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Chapterr 1 

Introduction n 

"The"The fact that the pieces do fit together [...J is something 
youyou might miss from focussing too closely 

onon one aspect of science." 

Johnn Gribbin - Almost Everyone's Guide to Science (1998) 

Throughoutt history, mankind has had an ever growing desire for increased efficiency. 
Irrespectivee of the origin of the desire, its manifestations are manifold. For example, 
thee desire to efficiently disseminate ideas and information from a single source to a 
largee and far-ranging audience, directly led to Gutenberg's invention of the printing 
press*.. In the Mid-Eighteenth Century, the desire for large-scale production resulted 
inn the application of power-driven machinery to manufacturing — and the Industrial 
Revolution.. More recently, the need for automated processing of scientific problems, 
andd the handling of large amounts of data, led to the advent of the Information Age. 

Oncee its raison d'etre is demonstrated, high-speed machinery is constantly being 
improvedd upon for ever increased efficiency. A good example is the development 
off  successive generations of trains. When the English inventor Richard Trevithick 
introducedd the steam locomotive on 21 February 1804 in Wales, it achieved a speed of 
88 km/h. In 1825, Englishman George Stephenson introduced the world's first workable 
passengerr train, which steamed along at 24 km/h. Today, the fastest passenger trains 
flyfly  down the tracks at a speed of approximately 550 km/h. 

Partt of the success of such technologies stems from the fact that successive perfor-
mancee improvements generally did not result in increased user requirements. At any 
time,, a passenger could get onto a train, sit down pleasantly, get some sleep, read a 
newspaper,, do some work, and get off at any station, without ever having to worry 
aboutabout the actual running of the train. If, in contrast, it would have been required 

*Forr reasons of completeness, the author would like to stress that in his city of birth {Haarlem. 
Thee Netherlands) many still consider Laurens Jansz. Coster to be the true inventor of printing [160]. 
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fromm anyone travelling the latest zenith in high-speed train design to have expert 
knowledgee regarding the train's locomotion, passenger numbers would have dropped 
dramatically.. Unfortunately, it is exactly this problem that can be observed with 
respectt to the latest developments in high performance computer systems. 

Ass stated, the Information Age has seen major breakthroughs in the automated 
processingg of scientific problems. Today, ever more complex problems are being stud-
iedd using ever faster, and more complex machines. Often, the required processing 
powerr is delivered only by arguably the most complex systems of all — i.e.. high 
performancee parallel computers in their myriad of forms. To effectively exploit the 
availablee processing power, a thorough understanding of the complexity of such sys-
temss is required. As an immediate consequence, the number of 'passengers' that is 
capablee of 'riding' such high performance parallel architectures is low. 

Despitee the complexity, many non-expert users are still tempted by the processing 
powerr provided by parallel systems — often to emerge with nothing but a disappoint-
ingg result. In [75] this problem is stated somewhat more dramatically as follows: 

Anecdotall  reports abound about researchers with scientific and engineer-
ingg problems who have tried to make use of parallel processing systems, 
andd who have been almost fatally frustrated in the attempt. 

Clearly,, there is a major discrepancy between the desire to obtain high performance 
withh relative ease, and the potential of current high performance systems (i.e., the 
combinationn of all software layers and the underlying hardware) to satisfy this desire. 

Ass indicated below, the specific research area of image processing — which is 
thee field of focus of this thesis also demonstrates a persistent desire to access the 
speedd potential of high performance computer systems. The desire partially stems 
fromm the fact that it has been recognized for years that the application of parallelism 
inn image processing can be highly beneficial [161]. However, in the field of image 
processingg research, the observed discrepancy between desire and reality is no less 
severe.. Essentially, the work described in this thesis is an endeavor to resolve this 
discrepancyy and to satisfy the need for easily obtainable speed in image processing. 

1.11 The Need for Speed in Image Processing 

Thee 'need for speed' has been recognized in many areas of digital image processing 
andd computer vision [151]. Applications abound in which large amounts of data are 
too be processed, while having to adhere to strict time constraints at the same time. 
Forr example, a typical visual information standard such as television may generate 
dataa at a rate of up to 120 Mbytes per second [130]. As each pixel in the information 
streamm generally is subjected to a multitude of processing steps, the total amount 
off  processing power required per time unit is huge. In many cases (e.g., when real-
timee requirements are to be met), state-of-the-art sequential computers no longer can 
providee the necessary performance. The only way to supply the desired processing 
powerr (now and in the future) is by employing high performance computer systems. 

AA considerable diversity exists in the type of algorithms applied in imaging appli-
cations.. Generally, a distinction is made between three different operation levels [118]: 
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1.. Low level image processing operations. These operations primarily work 
onn whole image data structures, and yield another image data structure. The 
computationss have a local nature, and are to be performed for each pixel in an 
image.. Examples are: basic filter operations (e.g., smoothing, edge enhance-
ment),, and image transformations (e.g., rotation, scaling). 

2.. Intermediat e level image processing operations. These operations re-
ducee the image data field into segments (regions of interest), and produce more 
compactt and symbolic image structure representations (such as lists of object 
borderr descriptions). Examples are: region labeling, and object tracking. 

3.. High level image processing operations. These operations primarily con-
cernn the interpretation of the symbolic data structures obtained from the in-
termediatee level operations. Essentially, the operations try to imitate human 
cognitionn and decision making, according to the information contained in the 
image.. Examples are: object recognition, and semantic scene interpretation. 

Thee execution of a set of low level routines is a common starting point for many 
typicall  image processing applications. In this thesis, we restrict ourselves to this 
initiall  processing phase. First, this is because the processing of visual data at the 
pixell  level is highly regular in nature, to the effect that it provides a natural source 
off  parallelism. More importantly, this is because the initial processing phase is by far 
thee most time consuming part of the bulk of image processing applications [165]. 

1.22 The Gap Between Computing and Imaging 

Inn spite of the large potential performance gains (and the overwhelming desire to 
obtainn them), the image processing community at large does not benefit from high 
performancee computing on a daily basis. As will be discussed extensively in this 
thesis,, the problem is primarily due to the fact that no programming tool is avail-
ablee that can effectively help non-expert parallel programmers in the development of 
imagee processing applications for efficient execution on high performance computing 
architectures.. Existing programming tools generally require the user to identify the 
availablee parallelism at a level of detail that is beyond the skills of non-expert parallel 
programmerss [148], As it is unrealistic to expect researchers in the field of image 
processingg to become experts in high performance computing as well, it is essential to 
providee a tool that shields its users from all intrinsic complexities of parallelization. 

Thee work described in this thesis is an attempt to effectively bridge the gap be-
tweenn the specific expertise of the image processing community, and the additional 
expertisee required for efficient employment of high performance computer architec-
tures.. More specifically, the thesis describes the design and implementation of a 
softwaresoftware architecture that allows non-expert parallel programmers to develop image 
processingg applications for execution on homogeneous distributed memory MIMD -
stylee multicomputers. As a result, this thesis addresses the following fundamental 
researchh issue: how to design a sustainable, yet efficient, software architecture for 
parallell  image processing, that provides the user with a fully sequential programming 
model,, and hides all parallelization and optimization issues from the user completely. 
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1.33 Thesis Outline 

Inn the past, several parallelization tools have been described that, to a certain ex-
tent,, serve as an aid to non-expert parallel programmers. As discussed extensively 
inn Chapter 2, such tools generally suffer from fundamental problems that make them 
unsuitablee as an acceptable long-term solution for the image processing community. 
Mostt importantly, the tools often are provided with a programming model that does 
nott match the image processing researcher's frame of reference. In addition, efficiency 
off  parallel execution is often far from optimal. Also, it is often hard to incorporate 
extensionss to deal with new hardware developments and additional user requirements. 
Too overcome these problems. Chapter 2 proposes a new and innovative software ar-
chitecturee for user transparent parallel image processing, that excludes its users from 
havingg to learn any skills related to parallelization and performance optimization. 

Inn Chapter 3. we give a detailed account of the software architecture's design phi-
losophy.. We focus on implementing the architecture such that code redundancy is 
avoidedd as much as possible, and efficiency of execution is guaranteed. We demon-
stratee that the presented design philosophy allows for long-term architecture sustain-
ability.. as well as close-to-optimal performance. 

Inn Chapter 4, we indicate how to apply a simple analytical performance model in 
thee process of automatic parallelization and optimization of complete image processing 
applications.. To this end, we present a high level abstract parallel image processing 
machinee (APIPM). designed to capture typical run-time behavior of parallel low level 
imagee operations. From its instruction set, a high level performance model is obtained 
thatt is applicable to a relevant class of parallel platforms. 

Chapterr 5 addresses the problem of accurate cost estimation of the communication 
primitivess applied in our software architecture. It is observed that existing communi-
cationn models are not powerful enough to serve as a basis for automatic and optimal 
domainn decomposition of the image data structures applied in typical applications. 
Too overcome this problem, the specific capabilities of the applied communication 
primitivess are combined into a new. more powerful performance model (P-3PC). 

Chapterr 6 deals with the problem of the automatic conversion of any sequential 
imagee processing application into a correct and efficient parallel version. To this end. 
wee define a simple finite state machine specification that guarantees the conversion 
processs to be performed correctly at all times. As the issue of automatic optimization 
off  complete applications is the central problem our software architecture for user 
transparentt parallel image processing is confronted with. Chapter 6 combines all of 
thee results obtained in Chapters 3, 4, and 5. 

Inn Chapter 7. we give an assessment of the software architecture's effectiveness 
inn providing significant performance gains. We describe the implementation and au-
tomaticc parallelization of three well-known example applications that contain many 
operationss commonly applied in image processing. In addition, we investigate how 
welll  the performance obtained with our software architecture compares to that of 
reasonablee hand-coded implementations. 

Finally,, in Chapter 8 we summarize the results of this research, and present our 
vieww on the developed architecture for user transparent parallel image processing. 



Chapterr 2 

AA Sequential Programming 
Modell  for Efficient Parallel 
Imagee Processing* 

"O"O Freunde, nicht diese Tone! 
SondernSondern lafit uns angenehmere anstimmen... " 

Ludwigg van Beethoven - Symphony No. 9 "Choral" (1824) 

Parallell  and distributed computing architectures, whose performance far exceeds 
thatt of traditional sequential systems, have been available for decades. As an exam-
ple,, the development of the Illiac IV [12], a machine commonly seen as the first true 
parallell  system, started as early as 1965. In recent years, high performance computing 
systemss have become more and more widespread, especially with the advent of highly 
flexiblee Field-Programmable Gate Arrays (FPGAs [18, 24, 66]) and relatively cheap 
Beowulff  clusters [7, 157]. Also, specialized digital signal processing (DSP) devices 
andd dedicated hardware architectures have become widely available [48, 91, 127]. 

Ass discussed in Chapter 1, the processing power as provided by parallel and dis-
tributedd systems is essential for many image processing applications. Also, it has been 
recognizedd for years that the application of parallelism in imaging can be highly benefi-
ciall  [161]. As a result, collaboration between the research communities of high perfor-
mancee computing and imaging has been commonplace, and typically resulted in spe-
cializedd hardware configurations (e.g., see [47, 65, 88, 89, 107]) capable of efficiently ex-
ecutingg domain-specific routines [19, 32, 134]. Yet, in spite of the importance of these 
achievements,, the application of parallelism in imaging research is not widespread. 

*Thi ss chapter contains portions of our paper as appeared in Proceedings of the 15th International 
ConferenceConference on Pattern Recognition (ICPR 2000) [140]. An extended version of this chapter is to 
appearr in Concurrency and Computation: Practice and Experience [146]. 
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Primarily,, we ascribe the rather small user base of parallel computing within the 
imagee processing research community to the high threshold associated with the use of 
highh performance computing architectures. One determinative factor for the existence 
off  the threshold is the relatively high cost involved in using a specific parallel machine. 
Inn general, the image processing community can not afford to acquire and maintain 
suchh systems, and has to rely on hardware and support provided by the computing 
community.. More importantly, the threshold exists due to a common characteristic 
off  parallel and distributed systems, namely: they are much harder to program than 
sequentiall  computers. Although several attempts have been made to alleviate the 
problemm of software design for parallel and distributed systems, as of yet no solution 
iss available that has found widespread acceptance. 

Ass wil l be discussed extensively in this chapter, the latter problem is due to the 
factt that no efficient parallelization tool exists that is provided with a programming 
modell  that matches the entrance level of the average image processing practitioner. 
Mostt existing software development tools require the user to explicitly identify the 
availablee parallelism, often at a level of detail beyond the expertise and interest of 
mostt image processing researchers. Hence, it is essential to provide an alternative 
tooll  that offers a more 'familiar' programming model. 

Inn this chapter we argue that a parallelization tool for the image processing re-
searchh community is acceptable only if it hides all parallelism from the application 
programmer,, and produces highly efficient code in most situations. Stated differently, 
wee argue that a programming model is considered 'familiar' only, if it offers complete 
useruser transparent parallel image processing. 

Severall  solutions have been described in the literature that allow for user transpar-
entt implementation of high performance image processing applications. In all cases, 
solutionss are being provided in the form of an extensive software library containing 
parallell  versions of fundamental image processing operations. The solutions, however, 
alll  suffer from one of several obstacles for widespread acceptance. Most significantly, 
thee efficiency of parallel execution of complete applications often is far from optimal. 
Inn addition, the provided software library often does not incorporate a sufficiently high 
levell  of sustainability, thus dramatically reducing the chance on long term success. 

Givenn these observations, the primary research issue addressed in this chapter 
is:: How to provide the average image processing practitioner with a fully sequential 
programmingg model that allows for implementation of efficient parallel imaging ap-
plicationss such that the user is shielded from all issues related to parallelization and 
performancee optimization? The second research issue addressed here is the following: 
Howw to incorporate such sequential programming model in an efficient parallelization 
tooll  that allows its developers to respond to changing demands quickly and elegantly? 

Inn this chapter we propose a complete software architecture for user transparent 
parallell  image processing that is specifically designed to deal with these issues. We 
discusss the requirements put forward for such programming tool, and provide a gen-
erall  overview of the architecture's constituent components. Essentially, this overview 
servess as a roadmap for the remaining chapters of the thesis. 

Thiss chapter is organized as follows. Section 2.1 presents a list of requirements 
aa potential target hardware architecture should adhere to for it to be used in image 
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processingg research. Based on the requirements one particular class of platforms is 
indicatedd as being most appropriate. In Section 2.2 the notion of user transparency 
iss introduced, and used as a basis for an investigation of available tools for imple-
mentingg parallel imaging applications on the selected set of target platforms. As the 
investigationn shows that no existing development tool is truly satisfactory, our new 
softwaree architecture for user transparent parallel image processing is introduced in 
Sectionn 2.3. Concluding remarks are given in Section 2.4. 

2.11 High Performance Computing Architectures 

AA parallelization tool intended as a programming aid in imaging research is more likely 
too find widespread acceptance if it is targeted towards a machine that is favored by 
thee image processing research community. Implicitly (i.e., by ignoring inappropri-
atee architectures), the imaging community has defined several requirements for such 
machines.. These are formulated as follows: 

 Wide availability. To ensure that the imaging community at large can benefit 
fromm a parallelization tool, it is essential that the target platform is widely 
available.. Less popular or experimental architectures tend to suffer from a lack 
off  continuity, thus hindering the ever present desire for hardware upgrades. 

 Ease of accessibility. The target platform should be easily accessible to the 
imagee processing practitioner. This refers to the manner in which one logs on 
too the machine, how programs are to be compiled and run, and to the ease by 
whichh a set of processing elements is obtained. The last issue is particularly 
importantt where multiple users share a pool of processing elements. 

 Unrestricted programmability. The hardware platform should not restrict the 
applicationn programmer. It should be capable of executing the various opera-
tionss commonly used as a basis in image and video processing applications. 

 Ready upgradability. It is essential that the software developed for the target 
platformm should be executable after each upgrade to the next generation of the 
samee architecture. In other words, the desired continuity of the target platform 
requiress a high degree of backward compatibility. 

 High efficiency. The target platform should be capable of obtaining significant 
performancee gains, especially for the most common imaging operations. If no 
significantt improvements are to be expected, the process of accessing a parallel 
machine,, and implementing and optimizing code for it, would be useless. 

 Low cost. Even when significant speedups are to be expected, the financial bur-
denn of executing imaging software on the target platform should be kept to a 
minimum.. As high performance computing is not a goal in itself in imaging re-
search,, the amount of money that may be spent on computing resources is small 
comparedd to the amount of money that flows to more fundamental research. 
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Wee are aware of the fact that additional requirements may hold in other application 
areas.. Here, we deem such requirements to be either inherent to parallel systems in 
generall  (such as the desire for hardware scalability), or unimportant to most image 
processingg practitioners (such as the amount of control over the structure, processing 
elements,, operation, and evolution of a particular parallel system). Also, for specific 
imagee processing research directions additional requirements may be of significant im-
portance.. For example, in certain application areas strict limitations may be imposed 
onn the target platform's size, or the amount of power consumption. In this thesis, 
however,, we restrict ourselves to the list as presented here, as this represents the set 
off  general requirements that holds for most image processing research areas. 

Favoringg Beowulf-type Commodity Clusters 

Ass described in [33, 78. 146]. several machines in the classes of general purpose MISD-. 
SIMD-.. and MIMD-style parallel architectures (Flynn [49]) are potential candidates 
forr high speed execution of image processing applications. Also, many special purpose 
architecturess (e.g., ASICs [4, 98], FPGAs [24, 46], DSPs [47. 48]), as well as several 
enhancedd general purpose CPUs [42. 116. 121]. have been designed to obtain even 
higherr performance for specific image processing tasks [33]. 

Irrespectivee of the significance of these systems, one architecture type stands out 
ass particularly interesting for our purposes, i.e. the class of Beowulf-type commod-
ityity clusters [7, 157]. As one of the original designers of this type of architectures, 
Thomass Sterling, describes in a guest editorial on the clusters@top500 website [30]. 
Beowulf-typee systems are particularly important because '*i t is quite possible that 
byy the middle of this decade clusters in their myriad of forms will be the dominant 
high-endd computing architecture." Indeed, a strong trend in high performance com-
putingg is the growing use of commodity clusters, and many such systems are currently 
installedd at research institutes and in commercial environments around the world. 

Apartt from being widely available, clusters often are made easily accessible to 
researcherss from outside the computing community. Expected cooperation between 
multiplee research disciplines often is the determinative factor in obtaining funding 
forr such computer systems in the first place. In addition, the general-purpose nature 
off  the constituent, computing nodes fully adheres to the requirement of 'unrestricted 
programmability'.. In fact, the bulk of all image processing research is currently 
beingg performed on similar computing nodes traditionally employed in a stand-alone 
manner.. Also, a major advantage of the use of personal computers as constituent 
componentss is a long term continuity combined with 'ready upgradability'. 

Thee single characteristic that makes a cluster favorable over other systems, how-
ever,, is the emphasis on price-performance. As Sterling states in the same editorial: 
"forr many application types, commodity clusters wil l deliver better, by even orders 
off  magnitude in many cases, price-performance with respect to alternative systems". 
Fromm these properties, in combination with the fact that many references exist that 
showw significant performance gains for a multitude of different image processing ap-
plicationss (e.g., see [75, 79, 93, 159]), we conclude that clusters constitute the most 
appropriatee target platforms for our specific needs. 
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2.22 Software Development Tools 

Apartt from its design and capabilities, the (commercial) success of any computer 
architecturee significantly depends on the availability of tools simplifying software de-
velopment.. As an example, for many users it is often desirable to be able to de-
velopp programs in a high-level language such as C or C++. Unfortunately, and in 
contrastt with general-purpose sequential systems, for many of the hardware archi-
tecturess referred to in Section 2.1 available high-level language compilers often have 
greatt difficulties in generating assembly code that makes use of the machine's parallel 
capabilitiess effectively. As a result, for highest performance the programmer often 
mustt optimize the critical sections of a program by hand. 

Whereass assembly coding or hand-optimization may be reasonable for a small 
groupp of experts, most users prefer to dedicate their time to describing what a com-
puterr should do rather than how it should do it. Consequently, many programming 
toolss have been developed to alleviate the problem of low level software design for 
parallell  and distributed systems. In all cases such tools are provided with a program-
mingg model that abstracts from the idiosyncrasies of the underlying parallel hardware. 
Thee small user base of parallel computing in the imaging community indicates, how-
ever,, that no existing parallelization tool incorporates a level of abstraction that truly 
matchess the image processing researcher's frame of reference. 

Thee ideal solution would be to have a parallelization tool that abstracts from the 
underlyingg hardware completely, allowing users to develop optimally efficient paral-
lell  programs in a manner that requires no additional effort in comparison to writing 
purelyy sequential software. Unfortunately, no such parallelization tool currently exists 
andd due to the many intrinsic difficulties it is commonly believed that no such tool 
wil ll  be developed ever at all [17]. However, if the ideal of 'obtaining optimal efficiency 
withoutt effort' is relaxed somewhat, it may still be possible to develop a parallelization 
tooll  that constitutes an acceptable solution for the image processing research com-
munity.. The success of such a tool largely depends on the amount of effort requested 
fromm the application programmer and the level of efficiency obtained in return. 

Thee graph of Figure 2.1 depicts a general classification of parallelization tools 
basedd on the two dimensions of effort and efficiency. Here, the efficiency of a par-
allelizationn tool is loosely defined as the average ratio between the performance of 
anyy image processing application implemented using that particular tool and the per-
formancee of an optimal hand-coded version of the same application. Similarly, the 
requiredd effort refers to (1) the amount of initial learning needed to start using a 
givenn parallelization tool, (2) the additional expense that goes into obtaining a par-
allell  program that is correct, and (3) the amount of work required for obtaining a 
parallell  program that is particularly efficient. In the graph, the maximum amount 
off  effort the average image processing practitioner generally is willin g to invest into 
thee implementation of efficient parallel applications is represented by THRESHOLD 1. 
Thee minimum level of efficiency a user generally expects as a return on investment is 
depictedd by THRESHOLD 2. To indicate that the two thresholds are not defined strictly, 
andd may differ between groups of researchers, both are represented by somewhat fuzzy 
barss in the graph of Figure 2.1. 
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Figuree 2.1: Parallelization tools: effort versus efficiency. User transparent tools are 
consideredconsidered both user friendly and sufficiently efficient. 

Inn this thesis, each tool that is considered both 'user friendly' and 'sufficiently effi-
cient'' is referred to as a tool that offers full user transparent parallel image processing. 
Apartt from adhering to certain levels of requested effort and obtained efficiency, an 
importantt additional feature of any user transparent tool is that it does not require 
thee user to fine-tune any application in order to obtain particularly efficient parallel 
codee (although the tool may still allow the user to do so). Based on the above consid-
erations,, we conclude that a parallelization tool constitutes an acceptable solution for 
thethe image processing community only, if it can be considered fully user transparent. 

Onee may argue that the thresholds in Figure 2.1 are not straight lines in each of 
thee two dimensions, but are better combined in a single diagonal (or curved) line. 
Thiss would be reasonable, as for a small amount of obtained efficiency the user is 
probablyy not prepared to invest as much effort as for a much higher level of efficiency. 
Thee presented classification is still valid, however, as we argue that it should not be 
requiredrequired from the user to invest any additional effort to obtain higher efficiency. 

