication routines, basic memory operations, and operations that constitute a
specialization of a parallelizable pattern. We demonstrate that, apart from being
relatively simple to implement, a parallel library built in this manner is extensible,
easily maintainable, and still high in performance.

It is important to stress that this chapter does not touch upon the important
topic of inter-operation optimization, that is, optimization across library calls. Par-
allel operations that are implemented on the basis of parallelizable patterns may still
perform many unnecessary communication steps when applied as part of a complete
image processing application. As a result, efficiency of execution may not be optimal.
As indicated in the previous chapter, our complete software architecture deals with
this problem by applying domain-specific performance models in combination with
an additional, integrated scheduling tool. These issues are all outside the scope of
this chapter, however, and are discussed in extensive detail in Chapters 4, 3, and 6.
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This chapter is organized as follows. Section 3.1 gives an overview of the design
philosophy of the sequential Horus library. Section 3.2 describes the manner in which
parallelism is integrated in Horus. Section 3.3 discusses the programming paradigm
adopted in all parallel implementations. Section 3.4 gives a generic description of par-
allelizable patterns, including a default parallelization strategy for image operations.
To illustrate the use of parallelizable patterns, the implementation of two example
operations is discussed in detail. Finally, conclusions are presented in Section 3.5.

3.1 Algorithmic Patterns: The Horus Approach

Whereas implementation of a single sequential image processing routine is often easy,
creating a software library that is to contain an extensive set of such operations is
notoriously hard. This is because image library users need operations that can be
applied to a large number of (combinations of) different data structures, whose in-
dividual data elements in turn can be of many different types. More specifically:
although two-dimensional image structures are most commonly used, the bulk of all
library functionality also should be applicable to three- (or higher-) dimensional im-
ages, image regions, and other types of dense datafields (e.g., histograms). In addition,
the type of each individual element in a data structure can be scalar (e.g., int, float,
Boolean), complex, compound (e.g., a vector representing RGB color), and so forth.

Providing support for a combinatorial explosion of code that deals with all these
data structures and types is by no means an easy task. Consequently, many existing
sequential image processing libraries usually restrict support to a small set of data-
structures, datatypes, and even operations [9, 45]. It is clear that such limitations
have a negative effect on a library’s popularity and expected lifespan.

To deal with these problems, the design and implementation of the Horus image
processing library [83, 84, 85] is based on a generic programming approach. The Free
On-line Dictionary of Computing [71] defines this approach as follows:

Generic programming is a technique that aims to make programs more
adaptable by making them more general. Generic programs often embody
non-traditional kinds of polymorphism; ordinary programs are obtained
from them by suitably instantiating their parameters. In contrast with
normal programs, the parameters of a generic program are often quite
rich in structure. For example, they may be other programs, types or
type constructors or even programming paradigms.

To be more specific: given X datatypes, ¥ containers (data structures), and Z algo-
rithms as essential software library components, abstraction by way of generic pro-
gramming reduces the possible X x Y x Z implementations to X +Y + Z implementa-
tions. Consequently, generic programming greatly enhances library maintainability.
In Horus, generic data structures (i.e., container structures that are made indepen-
dent of the type of the contained object) are implemented by way of the C++ template
mechanism [158] — a programming concept that allows a type to be a parameter in
the definition of a class or a function. Using the same mechanism, Horus also provides
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generic algorithms that can work on the generic data structures. Because we feel that
the importance of the Horus library lies more in its concepts than in its implemen-
tation, we refrain from presenting actual template code here. For more information
and implementation details we refer to the Horus documentation [84. 85].

Apart from abstracting from the actual datatype each operation is applied upon,
the amount of Horus library code is reduced even further by implementing only a small
number of algorithmic patterns that covers the bulk of all commonly applied image
processing operations. An algorithmic pattern corresponds to one of the operation
classes defined in Image Algebra [131], each of which gives a generic description of a
large set of operations with comparable behavior. As such, each image operation that
maps onto the functionality as provided by an algorithmic pattern is implemented in
Horus by instantiating the algorithmic pattern with the proper parameters. includ-
ing the function to be applied to the individual data elements. As an example. an
algorithmic pattern may produce a result image by applying a unary function to each
pixel in a given input image. By instantiating the pattern with. for example. the
absolute value operation on a single pixel, the produced output will constitute the
input image with the absolute value taken for each pixel.

The version of Horus that serves as the basis for all further discussions provides
the following set of algorithmic patterns:

e Unary pizel operation. Operation in which a unary function is applied to
each pixel in the image. Examples: negation, absolute value, square root.

e Binary pizel operation. Operation in which a binary function is applied to
each pixel in the image. Examples: addition, multiplication, threshold.

o Reduce operation. Operation in which all pixels in the image are combined
to obtain a single result value. Examples: sum. product, maximum.

e Neighborhood operation. Operation in which several pixels in the neighbor-
hood of each pixel in the image are combined. Examples: percentile, median.

o Generalized convolution. Special case of neighborhood operation. The com-
bination of pixels in the neighborhood of each pixel is expressed in terms of two
binary functions. Examples: convolution, gauss, dilation.

e Geometric (domain) operation. Operation in which the image’s domain is
transformed. Examples: translation, rotation, scaling.

The presented set of algorithmic patterns is not complete, as it does not cover all
functionality required in the early stages of algorithm or application development.
The Horus library, however, is subject to continuing research and extensions. Among
the most important current and expected future library additions are algorithmic
patterns that can be used to instantiate (1) multi pixel operations, (2) iterative and
recursive neighborhood operations, and (3) queue based algorithms. Also, apart from
the algorithmic pattern for geometric operations, all of the patterns that are currently
incorporated in Horus are restricted to instantiating translation invariant operations
only. Translation variant versions of the presented algorithmic patterns will be incor-
porated in the future as well.
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3.2 Integration of Parallelism in Horus

As discussed in Section 2.3.2, the parallel library that constitutes the core of our
software architecture is an extended version of the sequential Horus library. In the
parallel version all additional functionality is implemented such that it does not in-
terfere with the existing sequential code. As such, the parallel library can still be
instructed to resort to traditional sequential operation — which generally is preferred
over single node parallel operation due to additional overhead costs.

From a design perspective the extended library consists of four logical components,
as shown in Figure 3.1. The following discusses each in turn, and identifies the
relationships among them:

Component C1: Sequential Algorithmic Patterns

The first component (C1) consists of the set of sequential algorithmic patterns intro-
duced in Section 3.1. As indicated in Figure 3.1, each algorithmic pattern present in
this component is implemented as a sequence of sequential routines. All operations
in such sequence must be separately available in the library — but not necessarily
as user-callable routines. Apart from memory operations that may be required for
the creation or destruction of internal data structures, the most important operation

imageOperation( IMAGE i);

C1 - Sequential Algorithmic Patterns ! C3 - Parallel Algorthmic Patterns

seqAlgorithmicPattern( IMAGE i, FUNC f) parAlgoritmicPattern( IMAGE i, FUNC f)
..... // memory operations (if needed)
r— parallelizablePattern( i, f);
..... // memory operations (if needed)

..... // memory operations (if needed)
scatterImage( i, partIm );

— parallelizablePattern( partlm, f);
gatherImage( partlm, i); —
..... // memory operations (if needed)

parallelizablePattern( IMAGE i, FUNC f)
{

. . C2 - Parallel Extensions
for all pixels in image i’ do

apply function 'f’;

scatterImage( IMAGE i, partIm ); et

gatherImage( IMAGE partlm, i); [

Figure 3.1: Relationships between library components C1-C4 (note: the actual code
differs substantially). Sequential code blocks that constitute a specialization of a par-
allelizable pattern are used in the implementation of sequential algorithmic patterns
as well as in the implementation of the related parallel counterparts. All functionality
is provided to the user through a sequential application programming interface (API)
that contains no references to the library’s parallel processing capabilities.
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in such sequence is what we refer to as a parallelizable pattern. Here it is sufficient
to indicate that a parallelizable pattern constitutes a code block that incorporates
only those instructions in a sequential algorithmic pattern that can be applied in the
implementation of the related parallel algorithmic pattern as well — in the latter
case without having to communicate to obtain essential data residing at any other
processing unit. For a much more formal description of parallelizable patterns we
refer to Section 3.4.

Component C2: Parallel Extensions

Next to the sequential algorithmic patterns. an additional set of routines is imple-
mented to introduce parallelism into the library (component C2 in Figure 3.1). The
parallel extensions deal with all aspects of parallelization. ranging from the logical par-
titioning of data structures to the actual exchange of data among processing units.
To have full control over all interprocess communication®. all extensions are imple-
mented using MPI [104]. The implemented set of parallel extensions is divided into
three classes:

1. Routines for data structure partitioning. These routines are used to specify the
data structure responsibilities for each processing unit, i.e. to indicate which
data parts should be processed by each node. In practice. a data structure
is mapped onto a logical grid of processing units of up to 3 dimensions, which
allows for optimal domain decomposition of the bulk of all image data structures
(see also Chapter 5). The mapping is performed in such a way that the number
of data elements each node is responsible for is well-balanced.

The most important routines in this class are the 'doPartition()’ and 'rePar-
tition()’ operations, which define the (new) responsibilities for a given data
structure. Responsibilities are based on the logical grid of processing units,
and the dimensionality and size of a data structure. All other routines in this
class are requests for partitioning information (for example, to obtain the size
and dimensionality of partial data structures other processing units are made
responsible for).

. Routines for data distribution and redistribution. These operations are used for
the actual spreading (either scattering or broadcasting). gathering. and redistri-
bution of data structures. Although the MPI 1.1 standard provides most of this
functionality and the new MPI 2.0 standard defines all, we have made multiple
implementations ourselves using the standard blocking MPI send and receive
operations. We refer to Chapter 5 for a detailed discussion on the rationale,
and the implications for application performance and optimization

It should be noted that data distribution could have been regarded independent
from data partitioning. To aveid any unnecessary communication, however, we
have made the distribution of data structures dependent on the assigned data

TNote that in our implementations (and also in the remainder of this thesis) we assume a one-to-
one relationship between processes and processing units.
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responsibilities. Data partitioning is therefore always applied as part of a data
distribution operation.

3. Routines for overlap communication. These operations are used to exchange
shadow regions (e.g., image borders in neighborhood operations) among neigh-
boring nodes in a logical grid of processing units.

All operations in component C2 are kernel routines, and are not made available to
the library user.

Component C3: Parallel Algorithmic Patterns

To reduce code redundancy and enhance library maintainability as much as pos-
sible, much of the source code for the sequential algorithmic patterns is reused in
the implementation of their respective parallel counterparts. More specifically, the
implementation of each parallel algorithmic pattern is obtained by inserting commu-
nication operations from component C2 in the sequence of routines that constitutes
the implementation of the related sequential algorithmic pattern. The communica-
tion routines are to obtain all non-local data (i.e. data residing on other processing
units) required during execution of the parallelizable pattern. The communication
routines also gather partial results data from all processing units to a single (root)
node as soon as the execution of the parallelizable pattern has finished. As such,
during execution all instantiations of the parallel algorithmic patterns run in a Bulk
Synchronous Parallel manner [103, 162].

Component C4: Fully Sequential API

The extended image processing library is provided with an application programming
interface (component C4 in Figure 3.1) identical to that of the original sequential Ho-
rus library. Due to the fact that the APT contains no references to the library’s parallel
processing capabilities, no additional effort is required from the application program-
mer to obtain a parallel program. In other words: any application implemented for a
sequential machine — after recompilation — can be executed on a cluster as well. As
such, the library fully adheres to the first requirement of user transparency as defined
in Section 2.2.

3.3 Data Parallel Image Processing

The previous sections implicitly indicated that we have adopted data parallelism as
the programming model for implementing all parallel algorithmic patterns. In the
following we clarify why we have adopted this approach as the sole technique for
parallelization, rather than any other approach or even a combination of approaches.
Also, to lay the foundations for the generic description of parallelizable patterns pre-
sented in Section 3.4, we give a formal description of the manner in which image data
structures are represented in our data parallel library.
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3.3.1 Data Parallelism versus Task Parallelism

Although many more programming paradigms for parallel computing exist, the mod-
els of data parallelism and task parallelism are used most frequently because of their
effectiveness and general applicability. As defined in [50], the data parallel model fo-
cuses on the exploitation of concurrency that derives from the application of the same
operation to multiple elements of a data structure. In other words, it is a program-
ming model in which a single routine is applied to all elements of a data structure
simultaneously. In contrast, the task parallel paradigm constitutes a model of parallel
computing in which many different operations may be executed concurrently [170].

In the literature, a multitude of papers exists in which each of these paradigms is
used effectively for parallelizing (low level) image processing operations (e.g., see [19,
32, 134, 161]). Also, for certain image processing problems it has been shown that
application of a combination of the two paradigms in a single program is more effective
than using either paradigm exclusively (e.g., see [112, 126]).

Despite the potential benefits of applying task parallelism, we have decided to
restrict all parallel implementations in our library to the data parallel model. The
reasons for this decision are as follows. First, the application of data parallelism
is a natural approach for low level image processing, as many operations require
the same function to be applied to each individual data element (or small set of
elements around each data element) present in an image data structure. Second, as
our parallel library is to serve as an aid in image processing research, the number
of independent tasks available in most applications is expected to be small. This
is because in the design phase of algorithms or applications, testing and evaluation
generally is performed using relatively small problem sizes (e.g., using a single image
rather than a database of thousands of images). A third reason is related to the
scalability in the number of processing units. As the number of independent tasks
in most image processing applications generally is much smaller than the number of
elements present in the input (image) data structures, the number of processors that
can be applied effectively is generally much larger in the data parallel case. Another
important reason is that load balancing (i.e., evenly distributing all work among the
available processing units) is generally much more difficult in the task parallel model.
Especially in case independent parallel tasks represent highly varying workloads, it is
difficult to ensure that each processor has exactly the same amount of work to do.

The decisive factor for not incorporating task parallelism in our software archi-
tecture, however, is the difficulty of combining this programming paradigm with the
requirements of user transparency. The presence of a fully sequential API implies that
we would have to incorporate a separate interpretation and optimization strategy to
find all independent tasks available in an application. Effectively, this implies that we
would have to develop, at least in part, a parallelizing compiler. For reasons explained
in Section 2.2.1 we expect such compiler not to yvield a desirable solution.

It would have been possible to incorporate the notion of task parallelism in the
library’s API, e.g. by providing aggregated operations that can work on sets of images.
However, this approach would dramatically reduce the library’s chances of widespread
acceptance, as it would require most existing applications to be rewritten by hand
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(e.g., by replacing loop constructs by a single call to an aggregated library operation).
This is not trivial, as it requires the user to personally identify dependencies among
tasks (which is often difficult due to the presence of indirections in the C or C++
code). To shield the user from having to deal with any of these issues, and also to
avoid having to implement any optimization strategy that can detect independent
tasks automatically, we have refrained from incorporating task parallelism altogether.
As will be shown in Chapter 7, despite the fact that all implementations are restricted
to the data parallel approach, obtained performance improvements are generally well
within the efficiency requirements as put forward in Chapter 2.

3.3.2 Representation of Digital Images

An image data structure in our library consists of a set of pixels. Associated with each
pixel is a location (point) and a (pixel) value. Here, we denote an image by a lower
case bold character from the beginning of the alphabet (i.e., a, b, or ¢). Locations
are denoted by lower case bold characters from the end of the alphabet (i.e., x, y,
or z). The pixel value of an image a at location x is represented by a(x).

The set of all locations is referred to as the domain of the image, denoted by
a capital bold character (i.e., X, Y, or Z). Usually, the point set is a discrete n-
dimensional lattice Z™, with n = 1, 2, or 3. Also, the point set is bounded in each
dimension resulting in a rectangular shape for n = 2 and a block shape for n = 3.
That is, for an n-dimensional image

XZ{(.Tl,.Z’Q,"‘ ,xn)EZnIOingSOi-f—kj—l},’iE{l.Q,"' TL})

where o = (01,02, - ,0,) represents the origin of the image, and k; represents the
extent of the domain in the i-th dimension.

The set of all pixel values a(x) is referred to as the range of the image, and is
denoted by F. A pixel value is a vector of m scalar values, with m = 1, 2 or 3. A

e Ay e ay ay

(a) No overlap (b) Partial overlap (c) Full overlap

Figure 3.2: Three examples of a distributed image ag comprising of two partial images,
a,, and a,,. The gray areas represent domain overlap; the white areas represent the
unique domain parts.
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scalar value is represented by one of the common datatypes, such as byte, int, or float.
The set of all images having range F and domain X is denoted by FX. In summary.
ac FX (ie.a:X — F) is a shorthand notation for

{(x.a(x)): xeXCZ" (n=1.2.3). a(x) e FC{Z™ R™. C} (m=1.2.3) }.

When image data is spread throughout a parallel system, multiple data structures
residing on different locations form a single logical entity. In our library, each image
data structure resulting from a scatter or broadcast operation is called a partial im-
age. For each partial image additional partitioning and distribution information is
available. The information includes. but is not restricted to. (1) the processor grid
used to map the original image data onto. (2) origin and size of the domain of the
original image, and (3) the type of data distribution applied (e.g.. scatter or broad-
cast). Partial image a residing on processing unit ¢ is denoted by a,,,: its domain is
denoted by X,,,. As data spreading can not result in a loss of data. for each image
a € FX distributed over n processing units:

n—1
X, =X.
=0

The n partial images related to a together formn one logical structure, referred
to as a distributed image. A distributed image is denoted by a,, and differs from
a partial image in that it does not reside as a physical structure in the memory of
one processing unit (unless it is formed by one partial image only). A distributed
image's domain X, is given by the union of the domains of its related partial images.
The domains of the partial images that constitute a distributed image may be either
non-overlapping, partially overlapping, or fully overlapping (see Figure 3.2).

Essentially, it is possible for each processing unit to perform operations on each
partial image independently. In the library, however, we make sure that each operation
(logically) is performed on distributed image data only. In all cases this results in the
processing of all partial images that constitute the distributed image. This strategy
is of great importance to avoid inconsistencies in distributed image data.

3.4 Parallelizable Patterns

As stated in Section 3.2. we try to enhance library maintainability by reusing as
much sequential code as possible in the implementations of the parallel algorithmic
patterns. To that end, for each sequential algorithmic pattern we have defined a
so-called parallelizable pattern. Each such pattern represents the maximum amount
of work in a generic algorithm that - when applied to partial image data - can be
performed without the need for communication. In other words, in a parallelizable
pattern all internal data accesses must refer to data local to the processing unit
executing the operation. In the following we give a generic description of parallelizable
patterns, and show their application in parallel implementations.
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3.4.1 Generic Description

A parallelizable pattern is a sequential generic operation that takes zero or more
source structures as input, and produces one destination structure as output. A
pattern consists of n independent tasks, where a task specifies what data in any of
the structures involved in the operation must be acquired (read), in order to update
(write) the value of a single data point in the destination structure. In a task, read
access to the source structures is unrestricted, as long as no accesses are performed
outside any of the structures’ domains. In contrast, read access to the destination
structure in each task is limited to the single data point to be updated.

All n tasks are tied to a different task location x;, with i € {1,2,--- ,n}. The set
L of all task locations constitutes a subset of the positions inside the domain of one
of the data structures involved in the operation (either source or destination). As a
simple example, L may refer to all n pixels in an image data structure, all of which
are processed in a loop of n iterations.

Each task location x; has a relation to the positions accessed in all data structures
involved in the operation. As such, for the parallelizable patterns relevant in image
processing we define four data access pattern types:

e One-to-one. For a given data structure, in each task 7; (with i € {1,2,--- ,n})
no data point is accessed other than x;.

o One-to-one-unknown. For a given data structure, in each task T; (with ¢ €
{1,2,--- ,n}) not more than one data point is accessed. In general, this point
is not equal to x;.

e One-to-M. For a given data structure, in each task T; (with ¢ € {1,2,--- ,n})
no data points are accessed other than those within the neighborhood of x;. As
an example, the 5 X 3 neighborhood of a point x = (z1, x2) € X is given by

Nx)={yeY:y=(x1+7j z2tk), je{0,1,2}, ke {0,1}},

where X C Y.

e Other. For a given structure, in each task either all elements are accessed, or
the accesses are irregular or unknown.

A parallelizable pattern requires that for all data structures the access pattern type
is given. Essentially, all four access pattern types are applicable to source structures.
In contrast, the single destination structure can ouly have a ‘one-to-one’ or a 'one-to-
one-unknown’ access pattern type. This is because — by definition — in each task
only one data point is accessed in the destination structure.

Figure 3.3 shows the two parallelizable pattern types that we discern. In a type 1
parallelizable pattern the set of task locations has a 'one-to-one’ relation to the desti-
nation structure. In a type 2 parallelizable pattern the access pattern type related to
the destination structure is of type ’one-to-one-unknown’. The two parallelizable pat-
terns differ in the type of combination operation that is permitted. In a parallelizable
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dap = one-to-one (1)

dap = one-to-one-unknown dap = one-to-one-unknown
or other (*) 1)

source structures destination structure source structures destination structure

dap = one-to-one-unknown
or other (*)

(a) Parallelizable pattern, type 1. (b) Parallelizable pattern, type 2.

Figure 3.3: Two parallelizable pattern types. R = read access; W = write access;
dap = data access pattern; (1) = ezactly one data structure of this type; (*) = zero
or more data structures of this type.

pattern of type 1 no restrictions are imposed on the combination operation. In a type
2 pattern the final combination of the intermediate result of all values read from the
source structures with the value of the data point to be updated in the destination
structure must be performed by a function f() that is associative and commutative.
Also, prior to execution of a type 2 pattern, all elements in the destination structure
must have a value that is 'neutral’ for operation f(). For example, the neutral value
for addition is 0, while for multiplication it is 1.

The two parallelizable pattern types give a generalization of a large set of sequential
image processing routines, e.g. incorporating all algorithmic patterns of Section 3.1.
As such, the presented generalization captures a large majority of all operations com-
monly applied in image processing research (i.e., it comprises an estimated coverage of
over 90%). It should be noted, however, that the two types do not present a complete
coverage of the typical implementations of all operations in this particular field of re-
search. For example, algorithms in which write access is to multiple data structures is
required do not fall in the category of operations currently under consideration. The
same holds for operations in which the value of each data point in the destination
structure depends on values of other data points in the same destination structure. In
how far these limitations pose any unreasonable restrictions on future library adap-
tations (and thus necessitates extension of the generic description of parallelizable
patterns) is as of yet unknown (see also Section 3.4.5).

All algorithmic patterns that do fit into the given generalization are applicable
in the process of ’parallelization by concatenation of library operations’, described
in Section 3.2. As discussed in the remainder of this section, on the basis of the
generic description we define a standard parallelization strategy that always results
in a correct data parallel implementation for any algorithmic pattern that maps onto
at least one of the two parallelizable pattern types.
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3.4.2 Default Parallelization Strategy

The number of elements in the set of task locations L determines the number of steps
executed by a parallelizable pattern. Hence, by providing each node in a parallel
system with a set X C L, the work is distributed (i.e., in a data parallel manner).
In addition, the access pattern type associated with each structure involved in the
operation prescribes how non-local data accesses are avoided with minimal commu-
nication overhead. As such, an optimal? default parallelization strategy is obtained
for any operation that maps onto one of the presented parallelizable pattern types.

First, before executing a type 1 parallelizable pattern each processing unit is pro-
vided with a non-overlapping partial destination structure that matches the elements
in X. If the destination structure is updated but never read, the partial structure
can be created locally. Otherwise, it is obtained by scattering the destination struc-
ture such that no overlap in the domains of the local partial structures is introduced.
Before executing a type 2 parallelizable pattern, each processing unit creates a fully
overlapping destination structure locally. This is always possible, as the value of all
data points are given a 'neutral value’, as defined by the operation.

Next, source data structures are obtained by executing (1) a non-overlapping
scatter operation for each structure having a one-to-one access pattern, (2) a partially
overlapping scatter operation for each structure having a one-to-M access pattern type
(such that in each dimension the size of each shadow region equals half the size of
the neighborhood in that dimension), and (3) a broadcast operation for all other
structures. In case the values of a source structure can be calculated locally, and if it
is less time-consuming to do so, no communication routines are performed at all.

Finally, when a type 1 pattern has finished, the complete destination structure
is obtained by executing a gather operation. For a type 2 pattern this is achieved
by executing a reduce operation across all processing units. Here, the elements that
have not been updated in each local destination structure have kept a neutral value,
assuring the correctness of the final reduction. In both cases, the result structure is
returned either to one node, or to all.

On the basis the generic description of parallelizable patterns, the following shortly
discusses parallel implementation of two example algorithmic patterns, i.e. global
reduction and generalized convolution.

3.4.3 Example 1: Parallel Reduction

A sequential generic reduction operation performed on input image a, producing a
single scalar or vector value k, is defined as follows:

Let ac FX, x € X, and k € F, then
k =Ta=Txa(x) = ' a(z;) = a(z1) v alz2) v+ a(z,),

with « an associative and commutative binary operation on F.

tThe default strategy is optimal for operations executing in isolation only. In case multiple oper-
ations are executed in sequence, additional inter-operation optimization is required (see Chapter 6).
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dap = other dap = one-to-one

=
input image output value input image output value

(a) (b)
Figure 3.4: Sequential reduction - two possible implementations.

As shown in Figure 3.4, at least two possible sequential implementations exist for
this operation. In the first implementation, the operation is performed in one step.
All data points in a are obtained and combined to a single value, which is written out
to k. In the second implementation, the operation is performed in n steps. In each
step, one data point in a is read and combined with the current value of k.

The first implementation is a specialization of the parallelizable pattern of type 1
as described in Section 3.4; the second implementation is a specialization of the
type 2 parallelizable pattern. The first implementation is not useful for our purposes,
however, as its execution is limited to a single processing unit. This is because the
set of task locations L consists of one element only, i.e. the location of the single
output value k. The second implementation, on the other hand, is easily run in
parallel as L contains all locations in input image a. For this implementation the
input image’s access pattern type is ’one-to-one’; for the single result value it is
‘one-to-one-unknown’. As a result, a parallel implementation of the generic reduction
operation follows directly from the generalization of Section 3.4.2. A pictorial view
of the operation executed in parallel is given in Figure 3.5.

Local Input Image

-\ Local Output Value

!
'
'
'
'
'
'
'
'
'
'

Global
Output
Value

Parallelizable Pattern:
Global Reduction

Global Input Image ‘ O ,,’
Local Ol;tpul Value

Local Input Image

Scatter Re(:luce-to-all

Figure 3.5: Example reduce-to-all operation executed on 2 processing units.
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3.4.4 Example 2: Parallel Generalized Convolution
A generalized convolution performed on input image a, producing output image c,

given a kernel t, is defined as follows:

Let a, c € FX t ¢ FY, x € X, y € Y, with X having dimensionality n, and
Y = {(917112,"' 7yn) : i Yi | S kz e Z}7 then

c=a@t={(xcx):cx)=Tyax+y) Oty }

where ) and 7 are binary operations on F, and ~ is associative and commutative.
The extent of the domain in the i-th dimension of kernel t is given by 2k; + 1. Several
common generalized convolution instantiations are shown in Table 3.1.

Kernel Operation O ~y
Convolution multiplication | addition
Dilation addition maximum
Erosion addition minimum

Table 3.1: Example generalized convolution instantiations.

The definition states that each pixel value in the output image depends on the
pixel values in the neighborhood of the pixel at the same position in the input image,
as well as on the values in the related kernel structure. A sequential implementation
of the operation is presented in Figure 3.6. Again, set L is implicit, and contains all
pixel positions in either the input image or the output image.