2.2.11 General Purpose Parallelization Tools 

Thee following gives an overview of the most significant development tools that (a.o.) 
cann be used for implementing image processing applications on clusters. For each 
tooll  we discuss the level of abstraction incorporated in the programming model, and 
assesss to what extent it adheres to the properties of full user transparency. The 
discussionn starts with an overview of general-purpose parallelization tools, and is 
followedd by an overview of tools designed specifically for developing high performance 
imagee processing applications. 
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Messagee Passing Libraries 

Goodd examples of tools from the set of efficient programming aids for experts in 
parallell  computing are the many software libraries providing message passing func-
tionalityy [6]. Message passing is a programming paradigm based on the concept of 
processess that explicitly communicate data. It is mainly intended for programming 
distributedd memory MIMD-style multicomputers, but the paradigm applies to shared 
memoryy machines as well. Many efficient and portable message passing systems have 
beenn described in the literature [102], but the sets of library routines provided by PVM 
(Parallell  Virtual Machine [53]) and MPI (Message Passing Interface [61, 104, 105]) 
havee become the most widely used [54, 67]. 

Parallell  programming on the basis of message passing requires the programmer 
too personally manage the distribution and exchange of data, and to explicitly specify 
thee parallel execution of code on different processors. Although this approach often 
producess highly efficient parallel programs, even for expert programmers it is difficult 
too do correctly [29]. This is due to the fact that message passing tools do not provide 
explicitt support for the design and implementation of parallel data structures. Also, 
deadlockss are introduced easily, and debugging is hard under critical dependencies 
inn the relative timing of events. Due to these problems, message passing is often 
referredd to as the " assembly language of parallel computing", since it offers " a means 
forr expressing parallel computation in an often painstaking, low-level, error-prone 
manner""  [23]. Given these observations, we conclude that message passing is not the 
programmingg paradigm of choice for the average image processing researcher. 

Sharedd Memory Specifications 

Ass message passing was intended for client /server applications running across a net-
work,, PVM and MPI include costly semantics (e.g., the assumption of wholly separate 
memories)) that are often not required on parallel systems with a globally addressable 
memory.. To provide a simpler, yet efficient, and portable approach to implementing 
parallell  programs, several shared memory specifications have been proposed, such 
ass CRL [76] and Midway [15]. OpenMP [25, 119], which consists of a set of com-
pilerr directives, library routines, and environment variables to specify shared memory 
parallelismm in Fortran and C/C++ programs, is the most commonly used. 

Althoughh a cluster does not fit in the class of shared-memory architectures, it 
iss still relevant to include shared memory specifications in this evaluation. This is 
becausee shared memory specifications can be implemented on top of MPI, albeit 
att the cost of higher latencies [41]. Also, the provided programming paradigm is 
generallyy believed to be much simpler than MPI [57, 113], 

Onee of the major advantages of shared memory specifications is that it is easy to 
incrementallyy parallelize sequential code. For non-expert programmers, however, it is 
stilll  difficult to write efficient and scalable programs. In addition, the presence of both 
sharedd and private variables often causes confusion. As a result, the amount of effort 
requestedd from the average user still exceeds THRESHOLD 1 in Figure 2.1. Therefore 
wee conclude that shared memory specifications fall in the set of 'efficient expert tools' 
ass well, and do not adhere to the requirements of full user transparency. 
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Extendedd High-Level Languages 

Ann alternative to the library approach as followed by MPI and OpenMP is to provide 
aa small set of modifications and/or extensions to an existing high-level programming 
language.. Probably the most popular example of a language that has adopted this 
approachh is HPF (High Performance Fortran [97]). A similar approach is followed 
inn SPAR [128, 129], which is one of the many extended, parallel versions of Java. 
Also,, many alternative extensions and modifications to C++ exist [171], of which 
Compositionall  C++ [26] and Mentat [60] are the most significant examples. 

Irrespectivee of language design and compilation issues, for users of such languages 
thee most important problem is that it is often required to understand in what situa-
tionss the compiler can produce efficient executable code. For example, HPF requires 
thatt the distribution of data is specified separately from the routines operating on 
thatt data. Consequently, a mismatch between data distribution and functionality is 
easilyy introduced, possibly resulting in reduced performance due to huge amounts 
off  unnecessary communication. As state-of-the-art compilers are not capable of de-
tectingg all such non-optimal behavior automatically [8, 17], much of the efficiency of 
parallell  execution is still in the hands of the application programmer. As a result, the 
amountt of effort a non-expert user must invest into writing efficient parallel codes in 
ann extended high-level language also exceeds THRESHOLD 1 in Figure 2.1. 

Parallell  Languages 

Ratherr than extending an existing sequential language, it is also possible to design 
ann entirely new parallel programming language from scratch. Considering parallelism 
directlyy in the design phase of a concurrent language offers a better chance of obtain-
ingg a clean and unified parallel programming model. Also, this approach facilitates 
implementationn of efficient compiler optimizations, and the development of effective 
debuggingg tools. For these reasons, many parallel languages have been described in 
thee literature (e.g., Ada [13], Occam [77], Orca [8, 137, 138], and Parlog [58]). 

Despitee years of intensive research, no parallel language has truly found widespread 
acceptance,, either in the imaging community or elsewhere. One reason is that it 
appearss to be difficult to design language features that are both generally applicable 
andd easy to use [120]. A more important reason is that most scientific programmers 
aree reluctant to learn an entirely new program development philosophy, or unfamiliar 
languagee constructs. As the parallelism in a parallel language is always explicit, and 
fine-tuningg is often an inherent part of the program development process, we conclude 
thatt the amount of effort required from the average user generally is too high. 

Full yy Automati c Parallelizing Compilers and Parallelizing Pre-Compilers 

Ass opposed to the parallelization tools discussed so far, an efficient automatic par-
allelizingallelizing compiler would constitute an ideal solution. It would allow programmers 
too develop parallel software by using a sequential high-level language without having 
too learn additional parallel constructs or compiler directives [10]. However, a funda-
mentall  problem is that many user-defined algorithms contain data dependencies that 
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preventt efficient parallelization. This problem is particularly severe for languages 
supportingg pointers [2]. In addition, techniques for automatic dependency analysis 
andd algorithm transformation are still in their infancy. Although interesting solutions 
havee been reported that require the user to be conservative in application development 
(e.g.,, to allow efficient parallelization of loop constructs [52]), fully automatic paral-
lelizingg compilers that can produce efficient parallel code for any type of application 
doo not exist — and a real breakthrough is not expected in the near future [17]. 

Ass an alternative, effort is currently being put into semi-automatic tools (such 
ass FORGE [5]) that require the programmer to help the compiler interactively in 
thee parallelization process. Although, in principle, this approach could allow user 
transparentt implementation of parallel imaging applications, it can not be considered 
ann acceptable solution. This is because the approach does not eliminate the burden of 
specifyingg the available parallelism; it merely pushes the problem forward to a later 
stagee in the program development process. 

2.2.22 Tools for Parallel Image Processing 

Thee regular evaluation patterns in many low level image processing operations often 
makee it easy to determine how to parallelize such routines efficiently. Also, because 
manyy different image operations incorporate similar data access patterns, a small 
numberr of alternative parallelization strategies often need to be considered. These 
observationss have led to the creation of software development tools that are specifically 
tailoredd to image processing applications. Such tools may provide higher abstraction 
levelss to the user than general-purpose tools, and are potentially much more efficient 
ass important domain-specific assumptions often can be incorporated. 

Programmingg Languages for  Parallel Image Processing 

Onee approach to integrating domain-specific knowledge is to design a programming 
languagee for parallel image processing specifically. Apply [64, 164] was one of the first 
attemptss in this direction. It is a simple, architecture-independent language restricted 
too local image operations, such as edge detection, smoothing, and point operations. 
Itt is based on the observation that many operations follow a stereotypical form: 

forr each row 
forr each column 

producee an output pixel based on a window of pixels around 
thee current row and column in the input image 

Applyy exploits this idea by requiring the programmer to write only the innermost 
'perr pixel' portion of the computation. The iteration is then implicit and can easily 
bee made parallel. Apply's restricted programming model allows easy implementation 
off  quite an extensive set of operations. The programmer simply has to describe the 
programm in terms of the smallest meaningful unit — namely, a window taken around 
aa pixel in an image. Because a program is specified in this way, the compiler needs 
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onlyy to divide the images among processors and then iterate the Apply program over 
thee image sections allocated to each processor. Despite the fact that the language 
wass capable of providing significant speedups for many applications, the programming 
modell  proved to be too restricted for practical use. 

Inn a different language, called Adapt [165]. the basic principles of Apply are ex-
tendedd to incorporate global operations as well. In such operations an output pixel 
cann depend on many or all pixels in the input image. Adapt is based on the split-
and-mergee programming model, in which data structures are split according to data 
position,, and separately computed adjacent results are then merged. The program-
merr has to describe both the operation to be performed at every pixel of the image 
(ass in Apply), as well as a combining operation to merge two results produced in-
dependentlyy at different processors. Although the language certainly allows for an 
efficientt parallel implementation of many important image processing applications. 
thee programming model is not ideal. This is because the programmer is personally 
responsiblee for data partitioning and merging, albeit at quite a high level. For this 
reasonn we categorize Apply as an 'efficient expert parallelization tool" as well. Yet. it 
mayy constitute an acceptable solution for quite a large group of users. 

Ann alternative approach is taken in a language called IAL (Image Algebra Lan-
guagee [35. 37]). IAL is based on the abstractions of Image Algebra [131], a mathe-
maticall  notation for specifying image processing algorithms. IAL provides operations 
att the complete image level, with no access to individual pixels. For example, the 
Sobell  edge detector is implemented in IAL as a single statement: 

Outputlmm := Cabs (InputIm (£• S^) + abs(InputIm 0 Sv)) >= threshold; 

wheree Sh and Sv are the horizontal and vertical Sobel masks, and © represents con­
volution.. The language proved to be useful for a wide range of tasks, but was limited 
inn its expressive power. Two extended versions of IAL, I-BOL [20] and Tulip [155] 
providee a more flexible and more powerful notation. The languages permit access to 
dataa at either the pixel level or at the neighborhood level, without being architecture-
specific.. Although the languages hide all parallelism from the user, a major disadvan­
tagee is that it proved to be difficult to incorporate a global application optimization 
schemee to ensure efficiency of complete programs at all times. Another disadvantage 
iss that the syntax of the languages differs quite somewhat from C and C++ — arguably 
thee most popular languages applied in the image processing community. 

Parallell  Image Processing Librarie s 

Ann alternative to the language approach is to provide an extensive set of parallel image 
processingg operations in library form — possibly as part of a complete framework that 
dealss with additional issues, such as global application optimization. In principle, 
thiss approach allows the programmer to write applications in a familiar sequential 
language,, and make use of the abstractions as provided by the library. Due to the 
relativee ease of implementation, many parallel image processing libraries have been 
describedd in the literature, and here we will shortly discuss the most important ones. 
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Onee particularly interesting data parallel library implementation is described by 
Taniguchii  et al. [159]. This software platform is applicable to both SIMD- and MIMD -
stylee architectures, and incorporates a data structure abstraction known as DID, 
forr distributed image data. The DID-abstraction is intended as an image data type 
declaration,, without exposing the actual distribution of data. For example, a DID 
structuree for binary image data may be declared as: 

Image2D_Binaryy bimage(Horizontal, " p i c t l . j p g " ) ; 

too indicate that a binary image " p i c t l . j p g" is read into a horizontally distributed 
imagee data structure, which can be referred to through bimage. Although a DID 
declarationn is easy to understand for programmers unfamiliar to parallel computing, 
itt has the disadvantage of making the user responsible for the type of data distribution. 

Anotherr library-based approach applicable to both SIMD- and MIMD-style ar-
chitecturess is developed by Oik et al. [118]. The library provides a fully sequential 
interfacee to the user, and incorporates data parallel data structure abstractions such 
ass images, kernels, neighborhoods, queues, buckets, etcetera. The programmer ad-
dressess a data structure as a single entity, with no concern of the implementation and 
parallell  execution of an operation. However, to obtain efficient executables the user 
needss to implement in Compositional C++ [26] (see Section 2.2.1). Clearly, this is 
approachh is not ideal, as it still requires the programmer to personally identify part 
off  the available parallelism. 

Thee library-based environment described by Jamieson et al. [73, 74, 75, 168] also 
providess a fully sequential interface to the user. At the heart of the environment is 
aa set of algorithm libraries, along with abstract information about the performance 
characteristicss of each library routine. In addition, the environment contains a dy-
namicc scheduler for optimization of full applications, an interactive environment for 
developingg parallel algorithms, and a graph matcher for mapping algorithms onto 
parallell  hardware. Although this environment proved to be quite successful, its sus-
tainabilityy proved to be problematic. Partially, this is because it is required to provide 
multiplemultiple implementations for an algorithm, one for each target parallel machine. 

Onee data parallel environment that indeed can be considered fully user transparent 
iss developed by Lee et al. [93]. An interesting aspect of this work is that it incorporates 
simplee performance models to ensure efficiency of execution of complete applications. 
However,, the environment is too limited in functionality to constitute a true solution, 
ass it supports point operations and a small set of window operations only. Two 
similarr environments, presented in [79, 80, 81] and [86, 87] respectively, are much 
moree extensive in functionality. However, in both cases the performance models as 
designedd in relation with the library operations are not used as a basis for optimization 
off  complete programs, but serve as an indication to library users only. 

Ann interesting environment based on the abstractions of Image Algebra [131], 
thatt to a large extent adheres to the requirements of user transparency, is described 
inn [109]. It is targeted towards homogeneous MIMD-style multicomputers, and is 
implementedd in a combination of C++ and MPI. One of the important features of 
thiss environment is the so-called self-optimizing class library, which is extended au-
tomaticallyy with optimized parallel operations. During program execution, a syntax 
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graphh is constructed for each statement in the program, and evaluated only when an 
assignmentt operator is met. At first execution of a program, each syntax graph is tra-
versed,, and an instruction stream is generated and executed. In addition, any syntax 
graphh for combinations of primitive instructions (i.e., those incorporated as a single 
routinee within the library) is written out for later consideration by an off-line opti-
mizer.. On subsequent runs of the program a check is made to decide if an optimized 
routinee is available for a given sequence of library calls. An important drawback of 
thiss approach, however, is that it may guarantee optimal performance of sequences 
off  library routines, but not necessarily of complete programs. 

Thee MIRTIS system, described in [108], is the most efficiënt and extensive library-
basedd environment for user transparent parallel image processing designed to date. 
MIRTI SS is targeted towards homogeneous MIMD-style architectures, and provides 
operationss at the complete image level. Programs are parallelized automatically by 
partitioningg sequential data flows into computational blocks, to be decomposed in 
eitherr a spatial or a temporal manner. Issues related to data decomposition, commu-
nicationn routing, and scheduling are dealt with by using simple performance models. 
Inn the modeling of the execution time of a certain application. MIRTIS relies on em-
piricallyy gathered benchmarks. Although, from a programmer's perspective, MIRTIS 
constitutess an ideal solution, its implementation suffers from poor maintainability 
andd extensibility. Also, the provided MIRTIS implementation suffers from reduced 
portabilityy as the applied communication kernels are too architecture specific. 

Fromm this overview we conclude that, although several library-based user transpar-
entt systems exist, none of these is truly satisfactory. As indicated in the discussion, 
thiss is because it is not sufficient to offer user transparency as is. Issues relating to 
thee design and implementation of a parallelization tool, such as maintainability, ex-
tensibility,, and portability of the provided software library, play an important role as 
well.. A discussion of these issues follows in the remainder of this chapter. 

2.2.33 Discussion 

Inn Figure 2.2 we have positioned all classes of parallelization tools presented in this 
sectionn in a single effort-efficiency graph similar to that of Figure 2.1. The figure 
showss that the amount of effort required for using any type of general-purpose par-
allelizationn tool generally exceeds THRESHOLD 1 (the class of automatic parallelizing 
compilerss being the only exception). Also, the higher the efficiency provided by such 
general-purposee tool, the higher the amount of effort required from the application 
programmer.. Although the introduction of domain-specific knowledge reduces the 
requiredd amount of user effort, parallel image processing languages are generally still 
tooo specialized for widespread acceptance. From the two classes of tools that are 
consideredd 'user-friendly' by the image processing community (i.e., automatic paral-
lelizingg compilers and parallel image processing libraries), only a small subset of all 
library-basedd tools provides a sufficiently high level of efficiency as well. 

Despitee the fact that some of the library-based systems adhere to all requirements 
off  user transparency (especially those described by Lee et al. [93], Moore et al. [108], 
andd Morrow et al. [109]), none of these has found widespread acceptance. One may 
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Figuree 2.2: Generalized view of effort versus efficiency of existing parallelization tools. 
FromFrom the set of tools only a subset of all parallel image processing libraries can be 
consideredconsidered truly user transparent. 

arguee that this is due to the fact that they are still relatively new, and may need some 
moree time to make a significant impact on the imaging community. We feel, however, 
thatt the tools still do not constitute a solution that is acceptable on the long term. 

Ass we have discussed extensively in the previous sections, user transparency in 
itselff  is the decisive property that matches a tool's programming model to the image 
processingg researcher's frame of reference. In this respect, any tool that adheres to 
thee requirements of user transparency is acceptable in that it can always be used 
immediately,, without much effort from the application programmer. However, a par-
allelizationn tool is not a static product. It is essential for such tool to be able to deal 
withh new hardware developments and additional user requirements. If the design of 
aa parallelization tool makes it ever more difficult or even impossible for its developers 
too respond to changing demands quickly and elegantly, users will loose interest in the 
productt almost immediately. 

Iff  we refer back to the graph of Figure 2.1, perpendicular to the two dimensions of 
effortt and efficiency we can add a third axis that represents a tool's level of sustain-
ability.ability. This term incorporates all issues relating to the extensibility, maintainability, 
applicability,, and portability of a given parallelization tool, and indicates how easily 
aa tool can be adapted to changing demands and environments. As before, a critical 
thresholdd can be identified for the level of sustainability, below which no tool is ex-
pectedd to survive on the long term. We feel that none of the existing user transparent 
toolss incorporates an acceptable sustainability level as well. For this reason we have 
designedd a new parallelization tool that, apart from adhering to the requirements of 
fulll  user transparency, also offers a sufficiently high level of sustainability. 
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2.33 A Sustainable Software Architecture for User 
Transparentt Parallel Image Processing 

Thee discussion of the applicability of existing hardware and software architectures 
inn the field of image processing research has led to several important conclusions. 
First,, the most appropriate class of hardware architectures to be applied in image 
processingg research is that of Beowulf clusters — most importantly due to its emphasis 
onn price-performance. Second, software development tools based on a library of pre-
parallelizedd routines offer a solution that is most likely to be acceptable to the image 
processingg community — especially because it has shown to be possible to provide 
suchh tool with a programming model that offers full user transparency. Finally, no 
userr transparent tool currently exists that indeed provides an acceptable long term 
solution,, as none incorporates a sufficiently high level of sustainability. 

Inn this section we present an overview of our new library-based architecture for user 
transparentt parallel image processing on homogeneous clusters. Due to its innovative 
designn we expect the architecture to constitute an acceptable solution for the image 
processingg community on the long term. 

2.3.11 Architecture Requirements 

Wee argue that a library-based software architecture, which is to serve as a paralleliza-
tionn aid for the image processing research community, must adhere to the following 
listt of requirements: 

I.. User transparency. As discussed in Section 2.2, user transparency refers to a 
combinationn of 'user friendliness' and 'high efficiency'. For a library-based par-
allelizationn tool, this terminology translates to the following two requirements: 

1.. Availability of an extensive sequential API. To ensure that the parallel li-
braryy is of great value to the image processing community, it must contain 
ann extensive set of data types and associated operations commonly ap-
pliedd in image processing research. The application programming interface 
(API)) should disclose as littl e as possible information about the library's 
parallell  processing capabilities. Preferably, the API is made identical to 
thatt of an existing sequential image processing library. 

2.. Combined intra-operation efficiency and inter-operation efficiency. It is 
essentiall  for the software architecture to provide significant performance 
gainss for a wide range of image processing application types. For this rea-
sonn it is required to obtain a level of efficiency that generally compares well 
too that of 'reasonable' hand-coded parallel implementations. Efficiency, in 
thiss respect, refers to the execution of each library operation in isolation 
(intra-operation(intra-operation efficiency), as well as to the execution of multiple opera-
tionss applied in sequence (inter-operation efficiency). 
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II .. Long term sustainability. To ensure longevity, the design and implementation of 
thee software architecture must be such that extensions are easily dealt with. In 
thiss respect, long term sustainability refers to the following four requirements: 

3.. Architecture maintainability. To minimize the coding effort in case of chang-
ingg demands and environments, care must be taken in the architecture's de-
signn to avoid unnecessary code redundancy, to enhance operation reusabil-
ity.. In this respect, it is preferable to implement any set of operations with 
similarr behavior as a single generic routine, to be instantiated at will to 
obtainn the desired functionality. Also, to avoid implementing operations 
forr all data types generic implementations are preferred. 

4.. Architecture extensibility. As no library can contain all functionality ap-
pliedd in image processing research, it is required to allow the user to in-
sertt new operations. In case an additional operation maps onto a generic 
operationn present in the library, insertion should be straightforward, not 
requiringg any parallelization effort from the user. 

5.. Applicability to homogeneous Beowulf clusters. As we have identified clus-
terss as the most appropriate type of hardware architecture for image pro-
cessingg research (see Section 2.1), the complete software architecture must 
bee applicable to this type of machines. All general and distinctive prop-
ertiess of such machines can therefore explicitly be incorporated in the im-
plementationn of the software architecture. Optimized functionality for any 
otherr machine type should not be incorporated. 

6.. Architecture portability. To ensure portability to all target machines it is 
essentiall  to implement the software architecture in a high-level language 
suchh as C or C++. For any constituent component in a cluster a high qual-
ityy C or C++ compiler is generally available — and upgrades are released 
frequently.. Although the properties of Beowulfs can be incorporated in all 
implementations,, care should be taken not to incorporate any assumptions 
aboutt a specific interconnection network topology. 

2.3.22 Archi tecture Overview 

Thee complete software architecture consists of six components (see Figure 2.3). This 
sectionn presents a general overview of each of the components, and design choices are 
relatedd to the requirements of Section 2.3.1. 

Componentt  1: Parallel Image Processing Librar y 

Thee core of our software architecture consists of an extensive software library of data 
typess and associated operations commonly applied in image processing research. In 
accordancee with the first requirement of Section 2.3.1, the library's application pro-
grammingg interface is made identical to that of an existing sequential image process-
ingg library: Horus [84]. More specifically, rather than implementing a completely new 
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Figuree 2.3: Simplified architecture overview. 

libraryy from scratch, the parallel functionality is integrated with the Horus implemen-
tationn in such a manner that all existing sequential code remains intact. Apart from 
reducingg the required parallel implementation effort, this approach has the advantage 
thatt the important properties of the Horus library (i.e.. maintainability, extensibility, 
andd portability) to a large extent transfer to the parallel version of the library as well. 

Similarr to other libraries discussed in Section 2.2.2. the sequential Horus imple-
mentationn is based on abstractions of Image Algebra [131], a mathematical notation 
forr specifying image processing algorithms. Image Algebra is an important basis for 
thee design of an extensive, maintainable, and extensible image processing library, as it 
recognizess that a small set of operation classes can be identified that covers the bulk of 
alll  commonly applied image processing functionality. Within the Horus library each 
suchh operation class is implemented as a generic algorithm, using the C++ function 
templatetemplate mechanism [158]. Each operation that maps onto the functionality as pro-
videdd by such algorithm is implemented by instantiating the generic algorithm with 
thee proper parameters, including the function to be applied to the individual data 
elements.. From this, it follows that the desired architectural properties of maintain-
ability,, extensibility, and portability, constitute an integral aspect the Horus design. 
Ass will  be discussed in more detail in Chapter 3, the Horus library also covers a large 
majorityy of all common image processing operations. As a result, Horus fully adheres 
too requirements 1, 3, 4, and 6 of Section 2.3.1. 

Inn extending the Horus library for parallel operation we have focused on adher-
ingg to the remaining requirements 2 and 5: i.e., the architecture's efficiency and its 
applicabilityy to Beowulfs. To this end, and also to have full control over the commu-
nicationn behavior of the library operations, the parallel extensions are implemented 
usingg MPI [104]. Also, to sustain a high maintainability level, each parallel image 
processingg operation is implemented by concatenating data communication routines 
withh sequential code blocks from the Horus library. In this manner, the source code 
forr each sequential generic algorithm is fully reused in the implementation of its par-
allell  counterpart, thus avoiding unnecessary code redundancy as much as possible. 
Forr a more detailed description of the library implementation, we refer to Chapter 3. 
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Thee design and implementation of the parallel library ensures that our paralleliza-
tionn tool adheres to all requirements of Section 2.3.1, with the exception of require-
mentt 2. To also guarantee efficiency of execution of (1) operations that are applied 
inn isolation, and (2) applications or algorithms that contain sequences of library op-
erations,, five additional architectural components are designed and implemented in 
closee connection with the software library itself. These additional components are 
describedd in the remainder of this section. 

Componentt  2: Performance Models 

Inn contrast to other library-based environments (e.g., [75]), our library contains not 
moree than one parallel implementation for each generic algorithm. To still guarantee 
intra-operationn efficiency on all target platforms, the parallel generic algorithms are 
implementedd such that they are capable of adapting to the performance characteristics 
off  the parallel machine at hand. As an example, the manner in which data structures 
aree decomposed at run time is not fixed in the implementations, as the efficiency of 
eachh decomposition type may differ for each specific target machine. Also, the optimal 
numberr of processing units may vary. 

Too make a machine's performance characteristics explicit, each library operation 
iss annotated with a domain specific performance model. For applicability to clusters, 
thee models are based on an abstract machine definition (the APIPM, or: Abstract 
Parallell  Image Processing Machine) that captures the hardware and software aspects 
off  image processing operations executing on such a system. An overview of the 
APIPM,, as well as a formal definition of the APIPM-based models for sequential 
operation,, is presented in Chapter 4. A detailed description of the model that captures 
thee additional communication aspects of parallel execution is given in Chapter 5. 

Componentt  3: Benchmarking Tool 

Performancee values for the model parameters are obtained by running a set of bench-
markingmarking operations that is contained in a separate architectural component. The 
combinationn of the high-level APIPM-based performance models and the specialized 
sett of benchmarking routines allows us to follow a semi-empirical modeling approach, 
thatt has proven to be highly successful in other research as well (e.g., see [108, 172]). 
InIn this approach, essential but implicit cost factors are incorporated by performing 
actuall  experiments on a small set of sample data. Apart from its relative simplicity, 
thee main advantage of the semi-empirical modeling approach is that it fully complies 
withh the requirements of applicability and portability to clusters. The performance 
modelss and benchmarking results allow intra-operation optimization to be performed 
automatically,, fully transparent to the user. This optimization is performed by the 
architecture'ss scheduling component, described below. 

Chapterr 4 gives a thorough description of the approach of semi-empirical modeling, 
ass well as an overview of the benchmarking strategy applied for the measurement 
off  sequential operations. An overview of the measurement strategy relating to the 
communicationn aspects of parallel execution is given in Chapter 5. 
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Componentt  4: Database of Benchmarking Results 

Al ll  benchmarking results are stored in a database of performance values. Although 
thee design and implementation of such database is of significant importance (especially 
inn case it must be accessed frequently at run time), this topic is too far outside the 
scopee of this thesis for extensive discussion. 

Componentt  5: Program Specification 

Apartt from incorporating an intra-operation optimization strategy, to obtain high 
efficiencyy it is essential to perform inter-operation optimization (or: optimization 
acrosss library calls) as well. As it is often possible to combine the communication steps 
off  multiple library operations applied in sequence, the cost of data transfer among the 
nodess in a parallel machine generally can be reduced considerably. Our architecture 
performss inter-operation optimization in case global information is available on the 
orderr in which library operations are applied in a given application. Essentially, this 
informationn is obtainable from the original program code. As implementation of a 
completee parser is not an essential part of this research, however, we currently assume 
thatt a complete algorithm specification is provided in addition to the program itself. 
Suchh specification closely resembles a concatenation of library calls, and does not 
requiree any parallelism to be introduced by the application programmer. 

Componentt  6: Scheduler 

Oncee the performance models, the benchmarking results, and the algorithm specifi-
cationn are available, a scheduling component is applied to find an optimal solution 
forr the application at hand. The scheduler performs the tasks of intra-operation opti-
mizationn and inter-operation optimization by removing all redundant communication 
steps,, and by choosing: (1) the logical processor grid to map data structures onto 
(i.e.,, the actual domain decomposition), (2) the routing pattern for the distribution 
off  data, (3) the number of processing units, and (4) the type of data distribution (e.g., 
broadcastt instead of scatter). 

Ass described in detail in Chapter 6, the scheduler's task of automatically convert-
ingg any sequential image processing application into a correct and efficient parallel 
version,, is performed on the basis of a simple finite state machine definition. First, the 
finitee state machine allows for a straightforward and cheap run time method (called 
lazylazy paralleUzation) for communication cost minimization. If desired, the scheduler 
cann be instructed to perform further optimization at compile-time. In this case, the fi-
nitee state machine is used in the construction of an application state transition graph, 
thatt fully characterizes an application's run time behavior, and incorporates all pos-
siblee paralleUzation and optimization decisions. As each decision is annotated with a 
runn time cost estimation obtained from the APIPM-based performance models, the 
fastestt version of the program is represented by the cheapest branch in the applica-
tionn state transition graph. In the library implementation of each parallel generic 
algorithm,, requests for scheduling results are performed in order to correctly execute 
thee optimizations prescribed by the application state transition graph. 
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2.44 Conclusions 
Inn this chapter, we have investigated the applicability of existing hardware and soft-
waree architectures in the field of image processing research. Based on a set of archi-
tecturee requirements we have indicated that homogeneous Beowulf clusters constitute 
thee most appropriate class of target platforms for application in image processing re-
search.. Apart from the fact that many references exist in the literature indicating 
significantt performance gains for typical image processing applications executing on 
clusters,, the foremost reason for favoring such architectures over other appropriate 
systemss was found to be the fact that these deliver the best combination of price and 
performance. . 

Ourr investigation of software tools for implementing image processing applications 
onn clusters has shown that library-based parallelization tools offer a solution that is 
mostt likely to be acceptable to the image processing research community. First, 
thiss is because such tools allow the programmer to write applications in a familiar 
programmingg language, and make use of the high level abstractions as provided by 
thee library. More importantly, this is because library-based environments are most 
easilyy provided with a programming model that offers full user transparency — or, in 
otherr words: sufficiently high levels of 'user friendliness' and 'efficiency of execution'. 
Duee to insufficient sustainability levels, no existing user transparent tool was found 
too provide an acceptable long term solution as well. 

Onn the basis of these considerations we have proposed a new library-based soft-
waree architecture for parallel image processing on clusters. We have presented a list 
off  requirements such tool must adhere to for it to serve as an acceptable long term 
solution.. In addition, we have given an overview of each of the architecture's con-
stituentt components, and we have touched upon the most prominent design issues for 
eachh of these. The architecture's innovative design and implementation ensures that 
itt fully adheres to the requirements of user transparency and long term sustainability. 
Consequently,, we believe our architecture for user transparent parallel image process-
ingg to constitute an acceptable long term solution for the image processing research 
communityy at large. 
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Parallelizablee Pat terns in 
Loww Level Image Processing 
Algorithms* * 

"One"One gets to the heart of the matter by a series 
ofof experiences in the same pattern, 

butbut in different colors. " 

Robertt Graves (1895 - 1985) 

Ass discussed in the previous chapter, a multitude of software libraries for parallel 
loww level image processing has been described in the literature [75, 80, 93, 108, 109, 
112,, 118, 153, 159]. An important design goal in much of this research is to provide 
operationss that have optimal efficiency on a range of parallel machines. In general, 
thiss is achieved by hard-coding a number of different parallel implementations for each 
operation,, one for each platform. Unfortunately, the creation of a parallel library in 
thiss manner has several major drawbacks. First, manually creating multiple parallel 
versionss of the many operations commonly applied in image processing research is 
aa laborious task. Second, obeying to requests for library extensions becomes even 
moree troublesome than in the sequential case. Third, as new target platforms are 
madee available at regular intervals, code maintenance becomes hard — if not im-
possiblee — on the long term. Finally, with each library expansion it becomes ever 
moree difficult to incorporate a single elegant optimization strategy that can guarantee 
intra-operationn efficiency as well as inter-operation efficiency. For these reasons we 
takee a different approach. 

"Thiss chapter combines our papers published in Proceedings of the 15th International Parallel & 
DistributedDistributed Processing Symposium (IPDPS 2001) [141] and Parallel Computing [149], 
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Inn the design of our parallel library we strive to minimize the implementation ef-
fort,, without compromising on the efficiency of execution. The first step in achieving 
thiss goal is recognizing that there is a limited number of ways in which the pixels in 
ann image can be processed to produce meaningful results. Important in this respect 
iss the classification of low level image processing operations made in Image Alge-
braa [131]. Originating from this classification, the sequential Horus image processing 
libraryy [84] (which serves as a basis for the core component of our software architec-
ture,, see Section 2.3.2) provides a small set of so-called algorithmic patterns. As will 
bee explained in this chapter, the primary importance of the algorithmic patterns is 
thatt each serves as a template operation for a large set of image processing operations 
withh comparable behavior. Also, the algorithmic patterns abstract from the actual 
datatypee each operation is applied upon, to avoid a combinatorial explosion of code 
thatt deals with all possible kinds of image datatypes. 

Thee next important step in achieving our goal is recognizing that, for parallel 
implementationn of each algorithmic pattern, much of the related sequential code can 
bee reused. To that end, for each sequential algorithmic pattern present in the Horus 
libraryy we have defined a so-called parallelizable pattern. Such pattern constitutes 
thee maximum amount of code of an algorithmic pattern that can be performed both 
sequentiallyy and in parallel — in the latter case without having to communicate to 
obtainn data residing on other processing units. 

Thee final step in reaching our goal is to implement all parallel operations such that 
theyy are capable of adapting to the performance characteristics of a parallel machine 
att hand. As machine-specific performance characteristics should not be incorporated 
explicitlyy in any library implementation, an additional automatic code optimization 
phasee is required to be performed at compile time or even at run time. 

Hence,, apart from giving a detailed overview of the design philosophy of our soft-
waree library, this chapter primarily focuses on the following research issue: How to 
implementt a parallel image processing library such that code redundancy is avoided 
ass much as possible, and efficiency of execution on all target platforms is guaranteed. 
Wee present a solution to the problem in the form of a generic description of paral-
lelizablee patterns. Based on the description, we show how parallel versions of many 
commonlyy used image processing operations are obtained by concatenating high-level 
communicationn routines, basic memory operations, and operations that constitute a 
specializationn of a parallelizable pattern. We demonstrate that, apart from being 
relativelyy simple to implement, a parallel library built in this manner is extensible, 
easilyy maintainable, and still high in performance. 

I tt is important to stress that this chapter does not touch upon the important 
topicc of inter-operation optimization, that is, optimization across library calls. Par-
allell  operations that are implemented on the basis of parallelizable patterns may still 
performm many unnecessary communication steps when applied as part of a complete 
imagee processing application. As a result, efficiency of execution may not be optimal. 
Ass indicated in the previous chapter, our complete software architecture deals with 
thiss problem by applying domain-specific performance models in combination with 
ann additional, integrated scheduling tool. These issues are all outside the scope of 
thiss chapter, however, and are discussed in extensive detail in Chapters 4, 5, and 6. 
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Thiss chapter is organized as follows. Section 3.1 gives an overview of the design 
philosophyy of the sequential Horus library. Section 3.2 describes the manner in which 
parallelismm is integrated in Horus. Section 3.3 discusses the programming paradigm 
adoptedd in all parallel implementations. Section 3.4 gives a generic description of par-
allelizablee patterns, including a default parallelization strategy for image operations. 
Too illustrate the use of parallelizable patterns, the implementation of two example 
operationss is discussed in detail. Finally, conclusions are presented in Section 3.5. 

3.11 Algorithmic Patterns: The Horus Approach 

Whereass implementation of a single sequential image processing routine is often easy, 
creatingg a software library that is to contain an extensive set of such operations is 
notoriouslyy hard. This is because image library users need operations that can be 
appliedd to a large number of (combinations of) different data structures, whose in-
dividuall  data elements in turn can be of many different types. More specifically: 
althoughh two-dimensional image structures are most commonly used, the bulk of all 
libraryy functionality also should be applicable to three- (or higher-) dimensional im-
ages,, image regions, and other types of dense datafields (e.g., histograms). In addition, 
thee type of each individual element in a data structure can be scalar (e.g., int, float, 
Boolean),, complex, compound (e.g., a vector representing RGB color), and so forth. 

Providingg support for a combinatorial explosion of code that deals with all these 
dataa structures and types is by no means an easy task. Consequently, many existing 
sequentiall  image processing libraries usually restrict support to a small set of data-
structures,, datatypes, and even operations [9, 45]. It is clear that such limitations 
havee a negative effect on a library's popularity and expected lifespan. 

Too deal with these problems, the design and implementation of the Horus image 
processingg library [83, 84, 85] is based on a generic programming approach. The Free 
On-linee Dictionary of Computing [71] defines this approach as follows: 

Genericc programming is a technique that aims to make programs more 
adaptablee by making them more general. Generic programs often embody 
non-traditionall  kinds of polymorphism; ordinary programs are obtained 
fromm them by suitably instantiating their parameters. In contrast with 
normall  programs, the parameters of a generic program are often quite 
richh in structure. For example, they may be other programs, types or 
typee constructors or even programming paradigms. 

Too be more specific: given X datatypes, Y containers (data structures), and Z algo-
rithmss as essential software library components, abstraction by way of generic pro-
grammingg reduces the possible X xY xZ implementations to X + Y + Z implementa-
tions.. Consequently, generic programming greatly enhances library maintainability. 

Inn Horus, generic data structures (i.e., container structures that are made indepen-
dentt of the type of the contained object) are implemented by way of the C++ template 
mechanismmechanism [158] — a programming concept that allows a type to be a parameter in 
thee definition of a class or a function. Using the same mechanism, Horus also provides 
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genericc algorithms that can work on the generic data structures. Because we feel that 
thee importance of the Horus library lies more in its concepts than in its implemen-
tation,, we refrain from presenting actual template code here. For more information 
andd implementation details we refer to the Horus documentation [84. 85]. 

Apartt from abstracting from the actual datatype each operation is applied upon, 
thee amount of Horus library code is reduced even further by implementing only a small 
numberr of algorithmic patterns that covers the bulk of all commonly applied image 
processingg operations. An algorithmic pattern corresponds to one of the operation 
classesclasses defined in Image Algebra [131], each of which gives a generic description of a 
largee set of operations with comparable behavior. As such, each image operation that 
mapss onto the functionality as provided by an algorithmic pattern is implemented in 
Horuss by instantiating the algorithmic pattern with the proper parameters, includ-
ingg the function to be applied to the individual data elements. As an example, an 
algorithmicc pattern may produce a result image by applying a unary function to each 
pixell  in a given input image. By instantiating the pattern with, for example, the 
absolutee value operation on a single pixel, the produced output will constitute the 
inputt image with the absolute value taken for each pixel. 

Thee version of Horus that serves as the basis for all further discussions provides 
thee following set of algorithmic patterns: 

•• Unary pixel operation. Operation in which a unary function is applied to 
eachh pixel in the image. Examples: negation, absolute value, square root. 

•• Binary pixel operation. Operation in which a binary function is applied to 
eachh pixel in the image. Examples: addition, multiplication, threshold. 

•• Reduce operation. Operation in which all pixels in the image are combined 
too obtain a single result value. Examples: sum, product, maximum. 

•• Neighborhood operation. Operation in which several pixels in the neighbor­
hoodd of each pixel in the image are combined. Examples: percentile, median. 

•• Generalized convolution. Special case of neighborhood operation. The com­
binationn of pixels in the neighborhood of each pixel is expressed in terms of two 
binaryy functions. Examples: convolution, gauss, dilation. 

•• Geometric (domain) operation. Operation in which the image's domain is 
transformed.. Examples: translation, rotation, scaling. 

Thee presented set of algorithmic patterns is not complete, as it does not cover all 
functionalityy required in the early stages of algorithm or application development. 
Thee Horus library, however, is subject to continuing research and extensions. Among 
thee most important current and expected future library additions are algorithmic 
patternss that can be used to instantiate (1) multi pixel operations, (2) iterative and 
recursivee neighborhood operations, and (3) queue based algorithms. Also, apart from 
thee algorithmic pattern for geometric operations, all of the patterns that are currently 
incorporatedd in Horus are restricted to instantiating translation invariant operations 
only.. Translation variant versions of the presented algorithmic patterns will be incor­
poratedd in the future as well. 
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3.22 Integration of Parallelism in Horus 

Ass discussed in Section 2.3.2, the parallel library that constitutes the core of our 
softwaree architecture is an extended version of the sequential Horus library. In the 
parallell  version all additional functionality is implemented such that it does not in-
terferee with the existing sequential code. As such, the parallel library can still be 
instructedd to resort to traditional sequential operation — which generally is preferred 
overr single node parallel operation due to additional overhead costs. 

Fromm a design perspective the extended library consists of four logical components, 
ass shown in Figure 3.1. The following discusses each in turn, and identifies the 
relationshipss among them: 

Componentt  CI : Sequential Algorithmi c Patterns 

Thee first component (CI) consists of the set of sequential algorithmic patterns intro-
ducedd in Section 3.1. As indicated in Figure 3.1, each algorithmic pattern present in 
thiss component is implemented as a sequence of sequential routines. Al l operations 
inn such sequence must be separately available in the library — but not necessarily 
ass user-callable routines. Apart from memory operations that may be required for 
thee creation or destruction of internal data structures, the most important operation 

C44 - API 
imageOperation(( IMAGE i ) ; 

CII  - Sequential Algorithmic Patterns 

seqAlgorithmicPattern(( IMAGE i, FUNC f) 
{ { 

/// memory operations (if needed) 
—— parallelizablePattern( i, f ) ; 

/// memory operations (if needed) 

t»» parallelizablePatternf IMAGE i, FUNC f) 
{ { 

forr all pixels in image 'i ' do 
applyy function 'f; 

C33 - Parallel Algorthmic Patterns 

parAlgoritmicPattern(( IMAGE i, FUNC f) 
{ { 

/// memory operations (if needed) 
scatterlmage(( i, partlm ); 

—— paralleIizablePattern( partlm, f); 
gatherlmage(( partlm, i ) ; 

/// memory operations (if needed) 

C22 - Parallel Extensions 

scatterlmage(( IMAGE i, partlm ); 

gatherlmage(( IMAGE partlm, i ) ; 

Figuree 3.1: Relationships between library components C1-C4 (note: the actual code 
differsdiffers substantially). Sequential code blocks that constitute a specialization of a par-
allelizableallelizable pattern are used in the implementation of sequential algorithmic patterns 
asas well as in the implementation of the related parallel counterparts. All functionality 
isis provided to the user through a sequential application programming interface (API) 
thatthat contains no references to the library's parallel processing capabilities. 
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inn such sequence is what we refer to as a parallelizable pattern. Here it is sufficient 
too indicate that a parallelizable pattern constitutes a code block that incorporates 
onlyy those instructions in a sequential algorithmic pattern that can be applied in the 
implementationn of the related parallel algorithmic pattern as well — in the latter 
casee without having to communicate to obtain essential data residing at any other 
processingg unit. For a much more formal description of parallelizable patterns we 
referr to Section 3.4. 

Componentt  C2: Parallel Extensions 

Nextt to the sequential algorithmic patterns, an additional set of routines is imple-
mentedd to introduce parallelism into the library (component C2 in Figure 3.1). The 
parallell  extensions deal with all aspects of parallelization. ranging from the logical par-
titioningg of data structures to the actual exchange of data among processing units. 
Too have full control over all interprocess communication,̂ all extensions are imple-
mentedd using MPI [104]. The implemented set of parallel extensions is divided into 
threee classes: 

1.. Routines for data structure partitioning. These routines are used to specify the 
dataa structure responsibilities for each processing unit, i.e. to indicate which 
dataa parts should be processed by each node. In practice, a data structure 
iss mapped onto a logical grid of processing units of up to 3 dimensions, which 
allowss for optimal domain decomposition of the bulk of all image data structures 
(seee also Chapter 5). The mapping is performed in such a way that the number 
off  data elements each node is responsible for is well-balanced. 

Thee most important routines in this class are the "doPartitionQ" and 'rePar-
titionQ'' operations, which define the (new) responsibilities for a given data 
structure.. Responsibilities are based on the logical grid of processing units, 
andd the dimensionality and size of a data structure. All other routines in this 
classs are requests for partitioning information (for example, to obtain the size 
andd dimensionality of partial data structures other processing units are made 
responsiblee for). 

2.. Routines for data distribution and redistribution. These operations are used for 
thee actual spreading (either scattering or broadcasting), gathering, and redistri-
butionn of data structures. Although the MPI 1.1 standard provides most of this 
functionalityy and the new MPI 2.0 standard defines all, we have made multiple 
implementationss ourselves using the standard blocking MPI send and receive 
operations.. We refer to Chapter 5 for a detailed discussion on the rationale, 
andd the implications for application performance and optimization 

I tt should be noted that data distribution could have been regarded independent 
fromm data partitioning. To avoid any unnecessary communication, however, we 
havee made the distribution of data structures dependent on the assigned data 

^Notee that in our implementations (and also in the remainder of this thesis) we assume a one-to-
onee relationship between processes and processing units. 
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responsibilities.. Data partitioning is therefore always applied as part of a data 
distributionn operation. 

3.. Routines for overlap communication. These operations are used to exchange 
shadowshadow regions (e.g., image borders in neighborhood operations) among neigh-
boringg nodes in a logical grid of processing units. 

Al ll  operations in component C2 are kernel routines, and are not made available to 
thee library user. 

Componentt  C3: Parallel Algorithmi c Patterns 

Too reduce code redundancy and enhance library maintainability as much as pos-
sible,, much of the source code for the sequential algorithmic patterns is reused in 
thee implementation of their respective parallel counterparts. More specifically, the 
implementationn of each parallel algorithmic pattern is obtained by inserting commu-
nicationn operations from component C2 in the sequence of routines that constitutes 
thee implementation of the related sequential algorithmic pattern. The communica-
tionn routines are to obtain all non-local data (i.e. data residing on other processing 
units)) required during execution of the parallelizable pattern. The communication 
routiness also gather partial results data from all processing units to a single (root) 
nodee as soon as the execution of the parallelizable pattern has finished. As such, 
duringg execution all instantiations of the parallel algorithmic patterns run in a Bulk 
Synchronouss Parallel manner [103, 162]. 