When comparing Figure 3.3(a) to Figure 3.6(a) it may seem that the operation
directly constitutes a parallelizable pattern. Figure 3.6(b) shows that this is not the
case, however, as accesses to pixels outside the input image’s domain are possible. In
sequential implementations of this operation it is common practice to redirect such
accesses according to a predefined border handling strategy (e.g., mirroring or tiling).
A better approach for sequential implementation, however, is to separate the border

ER\ % %R\
s ‘W
B ?r - e -

R / R /
Kernel . -7 Output Image Kernel - - Output Image

(a) Permitted read-access (b) Forbidden read-access

Figure 3.6: Sequential generalized convolution. Does not represent a parallelizable
pattern, as read accesses outside the domain of the input image are possible (see (b)).
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Figure 3.7: Example kernel operation performed using 2 processing units (simplified).

handling from the actual convolution operation. This makes implementations more
robust and generally also faster, due to the fact that irregular memory accesses are
avoided. For parallel implementation this strategy has the additional advantage that
the algorithmic pattern for generalized convolution can be implemented such that it
constitutes a parallelizable pattern.

Implementation in this manner can be performed in many different ways. In our
library a so-called scratch border is placed around the original input image. The
border is filled with pixel values according to the required border handling strategy.
The newly created scratch image is used as input to the parallelizable pattern. Fig-
ure 3.7 depicts the operation executed in parallel. As each local scratch image has a
one-to-M access pattern, an overlapping scatter of the global input image is required.
In Figure 3.7 this is implemented by a non-overlapping scatter followed by overlap
communication. Remaining scratch border data is obtained by local copying. Finally,
the parallelizable pattern is executed, producing local result images that are gathered
to obtain the complete output image. Note that Figure 3.7 gives a simplified view,
as some steps of the operation are not shown. For example, depending on the type of
operation, the kernel structure is either broadcast or calculated locally.

3.4.5 Discussion

The generic description of parallelizable patterns is important as it states the re-
quirements for sequential implementations that are to be reused in related parallel
counterparts. In addition, for each specialized parallelizable pattern implemented on
the basis of the generic description, a parallelization strategy directly follows. As such,
code reusability is maximized, and library maintainability and flexibility is enhanced.

It should be noted that if a sequential operation does not map onto the generic
description of a parallelizable pattern, we currently take no special action to obtain
good performance. In such situations, the operation is always executed using one
processing unit only. In the future we will investigate whether parallelization of such
operations can be generalized as well. Additional formulations may be integrated in
the current generalization, or may exist independently.
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3.5 Conclusions and Future Work

In this chapter we have indicated how an extensive parallel image processing library
is constructed with minimal implementation effort, whilst ensuring efficiency of (se-
quential and parallel) execution at the same time. We have focussed on the notion
of parallelizable patterns, and discussed how parallel implementations are easily ob-
tained by sequential concatenation of operations that are separately available in the
library. More specifically, on the basis of a set of four date access pattern types, we
have obtained a default parallelization strategy for any operation that maps onto one
of two parallelizable pattern types. For each image processing operation executed in
isolation, this default parallelization strategy is optimal. This is because communica-
tion overhead is minimized, while — for the given parallelization granularity — the
available parallelism is fully exploited. As such, we have shown how a parallel image
processing library can be made extensible, and easily maintainable.

It is important to note, however, that in this chapter we have not discussed the
important issue of inter-operation optimization, or: optimization across library calls.
To obtain high performance for sequences of library routines, or for complete appli-
cations, it is not suflicient to consider parallelization and optimization of each library
operation in isolation. This is because code consisting of a given sequence of par-
allel routines, where each routine is parallelized as described in this chapter, often
contains many redundant communication steps. Also, it is often possible to further
reduce communication overhead by combining multiple messages in a single transfer.
Our solution to this fundamental problem, and the integration of this solution in our
software architecture, is discussed extensively in Chapters 4, 5, and 6 of this thesis.

In the future the generic description of parallelizable patterns may need to be ex-
tended or adapted to capture image library additions and extensions. For example, at
the time of writing it is not entirely clear whether the optimal parallel implementation
of recursive filter operations as described in [28, 40] can be derived from one of the
presented parallelizable pattern types. As a consequence, we may need to investigate
for what type of image operations the strategy of ’parallelization by concatenation
of library routines’ breaks down, i.e., does not provide efficient implementations, or
can not be applied at all. Still, the presented description of parallelizable patterns
is important, as it prescribes the sequential implementation of a large majority (i.e.,
over 90%) of all operations commonly applied in image processing research. Any
implementation obtained in this manner can be applied without change in efficient
parallel implementations as well — thus avoiding unnecessary code redundancy, and
minimizing the required implementation effort.







Chapter 4

Semi-Empirical Modeling of
Parallel Low Level
Image Processing Operations™

”Pour avoir une vérité il faut deur facteurs — un fait et une abstraction.”

Remy de Gourmont (1858 - 1915)

As described in Chapter 3, for each sequential algorithmic pattern available in our li-
brary we have implemented only one parallel counterpart. Because no single parallel
implementation is guaranteed to provide optimal performance on all target platforms,
each operation is implemented such that it is capable of adapting to the specific per-
formance characteristics of a parallel machine at hand. In the previous chapter we
have indicated that two of the parameters that determine an application’s parallel
performance are fixed in the library implementations: i.e., the parallelization granu-
larity (or, the amount of computation performed between two communication steps)
as well as the data dependencies. Optimization decisions relating to several additional
parameters, however, are still made at application compile time, and even at run time.
Such parameters include (1) the logical processor grid to map data structures onto,
(2) the routing pattern for the distribution of data, (3) the number of processing
units, and (4) the type of data distribution (e.g., broadcast instead of scatter).

To make optimization decisions automatically, knowledge is required of the per-
formance characteristics of the routines applied in a particular application. In our
software architecture we have incorporated this knowledge by annotating each user-
callable library operation with a performance model for run time cost estimation. Due

*This chapter combines our papers published in Proceedings of the 7th International Euro-Par
Conference (Euro-Par 2001) [147] and Parallel Computing [149].
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to the intended portability of the software architecture to clusters. the performance
models have been designed to be applicable to all machines in this class of architec-
tures. Also, the complexity of the models is kept to a minimumn to allow high-speed
evaluation of complete applications possibly even at run time. In addition, the
models are capable of generating estimations of sufficiently high accuracy to allow
optimization decisions to be made correctly.

In the literature a multitude of performance analysis and modeling techniques has
been described. The techniques range from direct measurement to detailed mathemat-
ical and simulation models. and adhere to widely varying performance requirements
in terms of both estimation accuracy and speed of evaluation. As will be discussed in
this chapter. a major problem with existing performance estimation techuiques is that
these generally incorporate a direct relationship between the estimation accuracy and
the technique’s complexity (for example. the number of model parameters). In other
words, increased estimation accuracy is obtained at the expense of greater complexity
and reduced evaluation efficiency.

In this chapter we propose a semi-empirical modeling technique that is specif-
ically designed to overcome this problem. While being simple and portable, the
semi-empirical modeling approach also provides a sufficiently high estimation accu-
racy. The approach is based on a high-level abstract machine definition (the Abstract
Parallel Image Processing Machine. or APIPM) which is designed to capture typical
behavior of low level image processing operations executing on a cluster. From the
APIPMI instruction set a high-level abstract performance model is obtained that is
applicable to all such platforms. The crux of the semi-empirical modeling approach
is that an additional benchmarking phase is required to capture implicit but essential
cost factors, and to bind each abstract model parameter to a concrete performance
estimation for a parallel machine at hand.

Hence, the primary research issue addressed in this chapter is as follows: How to
apply benchmarking in combination with simple analytical models to obtain accurate
performance estimates for optimization of complete parallel image processing applica-
tions? In this respect, it is interesting to note that this research issue closely relates to
the more general problem statement put forward by Professor Tony Hey in his invited
talk at the Euro-Par 2001 conference: " The ultimate goal in the field of parallel and
distributed computing is to use a combination of benchmarking kernels and simple
models for accurate performance estimation of full applications™ [68]. Essentially. our
APIPM-based semi-empirical modeling approach forms a domain-specific solution to
this much broader — and as of yet: unsolved — problem.

This chapter is organized as follows. Section 4.1 investigates the requirements for a
performance estimation technique to be applied in our software architecture. Several
existing approaches are evaluated according to these requirements as well. On the
basis of two estimation techniques described in the literature, a generalized description
of our semi-empirical modeling approach is given in Section 4.2. Section 4.3 introduces
the APIPM and its instruction set. The APIPM-based performance models, and the
applied benchmarking technique, are presented in Section 4.4. In Section 4.5 model
predictions are compared with results obtained on a real machine from the class of
platforms under counsideration. Concluding remarks are given in Section 4.6.
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4.1 Computer System Performance Estimation

The success of our software architecture greatly depends on the quality of the code
optimization, which is to be performed automatically, hidden from the user. Code
optimization is implemented by leaving each operation in the library a choice be-
tween several parallelization strategies. Each such strategy has a different effect on
the performance on each parallel platform. By providing accurate estimations of
the performance of each strategy for the parallel machine at hand, the fastest code
alternative is selected with ease.

The effectiveness of the optimization process entirely depends on the technique
for estimating the performance of a computer system. In the following we present
the general requirements for a performance estimation technique to be applied in our
software architecture. In the light of these requirements a short evaluation is given of
the most significant estimation approaches described in the literature.

4.1.1 Estimation Technique: Requirements

A performance estimation technique designed for our purposes should incorporate all
relevant tasks typically performed by data parallel imaging operations. In our case
such tasks relate to either computation, communication, or I/0. Computational tasks
include all parallelizable patterns as defined in Chapter 3, as well as the basic memory
operations for creation, destruction, and copying of data structures. Communication
tasks are formed by the bulk of operations from the set of parallel extensions described
in the previous chapter, including overlap communication and all distribution and
redistribution routines. I/O tasks include all operations for transporting data between
a processor’s main memory and external devices such as disk drives and cameras.

Apart from having to reflect the typical behavior of parallel low level image pro-
cessing routines, the performance estimation technique should also conform to the
following (more general) requirements (similar to [62]):

1. Simplicity. In a realistic estimate, the number of samples is proportional to
the number of parameters. To reduce the costs of performance evaluation, the
number of free parameters should be kept to a minimum.

2. Accuracy. To make sure the architecture can make correct optimizations, the
generated performance estimations must be of sufficiently high accuracy. The
degree of accuracy is considered sufficient if correct decisions are made in at
least 95 percent of all cases, and poor decisions are generally avoided.

3. Applicability. For portability, the performance evaluation technique integrated
in our software architecture must be applicable to all clusters.

It is important to note that — in general — the requirement of simplicity enhances
applicability, but reduces accuracy. Therefore, care must be taken in the design of
the estimation technique to ensure that it can produce good performance estimates
with relative ease.




Chapter 4. Semi-Empirical Modeling of Parallel Low Level Image Processing Operations

4.1.2 Estimation Techniques in the Literature

Techniques for computer system performance estimation abound in the literature.
Roughly speaking, each such technique can be classified into one of three main cate-
gories: (1) measurement, (2) modeling and (3) hybrid methods. Estimation techniques
that belong to the second category can be further divided into the subcategories of
(2a) mathematical analysis and (2b) simulation [72].

Category 1: Measurement

Performance estimation by measurement is generally performed on a real system
under conditions that reflect typical workload and behavior. Execution times of real
problems are then inferred from measured results. Application of this approach in our
software architecture has several drawbacks. First, in many cases the complete system
to be evaluated has yet to be developed, and may change over time. Second, even if a
complete system is available it is often not clear what workload is realistic or typical.
Finally, if the measurement process is biased towards certain aspects of the underlying
hardware, the measurement technique may not be applicable to other platforms.
Benchmarking is an alternative technique, which is often used for comparison of
multiple computer systems (e.g., see [39, 69, 167]). Rather than reflecting typical
behavior, benchmarks often represent non-typical, artificial workloads. In compari-
son with direct measurement, benchmarking has the advantage that the system to be
evaluated does not have to be available. The use of non-typical workloads, however,
often has a negative effect on the accuracy of the performance estimations. A solu-
tion — albeit complex — is to capture results for small instruction mixes and a variety
of workloads, and to interpret the measurement results with utmost care [44, 156].

Category 2: Modeling

Performance modeling can be applied in cases where direct measurement is too costly,
or where the computer system to be evaluated is not available. In the category of
mathematical analysis, models range from simple (linear) algebraic expressions to
complex formalisms such as queueing networks [72, 135]. In general, such models
have a high response time due to their ease of evaluation. An additional advantage is
that parameter values may be varied to observe their relative impact on performance.
However, to obtain high estimation accuracy, the large number of model parameters
may violate the simplicity and applicability constraints.

In simulation models behavior and workloads are described (imitated) in a special
computer program — usually an annotated or otherwise adapted version of a 'real’
program [72, 123]. Performance predictions are obtained by monitoring the execution
of the adapted program. The main advantage of simulation models is that dynamic
system behavior is easily captured. Also, simulation makes it easy to 'zoom in’ on
interesting or expensive parts of a system. A disadvantage is that the system to be
evaluated must be available, at least in some rudimentary form. Another drawback
is that it is a costly method for obtaining even moderately accurate performance
estimates, thus violating the simplicity constraint.
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Category 3: Hybrid Methods

In hybrid estimation techniques a combination of measurement and modeling is ap-
plied [108, 172]. Such techniques have the advantage that the complexity of using
either measurement or modeling in isolation can be avoided, while a high level of esti-
mation accuracy can still be obtained. The following discusses two hybrid approaches
that form the basis for the estimation technique applied in our software architecture.

1. Machine Characterization Based on an Abstract Fortran Machine

In [133], Saavedra-Barrera et al. acknowledge that many state-of-the-art sequential
computer systems have become too complex to be accurately captured in a mathemat-
ical model. The authors measure system performance in terms of an Abstract Fortran
Machine (AFM) — an approach referred to as narrow spectrum benchmarking. The
AFM instruction set consists of the primitive operations available in Fortran, such as
arithmetic and logical functions, procedure calls, loops, etcetera. All primitive oper-
ations are measured separately, and the combined set of measurements characterizes
a specific machine. The approach is based on the assumption that the execution time
of any program can be partitioned into independent time intervals, each correspond-
ing to one AFM instruction. Although, in general, high level operations are never
completely independent (e.g., due to compiler optimizations), the authors have shown
that the assumption is reasonably accurate for a wide range of systems [132]. It should
be noted that an earlier technique, described by Peuto et al. [122], is similar to the
AFM-based approach. It is different, however, in that all machine characterizations
are incorporated at the much lower level of machine instructions.

The model of the total execution time of a program A as described in [133] is
formalized as follows. Let Py = (P, Po, -+, Pp,) be the set of parameters that char-
acterizes the performance of machine M. Each of the n performance parameters is re-
lated to a different operation in the AFM instruction set. Let Ca = (C;,Ca,--- ,Chp)
be the normalized dynamic distribution of the AFM instructions present in pro-
gram A, and let Cisq denote the total number of AFM instructions executed in
program A. The expected execution time of program A on machine M is then ob-
tained by

n n
Tam = Ciotal ZCz‘Pz‘ = CiotaiCa - PmMm, with Zci =1

i=1 i=1

The authors indicate that the only way in which this linear model can give accurate
results is when (1) the measurements of the AFM instructions are representative of
typical occurrences in real programs, (2) errors caused by the intrusiveness of the
measurements are not significant, and (3) variance in the mean execution time caused
by the system, and by the instructions themselves, is small. Still, experiments have
shown that for many applications the performance predictions were sufficiently close
to actual execution times. In general, occurrences of bad estimations were easily
explained by code optimizations performed by the compiler, which had not been
captured in the benchmarking process.
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2. Incorporating System Variance by Adaptive Sampling

The AFM-based approach of narrow spectrum benchmarking provides a solution to
the problem of the high complexity of complete analytical study of computer systems.
A drawback of the approach. however. is that system variance is almost completely
ignored. For applications working on extensive dense data fields (e.g.. image data
structures) this is too crude a restriction as variations in the hit ratio of caches and
system interrupts often have a significant impact on performance [59. 136].

In [90] a prediction method is presented that incorporates both program behavior
and machine variance. The predictions are based on the approach of adaptive sam-
pling. which is constrained by a fixed time budget for all measurements. In other
estimation methods significant inaccuracies in performance estimates may arise, as a
known execution time for one input size is often a poor predictor of the performance
for other input sizes. In general, the main source of variation is due to the availability
of small amounts of fast cache memory. As there is a decreasing portion of data
residing in cache with increasing input size. linearity in response is disturbed.

This problem is attacked by the adaptive sampling approach. which measures the
execution time of an algorithm for several input sizes. The advantage of the approach
is that. in part, it also incorporates sources of variation inherent to an application. In
matrix multiplication. for example. a linear increase in the sizes of the data-structures
being applied results in a non-linear growth in execution time. Another nice feature of
the approach is that it fixes the time needed for the measurement process. One may
be tempted to run a benchmark at the largest size believed to fit within the budget.
However, due to the many possible sources of variation the assumed execution time
may be far from realistic.

Some image processing functions (e.g., data-driven segmentation) have an inherent
randomness, and an execution time that is much less predictable. For such algorithms
it is difficult to obtain accurate estimations on the basis of adaptive sampling. Another
problemn is that the approach may only measure small sized inputs not representative
of typical workloads. As will be discussed in Section 1.4, due to these latter two
problems we have chosen to apply a measurement technique similar. but not identical.
to the adaptive sampling approach.

A Combination of Techniques

From the presented overview we conclude that several effective estimation techniques
exist that are based on measurement, modeling, or a combination thereof. Unfortu-
nately, no estimation technique exists that provides a level of abstraction that is truly
applicable for optimization of applications implemented using our software architec-
ture. Also. many measurement techniques have proven to be a weak basis for accurate
performance estimation, as the impact of system variance is often ignored {90].

In the following section we present a description of the performance estimation
approach applied in our software architecture. Essentially, it is a combination of the
two hybrid techniques described above, as it integrates the impact of system variance
with high level abstractions relevant for image processing applications. We refer to
our approach as semi-empirical modeling.
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4.2 Semi-Empirical Modeling

As stated, any accurate performance estimation technique should cover all relevant
aspects of a computer system under consideration. Consequently, many existing esti-
mation techniques incorporate detailed behavioral abstractions relating to the major
components of such a system [72, 100], a.0. including: (1) the central processing unit,
(2) the memory hierarchy, including multiple cache levels, (3) I/O devices, (4) the
interconnection network, (5) the operating system, and sometimes also (6) a spe-
cific piece of application software. A major problem with this approach is that one
may need tens, if not hundreds, of platform-specific machine abstractions to obtain
truly accurate estimations. Consequently, the essential requirements of simplicity and
applicability as put forward in Section 4.1.1 are not satisfied.

To overcome this problem we have designed a new technique for performance esti-
mation of parallel image processing applications running on clusters. The technique,
which we refer to as semi-empirical modeling, allows for high-speed evaluation of
complete applications or any relevant constituent subtask. Also, the technique is suf-
ficiently accurate to allow correct optimization decisions to be made automatically, on
any machine in the class of target platforms. The semi-empirical modeling approach
is based on three essential ingredients:

1. A high level abstract machine definition for parallel low level image processing
(the APIPM), including a related instruction set.

2. A simple, APIPM-based, linear performance model related to each user-callable
library operation.

3. A benchmarking method — aimed at the application domain of low level image
proceessing -— to capture essential cost factors not made explicit in the models.

In other words, the technique is based on a combination of relevant abstraction, simple
modeling, and domain-specific measurement.

The essence of the semi-empirical modeling approach is that any behavior or cost
factor that can not be assumed identical for all target platforms is abstracted from in
the definition of the model parameters. To still bind each abstract model parameter
to an accurate performance estimation for a parallel machine at hand, benchmarking
is performed on a small set of sample data to capture all such essential, but implicit
cost factors. In the remainder of this chapter the three essential ingredients of our
modeling approach are discussed in more extensive detail.

4.3 Abstract Parallel Image Processing Machine

As in the AFM-based approach described in Section 4.1.2, we have introduced well-
defined system abstractions by specifying a high level abstract machine for image pro-
cessing: the Abstract Parallel Image Processing Machine, or APIPM. In the APIPM
common hardware characteristics of the target machines are reflected by the definition
of abstract hardware components. In addition, the typical behavior of the routines to
be run are reflected in a related instruction set.
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4.3.1 APIPM Components

An APIPM consists of one or more identical abstract sequential image processing ma-
chines (ASIPMs), each consisting of four closely related components (see Figure 4.1):

1. a sequential image processing unit (SIPU), capable of executing APTPM instruc-
tions, one at a time,

2. a memory unit, capable of storing (image) data structures,

3. an I/O unit, for transporting data between the memory unit and external sens-
ing or storage devices,

4. data channels, the means by which data is transported between the ASIPM
units and external devices.

Although the memory unit of each ASIPM is connected with those of all other
ASTPMs, no ASIPM has direct access to data maintained by any other ASIPM. The
ASIPMs are ordered and identified by a unique number. The range of valid identifiers
is 0,..., N — 1, where N is the number of ASIPMs in the APIPM. Each ASIPM has
knowledge of the range of valid identifiers, and of its own unique number.

The definition of the APIPM reflects a state-of-the-art homogeneous commodity
cluster. It only differs from a general purpose machine in that each sequential unit is
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Figure 4.1: Abstract Parallel Image Processing Machine (APIPM) comprising of four
ASIPMs.
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designed for image processing related tasks only. Each ASIPM is capable of running
code individually, independent of all other ASIPMs. The programs executed by each
ASIPM need not be identical. Exchange of data between processing units is possible
by communication over the interconnecting data channels.

Although most realistic clusters do not have a fully connected communication
network, we have decided to include one in the APIPM. This is because in modern
multicomputer systems data transfer between nodes that are not directly connected
does not require the intermediate nodes on the complete send path to be interrupted.
Consequently, the time required for transferring a message from one node to another
is not significantly influenced by the distance between the nodes.

4.3.2 APIPM Instruction Set

The APIPM instruction set (see Table 4.1) consists of four classes of operations:

1. Generic image processing instructions, i.e. the specialized parallelizable pat-
terns described in Chapter 3.

2. Memory instructions, for allocation and copying of (image) data.

3. I/0 instructions, for transporting data between the memory unit and external
devices.

4. Communication instructions, for exchanging data among ASPIM units.

For reasons of simplicity, in the overview of Table 4.1 the operands (i.e., arguments)
for each opcode have been left out. A complete overview will be given in Section 4.A.

In the instruction set we have included only two communication instructions (i.e.,
SEND and RECV). Collective communication operations are not included, as these can
be implemented using the two point-to-point operations. The definition of the SEND
and RECV instructions is identical to the standard blocking communication operations
available in MPT [104] (i.e., MPI_Send () and MPI_Recv()).

In the abstract machine multiple real-world objects must be represented, which
should be passed as parameters to the APIPM instructions. The most prominent ob-
jects are images, but templates, matrices, and the likes, are essential as well. In the
instruction set we do not introduce a special data representation for each of these ob-
jects. As will be explained in detail in Section 4.A, we make use of memory references
instead. Such references contain information about the internal data representation,
but lack any semantic information. The semantics are determined by the APIPM
instruction the memory reference is passed to as a parameter.

It is important to note that for several generic image processing operations in
the instruction set data element homogeneity is required. This means that the scalar
type and the dimensionality of the elements in multiple data structures passed as
parameters to a single instruction must be identical. The restriction of data element
homogeneity is enforced to acknowledge the differences between operations on homo-
geneous and heterogeneous types. If homogeneity would not be required additional
casting or copying of data would be hidden inside the APIPM. For many instructions
such additional tasks constitute a significant overhead, which must be made explicit.
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opcode generic image processing instructions
UPOP unary pixel operation

BPOPV binary pixel operation (constant value as argument)
BPOPI binary pixel operation (complete image as argument)
REDUCOP global reduction operation

NEIGHOP neighborhood operation

GCONVOP generalized convolution

GEONMIAT geometric transformation (matrix as argument)
GEOROI geometric transformation (region of interest)
opcode memory instructions
CREATE allocate data block in memory unit

MEMCOPY | copy data in memory unit

DELETE free up data block in memory unit

opcode I/0 instructions
IMPORT import data from external device

EXPORT export data to external device

opcode communication instructions
SEND send data to other ASIPM

RECV receive data from other ASIPM

Table 4.1: Simplified APIPM instruction set.

4.3.3 Discussion

The definition of the abstract parallel image processing machine and its related in-
struction set is not complete, as it can not be used as a basis for an actual implemen-
tation. This, however, is also not the reason for introducing the abstract machine. We
stress that the APIPM is defined to serve as a basis for platform independent perfor-
mance models. Many components deliberately have been left out of the specification.
to keep the APIPM-based performance models as simple as possible.

The specification includes no information on how to load programs on each ASIPM
unit. Also, no memory area has been identified in which APIPM programs are stored,
and no program table or program counter has been defined. In other words, all
hardware components that are essential to actually let programs run on the APIPM
are left out of the specification. All such components are deemed too low level to be
of any use in the performance models, and hence are not incorporated in the APIPM.

The APIPM instruction set is not complete either. For example, the APIPM lacks
value comparison and conditional jump instructions. Such instructions have a rela-
tively insignificant impact on execution time, and should not be incorporated in a
performance model. Also, no instructions are included to set up special data struc-
tures, such as templates, and matrices. Again. such instructions are essential for the
APIPM to run correctly, but the effect on the execution time in general is insignif-
icant. In this respect, one may argue that the "DELETE” operation is expected to
have no effect on performance either, and should have been left out of the instruction
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set as well. However, this instruction is essential to see which memory references are
still in use, and which are not. As will be discussed in Chapter 6, this knowledge is
of great importance in the optimization and scheduling of complete applications.

4.3.4 Related Work

In the field of parallel low level image processing the definition and use of abstract
machines is relatively new. In fact, the only references we know of are all from one
research group at The Queen’s University of Belfast in Northern Ireland. In several
papers Crookes et al. [35, 36] discuss the design of a Portable Parallel Abstract Ma-
chine (PPAM), whose instruction set is based on the Image Algebra Language (IAL),
which in turn is based on Image Algebra [131]. As discussed in Section 2.2.2, TAL is
a machine independent programming language capable of parallel implementation on
a range of distributed memory parallel machines. In later work both the PPAM and
IAL have been extended considerably. The languages I-BOL [20] and TULIP [155]
are two of the more sophisticated extensions of IAL. In later papers, a more recent
version of the PPAM is referred to as the EPIC abstract machine [34]. The basic
ideas behind the abstract machines have not changed throughout the years, so in the
remainder of this discussion we will only consider the original PPAM.

The Portable Parallel Abstract Machine is designed as the hypothetical target
machine for the TAL compiler. The PPAM consists of two main components: a se-
quential controller (implemented on a front end machine, such as a SUN workstation),
which communicates with an abstract parallel co-processor (see Figure 4.2). This co-
processor can be any kind of parallel system. The use of the parallel co-processor by
the sequential controller can be thought of in rather the same way as a floating point
co-processor is used by a microprocessor. Although the PPAM design is dissimilar to
that of the APIPM, its related instruction set is almost identical to ours.

The main differences from our work stem from the fact that the PPAM is used as an
aid in the design of a parallel compiler rather than as a basis for a performance model
definition. On the one hand, the PPAM incorporates a higher level of abstraction than
the APIPM, as the communication aspects of parallel execution are not incorporated
in its definition. On the other hand, the inclusion of low level abstract hardware
components (such as an instruction control unit) often makes the abstraction level
much lower. Essentially, the differences in the design of the two abstract machines
are explained by the fact that the two research directions are non-overlapping.

-
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Figure 4.2: Portable Parallel Abstract Machine [36].
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4.4 APIPM-Based Performance Models

In our software architecture, all library operations are assumed to be implemented
by concatenation of APIPM instructions only. Also, it is assumed that the execution
time of each library operation can be partitioned into independent time intervals,
each corresponding to the cost of a single APIPM instruction. The performance of a
library operation is then simply obtained by adding the execution times of all APIPM
instructions used.

Similar to the AFM-based models described in Section 4.1.2, this idea is for-
malized as follows. Let I = {I;,Is,--- ,I,} be the APIPM instruction set. Also,
let P = {Pr,,Pr,, -, Pr, } be the set of performance values for all n instructions
in I. We assume that, for any given system capable of running APIPM instruc-
tions, and for each instruction in I, P;, can be obtained by benchmarking. Also, let
L = {Ly, Ly, -+ ,L,,} be the set of all m operations implemented using instructions in
I only. For all library operations L, (z € {1,--- ,m}) wedefine L, = {I1,I2,--- ,I,,},
in combination with the total number of occurrences (or count) of each APIPM in-
struction in L,: C; = {Cp +,Chou, -+ ,CI, .2} The count of each instruction can
have any value in N (including 0). The expected total execution time of each library
operation L, is then obtained by

n
Tu, =Y CrzPr.
i=1

Similarly, the expected total execution time of any application implemented using our
library is obtained by adding the execution times of each library operation used.

A problem with the simplistic model formalized here is that most APIPM instruc-
tions are not single static entities. This is because the execution of an instruction is
often dependent on the values of its operands. Therefore, a static entity for each pos-
sible operand combination must be incorporated in our model. To avoid an explosion
of the number of static entities we allow each instruction /; and each value Py, to
be parameterized. Because the operands of the APIPM instructions are discussed in
the appendix to this chapter (Section 4.A), a detailed overview of the model param-
eterization is deferred to the appendix as well. To give a straightforward example,
however, in almost all APIPM instructions a ’datatype’ parameter is incorporated
(e.g., giving I;("int’) and I,(' float’)). Also, a ’data-input-size’ parameter is required
for most performance values in P (e.g., giving Pr, (datatype)(5i2€)). The choice of model
parameters is dependent on the actual implementation of each APIPM instruction.
For more detailed information we refer to Section 4.B.

Benchmarking

To capture system variation without having to rely on platform specific model pa-
rameters, the semi-empirical modeling approach requires an additional benchmarking
phase to be performed. For our software architecture to be used on a specific platform,
benchmarking results need to be obtained only once. As long as the underlying hard-
ware layers and supporting software layers (e.g., operating system, compiler, etcetera)
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Figure 4.3: Performance estimation in case of neighborhood operations and generalized
convolutions, whose performance values depend on two input size parameters — i.e.,
image size and kernel size. Any required performance value (above represented by
the small black square) is obtained by simple bilinear interpolation. In this example,
measurements were performed for image sizes of 40, 90, and 250 Kb, each combined
with kernel sizes of 9, 25, and 49 bytes.

are not upgraded, the same set of measurement results can be applied for estimation
of any application implemented using our parallel image library.

As in the adaptive sampling approach of Section 4.1.2, in our software architecture
each APIPM instruction is measured for multiple input sizes. In contrast to adaptive
sampling, however, we do not define a fixed time budget for all measurements. By
default we use a small, predefined set of input sizes for all benchmarking operations.
To avoid the benchmarking phase to be unacceptably lengthy, the set of input-sizes
may be user-defined as well.

To capture non-linear performance growth without having to perform measure-
ments for any possible workload, between each pair of measured performance values
performance growth is taken to be piecewise linear. For estimation of instructions
whose performance value is dependent on one data input size parameter this inter-
polation is straightforward. The performance values of neighborhood operations and
generalized convolution operations, however, are dependent on two data input size
parameters - i.e., the size of the input image and the size of the kernel or template
structure. As is indicated in Figure 4.3, in such situation we apply bilinear interpo-
lation to obtain the required performance estimation.
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4.4.1 Extended Model for Point-to-Point Communication

Whereas the performance model described above is sufficient for all sequential APIPM
instructions, an extension is required for the two communication operations (i.e.. SEND
and RECV). First. this is because an accurate prediction of the end-to-end communi-
cation time usually can not be obtained by considering the time a processor is busy
executing a SEND or a RECV instruction alone. Second. in its current form the model
does not closely match the capabilities of the communication instructions as defined
in MPI. Most notably, the impact of a message’s memory layout on communication
costs is not incorporated in the model. This is an important point. as one of the tasks
of the scheduler of Section 2.3.2 is to make decisions regarding the domain decompo-
sition of an application under consideration. Depending on the type of such domain
decomposition, it may be necessary to communicate data stored noncontiguously in
memory. As was shown by Prieto et al. [125]. knowledge of a message’s memory
layout is important, as non-unit-stride memory access may have a severe impact on
performance due to caching. Also, the NPI operations may handle the transmission
of noncontiguous data differently from contiguous blocks. possibly causing additional
overheads due to the packing of data into a contiguous buffer.

To incorporate such essential cost factors we have designed an extended model
for point-to-point comnmunication. The model. called P-3PC (or the Parameterized
model based on the Three Paths of Communication). closely resembles other models
described in the literature (e.g., the Postal Model [11, 21], LogP [38]. and LogGP [1]).
The model is capable of modeling the essential communication patterns as used in
data parallel image processing applications. In addition. and in contrast to the models
mentioned above, it is also capable of accurately predicting the communication costs
related to any type of domain decomposition. As this topic is outside the scope of
the current chapter. an extensive overview of the P-3PC model and its capabilities is
given in Chapter 5. In the evaluation of the APIPM-based models presented in the
remainder of this chapter, all P-3P( specific modeling properties have been left out.

4.4.2 Discussion

The most important advantage of the APIPA-based performance models is that pre-
dictions are based on very high level instructions —— even in comparison with the
AFM-based models of Section 4.1.2. It would have been possible to define a model
on the basis of much lower level instructions as well, but execution times of such
instructions tend to be less independent than those of higher level instructions. This
is mainly due to optimizations performed by the applied compiler. Also, it is much
more difficult to obtain accurate values for lower level instructions, due to the inherent
intrusiveness of the benchmarking process

A possible drawback of the models is that the instructions and related performance
values are parameterized with quite a large number of instruction behavior and work-
load indicators. Obtaining accurate performance values for all possible combinations
of parameters is both costly and difficult. However, it is possible to combine several
parameters to obtain a more general indicator. As an example, promising candi-
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dates for parameter merging are those that relate to data structure sizes (e.g., width,
height, depth, etc.). Furthermore, the benchmarking tool that plays an essential role
in our software architecture is implemented such that it allows a user to set regions
of interest, to restrict the set of all possible measurements. In addition, it is possible
to let the benchmarking process be run in parallel on multiple nodes within a target
architecture, to reduce the benchmarking costs even further.

4.5 Measurements and Validation

In this section we show how a realistic image processing application, implemented
using our software architecture, is executed in parallel. The application is highly
relevant as it incorporates all of the important APIPM instructions defined in Sec-
tion 4.3.2. First, a short description is given of the underlying algorithm. Next, both a
straightforward sequential implementation as well as its related parallel execution are
discussed. Finally, measured results are compared with APIPM model predictions.

4.5.1 Detection of Curvilinear Structures

As discussed in [55, 56|, the problem of detecting curvilinear structures in images is
solved by considering the second order directional derivative in the gradient direction,
for each possible line direction. This is achieved by applying anisotropic Gaussian
filters, parameterized by orientation 6, smoothing scale o, in the line direction, and
differentiation scale o, perpendicular to the line (Figure 4.4), given by

1

e ,owﬂ‘
ba,»,aw,ﬂ :

(2, y, 00, 0w, 0) = 0y0u | f3 (4.1)
When the filter is correctly aligned with a line in the image, and ¢, 0., are optimally
tuned to capture the line, filter response is maximal. Hence, the per pixel maximum
line contrast over the filter parameters yields line detection:
R(z,y) = argvm;lxer”(as,y,av.ow,g). (4.2)

This directional filtering problem can be implemented sequentially in many dif-
ferent ways. For each orientation @ it is possible to create a new filter based on o,
and o,. In effect, this yields a rotation of the filters, while the orientation of the
input image remains fixed. Another possibility is to keep the orientation of the filters
fixed, and to rotate the input image instead. Yet another solution is to integrate
the notion of orientation in the filter operation itself. In this case image pixels are
accessed according to the size of the neighborhood as well as the given orientation.

In this example, we have implemented the operation by applying fixed filters to
rotated image data. We have selected this implementation as we have found it to
be the solution of choice for several researchers in image processing. As such, the
implementation reflects parallelization problems encountered in a realistic situation.
It should be noted, however, that the alternative sequential implementations presented
in Chapter 7 yield better sequential as well as parallel performance.
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Figure 4.4: Directional filtering for line detection. Filter Gww s oriented in the line
direction; local coordinate system indicated by (v, w).

The main body of the sequential implementation is presented in pseudo code in
Listing 4.1. The program starts by rotating the original input image for a given ori-
entation . In addition, for all (o,,0,) combinations the filtering is performed by six
library operations executed in sequence. First, fZ2:%:% and b%»»7«¢ (or Filtered1_IM
and Filtered2_IM, respectively) are produced by executing two generalized convo-
lutions, each with the appropriate parameters. For cost effectiveness the Gaussian
convolutions are performed by applying two 1-dimensional filters in both cases. Next,
the result of Equation (4.1) is obtained by executing two binary pixel operations, one
having an image, the other having a constant value as argument. Finally, the result
image is rotated back to match the orientation of the input image, and the maximum
response image is obtained.

Figure 4.5(a) gives a typical example of an image that is used as input to the
program. The result obtained after applying the program for a reasonably large
parameter subspace of (oy,0y,6) is shown in Figure 4.5(b). On a state-of-the-art
sequential machine the program may take from a few minutes up to several hours
to complete, depending on the size of the input image and the extent of the cho-
sen parameter subspace. Consequently, for the directional filtering program parallel
execution is highly desired.

FOR all orientations § DO
Rotated IM = GeometricOp(Original IM, ”rotate”, 8);
FOR all smoothing scales o, DO
FOR all differentiation scales g,, DO

Filtered1.IM = GenConvOp(Rotated_IM, ”gauss”, o, 0v, 2, 0);
Filtered2_IM = GenConvOp(Rotated_IM, ”gauss”, o, 0y, 0, 0);
Detected IM = BinPixImArgOp(Filtered1_.IM, ”absdiv”, Filtered2_IM);
Detected_IM = BinPixValArgOp(Detected_IM, "mul”, oy X ow);
BackRotated IM = GeometricOp(Detected IM, "rotate”, —6);
Contrast_ IM = BinPixImArgOp(Contrast_IM, "max”, BackRotated_IM);

Listing 4.1: Pseudo code for the directional filtering program.
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Figure 4.5: (a) Typical 1000x 554 input image obtained from the Apollo training man-
ual ”Apollo Spacecraft & Systems Familiarization” (March 13, 1968). National Aero-
nautics and Space Administration (NASA), Office of Policy and Plans, NASA History
Office. Used by kind permission. (b) Maximum response image obtained after appli-
cation of the directional filtering program.

4.5.2 Parallel Execution

As all parallelization issues are shielded from the user, the pseudo code of Listing 4.1
directly constitutes a program that can be executed in parallel as well. Optimization
of the efficiency of the program is to be taken care of by the software architecture’s
scheduling component. For this evaluation, however, we have created two different
schedules for the program by hand. In the first schedule all library operations are
forced to run in a data parallel manner, using all available processors. The second
schedule differs from the first in that the last two operations in the innermost loop of
the program are run on one node only.

In both schedules the Original IM structure is broadcast to all nodes. This is
because the structure is applied in the initial rotation operation, which expects it to
have a data access pattern of type 'other’ (see Section 3.4). This broadcast needs to
be performed only once, as Original IM is not updated in subsequent operations. In
addition, in both schedules the first four operations in the innermost loop are executed
locally on partial image data structures. The only need for communication is in the
exchange of shadow regions in the two Gaussian convolution operations.

In the first schedule the last two operations in the innermost loop are run in
parallel as well. This requires the distributed image Detected_IM to be available
in full at each node, because it has an access pattern of type ’'other’ in the back-
rotation operation. This is achieved by executing a gather-to-all operation, which is
logically equivalent to a gather operation followed by a broadcast. Finally, a partial
maximum response image Contrast_IM is calculated on each node, which requires a
final gather operation to be executed just before termination of the program. In the
second schedule the last two operations are not executed in parallel. As a result, the
intermediate result image Detected_IM is gathered to the single node that produces
both the back-rotated image, as well as the complete maximum response image.
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It is the purpose of the architecture’s scheduling component to pick the optimal
solution out of multiple competing schedules of this kind. In the following we will
show that the APIPM-based performance models are powerful enough to allow the
scheduler to make such decisions correctly.

4.5.3 Performance Evaluation

To initialize the APIPM-based performance models we have performed a small set
of benchmarking operations. For each instruction used in the directional filtering
program not more than two measurements were performed, i.e. for input sizes of 2002
and 1000? elements. Model predictions for each instruction and for each required
input size were obtained as indicated in Section 4.4.

The benchmarking operations. as well as the directional filtering program were
executed on the 24-node homogeneous DAS-cluster (Distributed ASCI Supercom-
puter [7]) located at the University of Amsterdam. All nodes in the cluster con-
tain a 200 Mhz Pentium Pro with 64 MByte of EDO-RAM, and are connected by a
1.2 Gbit/sec full-duplex Myrinet SAN network. The nodes run the RedHat Linux 6.2
operating system. At the time of measurements, 4 nodes in the system were unusable.
As a consequence, performance results are presented only for up to 20 processors.

Based on intuition alone a programmer would have great difficulty deciding which
of the two schedules described in the previous section should be executed. Clearly,
a schedule is preferred if the set of operations unique to that schedule is faster than
the set of operations unique to another schedule. Hence, for the directional filtering
program the first schedule is preferred if:

00 (Protate(5iz€/N) + Praz(size/N) + Pycasi(size)) + Pgather(size) <

O (Protate(size) + Ppax(size)) (4.3)

where N denotes the number of nodes, and f¢ the size of the parameter subspace. For
the first schedule the large number of broadcasts is expected to have a significant im-
pact on performance. For the second schedule the many rotations of non-partitioned
image data is expected to be costly.

Based on the benchmarking results we are able to decide which schedule is optimal.
As shown in Figure 4.6 (depicting the complete execution time of both schedules),
our models indicate that the first schedule is always preferred - for any number of
processors. Clearly, broadcasting a full-sized image structure is not as expensive as
performing the image rotation sequentially on one node. The 'hops’ in the graph of
schedule 1 are explained by the fact that the broadcast operation is implemented using
a spanning binomial tree (SBT), which has a cost related to log/N. Figure 4.7 shows
similar predictions for a smaller input image, but for a larger parameter subspace.

To test the accuracy of our performance models we have executed the directional
filtering program for both schedules. The resulting mean execution times for each
run are included in the graph of Figure 4.6 as well. Error bars are not shown, as the
performance of the DAS is quite stable. In most situations measured lower and upper
bounds are within 0.5 seconds of the mean execution times. The presented results
indicate that the model predictions for both schedules are highly accurate - for any
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Figure 4.6: Comparison of model predictions and measurements for the two program
schedules. Results for directional filtering of extended Apollo image of size 1098x 1098,
and for a parameter subspace including 12 orientations and 4 (0,,0.,) combinations.
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Figure 4.7: Comparison of predictions and measurements for input image of size
707707, and for a parameter subspace including 36 orientations and /4 (o, 0y,) com-
binations.
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%

UPOP BPOPI BPOPY GCONVOP GEOMAT MEMCOPY

Figure 4.8: Difference between accumulated predictions and measurements for the siz
most important APIPM instructions (schedule 1, not including communication,).

number of processors. Even worst case predictions are within 5.5% of the measured
values. It is noteworthy, however, that our models are slightly optimistic in all situ-
ations. This is explained by the fact that the mean performance values measured in
the benchmarking process tend to be somewhat lower than what is actually obtained
at application run time. This is because ’outliers’ obtained during benchmarking are
not included in our database of performance values, while extremely high values may
still occur during normal runs of a particular application.

The graph of Figure 4.8 shows that our performance models are capable of provid-
ing accurate estimations at the lowest level of APIPM instructions as well. The accu-
mulated estimations on a per-instruction basis are optimistic as well as pessimistic,
depending on the applied instruction. The importance of this graph, however, lies in
the fact that errors in the estimations for the most significant instructions applied in
the application of Listing 4.1 are, in general, not more than 10%. As a consequence,
we feel that a sufficiently high level of estimation accuracy is obtained for the models
to be applied in our software architecture’s optimization process.

Given schedule 1, it can be derived from the models that the impact of com-
munication (especially the repeated broadcast) on overall application performance is
huge. Figure 4.9 shows that for 16 nodes the program spends almost half of its time
communicating. For 64 nodes 84.1% of the time is lost in all communication steps
combined, and 71.1% in broadcasting alone. Although parallel performance is often
significantly better for alternative sequential implementations of this particular line
detection problem (see Chapter 7), communication costs do play an important role in
almost any parallel application. Therefore, it is essential for our performance models
to also provide accurate estimations for the SEND and RECYV instructions. The next
chapter of this thesis is devoted entirely to the modeling of these basic communication
operations, and includes a detailed evaluation of our performance estimations as well.
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Figure 4.9: Predicted impact on communication (for schedule 1).

4.6 Conclusions

In this chapter we have described the performance estimation approach as applied in
our software architecture. We have introduced the notion of semi-empirical model-
ing, which is a performance estimation technique based on a combination of relevant
abstraction, simple modeling, and domain-specific measurement. We have compared
the technique with existing estimation approaches, and have shown semi-empirical
modeling to be similar to a combination of two techniques described in the literature:
(1) the AFM-based approach of narrow spectrum benchmarking that incorporates
very high level system abstractions, and (2) the approach of adaptive sampling that
captures system variance by measuring execution times for multiple workloads.

We have indicated that in our semi-empirical modeling approach all abstractions
are introduced on the basis of a high level abstract machine specification for par-
allel image processing (the APIPM), and a related instruction set. Also, we have
shown the definition of the abstract machine to reflect the relevant hardware com-
ponents and behavior common to all projected target platforms for our software ar-
chitecture (i.e., state-of-the-art homogeneous commodity clusters). Subsequently, we
have indicated how to define a simple, linear performance model on the basis of the
APIPM-abstractions. Finally, we have shown how domain-specific benchmarking is
incorporated for estimation of system variance.

A comparison of model estimations and experimental measurements has indicated
that, for a realistic image processing application, the APIPM-based performance mod-
els are highly accurate. The models are capable of providing good estimations for full
applications, as well as for any constituent subtask. Given these results we are confi-
dent in that the core of our software architecture forms a powerful basis for automatic
optimization of a wide range of parallel low level image processing applications.
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The evaluation of our performance models as presented in this chapter is not com-
plete, as the costs related to interprocess communication hardly have been touched
upon. Because communication is such a prominent cost factor in many parallel ap-
plications, all modeling aspects related to this issue are deferred to the next chapter.
Also, the evaluation has not shown that optimization on the basis of our performance
models indeed results in highly efficient parallel applications. All issues related to
application optimization and scheduling are discussed extensively in Chapter 6. An
assessment of the effectiveness of our software architecture in providing significant
performance gains is presented in Chapter 7. Finally, in the appendix to this chapter
a more detailed overview is given of the APIPM instruction set, and the related model
parameterization.

4.A APIPM Instruction Set Definition

This section presents a detailed discussion of the APIPM instruction set definition.

A complete overview of the instructions and their related operands is given in Ta-
bles 4A.1 - 4A.3.

Memory References

In the Abstract Parallel Image Processing Machine multiple real-world objects need
to be represented. The most prominent objects are images, but templates, matrices,
and the likes, are essential as well. In the instruction set we do not introduce a special
data representation for each of these objects. Instead, we use memory references that
contain information about the internal data representation, but lack any information
on the semantics of the data referenced to. The semantics are determined by the
APIPM instruction the memory reference is passed to as a parameter.

Given the notion of memory references, the operands (arguments) of the instruc-
tions fall into one of four categories:

1. Memory references to single data elements (smref). Operands of this type refer
to single data elements stored in main memory. Apart from a pointer to a mem-
ory location, it holds information regarding the scalar type and dimensionality
of the data element stored. In a realistic program a single memory reference
usually represents a pixel value of a certain scalar type and dimension.

2. Memory references to aggregated data elements (amref). Operands of this type
refer to aggregations (such as arrays) of data elements stored in main memory.
Apart from a pointer to the memory location containing the first data element,
it also contains information regarding the size and origin of the domain of
the aggregated structure, in combination with the type and dimensionality of
the structure’s elements. The size and origin of an n-dimensional aggregated
structure are both represented by an n-dimensional vector.

A memory reference of this type pointing to a data aggregation of size 1 (thus:
containing only one element) is considered equal to the single data element
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opcode operands memory instructions

CREATE amref, vector, vector, string, value

#1: reference to destination data structure

#2: domain size of destination structure

#3: domain origin of destination structure

#4: scalar type of data elements in destination structure

#5: dimensionality of data elements in destination structure

DELETE amref

#1: reference to source data structure

MEMCOPY | amref, amref, vector, vector, value
#1: reference to source data structure

#2: reference to destination data structure

#3: offset from start of source data structure

#4: offset from start of destination data structure

#5: number of data elements

opcode operands generic image processing instructions

UPOP amref, amref, string
#1: reference to source data structure
#2: reference to destination data structure

#3: name of internal unary pixel operation

BPOPV amref, amref, string, smref
#1: reference to source data structure
#2: reference to destination data structure
#3: name of internal binary pixel operation

#4: reference to single argument value

BPOPI amref, amref, string, amref
#1: reference to source data structure
#2: reference to destination data structure
#3: name of internal binary pixel operation

#4: reference to argument data structure

REDUCOP | amref, smref, string

#1: reference to source data structure
#2: reference to single destination value

#3: name of internal reduction operation

Table 4A.1: APIPM instruction set.
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opcode operands generic image processing instructions

NEIGHOP | amref, amref, string, amref
#1: reference to source data structure
#2: reference to destination data structure
#3: name of internal neighborhood operation

#4: reference to kernel structure

GCONVOP | amref, amref, string, string, amref
#1: reference to source data structure

#2: reference to destination data structure

#3: name of internal binary pixel operation

#4: name of internal reduction operatiomn

#5: reference to kernel structure

GEOMNAT amref. amref. amref, smref, string. vector
#1: reference to source data structure

#2: reference to destination data structure

#3: reference to transformation matrix

#4: reference to single background value

#5: interpolation type

#6: translation vector

GEOROI amref, amref, vector, smref

#1: reference to source data structure

#2: reference to destination data structure
#3: offset from start of source data structure

#4: reference to single background value

opcode operands I/0O instructions

INPORT amref, value, value
#1: reference to destination data structure
#2: unique external data structure identifier

#3: unique external device number

EXPORT amref, value, value
#1: reference to source data structure
#2: unique external data structure identifier

#3: unique external device number

Table 4A.2: APIPM instruction set (continued).
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opcode operands communication instructions

SEND amref, vector, value, value

#1: reference to source data structure

#2: offset from start of source data structure
#3: number of data elements

#4: unique destination ASIPM identifier

RECV amref, vector, value, value

#1: reference to destination data structure

#2: offset from start of destination data structure
#3: number of data elements

#4: unique source ASIPM identifier

legend:

amref memory reference to aggregated data elements
smref memory reference to single data element
string string value (constant)

value numerical value (scalar)

vector numerical value (vector)

Table 4A.3: APIPM instruction set (continued).

reference described above. References to aggregations of size 1 and references
to single data elements can be interchanged at will. In a realistic program a
memory reference of this type usually refers to image data.

. Numerical {constant) values (value and vector). Operands of this type refer
to single numbers or vectors of single numbers, and are used to represent sizes,
positions, etcetera.

. String (constant) values (string). Operands of this type refer to character
strings recognized by each sequential image processing unit (SIPU). A string
value determines the behavior of an instruction, and is either used as an opera-
tion indicator, or as a type indicator.

Operation indicators refer to internal operations recognized by the SIPU. As an
example, indicators such as "NEGATE” and "SQRT” can be used to represent
valid unary pixel operations.

Type indicators represent additional information required for an operation to be
executed. For example, the memory allocation instruction ”CREATE" needs an
indicator for the specification of the datatype of each element in the structure
to be allocated. Also, the geometric transformation instruction "GEOMAT”
needs an indicator for the specification of the type of interpolation to be used.
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Sequential Instructions

The instruction set contains memory operations to allocate and free memory space
("CREATE” and "DELETE"), and to copy data from a source area to a destination
area ("MEMCOPY”). Asdescribed above. references to single data elements are equal
to aggregated data structures of size 1. This means that a newly created aggregated
data structure of size 1 can be used as an argument to an instruction that requires a
single data element reference as one of its operands (such as the 'smref’ operand in
the "REDUCOP” instruction).

Two I/O operations are available in the instruction set to transport data to and
from external devices ("IMPORT” and "EXPORT™). Apart from a reference to ag-
gregated data. both instructions need a unique device number and identifier to specify
the apparatus itself and the data structure residing on that device.

The generic image processing operations in the instruction set are those we have
discussed in Chapter 3. Although we have indicated that many image processing op-
erations can be performed in-place, in all but the reduction operation ("REDUCQOP")
both a source image reference and a destination image reference are required. This
scheme does not introduce additional copying of data because the same reference
could be given as an argument twice.

As stated in Section 4.3.2. all image processing operations that have a reference
to argument data structures or kernel structures as an operand require data element
homogeneity, to acknowledge the differences between operations on homogeneous and
heterogeneous types. Homogeneity means that the scalar type and the dimensionality
of the data elements of both the source structure and the additional structure must
be identical. Data element homogeneity is not required for destination image data
structures, as the resulting scalar type and dimensionality of the data elements is
determined by the type of internal SIPU instruction performed.

Communication Instructions

The instruction set includes two communication operations for the exchange of data
between two ASIPMs. Data can be sent to another ASIPM by using the "SEND” op-
eration. Data can be received from another ASIPM by using the "RECV" operation.
These point-to-point operations provide reliable message transfer. This means that
a message sent is always received correctly, and that no additional checks for errors
are needed. Collective communication operations (i.e.: communication routines that
involve multiple ASIPMs) are not included in the instruction set. This is because
a complete set of collective communication routines can be created using the two
point-to-point communication operations.

The first operand in the "SEND" operation specifies a send buffer in the main
memory of the sending ASIPM from which the message data is taken. The starting
point in the send buffer and the number of data elements to be sent are specified
by the second and third operand. The last operand specifies the unique identifier of
the receiving (destination)} ASIPM. The scalar type and dimensionality of the data
elements sent are specified in the reference to the source data structure.
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The "RECV” operation requires a receive buffer to store incoming message data.
Similar to the "SEND” operation, the offset in the receive buffer and the number of
data elements to be received are specified by the second and third operand. Also, the
last operand specifies the unique identifier of the sending (source) ASIPM.

All send and receive operations must be matched. This means that for each mes-
sage sent the destination node needs to execute a receive operation with the sending
node as source identifier. Furthermore, in both the send call and the receive call the
number of data elements, as well as with the scalar type and dimensionality of the
elements all must be identical. Also, all messages that are sent over the communica-
tion channels are non-overtaking. This means that if one ASIPM sends two messages
in succession to the same destination, the first message will always be received first.

We assume that the two communication operations are blocking. For the "SEND”
operation this means that it does not return until the message has been copied into a
matching receive buffer (on another ASIPM), or stored away safely in a local tempo-
rary buffer. For the "RECV” operation this means that it does not return until the
message has been fully copied into its receive buffer. Although not expected under
normal circumstances, it is possible for a receive call to complete before its matching
send call has completed.