Componentt  C4: Full y Sequential API 

Thee extended image processing library is provided with an application programming 
interfacee (component C4 in Figure 3.1) identical to that of the original sequential Ho-
russ library. Due to the fact that the API contains no references to the library's parallel 
processingg capabilities, no additional effort is required from the application program-
merr to obtain a parallel program. In other words: any application implemented for a 
sequentiall  machine — after recompilation — can be executed on a cluster as well. As 
such,, the library fully adheres to the first requirement of user transparency as defined 
inn Section 2.2. 

3.33 Data Parallel Image Processing 

Thee previous sections implicitly indicated that we have adopted data parallelism as 
thee programming model for implementing all parallel algorithmic patterns. In the 
followingg we clarify why we have adopted this approach as the sole technique for 
parallelization,, rather than any other approach or even a combination of approaches. 
Also,, to lay the foundations for the generic description of parallelizable patterns pre-
sentedd in Section 3.4, we give a formal description of the manner in which image data 
structuress are represented in our data parallel library. 
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3.3.11 Data Parallelism versus Task Parallelism 

Althoughh many more programming paradigms for parallel computing exist, the mod-
elss of data parallelism and task parallelism are used most frequently because of their 
effectivenesss and general applicability. As defined in [50], the data parallel model fo-
cusess on the exploitation of concurrency that derives from the application of the same 
operationoperation to multiple elements of a data structure. In other words, it is a program-
mingg model in which a single routine is applied to all elements of a data structure 
simultaneously.. In contrast, the task parallel paradigm constitutes a model of parallel 
computingcomputing in which many different operations may be executed concurrently [170]. 

Inn the literature, a multitude of papers exists in which each of these paradigms is 
usedd effectively for parallelizing (low level) image processing operations (e.g., see [19, 
32,, 134, 161]). Also, for certain image processing problems it has been shown that 
applicationn of a combination of the two paradigms in a single program is more effective 
thann using either paradigm exclusively (e.g., see [112, 126]). 

Despitee the potential benefits of applying task parallelism, we have decided to 
restrictt all parallel implementations in our library to the data parallel model. The 
reasonss for this decision are as follows. First, the application of data parallelism 
iss a natural approach for low level image processing, as many operations require 
thee same function to be applied to each individual data element (or small set of 
elementss around each data element) present in an image data structure. Second, as 
ourr parallel library is to serve as an aid in image processing research, the number 
off  independent tasks available in most applications is expected to be small. This 
iss because in the design phase of algorithms or applications, testing and evaluation 
generallyy is performed using relatively small problem sizes (e.g., using a single image 
ratherr than a database of thousands of images). A third reason is related to the 
scalabilityscalability in the number of processing units. As the number of independent tasks 
inn most image processing applications generally is much smaller than the number of 
elementss present in the input (image) data structures, the number of processors that 
cann be applied effectively is generally much larger in the data parallel case. Another 
importantt reason is that load balancing (i.e., evenly distributing all work among the 
availablee processing units) is generally much more difficult in the task parallel model. 
Especiallyy in case independent parallel tasks represent highly varying workloads, it is 
difficul tt to ensure that each processor has exactly the same amount of work to do. 

Thee decisive factor for not incorporating task parallelism in our software archi-
tecture,, however, is the difficulty of combining this programming paradigm with the 
requirementss of user transparency. The presence of a fully sequential API implies that 
wee would have to incorporate a separate interpretation and optimization strategy to 
findd all independent tasks available in an application. Effectively, this implies that we 
wouldd have to develop, at least in part, a parallelizing compiler. For reasons explained 
inn Section 2.2.1 we expect such compiler not to yield a desirable solution. 

I tt would have been possible to incorporate the notion of task parallelism in the 
library'ss API, e.g. by providing aggregated operations that can work on sets of images. 
However,, this approach would dramatically reduce the library's chances of widespread 
acceptance,, as it would require most existing applications to be rewritten by hand 
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(e.g.,, by replacing loop constructs by a single call to an aggregated library operation). 
Thiss is not trivial, as it requires the user to personally identify dependencies among 
taskss (which is often difficult due to the presence of indirections in the C or C++ 
code).. To shield the user from having to deal with any of these issues, and also to 
avoidd having to implement any optimization strategy that can detect independent 
taskss automatically, we have refrained from incorporating task parallelism altogether. 
Ass will  be shown in Chapter 7, despite the fact that all implementations are restricted 
too the data parallel approach, obtained performance improvements are generally well 
withinn the efficiency requirements as put forward in Chapter 2. 

3.3.22 Representat ion of Digital Images 

Ann image data structure in our library consists of a set of pixels. Associated with each 
pixell  is a location (point) and a (pixel) value. Here, we denote an image by a lower 
casee bold character from the beginning of the alphabet (i.e., a, b, or c). Locations 
aree denoted by lower case bold characters from the end of the alphabet (i.e., x, y, 
orr z). The pixel value of an image a at location x is represented by a(x). 

Thee set of all locations is referred to as the domain of the image, denoted by 
aa capital bold character (i.e., X, Y, or Z). Usually, the point set is a discrete n-
dimensionall  lattice Zn, with n = 1, 2, or 3. Also, the point set is bounded in each 
dimensionn resulting in a rectangular shape for n = 2 and a block shape for n = 3. 
Thatt is, for an «-dimensional image 

XX = {(xi,X2 , • • • ,xn) € Z™ : Oi < Xi < Oi + ki — 1}, i € {1, 2, • • • , , n }). 

wheree o = (o\,02,--- ,on) represents the origin of the image, and ki represents the 
extentt of the domain in the i-th dimension. 

Thee set of all pixel values a(x) is referred to as the range of the image, and is 
denotedd by F. A pixel value is a vector of m scalar values, with m = 1, 2 or 3. A 

% % 

(a)) No overlap 

\ \ 

% % % % 

(b)) Partial overlap (c)) Full overlap 

Figuree 3.2: Three examples of a distributed image a^ comprising of two partial images, 
aPoo and aP l . The gray areas represent domain overlap; the white areas represent the 
uniqueunique domain parts. 



34 4 Chapterr 3. Parallelizable Pat terns in Low Level Image Processing Algori thms 

scalarr value is represented by one of the common datatypes, such as byte, int, or float. 
Thee set of all images having range F and domain X is denoted by Fx . In summary. 
aa G F x (i.e.. a : X —»• F) is a shorthand notation for 

{{ (x. a(x)) : x e X c Z " ( n = 1 . 2 . 3). a(x) E ¥ C {Zm. Rm. C} (m = 1. 2. 3) }. 

Whenn image data is spread throughout a parallel system, multiple data structures 
residingg on different locations form a single logical entity. In our library, each image 
dataa structure resulting from a scatter or broadcast operation is called a partial im-
age.age. For each partial image additional partitioning and distribution information is 
available.. The information includes, but is not restricted to. (1) the processor grid 
usedd to map the original image data onto. (2) origin and size of the domain of the 
originall image, and (3) the type of data distribution applied (e.g.. scatter or broad­
cast).. Partial image a residing on processing unit i is denoted by aPi; its domain is 
denotedd by XP i . As data spreading can not result in a loss of data, for each image 
aa E F x distributed over n processing units: 

n-\ n-\ 
UU xPl. = x. 

Thee n partial images related to a together form one logical structure, referred 
too as a distributed image. A distributed image is denoted by a</, and differs from 
aa partial image in that it does not reside as a physical structure in the memory of 
onee processing unit (unless it is formed by one partial image only). A distributed 
image'ss domain X^ is given by the union of the domains of its related partial images. 
Thee domains of the partial images that constitute a distributed image may be either 
non-overlappingnon-overlapping,, partially overlapping, or fully overlapping (see Figure 3.2). 

Essentially,, it is possible for each processing unit to perform operations on each 
partiall image independently. In the library, however, we make sure that each operation 
(logically)) is performed on distributed image data only. In all cases this results in the 
processingg of all partial images that constitute the distributed image. This strategy 
iss of great importance to avoid inconsistencies in distributed image data. 

3.44 Parallelizable Patterns 

Ass stated in Section 3.2. we try to enhance library maintainability by reusing as 
muchh sequential code as possible in the implementations of the parallel algorithmic 
patterns.. To that end, for each sequential algorithmic pattern we have defined a 
so-calledd parallelizable pattern. Each such pattern represents the maximum amount 
off work in a generic algorithm that - when applied to partial image data - can be 
performedd without the need for communication. In other words, in a parallelizable 
patternn all internal data accesses must refer to data local to the processing unit 
executingg the operation. In the following we give a generic description of parallelizable 
patterns,, and show their application in parallel implementations. 
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3.4.11 Generic Description 

AA  parallelizable pattern is a sequential generic operation that takes zero or more 
sourcee structures as input, and produces one destination structure as output. A 
patternn consists of n independent tasks, where a task specifies what data in any of 
thee structures involved in the operation must be acquired (read), in order to update 
(write)) the value of a single data point in the destination structure. In a task, read 
accesss to the source structures is unrestricted, as long as no accesses are performed 
outsidee any of the structures' domains. In contrast, read access to the destination 
structuree in each task is limited to the single data point to be updated. 

Al ll  n tasks are tied to a different task location x*, with i € {1, 2, • • • , n}. The set 
LL of all task locations constitutes a subset of the positions inside the domain of one 
off the data structures involved in the operation (either source or destination). As a 
simplee example, L may refer to all n pixels in an image data structure, all of which 
aree processed in a loop of n iterations. 

Eachh task location x^ has a relation to the positions accessed in all data structures 
involvedd in the operation. As such, for the parallelizable patterns relevant in image 
processingg we define four data access pattern types: 

 One-to-one. For a given data structure, in each task Tj (with i G {1,2, • • • , n}) 
noo data point is accessed other than x^. 

•• One-to-one-unknown. For a given data structure, in each task Ti (with i e 
{1,, 2, • • • , n}) not more than one data point is accessed. In general, this point 
iss not equal to x^. 

•• One-to-M. For a given data structure, in each task Ti (with i e {1,2, •• • , n}) 
noo data points are accessed other than those within the neighborhood of x^. As 
ann example, the 5 x 3 neighborhood of a point x = (xi, X2) E X is given by 

JV(x)) = {yeY:y = (Xl  x2  k), j e {0,1, 2}, k e {0,1}}, 

wheree X C Y. 

•• Other. For a given structure, in each task either all elements are accessed, or 
thee accesses are irregular or unknown. 

AA parallelizable pattern requires that for all data structures the access pattern type 
iss given. Essentially, all four access pattern types are applicable to source structures. 
Inn contrast, the single destination structure can only have a 'one-to-one' or a 'one-to-
one-unknown'' access pattern type. This is because — by definition — in each task 
onlyy one data point is accessed in the destination structure. 

Figuree 3.3 shows the two parallelizable pattern types that we discern. In a type 1 
parallelizablee pattern the set of task locations has a 'one-to-one' relation to the desti­
nationn structure. In a type 2 parallelizable pattern the access pattern type related to 
thee destination structure is of type 'one-to-one-unknown'. The two parallelizable pat­
ternss differ in the type of combination operation that is permitted. In a parallelizable 
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Figuree 3.3: Two parallelizable pattern types. R = read access; W = write access; 
dapdap = data access pattern; (1) = exactly one data structure of this type; (*) = zero 
oror more data structures of this type. 

patternn of type 1 no restrictions are imposed on the combination operation. In a type 
22 pattern the final combination of the intermediate result of all values read from the 
sourcee structures with the value of the data point to be updated in the destination 
structuree must be performed by a function ƒ() that is associative and commutative. 
Also,, prior to execution of a type 2 pattern, all elements in the destination structure 
mustt have a value that is 'neutral' for operation ƒ(). For example, the neutral value 
forr addition is 0, while for multiplication it is 1. 

Thee two parallelizable pattern types give a generalization of a large set of sequential 
imagee processing routines, e.g. incorporating all algorithmic patterns of Section 3.1. 
Ass such, the presented generalization captures a large majority of all operations com-
monlyy applied in image processing research (i.e., it comprises an estimated coverage of 
overr 90%). It should be noted, however, that the two types do not present a complete 
coveragee of the typical implementations of all operations in this particular field of re-
search.. For example, algorithms in which write access is to multiple data structures is 
requiredd do not fall in the category of operations currently under consideration. The 
samee holds for operations in which the value of each data point in the destination 
structuree depends on values of other data points in the same destination structure. In 
howw far these limitations pose any unreasonable restrictions on future library adap-
tationss (and thus necessitates extension of the generic description of parallelizable 
patterns)) is as of yet unknown (see also Section 3.4.5). 

Al ll  algorithmic patterns that do fit into the given generalization are applicable 
inn the process of 'parallelization by concatenation of library operations', described 
inn Section 3.2. As discussed in the remainder of this section, on the basis of the 
genericc description we define a standard parallelization strategy that always results 
inn a correct data parallel implementation for any algorithmic pattern that maps onto 
att least one of the two parallelizable pattern types. 
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3.4.22 Default Parallelization Strategy 
Thee number of elements in the set of task locations L determines the number of steps 
executedd by a parallelizable pattern. Hence, by providing each node in a parallel 
systemm with a set X c L, the work is distributed (i.e., in a data parallel manner). 
Inn addition, the access pattern type associated with each structure involved in the 
operationn prescribes how non-local data accesses are avoided with minimal commu-
nicationn overhead. As such, an optimal*  default parallelization strategy is obtained 
forr any operation that maps onto one of the presented parallelizable pattern types. 

First,, before executing a type 1 parallelizable pattern each processing unit is pro-
videdd with a non-overlapping partial destination structure that matches the elements 
inn X. If the destination structure is updated but never read, the partial structure 
cann be created locally. Otherwise, it is obtained by scattering the destination struc-
turee such that no overlap in the domains of the local partial structures is introduced. 
Beforee executing a type 2 parallelizable pattern, each processing unit creates a fully 
overlappingg destination structure locally. This is always possible, as the value of all 
dataa points are given a 'neutral value', as defined by the operation. 

Next,, source data structures are obtained by executing (1) a non-overlapping 
scatterr operation for each structure having a one-to-one access pattern, (2) a partially 
overlappingg scatter operation for each structure having a one-to-M access pattern type 
(suchh that in each dimension the size of each shadow region equals half the size of 
thee neighborhood in that dimension), and (3) a broadcast operation for all other 
structures.. In case the values of a source structure can be calculated locally, and if it 
iss less time-consuming to do so, no communication routines are performed at all. 

Finally,, when a type 1 pattern has finished, the complete destination structure 
iss obtained by executing a gather operation. For a type 2 pattern this is achieved 
byy executing a reduce operation across all processing units. Here, the elements that 
havee not been updated in each local destination structure have kept a neutral value, 
assuringg the correctness of the final reduction. In both cases, the result structure is 
returnedd either to one node, or to all. 

Onn the basis the generic description of parallelizable patterns, the following shortly 
discussess parallel implementation of two example algorithmic patterns, i.e. global 
reductionn and generalized convolution. 

3.4.33 Example 1: Parallel Reduction 

AA sequential generic reduction operation performed on input image a, producing a 
singlee scalar or vector value k, is defined as follows: 

Lett a € F x , x € X, and k <E F, then 

kk = Ta = Txa(x) = T?=1aL(xi) = SL(XI) 7 a(z2) 7 • • • 7 a(ar„), 

withh 7 an associative and commutative binary operation on F. 

ÏThee default strategy is optimal for operations executing in isolation only. In case multiple oper­
ationss are executed in sequence, additional inter-operation optimization is required (see Chapter 6). 
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Figuree 3.4: Sequential reduction - two possible implementations. 

Ass shown in Figure 3.4, at least two possible sequential implementations exist for 
thiss operation. In the first implementation, the operation is performed in one step. 
Al ll  data points in a are obtained and combined to a single value, which is written out 
too k. In the second implementation, the operation is performed in n steps. In each 
step,, one data point in a is read and combined with the current value of k. 

Thee first implementation is a specialization of the parallelizable pattern of type 1 
ass described in Section 3.4; the second implementation is a specialization of the 
typee 2 parallelizable pattern. The first implementation is not useful for our purposes, 
however,, as its execution is limited to a single processing unit. This is because the 
sett of task locations L consists of one element only, i.e. the location of the single 
outputt value k. The second implementation, on the other hand, is easily run in 
parallell  as L contains all locations in input image a. For this implementation the 
inputt image's access pattern type is 'one-to-one'; for the single result value it is 
'one-to-one-unknown'.. As a result, a parallel implementation of the generic reduction 
operationn follows directly from the generalization of Section 3.4.2. A pictorial view 
off  the operation executed in parallel is given in Figure 3.5. 

Locall  Input Image 

KHMlSiSfllSMfill l l l l l 

a a 

; ; ;--
1 1 

--

I I 

„„  -- -
Z-~11~~Z2Z.1~ Z-~11~~Z2Z.1~ 

__ _ 

Scatter r 

Globall  Input Image 

Locall  Output Value 

^ ^ 

Parallelizablee Pattern 
Globall  Reduction 

-/---/--—-- B ~ ^ 

Locall  Output Value 

Locall  Input Image 

Figuree 3.5: Example reduce-to-all operation executed on 2 processing units. 
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3.4.44 Example 2: Parallel Generalized Convolution 

AA generalized convolution performed on input image a, producing output image c, 
givenn a kernel t, is defined as follows: 

Lett a, c G F x , t G FY , x 6 X, y G Y, with X having dimensionality n, and 
YY = {G/i,2/2,--- ,J/n) : I Vi I < h € Z} , then 

cc = a © t = {  (x, c(x)) : c(x) = Ty a(x + y) O t(y) } , 

wheree O a nd 7 are binary operations on F, and 7 is associative and commutative. 
Thee extent of the domain in the i-th dimension of kernel t is given by 2fĉ  + 1. Several 
commonn generalized convolution instantiations are shown in Table 3.1. 

Kernell  Operat ion 
Convolution n 
Dilation n 
Erosion n 

0 0 
multiplication n 
addition n 
addition n 

7 7 
addition n 
maximum m 
minimum m 

Tablee 3.1: Example generalized convolution instantiations. 

Thee definition states that each pixel value in the output image depends on the 
pixell  values in the neighborhood of the pixel at the same position in the input image, 
ass well as on the values in the related kernel structure. A sequential implementation 
off  the operation is presented in Figure 3.6. Again, set L is implicit, and contains all 
pixell  positions in either the input image or the output image. 

Whenn comparing Figure 3.3(a) to Figure 3.6(a) it may seem that the operation 
directlyy constitutes a parallelizable pattern. Figure 3.6(b) shows that this is not the 
case,, however, as accesses to pixels outside the input image's domain are possible. In 
sequentiall  implementations of this operation it is common practice to redirect such 
accessess according to a predefined border handling strategy (e.g., mirroring or tiling). 
AA better approach for sequential implementation, however, is to separate the border 
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Figuree 3.6: Sequential generalized convolution. Does not represent a parallelizable 
pattern,pattern, as read accesses outside the domain of the input image are possible (see (b)). 
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Figuree 3.7: Example kernel operation performed using 2 processing units (simplified). 

handlingg from the actual convolution operation. This makes implementations more 
robustt and generally also faster, due to the fact that irregular memory accesses are 
avoided.. For parallel implementation this strategy has the additional advantage that 
thee algorithmic pattern for generalized convolution can be implemented such that it 
constitutess a parallelizable pattern. 

Implementationn in this manner can be performed in many different, ways. In our 
libraryy a so-called scratch border is placed around the original input image. The 
borderr is filled with pixel values according to the required border handling strategy. 
Thee newly created scratch image is used as input to the parallelizable pattern. Fig-
uree 3.7 depicts the operation executed in parallel. As each local scratch image has a 
one-to-MM access pattern, an overlapping scatter of the global input image is required. 
Inn Figure 3.7 this is implemented by a non-overlapping scatter followed by overlap 
communication.. Remaining scratch border data is obtained by local copying. Finally, 
thee parallelizable pattern is executed, producing local result images that are gathered 
too obtain the complete output image. Note that Figure 3.7 gives a simplified view, 
ass some steps of the operation are not shown. For example, depending on the type of 
operation,, the kernel structure is either broadcast or calculated locally. 

3.4.55 Discussion 

Thee generic description of parallelizable patterns is important as it states the re-
quirementss for sequential implementations that are to be reused in related parallel 
counterparts.. In addition, for each specialized parallelizable pattern implemented on 
thee basis of the generic description, a parallelization strategy directly follows. As such, 
codee reusability is maximized, and library maintainability and flexibilit y is enhanced. 

Itt should be noted that if a sequential operation does not map onto the generic 
descriptionn of a parallelizable pattern, we currently take no special action to obtain 
goodd performance. In such situations, the operation is always executed using one 
processingg unit only. In the future we wil l investigate whether parallelization of such 
operationss can be generalized as well. Additional formulations may be integrated in 
thee current generalization, or may exist independently. 
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3.55 Conclusions and Future Work 
Inn this chapter we have indicated how an extensive parallel image processing library 
iss constructed with minimal implementation effort, whilst ensuring efficiency of (se-
quentiall  and parallel) execution at the same time. We have focussed on the notion 
off  parallelizable patterns, and discussed how parallel implementations are easily ob-
tainedd by sequential concatenation of operations that are separately available in the 
library.. More specifically, on the basis of a set of four data access pattern types, we 
havee obtained a default parallelization strategy for any operation that maps onto one 
off  two parallelizable pattern types. For each image processing operation executed in 
isolation,isolation, this default parallelization strategy is optimal. This is because communica-
tionn overhead is minimized, while — for the given parallelization granularity — the 
availablee parallelism is fully exploited. As such, we have shown how a parallel image 
processingg library can be made extensible, and easily maintainable. 

Itt is important to note, however, that in this chapter we have not discussed the 
importantt issue of inter-operation optimization, or: optimization across library calls. 
Too obtain high performance for sequences of library routines, or for complete appli-
cations,, it is not sufficient to consider parallelization and optimization of each library-
operationn in isolation. This is because code consisting of a given sequence of par-
allell  routines, where each routine is parallelized as described in this chapter, often 
containss many redundant communication steps. Also, it is often possible to further 
reducee communication overhead by combining multiple messages in a single transfer. 
Ourr solution to this fundamental problem, and the integration of this solution in our 
softwaree architecture, is discussed extensively in Chapters 4, 5, and 6 of this thesis. 

Inn the future the generic description of parallelizable patterns may need to be ex-
tendedd or adapted to capture image library additions and extensions. For example, at 
thee time of writing it is nott entirely clear whether the optimal parallel implementation 
off  recursive filter operations as described in [28, 40] can be derived from one of the 
presentedd parallelizable pattern types. As a consequence, we may need to investigate 
forr what type of image operations the strategy of 'parallelization by concatenation 
off  library routines' breaks down, i.e., does not provide efficient implementations, or 
cann not be applied at all. Still, the presented description of parallelizable patterns 
iss important, as it prescribes the sequential implementation of a large majority (i.e., 
overr 90%) of all operations commonly applied in image processing research. Any 
implementationn obtained in this manner can be applied without change in efficient 
parallell  implementations as well — thus avoiding unnecessary code redundancy, and 
minimizingg the required implementation effort. 





Chapterr 4 

Semi-Empiricall  Modeling of 
Parallell  Low Level 
Imagee Processing Operations* 

"Pour"Pour avoir une vérité il  faut deux facteurs — un fait et une abstraction. " 

Remyy de Gourmont (1858 - 1915) 

Ass described in Chapter 3, for each sequential algorithmic pattern available in our li -
braryy we have implemented only one parallel counterpart. Because no single parallel 
implementationn is guaranteed to provide optimal performance on all target platforms, 
eachh operation is implemented such that it is capable of adapting to the specific per-
formancee characteristics of a parallel machine at hand. In the previous chapter we 
havee indicated that two of the parameters that determine an application's parallel 
performancee are fixed in the library implementations: i.e., the parallelization granu-
laritylarity  (or, the amount of computation performed between two communication steps) 
ass well as the data dependencies. Optimization decisions relating to several additional 
parameters,, however, are still made at application compile time, and even at run time. 
Suchh parameters include (1) the logical processor grid to map data structures onto, 
(2)) the routing pattern for the distribution of data, (3) the number of processing 
units,, and (4) the type of data distribution (e.g., broadcast instead of scatter). 

Too make optimization decisions automatically, knowledge is required of the per-
formancee characteristics of the routines applied in a particular application. In our 
softwaree architecture we have incorporated this knowledge by annotating each user-
callablee library operation with a performance model for run time cost estimation. Due 

*Thi ss chapter combines our papers published in Proceedings of the 7th International Euro-Par 
ConferenceConference (Euro-Par 2001) [147] and Parallel Computing [149]. 
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too the intended portability of the software architecture to clusters, the performance 
modelss have been designed to be applicable to all machines in this class of architec-
tures.. Also, the complexity of the models is kept to a minimum to allow high-speed 
evaluationn of complete applications possibly even at run time. In addition, the 
modelss are capable of generating estimations of sufficiently high accuracy to allow 
optimizationn decisions to be made correctly. 

Inn the literature a multitude of performance analysis and modeling techniques has 
beenn described. The techniques range from direct measurement to detailed mathemat-
icall  and simulation models, and adhere to widely varying performance requirements 
inn terms of both estimation accuracy and speed of evaluation. As will be discussed in 
thiss chapter, a major problem with existing performance estimation techniques is that 
thesee generally incorporate a direct relationship between the estimation accuracy and 
thee technique's complexity (for example, the number of model parameters). In other 
words,, increased estimation accuracy is obtained at the expense of greater complexity 
andd reduced evaluation efficiency. 

Inn this chapter we propose a semi-empirical modeling technique that is specif-
icallyy designed to overcome this problem. While being simple and portable, the 
semi-empiricall  modeling approach also provides a sufficiently high estimation accu-
racy.. The approach is based on a high-level abstract machine definition (the Abstract 
Parallell  Image Processing Machine, or APIPM) which is designed to capture typical 
behaviorr of low level image processing operations executing on a cluster. From the 
APIPMM  instruction set a high-level abstract performance model is obtained that is 
applicablee to all such platforms. The crux of the semi-empirical modeling approach 
iss that an additional benchmarking phase is required to capture implicit but essential 
costt factors, and to bind each abstract, model parameter to a concrete performance 
estimationn for a parallel machine at hand. 

Hence,, the primary research issue addressed in this chapter is as follows: How to 
applyy benchmarking in combination with simple analytical models to obtain accurate 
performancee estimates for optimization of complete parallel image processing applica-
tions?? In this respect, it is interesting to note that this research issue closely relates to 
thee more general problem statement put forward by Professor Tony Hey in his invited 
talkk at the Euro-Par 2001 conference: "The ultimate goal in the field of parallel and 
distributedd computing is to use a combination of benchmarking kernels and simple 
modelss for accurate performance estimation of full applications" [68]. Essentially, our 
APIPM-basedd semi-empirical modeling approach forms a domain-specific solution to 
thiss much broader — and as of yet: unsolved — problem. 

Thiss chapter is organized as follows. Section 4.1 investigates the requirements for a 
performancee estimation technique to be applied in our software architecture. Several 
existingg approaches are evaluated according to these requirements as well. On the 
basiss of two estimation techniques described in the literature, a generalized description 
off  our semi-empirical modeling approach is given in Section 4.2. Section 4.3 introduces 
thee APIPM and its instruction set. The APIPM-based performance models, and the 
appliedd benchmarking technique, are presented in Section 4.4. In Section 4.5 model 
predictionss are compared with results obtained on a real machine from the class of 
platformss under consideration. Concluding remarks are given in Section 4.6. 
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4.11 Computer System Performance Estimation 

Thee success of our software architecture greatly depends on the quality of the code 
optimization,, which is to be performed automatically, hidden from the user. Code 
optimizationn is implemented by leaving each operation in the library a choice be-
tweenn several parallelization strategies. Each such strategy has a different effect on 
thee performance on each parallel platform. By providing accurate estimations of 
thee performance of each strategy for the parallel machine at hand, the fastest code 
alternativee is selected with ease. 

Thee effectiveness of the optimization process entirely depends on the technique 
forr estimating the performance of a computer system. In the following we present 
thee general requirements for a performance estimation technique to be applied in our 
softwaree architecture. In the light of these requirements a short evaluation is given of 
thee most significant estimation approaches described in the literature. 

4.1.11 Estimation Technique: Requirements 

AA performance estimation technique designed for our purposes should incorporate all 
relevantt tasks typically performed by data parallel imaging operations. In our case 
suchh tasks relate to either computation, communication, or I/O. Computational tasks 
includee all parallelizable patterns as defined in Chapter 3, as well as the basic memory 
operationss for creation, destruction, and copying of data structures. Communication 
taskss are formed by the bulk of operations from the set of parallel extensions described 
inn the previous chapter, including overlap communication and all distribution and 
redistributionn routines. I/O tasks include all operations for transporting data between 
aa processor's main memory and external devices such as disk drives and cameras. 

Apartt from having to reflect the typical behavior of parallel low level image pro-
cessingg routines, the performance estimation technique should also conform to the 
followingg (more general) requirements (similar to [62]): 

1.. Simplicity. In a realistic estimate, the number of samples is proportional to 
thee number of parameters. To reduce the costs of performance evaluation, the 
numberr of free parameters should be kept to a minimum. 

2.. Accuracy. To make sure the architecture can make correct optimizations, the 
generatedd performance estimations must be of sufficiently high accuracy. The 
degreee of accuracy is considered sufficient if correct decisions are made in at 
leastt 95 percent of all cases, and poor decisions are generally avoided. 

3.. Applicability. For portability, the performance evaluation technique integrated 
inn our software architecture must be applicable to all clusters. 

Itt is important to note that — in general — the requirement of simplicity enhances 
applicability,, but reduces accuracy. Therefore, care must be taken in the design of 
thee estimation technique to ensure that it can produce good performance estimates 
withh relative ease. 
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4.1.22 Estimation Techniques in the Literature 
Techniquess for computer system performance estimation abound in the literature. 
Roughlyy speaking, each such technique can be classified into one of three main cate-
gories:: (1) measurement, (2) modeling and (3) hybrid methods. Estimation techniques 
thatt belong to the second category can be further divided into the subcategories of 
(2a)) mathematical analysis and (2b) simulation [72]. 

Categoryy 1: Measurement 

Performancee estimation by measurement is generally performed on a real system 
underr conditions that reflect typical workload and behavior. Execution times of real 
problemss are then inferred from measured results. Application of this approach in our 
softwaree architecture has several drawbacks. First, in many cases the complete system 
too be evaluated has yet to be developed, and may change over time. Second, even if a 
completee system is available it is often not clear what workload is realistic or typical. 
Finally,, if the measurement process is biased towards certain aspects of the underlying 
hardware,, the measurement technique may not be applicable to other platforms. 

BenchmarkingBenchmarking is an alternative technique, which is often used for comparison of 
multiplee computer systems (e.g., see [39, 69, 167]). Rather than reflecting typical 
behavior,, benchmarks often represent non-typical, artificial workloads. In compari-
sonn with direct measurement, benchmarking has the advantage that the system to be 
evaluatedd does not have to be available. The use of non-typical workloads, however, 
oftenn has a negative effect on the accuracy of the performance estimations. A solu-
tionn — albeit complex — is to capture results for small instruction mixes and a variety 
off  workloads, and to interpret the measurement results with utmost care [44, 156]. 

Categoryy 2: Modeling 

Performancee modeling can be applied in cases where direct measurement is too costly, 
orr where the computer system to be evaluated is not available. In the category of 
mathematicalmathematical analysis, models range from simple (linear) algebraic expressions to 
complexx formalisms such as queueing networks [72, 135]. In general, such models 
havee a high response time due to their ease of evaluation. An additional advantage is 
thatt parameter values may be varied to observe their relative impact on performance. 
However,, to obtain high estimation accuracy, the large number of model parameters 
mayy violate the simplicity and applicability constraints. 

Inn simulation models behavior and workloads are described (imitated) in a special 
computerr program — usually an annotated or otherwise adapted version of a 'real' 
programm [72, 123]. Performance predictions are obtained by monitoring the execution 
off  the adapted program. The main advantage of simulation models is that dynamic 
systemm behavior is easily captured. Also, simulation makes it easy to 'zoom in1 on 
interestingg or expensive parts of a system. A disadvantage is that the system to be 
evaluatedd must be available, at least in some rudimentary form. Another drawback 
iss that it is a costly method for obtaining even moderately accurate performance 
estimates,, thus violating the simplicity constraint. 
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Categoryy 3: Hybri d Methods 

Inn hybrid estimation techniques a combination of measurement and modeling is ap-
pliedd [108, 172]. Such techniques have the advantage that the complexity of using 
eitherr measurement or modeling in isolation can be avoided, while a high level of esti-
mationn accuracy can still be obtained. The following discusses two hybrid approaches 
thatt form the basis for the estimation technique applied in our software architecture. 

1.. Machine Characterization Based on an Abstract Fortra n Machine 

Inn [133], Saavedra-Barrera et al. acknowledge that many state-of-the-art sequential 
computerr systems have become too complex to be accurately captured in a mathemat-
icall  model. The authors measure system performance in terms of an Abstract Fortran 
Machinee (AFM) — an approach referred to as narrow spectrum benchmarking. The 
AFMM instruction set consists of the primitive operations available in Fortran, such as 
arithmeticc and logical functions, procedure calls, loops, etcetera. All primitive oper-
ationss are measured separately, and the combined set of measurements characterizes 
aa specific machine. The approach is based on the assumption that the execution time 
off  any program can be partitioned into independent time intervals, each correspond-
ingg to one AFM instruction. Although, in general, high level operations are never 
completelyy independent (e.g., due to compiler optimizations), the authors have shown 
thatt the assumption is reasonably accurate for a wide range of systems [132]. It should 
bee noted that an earlier technique, described by Peuto et al. [122], is similar to the 
AFM-basedd approach. It is different, however, in that all machine characterizations 
aree incorporated at the much lower level of machine instructions. 

Thee model of the total execution time of a program A as described in [133] is 
formalizedd as follows. Let P M — (Pi, P2, • • • , Pn) be the set of parameters that char­
acterizess the performance of machine M. Each of the n performance parameters is re­
latedd to a different operation in the AFM instruction set. Let C A = (Ci, C2, • • • , Cn) 
bee the normalized dynamic distribution of the AFM instructions present in pro­
gramm A, and let Ctotai denote the total number of AFM instructions executed in 
programm A. The expected execution time of program A on machine M is then ob­
tainedd by 

nn n 

TA,MTA,M = Ctotai 2_  ̂C{Pi — Ctotai Â - P M , with ^ Cj = 1. 
i=\i=\  i-\ 

Thee authors indicate that the only way in which this linear model can give accurate 
resultss is when (1) the measurements of the AFM instructions are representative of 
typicall occurrences in real programs, (2) errors caused by the intrusiveness of the 
measurementss are not significant, and (3) variance in the mean execution time caused 
byy the system, and by the instructions themselves, is small. Still, experiments have 
shownn that for many applications the performance predictions were sufficiently close 
too actual execution times. In general, occurrences of bad estimations were easily 
explainedd by code optimizations performed by the compiler, which had not been 
capturedd in the benchmarking process. 



48 8 Chapterr 4. Semi-Empirical Modeling of Parallel Low Level Image Processing Operat ions 

2.. Incorporatin g System Variance by Adaptiv e Sampling 

Thee AFM-based approach of narrow spectrum benchmarking provides a solution to 
thee problem of the high complexity of complete analytical study of computer systems. 
AA drawback of the approach, however, is that system variance is almost completely 
ignored.. For applications working on extensive dense data fields {e.g.. image data 
structures)) this is too crude a restriction as variations in the hit ratio of caches and 
systemm interrupts often have a significant impact on performance [59. 136]. 

Inn [90] a prediction method is presented that incorporates both program behavior 
andd machine variance. The predictions are based on the approach of adaptive sam-
pling,pling, which is constrained by a fixed time budget for all measurements. In other 
estimationn methods significant inaccuracies in performance estimates may arise, as a 
knownn execution time for one input size is often a poor predictor of the performance 
forr other input sizes. In general, the main source of variation is due to the availability 
off  small amounts of fast cache memory. As there is a decreasing portion of data 
residingg in cache with increasing input size, linearity in response is disturbed. 

Thiss problem is attacked by the adaptive sampling approach, which measures the 
executionn time of an algorithm for several input sizes. The advantage of the approach 
iss that, in part, it also incorporates sources of variation inherent to an application. In 
matrixx multiplication, for example, a linear increase in the sizes of the data-structures 
beingg applied results in a non-linear growth in execution time. Another nice feature of 
thee approach is that it fixes the time needed for the measurement process. One may 
bee tempted to run a benchmark at the largest size believed to fit  within the budget. 
However,, due to the many possible sources of variation the assumed execution time 
mayy be far from realistic. 

Somee image processing functions (e.g.. data-driven segmentation) have an inherent 
randomness,, and an execution time that is much less predictable. For such algorithms 
itt is difficult to obtain accurate estimations on the basis of adaptive sampling. Another 
problemm is that the approach may only measure small sized inputs not representative 
off  typical workloads. As will be discussed in Section 4.4. due to these latter two 
problemss we have chosen to apply a measurement technique similar, but not identical, 
too the adaptive sampling approach. 

AA Combination of Techniques 

Fromm the presented overview we conclude that several effective estimation techniques 
existt that are based on measurement, modeling, or a combination thereof. Unfortu-
nately,, no estimation technique exists that provides a level of abstraction that is truly 
applicablee for optimization of applications implemented using our software architec-
ture.. Also, many measurement techniques have proven to be a weak basis for accurate 
performancee estimation, as the impact of system variance is often ignored [90]. 

Inn the following section we present a description of the performance estimation 
approachh applied in our software architecture. Essentially, it is a combination of the 
twoo hybrid techniques described above, as it integrates the impact of system variance 
withh high level abstractions relevant for image processing applications. We refer to 
ourr approach as semi-empirical modeling. 
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4.22 Semi-Empirical Modeling 
Ass stated, any accurate performance estimation technique should cover all relevant 
aspectss of a computer system under consideration. Consequently, many existing esti-
mationn techniques incorporate detailed behavioral abstractions relating to the major 
componentss of such a system [72, 100], a.o. including: (1) the central processing unit, 
(2)) the memory hierarchy, including multiple cache levels, (3) I/O devices, (4) the 
interconnectionn network, (5) the operating system, and sometimes also (6) a spe-
cificc piece of application software. A major problem with this approach is that one 
mayy need tens, if not hundreds, of platform-specific machine abstractions to obtain 
trulyy accurate estimations. Consequently, the essential requirements of simplicity and 
applicabilityapplicability as put forward in Section 4.1.1 are not satisfied. 

Too overcome this problem we have designed a new technique for performance esti-
mationn of parallel image processing applications running on clusters. The technique, 
whichh we refer to as semi-empirical modeling, allows for high-speed evaluation of 
completee applications or any relevant constituent subtask. Also, the technique is suf-
ficientlyy accurate to allow correct optimization decisions to be made automatically, on 
anyy machine in the class of target platforms. The semi-empirical modeling approach 
iss based on three essential ingredients: 

1.. A high level abstract machine definition for parallel low level image processing 
(thee APIPM), including a related instruction set. 

2.. A simple, APIPM-based, linear performance model related to each user-callable 
libraryy operation. 

3.. A benchmarking method — aimed at the application domain of low level image 
proceessingg — to capture essential cost factors not made explicit in the models. 

Inn other words, the technique is based on a combination of relevant abstraction, simple 
modeling,modeling, and domain-specific measurement. 

Thee essence of the semi-empirical modeling approach is that any behavior or cost 
factorr that can not be assumed identical for all target platforms is abstracted from in 
thee definition of the model parameters. To still bind each abstract model parameter 
too an accurate performance estimation for a parallel machine at hand, benchmarking 
iss performed on a small set of sample data to capture all such essential, but implicit 
costt factors. In the remainder of this chapter the three essential ingredients of our 
modelingg approach are discussed in more extensive detail. 

4.33 Abstract Parallel Image Processing Machine 

Ass in the AFM-based approach described in Section 4.1.2, we have introduced well-
definedd system abstractions by specifying a high level abstract machine for image pro-
cessing:: the Abstract Parallel Image Processing Machine, or APIPM. In the APIPM 
commonn hardware characteristics of the target machines are reflected by the definition 
off  abstract hardware components. In addition, the typical behavior of the routines to 
bee run are reflected in a related instruction set. 
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4.3.11 APIPM Components 
Ann APIPM consists of one or more identical abstract sequential image processing ma-
chiness (ASIPMs), each consisting of four closely related components (see Figure 4.1): 

1.. a sequential image processing unit (SIPU), capable of executing APIPM instruc-
tions,, one at a time, 

2.. a memory unit, capable of storing (image) data structures, 

3.. an I/O unit, for transporting data between the memory unit and external sens-
ingg or storage devices, 

4.. data channels, the means by which data is transported between the ASIPM 
unitss and external devices. 

Althoughh the memory unit of each ASIPM is connected with those of all other 
ASIPMs,, no ASIPM has direct access to data maintained by any other ASIPM. The 
ASIPMss are ordered and identified by a unique number. The range of valid identifiers 
iss 0. ...,7V - 1, where N is the number of ASIPMs in the APIPM. Each ASIPM has 
knowledgee of the range of valid identifiers, and of its own unique number. 

Thee definition of the APIPM reflects a state-of-the-art homogeneous commodity 
cluster.. It only differs from a general purpose machine in that each sequential unit is 
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Figuree 4.1: Abstract Parallel Image Processing Machine (APIPM) comprising of f our 
ASIPMs. ASIPMs. 



4.3.. Abstract Parallel Image Processing Machine 51 1 

designedd for image processing related tasks only. Each ASIPM is capable of running 
codee individually, independent of all other ASIPMs. The programs executed by each 
ASIPMM need not be identical. Exchange of data between processing units is possible 
byy communication over the interconnecting data channels. 

Althoughh most realistic clusters do not have a fully connected communication 
network,, we have decided to include one in the APIPM. This is because in modern 
multicomputerr systems data transfer between nodes that are not directly connected 
doess not require the intermediate nodes on the complete send path to be interrupted. 
Consequently,, the time required for transferring a message from one node to another 
iss not significantly influenced by the distance between the nodes. 

4.3.22 APIPM Instruction Set 

Thee APIPM instruction set (see Table 4.1) consists of four classes of operations: 

1.. Generic image processing instructions, i.e. the specialized parallelizable pat-
ternss described in Chapter 3. 

2.. Memory instructions, for allocation and copying of (image) data. 

3.. I/O instructions, for transporting data between the memory unit and external 
devices. . 

4.. Communication instructions, for exchanging data among ASPIM units. 

Forr reasons of simplicity, in the overview of Table 4.1 the operands (i.e., arguments) 
forr each opcode have been left out. A complete overview will be given in Section 4.A. 

Inn the instruction set we have included only two communication instructions (i.e., 
SENDD and RECV). Collective communication operations are not included, as these can 
bee implemented using the two point-to-point operations. The definition of the SEND 
andd RECV instructions is identical to the standard blocking communication operations 
availablee in MPI [104] (i.e., MPI.SendO and MPIJlecvO). 

Inn the abstract machine multiple real-world objects must be represented, which 
shouldd be passed as parameters to the APIPM instructions. The most prominent ob-
jectss are images, but templates, matrices, and the likes, are essential as well. In the 
instructionn set we do not introduce a special data representation for each of these ob-
jects.. As wil l be explained in detail in Section 4. A, we make use of memory references 
instead.. Such references contain information about the internal data representation, 
butt lack any semantic information. The semantics are determined by the APIPM 
instructionn the memory reference is passed to as a parameter. 

Itt is important to note that for several generic image processing operations in 
thee instruction set data element homogeneity is required. This means that the scalar 
typee and the dimensionality of the elements in multiple data structures passed as 
parameterss to a single instruction must be identical. The restriction of data element 
homogeneityy is enforced to acknowledge the differences between operations on homo-
geneouss and heterogeneous types. If homogeneity would not be required additional 
castingg or copying of data would be hidden inside the APIPM. For many instructions 
suchh additional tasks constitute a significant overhead, which must be made explicit. 
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opcode e 
UPOP P 

BPOPV V 

BPOPI I 

REDUCOP P 

NEIGHOP P 

GCONVOP P 

GEOMAT T 

GEOROI I 

opcode e 
CREATE E 

MEMCOPY Y 

DELETE E 

opcode e 
IMPORT T 

EXPORT T 

opcode e 
SEND D 

RECV V 

genericc image processing instructions 
unaryy pixel operation 

binaryy pixel operation (constant value as argument) 

binaryy pixel operation (complete image as argument) 

globall  reduction operation 

neighborhoodd operation 

generalizedd convolution 

geometricc transformation (matrix as argument) 

geometricc transformation (region of interest) 

memoryy instructions 
allocatee data block in memory unit 

copyy data in memory unit 

freee up data block in memory unit 

I/OO instructions 
importt data from external device 

exportt data to external device 

communicationn instructions 
sendd data to other ASIPM 

receivee data from other ASIPM 

Tablee 4.1: Simplified APIPM instruction set. 

4.3.33 Discussion 

Thee definition of the abstract parallel image processing machine and its related in-
structionn set is not complete, as it can not be used as a basis for an actual implemen-
tation.. This, however, is also not the reason for introducing the abstract machine. We 
stresss that the APIPM is defined to serve as a basis for platform independent perfor-
mancee models. Many components deliberately have been left out of the specification, 
too keep the APIPM-based performance models as simple as possible. 

Thee specification includes no information on how to load programs on each ASIPM 
unit.. Also, no memory area has been identified in which APIPM programs are stored, 
andd no program table or program counter has been defined. In other words, all 
hardwaree components that are essential to actually let programs run on the APIPM 
aree left out of the specification. All such components are deemed too low level to be 
off  any use in the performance models, and hence are not incorporated in the APIPM. 

Thee APIPM instruction set is not complete either. For example, the APIPM lacks 
valuee comparison and conditional jump instructions. Such instructions have a rela-
tivelyy insignificant impact on execution time, and should not be incorporated in a 
performancee model. Also, no instructions are included to set up special data struc-
tures,, such as templates, and matrices. Again, such instrtictions are essential for the 
APIPMM to run correctly, but the effect on the execution time in general is insignif-
icant.. In this respect, one may argue that the "DELETE" operation is expected to 
havee no effect on performance either, and should have been left out of the instruction 
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sett as well. However, this instruction is essential to see which memory references are 
stilll  in use, and which are not. As will be discussed in Chapter 6, this knowledge is 
off  great importance in the optimization and scheduling of complete applications. 