4.B APIPM Model Parameterization

This section presents a detailed discussion of the APIPM model parameterization. A
complete overview of the parameterized model instructions and related performance
values is given in Tables 4B.1 and 4B.2.

Parameterized Model Instructions

As stated in Section 4.4, a problem with our simple, linear performance model is that
most APIPM instructions are not single static entities. This is because the execution
of an instruction often depends on the values of its operands. Therefore, a static
entity for each possible operand combination must be incorporated in the model. To
avoid an explosion of the number of static entities we allow each instruction I; to
be parameterized instead. The number of parameters for a model instruction is not
necessarily identical to the number of operands of the related APIPM instruction. For
example, the background value required in the geometric transformation instructions
(Table 4A.2, operand #4 in either "GEOMAT” or "GEOROI”) does not call for
additional static model instructions. The execution of these instructions is expected
to be independent of the applied background pixel value.

Essentially, any possible source of relevant change in instruction behavior must be
captured in a model parameter. Here, the task of choosing relevant model parameters
is steered by the actual implementations of each APIPM instruction in our software
library. An overview of the parameterized model instructions related to all sequential
APIPM instructions is presented in Table 4B.1. The communication instructions have
been left out, as parameterization of these instructions (a.o., including the memory
layout of a message, see Chapter 5) is outside the scope of this chapter.
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instruction | parameterized model instruction

UPOP Iy pop(opname, idim, stype, ival)

BPOPV Ippopy (opname, idim, stype, ival, aval)

BPOPI Igpopr(opname, idim. stype, ival. aval)
REDUCOP | Igrgpucorp(opname, idim, stype, ival)
NEIGHOP Ingrcnop(opname, idim, kdim, stype, ival, kval)
GCONVOP | Igconvop(popname, ropname, idim, kdim. stype, ival, kval)
GEOMAT Iceoarar(idim, stype. ival, mtype. itype)
GEOROI Iceoror(idim, stype, ival)

CREATE Icreare(idim, stype)

MEMCOPY | Inremcopy(idim, stype)

DELETE Ipgrpre(idim, stype)

IMPORT Iy porr(idim, stype)

EXPORT IEXPORT(idiIIL stype)

legend:

aval value indicator of argument data structure

idim dimensionality of source data structure

itype type of interpolation used in geometric operation
ival value indicator of source data structure

kdim dimensionality of kernel data structure

kval value indicator of kernel data structure

mtype type of matrix used in geometric operation
opname name of internal operation

popname name of internal binary pixel operation

ropname name of internal reduction operation

stype scalar type of data elements

Table 4B.1: Parameterized model instructions.
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The parameters for the model instructions presented in Table 4B.1 fall into one
of four categories:

e Type indicators. Three different type indicators are introduced: ’stype’, 'mtype’,

and ’itype’. The scalar type parameter can have any of the values "byte”,
"short”, "int”, "float”, and ”"double”. The type of the data structure elements
often will have an important impact on the behavior of an instruction. As an
example, arithmetic floating point operations (such as sqrt) are often much more
expensive than the non-floating point versions.
The interpolation type indicator is applied in geometric transformation opera-
tions, and can have any of the values "nearest” and ”linear”. The matrix type
indicator decides which geometric transformation is performed. Currently, the
available valid values are "rotate”, "reflect”, and ”scale”.

o Value indicators. Three different value indicators are introduced: ‘ival’, ’aval’,
and ’kval’. This is because the actual values present in a data structure may
have an important impact on the performance of an instruction. For example,
when the value '1’ is presented to a base-10 logarithm operation 0’ is returned.
However, if '0’ is presented to the operation an error value is returned, and an
exception may be raised, possibly causing additional overhead. Currently valid
values for the parameters ’ival’, ’aval’, and ’kval’ are:

— "ALLO” (most elements have the value 0),

"ALL1” (most elements have the value 1),

"0TO1” (most elements have a value between 0 and 1), and
— "ANY” (no value indication, used by default).

e Dimensionality indicators. Two dimensionality indicators are introduced: ’idim’
and 'kdim’. In our software library a choice has been made to provide differ-
ent implementations for operations on 2-dimensional and 3-dimensional images.
Also, multiple fundamental kernel operations have been implemented to allow
for optimization of operations that make use of separable kernel data. For this
reason the ’idim’ parameter can have the value ”2D” or "3D”. The ’kdim’ pa-
rameter either can have the value "1D” or "nD”. Here we use "nD” to represent
non-separable kernel dimensionality.

o Operation indicators. Operation indicators refer to the internal operations rec-
ognized by the Sequential Image Processing Unit (SIPU). See also Section 4.A.

Parameterized Performance Values

The performance values in set P are not single static entities either. This is because
the execution time of many instructions is dependent on the size of the workload. For
this reason we also have parameterized the performance values related to the model
instructions. In Table 4B.2 an overview is given of the parameterized performance
values related to the sequential operations in the APIPM instruction set.
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parameterized performance values

PIL'P()P(opname,idim,stype,ival)(ddim~ w. h, d)
PIBpopv(opname.idim,stype,ival,aval)(ddimw w, h, d)
PIBpop1(opname.idim,stype.ival,aval)(ddiﬂl, w, h. d)
PIREDUCOP(opname,idim,stype,ival)(ddima w, h, d)
PINEICHOP(opname.idim.kdim.stype.ival.kval)(ddim~ w, h. d. kw, kh. kd)
PIGC()NVOP(popname,ropname.idim.kdim.stype.ival.kval)(ddimw W, h~ ds kW, kh. kd)
PIGE()MAT(’idim,styp&i’ualJntype,itypﬁ)(ddims w, h, d)

PIGE()ROI(idim.stype.i‘ual)(ddimv W, h‘ d)

PICREATE(idim,stype)(ddinls W, h. d)
PIMEA/COPY(idim~5fylle)(ddlm‘ w. b, d)
y(ddim. w, h. d)

PIDELETE(idiTIl‘Stype

(idim,stype)(ddinla W, ll, d)
idim.stype) (ddim, w. h. d)

PIII\IPORT

PIEXPORT(

legend:
ddim dimensionality of data elements (usually: pixels)
w, h, d extent of structure’s domain in each of 3 dimensions

kw, kh, kd extent of kernel’s domain in each of 3 dimensions

Table 4B.1: Parameterized performance values.

The ‘ddim’ performance value parameter relates to the dimensionality of the data

elements (i.e., pixels) of the structure passed to a given instruction. All other per-
formance value parameters relate to the sizes of the data structures passed to an
instruction. Although the software architecture’s benchmarking component incorpo-
rates all, by default the size and dimensionality parameters are taken together to form
a single 'total size’ parameter. It should be noted that the performance estimations
presented in Section 4.5 are all based on benchmarking results obtained after this
type of parameter merging.




Chapter 5

A Communication Model for
Automatic Decomposition of
Regular Domain Problems*

"Mind the gap!”

(warning message broadcast across platforms at London Underground)

One of the most fundamental problems any automatic parallelization and optimization
tool is confronted with is to find an optimal domain decomposition for an application
at hand. For regular domain problems (such as simple matrix manipulations) this
task may seem trivial. However, communication costs in programs executing on com-
modity clusters often significantly depend on the capabilities and particular behavior
of the applied message passing primitives. As a consequence, straightforward domain
decompositions may deliver non-optimal performance.

Whereas many software libraries exist that provide efficient message passing im-
plementations [53, 102], MPI seems to have become the de facto standard [104]. Of the
large number of functions defined in MPI 1.1, the two blocking point-to-point commu-
nication operations (i.e., MPI_Send() and MPI Recv()) are most important and most
often used (see also Section 2.2.1). To implement optimal parallel applications it is
essential to have a thorough understanding of the performance characteristics of these
basic communication operations. A good way to make such characteristics explicit is
to design a performance model that captures typical point-to-point communication
behavior. Because a fundamental MPI design criterion was portability across a wide

*This chapter combines our papers published in Proceedings of the Tenth Euromicro Workshop
on Parallel, Distributed and Network-based Processing (PDP 2002) [142], IEEE Transactions on
Parallel and Distributed Systems [143] and Journal of Systerns Architecture [144].
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range of computers, such a model must be applicable to the same range of machines.
Essentially, this implies that a performance model must incorporate a similar level of
abstraction as introduced in the MPI standard.

In the literature several point-to-point communication models have been described
that match the MPI abstractions up to a certain degree (e.g., the Postal Model [11, 21},
LogP [38], and LogGP [1]). Although successful in many situations, these models were
not designed for communication according to MPI specifically. Consequently, the
models do not incorporate all capabilities of MPI’s send and receive operations. As
an important example, the effect of memory layout on communication costs is ignored
completely. This is unfortunate, as the work of Prieto et al. [124, 125] indicates that
a change in the spatial locality of messages exchanged using MPI can have a severe
impact on the overall performance of an application. The authors state that ”the
bandwrdth reduction due to non-unit-stride memory access could be more significant
than the reduction due to contention in the network”. Independently, we have come
to similar conclusions [139]. Given these results, it is surprising that no model seems
to exist that can account for such costs.

As described in Chapter 4, in our software architecture we rely heavily on per-
formance models to perform the task of automatic parallelization of a particular
class of regular domain problems: ie., low level image processing. As the limita-
tions of existing communication models proved to be too severe, we have designed a
new model (called P-3PC, or the Parameterized model based on the Three Paths of
Communication), that closely matches the behavior of MPI’s standard point-to-point
communication operations. P-3PC bears strong resemblance to the aforementioned
models, but due to its additional features it provides more accurate estimations in
many essential situations.

First, P-3PC acknowledges the difference in the time either the sender or the re-
ceiver is occupied in a message transfer, and the complete end-to-end delivery time.
Second, P-3PC makes a distinction between communicating data stored either con-
tiguously or noncontiguously in memory. Finally, P-3PC does not assume a strictly
linear relationship between the size of a message being transmitted and the communi-
cation costs. Although P-3PC is targeted towards the specific needs in our research,
it is general enough to be applicable in other research areas as well.

Hence, the primary research issue addressed in this chapter is formulated as fol-
lows: How to design a simple and portable communication model that (1) reflects
the relevant capabilities of MPI’s standard point-to-point communication primitives,
and (2) accurately models the communication costs encountered in low level image
processing applications executing in data parallel fashion

This chapter is organized as follows. Section 5.1 discusses the requirements for a
model to be applied in our software architecture. Also, two popular communication
models are evaluated according to these requirements. The new P-3PC model is in-
troduced in Section 5.2. Section 5.3 shows how P-3PC is applied in the evaluation
of communication algorithms executed in a realistic image processing application.
In Section 5.4 predictions are compared with results obtained on two clusters, each
having a different interconnection network, and a different MPI implementation. Con-
cluding remarks are given in Section 5.5.
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5.1 Modeling of Message Passing Programs

In our software architecture all parallelization and optimization issues are to be taken
care of automatically, hidden from the user. As explained in Chapters 2 and 4, for
this task to be performed correctly we rely on domain-specific performance models
that are applied in combination with a benchmarking tool and a separate scheduling
component. Based on the models and the measured performance values, it is the task
of the scheduler to make optimization decisions regarding:

1. the logical processor grid to map data structures onto (i.e., the actual domain
decomposition),

2. the routing pattern for the distribution of data,
3. the number of processing units, and
4. the type of data distribution (e.g., broadcast instead of scatter).

In this chapter we focus on the first two optimization tasks in this list. Once the
cost characteristics are available of any routing pattern, given any conceivable do-
main decomposition, the optimal number of processors and the actual type of data
distribution can be derived.

In the following we will investigate the requirements for a communication model
to be applied in our software architecture. On the basis of these requirements, we
will shortly discuss the two most popular models described in the literature.

5.1.1 Model Requirements

In our software library all communication algorithms are implemented using the stan-
dard blocking MPI send and receive operations. Because low level image processing
operations tend to have a bulk synchronous parallel behavior [103, 162], usage of any of
MPTI’s additional communication modes will hardly result in a performance improve-
ment, and may even be counterproductive (see also [125]). Also, as MPI’s standard
collective communication operations do not provide all functionality required in our
library’ we have implemented multiple scatter, gather, and broadcast operations in
this manner as well.

In such data exchange operations the combined latency of sending or receiving
multiple messages in sequence may be overlapping with the end-to-end latency of
each single message. As shown in Figure 5.1(a), such latency differences can be
significant. This overlap can be made explicit if a performance model incorporates
the following properties:

1. The ability to predict the time a processing unit is busy executing either the
MPI_Send() or the MPI_Recv() operation. As the two communicating nodes

tThe main problem with many of the operations defined in MPI 1.1 is that a possibility to define
fluctuating strides in multiple dimensions is lacking. Although this problem is lifted in the MPI-2
definition [105] (with the introduction of the MPI_Gatherw() and MPI_Scatterw() operations), as of
yet MPI-2 implementations are not generally available.
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may handle the transfer of data differently (see [16], and also requirement 3 in
this section), the communication costs at both ends should be modeled inde-
pendently.

2. The ability to predict the complete end-to-end latency. Again, the end-to-end
latency should be modeled independently from the overhead at either node.

Depending on the type of domain decomposition, it may be necessary to com-
municate data stored noncontiguously in memory. Using MPI derived datatypes it is
possible to send such data in a single communication step. As was shown by Prieto et
al. [124, 125], knowledge of a message’s memory layout is important, as non-unit-stride
memory access may have a severe impact on performance due to caching. In addition,
the MPI send and receive operations may even handle the transmission of noncon-
tiguous data differently from contiguous blocks. The MPI 1.1 definition [104] states
that 7 it is up to the implementation to decide whether data should first be packed in a
contiguous buffer before being transmitted, or whether it can be collected directly from
where it resides”. As shown in Figure 5.1(a) as well, the latency for communicating
either contiguous or noncontiguous data may be significantly different indeed. Such
differences can be accounted for if a performance model incorporates:

3. The ability to reflect the difference in sending data stored contiguously in mem-
ory, and noncontiguous data. Again, the memory layout at the two nodes should
be modeled independently.

As a consequence from the fact that the send and receive operations are essentially
black boxes’, it is not safe to assume communication costs to be linearly dependent
on message size. As shown in Figure 5.1(b), nonlinearities — caused by caching,
buffering, packetization, changes in communication policy, etcetera — may be quite
significant. As a final requirement, a model should therefore incorporate:
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Figure 5.1: Values obtained on DAS [7] using MPI-LFC [16] (as in Section 5.4).
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4. The ability to provide accurate predictions over a large range of message sizes.
For the full range of message sizes a strictly linear increase in communication
costs should not be assumed.

In certain application areas it may be important to incorporate network contention
as well. For our purposes, however, this is not required. In Section 5.5 we will shortly
come back to this issue.

5.1.2 Relevant Models in the Literature

In the literature a multitude of message passing models exists. One end of the spec-
trum consists of models in which communication costs are accounted for by abstract-
ing the interconnection network into a few parameters (e.g., LogP [38], LogGP [1],
the Postal Model [11, 21|, and the standard linear communication model as described
in [50, 79, 114]). Models with a similar level of abstraction are sometimes integrated
in a model for computation in order to evaluate architecture and application scalability
(e.g., the Latency Metric [173]). At the other end of the spectrum are highly parame-
terized models that are targeted towards a limited set of applications or architectures
only (e.g., C3 [63]).

In our research we must restrict ourselves to models that have an abstraction level
comparable to that of MPI. Therefore, models such as the Postal Model, or LogP are
seemingly most suitable. As is shown in the following, however, none of these models
fully complies with the specific requirements in our research.

The Postal Model

One of the simplest point-to-point communication models is the Postal Model [11, 21],
which derives its name from an analogy to the postal service. The model incorporates
the notion of communication latency through a parameter A\, which represents the
inverse ratio of the time it takes a processor to send out a message and the time until
the recipient of the message has accepted it. As such, the single parameter captures
both the software and the hardware related overhead, such as message preparation,
local buffer copying, network propagation delays, and message interpretation. In the

: A
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Figure 5.2: Communication according to the Postal Model.
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model (see Figure 5.2) a message refers to an atomic piece of data, which cannot
be broken into smaller pieces. The sending of large amounts of data is achieved by
sending out several atomic messages in sequence. The time it takes to send or receive
a message is defined as one unit of time.

The Postal Model partially adheres to the first two requirements of Section 5.1.1:
it acknowledges the difference in the occupation time at each node, and the complete
end-to-end latency. However, communication overhead is assumed to be identical at
both ends. An assumption of this kind is overly restrictive and is a partial violation
of the first two requirements of Section 5.1.1.

The model violates the third requirement as well as it does not allow changes
in communication behavior induced by memory layout differences to be made ex-
plicit. In addition, the Postal Model uses a single unit time for the sending of atomic
messages. This assumes a linear growth rate in the time required for sending mes-
sages of arbitrary length. This property does resemble the strategy of breaking down
large messages into multiple packets (as applied by many message passing systems).
However, it constitutes a violation of the fourth requirement of Section 5.1.1 as well.

LogP and LogGP

Another communication model that has received considerable attention is the LogP
model [38]. The model captures the cost of communicating small-sized messages in
four parameters:

e L: an upper bound to the latency associated with sending a message from one
node to another.

e 0: the overhead, or the amount of time a processor is busy during the transmis-
sion or reception of a message.

e g: the gap, defined as the minimum time interval between consecutive message
transmissions or consecutive message receptions at the same processor.

e P: the number of processor-memory pairs in the machine.

Figure 5.3 shows that LogP bears strong resemblance to the Postal Model. Also,
LogP presents a generalization of the Parameterized Communication Model [115],
not discussed here.

. 3
SENDER p——:- —
o ~I,_—* RO ‘q‘__' RECEIVER
4 L . 0

Figure 5.3: Communication according to LogP.
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In [1] the LogP model is extended with a linear model for long messages. This
model, called LogGP, has one additional parameter:

e G: the gap per byte (i.e., time per byte) for long messages.

A pictorial view of LogGP is given in Figure 5.4. Clearly, LogGP provides a more
accurate description of the communication of long messages than a sequence of LogP
communications.

The two models are important because they make explicit the differences in the
occupation time at both ends, and the end-to-end delivery time. A possible delay (the
gap g) in consecutive transmissions or receipts is accounted for as well. Unfortunately,
the two models suffer from the same problems as the Postal Model. First, in both
models communication overhead is assumed to be identical at both ends. Second,
memory layout differences are not incorporated. Finally, the models assume a strictly
linear growth rate in the time required for sending messages of arbitrary length. As a
consequence, we conclude that the two models do not comply with the specific needs
in our research either.
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Figure 5.4: Communication according to LogGP.

5.2 The P-3PC Model

As no model exists that meets all requirements of Section 5.1.1, we introduce a new
communication model. The model, which we refer to as P-3PC, or the Parameterized
model based on the Three Paths of Communication, will be discussed in two parts.
First we introduce a simplified version of the complete model (called 8PC), that
complies only with the first two requirements of Section 5.1.1. Subsequently, the 3PC
model is extended to incorporate the remaining two requirements.

5.2.1 Part I: 3PC

Given the first two requirements of Section 5.1.1, we introduce the notion of the three
paths of commaunication, and assume that the cost of message transmission can be
captured in three independent values:
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e T...q: the cost related to the communication path at the sender (i.e., the time
required for executing the MPI_Send() operation).

e T,.c.: the cost related to the communication path at the receiver (i.e., the time
required for executing the MPI Recv () operation).

e Ty the cost related to the full communication path (i.e.. the time from the
moment the sender initiates a transmission until the receiver has safely stored
all data and is ready to continue).

For each path we assume that the communication costs can be represented by two
parameters. The transmission of any message is expected to involve a constant amount
of time, identical to the cost of sending a 0-sized message. This cost is captured by
the mutually independent parameters t.s,ter, and t.¢ (for the sender, receiver, and
full path respectively). At the sender side this value may represent what is often
referred to as the message startup time, but we prefer not to use this terminology to
avoid unnecessary overspecification. Also. for each transmitted byte we assume an
‘additional time’, which is captured by the mutually independent parameters t,,tar
and t,s respectively. The three communication times (see also Figure 5.5) involved
in the transmission of a message containing n bytes are then given by:

S( nd(n) CS +n- tasv
r(m(n) r+n'tnr
Tfu”(n) tef +n-tay.

Thus, 3PC simply constitutes a combination of three traditional linear models as
also applied in [50, 79, 114]. Note that the manner in which accurate values for the
model parameters can be obtained is independent of the actual MPI implementation
or the type of communication hardware used. A detailed description of our method
of measurement is given in Section 5.4.

®
teg + 0 %1,

SENDER v v v v

A A < A 4———— RECEIVER

*
tep + %15,

*p o
th +n ’a_f

Figure 5.5: Communication according to 3PC.
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5.2.2 3PC versus LogGP

The LogGP model of Figure 5.4 constitutes a superset of all conventional models of
Section 5.1.2. In other words, it is possible to express models such as the Postal
Model, or LogP, in terms of the LogGP parameters. For this reason it is relevant
to indicate that 3PC preserves the important qualities of LogGP under the following
assumptions:

tes =ter = g,
tef =20+ L,
tos = tor = taf =G.

Because in state-of-the-art communication processors LogGP’s o parameter is either
negligible [22] or comparable to g (even for relatively small messages, see [92]), 3PC is
even identical to LogGP under the given assumptions. Compared to LogGP we feel
that 3PC is easier to understand, as for each communication path similar parameters
are defined. Given the fact that the costs for the three paths of communication are
made independent (which is not the case in any of the other models), we conclude that
3PC is expected to be at least as powerful as the LogGP model. Note, however, that
we do not claim that 3PC is necessarily a better alternative to LogGP for detailed
study of communication behavior. It is introduced only for it to serve as a basis for
the P-3PC model.

5.2.3 Part II: P-3PC

To incorporate the last two requirements of Section 5.1.1, the 3PC model is 'parame-
terized’ with a cost indicator M, representing the memory layout at the two communi-
cating nodes. Also, it is assumed that each 'additional time’ parameter is a function
of n, instead of a constant value for all message sizes. In this extended model (called
P-3P(), the three communication times involved in a message transfer are given by:

Tsend,l\[(n) - tcs + tas,]\[(n)~
Trecv,]ﬂ(n) - tcr + tar,[\f (Il),
Tryu,p(n) = tep + torm(n),

where M € {cc, ¢n, nc, nn}. These layout descriptors indicate the four memory
layout combinations at the sender and the receiver combined. For example, cn means
that a contiguous block of data is transmitted by the sender, which is accepted as a
noncontiguous block by the receiver.

As no a priori assumptions can be made about the shape of the 'additional time’
functions, a set of benchmarking operations must be performed for several different
message sizes. As also indicated in Chapter 4, one possibility is to arbitrarily choose a
set of relevant message sizes, but an adaptive benchmarking technique could be used
as well to actively search for nonlinearities in the communication costs. In any case,
based on the benchmarking results (and in accordance with the fourth requirement
of Section 5.1.1), each ’additional time’ function is assumed to be piecewise linear
between each pair of measured communication cost values.
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5.3 Application of the P-3PC Model

This section shows how the P-3PC model is applied to evaluate the communication
costs involved in one of the most essential applications in image processing: i.e.,
evaluation of the differential structure of images. Examples are edge detection (based
on first and second order derivatives) and invariants (based on i-th order derivatives).
Applications of this kind are good examples of regular domain problems as referred
to in the work of Prieto et al. [124, 125].

As is well-known, a derivative is best computed using convolution with a separable
Gaussian kernel (i.e., n 1-D kernels, each applied in one of the image’s n dimensions).
The size of the convolution kernel depends on the smoothing scale o and the order
of the derivative. In this example (and in the measurements discussed in the next
section) we restrict ourselves to first and second order derivatives (five in total) in the
x- and y-direction of 2-D image data, and o € {1,3,5}. Here, for o = 1, the sizes of
the 1-D kernels for the i-th order derivative (with i € {0,1,2}) in any direction are
7, 9, and 9 pixels respectively. For ¢ = 3 the kernel sizes are 15, 23, and 25 pixels,
and for o = 5 these are 23, 37, and 39 pixels respectively. For readers unfamiliar with
image processing it is sufficient to know that these kernel sizes partially determine the
amount of data exchanged among neighbors in a logical CPU grid — as is explained
in more detail below.

When running such application in parallel, three different communication algo-
rithms are to be executed. First, the input image is to be spread throughout the
parallel system in a scatter operation. Second, to calculate partial derivative images,
pixels in the border regions of each partial input image are to be exchanged among
neighboring nodes in the logical CPU grid. Finally, after having performed all relevant
(application dependent) sequential operations, resulting image data is to be gathered
at a single node, for on-screen display or storage.

512x512 image, 1xP logical CPU mapping

T
point-to-point version —+— ]
26 standard MPI version -+---

Time (ms)

0 8 16 24 32 40 48 56 64
P (= nr. of CPUs)

Figure 5.6: Comparison of MPI Scatterv() and OFT scatter implemented using
MPI_Send() and MPI_Recv() calls (measured on DAS using MPI-LFC).
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As indicated in Section 5.1.1, in addition to the collective operations available
in MPI we have implemented multiple scatter and gather operations ourselves, using
standard blocking point-to-point operations. As shown in Figure 5.6, our implementa-
tions — which, in contrast to the MPI versions, allow definition of fluctuating strides
in multiple dimensions — can often compete with available MPI implementations.
This indicates that many MPI distributions are not optimized for a particular ma-
chine, a problem also discussed in [125, 163]. Of course, in cases where the MPI
implementations are faster (and match our specific needs), we apply these versions
and use the P-3PC estimations for our fastest implementation as an upper bound. In
the following, the modeling of such operations is restricted to two different implemen-
tations, one based on a one-level flat tree (OFT), and the other based on a spanning
binomial tree (SBT) (see Figure 5.7).

In case of the OFT scatter operation the root sends out data to all other nodes in
sequence. If a 1x P logical CPU grid is assumed (where P is the number of nodes),
for each node the data sent out by the root is stored contiguously in memory; for all
other grids all data blocks sent out are noncontiguous. In addition, for all possible
grids all data is accepted as a contiguous block at each receiving node. As each node
in the OFT has to wait for all lower-numbered nodes to be serviced by the root before
it will receive data itself, the communication costs are highest at either the root or at
the leaf node that is last serviced (depending on the benchmarking results). A worst
case P-3PC estimation of this operation is shown in the timeOFTscatter () operation
in Listing 5.1. An estimation of the related OFT gather operation is simply obtained
by setting nc to ¢n, and changing all occurrences of Tsendg t0 Trecy-

P-3PC estimation of the spanning binomial tree scatter operation is slightly more
complicated. In such operation the root node sends out data to logP other nodes.
Also, each non-leaf node forwards all received data it is not responsible for. If X is
the number of nodes defined in the z-direction of the logical CPU grid, the number
of messages involving contiguous data blocks sent out by the root is logP —logX; the
remaining messages sent out are all noncontiguous. In general, the communication
costs will be highest at either the root node, or the node that is logP full commu-
nication paths away from the root. The timeSBTscatter () operation in Listing 5.1
shows the worst case P-3PC estimation of this operation. An estimation of the related
SBT gather operation is obtained as before.

(a) One-level Flat Tree (b) Spanning Binomial Tree

Figure 5.7: Example communication trees for data scattering.
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double timeOF Tscatter() {

M — (X .eq. 1) ? cc: nc // X = nr. of nodes in z-direction of logical CPU grid
timel «— (P — 1) : Tsena, rr(imw - imh/P) // P = total nr. of nodes
time2 « (P — 2) - Tsend, ar(imw - imh/P) + Tyyu ar(imw - imh/ P) // imw = image width
return max(timel, time2) // tmh = image height

}

double timeSBTscatter() {

timel «— 0.0

time2 «— 0.0

for (i=1; i.leq.logP - logX; i++)
timel «— timel + Tsengd, cc(tmw - imh /(2 - 1))
time2 « time2 + Ty cc(imw - imh /(2 - 1))

}

for (i=logP-logX+1; i.leq.logP; i++)
timel « timel + Tsend, ne(imw - imh/(2 - 1))
time2 « time2 + Ty ne(imnw - imh/(2 - 1))

}
return max(timel, time2)
}
double timeBorderExchange() { // bw = border width
return (2 Tyt nn(bw - imh) + 2 Try ce ((imw + 2 - bw) - bh)) // bh = border height
}

Listing 5.1: P-3PC estimation of OFT & SBT scatter, and border exchange.