4.3.44 Related Work 

Inn the field of parallel low level image processing the definition and use of abstract 
machiness is relatively new. In fact, the only references we know of are all from one 
researchh group at The Queen's University of Belfast in Northern Ireland. In several 
paperss Crookes et al. [35, 36] discuss the design of a Portable Parallel Abstract Ma-
chinechine (PPAM), whose instruction set is based on the Image Algebra Language (IAL), 
whichh in turn is based on Image Algebra [131]. As discussed in Section 2.2.2, IAL is 
aa machine independent programming language capable of parallel implementation on 
aa range of distributed memory parallel machines. In later work both the PPAM and 
IALL have been extended considerably. The languages I-BOL [20] and TULIP [155] 
aree two of the more sophisticated extensions of IAL . In later papers, a more recent 
versionn of the PPAM is referred to as the EPIC abstract machine [34]. The basic 
ideass behind the abstract machines have not changed throughout the years, so in the 
remainderr of this discussion we will only consider the original PPAM. 

Thee Portable Parallel Abstract Machine is designed as the hypothetical target 
machinee for the IAL compiler. The PPAM consists of two main components: a se-
quentiall  controller (implemented on a front end machine, such as a SUN workstation), 
whichh communicates with an abstract parallel co-processor (see Figure 4.2). This co-
processorr can be any kind of parallel system. The use of the parallel co-processor by 
thee sequential controller can be thought of in rather the same way as a floating point 
co-processorr is used by a microprocessor. Although the PPAM design is dissimilar to 
thatt of the APIPM, its related instruction set is almost identical to ours. 

Thee main differences from our work stem from the fact that the PPAM is used as an 
aidd in the design of a parallel compiler rather than as a basis for a performance model 
definition.. On the one hand, the PPAM incorporates a higher level of abstraction than 
thee APIPM, as the communication aspects of parallel execution are not incorporated 
inn its definition. On the other hand, the inclusion of low level abstract hardware 
componentss (such as an instruction control unit) often makes the abstraction level 
muchh lower. Essentially, the differences in the design of the two abstract machines 
aree explained by the fact that the two research directions are non-overlapping. 

Controller r 
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Figuree 4.2: Portable Parallel Abstract Machine [36]. 
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4.44 APIPM-Based Performance Models 
Inn our software architecture, all library operations are assumed to be implemented 
byy concatenation of APIPM instructions only. Also, it is assumed that the execution 
timee of each library operation can be partitioned into independent time intervals, 
eachh corresponding to the cost of a single APIPM instruction. The performance of a 
libraryy operation is then simply obtained by adding the execution times of all APIPM 
instructionss used. 

Similarr to the AFM-based models described in Section 4.1.2, this idea is for-
malizedd as follows. Let I = { i i , /2,-- - , /n }  be the APIPM instruction set. Also, 
lett P = {PJV.PJ2,-  ,Pin} be the set of performance values for all n instructions 
inn I. We assume that, for any given system capable of running APIPM instruc-
tions,, and for each instruction in I, P/. can be obtained by benchmarking. Also, let 
LL = {Li , L2, • • • , L m } be the set of all m operations implemented using instructions in 
II only. For all library operations Lx (x 6 {1, • • • , m}) we define L^ = {Ii,  I2,  , In}, 
inn combination with the total number of occurrences (or count) of each APIPM in­
structionn in Lx : Cx = {C/ l jX, Cj2tX,  ,Cin<x}. The count of each instruction can 
havee any value in N (including 0). The expected total execution time of each library 
operationn Lx is then obtained by 

n n 

TTLxLx =^2cIuXPIt. 

Similarly,, the expected total execution time of any application implemented using our 
libraryy is obtained by adding the execution times of each library operation used. 

AA problem with the simplistic model formalized here is that most APIPM instruc­
tionss are not single static entities. This is because the execution of an instruction is 
oftenn dependent on the values of its operands. Therefore, a static entity for each pos­
siblee operand combination must be incorporated in our model. To avoid an explosion 
off the number of static entities we allow each instruction Ii  and each value Pji to 
bee parameterized. Because the operands of the APIPM instructions are discussed in 
thee appendix to this chapter (Section 4.A), a detailed overview of the model param­
eterizationn is deferred to the appendix as well. To give a straightforward example, 
however,, in almost all APIPM instructions a 'datatype' parameter is incorporated 
(e.g.,, giving I^int') and Ii{'  float')). Also, a 'data-input-size' parameter is required 
forr most performance values in P (e.g., giving Pj^datatype)^2^)  The choice of model 
parameterss is dependent on the actual implementation of each APIPM instruction. 
Forr more detailed information we refer to Section 4.B. 

Benchmarking g 

Too capture system variation without having to rely on platform specific model pa­
rameters,, the semi-empirical modeling approach requires an additional benchmarking 
phasee to be performed. For our software architecture to be used on a specific platform, 
benchmarkingg results need to be obtained only once. As long as the underlying hard­
waree layers and supporting software layers (e.g., operating system, compiler, etcetera) 
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Measuredd time (seconds) 

Figuree 4.3: Performance estimation in case of neighborhood operations and generalized 
convolutions,convolutions, whose performance values depend on two input size parameters — i.e., 
imageimage size and kernel size. Any required performance value (above represented by 
thethe small black square) is obtained by simple bilinear interpolation. In this example, 
measurementsmeasurements were performed for image sizes of 40, 90, and 250 Kb, each combined 
withwith kernel sizes of 9, 25, and 49 bytes. 

aree not upgraded, the same set of measurement results can be applied for estimation 
off  any application implemented using our parallel image library. 

Ass in the adaptive sampling approach of Section 4.1.2, in our software architecture 
eachh APIPM instruction is measured for multiple input sizes. In contrast to adaptive 
sampling,, however, we do not define a fixed time budget for all measurements. By 
defaultt we use a small, predefined set of input sizes for all benchmarking operations. 
Too avoid the benchmarking phase to be unacceptably lengthy, the set of input-sizes 
mayy be user-defined as well. 

Too capture non-linear performance growth without having to perform measure-
mentss for any possible workload, between each pair of measured performance values 
performancee growth is taken to be piecewise linear. For estimation of instructions 
whosee performance value is dependent on one data input size parameter this inter-
polationn is straightforward. The performance values of neighborhood operations and 
generalizedd convolution operations, however, are dependent on two data input size 
parameterss - i.e., the size of the input image and the size of the kernel or template 
structure.. As is indicated in Figure 4.3, in such situation we apply bilinear interpo-
lationn to obtain the required performance estimation. 
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4.4.11 Extended Model for Point- to-Point Communicat ion 

Whereass the performance model described above is sufficient for all sequential APIPM 
instructions,, an extension is required for the two communication operations (i.e., SEND 
andd RECV). First, this is because an accurate prediction of the end-to-end communi-
cationcation time usually can not be obtained by considering the time a processor is busy 
executingg a SEND or a RECV instruction alone. Second, in its current form the model 
doess not closely match the capabilities of the communication instructions as defined 
inn MPI. Most notably, the impact of a message's memory layout on communication 
costss is not incorporated in the model. This is an important point, as one of the tasks 
off  the scheduler of Section 2.3.2 is to make decisions regarding the domain decompo-
sitionn of an application under consideration. Depending on the type of such domain 
decomposition,, it may be necessary to communicate data stored noncontiguously in 
memory.. As was shown by Prieto et al. [125]. knowledge of a message's memory 
layoutt is important, as non-unit-stride memory access may have a severe impact on 
performancee due to caching. Also, the MPI operations may handle the transmission 
off  noncontiguous data differently from contiguous blocks, possibly causing additional 
overheadss due to the packing of data into a contiguous buffer. 

Too incorporate such essential cost factors we have designed an extended model 
forr point-to-point communication. The model, called P-3PC (or the Parameterized 
modelmodel based on the Three Paths of Communication), closely resembles other models 
describedd in the literature (e.g., the Postal Model [11, 21], LogP [38], and LogGP [1]). 
Thee model is capable of modeling the essential communication patterns as used in 
dataa parallel image processing applications. In addition, and in contrast to the models 
mentionedd above, it is also capable of accurately predicting the communication costs 
relatedd to any type of domain decomposition. As this topic is outside the scope of 
thee current chapter, an extensive overview of the P-3PC model and its capabilities is 
givenn in Chapter 5. In the evaluation of the APIPM-based models presented in the 
remainderr of this chapter, all P-3PC specific modeling properties have been left out. 

4.4.22 Discussion 

Thee most important advantage of the APIPM-based performance models is that pre-
dictionss are based on very high level instructions — even in comparison with the 
AFM-basedd models of Section 4.1.2. It would have been possible to define a model 
onn the basis of much lower level instructions as well, but execution times of such 
instructionss tend to be less independent than those of higher level instructions. This 
iss mainly due to optimizations performed by the applied compiler. Also, it is much 
moree difficult to obtain accurate values for lower level instructions, due to the inherent 
intrusivenesss of the benchmarking process 

AA possible drawback of the models is that the instructions and related performance 
valuess are parameterized with quite a large number of instruction behavior and work-
loadd indicators. Obtaining accurate performance values for all possible combinations 
off  parameters is both costly and difficult. However, it is possible to combine several 
parameterss to obtain a more general indicator. As an example, promising candi-
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datess for parameter merging are those that relate to data structure sizes (e.g., width, 
height,, depth, etc.). Furthermore, the benchmarking tool that plays an essential role 
inn our software architecture is implemented such that it allows a user to set regions 
off  interest, to restrict the set of all possible measurements. In addition, it is possible 
too let the benchmarking process be run in parallel on multiple nodes within a target 
architecture,, to reduce the benchmarking costs even further. 

4.55 Measurements and Validation 

Inn this section we show how a realistic image processing application, implemented 
usingg our software architecture, is executed in parallel. The application is highly 
relevantt as it incorporates all of the important APIPM instructions defined in Sec-
tionn 4.3.2. First, a short description is given of the underlying algorithm. Next, both a 
straightforwardd sequential implementation as well as its related parallel execution are 
discussed.. Finally, measured results are compared with APIPM model predictions. 

4.5.11 Detection of Curvilinear Structures 

Ass discussed in [55, 56], the problem of detecting curvilinear structures in images is 
solvedd by considering the second order directional derivative in the gradient direction, 
forr each possible line direction. This is achieved by applying anisotropic Gaussian 
filters,filters, parameterized by orientation 0, smoothing scale av in the line direction, and 
differentiationn scale <JW perpendicular to the line (Figure 4.4), given by 

r"(x,y,ar"(x,y,avv,a,aww,e),e) = avaw fc^| — ^ . (4.1) 

Whenn the filter is correctly aligned with a line in the image, and av, aw are optimally 
tunedd to capture the line, filter response is maximal. Hence, the per pixel maximum 
linee contrast over the filter parameters yields line detection: 

R(x,y)R(x,y) = arg max r"(x,y,av,crw<Q)- (4.2) 
trtr vv ,crw,9 

Thiss directional filtering problem can be implemented sequentially in many dif-
ferentt ways. For each orientation 0 it is possible to create a new filter based on aw 

andd av. In effect, this yields a rotation of the filters, while the orientation of the 
inputt image remains fixed. Another possibility is to keep the orientation of the filters 
fixed,fixed, and to rotate the input image instead. Yet another solution is to integrate 
thee notion of orientation in the filter operation itself. In this case image pixels are 
accessedd according to the size of the neighborhood as well as the given orientation. 

Inn this example, we have implemented the operation by applying fixed filters to 
rotatedd image data. We have selected this implementation as we have found it to 
bee the solution of choice for several researchers in image processing. As such, the 
implementationn reflects parallelization problems encountered in a realistic situation. 
Itt should be noted, however, that the alternative sequential implementations presented 
inn Chapter 7 yield better sequential as well as parallel performance. 
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Figuree 4.4: Directional filtering for line detection. Filter Gw w is oriented in the line 
direction;direction; local coordinate system indicated by (v,w). 

Thee main body of the sequential implementation is presented in pseudo code in 
Listingg 4.1. The program starts by rotating the original input image for a given ori-
entationn 9. In addition, for all (av, o~w) combinations the filtering is performed by six 
libraryy operations executed in sequence. First, f^am'e and 6<T«>cr«"8 (or Fi l teredl_IM 
andd Filtered2_IM, respectively) are produced by executing two generalized convo-
lutions,, each with the appropriate parameters. For cost effectiveness the Gaussian 
convolutionss are performed by applying two 1-dimensional filters in both cases. Next, 
thee result of Equation (4.1) is obtained by executing two binary pixel operations, one 
havingg an image, the other having a constant value as argument. Finally, the result 
imagee is rotated back to match the orientation of the input image, and the maximum 
responsee image is obtained. 

Figuree 4.5(a) gives a typical example of an image that is used as input to the 
program.. The result obtained after applying the program for a reasonably large 
parameterr subspace of (av,aw,0) is shown in Figure 4.5(b). On a state-of-the-art 
sequentiall  machine the program may take from a few minutes up to several hours 
too complete, depending on the size of the input image and the extent of the cho-
senn parameter subspace. Consequently, for the directional filtering program parallel 
executionn is highly desired. 

FORR all orientations 9 DO 
RotatecLIMM = GeometricOp(Original_IM, "rotate", 0); 
FORR all smoothing scales CTt,CTt, D O 

FORR all differentiation scales aw DO 
Filteredd 1_IM = 
Fi l tered2JMM = 
Detectedd JM = 
Detectedd JM = 

GenConvOp(Rotated_IM,, "gauss", aw 

GenConvOp(Rotated_IM,, "gauss", aw 

BinPixfmArgOp(Filteredl_fM, , 
BinPixValArgOp(Detected_IM, , 

BackRotatedJMM = GeometricOp(Detected_IM, 
ContrastJMM = BinPixImArgOp(ContrastJM,, ' 

'absdii  v 
""  mul", 

<*v,<*v,  2, 0); 
ffffvv,, 0, 0); 

",, Filtered2 
aavv x (Tw); 

"rotate",, —0); 
max", , 

IM) ; ; 

BackRotatedJM); ; 

Listingg 4.1: Pseudo code for the directional filtering program. 
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(a)) (b) 

Figuree 4.5: (a,) Typical 1000x554 input image obtained from the Apollo training man-
ualual "Apollo Spacecraft & Systems Familiarization" (March 13, 1968). National Aero-
nauticsnautics and Space Administration (NASA), Office of Policy and Plans, NASA History 
Office.Office. Used by kind permission, (b) Maximum response image obtained after appli-
cationcation of the directional filtering program. 

4.5.22 Parallel Execution 

Ass all parallelization issues are shielded from the user, the pseudo code of Listing 4.1 
directlyy constitutes a program that can be executed in parallel as well. Optimization 
off  the efficiency of the program is to be taken care of by the software architecture's 
schedulingg component. For this evaluation, however, we have created two different 
scheduless for the program by hand. In the first schedule all library operations are 
forcedd to run in a data parallel manner, using all available processors. The second 
schedulee differs from the first in that the last two operations in the innermost loop of 
thee program are run on one node only. 

Inn both schedules the Original_IM structure is broadcast to all nodes. This is 
becausee the structure is applied in the initial rotation operation, which expects it to 
havee a data access pattern of type 'other' (see Section 3.4). This broadcast needs to 
bee performed only once, as Original.IM is not updated in subsequent operations. In 
addition,, in both schedules the first four operations in the innermost loop are executed 
locallyy on partial image data structures. The only need for communication is in the 
exchangee of shadow regions in the two Gaussian convolution operations. 

Inn the first schedule the last two operations in the innermost loop are run in 
parallell  as well. This requires the distributed image Detected.IM to be available 
inn full at each node, because it has an access pattern of type 'other' in the back-
rotationn operation. This is achieved by executing a gather-to-all operation, which is 
logicallyy equivalent to a gather operation followed by a broadcast. Finally, a partial 
maximumm response image Contrast_IM is calculated on each node, which requires a 
finalfinal gather operation to be executed just before termination of the program. In the 
secondd schedule the last two operations are not executed in parallel. As a result, the 
intermediatee result image DetectecLIM is gathered to the single node that produces 
bothh the back-rotated image, as well as the complete maximum response image. 
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Itt is the purpose of the architecture's scheduling component to pick the optimal 
solutionn out of multiple competing schedules of this kind. In the following we will 
showw that the APIPM-based performance models are powerful enough to allow the 
schedulerr to make such decisions correctly. 

4.5.33 Performance Evaluation 

Too initialize the APIPM-based performance models we have performed a small set 
off  benchmarking operations. For each instruction used in the directional filtering 
programm not more than two measurements were performed, i.e. for input sizes of 2002 

andd 10002 elements. Model predictions for each instruction and for each required 
inputt size were obtained as indicated in Section 4.4. 

Thee benchmarking operations, as well as the directional filtering program were 
executedd on the 24-node homogeneous DAS-cluster (Distributed ASCI Supercom-
puterr [7]) located at the University of Amsterdam. All nodes in the cluster con-
tainn a 200 Mhz Pentium Pro with 64 MByte of EDO-RAM, and are connected by a 
1.22 Gbit/sec full-duplex Myrinet SAN network. The nodes run the RedHat Linux 6.2 
operatingg system. At the time of measurements, 4 nodes in the system were unusable. 
Ass a consequence, performance results are presented only for up to 20 processors. 

Basedd on intuition alone a programmer would have great difficulty deciding which 
off  the two schedules described in the previous section should be executed. Clearly, 
aa schedule is preferred if the set of operations unique to that schedule is faster than 
thee set of operations unique to another schedule. Hence, for the directional filtering 
programm the first schedule is preferred if: 

0a(P0a(Protaterotate(size/N)(size/N) + Pmax(size/N) + Pbcast(size)) + Pgather{size) < 
Oa{POa{Protarotate{size)te{size) + Pmax(size))  ̂ ' > 

wheree N denotes the number of nodes, and Oa the size of the parameter subspace. For 
thee first schedule the large number of broadcasts is expected to have a significant im-
pactt on performance. For the second schedule the many rotations of non-partitioned 
imagee data is expected to be costly. 

Basedd on the benchmarking results we are able to decide which schedule is optimal. 
Ass shown in Figure 4.6 (depicting the complete execution time of both schedules), 
ourr models indicate that the first schedule is always preferred - for any number of 
processors.. Clearly, broadcasting a full-sized image structure is not as expensive as 
performingg the image rotation sequentially on one node. The 'hops' in the graph of 
schedulee 1 are explained by the fact that the broadcast operation is implemented using 
aa spanning binomial tree (SBT), which has a cost related to logN. Figure 4.7 shows 
similarr predictions for a smaller input image, but for a larger parameter subspace. 

Too test the accuracy of our performance models we have executed the directional 
filteringg program for both schedules. The resulting mean execution times for each 
runn are included in the graph of Figure 4.6 as well. Error bars are not shown, as the 
performancee of the DAS is quite stable. In most situations measured lower and upper 
boundss are within 0.5 seconds of the mean execution times. The presented results 
indicatee that the model predictions for both schedules are highly accurate - for any 
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Figuree 4.6: Comparison of model predictions and measurements for the two program 
schedules.schedules. Results f or directional filtering of extended Apollo image of size 1098x 1098, 
andand for a parameter subspace including 12 orientations and 4 (crv,aw) combinations. 
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Figuree 4.7: Comparison of predictions and measurements for input image of size 
707x707x 707, and for a parameter subspace including 36 orientations and 4 (o-v,aw) com-
binations. binations. 
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Figuree 4.8: Difference between accumulated predictions and measurements for the six 
mostmost important APIPM instructions (schedule 1, not including communication). 

numberr of processors. Even worst case predictions are within 5.5% of the measured 
values.. It is noteworthy, however, that our models are slightly optimistic in all situ-
ations.. This is explained by the fact that the mean performance values measured in 
thee benchmarking process tend to be somewhat lower than what is actually obtained 
att application run time. This is because 'outliers' obtained during benchmarking are 
nott included in our database of performance values, while extremely high values may 
stilll  occur during normal runs of a particular application. 

Thee graph of Figure 4.8 shows that our performance models are capable of provid-
ingg accurate estimations at the lowest level of APIPM instructions as well. The accu-
mulatedd estimations on a per-instruction basis are optimistic as well as pessimistic, 
dependingg on the applied instruction. The importance of this graph, however, lies in 
thee fact that errors in the estimations for the most significant instructions applied in 
thee application of Listing 4.1 are, in general, not more than 10%. As a consequence, 
wee feel that a sufficiently high level of estimation accuracy is obtained for the models 
too be applied in our software architecture's optimization process. 

Givenn schedule 1, it can be derived from the models that the impact of com-
municationn (especially the repeated broadcast) on overall application performance is 
huge.. Figure 4.9 shows that for 16 nodes the program spends almost half of its time 
communicating.. For 64 nodes 84.1% of the time is lost in all communication steps 
combined,, and 71.1% in broadcasting alone. Although parallel performance is often 
significantlyy better for alternative sequential implementations of this particular line 
detectionn problem (see Chapter 7), communication costs do play an important role in 
almostt any parallel application. Therefore, it is essential for our performance models 
too also provide accurate estimations for the SEND and RECV instructions. The next 
chapterr of this thesis is devoted entirely to the modeling of these basic communication 
operations,, and includes a detailed evaluation of our performance estimations as well. 
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Figuree 4.9: Predicted impact on communication ({or schedule 1). 

4.66 Conclusions 
Inn this chapter we have described the performance estimation approach as applied in 
ourr software architecture. We have introduced the notion of semi-empirical model-
ing,ing, which is a performance estimation technique based on a combination of relevant 
abstraction,abstraction, simple modeling, and domain-specific measurement. We have compared 
thee technique with existing estimation approaches, and have shown semi-empirical 
modelingg to be similar to a combination of two techniques described in the literature: 
(1)) the AFM-based approach of narrow spectrum benchmarking that incorporates 
veryy high level system abstractions, and (2) the approach of adaptive sampling that 
capturess system variance by measuring execution times for multiple workloads. 

Wee have indicated that in our semi-empirical modeling approach all abstractions 
aree introduced on the basis of a high level abstract machine specification for par-
allell  image processing (the APIPM), and a related instruction set. Also, we have 
shownn the definition of the abstract machine to reflect the relevant hardware com-
ponentss and behavior common to all projected target platforms for our software ar-
chitecturee (i.e., state-of-the-art homogeneous commodity clusters). Subsequently, we 
havee indicated how to define a simple, linear performance model on the basis of the 
APIPM-abstractions.. Finally, we have shown how domain-specific benchmarking is 
incorporatedd for estimation of system variance. 

AA comparison of model estimations and experimental measurements has indicated 
that,, for a realistic image processing application, the APIPM-based performance mod-
elss are highly accurate. The models are capable of providing good estimations for full 
applications,, as well as for any constituent subtask. Given these results we are confi-
dentt in that the core of our software architecture forms a powerful basis for automatic 
optimizationn of a wide range of parallel low level image processing applications. 
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Thee evaluation of our performance models as presented in this chapter is not com-
plete,, as the costs related to interprocess communication hardly have been touched 
upon.. Because communication is such a prominent cost factor in many parallel ap-
plications,, all modeling aspects related to this issue are deferred to the next chapter. 
Also,, the evaluation has not shown that optimization on the basis of our performance 
modelss indeed results in highly efficient parallel applications. All issues related to 
applicationn optimization and scheduling are discussed extensively in Chapter 6. An 
assessmentt of the effectiveness of our software architecture in providing significant 
performancee gains is presented in Chapter 7. Finally, in the appendix to this chapter 
aa more detailed overview is given of the APIPM instruction set, and the related model 
parameterization. . 

4.AA APIPM Instruction Set Definition 

Thiss section presents a detailed discussion of the APIPM instruction set definition. 
AA complete overview of the instructions and their related operands is given in Ta-
bless 4A.1 - 4A.3. 

Memor yy References 

Inn the Abstract Parallel Image Processing Machine multiple real-world objects need 
too be represented. The most prominent objects are images, but templates, matrices, 
andd the likes, are essential as well. In the instruction set we do not introduce a special 
dataa representation for each of these objects. Instead, we use memory references that 
containn information about the internal data representation, but lack any information 
onn the semantics of the data referenced to. The semantics are determined by the 
APIPMM instruction the memory reference is passed to as a parameter. 

Givenn the notion of memory references, the operands (arguments) of the instruc-
tionss fall into one of four categories: 

1.. Memory references to single data elements (smref). Operands of this type refer 
too single data elements stored in main memory. Apart from a pointer to a mem-
oryy location, it holds information regarding the scalar type and dimensionality 
off  the data element stored. In a realistic program a single memory reference 
usuallyy represents a pixel value of a certain scalar type and dimension. 

2.. Memory references to aggregated data elements (amref). Operands of this type 
referr to aggregations (such as arrays) of data elements stored in main memory. 
Apartt from a pointer to the memory location containing the first data element, 
itt also contains information regarding the size and origin of the domain of 
thee aggregated structure, in combination with the type and dimensionality of 
thee structure's elements. The size and origin of an n-dimensional aggregated 
structuree are both represented by an n-dimensional vector. 
AA memory reference of this type pointing to a data aggregation of size 1 (thus: 
containingg only one element) is considered equal to the single data element 
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opcode e operands s memoryy instructions 

CREATE E amref,, vector, vector, string, value 
referenc ee t o destinatio n dat a structur e 

domai nn siz e o f  destinatio n structur e 

domai nn origi n o f  destinatio n structur e 

scala rr  typ e o f  dat a element s i n destinatio n structur e 

dimensionalit yy  o f  dat a element s i n destinatio n structur e 

DELETE E 

MEMCOPY Y 

amref f 
#1 ::  referenc e t o sourc e dat a structur e 

amref,, amref, vector, vector, value 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

offse tt  fro m star t  o f  sourc e dat a structur e 

offse tt  fro m star t  o f  destinatio n dat a structur e 

numberr  o f  dat a element s 

opcode e operands s genericc image processing instructions 

UPOP P 

BPOPV V 

amref,, amref, string 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

namee o f  interna l  unar y pixe l  operatio n 

amref,, amref, string, smref 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

namee o f  interna l  binar y pixe l  operatio n 

referenc ee t o singl e argumen t  valu e 

BPOPI I amref,, amref, string, amref 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

namee o f  interna l  binar y pixe l  operatio n 

referenc ee t o argumen t  dat a structur e 

REDUCOP P amref,, smref, string 
referenc ee t o sourc e dat a structur e 

referenc ee t o singl e destinatio n valu e 

namee o f  interna l  reductio n operatio n 

Tablee 4A.1: APIPM instruction set. 
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opcode e operands s genericc image processing instructions 

NEIGHOP P 

GCONVOP P 

GEOMAT T 

GEOROI I 

amref,, amref, string, amref 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

namee o f  interna l  neighborhoo d operatio n 

referenc ee t o kerne l  structur e 

amref,, amref, string, string, amref 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

namee o f  interna l  binar y pixe l  operatio n 

namee o f  interna l  reductio n operatio n 

referenc ee t o kerne l  structur e 

amref.. amref. amref, smref, string, vector 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

referenc ee t o transformatio n matri x 

referenc ee t o singl e backgroun d valu e 

interpolatio nn typ e 

translatio nn vecto r 

amref,, amref, vector, smref 
referenc ee t o sourc e dat a structur e 

referenc ee t o destinatio n dat a structur e 

offse tt  fro m star t  o f  sourc e dat a structur e 

referenc ee t o singl e backgroun d valu e 

opcode e operands s I/OO instructions 

IMPORT T 

EXPORT T 

amref.. value. value 
referencee to destination data structure 

uniquee external data structure identif ier 

uniquee external device number 

amref,, value. value 
referencee to source data structure 

uniquee external data structure identif ier 

uniquee external device number 

Tablee 4A.2: APIPM instruction set (continued). 
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opcode e 

SEND D 

RECV V 

operandss communication instructions 

amref,, vector, value, value 
#1:: reference to source data structure 

#2:: offset from start of source data structure 

#3:: number of data elements 

#4:: unique destination ASIPM identif ier 

amref,, vector, value, value 
#1:: reference to destination data structure 

#2:: offset from start of destination data structure 

#3:: number of data elements 

#4:: unique source ASIPM identif ier 

legend: : 

amreff  memory reference to aggregated data elements 
smreff  memory reference to single data element 
stringg string value (constant) 
valuee numerical value (scalar) 
vectorr numerical value (vector) 

Tablee 4A.3: APIPM instruction set (continued). 

referencee described above. References to aggregations of size 1 and references 
too single data elements can be interchanged at will . In a realistic program a 
memoryy reference of this type usually refers to image data. 

3.. Numerical (constant) values (value and vector). Operands of this type refer 
too single numbers or vectors of single numbers, and are used to represent sizes, 
positions,, etcetera. 

4.. String (constant) values (s t r ing). Operands of this type refer to character 
stringss recognized by each sequential image processing unit (SIPU). A string 
valuee determines the behavior of an instruction, and is either used as an opera-
tiontion indicator, or as a type indicator. 
Operationn indicators refer to internal operations recognized by the SIPU. As an 
example,, indicators such as "NEGATE" and "SQRT" can be used to represent 
validd unary pixel operations. 
Typee indicators represent additional information required for an operation to be 
executed.. For example, the memory allocation instruction "CREATE" needs an 
indicatorr for the specification of the datatype of each element in the structure 
too be allocated. Also, the geometric transformation instruction "GEOMAT" 
needss an indicator for the specification of the type of interpolation to be used. 
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Sequentiall  Instruction s 

Thee instruction set contains memory operations to allocate and free memory space 
("CREATE"" and "DELETE'"), and to copy data from a source area to a destination 
areaa (" MEMCOPY"). As described above, references to single data elements are equal 
too aggregated data structures of size 1. This means that a newly created aggregated 
dataa structure of size 1 can be used as an argument to an instruction that requires a 
singlee data element reference as one of its operands (such as the 'smref' operand in 
thee "REDUCOP" instruction). 

Twoo I/O operations are available in the instruction set to transport data to and 
fromm external devices ("IMPORT" and "EXPORT"). Apart from a reference to ag-
gregatedd data, both instructions need a unique device number and identifier to specify 
thee apparatus itself and the data structure residing on that device. 

Thee generic image processing operations in the instruction set are those we have 
discussedd in Chapter 3. Although we have indicated that many image processing op-
erationss can be performed in-place, in all but the reduction operation ("REDUCOP") 
bothh a source image reference and a destination image reference are required. This 
schemee does not introduce additional copying of data because the same reference 
coiddd be given as an argument twice. 

Ass stated in Section 4.3.2. all image processing operations that have a reference 
too argument data structures or kernel structures as an operand require data element 
homogeneityhomogeneity,, to acknowledge the differences between operations on homogeneous and 
heterogeneouss types. Homogeneity means that the scalar type and the dimensionality 
off  the data elements of both the source structure and the additional structure must 
bee identical. Data element homogeneity is not required for destination image data 
structures,, as the resulting scalar type and dimensionality of the data elements is 
determinedd by the type of internal SIPU instruction performed. 

Communicationn Instruction s 

Thee instruction set includes two communication operations for the exchange of data 
betweenn two ASIPMs. Data can be sent to another ASIPM by using the "SEND" op-
eration.. Data can be received from another ASIPM by using the "RECV" operation. 
Thesee point-to-point operations provide reliable message transfer. This means that 
aa message sent is always received correctly, and that no additional checks for errors 
aree needed. Collective communication operations (i.e.: communication routines that 
involvee multiple ASIPMs) are not included in the instruction set. This is because 
aa complete set of collective communication routines can be created using the two 
point-to-pointt communication operations. 

Thee first operand in the "SEND" operation specifies a send buffer in the main 
memoryy of the sending ASIPM from which the message data is taken. The starting 
pointt in the send buffer and the number of data elements to be sent are specified 
byy the second and third operand. The last operand specifies the unique identifier of 
thee receiving (destination) ASIPM. The scalar type and dimensionality of the data 
elementss sent are specified in the reference to the source data structure. 
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Thee "RECV" operation requires a receive buffer to store incoming message data. 
Similarr to the "SEND" operation, the offset in the receive buffer and the number of 
dataa elements to be received are specified by the second and third operand. Also, the 
lastt operand specifies the unique identifier of the sending (source) ASIPM. 

Al ll  send and receive operations must be matched. This means that for each mes-
sagee sent the destination node needs to execute a receive operation with the sending 
nodee as source identifier. Furthermore, in both the send call and the receive call the 
numberr of data elements, as well as with the scalar type and dimensionality of the 
elementss all must be identical. Also, all messages that are sent over the communica-
tionn channels are non-overtaking. This means that if one ASIPM sends two messages 
inn succession to the same destination, the first message will always be received first. 

Wee assume that the two communication operations are blocking. For the "SEND" 
operationn this means that it does not return until the message has been copied into a 
matchingg receive buffer (on another ASIPM), or stored away safely in a local tempo-
raryy buffer. For the "RECV" operation this means that it does not return until the 
messagee has been fully copied into its receive buffer. Although not expected under 
normall  circumstances, it is possible for a receive call to complete before its matching 
sendd call has completed. 

4.BB APIPM Model Parameterization 

Thiss section presents a detailed discussion of the APIPM model parameterization. A 
completee overview of the parameterized model instructions and related performance 
valuess is given in Tables 4B.1 and 4B.2. 

Parameterizedd Model Instruction s 

Ass stated in Section 4.4, a problem with our simple, linear performance model is that 
mostt APIPM instructions are not single static entities. This is because the execution 
off  an instruction often depends on the values of its operands. Therefore, a static 
entityy for each possible operand combination must be incorporated in the model. To 
avoidd an explosion of the number of static entities we allow each instruction ij to 
bee parameterized instead. The number of parameters for a model instruction is not 
necessarilyy identical to the number of operands of the related APIPM instruction. For 
example,, the background value required in the geometric transformation instructions 
(Tablee 4A.2, operand #4 in either "GEOMAT" or "GEOROI") does not call for 
additionall  static model instructions. The execution of these instructions is expected 
too be independent of the applied background pixel value. 

Essentially,, any possible source of relevant change in instruction behavior must be 
capturedd in a model parameter. Here, the task of choosing relevant model parameters 
iss steered by the actual implementations of each APIPM instruction in our software 
library.. An overview of the parameterized model instructions related to all sequential 
APIPMM instructions is presented in Table 4B.1. The communication instructions have 
beenn left out, as parameterization of these instructions (a.o., including the memory 
layoutt of a message, see Chapter 5) is outside the scope of this chapter. 
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instructio n n 

UPOP P 

BPOPV V 

BPOPI I 

REDUCOP P 

NEIGHOP P 

GCONVOP P 

GEOMAT T 

GEOROI I 

CREATE E 

MEMCOPY Y 

DELETE E 

IMPORT T 

EXPORT T 

parameterizedd model instructio n 

-ft/pop(°Pname)) idim, stype, ival) 

IBPOPVIBPOPV (opname, idim, stype, ival, aval) 

II  BPOPI (opname, idim, stype, ival, aval) 

^fl£Dt/cop(0Pname55 idim, stype, ival) 

lNEiGHOp{°PlNEiGHOp{°Pnamenameii  idim, kdim, stype, ival, kval) 

-fccojwop(popname,, ropname. idim, kdim. stype, ival, kval) 

IGEOMATIGEOMAT(idim,(idim, stype. ival, mtype, itype) 

IGEOROIIGEOROI (idim, stype, ival) 

ICREATEICREATE(idim,(idim, stype) 

IMEMCOPYIMEMCOPY (idim, stype) 

IDELETEC^^,IDELETEC^^, stype) 

^/A/POPT(idim,, stype) 

^£XPOPT(idim,, stype) 

legend: : 

avall  value indicator of argument data structure 
idimm dimensionality of source data structure 
itypee type of interpolation used in geometric operation 
ivall  value indicator of source data structure 
kdimm dimensionality of kernel data structure 
kvall  value indicator of kernel data structure 
mtypee type of matrix used in geometric operation 
opnamee name of internal operation 
popnamee name of internal binary pixel operation 
ropnamee name of internal reduction operation 
stypee scalar type of data elements 

Tablee 4B.1: Parameterized model instructions. 
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Thee parameters for the model instructions presented in Table 4B.1 fall into one 
off  four categories: 

•• Type indicators. Three different type indicators are introduced: 'stype', 'mtype', 
andd 'itype'. The scalar type parameter can have any of the values "byte", 
"short",, "int", "float", and "double". The type of the data structure elements 
oftenn will have an important impact on the behavior of an instruction. As an 
example,, arithmetic floating point operations (such as sqrt) are often much more 
expensivee than the non-floating point versions. 
Thee interpolation type indicator is applied in geometric transformation opera­
tions,, and can have any of the values "nearest" and "linear". The matrix type 
indicatorr decides which geometric transformation is performed. Currently, the 
availablee valid values are "rotate", "reflect", and "scale". 

•• Value indicators. Three different value indicators are introduced: 'ival', 'aval', 
andd 'kval'. This is because the actual values present in a data structure may 
havee an important impact on the performance of an instruction. For example, 
whenn the value ' 1 ' is presented to a base-10 logarithm operation '0' is returned. 
However,, if '0' is presented to the operation an error value is returned, and an 
exceptionn may be raised, possibly causing additional overhead. Currently valid 
valuess for the parameters 'ival', 'aval', and 'kval1 are: 

-- "ALLO" (most elements have the value 0), 

-- "ALL1" (most elements have the value 1), 

-- "0TO1" (most elements have a value between 0 and 1), and 

-- "ANY" (no value indication, used by default). 

DimensionalityDimensionality indicators. Two dimensionality indicators are introduced: 'idim' 
andd 'kdim'. In our software library a choice has been made to provide differ­
entt implementations for operations on 2-dimensional and 3-dimensional images. 
Also,, multiple fundamental kernel operations have been implemented to allow 
forr optimization of operations that make use of separable kernel data. For this 
reasonn the 'idim' parameter can have the value "2D" or "3D". The 'kdim' pa­
rameterr either can have the value " ID" or "nD". Here we use "nD" to represent 
non-separablee kernel dimensionality. 

•• Operation indicators. Operation indicators refer to the internal operations rec­
ognizedd by the Sequential Image Processing Unit (SIPU). See also Section 4.A. 

Parameterizedd Performance Values 

Thee performance values in set P are not single static entities either. This is because 
thee execution time of many instructions is dependent on the size of the workload. For 
thiss reason we also have parameterized the performance values related to the model 
instructions.. In Table 4B.2 an overview is given of the parameterized performance 
valuess related to the sequential operations in the APIPM instruction set. 
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itype)itype) (ddim 
,, w. h, d) 

h,, d) 
w,, h, d) 
h .d) ) 

h,, d) 
,, h .d) 

,, w, h, d) 

dimensionalityy of data elements (usually: pixels) ) 
extentt of structure's domain in each of 3 dimensions 
extentt of kernel ss domain in each of 3 dimensions 

Tablee 4B.1: Parameterized performance values. 

Thee 'ddim' performance value parameter relates to the dimensionality of the data 
elementss (i.e., pixels) of the structure passed to a given instruction. All other per-
formancee value parameters relate to the sizes of the data structures passed to an 
instruction.. Although the software architecture's benchmarking component incorpo-
ratess all, by default the size and dimensionality parameters are taken together to form 
aa single 'total size' parameter. It should be noted that the performance estimations 
presentedd in Section 4.5 are all based on benchmarking results obtained after this 
typee of parameter merging. 



Chapterr 5 

AA Communicat ion Model for 
Automat icc Decomposit ion of 
Regularr Domain Problems* 

"Mind"Mind the gap!" 

(warningg message broadcast across platforms at London Underground) 

Onee of the most fundamental problems any automatic parallelization and optimization 
tooll  is confronted with is to find an optimal domain decomposition for an application 
att hand. For regular domain problems (such as simple matrix manipulations) this 
taskk may seem trivial. However, communication costs in programs executing on com-
modityy clusters often significantly depend on the capabilities and particular behavior 
off  the applied message passing primitives. As a consequence, straightforward domain 
decompositionss may deliver non-optimal performance. 

Whereass many software libraries exist that provide efficient message passing im-
plementationss [53, 102], MPI seems to have become the de facto standard [104]. Of the 
largee number of functions defined in MPI 1.1, the two blocking point-to-point commu-
nicationn operations (i.e., MPI_Send() and MPIJlecvO) are most important and most 
oftenn used (see also Section 2.2.1). To implement optimal parallel applications it is 
essentiall  to have a thorough understanding of the performance characteristics of these 
basicc communication operations. A good way to make such characteristics explicit is 
too design a performance model that captures typical point-to-point communication 
behavior.. Because a fundamental MPI design criterion was portability across a wide 

*Thi ss chapter combines our papers published in Proceedings of the Tenth Euromicro Workshop 
onon Parallel, Distributed and Network-based Processing (PDP 2002) [142], IEEE Transactions on 
ParallelParallel and Distributed Systems [143] and Journal of Systems Architecture [144]. 
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rangee of computers, such a model must be applicable to the same range of machines. 
Essentially,, this implies that a performance model must incorporate a similar level of 
abstractionn as introduced in the MPI standard. 

Inn the literature several point-to-point communication models have been described 
thatt match the MPI abstractions up to a certain degree (e.g., the Postal Model [11, 21], 
LogPP [38], and LogGP [1]). Although successful in many situations, these models were 
nott designed for communication according to MPI specifically. Consequently, the 
modelss do not incorporate all capabilities of MPI's send and receive operations. As 
ann important example, the effect of memory layout on communication costs is ignored 
completely.. This is unfortunate, as the work of Prieto et al. [124, 125] indicates that 
aa change in the spatial locality of messages exchanged using MPI can have a severe 
impactt on the overall performance of an application. The authors state that "the 
bandwidthbandwidth reduction due to non-unit-stride memory access could be more significant 
thanthan the reduction due to contention in the network". Independently, we have come 
too similar conclusions [139]. Given these results, it is surprising that no model seems 
too exist that can account for such costs. 

Ass described in Chapter 4, in our software architecture we rely heavily on per-
formancee models to perform the task of automatic parallelization of a particular 
classs of regular domain problems: i.e., low level image processing. As the limita-
tionss of existing communication models proved to be too severe, we have designed a 
neww model (called P-3PC, or the Parameterized model based on the Three Paths of 
Communication),Communication), that closely matches the behavior of MPI's standard point-to-point 
communicationn operations. P-3PC bears strong resemblance to the aforementioned 
models,, but due to its additional features it provides more accurate estimations in 
manyy essential situations. 

First,, P-3PC acknowledges the difference in the time either the sender or the re-
ceiverr is occupied in a message transfer, and the complete end-to-end delivery time. 
Second,, P-3PC makes a distinction between communicating data stored either con-
tiguouslyy or noncontiguously in memory. Finally, P-3PC does not assume a strictly 
linearr relationship between the size of a message being transmitted and the communi-
cationn costs. Although P-3PC is targeted towards the specific needs in our research, 
itt is general enough to be applicable in other research areas as well. 

Hence,, the primary research issue addressed in this chapter is formulated as fol-
lows:: How to design a simple and portable communication model that (1) reflects 
thee relevant capabilities of MPI's standard point-to-point communication primitives, 
andd (2) accurately models the communication costs encountered in low level image 
processingg applications executing in data parallel fashion 

Thiss chapter is organized as follows. Section 5.1 discusses the requirements for a 
modell  to be applied in our software architecture. Also, two popular communication 
modelss are evaluated according to these requirements. The new P-3PC model is in-
troducedd in Section 5.2. Section 5.3 shows how P-3PC is applied in the evaluation 
off  communication algorithms executed in a realistic image processing application. 
Inn Section 5.4 predictions are compared with results obtained on two clusters, each 
havingg a different interconnection network, and a different MPI implementation. Con-
cludingg remarks are given in Section 5.5. 
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5.11 Modeling of Message Passing Programs 
Inn our software architecture all parallelization and optimization issues are to be taken 
caree of automatically, hidden from the user. As explained in Chapters 2 and 4, for 
thiss task to be performed correctly we rely on domain-specific performance models 
thatt are applied in combination with a benchmarking tool and a separate scheduling 
component.. Based on the models and the measured performance values, it is the task 
off  the scheduler to make optimization decisions regarding: 

1.. the logical processor grid to map data structures onto (i.e., the actual domain 
decomposition), , 

2.. the routing pattern for the distribution of data, 

3.. the number of processing units, and 

4.. the type of data distribution (e.g., broadcast instead of scatter). 

Inn this chapter we focus on the first two optimization tasks in this list. Once the 
costt characteristics are available of any routing pattern, given any conceivable do-
mainn decomposition, the optimal number of processors and the actual type of data 
distributionn can be derived. 

Inn the following we will investigate the requirements for a communication model 
too be applied in our software architecture. On the basis of these requirements, we 
wil ll  shortly discuss the two most popular models described in the literature. 

5.1.11 Model Requirements 

InIn our software library all communication algorithms are implemented using the stan-
dardd blocking MPI send and receive operations. Because low level image processing 
operationss tend to have a bulk synchronous parallel behavior [103, 162], usage of any of 
MPFss additional communication modes will hardly result in a performance improve-
ment,, and may even be counterproductive (see also [125]). Also, as MPI's standard 
collectivee communication operations do not provide all functionality required in our 
library**  we have implemented multiple scatter, gather, and broadcast operations in 
thiss manner as well. 

Inn such data exchange operations the combined latency of sending or receiving 
multiplee messages in sequence may be overlapping with the end-to-end latency of 
eachh single message. As shown in Figure 5.1(a), such latency differences can be 
significant.. This overlap can be made explicit if a performance model incorporates 
thee following properties: 

1.. The ability to predict the time a processing unit is busy executing either the 
MPI_Send()) or the MPI_Recv() operation. As the two communicating nodes 

^Thee main problem with many of the operations defined in MPI 1.1 is that a possibility to define 
fluctuatingfluctuating strides in multiple dimensions is lacking. Although this problem is lifted in the MPI-2 
definitionn [105] (with the introduction of the MPI_Gatherv() and MPI.ScatterwO operations), as of 
yett MPI-2 implementations are not generally available. 



766 Chapter 5. A Communication Model for Automatic Decomposition of Regular Domain Problems 

mayy handle the transfer of data differently (see [16], and also requirement 3 in 
thiss section), the communication costs at both ends should be modeled inde-
pendently. . 

2.. The ability to predict the complete end-to-end latency. Again, the end-to-end 
latencyy should be modeled independently from the overhead at either node. 