A well-known method to implement Gaussian convolution is to extend the domain
of the image structure with a scratch border that, on each side of the image in di-
mension n, has a size of about half the 1-D kernel applied in that dimension. When
executed in parallel, neighboring nodes in the logical CPU grid need to exchange pixel
values to correctly fill the borders of all extended partial images. In our library, the
exchange of border data is executed in four communication step. First, each node
sends a subset of its local partial image to the neighboring node on its right side in the
logical CPU grid (if such neighbor exists). When a node has accepted this block of
data (i.e., after a full communication path period), it subsequently transmits a subset
of its local partial image to its left neighbor. As shown in Figure 5.8 these steps in the
border exchange algorithm always involve noncontiguous blocks of data. Similarly,
in the next two steps border data is exchanged in upward and downward direction,
in both cases involving contiguous blocks only. Thus, the timeBorderExchange ()
operation in Listing 5.1 gives a worst case P-3PC estimation for this routine.
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Figure 5.8: Border exchange (right-left and down-up).
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5.4 Measurements and Validation

To validate the P-3PC model we have performed a representative set of benchmarking
operations. For each communication path and memory layout combination measure-
ments were performed using 4 different message sizes, arbitrarily set at 1K, 50K, 100K
and 500K (all 4-byte values). Benchmarking was performed for 0-sized messages as
well. Note that these values are not chosen to best match the communication char-
acteristics for one particular parallel computer. These sizes are representative for
messages transmitted in many image processing applications, and are set identically
for all machines. Also note that the sizes applied by the architecture’s benchmarking
tool can be user-defined as well; the sizes given here are used by default.

Clearly, there is a trade-off between the number of benchmarking operations to be
performed and the obtainable estimation accuracy. Still, the predefined set of only 4
message sizes is generally sufficient to obtain highly accurate performance estimations
for the much larger range of message sizes encountered in a real application. In this
respect it is important to note that, in the measurements presented in the remainder
of this chapter, actual message sizes range from 192 bytes up to 8 MB.

double timePath(int pathType, int bufsize, int sendLayout, int recvLayout, int nrRounds) {
if (sendLayout .eq. NONCONTIGUOQUS) // definition of ’sendType’
MPI_Type_vector(100, bufsize/100, 2*bufsize/100, MPI_FLOAT, &sendType):
else
MPI_Type_vector(1, bufsize, bufsize, MPI_.FLOAT, &sendType):
// definition of ‘recvType’ is similar
for (i=1:nrRounds) {
if (myCPU() .eq. 0) {
if (pathType .eq. SEND) { // measure send path
timel — MPI_Wtime();
MPI_Send(buf. 1, sendType, 1, ...):
time2 «— MPI_-Wtime();
total «— total + time2-timel;
} else if (pathType .eq. RECV) { // measure receive path
timel «— MPI_Wtime();
MPI_Recv(buf, 1, recvType, 1, ...);
time2 « MPI_Wtime();
total «— total + time2-timel;
} else if (pathType .eq. FULL) { // measure full path
timel — MPI_Wtime();
MPI_Send(buf, 1, sendType, 1, ...);
MPI_Recv(buf, 0, recvType, 1, ...);
time2 «— MPI_Wtime()};
total « total + ((bufsize .eq. 0) ? (time2-timel)/2 : (time2-timel)-2-t.f);

} else if (myCPU() .eq. 1)
// matching send and recv calls at node 1 are not shown

}

return (total/nrRounds);

Listing 5.2: Pseudo code for benchmarking all path-layout combinations. The constant
time values tcs, ter, and tos are obtained if bufsize equals zero.
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To give full insight in the benchmarking process, Listing 5.2 gives a simplified
overview in pseudo code. To measure communication for noncontiguous data, a fixed
number of 100 memory blocks {a conservative estimate of the number of blocks pos-
sibly used in a real application, and again a default setting) is combined in a single
derived datatype definition. For contiguous data only one block is used in such defi-
nition. Measurements for the send and receive paths are obtained by letting one node
continuously send data to another node. Full communication path measurements are
obtained by subsequently sending out a message of size ‘bufsize’, and receiving a
(0-sized message. As these operations are similar to those applied by many others in
the literature we leave all further interpretation to the reader.

5.4.1 Distributed ASCI Supercomputer (DAS)

The first set of measurements was performed on the 128-node homogeneous DAS-
cluster [7] located at the Vrije Universiteit in Amsterdam. All measurements were
performed using MPI-LFC [16]. an implementation which is partially optimized for
the DAS. The 200 Mhz Pentium Pro nodes (with 128 MByte of EDO-RAM) are
connected by a 1.2 Gbit/sec full-duplex Myrinet network. and run RedHat Linux 6.2.

The performance values obtained for this machine are presented in Figure 5.9. The
values indicate that transmitting noncontiguous data indeed has a significant impact
on performance. In this case, the additional overhead is due to the fact that MPI-
LFC uses a contiguous send-buffer for noncontiguous data. To preserve the elegance
of the benchmarking code, we have measured multiple ’constant time’ values for each
communication path (m = 0). These additional values do not affect the estimations
presented in this section in any way.

In the following we show the results as obtained for the example application of
Section 5.3. For each of the communication algorithms we have been careful to keep

m=0 | m=1K m=50K | m=100K | m=500K
Tsend,cc(mm) 5.98 61.72 4355.45 | 10246.77 58596.98
Tsend,en(m) 8.04 60.74 4363.35 9853.95 57141.29
Tsend,ne(m) 7.93 | 248.88 5722.00 | 15142.74 90478.81
Tsendnn{m) 8.29 | 133.88 5582.23 | 14137.45 87870.27
Trecv,cc(m) 14.86 58.08 5754.93 | 12037.78 60062.70
(m) | 14.89 | 127.30 9527.59 | 19467.08 98016.47
Trecvne(m) | 14.43 46.56 5517.28 | 12364.45 61446.05
Trecv.nn(m) | 14.82 | 125.05 9340.63 | 19685.86 | 98275.11
) 23.61 | 131.39 4506.32 | 11007.89 | 61277.46
Tuit,en(m) | 25.54 | 214.10 8665.39 | 19195.53 | 97219.23
}y | 27.05 | 206.94 6696.30 | 18015.91 95546.60
Truinn(m) | 24.47 | 287.89 | 11746.29 | 25652.54 | 132399.20

Figure 5.9: Benchmarking results obtained on DAS (in ps).
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the intrusiveness of the measurements to a minimum. All P-3PC estimations are
obtained as in Listing 5.1. Also, in all situations we compare our results with those
obtained with LogGP. To avoid using a particularly bad value for the G’ parameter,
we assume a piece-wise linear dependence on message size in the LogGP model as well.
In addition, to be able to use the measured values of Figure 5.9, we have reduced the
P-3PC model into LogGP in the following manner: g = t.,, L = tey, and G = tg ..
As indicated in Section 5.2.2, this reduction makes P-3PC identical to LogGP. Still,
to overcome any problem the reader may have with this interpretation of the model,
in the remainder we will refer to it as LogGP*.

In Figure 5.10(a) results are presented for a 5122 floating point image, which is
mapped onto a 1x16 logical CPU grid. The graph shows results for the two available
implementations of the scatter and gather routines, as well as for the border exchange
(for all ¢ € {1,3,5}). For such data decomposition all messages involve contiguous
blocks only. This is even the case for the border exchange, as no node has a neighbor
to its left or right. The graph shows that P-3PC and LogGP* are both quite accurate
for this type of data decomposition. As was to be expected, the estimations obtained
from the two models are comparable, although P-3PC seems to do marginally better.
Apparently, introduction of the three communication paths indeed produces a slightly
more accurate model. Here, the differences are marginal, however, and provide no
justification for P-3PC’s added complexity.

As can be seen in Figure 5.10(b), for a 16x1 data decomposition P-3PC outper-
forms LogGP* by far. This is because for such decomposition all messages involve
noncontiguous data at the sender side. Figure 5.10(c) and Figure 5.10(d) show sim-
ilar results for 8x1 and 32x1 decompositions. A comparison for larger image data
structures is shown in Figure 5.10(e) and Figure 5.10(f). Although most P-3PC esti-
mations are highly accurate, deviations from actual measurements are usually due to
small inaccuracies in the performance values obtained by benchmarking. Sometimes,
algorithm performance is also slightly degraded by contention in the network — an
effect not accounted for by P-3PC. However, the impact of memory layout on perfor-
mance is always more significant than that of contention. Note that this matches the
results of [124, 125].

Figure 5.10(g) and Figure 5.10(h) show that the P-3PC model indeed allows the
scheduler of Section 5.1 to make correct optimization decisions. According to the
LogGP* model, scattering or gathering a 2562 floating point image is about as ex-
pensive for each communication tree and data decomposition. In practice this is not
true, however, and P-3PC gives much more accurate estimations at all times.

Figure 5.11 gives results for the communication algorithms applied to all possible
decompositions involving 16 nodes. Again, P-3PC outperforms LogGP* in almost
all situations. It is interesting to see in Figure 5.11(a-d) that, while for all but the
1x16 decomposition P-3PC is somewhat pessimistic, the estimations get better for
decompositions that are 'closer’ to 16x1. This is explained by the fact that in the
benchmarking phase noncontiguous communication is measured using blocks that
have quite a significant distance from one another in memory. Thus, caching can
become a significant factor, which is indeed expected to be most prominent in a 16x1
decomposition (again, see also [124, 125]).
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Figure 5.11(e) and Figure 5.11(e) and (f) show that P-3PC gives accurate estimates

for the border exchange algorithm for all data decompositions as well.

Whereas

LogGP* indicates that a 4x4 decomposition is always optimal (which is explained by
the fact that the amount of border data is smallest when each partial image is square),
P-3PC correctly prefers the 2x8 decomposition. Because the exchange of border data
may be performed hundreds of times in a realistic application (for example, see [55] for
such application that even applies values of ¢ > 5), these results are important indeed.
For additional results obtained on the DAS (also including sequential computation)
we refer to [147].
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5.4.2 Beowulf at SARA

The second set of tests was performed on the 40-node Beowulf-cluster located at
SARA, Amsterdam. On this machine, measurements and benchmarking were per-
formed using MPICH-1.2.0 [61]. The 700 Mhz AMD Athlon nodes (with 256 MByte
of RAM) are connected by a 100 Mbit /sec switched Ethernet network, and run De-
bian Linux 2.2.17.

Because the cluster is heavily used for other research projects as well, we have been
able to use only 8 nodes at a time. Figure 5.12 presents results for all algorithms, using
a 5122 floating point image which is mapped onto a 1x8 grid as well as a 8x1 grid.
The graphs show that the two models are both quite good in all cases, but P-3PC
again provides more accurate estimations. It is clear that the MPICH implementation
is much better than the MPI-LFC implementation used on the DAS. Any additional
overhead due to non-unit-stride memory access is not caused by buffer copying, but
can be attributed to caching alone. Although less significant on the cluster at SARA,
this is exactly the effect Prieto et al. have shown to be important on other parallel
machines [124, 125].
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Figure 5.12: Measurements (Beowulf at SARA) versus P-3PC and LogGP* estima-

tions.

5.5 Conclusions

In this chapter we have presented the new P-3PC model for predicting the execution
time of communication algorithms implemented using MPI’s standard point-to-point
operations. P-3PC incorporates the notion of the 'three paths of communication’,
and accounts for differences in performance at the sender, the receiver, and the full
communication path. In addition, P-3PC models the impact of memory layout on
communication costs, and accounts for costs that are not linearly dependent on mes-
sage size. Compared to similar models, P-3PC has the potential for higher predictive
accuracy due to its close match with the capabilities and possible behavior of MPI’s
point-to-point operations.
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P-3PC’s predictive power is essential to perform the important task of automatic
and optimal decomposition of regular domain problems. Although designed for this
specific task, we expect the model to be relevant in other research areas as well. It
is important to note, however, that P-3PC suffers from the same problem as other
models that abstract from the actual network topology (see also [38]). The model can
not discriminate between algorithms that cause severe network contention, and those
that do not. In our research this is not a problem, as we only apply communication
patterns that are expected to perform well on most network topologies used today.
Still, because P-3PC is similar to the LogGP model, it can easily be extended to
account for contention, in the same manner as described in [3].

It should also be noted that we do not claim the P-3PC model to give a precise
characterization of all types of memory access. Any cost factors other than those
related to contiguous and noncontiguous memory access are implicit (such as specific
cache behavior, differences between programmed I/O and DMA transfer, etcetera),
but are still captured due to the semi-empirical modeling approach described in Sec-
tion 4.2. In this respect, an extension to the P-3PC model that would give a more
detailed characterization of non-unit-stride memory access, would be to incorporate a
stride parameter that captures the actual distances between contiguous blocks trans-
mitted in a single communication step. We have not included such parameter as the
results obtained with the current model were shown to be sufficiently accurate.

As the P-3PC model stresses the importance of benchmarking to obtain accurate
values for the model parameters, one may argue that the predictive power of the
model is limited. However, the model does not specifically enforce a large number
of measurements to be performed. As for models that incorporate a similar level
of abstraction, a set of three or four measurements for each communication path
may already be sufficient to obtain accurate predictions. The P-3PC model merely
acknowledges that nonlinearities in communication costs may be significant (as shown
in Section 5.1.1) and should be accounted for.

We are aware of the fact that an evaluation of P-3PC is never complete. However,
the evaluation as presented in this chapter — incorporating two fundamentally differ-
ent interconnection networks, and two different MPI implementations — has shown
the model to be highly accurate in estimating the communication costs related to any
type of domain decomposition used in a realistic image processing application. As
such, we have shown P-3PC to be useful as a basis for automatic and optimal de-
composition within the extensive application area of regular domain problems. Also,
because P-3PC is capable of modeling behavior that was shown to be problematic
in [124, 125], we expect the model to be applicable to the very same machines and
MPT implementations as well.







Chapter 6

A Finite State Machine for
Global Optimization of
Application Performance*

”Speed is good only when wisdom leads the way.”

James Poe (1921-1980)

In the previous chapters we have shown how to implement parallel versions of many
common image processing operations in a sustainable manner. Also, we have shown
how to accurately model the run time performance of such operations. To obtain
high performance for complete applications, however, it is not sufficient to consider
parallelization and optimization of the operations in isolation. This is because paral-
lel code consisting of a sequence of optimized parallel routines often contains many
redundant communication steps. Also, in many situations it is possible to further
reduce communication overhead by combining multiple messages in a single transfer.

Automatic optimization of communication overhead is not easy. First, this is
because the applied optimization strategy must be able to determine which com-
munication steps are essential, and which can be safely combined or removed. In
addition, the approach must guarantee that the resulting parallel code is:

o efficient, preferably comparable to an optimal hand-coded implementation,

e legal, in the sense that the program is deterministic (i.e., always produces the
same result) and can never end in deadlock, and

e correct, such that it produces output identical to that of the original program.

*This chapter is an extended version of our paper published in the 17th Internationel Parallel &
Distributed Processing Symposium (IPDPS 2003) [145].
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In this chapter we propose a new, and surprisingly simple strategy for global
performance optimization that adheres to the stated list of requirements. In the
approach, a fully sequential program is parallelized automatically by inserting com-
munication operations whenever necessary. The approach, which is referred to as lazy
parallelization, is based on a simple finite state machine (fsm) specification. One of
two essential fsm ingredients is a set of states, each corresponding to a valid internal
representation of a distributed data structure at run time. The other essential ingre-
dient is a set of state transition functions, each of which defines how a valid internal
data structure representation is transformed into another valid representation.

Although it is shown that lazy parallelization works well in many situations, the
approach does not guarantee to always produce the fastest possible version of a pro-
gram. First, this is because the approach always applies the fastest communication
step whenever message transfer is mandatory. This is a form of local performance op-
timization, however, as it may be better to insert a combined message transfer to avoid
additional communication at a later stage. Also, the approach does not incorporate
knowledge obtained from our APIPM-based performance models (see Chapter 4).

To overcome these problems, this chapter also proposes an extended technique,
which requires an application state transition graph (ASTG) to be generated for the
program under consideration. An ASTG incorporates all optimization decisions that
can possibly be made at run time. Each decision is annotated with a cost estimation,
such that the fastest program is represented by the 'cheapest’ branch in the graph. A
drawback of this approach, however, is that it is often costly to obtain the cheapest
branch. This is because the ASTG is generally large, even for applications of moderate
size. Therefore we also define additional heuristics for search space reduction.

Hence, the primary research issue addressed in this chapter is formulated as fol-
lows: How to automatically convert a legal sequential image processing application
into a legal, correct, and efficient (preferably even time-optimal) parallel version of
the same program? As this issue is the central, most essential problem our software
architecture for user transparent parallel image processing is confronted with, the
proposed solution incorporates all results obtained in Chapters 3, 4, and 5.

This chapter is organized as follows. Section 6.1 describes the optimization prob-
lem. Section 6.2 introduces the finite state machine (fsm) definition. The fsm-based
optimization strategy of lazy parallelization is described in Section 6.3. Section 6.4
presents a short description of the ASTG, and some heuristics for search space reduc-
tion. In Section 6.5 related work is discussed. Conclusions are given in Section 6.6.

6.1 The Performance Optimization Problem

In Chapter 3 we have defined a default parallelization strategy for each library routine.
For operations executed in isolation, this default strategy is optimal. This is because
communication overhead is minimized, while — for the given parallelization granu-
larity — the available parallelism is fully exploited. When several optimized parallel
routines are executed in sequence, however, communication overhead is generally far
from optimal. This section explains the problem in more detail.
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6.1.1 Abstract Function Specifications

As described in Section 4.3, each application implemented using our software archi-
tecture is composed of a sequence of instructions from the APIPM instruction set.
For global performance optimization it is not necessary to individually consider each
of the instructions in such a sequence. Specific combinations of APIPM instructions
often appear together, and are identical for sequential operation as well as for parallel
execution. For such 'unbreakable’ APIPM instruction sequences relating to sequential
processing, we have introduced a shorthand notation, presented in Table 6.1.

Notation for unbreakable instruction streams relating to interprocess communica-
tion is given in Table 6.2. It contains abstractions similar to operations in MPI [104].
The additional CreatLocalPart/Full and DelLocal functions constitute creators
and destructors for partial data structures (see Section 3.3.2). The BorderExchange
function is as described in Section 5.3. Finally, the Redistribute function is included
for completeness only, and implements a remapping of a distributed data structure
onto a newly defined logical processor grid.

Partial structures are referred to as local in Table 6.2 (locsrc and locdst). The
original data structure from which the partial data structures are obtained is referred
to as global (globsrc and globdst). As an example, the Scatter operation requires
a global source data structure as input, and produces the local (partial) destination
structures as output, each of which is transferred to the node with the appropriate
responsibility (see also Section 3.2).

For any application implemented using our software architecture it is possible to
derive an abstract operation stream comprising of functions from Tables 6.1 and 6.2
alone. Consequently, in the remainder of this chapter we restrict our attention to
abstract operation streams, and ignore the lower level APIPM instructions altogether.

Create ( 0UT dst )

Delete ( 0UT dst );

MemCopy ( IN src, OUT dst );

UnPix0p ( 1IN src, OUT dst )
BinPixOpV ( IN src, OUT dst, IN arg J};
BinPixOpI ( 1IN src, O0UT dst, IN arg );
ReduceOp ( IN src, OUT dst )

NeighOp ( IN src, OUT dst, IN ker ):
GenConvOp ( 1IN src, O0OUT dst, IN ker );
GeoMat ( IN src, OUT dst )

GeoRoi ( IN src, OUT dst )

Import ( OQOUT dst )

Export ( 1IN src )

Table 6.1: Abstract function specifications for sequential operation (see Tables 4A.1
and 4A.2 for comparison).
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CreatLocalPart ( OUT locdst )
CreatLocalFull ( QUT locdst )i
Dellocal ( ourt locdst Y
Broadcast ( 1IN globsrc, OUT locdst )
Scatter ( IN globsrc, OUT locdst );
Gather ( IN locsrc, 0UT globdst );
GatherAll ( INOUT locsrc, INOUT globdst );
ReduceOne ( INOUT 1locsrc, ouT globdst );
ReduceAll ( INOUT 1locsrc, INOUT globdst );
BorderExchange ( INOUT locsrc )
Redistribute (  INOUT 1locsrc )

Table 6.2: Additional abstract function specifications for parallel operation.

6.1.2 Default Algorithm Expansion

In Section 3.4.2 we have indicated that all data structures applied in our library
operations have a predefined data access pattern type. Each such type determines how
accesses to non-local partial data structures are resolved with minimal communication
overhead. From this information, a default approach for parallel execution directly
follows for each library operation. The availability of a default parallelization strategy
for each individual operation makes for a straightforward conversion of a complete
sequential image processing application into an equivalent parallel program.

The conversion process. referred to as default algorithm expansion. is illustrated
by the simple example code of Listing 6.1. The abstract sequential program. shown

Import{ IinA }; Import{ TmA ):

UnPixOp( ImA. ImB ): Scatter( ImA. loclmA ):
RinPixOpl( ImB. ImC. ImA ): UnPixOp( loclmA. locImB )
Export( ImC ): Gather( locImB. ImB ):
Delete( ImA ) DelLocal( locImA )
Delete( ImB ): DelLocal( locImB ):
Delete( ImC ) Scatter( ImA. locImA );

Seatter( ImB. locImB ):
BinPixOpl( loclmB. locImC. locImA ):
Gather( loclmC, TinC }):
DelLocal( loclmA );
DelLocal( loclmB ):
DelLocal( locImC ):
Export( ImC );
Delote( ImA ):
Delote( ImB ):
Delete{ ImC ):

(a) Sequential. (b) Parallel (default).

Listing 6.1: Abstract sequential application (a) and equivalent parallel program after
default algorithm expansion (b); additional operations in parallel code are indented.
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on the left, first imports image ImA, which is used as input to a unary pixel opera-
tion. Subsequently, the resulting output image ImB is used as input to a binary pixel
operation. Finally, the resulting image ImC is exported, and all images are destroyed.

The equivalent parallel program, obtained after default algorithm expansion, is
shown on the right of Listing 6.1. Because any data structure passed as input to
a unary pixel operation is defined to have a one-to-one data access pattern type,
a Scatter operation is inserted before the UnPixOp call. After the operation has
finished, the resulting partial outputs are gathered to the single root node and all
temporary partial data structures are destroyed. Subsequently, the images that are
passed as source and argument to the binary pixel operation are spread throughout the
parallel system in a Scatter operation. The partial outputs resulting from BinPix0p
are gathered to the root, after which all partial structures are deleted. From this
point onward, the program is identical to the original sequential version.

Default algorithm expansion in this manner is guaranteed to produce a legal and
correct parallel version of any legal sequential program implemented using our soft-
ware architecture. This is simply because each abstract function call in the sequential
code is replaced by an equivalent sequence of one or more (parallel) operations. The
resulting program is not guaranteed to be time-optimal, however. In fact, in most
situations the expansion process will not even produce the fastest parallel implemen-
tation at all. Worse even, the resulting parallel code often can be expected to be
slower than the original sequential program. Although other parallelization tools
may be implemented differently, all library-based tools suffer from the very same
problem — and for improved performance a solution is essential.

6.1.3 Inefficiencies from Default Algorithm Expansion

When considering the parallel code of Listing 6.1(b), it is clear that it contains sev-
eral function calls that could be removed without violating the program’s correctness
or legality. First, image structure locImA, which is used as source structure for the
unary pixel operation, is removed by DelLocal and subsequently recreated in the sec-
ond occurrence of the Scatter(ImA, locImA) call. For improved performance, both
operations simply could be removed. The same holds for the sequence of instructions
applied to the locImB structure preceding the BinPixOpI call (i.e., Gather followed
by DelLocal and Scatter). Listing 6.2(b) presents the optimized program obtained
after removing the redundant communication steps from the parallel code.

A second source of inefficiencies is due to the fact that each individual commu-
nication step is performed irrespective of other message transfers in the program.
Consequently, removal of redundant communication operations is a form of local per-
formance optimization only, as it may be better to combine multiple messages in a
single transfer. As an example, a Scatter operation followed by a Broadcast per-
formed on the same data structure at a later stage in a program, could be replaced by
a single Broadcast at the first essential point of message transfer, possibly followed
by a MemCopy operation to extract the partial data structures on each processing unit.

A third category of performance inefficiencies is due to the fact that default al-
gorithm expansion ignores the performance characteristics of the parallel machine at
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Import( ImA ):
UnPixOp( ImA, ImB );

Export( ImC );
Delete( ImA ):
Delete( ImB );
Delete( ImC );

BinPixOpl( ImB. ImC. ImA ):

Import{ ImA ):
Scatter( ImA. locImA }:
UnPixOp( loclmA. locImB ):
BinPixOplI( locImB, locImC. locImA }:
Gather( locImC, ImC ):
DelLocal{ locImA ):
DelLocal{ locImB }:

DelLocal( locImC ):
Export( ImC ):
Delete{ ImA ):
Delete( ImB ):
Delete( ImC ):

(a) Sequential. (b) Parallel (optimized).

Listing 6.2: Abstract sequential application (a) and equivalent parallel program after
inter-operation optimization (b).

hand. As indicated in Chapters 4 and 5, communication overhead also depends on
the specifications of the underlying interconnection network, and the implementation
of the applied message passing primitives. As a consequence, it is essential for the
APIPM-based performance models of Chapters 4 and 5 to be incorporated in the
optimization process as well.

From these types of inefficiencies, the first (i.e., the presence of redundancy) is
by far the most important to be resolved. This is because redundant operations
are responsible for the bulk of all unnecessary communication overhead. In fact, a
program which is stripped of all redundant communication is generally quite efficient,
and is often comparable to hand-optimized code. Redundancy avoidance is therefore
the focal point of the optimization strategy proposed in the next sections. The latter
two types of inefficiencies are still important, however, as these may have a significant
impact on execution time as well. This is especially true for large clusters, as the
relative impact of communication on performance increases with every node added
to the system. Consequently, the remainder also proposes an extended optimization
strategy that takes into account the latter two types of inefficiencies.

6.2 Finite State Machine Definition

To guide the process of operation removal, we have defined a finite state machine (fsm)
which is used for operation redundancy detection, the monitoring of the life-span of
(distributed) data structures, and the resolution of data structure inconsistencies. In
this chapter, we restrict ourselves to so-called deterministic finite acceptors, which
have no temporary storage and which can not produce strings of output. A deter-
ministic finite acceptor (or dfa) is defined by the quintuple

M:(Q, Ev 57 qo F)a

where
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Q is a finite set of internal states,

¥ is a finite set of symbols called the input alphabet,
§:Q x X — Q is a transition function,

go € Q is the initial state,

F C Q is a set of final states.

Initially, a dfa is assumed to be in the initial state gg, with its input mechanism on the
leftmost symbol of the input string. During each move of the automaton, one input
symbol is consumed. When the end of the string is reached, the string is accepted if
the automaton is in one of the final states. Otherwise, the string is rejected.

Deterministic finite acceptors as described here have been applied successfully in
many fields of computer science, e.g. digital design, programming languages, and
compilers [70, 96]. The following presents a specification of the finite state machine
for global application optimization as applied in our software architecture.

6.2.1 States and Lifespan of (Distributed) Data Structures

As described in Section 3.3.2, for parallel execution two types of data structure repre-
sentations are used in our software architecture: global structures and local (or partial)
structures. A global structure always resides at a single processing unit (the root),
and contains all data for the complete domain of the structure it represents. Local
structures, on the other hand, are the result of a collective communication operation
performed on a global structure.

There is a strong relationship between a global structure and the set of derived
local structures (a set which is referred to as a distributed data structure). Clearly, at
any time during the execution of a parallel program either the global structure itself
or the distributed structure derived from that global structure must contain up-to-
date values for all structure elements. An abstract representation of the relationship
between these data structures is given by the three-tuple

q=1(g. d, t),
where
g € G is the state of the global structure,
d € D is the state of the derived distributed structure,
t € T is the distributed structure’s distribution type.
and

none, created, valid, invalid },

G
D
T =

{
{ none, valid, invalid },
{ none, partial, full, not-reduced }

In set G, none indicates that no space has been allocated for the global data
structure in the main memory of the root. Furthermore, created indicates that
space for the global structure has been allocated by way of the Create function. In
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this state, the elements of the global structure do not contain values resulting from
any calculation (yet). Finally, valid indicates that the global structure contains
up-to-date values for all structure elements, and invalid indicates that at least one
of the global structure’s elements may contain an incorrect value. For distributed
structures, the elements in set D are defined in a similar manner. The value created
is not present in set D, however, simply because we do not need it.

In set T, none indicates that no distribution type information is available for the
distributed structure. In addition, partial indicates that the set of constituent local
structures is the result of a non-overlapping Scatter operation, while full indicates
that the structures are obtained in a Broadcast operation. Finally, not-reduced
indicates that all elements of the constituent, fully overlapping, local structures vet
have to be subjected to an element-wise ReduceOne or ReduceAll operation.

The set R = G x D x T contains all possible representations of the relationship
between a global structure and its derived distributed structure. However, at appli-
cation run time many of these possible representations can not (or should not) occur.
As an example, a representation given by ¢ = (invalid, invalid, full) should
not be present in a program, as neither the global structure nor the distributed struc-
ture contains all correct and up-to-date values. In addition, the representation given
by ¢ = (none, none, full) is not useful, as it contains as much information as the
more accurate representation ¢ = (none, none, none).

For the finite state machine, we have specified a restricted set of wvalid internal
states, based on the presented relationship between global and distributed structures.
The selected set of valid internal fsm states is defined by

Q={q, ¢, , 8 } CGxDxT,
with
qgo = (none, none, none), gs = (valid, valid, full),
¢q1 = (created, none, none), q¢ = (invalid, valid, partial),
g2 = (valid, none, none), g7 = (invalid, valid, full),
g3 = (invalid, none, none), gs = (invalid, invalid, not-reduced).
qq = (valid, valid, partial),

State qo is the empty state, and represents the state of the global-distributed structure
combination before its initial creation and after its final destruction. State q; repre-
sents the state immediately after creation of the global structure. This is a special
case of state go, as the global structure also could be designated as valid. State q; is
required to avoid communication in case a distributed structure is to be derived from
a global structure in this state. State ¢, simply indicates that a global structure’s ele-
ments contain all correct and up-to-date values, while a derived distributed structure
is nonexistent. At first glance, g3 seems to be a state that should never appear in a le-
gal parallel program. However, this is the state obtained after performing a DelLocal
operation in case the global-distributed structure combination is represented by states
gs, g7, Or gg. In states qs,¢s,qs, and g7, the distributed structure contains all cor-
rect values, while the related global structure is either consistent or inconsistent with
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these values. Finally, state gg occurs in parallel reduction operations. As long as
the required reduction has not yet been performed on the distributed structure, all
constituent local structures as well as the related global structure remain invalid.

At run time each global-distributed structure combination starts in the empty state
qo- From this point onward each state can be reached, depending on the operations
performed on the structure combination. Also, certain states can be reached multiple
times. The lifespan of a global-distributed structure combination ends in case it
returns to the empty state gy. As such, state gg serves as the initial state of our finite
state machine definition, as well as the single element in the set of final states.

6.2.2 State Transition Functions and State Dependencies

The input alphabet for our finite state machine is formed by the abstract functions of
Tables 6.1 and 6.2, with a concrete data structure reference for each formal param-
eter. Also, as the fsm is used to monitor state changes and lifespan of a single data
structure only, monitoring the correctness and legality of a complete application in-
volves multiple finite state machines. The presence of multiple state machines results
in a parallel view of the states of all data structures in an application. At any given
moment during execution, several data structures are ’alive’ and their combined state
is captured by their respective finite state machines.

As the states of multiple data structures are not always independent, we assume
that each fsm has a complete and up-to-date view of the states of all data structures
in an application. Also, by way of the defined set of state transition functions, each
state machine incorporates all knowledge regarding data structure state dependencies.
To this end, the definition of state transition functions is extended as follows:

§:Qx X4 — Q,

where % is the input alphabet in which each (abstract) function is annotated with a
list of permitted state dependencies for all additonal data structures passed as parame-
ter to that function (i.e., those structures for which the current fsm is not responsible).
Here, we represent elements in 34 by a two- or three-tuple, in which the first compo-
nent is the name of the abstract function, and the remainder represents the (possibly
empty) list of state dependencies. For example, 6(qo, (BinPix0pV, g4, qs)) = gs repre-
sents a state transition function for the output structure produced by the BinPix0OpV
operation. This transition function changes the state of the output structure from gq
to gg, while the source and argument structures are expected to be in states ¢4 and gs
respectively. It should be noted, that the knowledge obtained with this parallel view
of state machines also could have been captured in a single cross-product machine, in
which each deterministic finite automaton simulates, in parallel, the behavior of each
component dfa (e.g., see [101]). For simplicity of notation, however, in the remainder
of this chapter we keep to the parallel view of simple state machines.

Table 6.3 presents the state transition functions for the image processing function-
ality available in our software library. The overview is complete in the sense that our
implementations allow no state transitions other than the ones presented here. In all
cases, initial state gg refers to the state of the output structure produced by any of
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the operations (represented by an OUT parameter in Table 6.1). As can be seen, out-
put structures are the only structures that actually move from one state to another.
Input structures and argument structures never change state, as these are accessed
only, and never updated. All transition functions that cause a structure to be moved
to state go indicate fully sequential execution using global data structures only. All
other transition functions refer to parallel execution using distributed data structures.

6(q07 (Creat67 ‘)) =1, 5(qla (Deletea _)) = 4o,
6(q07 (Importv _)) = q2, 6((]]', (Export, _)) = 45,

with 7 € {1,2,3},j € {1,2,4,5},

3(qo, (op, q2)) = q2, 5(qo, (op, gs)) = gs>
d(go, (op,q4)) = ge, d(qo, (op, q7)) = qr.
(o, (op,gs)) = qr, 0(gs, (op, q0)) = @i

with op € {Memcopy, UnPix0p},i € {2,4,5,6,7},

8(qo, (op, 92, q2)) = (g2, (op, 90, G2)) = qa,
8(qo, (op, 4, q:)) = q 5(qs, (0P, 90, ¢i)) = 1,
5(qo, (op, 5, 4i)) = ¢z, 8(gs, (op, 40, 4;)) = @G5>

8(qo, (0P, 46, q:)) = g6, 8(ge, (op, 90, @) = s,

5(qo, (0p, 97, 4:)) = qr, (g7, (op, 40, ¢5)) = a7,

with op € {BinPix0pV, NeighOp, GenConvOp},i € {5,7},j € {4,5,6,7},

5(q07 (Blnplxoplv gz, Q2)) = (g2, 6(q27 (Blnplxopla q0, Q’Z)) = g2,
8(go, (BinPix0pI, ¢i;q;)) = g6,  6(i, (BinPixOpL, g0, ¢;)) = i,
8(qo, (BinPix0pl, gk, 1)) = q7,  6(qk, (BinPix0pI, qo,q1)) = g,

with i,j € {4,6},k,0 € {5,7},

8(qo, (Reducelp, g2)) = qo, (g2, (Reducelp, go)) =
8(qo, (Reducelp, ¢;)) = gs, 5(gi, (Reducelp, go)) = Gz»
8(qo, (Reducelp, ¢;)) = g7, d(gj, (Reducelp, o)) = g;,

with i € {4,6},j € {5,7},

(qo, (op, g2)) = g2, (g2, (op, 90)) = g2,
6(qo, (op, @) = @, d(qs, (op, q0)) = @i,

with op € {GeoMat, GeoRoi},i € {5,7}.

Table 6.3: State transition functions (including annotated state dependencies) for
image processing functionality.
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d(q1,(CreatLocalPart,—)) = q4, d(qi,(Dellocal,—)) = qa,
d(q1, (CreatLocalFull,—)) = g5, &(g;,(Dellocal, —)) = gs,

with i € {4,5},j € {6,7,8},

8(ga, (Broadcast, —)) = gs, 4(gs, (Reducelne, —)) = g,

6(g2, (Scatter, —)) = qu, 5(gs, (ReduceAll, —)) = gs,

d(gs, (Gather, —)) = qq, d(qi, (BorderExchange, —)) = g;,
4(g7, (Gather, —)) = gs, d(qi, (Redistribute, —)) = ¢,
4(gs, (GatherAll, —)) = gs,

with i € {4,6}.

Table 6.4: Additional state transition functions for parallel execution.

State transition functions related to the additional communication functionality,
and the memory management of local data structures, are presented in Table 6.4. In
all of these transition functions the list of state dependencies is empty, as the functions
work on a single data structure only. The importance of the additional transition
functions is that these are used to resolve data structure state inconsistencies which
may appear in an application. As an example, consider the first three lines of code
in Listing 6.1(b). The first operation (Import) moves structure ImA from gq to ¢z
(see Table 6.3). In case the third operation (UnPix0p) is to be executed in parallel, the
input data structure is expected to be in one of the states q4, g5, gg, or g7. None of these
states immediately matches with the output state of structure ImA after the Import
operation. This state inconsistency is resolved by executing a Scatter operation (as
in Listing 6.1(b)) or a Broadcast operation immediately after the Import operation.
This is because these operations change an input structure’s state from g either to
g4, O to g5 respectively (see Table 6.4).

Figure 6.1 presents a reduced state transition graph for our finite state machine
definition. For better readability, the graph contains only those operations that actu-
ally cause a data structure to move from one state to another state. As such, the graph
incorporates the complete lifespan of a data structure, and covers any state a data
structure can possibly reach at run time. Also, it should be noted that it is exactly
these operations that play an essential role in the process of operation redundancy
avoidance as will be presented in Section 6.3.

6.2.3 Legal Sequential Code and Legal Parallel Code

A program is a legal program, if and only if it is accepted by all finite state machines
related to that program. In other words, a program is legal if (1) it consists of a
sequence of abstract function calls from Tables 6.1 and 6.2 only, (2) it contains no
data structure state inconsistencies, and (3) all internal data structures start as well as
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end in the empty state go. In case a user-provided sequential program is accepted as a
legal program, the process of default algorithm expansion always generates a legal and
correct parallel program as well. This is because each sequence of (parallel) operations
that replaces a sequential call generates exactly the same set of data structure state
transitions at all times. The following section shows how the presented finite state
machine definition is used to obtain legal and correct parallel code, which is optimized
in that the execution of any redundant communication operations is avoided.

CreatLocalPart Scatter

DelLocal

CreatLocalFull Broadcast

ReduceAll \__DelLocal

ReduceOne
DelLocal

Delete

Create

*1, *2, *3, *4 = creation of datastructure by one of several image operations

Figure 6.1: Reduced state transition graph.
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6.3 Redundancy Avoidance by Lazy Parallelization

In the approach of lazy parallelization it is simply assumed that each communication
or memory management operation inserted in the default algorithm expansion process
is redundant, unless proven otherwise. Stated differently, lazy parallelization causes
a default communication or memory management operation to be executed only, in
case its removal would introduce an (immediate) data structure state inconsistency.
Although lazy parallelization can be applied on the fly at run time, for the moment
we will present it as a compile time method. Conceptually, the approach of lazy
parallelization consists of the following parallelization and optimization steps:

1. Apply the process of default algorithm expansion to the original sequential code.

2. Scan the expanded code, and remove all communication operations, as well as
all operations for the creation and destruction of partial data structures.

3. Apply partial loop unrolling by extracting the code for the first iteration of each
loop, and placing it in front of the code for the remaining loop iterations.

4. Resolve all introduced data structure state inconsistencies by re-inserting oper-
ations removed in step 2.

5. Undo the partial loop unrolling by replacing all separated loops by a single
combined code block.

As stated, the code obtained after the first step consists of legal, but non-optimal
parallel code. The operation removal in the second step, however, introduces many
state inconsistencies. These are resolved in step four. As will be described below,
in this step any illegal parallel code is transformed to legal code by (re-)inserting
operations to resolve data structure state inconsistencies. Steps 3 and 5 are present
only to deal with loop constructs which may be present in the user-provided code.
The extraction of the first iteration of a loop (partial loop unrolling) exposes all
data structure state inconsistencies that can possibly occur in a program. More
specifically, loop unrolling makes it possible to compare (1) the data structure states
reached after execution of the pre-loop code with the states required in the first loop
iteration, (2) the states reached after execution of the n-th loop iteration with the
states required in iteration n + 1, and (3) the states reached after execution of the
last loop iteration with the states required in the post-loop code.

Listing 6.3 gives an example of the application of lazy parallelization. The abstract
code for a simple example program is shown in Listing 6.3(a). The programs obtained
in the first three steps of the optimization process are all straightforward, and will
not be explained any further. The re-insertion of code as applied in step 4 (see
Listing 6.3(e)) is performed using the state transition functions of Section 6.2.2 (i.e.,
only those incorporated in the reduced state transition graph of Figure 6.1). The
Broadcast( ImA, locImA ) operation in the first loop iteration is inserted because
the Import operation causes its output structure to be moved to state gg, while for
parallel execution the subsequent GeoMat operation requires its input structure to
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Import( IinA ) Import( ImA )

LOOP [1:N] LOOP [1:N]
GeoMat( ImA. ImB ): Broadcast( ImA. locImA ):
GenConvOp( ImB. ImC. k ) GeoMat( locImA. loclmB ):
Export( ImC ): Gather( locImB. ImB ):
Delete( hnC ) DelLocal( locImB )
Delete( InB ) DelLocal( locImA ):

ENDLOOP Scatter( ImB. locImB ):

Delete{ TimA ): GenConvOp( locImB. locImC. k ):

Gather( locImC, ImC ):
DelLocal( locImC );
DelLocal( loclmB );
Export( ImC ):

Delete( ImC );

Delete( InB J:
ENDLOOP
Delete( ImA ):

(a) example sequential code (b) after step 1
Tnporti TmA ) Import( ImA )
LOOP [1:N] LOOP (1]
GeoMat( loclmA. locImB ): GeoMat( locImA. locImB ):
GenConvOp( lochnB, lockC. k ): GenConvOp( locImB. loeImC. k ):
Export( InC ) Export( ImC ):
Delete( InC ) Delete( ImC s
Deleteq Tm3 ): Delete( ImB ):
ENDLOOP ENDLOOP
Deletef InA ) LOOP {2:N]

GeoMat( locimA. locImB ):
GenConvOp( locImB. locImC. k ):
Export{ ImC ):

Delete( ImC }:

Delete( ImB ):

ENDLOOP
Delete{ ImA );
(c) after step 2 (d) after step 3
Lmport( A ): Lnport( ImA )
LOOP [1) LOOP [1:N]
Broadeast( ImA. locImA ): IF [1] Broadcast( ImA. locImA):
GeoMat( locImA. loclmB ): GeoMat( loclmA. locImB ):
GenConvOp( loclmB. locImC. k ): GenConvOp( locImB. locImC. k }:
Gather( locImC, ImC J: Gather( locImC. ImC ):
Export ( ImC ): Export({ ImC ):
DelLocal( loclmC ): DelLocal( locImC ):
Delete ImC ) Delete( ImC }:
DelLocal( lochmB ): DelLocal( loclmB )
Delote( ImB ): Delete( ImB ):
ENDLOOP ENDLOOP
LOOP [2:N] DelLocal( loclmA )
GeoMat( loclmA. locImB ): Delete( ImA j:
GenConvOp( loclmB. locImC. k ):
Gather{ loeImC, ImC ):
Export( ImC ):
DelLocal( loalmC )
Delete( hnC ):
DelLocal( locimB )
Delote( InB );
ENDLOOP
DelLocal( loclmA ):
Delete( ImA );
(e) after step 4 (f) after step 5

Listing 6.3: Ezample of code optimization by lazy parallelization (compile time):
(a) original sequential code, (b) code obtained after default algorithm ezpansion,
(c) code obtained after removal of redundant’ communication operations and mem-
ory management operations, (d) code obtained after partial loop unrolling, (e) code
obtained after resolution of state inconsistencies by default operation re-insertion,
(f) optimized parallel code obtained after loop recombination.
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be in state g5 or g7 (see Table 6.3). The only available operation that provides a
resolution to this state inconsistency is the Broadcast operation, as it moves a data
structure from state ¢z to ¢s. Similarly, Gather( locC, C ) is inserted in the first
loop iteration, as it moves C from gg to g4, which is one of the allowed input states
for the subsequent Export operation. The additional operation re-insertions work in
a similar manner, and all further interpretation of Listing 6.3 is left to the reader.

6.3.1 Discussion

Lazy parallelization produces legal and correct parallel code at all times. This can
be seen by considering the allowed states for all data structures passed as parameters
to the operations in Table 6.1, and the resulting states for the output structures
produced by these operations. As such, each operation has a set of allowed input
states for each of its parameters, and one of these is moved to a new output state.
By exhaustion, it is easily shown that for each possible output state, a sequence of
zero or more state transition functions exists that moves a data structure from that
particular output state to one state in each set of allowed input states.

An important property of the approach is that it can be applied on the fly at
run time (hence its name). Because the required data structure states are known for
each operation, it is possible to defer decisions regarding the execution of each default
communication operation or memory management operation to as late as the actual
moment of intended execution. Essentially, this means that all five steps as described
above, are reduced to a single step. As such, lazy parallelization is unrestrictive and
highly efficient, as no prior knowledge regarding the behavior of loops and branches
in the code is required. This knowledge is simply obtained during execution of the
application, and is not required any sooner.

Although lazy parallelization works well in many situations, it does not guarantee
to always produce the fastest possible version of a program under consideration. First,
this is because the approach always applies the fastest communication step whenever
message transfer is mandatory. This is a form of local performance optimization,
however, as it may be better to insert a combined message transfer to avoid further
communication steps to be executed at a later stage. Secondly, the approach does
not incorporate any knowledge obtained from our APIPM-based performance models
described in Chapters 4 and 5. To overcome these problems, the next section proposes
an extension to the approach of lazy parallelization, such that it is indeed capable of
producing the (expected) fastest parallel version of any sequential program.

6.4 Application State Transition Graph

The process of lazy parallelization always results in the execution of a single pre-
selected solution for resolution of data structure state inconsistencies. For each spe-
cific state inconsistency, each default resolution represents the cheapest operation (or
sequence of operations) that is available in the software library. Although this strategy
generally produces parallel code which is quite efficient, the approach is sub-optimal,
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as it does not acknowledge that

1. the execution of more costly communication steps (e.g., Broadcast instead of
Scatter) may avoid additional communication at a later stage in the program,

2. a single straightforward domain decomposition may deliver non-optimal perfor-
mance (see Chapter 5),

3. the optimal routing pattern for the distribution of data partially depends on
the characteristics of the interconnection network (again, see Chapter 5), and

4. the use of all available processing power is not always time-optimal.

Optimization in the light of these issues is obtained by constructing an application
state transition graph (or ASTG), that characterizes an application’s run time behav-
ior, and incorporates all possible (combinations of) parallelization and optimization
solutions. By annotating the vertices in the graph (representing all operations which
are possibly performed by the application) with cost estimations obtained from our
APIPM-based performance models described in Chapters 4 and 5, the expected opti-
mal parallel implementation for an application is represented by the cheapest branch.

Figure 6.2 shows a simplified version of the ASTG constructed for the first three
lines of code in Listing 6.1, assuming that a maximum number of only two processing
units is available. After execution of the Import operation, several different execution
paths can be followed. One choice is to execute the UnPix0Op in a sequential manner,
as is depicted by the uppermost branch in the graph. Parallel solutions involve either
a Scatter operation or a Broadcast operation performed on the imported data struc-
ture. As explained in the Chapter 5, multiple versions of these operations exist in our

A=q, do nothing A=q, —— A=q, B=q, | UnPixOp(A, B) | A=¢, B=g, -----

t=0 t=30

A=q, |Scatter(A, oft, 1x2) | A=q,
=8
A=q, | Scatter(A, oft, 2x1) | A=q,
/ =12
A=gq, | Import(A) | A=q, —— A=q, Scatter(A, sbt, 1x2) | A=q,

=25 \ =10
Scatter(A, sbt, 2x1)

A=q,

A=q,B=q,|UnPixOp(A,B)|A=q, B=g4-----

t=15

\\/

A=qy

=15

N/

A=q, | Broadcast( A, oft) |A=g;

=35

A=q5.B=q,|UnPixOp(A, B) [A=gs B=g,-----

A=q,| Broadcast(A, sht) |A =g t=30

t=35

Figure 6.2: Simplified partial application state transition graph.
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library, each having different performance characteristics. For the Scatter operation.
it is required to also choose a logical processor grid onto which the data structure is
to be mapped (see Section 3.2). All of these choices result in a different expected
execution time for the program, as is indicated by the annotated performance esti-
mations at each vertex in the graph. Although one of the branches in Figure 6.2 is
cheapest for this initial part of the program, to obtain optimal performance for the
complete application a different path may have to be followed.

Discussion

While the expected optimal parallel implementation is always obtained in this manner,
the construction of a complete ASTG has several major disadvantages. First, in order
to find the cheapest branch, the creation of an ASTG needs to be performed at compile
time. As such, the approach is restrictive. as it is now required to have prior knowledge
regarding the branching behavior of the application at hand. Another drawback is
that it is often costly to actually obtain the cheapest branch in the graph. This is
because an ASTG is generally large, even for applications of moderate size.

6.4.1 Heuristics for Search Space Reduction

To overcome the stated problems, we have defined several heuristics to reduce the
size of any application state transition graph. The use of heuristics implies that our
approach can no longer guarantee to find the expected optimal parallel implementa-
tion for any sequential program. However, in almost all situations a close-to-optimal
program is still obtained, and application performance is generally still comparable
to that of optimal hand-crafted parallel code (as will be demonstrated for all example
applications evaluated in Chapter 7).

First, to overcome the problem of having to acquire prior knowledge regarding
the branching behavior of an application, our optimization approach simply ignores
unknown branches. At run time, any code block that has not been evaluated because
of undetermined conditional behavior is simply executed according to the default
lazy parallelization approach. In such a situation, all current logical data structure
mappings are maintained, however, to avoid having to execute costly remapping op-
erations. Although this approach solves the problem in the simplest possible way, it
should be noted that we have learned that not many applications implemented using
our software architecture actually contain such unknown branches.

A significant reduction of any ASTG is obtained by assuming that a specific data
mapping that was found to be optimal for a certain operation, is also optimal for
other operations with similar behavior. In other words, it is simply assumed that each
parallelizable pattern entails a single optimal data partitioning strategy, irrespective
of the actual operation that is implemented by that pattern. As a consequence, in
an ASTG a sequence of operations applied to the same set of data structures is often
reduced to a single block of code which is not ’interrupted’ by any communication
operations. Once a data structure has been partitioned and distributed, its logical
mapping is maintained as long as possible.
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An ASTG is also significantly reduced by assuming that data structures that are
used as arguments representing kernel structures (as in the GenConvQOp operation) or
vector data (as in the BinPixOpV operation) at any point in a program, are never
to be partitioned. This is realistic, as such data structures are usually much smaller
than regular image data structures. Calculations on such small structures are simply
assumed not to gain from parallel execution at all.

Other heuristics, such as evaluating partial execution paths either for a single node
or for all available nodes only. and considering only a small number of possible logical
data mappings for the maximum system size. also reduce each ASTG significantly.
It is expected that additional heuristics can reduce each ASTG even further, without
compromising too much on the run time performance of the resulting parallel code.
This. however. is research we have left as future work.

6.5 Related Work

Although a multitude of library-based environments has been described in the liter-
ature. the process of optimization across library calls is not explicitly incorporated
in many of these. Even in several relatively recent software architectures. perfor-
mance optimization issues often are considered at the intra-operation level only (e.g.,
see [80. 81. 86. 87. 93, 111. 154, 159]). Other environments (e.g.. [118]) leave part of
the optimization process to a third-party compiler. as these require applications to
be implemented in a high-level parallel language such as Compositional C++ [26].

The environment implemented by Morrow et al. {109] does incorporate a par-
tial mechanism for inter-operation optimization. It is based on the concept of a
self-optimizing class library, which is extended automatically with optimized parallel
operations. In case a program is being executed for the first time, a syntax graph is
constructed for each statement in the program, which is evaluated when an assighment
operator is met. Any such syntax graph for combinations of primitive instructions
(i.e., those incorporated as a single routine within the library) is written out for later
consideration by an off-line optimizer. On subsequent runs of the program, a check
is made to decide if an optimized routine is available for a given sequence of library
calls. Although optimal performance may be guaranteed for a sequence of library
routines in this manner, a drawback of this approach is that time-optimality is often
not obtained for complete applications.

Other environments, such as developed by Jamieson et al. [73, 74], Lee et al. [94,
95], and Moore et al. [108], do incorporate a method for full inter-operation optimiza-
tion. In all of these architectures the methods are purely static, however, and can be
applied at compile time only. In this respect. our approach of lazy parallelization is
more flexible, as it allows much of the optimization process to be performed at run
time — without any significant overhead cost. In case run time performance obtained
from the standard lazy parallelization approach is deemed insufficient, one can decide
to incorporate additional compile time results obtained from the ASTG.

As far as we know, the use of a finite state machine specification is new in the
field of library-based parallel imaging environments. Moreover, to our knowledge the
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application of an fsm definition has not been considered at all in the field of parallel
image processing. In several related research areas, however, fsm definitions have been
applied before. For example, Chatterjee et al. {27] apply a finite state machine for the
generation of optimal communication sets in distributed-memory implementations of
data-parallel languages such as High Performance Fortran. As in our case, results
indicate that the fsm approach requires very little runtime overhead. For ad-hoc
optimization of specific algorithms (e.g., see [31]), or complete applications (e.g.,
see [106]), finite state machine definitions have been applied successfully as well.

Interestingly, our approach to finding optimal performance of operations as well
as complete applications is related to several projects in other domains. The SPIRAL
project [99, 152], for example, is aimed at the design of a system to generate efficient
libraries for digital signal processing algorithms. SPIRAL generates efficient imple-
mentations of algorithms expressed in a domain-specific language, called SPL, by a
systematic search through the space of possible implementations. Other efforts in
automatically generating efficient implementations of programs include FFTW [51]
for adaptively generating time-optimal FFT algorithms, and the ATLAS project [169]
for deriving efficient implementations of basic linear algebra routines.

Finally, our work shares common goals with that of Baumgartner et. al. [14], in the
search of an optimal data partitioning strategy with minimal communication overhead
for applications in the field of quantum chemistry and physics. Similar to our work,
an operator tree is generated, in which multiple data partitioning and communication
strategies are incorporated. This work goes even one step further, in that memory
usage is to be optimized at the same time. This approach is also entirely static,
however, and includes no possibility for partial optimization performed at run time.

6.6 Conclusions

In this chapter we have presented a finite state machine based approach for global
optimization of data parallel image processing applications. The approach, called lazy
parallelization, considers a sequential program, which is parallelized automatically by
inserting communication operations and local memory management operations when-
ever necessary. The approach generates legal, correct, and efficient parallel programs,
given any sequential program implemented using our software architecture.

The main advantage of the optimization approach is that it can be applied on
the fly at run time. As a result, the primary importance of lazy parallelization over
other approaches described in the literature lies in the fact that it requires no a priori
knowledge regarding the branching behavior of the application at hand. An additional
advantage of lazy parallelization is that it requires very little runtime overhead. Also,
in our software architecture it proved to be possible to incorporate the approach
in an elegant manner — i.e., such that the long-term sustainability of the library
implementations is not compromised.

Although lazy parallelization was shown to work well in many situations, it can
not guarantee to always produce the fastest possible version of the program under
consideration. To overcome this problem, an extension to the approach of lazy par-
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allelization was also presented. The extended technique requires an application state
transition graph (ASTG) to be generated. An ASTG incorporates all optimization
decisions which can possibly be made at application run time. As each decision is
annotated with a run time cost estimation (obtained from our APIPM-based perfor-
mance models). the fastest version of the program is represented by the ‘cheapest’
branch in the ASTG.

Aun important drawback of the application state transition graph. however. is that
it is often costly to actually obtain the cheapest branch. This is because the ASTG
is generally large, even for applications of moderate size. For this reason we have also
defined additional heuristics for search space reduction. Another drawback is that
the creation and traversal of an ASTG can not be performed at run time. However.
in case the default approach of lazy parallelization proves to deliver sufficiently high
performance, the creation of an ASTG can be avoided altogether.

In conclusion. lazy parallelization on the basis of a finite state machine specifi-
cation has proven to constitute a surprisingly simple. vet effective method for global
optimization of data parallel image processing applications. Essentially. the simplic-
ity stems from the high level abstractions incorporated in the fsmn definition. Con-
sequently. we feel that a similar approach could be applicable in other library-based
architectures as well. This is especially true for the many environments for linear
algebra operations. which include similar patterns of communication and calculation.




Chapter 7

Efficient Applications in
User Transparent
Parallel Image Processing™

"Thy will by my performance shall be serv’d:
So make the choice of thy own time, for I,
Thy resolv’'d patient. on thee still rely.”

William Shakespeare - All's Well That Ends Well (1623)

In the previous chapters we have described the essential and most innovative as-
pects of our software architecture for user transparent parallel image processing.
First, in Chapter 2 we have discussed the need for the availability of such architec-
ture, and we have presented a bird’s eye view of all of the architecture’s constituent
components. In Chapter 3 we have presented some of the implementation details
of the architecture’s core — which is a sustainable software library consisting of an
extensive set of operations commonly applied in state-of-the-art image processing
research. In Chapter 4 we have introduced a performance model, derived from a high
level abstract parallel image processing machine definition, which is used for obtaining
accurate run time cost estimations for all operations available in our architecture. In
addition, in Chapter 5 we have presented an extended model for accurate prediction
of the cost of the basic point-to-point communication operations applied in the library
implementations. As discussed in Chapter 6, performance estimations obtained from
these models are essential for generating the fastest possible parallel version of any

*This chapter is based on our paper as appeared in Proceedings of the 16th International Parallel
& Distributed Processing Symposium (IPDPS 2002) [150]. An extended version of this chapter is to
appear in Concurrency and Computation: Practice and Ezrperience [146].
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sequential program implemented using our software architecture. In relation to this,
in Chapter 6 we have also presented a finite state machine specification, which is used
for the automatic conversion of a legal sequential image processing application into a
legal. correct, and time-optimal parallel version of the same program.

For each of the research issues presented in the previous chapters, we have dis-
cussed the advantages and drawbacks of the solutions incorporated in our software
architecture. Where possible. we have also presented results for each of the solutions
applied in isolation. To validate all of the results of this research. however, the single
remaining issue that has yet to be discussed in this thesis is the overall efficiency
obtained in case the architecture components are applied in combination.

To this end. in this chapter we give an assessment of the software architecture’s
effectiveness in providing significant performance gains. In particular. we describe the
implementation and automatic parallelization of three well-known example applica-
tions that contain many operations commonly applied in image processing research:
(1) template matching, (2) multi-baseline stereo vision, and (3) line detection. For all
three applications we determine whether the performance obtained with the parallel
versions generated by our software architecture indeed adheres to requirement 1.2 put
forward in Section 2.3 which states that the obtained efficiency generally should
compare well to that of reasonable hand-coded parallel implementations.

This chapter is organized as follows. First, in Section 7.1 we give a short de-
scription of the hardware architecture that we have used for all evaluation purposes.
Next. in each of the Sections 7.2, 7.3. and 7.4. one of the example applications is
described and evaluated in extensive detail. Information regarding the parallelization
and optimization issues of each application is presented. in combination with obtained
performance results and speedup characteristics. Where available. measurement data
presented in the literature are compared with performance results obtained with our
software architecture. Finally, concluding remarks are given in Section 7.5.

7.1 Hardware Environment

All of the applications described in this chapter have been implemented and tested on
the 128-node homogeneous Distributed ASCI Supercomputer (DAS} cluster located
at the Vrije Universiteit in Amsterdam [7]. This is a typical example of a machine
from the class of homogeneous commodity clusters as described in Section 2.1. All
nodes in the cluster contain a 200 Mhz Pentium Pro with 128 MByte of EDO-RAM,
and are connected by a 1.2 Gbit/sec full-duplex Myrinet SAN network. At the time
of measurement, the nodes ran the RedHat Linux 6.2 operating system. The software
architecture was compiled using gec 3.0 (at highest level of optimization) and linked
with MPI-LFC [16]. an implementationn of MPI which is partially optimized for the
DAS. The required set of benchmarking operations (see Section 4.4) was run on a total
of three DAS nodes, under identical circumstances as the complete software architec-
ture itself. At the time of measurement, 8 nodes in the DAS cluster were unusable
due to a malfunction in the related network cards. As a consequence, performance
results are presented for a system of up to 120 nodes only.
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7.2 Template Matching

Template matching is one of the most fundamental tasks in many image processing
applications. It is a simple method for locating specific objects within an image, where
the template (which is, in fact, an image itself) contains the object one is searching
for. For each possible position in the image the template is compared with the actual
image data in order to find subimages that match the template. To reduce the impact
of possible noise and distortion in the image, a similarity or error measure is used to
determine how well the template compares with the image data. A match occurs
when the error measure is below a certain predefined threshold.

In the example application described here, a large set of electrical engineering
drawings is matched against a set of templates representing electrical components,
such as transistors, diodes, etc. Although more post-processing tasks may be required
for a truly realistic application (such as obtaining the actual positions where a match
has occurred), we focus on the template matching task, as it is by far the most time-
consuming. This is especially so because, in this example, for each input image f error
image ¢ is obtained by using an additional weight template w to put more emphasis
on the characteristic details of each ’symbol’ template g:

e(i,§) = EnZa((f(i + m, j + 1) — g(m,n))? - w(m, n)). (7.1)
When ignoring constant term g2w. this can be rewritten as:
e=f2ouw—-2-(fouw-g). (7.2)

with ® the convolution operation. The error image is normalized such that an error
of zero indicates a perfect match and an error of one a complete mismatch. Although
the same result can be obtained using the Fast Fourier Transform (which has a better
theoretical run time complexity, and also provides immediate localization of the best
match and all of its resembling competitors), this brute force method is fastest for
our particular data set,.

7.2.1 Sequential Implementation

Listing 7.1 is a sequential pseudo code representation of Equation (7.2). The library
calls are as described in Chapter 3. Essentially, each input image is read from file,
squared (to obtain f?), and matched against all symbol and weight templates, which
are also obtained from file. In the inner loop the two convolution operations are
performed, and the error image is calculated and written out to file.

7.2.2 Parallel Execution

As all parallelization issues are shielded from the user, the pseudo code of Listing 7.1
directly constitutes a program that can be executed in parallel as well. Efficiency
of parallel execution depends on the optimizations performed by the architecture’s
scheduling component. For this particular sequential implementation, the optimiza-
tion process (as described in Chapter 6) has generated a schedule that requires only
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FOR i=0:Nrlmages-1 DO
Inputlim = ReadFile(...):
SqrdInputlm = BinPixOp(Inputhu. “mul”. Inputlm):
FOR j=0:NrSymbols-1 DO
IF (i==0) THEN
weights[j] = ReadFile(...);
symbols[j] = ReadFile(...):
symbols[j] = BinPixOp(symbols|j], "mul”, weights[j]):
FI
FiltIml = GenConvOp(SqrdInputlm. "mult™, “add”, weights(j]);
FiltIm2 = GenConvOp(InPutIm. "mult”. "add”. symbols[j]):
FiltIm2 = BinPixOp(FiltIm2. "mult". 2):
Errorlm = UnPixOp(Filtlml. "sub”. Filtlm2):
WriteFile(Errorlm):
oD
oD

Listing 7.1: Pseudo code for template matching.

four different communication steps to be executed. First. each input image read from
file is scattered throughout the parallel system (generally applying a logical CPU grid
of 2 x (P +2)or4x (P +4). depending on the available number of nodes P). Next,
in the inner loop all templates are broadcast to all processing units. Also. in order for
the convolution operations to perform correctly, image borders (or shadow regions)
are exchanged among neighboring nodes in the logical CPU grid. In all cases, the
extent of the border in each dimension is half the size of the template minus one
pixel. Finally, before each error image is written out to file it is gathered to a single
processing unit. Apart from these communication operations all processing units can
run independently. in a fully data parallel manner. As such. the program executes in
exactly the same way as would have been the case for a hand-coded parallel version.

7.2.3 Performance Evaluation

Because template matching is such an important task in image processing. it is es-
sential for our software architecture to perform well for this application. The results
obtained for the automatically optimized parallel version of the program, presented
in the first six columns of Figure 7.1(a). show that this is indeed the case. For these
results, the graph of Figure 7.1(b) shows that even for a large number of processing
units, speedup is close to linear. As was to be expected, the speedup characteristics
are identical when the same number of templates is used in the matching process,
irrespective of the number of input images.

It should be noted that the ‘1 template’ case represents a lower bound on the
obtainable speedup (which is slightly over 80 for 120 nodes). This is because in this
situation the communication versus computation ratio is highest for the presented
parallel system sizes. Additional measurements have indicated that the '10 template’
case is a representative upper bound (with a speedup of more than 96 for 120 nodes).
Even when up to 50 templates are being used in the matching process, the speedup
characteristics were found to be almost identical to this upper bound.
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time— optimized parallel program default parallel program
# CPUs 1 input image 5 input images 1 input image
1 templ 5 templ 10 templ ol 5 templ 10 templ 1 templ 10 templat
(s) (s) (s) (s) (s) (s) (s) (s)
1 25.439 126.654 253.165 127.158 632.485 1265.425 25.526 253.627
2 12.774 63.410 126.694 63.819 316.921 633.083 13.466 133.443
4 6.449 31.895 63.707 32.237 159.497 318.559 7.126 69.924
8 3.287 16.138 32212 16.435 80.655 161.303 3.972 37.975
16 1.703 8.254 16.459 8.519 41.263 82.259 2.399 21.960
24 1.176 5.618 11.207 5.876 28.078 55.838 1.876 16.539
32 0.902 4.261 8.473 4.508 21.318 42414 1.581 14.128
48 0.642 2.956 5.875 3218 14.751 29.367 1.337 11.330
64 0.503 2.280 4.493 2.523 11.353 22.409 1.224 9.998
80 0.424 1.865 3.708 2.115 9.340 18.546 1.093 9.119
96 0.375 1.627 3.189 1.871 8.088 16.146 1.056 8.493
120 0.317 1.340 2,619 1.581 6.659 13.299 0.960 7.668
(a)
120 T T T T T
linear(x) —
1 image / 10 templates -<---
100 | 5images/ 10 templates -+ J
1image /5 templates &
5images / 5 templates -x--
1image / 1 template -4--
80 5images/ 1 template -~
1img/ 10 tmpl (default) o~
=3 1img/ 1 tmpl (default) -+
°
2 60
Qo
»
40 +
20

60

80

Nr. of CPUs
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Figure 7.1: Performance and speedup characteristics for template matching using
input images of 1093x 649 (4-byte) pizels and templates of size 41x 35. (a) Execution
times in seconds for multiple combinations of templates and images. Results in first
siz columns obtained for optimized parallel version. Results in last two columns (gray)
obtained for non-optimized parallel version generated by default algorithm expansion.
(b) Speedup graph for all measurements. Four uppermost lines for optimized program
calculating matches for 5 and 10 templates; two lower lines for matching with a single

template. Bottom two lines for non-optimized (default) parallel program.
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The additional values in the gray columns of Figure 7.1(a) represent measurement
results obtained for a non-optimized parallel version of the program (i.e., the parallel
program which is obtained in the process of default algorithm expansion, without
applying a redundancy avoidance strategy or any other optimization steps, see Sec-
tion 6.1.2). These measurements, as well as the related speedup characteristics shown
in Figure 7.1(b), clearly indicate the importance of the optimization process presented
in Chapter 6. Most importantly. the dramatic results are due to the fact that the
default parallel program executes many redundant communication steps. For evalua-
tion of the efficiency of our software architecture, these non-optimized results simply
should be ignored. In the remainder of this chapter we will therefore only present
results for time-optimized parallel programs.

7.3 Multi-Baseline Stereo Vision

As indicated in [82, 110], depth maps obtained by conventional stereo ranging, which
uses correspondences between images obtained from two cameras placed at a small
distance from each other, are generally not very accurate. In part, this is due to the
fundamental difficulty of the stereo correspondence problem: finding corresponding
points between left and right images is locally ambiguous. Several solutions to this
problem have been proposed in the literature, ranging from a hierarchical smooth-
ing or coarse-to-fine strategy, to a global optimization technique based on surface
coherence assumptions. These techniques, however, tend to be heuristic or result in
computationally expensive algorithms.

In [117], Okutomi and Kanade propose an efficient multi-baseline stereo vision
method, which is more accurate for depth estimation than more conventional ap-
proaches. Whereas, in ordinary stereo, depth is estimated by calculating the error
between two images, multi-baseline stereo requires more than two equally spaced

(b)

Figure 7.2: Ezample of typical input scene (a) and extracted depth map (b). Courtesy
of Professor H. Yang, University of Alberta, Canada.
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cameras along a single baseline to obtain redundant information. In comparison with
two-camera methods, multi-baseline stereo was shown to significantly reduce the num-
ber of false matches, thus making depth estimation much more robust.

In the algorithm discussed here, input consists of images acquired from three
cameras. One image is the reference image, the other two are match images. For
each of 16 disparities, d = 0,--- , 15, the first match image is shifted by d pixels, the
second image is shifted by 2d pixels. First, a difference image is formed by computing
the sum of squared differences between the corresponding pixels of the reference image
and the shifted match images. Next, an error image is formed by replacing each pixel
with the sum of the pixels in a surrounding 13 x 13 window. The resulting disparity
image is then formed by finding, for each pixel, the disparity that minimizes the error.
The depth of each pixel then can be displayed as a simple function of its disparity. A
typical example of a depth map extracted in this manner is given in Figure 7.2.

7.3.1 Sequential Implementations

The sequential implementation used in this evaluation is based on a previous im-
plementation written in a specialized parallel image processing language, called
Adapt [166] (see also Section 2.2.2). As shown in Listing 7.2, for each displace-
ment two disparity images are obtained by first shifting the two match images, and
calculating the squared difference with the reference image. Next, the two disparity
images are added to form the difference image. Finally, in the example code, the
result image is obtained by performing a convolution with a 13 x 13 uniform filter
and minimizing over results obtained previously.

With our software architecture we have implemented two versions of the algorithm
that differ only in the manner in which the pixels in the 13 x 13 window are summed.
The pseudo code of Listing 7.2 shows the version that performs a full 2-dimensional
convolution, which we refer to as VisSlow. As explained in detail in [43], a faster
sequential implementation is obtained when partial sums in the image’s y-direction
are buffered while sliding the window over the image. We refer to this optimized
version of the algorithm as VisFast.

Errorlm = UnPixOp(Errorlm, "set”, MAXVAL);

FOR all displacements d DO
DisparityIm1 = BinPixOp(MatchIm1, "horshift”, d);
Disparitylm2 = BinPixOp(Matchlm2, "horshift”, 2 x d);
Disparitylm1 = BinPixOp(DisparityIml, "sub”, Referencelm);
Disparitylm2 = BinPixOp(Disparitylm2, "sub”, Referencelm);
Disparitylml = BinPixOp(Disparitylml, "pow”, 2);
Disparitylm2 = BinPixOp(DisparityIm2, "pow”, 2);
Differencelin = BinPixOp(Disparitylml, ”add”, Disparitylm?2);
Differencelm = GenConvOp(Differencelm, "mult”, add”, unitKer);
Errorlm = BinPixOp(Errorlm, "min”, Differencelm);

OD

Listing 7.2: Pseudo code for multi-baseline stereo vision.
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7.3.2 Parallel Execution

The generated optimal schedule for either version of the program of Section 7.3.1 re-
quires not more than five communication steps. In the first loop iteration — and only
then — the three input images MatchIml, MatchIm2, and Referencelm are scattered
to all processing units. The decompositions of these images are all identical (and
performed in a row-wise fashion only - l.e.. using a 1 x P logical CPU grid mapping)
to avoid a domain mismatch and unnecessary communication. Also. in each loop
iteration border communication is performed in either version of the program. Again,
the extent of the border in each dimension is half the size of the kernel minus one pixel
(i.e., six pixels in total). Finally, at the end of the last loop iteration the result image
(ErrorIm) is gathered to one processor. As in the example of Section 7.2. the opti-
mized parallel programs obtained with our software architecture execute in exactly the
same way as would have been the case for reasonable hand-coded implementations.

7.3.3 Performance Evaluation

Results obtained for the two implementations, given input images of size 240 x 256
pixels (as used most often in the literature) are shown in Figure 7.3(a). Given the fact
that we only allow border exchange among neighboring nodes in a logical CPU grid.
the maximum number of nodes that can be used for such image size is 40. In case
more CPUs are being used, several nodes will have partial image structures with an
extent of less than 6 pixels in one dimension (due to the one-dimensional partitioning
of the input images). As the size of the shadow region for a 13 x 13 kernel is 6 pixels
in both dimensions, nodes would have to obtain data from its neighbor’s neighbors as
well - or even further away. The communication pattern for this behavior is costly
(i.c.. the communication versus computation ratio is high), and therefore we have not
incorporated it in our architecture.

As expected, Figure 7.3(a) shows that the performance of the VisFast version
of the algorithin is significantly better than that of VisSlow. Also, the graph of
Figure 7.3(b) shows that the speedup obtained for both applications is close to linear
up to 24 CPUs. When more than 24 nodes are being used. the speedup graphs flatten
out due to the relatively short execution times. Because the generated schedule for this
program is identical to what an expert programmer would have implemented by hand,
this is to be considered optimal. This also can be derived from the fact that superlinear
speedups are obtained for up to 12 processing units. Figure 7.4 shows similar speedup
characteristics obtained for a system of up to 80 nodes. and using input images of size
512 x 528 pixels. For up to 40 nodes these results are almost identical to Figure 7.3,
indicating a similar impact of communication on overall performance.

In Figures 7.3 and 7.4 we have also made a comparison with results obtained for
the same application -— implemented in a task parallel manner — written in a special-
ized parallel programming language (SPAR [129]). and executed on the same parallel
machine. In this implementation. referred to as VisTask. each iteration is desig-
nated as an independent task, thus exploiting 16 processing units at maximum. For
this comparison, the code generated by the SPAR front-end was compiled in a iden-
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Software Architecture SPAR
# CPUs
VisFast VisSlow VisTask
(s) (s) (s)
1 1.998 5.554 8.680
2 0.969 2.759 4372
4 0.458 1.354 2214
8 0.232 0.674 1.135
12 0.167 0.461 1.135
16 0.135 0.357 0.598
20 0.118 0.296
24 0.106 0.253
28 0.100 0.232
32 0.095 0.212
36 0.089 0.192
40 0.084 0.172
(a)
40 T T T T T T T
linear(x) —
VisSlow -¢---
35 - VisFast -+ 1
SPAR -@--
30 B
_,e’
_'”/ ’
25 1
e e
S o et
kel LT 4» )|
g’. 20r o **
7] e
15 ,;:.‘m"'" .
10 R
G @B
5 i
O 1 1 =i 1 i 1 1
0 5 10 15 25 30 35 40

20
Nr. of CPUs
(b)

Figure 7.3: Performance and speedup characteristics for multi-baseline stereo vision
using input images of 240x 256 (4-byte) pizels. (a) Ezecution times in seconds for
the optimized parallel programs obtained with our architecture for both algorithms.
Results in gray obtained for the task parallel implementation in the SPAR parallel
programming language. (b) Speedup graph for all measurements.
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Software Architecture SPAR
# CPUs
VisFast VisSlow VisTask
(s) (s) (s)
1 8.770 24.375 42.993
2 4515 12.343 22.776
4 2.396 6.300 12.283
8 1.250 3.218 6.219
16 0.670 1.641 3.312
24 0.488 1.156
32 0.394 0.885
40 0.348 0.749
48 0.322 0.655
56 0.308 0.611
64 0.284 0.524
80 0.270 0.485
(a)
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Figure 7.4: Performance and speedup characteristics for multi-baseline stereo vision
using input images of 512x 528 (4-byte) pizels. (a) Exvecution times in seconds for
the optimized parallel programs obtained with our architecture for both algorithms.
Results in gray obtained for the task parallel implementation in the SPAR parallel
programming language. (b) Speedup graph for all measurements.
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tical manner to the previous case. Although the communication characteristics of
the SPAR implementation are significantly different, measurements on a single node
indicate that the overhead by our software architecture is much smaller than that
of the SPAR runtime system. Nevertheless, the speedup obtained for the VisTask
implementation indicates that SPAR successfully exploits all available parallelism for
this particular application. From this comparison we conclude that our software ar-
chitecture provides fast sequential code, as well as high parallelization efficiency.
Interestingly, our results are comparable to the performance obtained for a Vis-
Fast-like implementation in the Adapt parallel image processing language reported
by Webb [166] (see Figure 7.5). A comparison is difficult, however, as results were
obtained on a significantly different machine (i.e., a collection of iWarp processors,
with a better potential for obtaining high speedup than the DAS cluster), and for an
implementation optimized for 2¥ nodes. Comparison with the speedup characteris-
tics of the Adapt implementation is even more difficult, as the results in Figure 7.6
indicate that they fluctuate substantially. Yet, our results on the DAS (which was
installed less than 5 years later) make a strong case for our general purpose approach.

T T T

VisTask-SPAR (task parallel) <-—
VisSlow (data parallel; slow) -+--

Adapt (machine-specific; optimized) -8--
VisFast (data parallel; fast) -

Time (s)

Figure 7.5: Comparison of execution times for the VisSlow and VisFast programs
implemented with our software architecture, the VisTask program implemented using
the SPAR parallel language, and the results obtained for the Adapt implementation
reported in [166] (all for 240x 256 (4-byte) input images).
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Figure 7.6: Comparison of speedup for the VisSlow and VisFast programs imple-

mented with our software architecture, and the Adapt implementation reported in [166]
(all for 240x 256 (4-byte) input images).

linear(x
VisSlow (data parallel; slow
VisFast (data parallel; fast) -+-
Easy-PIPE (data + task parallel
Easy-PIPE (data parallel

Figure 7.7: Comparison of speedup for the VisSlow and VisFast programs imple-

mented with our software architecture, and the two Easy-PIPE implementations re-
ported in [111] (all for 240x 256 (4-byte) input images).
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More relevant is a comparison with Fasy-PIPE [111, 112], a library-based software
environment for parallel image processing similar to ours. Easy-PIPE mainly differs
from our architecture in that it incorporates a mechanism for combining data and
task parallelism. Also, Fasy-PIPE does not shield all parallelism from the application
programmer. As a consequence, Easy-PIPE has the potential of outperforming our
architecture, which is fully user transparent, and strictly data parallel. Results for the
multi-baseline stereo application obtained on the same DAS cluster (see Figure 7.7)
indicate that our architecture performs better nonetheless. Part of the difference is
accounted to the fact that the two Easy-PIPE implementations do not fully exploit
all parallelism available in the program. Also, in contrast to our library implementa-
tions, the communication routines applied in Easy-PIPE rely on the costly creation of
separate send and receive buffers in user-space. The bulk of the difference, however,
is due to the absence in the Fasy-PIPE architecture of an inter-operation optimiza-
tion mechanism for removal of redundant communication overhead, such as our lazy
parallelization approach of Chapter 6. As a result, the parallelization overhead of the
FEasy-PIPE implementations is much higher than that of our software architecture.

7.4 Detection of Linear Structures

As discussed in [55], the important problem of detecting lines and linear structures in
images is solved by considering the second order directional derivative in the gradient
direction, for each possible line direction. This is achieved by applying anisotropic
Gaussian filters, parameterized by orientation 6, smoothing scale ¢, in the line direc-
tion, and differentiation scale o, perpendicular to the line, given by
9‘ 1

bo’u,av,@’

(7.3)

P i i iy ) == G | F

with b the line brightness. When the filter is correctly aligned with a line in the image,
and oy, 0, are optimally tuned to capture the line, filter response is maximal. Hence,
the per pixel maximum line contrast over the filter parameters yields line detection:
R(z,y) = arg max (@, o, O, B, B)- (7.4)
usOv,

Figure 7.8(a) gives a typical example of an image used as input to this algorithm. Re-
sults obtained for a reasonably large subspace of (o, 0, 8) are shown in Figure 7.8(b).

(b)

Figure 7.8: Detection of C. Elegans worms (Janssen Pharmaceuticals, Belgium,).
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FOR all orientations 8 DO
Rotatedlm = GeometricOp(Originallm, "rotate”. 6):
ContrastIm = UnPixOp(ContrastIm. "set”, 0):
FOR all smoothing scales o, DO
FOR all differentiation scales o,. DO
Filtml = GenConvOp(RotatedIm, " gaussXY”, oy, 0 , 2. 0);
Filtlm2 = GenConvOp(RotatedIm, “gaussXY", ou, 0v , 0, 0);
DetectedIm = BinPixOp(FiltIm1. "absdiv”. Filtlm2):
DetectedIm = BinPixOp(Detectedlm, "mul”, oy X 04.):
Contrastlm = BinPixOp(Contrastlm, "max”, Detectedlm);
oD
oD
BackRotatedIm = GeometricOp(ContrastIm. “rotate™, —0):
Resultlm = BinPixOp(ResultIm. "max". BackRotatedIm):
OD

Listing 7.3: Pseudo code for the ConvRot algorithm.

7.4.1 Sequential Implementations

The anisotropic Gaussian filtering problem can be implemented sequentially in many
different ways. In the remainder of this section we will consider three possible ap-
proaches. First, for each orientation # it is possible to create a new filter based on o,
and o,. In effect, this yields a rotation of the filters, while the orientation of the in-
put image remains fixed. Hence. a sequential implementation based on this approach
(which we refer to as Conv2D) implies full 2-dimensional convolution for each filter.

The second approach (referred to as ConvUV') is to decompose the anisotropic
Gaussian filter along the perpendicular axes u,v, and use bilinear interpolation to
approximate the image intensity at the filter coordinates. Although comparable to
the Conv2D approach, ConvUYV is expected to be faster due to a reduced number
of accesses to the image pixels. A third possibility (called ConvRot) is to keep the
orientation of the filters fixed, and to rotate the input image instead. The filtering
now proceeds in a two-stage separable Gaussian, applied along the z- and y-direction.

Pseudo code for the ConvRot algorithm is given in Listing 7.3. The program
starts by rotating the original input image for a given orientation 6. In addition, for
all (0,.0,) combinations the filtering is performed by ry-separable Gaussian filters.

FOR all orientations § DO
FOR all smoothing scales o,, DO
FOR all differentiation scales o, DO

FiltIml = GenConvOp(Originallm, "func”, ov, 0. , 2, 0):
FiltIm2 = GenConvOp(Originallm, "func”, o., 0, , 0, 0);
ContrastIm = BinPixOp(FiltIm1, "absdiv”. Filtlm2):
Contrastlm = BinPixOp(ContrastIm, "mul”, oy X 04 );
ResultIm = BinPixOp(ResultIm, "max", ContrastIm);

Listing 7.4: Pseudo code for the Conv2D and ConvUYV algorithms, with "func"
etther "gauss2D" or "gaussUV".
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For each orientation step the maximum response is combined in a single contrast
image structure. Finally, the temporary contrast image is rotated back to match the
orientation of the input image, and the maximum response image is obtained.

For the Conv2D and ConvUYV algorithms, the pseudo code is identical and
given in Listing 7.4. Filtering is performed in the inner loop by either a full two-
dimensional convolution (Conv2D) or by a separable filter in the principle axes
directions (ConvUYV'). On a state-of-the-art sequential machine either program may
take from a few minutes up to several hours to complete, depending on the size of the
input image and the extent of the chosen parameter subspace. Consequently, for the
directional filtering problem parallel execution is highly desired.

7.4.2 Parallel Execution

Automatic optimization of the ConvRot program has resulted in an optimal schedule,
as described in more detail Section 4.5.2. In this schedule, the full OriginalIm struc-
ture is broadcast to all nodes before each calculates its respective partial RotatedIm
structure. This broadcast needs to be performed only once, as Originallm is not
updated in any operation. Subsequently, all operations in the innermost loop are
executed locally on partial image data structures. The only need for communication
is in the exchange of image borders in the two Gaussian convolution operations.

The two final operations in the outermost loop are executed in a data parallel
manner as well. As this requires the distributed image ContrastIm to be available in
full at each node (see Section 4.5.2), a gather-to-all operation is performed. Finally, a
partial maximum response image ResultIm is calculated on each node, which requires
a final gather operation to be executed just before termination of the program.

The schedule generated for either the Conv2D program or the ConvUV pro-
gram is straightforward, and similar to that of the template matching application of
Section 7.2. First, the OriginalIm structure is scattered such that each node obtains
an equal-sized non-overlapping slice of the image’s domain. Next, all operations are
performed in parallel, with a border exchange required in the convolution operations.
Finally, before termination of the program ResultIm is gathered to a single node.

7.4.3 Performance Evaluation

From the description above it is clear that the ConvRot algorithm is most difficult
to parallelize efficiently. Note that this is due to the data dependencies present in
the algorithm (i.e., the repeated image rotations), and not in any way related to the
capabilities of our software architecture. In other words, even when implemented
by hand the ConvRot algorithm is expected to have speedup characteristics that
are not as good as those of the other two algorithms. Furthermore, Conv2D is
expected to be the slowest sequential implementation, due to the excessive accessing
of image pixels in the 2-dimensional convolution operations. In general, ConvUV
and ConvRot will be competing for the best sequential performance, depending on
the amount of filtering performed for each orientation.
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ConvRot | Conv2D | ConvUV
# CPUs (s) (s) (s)
1 666.720 2085.985 437.641
2 337.877 1046.115 220.532
4 176.194 525.856 113.526
8 97.162 264.051 56.774
16 56.320 132.872 28.966
32 36.497 67.524 14.494
48 31.399 45.849 10.631
64 21745 35.415 8.147
80 27.950 29.234 7.310
96 27.449 24.741 5.697
112 26.284 21.046 5.014
120 25.837 20.017 4813
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Figure 7.9: (a) Performance and (b) speedup characteristics for computing a typical
orientation scale-space at 5° angular resolution (i.e., 36 orientations) and 8 (0y,0)
combinations. Scales computed are o, € {3,5,7} and o, € {1,2,3}, ignoring the
isotropic case 0., = {3,3}. Image size is 512x 512 (4-byte) pizels.

Figure 7.9 shows that these expectations are indeed correct. On one processor
ConvUYV is about 1.5 times faster than ConvRot, and about 4.8 times faster than
Conv2D. For 120 nodes these factors have become 5.4 and 4.1 respectively. Because
of the relatively poor speedup characteristics, ConvRot even becomes slower than
Conv2D when the number of nodes becomes large. Although Conv2D has better
speedup characteristics, the ConvUV implementation always is fastest, either se-
quentially or in parallel. Figure 7.10 presents similar results for a minimal parameter
subspace, thus indicating a lower bound on the obtainable speedup.
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ConvRot | Conv2D | ConvUV
# CPUs (s) (s) (s)
1 110.127 325.259 56.229
2 56.993 162.913 28.512
4 30.783 82.092 14.623
8 17.969 41318 7.510
16 11.874 20.842 3.809
32 9.102 10.660 2,071
48 8.617 7.323 1.578
64 8.222 5.589 1.250
80 8.487 4922 1.076
96 8.729 4.567 0.938
112 8.551 4.096 0.863
120 8.391 3.836 0.844
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Figure 7.10: (a) Performance and (b) speedup characteristics for computing a minimal
orientation scale-space at 15° angular resolution (i.e., 12 orientations) and 2 (0,0, )
combinations. Scales computed are o, = {1,3} and oy, = {3,7}.

The generated schedules for both the Conv2D program and the ConvUYV pro-
gram are identical to what an expert would have implemented by hand. Speedup
values obtained on 120 nodes for a typical parameter subspace (Figure 7.9) are 104.2
and 90.9 for Conv2D and ConvUYV respectively. As a result we can conclude that
our software architecture behaves well for these implementations. In contrast, the
usage of algorithmic patterns (see Chapter 3) has caused the sequential implemen-
tation of image rotation to be non-optimal for certain special cases. As an example,
rotation over 90° can be implemented much more efficiently than rotation over any
arbitrary angle. In our architecture we have decided not to do so, mainly for reasons




130 Chapter 7. Efficient Applications in User Transparent Parallel Image Processing

of software maintainability (see Chapter 2). As a result, we expect a hand-coded and
hand-optimized version of the same algorithm to be faster, but only marginally so.

7.5 Conclusions and Future Work

In this chapter we have given an assessment of the effectiveness of our software archi-
tecture in providing significant performance gains. To this end, we have described the
sequential implementation. as well as the automatic parallelization, of three different
example applications. The applications are relevant for this evaluation, as all are well-
known from the literature, and all contain many fundamental operations required in
many other image processing research areas as well.

The results presented in this chapter have shown our software architecture to serve
well in obtaining highly efficient parallel applications. Moreover. in almost all situa-
tions handcrafted code would not have produced significantly better results. As such.
we have shown that our architecture adheres to requirement 1.2 put forward in Sec-
tion 2.3 - - which states that the obtained efficiency generally should compare well to
that of reasonable hand-coded parallel implementations. As indicated in Section 7.4.3,
however, for certain specific operations we have decided that code maintainability is
more important than highest performance. Consequently, in comparison with optimal
handcrafted parallel code. any application that makes extensive use of such operations
may suffer from reduced efficiency (but often only marginally so).

As an important note we should state that, although all parallelism is hidden inside
the architecture itself, much of the efficiency of parallel execution is still in the hands
of the application programmer. As we have shown in Section 7.4.3, if a sequential im-
plementation is provided that requires costly communication steps when executed in
parallel, program efficiency may be disappointing. Thus, for highest performance the
application programmer still should be aware of the fact that usage of such operations
is expensive, and should be avoided whenever possible. Any programmer knows that
this requirement is not new, however, as a similar requirement holds for sequential
execution as well. In other words, this is not a drawback that results from any of
the design choices incorporated in our software architecture. The problem can not be
avoided, as it stems directly from the fact that all parallelization and optimization
issues are shielded from the application programmer entirely.

In conclusion: although we are aware of the fact that a much more extensive evalu-
ation is required to obtain more insight in the specific strengths and weaknesses of our
architecture, the presented results clearly indicate that our architecture constitutes
a powerful and user-friendly tool for obtaining high performance in many important
image processing research areas. For future evaluation, we will continue implementing
example applications to investigate the implication of parallelization of typical image
processing problems, especially in the area of real-time image processing.




Chapter 8

Summary and Discussion

"From a word to a word I was led to a word,
From a deed to another deed.”

Excerpt from The Poetic Edda (Iceland, ca. 1280)

8.1 Summary

To satisfy the performance requirements of current and future applications in image-,
video-, and multimedia processing, the image processing community at large exhibits
an overwhelming desire to employ the speed potential of high performance computer
architectures. Unfortunately, there is a major discrepancy between the need for easily
obtainable speed in imaging, and the potential of current high performance computers
to fulfill this need. Primarily, we ascribe this problem to the fact that no programming
tool is available that serves as an effective aid in the development of image processing
applications for parallel and distributed systems. Existing tools generally require the
user to have a thorough insight in the complexities of parallelization, often at a level
of detail far beyond that of non-dedicated parallel programmers. As it is unrealistic to
expect researchers in imaging to become experts in high performance computing, it is
essential to provide a tool that shields its users from all intricacies of parallelization.

The work described in this thesis is an endeavor to bridge the gap between the ex-
pertise of researchers in image processing, and the particular skills required for efficient
employment of high performance hardware architectures. To this end, we describe
the design and implementation of an innovative software architecture that allows its
users to develop parallel image processing applications in a user transparent (i.e., fully
sequential) manner. We explore the requirements such architecture must adhere to
for it to serve as a long-term solution for the image processing community. Also, we
provide a detailed discussion of each of the architecture’s constituent components, and
the research issues associated with each of these. Finally, we evaluate the provided
performance gains, to see how these compare to reasonable hand-coded applications.
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In Chapter 2. we investigate the applicability of existing high performance hard-
ware architectures and associated parallelization tools in the field of image process-
ing. Based on a set of requirements we conclude that homogeneous Beowulf-type
commodity clusters constitute the most appropriate class of target platforms - — most
importantly due to the emphasis on price-performance. The evaluation of associated
software tools shows library-based environments to offer a solution that is most likely
to be acceptable to the image processing community. Primarily. this is because these
are most easily provided with a programming model that offers full user transparency.
However. due to insufficient sustainability levels. no user transparent tool is found to
provide an acceptable long-term solution. Based on these observations we propose a
new library-based software architecture for parallel ilage processing on homogeneous
Beowulf-type commodity clusters. Due to its innovative design and implementation
the architecture fully adheres to the requirements of user transparency and long term
sustainability. Consequently. the architecture constitutes a solution that is likely to
be acceptable as a long-term solution for the image processing community at large.

In Chapter 3, we present the design philosophy behind the parallel image pro-
cessing library, which is the core component of the developed software architecture.
Primarily, we focus on the problem of implementing the library such that code redun-
dancy is avoided as much as possible. whilst ensuring efficiency of parallel execution.
To this end, we introduce the notion of parallelizable patterns. and discuss how paral-
lel implementations are easily obtained by sequential concatenation of operations that
are separately available in the library. More specifically. on the basis of a set of four
data access pattern types, we define a default parallelization strategy for any operation
that maps onto one of two parallelizable pattern types. For each parallel operation
this default strategy is optimal, as it fully exploits the available parallelism with min-
imal communication overhead. As such, we demonstrate that the presented design
philosophy allows for long-term architecture sustainability, as well as high efliciency.

In Chapter 4, we indicate how to apply a simple analytical performance model
in the process of automatic parallelization and optimization of complete image pro-
cessing applications. Existing approaches generally incorporate a direct relationship
between the estimation accuracy and the model’'s complexity (and thus: efliciency of
evaluation). To deal with this problem. we propose a semi-empirical modeling tech-
nique. While being simple and portable. the approach also provides a sufficiently high
estimation accuracy. The approach is based on a high level abstract parallel image
processing machine (or APIPM) definition, which is designed to capture typical run
time behavior of parallel low level image operations. From the related APIPM in-
struction set, a high level model is obtained that is applicable to all machines in the
class of target platforms. The essence of the semi-empirical modeling approach is that
any behavior or cost factor that can not be assumed identical for all target platforms
(such as interprocess communication. or caching) is abstracted from in the definition
of the model parameters. To still bind each abstract model parameter to an accurate
performance estimation for a parallel machine at hand, benchmarking is performed
on a small set of sample data to capture all such essential. but implicit cost factors.
A comparison of model estimations and experimental measurements indicates that,
for realistic applications, the APIPM-based performance models are highly accurate.
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Chapter 5 extends the APIPM-based performance models for more accurate esti-
mation of the MPI message passing primitives used in the library implementations.
Existing communication models (such as LogP) do not incorporate all capabilities of
MPT’s send and receive operations. So far, the (often significant) effect of memory
layout on communication costs has been ignored completely. In our software architec-
ture, a higher predictive power is essential to perform the important task of automatic
and optimal distribution of image data structures. To this end, we define a new model
(called P-3PC), that closely matches the behavior of MPI’s standard point-to-point
operations. First, the model accounts for differences in performance at the sender,
the receiver, and the full communication path. Also, it models the impact of memory
layout, and accounts for communication costs that are not linearly dependent on mes-
sage size. Experiments performed on two significantly different cluster architectures
indicate that, in comparison with related models, P-3PC is capable of more accurate
estimation of the communication overhead of typical image processing applications.

Chapter 6 discusses the automatic conversion of any sequential image processing
application into a legal, correct, and efficient parallel version. To this end, we define
a finite state machine (fsm) specification that guarantees the process to be performed
correctly at all times. First, the fsm is shown to bring about a surprisingly simple and
efficient approach (called lazy parallelization) for communication cost minimization.
For further optimization, the fsm is used in the construction of an application state
transition graph (ASTG), that characterizes an application’s run time behavior, and
also incorporates all possible (combinations of) parallelization and optimization de-
cisions. As each decision is annotated with a run time cost estimation obtained from
the APIPM-based performance models, the fastest version of the program is repre-
sented by the cheapest branch in the ASTG. As the issue of automatic optimization of
complete applications is the central, most essential problem our software architecture
for user transparent parallel image processing is confronted with, the applied solution
combines all of the results obtained in Chapters 3, 4, and 5.

In Chapter 7, we give an assessment of our architecture’s effectiveness in providing
significant performance gains. We describe the implementation and automatic par-
allelization of three well-known example applications that contain many operations
commonly applied in image processing research. From the evaluation, we conclude
that the performance obtained with the parallel versions generated by our software
architecture compares well to that of reasonable hand-coded parallel implementations.

8.2 Discussion

In this thesis we have aimed at the development of an effective programming tool
that provides sustainable support in the implementation of parallel image processing
software by non-experts in high-performance computing. We believe that we have
succeeded in that mission. In the very first place because the architecture shields the
user from all parallelization and optimization issues. As such, the architecture can
be used immediately, without requiring additional knowledge from the application
programmer. In the second place because the architecture allows its developers to




134 Summary and Discussion

respond to changing demands and environments quickly and elegantly. The applied
design philosophy has largely inherited this property from the sequential image library
(Horus) the architecture is based on (see Chapter 3). Finally, because the obtained
efficiency was shown to be comparable to that of reasonable hand-optimized code.
This implies that the parallelization overhead induced by the architecture is marginal.
For these reasons we conclude that the software architecture fully adheres to the
requirements of user transparency and sustainability as put forward in Section 2.3.1.

Despite this result, certain properties of the software architecture as described in
this thesis are not always desirable. A first problem is due to the extensive use of
abstractions incorporated in the architecture. As pointed out in Chapter 3, among
the advantages of the use of abstraction and (parallelizable) patterns are a huge re-
duction in human software engineering effort, and enhanced software maintainability,
extensibility, reusability, and portability. However. there is a trade-off between the
use of specific and abstract libraries in terms of (sequential) processing speed. Also,
abstract libraries may have a long compilation time and large footprints due to the
automatic expansion of function instantiations. One way to overcome these disad-
vantages is to build a tool that can automatically generate specific (even tailor-made)
image processing libraries from the existing abstract implementations.

A second issue that was not discussed in this thesis, is the question of how to deal
with enormous amounts of input data. Applications working on video-sequences, or
complete image databases, may suffer from a significant I/O performance bottleneck.
Therefore, it is essential to re-evaluate data I/O in our architecture, and to incorporate
optimizations accordingly. One solution may be to use data compression techniques
in software. However, research related to this issue may also lead to the conclusion
that hardware extensions (e.g., MPEG-encoders and -decoders) are essential.

A problem with any library-based environment is that it can never provide a com-
plete coverage of all desired functionality. As stated in Chapter 3, we estimate that
the algorithmic patterns available in our library cover over 90% of all low level imaging
operations. Additional patterns. such as for recursive neighborhood operations, and
quene-based algorithms are currently under construction. Other algorithms (a.o., data
dependent operation) may not map onto one of the standard patterns, and also may
not parallelize well, because of irregular data access. In spite of this, we do not expect
a large amount of patterns to be added still. as one can compute only a limited variety.

In conclusion: the work described in this thesis indicates that it is possible to
provide an effective long-term solution to a difficult problem, basically by incorporat-
ing a set of relevant high-level abstractions, and applying relatively simple methods
for resolution of each constituent sub-problem. We believe that a similar approach
could be applicable in other fields of research as well, especially in areas where the set
of typical operations is limited — as is the case in low level image processing. How-
ever, only time will tell whether our software architecture for user transparent parallel
image processing indeed is the effective long-term solution we consider it to be.
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Samenvatting”®

" Alle intellectuele beroepen bestaan uit het continu verrichten
van dingen die, apart genomen, heel eenvoudig zijn.”

Willem Frederik Hermans - Nooit Meer Slapen (1966)

Om te kunnen voldoen aan de specifieke prestatie-eisen van huidige en toekomstige
beeldverwerkingsapplicaties, toont de beeldverwerkingsgemeenschap een grote wens
de rekenkracht van parallelle en gedistribueerde computersystemen aan te wenden.
Helaas bestaat er vooralsnog een enorme discrepantie tussen de vraag naar eenvoudig
te verkrijgen rekenkracht, en de wijze waarop de aanwezige rekenkracht ook daad-
werkelijk wordt aangeboden. De kern van dit probleem bestaat eruit. dat voor beeld-
verwerkingsonderzoekers geen effectief en laagdrempelig hulpmiddel voor handen is
voor het ontwikkelen van parallelle applicaties. Bestaande hulpmiddelen vereisen van
de gebruiker een inzicht in de complexiteit van parallellisme dat verder gaat dan van
beginnende parallelle programmeurs verwacht mag worden. Omdat het niet reéel is
te eisen dat experts op het gebied van beeldverwerking tevens experts op het gebied
van parallel programmeren worden, is het noodzakelijk dat een hulpmiddel wordt
ontwikkeld dat gebruikers afschermt van alle parallellisatieproblematiek.

Het in dit proefschrift beschreven onderzoek poogt de kloof te dichten tussen de
specifieke expertise van beeldverwerkingsonderzoekers, en de additionele kennis die
vereist is voor het efficiént aanwenden van parallelle computers. Daartoe behandelt
het proefschrift het ontwerp en de implementatie van een softwarearchitectuur die
beeldverwerkingsonderzoekers in staat stelt parallelle applicaties te ontwikkelen op een
voor de gebruiker volledig transparante wijze (dat wil zeggen: volledig sequentieel).
Het proefschrift onderzoekt de specifieke eisen die aan een dergelijke architectuur
gesteld moeten worden, zodat het dienst kan docen als een voor beeldverwerkers accep-
tabele langetermijnoplossing. Daarnaast geeft het proefschrift een gedetailleerde ver-
handeling van de verschillende componenten van de ontwikkelde architectuur, alsmede
van de daaraan gerelateerde onderzoeksvragen. Eveneens geeft het proefschrift een
uitgebreide evaluatie van de door de architectuur geleverde snelheidswinsten, gecom-
bineerd met een vergelijking met handgeoptimaliseerde applicaties.

*Summary in Dutch




Hoofdstuk 2 onderzoekt de mate waarin bestaande hardwarearchitecturen, en
daaraan gerelateerde programmeerhulpmiddelen, geschikt zijn voor toepasssing in
beeldverwerkingsonderzoek. Aan de hand van een lijst van specifieke eisen wordt
geconcludeerd dat de klasse van Beowulf-clusters het meest geschikt is. voornamelijk
vanwege de positieve prijs-prestatieverhouding. De evaluatie van programmeerhulp-
middelen toont aan dat bibliotheckgebaseerde architecturen een oplossing bieden die
het meest aansluit bij de specifiecke wensen van de beeldverwerkingsgemeenschap.
Dit komt voornamelijk doordat dergelijke architecturen op een redelijk eenvoudige
wijze geleverd kunnen worden met een programmeermodel dat de gebruiker volledige
transparantie biedt. Echter. vanwege gebrekkige onderhoudbaarheid bestaat er op
dit moment geen architectuur die ook daadwerkelijk beschouwd kan worden als een
acceptabele langetermijnoplossing. Op basis van deze observaties wordt een nieuwe bi-
bliotheekgebaseerde architectuur voor parallel beeldverwerking geintroduceerd. Door
het innovatieve ontwerp voldoet de architectuur zowel aan de eis van onderhoud-
baarheid, als aan de eis van gebruikerstransparantie.

Hoofdstuk 3 beschrijft de ontwerpfilosofie van de bibliotheek, die de kern vormt
van de ontwikkelde architectuur. Centraal staat de vraag hoe de bibliotheek zodanig
geimplementeerd kan worden dat coderedundantie zoveel mogelijk wordt vermeden.
met behoud van efficiéntie. Daartoe wordt het begrip parallelliseerbare patronen
geintroduceerd, en getoond hoe parallelle implementaties eenvoudig verkregen kunnen
worden door concatenatie van operaties die alle apart aanwezig zijn in de bibliotheek.

Op basis van vier verschillende typen van gegevensbenadering wordt een standaard
parallellisatiestrategie gedefinieerd voor elke operatie die overeenkomt met een van
de parallelliseerbare patronen. De standaard parallellisatiestrategie is te allen tijde
optimaal, omdat het al het aanwezige parallellisme volledig benut met een minimum
aan communicatiekosten. De kenmerken van de gepresenteerde ontwerpfilosofie verze-
keren langetermijnonderhoudbaarheid van de architectuur, alsook efficiéntie.

Hoofdstuk 4 geeft aan hoe een eenvoudig analytisch prestatiemodel toegepast
wordt in het proces van automatische parallellisatie en optimalisatie van beeld-
verwerkingsapplicaties. Bestaande modellen bevatten in het algemeen een directe
complexiteit-nauwkeurigheidrelatie, en zijn daarom voor de gewenste accuratesse
niet efficiént genoeg. Om dit probleem het hoofd te bieden wordt een semi-empirische
modelleertechniek geintroduceerd, die naast eenvoud en overdraagbaarheid tevens vol-
doende nauwkeurigheid biedt voor de gegeven doelstelling. De techniek is gebaseerd
op de definitie van een abstracte machine (APIPM), die de typische gedragingen
van parallelle beeldverwerkingsoperaties beschrijft. Op basis van de gerelateerde
APIPM-instructieset wordt een prestatiemodel verkregen dat algemeen toepasbaar
is op Beowulf-clusters. De essentie van de modelleertechniek bestaat eruit, dat van
bepalende kostenfactoren die Beowulf-clusters niet alle gemeen hebben geabstraheerd
wordt in de definitie van de modelparameters. Om elke abstracte modelparameter
alsnog te verbinden met een prestatieschatting voor een concrete parallelle machine,
wordt een klein aantal tijdmetingen uitgevoerd die alle impliciete, doch essentiéle,
kostenfactoren ondervangen. Een vergelijking van gegenereerde schattingen met
experimentele resultaten toont de hoge nauwkeurigheid van de APIPM-gebaseerde
modellen voor realistische applicaties.
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Hoofdstuk 5 breidt de APIPM-gebaseerde modellen uit om nauwkeuriger schattin-
gen te verkrijgen voor de MPI-primitieven die in de bibliotheek worden toegepast.
Bestaande communicatiemodellen (zoals LogP) ondervangen niet alle mogelijke ge-
dragingen van de MPI-operaties. Tot nu toe is het (vaak zeer significante) effect
van de schikking van gegevens in het geheugen op de communicatiekosten volledig
genegeerd. In de ontwikkelde architectuur is een hogere nauwkeurigheid essentieel
om de automatische distributie van beeldgegevensstructuren optimaal uit te voeren.
Daarom wordt het nieuwe P-3PC-model geintroduceerd, dat het typische gedrag van
de MPI-primitieven juist representeert. Ten eerste ondervangt het de verschillen in
communicatiekosten voor de zender, de ontvanger, alsook het volledige communi-
catiepad. Daarnaast modelleert het het effect van geheugenschikking, en ondervangt
het kosten die niet-lineair afhankelijk zijn van de berichtgrootte. Experimenten die
zijn uitgevoerd op twee verschillende Beowulf-clusters tonen aan dat, in vergelijking
met gerelateerde modellen, P-3PC in staat is nauwkeuriger schattingen te leveren voor
de communicatiekosten zoals die bestaan in typische beeldverwerkingsapplicaties.

Hoofdstuk 6 behandelt de automatische conversie van elke sequentiéle beeld-
verwerkingsapplicatie naar een correcte en efficiénte parallelle versie. Daartoe wordt
een eindige automaat gedefinieerd, die garandeert dat dit proces te allen tijde cor-
rect wordt uitgevoerd. Ten eerste wordt aangetoond dat de automaat leidt tot een
opvallend eenvoudige methode voor minimalisatie van de communicatiekosten. Voor
verdere prestatieoptimalisaties wordt de automaat toegepast in de constructie van
een graaf, die alle mogelijke toestandsveranderingen en parallellisatiestrategieén van
een draaiende applicatie weergeeft. Omdat voor elke mogelijke strategie een APIPM-
gebaseerde kostenschatting voor handen is, wordt de snelste versie van een applicatie
weergegeven door het goedkoopste pad in de graaf. Vanwege het feit dat de automa-
tische optimalisatie van volledige applicaties het centrale, meest essentiéle, probleem
vormt waarmee de ontwikkelde softwarearchitectuur wordt geconfronteerd, combi-
neert de toegepaste oplossing alle resultaten zoals bereikt in de Hoofstukken 3, 4, en 5.

Hoofdstuk 7 geeft een inschatting van de effectiviteit van de softwarearchitectuur
in het behalen van significante prestatieverbeteringen. Daartoe wordt een beschrij-
ving gegeven van de sequentiéle implementatie en automatische parallellisatie van
drie voorbeeldapplicaties, die alle veelvoorkomende beeldverwerkingsoperaties bevat-
ten. Op basis van de evaluatie wordt geconcludeerd dat de snelheidswinsten die
behaald worden door de parallelle applicaties zoals gegenereerd door de ontwikkelde
softwarearchitectuur vergelijkbaar zijn met handgeoptimaliseerde implementaties.

Conclusie: de resultaten bereikt met de ontwikkelde softwarearchitectuur tonen
aan dat het mogelijk is een oplossing te ontwikkelen voor een ingewikkeld probleem,
voornamelijk door het combineren van relevante abstracties, en toepassing van relatief
eenvoudige methoden voor de oplossing van elk deelprobleem. Bijgevolg lijkt het er
sterk op dat een vergelijkbare strategie toepasbaar is op andere onderzoeksterreinen,
voornamelijk daar waar het aantal typische operaties gelimiteerd is — net zoals dat het
geval is in beeldverwerkingsonderzoek. Desalniettemin kan alleen de tijd leren of de
ontwikkelde softwarearchitectuur ook daadwerkelijk de door ons vermoedde effectieve
langetermijnoplossing zal zijn.
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