Dependingg on the type of domain decomposition, it may be necessary to com-
municatee data stored noncontiguously in memory. Using MPI derived datatypes it is 
possiblee to send such data in a single communication step. As was shown by Prieto et 
al.. [124, 125], knowledge of a message's memory layout is important, as non-unit-stride 
memoryy access may have a severe impact on performance due to caching. In addition, 
thee MPI send and receive operations may even handle the transmission of noncon-
tiguouss data differently from contiguous blocks. The MPI 1.1 definition [104] states 
thatt " it is up to the implementation to decide whether data should first be packed in a 
contiguouscontiguous buffer before being transmitted, or whether it can be collected directly from 
wherewhere it resides''. As shown in Figure 5.1(a) as well, the latency for communicating 
eitherr contiguous or noncontiguous data may be significantly different indeed. Such 
differencess can be accounted for if a performance model incorporates: 

3.. The ability to reflect the difference in sending data stored contiguously in mem-
ory,, and noncontiguous data. Again, the memory layout at the two nodes should 
bee modeled independently. 

Ass a consequence from the fact that the send and receive operations are essentially 
'blackk boxes', it is not safe to assume communication costs to be linearly dependent 
onn message size. As shown in Figure 5.1(b), nonlinearities — caused by caching, 
buffering,, packetization, changes in communication policy, etcetera — may be quite 
significant.. As a final requirement, a model should therefore incorporate: 

4000 600 
ee size (byles x 1,000) 

(a)) Latency: sender side versus end-to-end 

20OO 400 600 800 
Messagee size (bytes x 1,000) 

(b)) Sender latency (detailed) 

Figuree 5.1: Values obtained on DAS [7]  using MPI-LFC [16] (as in Section 5-4)-
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4.. The ability to provide accurate predictions over a large range of message sizes. 
Forr the full range of message sizes a strictly linear increase in communication 
costss should not be assumed. 

Inn certain application areas it may be important to incorporate network contention 
ass well. For our purposes, however, this is not required. In Section 5.5 we will shortly 
comee back to this issue. 

5.1.22 Relevant Models in the Literature 

Inn the literature a multitude of message passing models exists. One end of the spec-
trumm consists of models in which communication costs are accounted for by abstract-
ingg the interconnection network into a few parameters (e.g., LogP [38], LogGP [1], 
thee Postal Model [11, 21], and the standard linear communication model as described 
inn [50, 79, 114]). Models with a similar level of abstraction are sometimes integrated 
inn a model for computation in order to evaluate architecture and application scalability 
(e.g.,, the Latency Metric [173]). At the other end of the spectrum are highly parame-
terizedd models that are targeted towards a limited set of applications or architectures 
onlyy (e.g., C3 [63]). 

Inn our research we must restrict ourselves to models that have an abstraction level 
comparablee to that of MPI. Therefore, models such as the Postal Model, or LogP are 
seeminglyy most suitable. As is shown in the following, however, none of these models 
fullyy complies with the specific requirements in our research. 

Thee Postal Model 

Onee of the simplest point-to-point communication models is the Postal Model [11, 21], 
whichh derives its name from an analogy to the postal service. The model incorporates 
thee notion of communication latency through a parameter A, which represents the 
inversee ratio of the time it takes a processor to send out a message and the time until 
thee recipient of the message has accepted it. As such, the single parameter captures 
bothh the software and the hardware related overhead, such as message preparation, 
locall  buffer copying, network propagation delays, and message interpretation. In the 

RECEIVER R 

t +X -1 1 tt + X 

Figuree 5.2: Communication according to the Postal Model. 
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modell  (see Figure 5.2) a message refers to an atomic piece of data, which cannot 
bee broken into smaller pieces. The sending of large amounts of data is achieved by 
sendingg out several atomic messages in sequence. The time it takes to send or receive 
aa message is defined as one unit of time. 

Thee Postal Model partially adheres to the first two requirements of Section 5.1.1: 
itt acknowledges the difference in the occupation time at each node, and the complete 
end-to-endd latency. However, communication overhead is assumed to be identical at 
bothh ends. An assumption of this kind is overly restrictive and is a partial violation 
off  the first two requirements of Section 5.1.1. 

Thee model violates the third requirement as well as it does not allow changes 
inn communication behavior induced by memory layout differences to be made ex-
plicit.. In addition, the Postal Model uses a single unit time for the sending of atomic 
messages.. This assumes a linear growth rate in the time required for sending mes-
sagess of arbitrary length. This property does resemble the strategy of breaking down 
largee messages into multiple packets (as applied by many message passing systems). 
However,, it constitutes a violation of the fourth requirement of Section 5.1.1 as well. 

LogPP and LogGP 

Anotherr communication model that has received considerable attention is the LogP 
modell  [38]. The model captures the cost of communicating small-sized messages in 
fourr parameters: 

•• L: an upper bound to the latency associated with sending a message from one 
nodee to another. 

•• o: the overhead, or the amount of time a processor is busy during the transmis­
sionn or reception of a message. 

•• g: the gap, defined as the minimum time interval between consecutive message 
transmissionss or consecutive message receptions at the same processor. 

•• P: the number of processor-memory pairs in the machine. 

Figuree 5.3 shows that LogP bears strong resemblance to the Postal Model. Also, 
LogPP presents a generalization of the Parameterized Communication Model [115], 
nott discussed here. 

i .. * -i 
SENDERR | \ - - | f,; 

'*|| 1 **\  1 RECEIVER 

oo L o 

Figuree 5.3: Communication according to LogP. 
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Inn [1] the LogP model is extended with a linear model for long messages. This 
model,, called LogGP, has one additional parameter: 

•• G: the gap per byte (i.e., time per byte) for long messages. 

AA pictorial view of LogGP is given in Figure 5.4. Clearly, LogGP provides a more 
accuratee description of the communication of long messages than a sequence of LogP 
communications. . 

Thee two models are important because they make explicit the differences in the 
occupationn time at both ends, and the end-to-end delivery time. A possible delay (the 
gapp g) in consecutive transmissions or receipts is accounted for as well. Unfortunately, 
thee two models suffer from the same problems as the Postal Model. First, in both 
modelss communication overhead is assumed to be identical at both ends. Second, 
memoryy layout differences are not incorporated. Finally, the models assume a strictly 
linearr growth rate in the time required for sending messages of arbitrary length. As a 
consequence,, we conclude that the two models do not comply with the specific needs 
inn our research either. 

SENDER R 

RECEIVER R 

Figuree 5.4: Communication according to LogGP. 

5.22 The P-3PC Model 

Ass no model exists that meets all requirements of Section 5.1.1, we introduce a new 
communicationn model. The model, which we refer to as P-3PC, or the Parameterized 
modelmodel based on the Three Paths of Communication, will be discussed in two parts. 
Firstt we introduce a simplified version of the complete model (called 3PG), that 
compliess only with the first two requirements of Section 5.1.1. Subsequently, the 3PC 
modell is extended to incorporate the remaining two requirements. 

5.2.11 Part I: 3PC 
Givenn the first two requirements of Section 5.1.1, we introduce the notion of the three 
pathspaths of communication, and assume that the cost of message transmission can be 
capturedd in three independent values: 
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•• Tsenct: the cost related to the communication path at the sender (i.e., the time 
requiredd for executing the MPI_Send() operation). 

•• Trecv: the cost related to the communication path at the receiver (i.e.. the time 
requiredd for executing the MPI_Recv() operation). 

•• Tjuif. the cost related to the full communication path (i.e.. the time from the 
momentt the sender initiates a transmission until the receiver has safely stored 
alll data and is ready to continue). 

Forr each path we assume that the communication costs can be represented by two 
parameters.. The transmission of any message is expected to involve a constant amount 
off time, identical to the cost of sending a 0-sized message. This cost is captured by 
thee mutually independent parameters tcs,tcr, and tcf (for the sender, receiver, and 
fulll path respectively). At the sender side this value may represent what is often 
referredd to as the message startup time, but we prefer not to use this terminology to 
avoidd unnecessary overspecification. Also, for each transmitted byte we assume an 
'additionall time', which is captured by the mutually independent parameters tas,tar, 
andd taf respectively. The three communication times (see also Figure 5.5) involved 
inn the transmission of a message containing n bytes are then given by: 

-L-L sendyï) ^cs T n ' *asi 

-L-L recvy^J ^cr i *^ ' ^ar; 

TfTfuuii(n)ii(n)  = tcf +n-taf. 

Thus,, 3PC simply constitutes a combination of three traditional linear models as 
alsoo applied in [50, 79, 114]. Note that the manner in which accurate values for the 
modell parameters can be obtained is independent of the actual MPI implementation 
orr the type of communication hardware used. A detailed description of our method 
off measurement is given in Section 5.4. 
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Figuree 5.5: Communication according to 3PC. 
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5.2.22 3PC versus LogGP 
Thee LogGP model of Figure 5.4 constitutes a superset of all conventional models of 
Sectionn 5.1.2. In other words, it is possible to express models such as the Postal 
Model,, or LogP, in terms of the LogGP parameters. For this reason it is relevant 
too indicate that 3PC preserves the important qualities of LogGP under the following 
assumptions: : 

LcsLcs — *cr " Qi 

ttccff = 2o + L, 
*as*as — tar — ^a/ — " • 

Becausee in state-of-the-art communication processors LogGP 's o parameter is either 
negligiblee [22] or comparable to g (even for relatively small messages, see [92]), 3PC is 
evenn identical to LogGP under the given assumptions. Compared to LogGP we feel 
thatt 3PC is easier to understand, as for each communication path similar parameters 
aree defined. Given the fact that the costs for the three paths of communication are 
madee independent (which is not the case in any of the other models), we conclude that 
3PCC is expected to be at least as powerful as the LogGP model. Note, however, that 
wee do not claim that 3PC is necessarily a better alternative to LogGP for detailed 
studyy of communication behavior. It is introduced only for it to serve as a basis for 
thee P-3PC model. 

5.2.33 Part II: P-3PC 

Too incorporate the last two requirements of Section 5.1.1, the 3PC model is 'parame­
terized'' with a cost indicator M, representing the memory layout at the two communi­
catingg nodes. Also, it is assumed that each 'additional time' parameter is a function 
off n, instead of a constant value for all message sizes. In this extended model (called 
P-3PC),P-3PC), the three communication times involved in a message transfer are given by: 

2"send,A/(n)) = tcs + t a s ,A / (n ) , 

7rect>,A/(n)) = tcr + i „ r ,A / (n ) , 

TfTfuuuuttM{n)M{n) = tcf + £a/,;v/(n), 

wheree M 6 {cc, en, nc, nn}. These layout descriptors indicate the four memory 
layoutt combinations at the sender and the receiver combined. For example, en means 
thatt a contiguous block of data is transmitted by the sender, which is accepted as a 
noncontiguouss block by the receiver. 

Ass no a priori assumptions can be made about the shape of the 'additional time' 
functions,, a set of benchmarking operations must be performed for several different 
messagee sizes. As also indicated in Chapter 4, one possibility is to arbitrarily choose a 
sett of relevant message sizes, but an adaptive benchmarking technique could be used 
ass well to actively search for nonlinearities in the communication costs. In any case, 
basedd on the benchmarking results (and in accordance with the fourth requirement 
off Section 5.1.1), each 'additional time' function is assumed to be piecewise linear 
betweenn each pair of measured communication cost values. 
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5.33 Application of the P-3PC Model 

Thiss section shows how the P-3PC model is applied to evaluate the communication 
costss involved in one of the most essential applications in image processing: i.e., 
evaluationn of the differential structure of images. Examples are edge detection (based 
onn first and second order derivatives) and invariants (based on i-th order derivatives). 
Applicationss of this kind are good examples of regular domain problems as referred 
too in the work of Prieto et al. [124, 125]. 

Ass is well-known, a derivative is best computed using convolution with a separable 
Gaussiann kernel (i.e., n 1-D kernels, each applied in one of the image's n dimensions). 
Thee size of the convolution kernel depends on the smoothing scale a and the order 
off  the derivative. In this example (and in the measurements discussed in the next 
section)) we restrict ourselves to first and second order derivatives (five in total) in the 
x-x- and y-direction of 2-D image data, and a G {1, 3, 5} . Here, for a = 1, the sizes of 
thee 1-D kernels for the i-th order derivative (with i G {0,1,2}) in any direction are 
7,, 9, and 9 pixels respectively. For a = 3 the kernel sizes are 15, 23, and 25 pixels, 
andd for a = 5 these are 23, 37, and 39 pixels respectively. For readers unfamiliar with 
imagee processing it is sufficient to know that these kernel sizes partially determine the 
amountt of data exchanged among neighbors in a logical CPU grid — as is explained 
inn more detail below. 

Whenn running such application in parallel, three different communication algo-
rithmss are to be executed. First, the input image is to be spread throughout the 
parallell  system in a scatter operation. Second, to calculate partial derivative images, 
pixelss in the border regions of each partial input image are to be exchanged among 
neighboringg nodes in the logical CPU grid. Finally, after having performed all relevant 
(applicationn dependent) sequential operations, resulting image data is to be gathered 
att a single node, for on-screen display or storage. 
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Figuree 5.6: Comparison of MPLScatterv() and OFT scatter implemented using 
MPLSendQMPLSendQ and MPLRecvQ calls (measured on DAS using MPI-LFC). 
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Ass indicated in Section 5.1.1, in addition to the collective operations available 
inn MPI we have implemented multiple scatter and gather operations ourselves, using 
standardd blocking point-to-point operations. As shown in Figure 5.6, our implementa-
tionss — which, in contrast to the MPI versions, allow definition of fluctuating strides 
inn multiple dimensions — can often compete with available MPI implementations. 
Thiss indicates that many MPI distributions are not optimized for a particular ma-
chine,, a problem also discussed in [125, 163]. Of course, in cases where the MPI 
implementationss are faster (and match our specific needs), we apply these versions 
andd use the P-3PC estimations for our fastest implementation as an upper bound. In 
thee following, the modeling of such operations is restricted to two different implemen-
tations,, one based on a one-level flat tree (OFT), and the other based on a spanning 
binomiall  tree (SBT) (see Figure 5.7). 

Inn case of the OFT scatter operation the root sends out data to all other nodes in 
sequence.. If a 1 x P logical CPU grid is assumed (where P is the number of nodes), 
forr each node the data sent out by the root is stored contiguously in memory; for all 
otherr grids all data blocks sent out are noncontiguous. In addition, for all possible 
gridss all data is accepted as a contiguous block at each receiving node. As each node 
inn the OFT has to wait for all lower-numbered nodes to be serviced by the root before 
itt wil l receive data itself, the communication costs are highest at either the root or at 
thee leaf node that is last serviced (depending on the benchmarking results). A worst 
casee P-3PC estimation of this operation is shown in the timeOFTscatter () operation 
inn Listing 5.1. An estimation of the related OFT gather operation is simply obtained 
byy setting nc to en, and changing all occurrences of Tsenci to Trecv. 

P-3PCC estimation of the spanning binomial tree scatter operation is slightly more 
complicated.. In such operation the root node sends out data to logP other nodes. 
Also,, each non-leaf node forwards all received data it is not responsible for. If X is 
thee number of nodes defined in the x-direction of the logical CPU grid, the number 
off  messages involving contiguous data blocks sent out by the root is logP — logX; the 
remainingg messages sent out are all noncontiguous. In general, the communication 
costss will be highest at either the root node, or the node that is logP full commu-
nicationn paths away from the root. The t imeSBTscatterO operation in Listing 5.1 
showss the worst case P-3PC estimation of this operation. An estimation of the related 
SBTT gather operation is obtained as before. 

Figuree 5.7: Example communication trees for data scattering. 



844 Chapter 5. A Communication Model for Automatic Decomposition of Regular Domain Problems 

doublee timeOFTscatterQ { 
MM <— (X .eq. 1) ? cc : nc // X — nr. of nodes in x-direction of logical CPU grid 
timell  <— (P — 1) • TseTld.A/(imio • imh/P) // P = total nr. of nodes 
time22 «— (P — 2) • Tsendî i(imw  imh/P) + TfuuM(imw  imh/P) // imw = image width 
returnn max(timel, time2) / / imh = image height 

} } 

doublee timeSBTscatterQ { 
timell <— 0.0 
time22 <- 0.0 
forr (i=l; i.leq.logP - logX: i++) 

timell <— timel + Tsend,cc{'l
rnw ' imh/(2  i)) 

time22 <— time2 + Tfun cc(imw  imh/(2  i)) 
} } 
forr (i = logP-logX+l; i.leq.logP; i + + ) 

timell <— timel + TsendmTlc{imw  imh/(2 • i)) 
time22 <— time2 + Tfuu nc(imw  imh/{2  i)) 

} } 
returnn max(timel, time2) 

} } 

doublee timeBorderExchangeQ { / / bw — border width 
returnn (2 • Tfuu în(bw  imh) + 2 • Tfnu cc((imw -\- 2 • bw)  bh)) // bh — border height 

} } 

Listingg 5.1: P-3PC estimation of OFT & SBT scatter, and border exchange. 

AA well-known method to implement Gaussian convolution is to extend the domain 
off the image structure with a scratch border that, on each side of the image in di­
mensionn n, has a size of about half the 1-D kernel applied in that dimension. When 
executedd in parallel, neighboring nodes in the logical CPU grid need to exchange pixel 
valuess to correctly fill the borders of all extended partial images. In our library, the 
exchangee of border data is executed in four communication step. First, each node 
sendss a subset of its local partial image to the neighboring node on its right side in the 
logicall CPU grid (if such neighbor exists). When a node has accepted this block of 
dataa (i.e., after a full communication path period), it subsequently transmits a subset 
off its local partial image to its left neighbor. As shown in Figure 5.8 these steps in the 
borderr exchange algorithm always involve noncontiguous blocks of data. Similarly, 
inn the next two steps border data is exchanged in upward and downward direction, 
inn both cases involving contiguous blocks only. Thus, the timeBorderExchangeO 
operationn in Listing 5.1 gives a worst case P-3PC estimation for this routine. 

Figuree 5.8: Border exchange (right-left and down-up). 
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5.44 Measurements and Validation 
Too validate the P-3PC model we have performed a representative set of benchmarking 
operations.. For each communication path and memory layout combination measure-
mentss were performed using 4 different message sizes, arbitrarily set at IK , 50K, 100K 
andd 500K (all 4-byte values). Benchmarking was performed for 0-sized messages as 
well.. Note that these values are not chosen to best match the communication char-
acteristicss for one particular parallel computer. These sizes are representative for 
messagess transmitted in many image processing applications, and are set identically 
forr all machines. Also note that the sizes applied by the architecture's benchmarking 
tooll  can be user-defined as well; the sizes given here are used by default. 

Clearly,, there is a trade-off between the number of benchmarking operations to be 
performedd and the obtainable estimation accuracy. Still, the predefined set of only 4 
messagee sizes is generally sufficient to obtain highly accurate performance estimations 
forr the much larger range of message sizes encountered in a real application. In this 
respectt it is important to note that, in the measurements presented in the remainder 
off  this chapter, actual message sizes range from 192 bytes up to 8 MB. 

doublee timePath(int pathType, int bufsize, int sendLayout, 
iff  (sendLayout .eq. NONCONTIGUOUS) 

MPI.Type-vector(100,, bufsize/100, 2*bufsize/100, 
else e 

MPI.Type_vector(l,, bufsize, bufsize, MPUFLOAT 

forr (i = l:nrRounds) { 
iff  (myCPUQ .eq. 0) { 

iff  (pathType .eq. SEND) { 
timell  «- MPI.WtimeQ; 
MPI_Send(buf.. 1, sendType, 1, ...); 
time22 «_ MPI.Wtime(); 
totall  <— total + time2-timel; 

}}  eise if (pathType .eq. RECV) { 
timell  <- MPI.WtimeQ; 
MPLRecv(buf,, 1, recvType. 1, ...); 
time22 <- MPI_Wtime(); 
totall  <— total + time2-timel; 

}}  else if (pathType .eq. FULL) { 
timell  «— MPI_Wtime(); 
MPI.Send(buf,, 1, sendType, 1, ...); 
MPI.Recv(buf,, 0, recvType, 1, ...); 
time22 <- MPI.WtimeQ; 
totall  — total + ((bufsize .eq. 0) ? 

} } 
}}  else if (myCPUQ .eq. 1) 

/ // matching send and recv calls at node 
} } 
returnn (total/nrRounds); 

} } 

intt recvLayout, int nrRounds) { 

MPI_FLOAT, , 

&sendType); ; 
/ // defini 

/ // definition of 'sendType' 
&sendType): : 

HonHon of 'recvType' is similar 

//// measure send path 

//// measure receive path 

//// measure full path 

time2-timel)/22 : (t ime2-timel)-2ic /); 

11 are nott shown 

Listingg 5.2: Pseudo code f or benchmarking all path-layout combinations. The constant 
timetime values tcs, tcr, and tcf are obtained if bufsize equals zero. 
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Too give full insight in the benchmarking process, Listing 5.2 gives a simplified 
overvieww in pseudo code. To measure communication for noncontiguous data, a fixed 
numberr of 100 memory blocks (a conservative estimate of the number of blocks pos-
siblyy used in a real application, and again a default setting) is combined in a single 
derivedd datatype definition. For contiguous data only one block is used in such defi-
nition.. Measurements for the send and receive paths are obtained by letting one node 
continuouslyy send data to another node. Full communication path measurements are 
obtainedd by subsequently sending out a message of size 'buf s ize ', and receiving a 
0-sizedd message. As these operations are similar to those applied by many others in 
thee literature we leave all further interpretation to the reader. 

5.4.11 Distributed ASCI Supercomputer (DAS) 

Thee first set of measurements was performed on the 128-node homogeneous DAS-
clusterr [7] located at the Vrij e Universiteit in Amsterdam. All measurements were 
performedd using MPI-LFC [16], an implementation which is partially optimized for 
thee DAS. The 200 Mhz Pentium Pro nodes (with 128 MByte of EDO-RAM) are 
connectedd by a 1.2 Gbit/sec full-duplex Myrinet network, and run RedHat Linux 6.2. 

Thee performance values obtained for this machine are presented in Figure 5.9. The 
valuess indicate that transmitting noncontiguous data indeed has a significant impact 
onn performance. In this case, the additional overhead is due to the fact that MPI-
LFCC uses a contiguous send-buffer for noncontiguous data. To preserve the elegance 
off  the benchmarking code, we have measured multiple 'constant time' values for each 
communicationn path (m = 0). These additional values do not affect the estimations 
presentedd in this section in any way. 

Inn the following we show the results as obtained for the example application of 
Sectionn 5.3. For each of the communication algorithms we have been careful to keep 

JJ send,cc\'m) 

J-J- send,cn\X^') 

J-J- send,nc\'m) 

 send,nn v^V 

JJ recv,cc\J^) 

 recv,cn v^V 

-**  recv,nc\m) 

11 recv,nn \J^) 

Tfuii,cc(m) Tfuii,cc(m) 
TfTfuuiiii }Cn}Cn(m) (m) 

Tfull,nc{m) Tfull,nc{m) 
TfTfuullll rrnn{m) nn{m) 

m=0 0 
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8.04 4 
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14.86 6 
14.89 9 
14.43 3 
14.82 2 
23.61 1 
25.54 4 
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60.74 4 

248.88 8 
133.88 8 
58.08 8 

127.30 0 
46.56 6 

125.05 5 
131.39 9 
214.10 0 
206.94 4 
287.89 9 

m=50K K 
4355.45 5 
4363.35 5 
5722.00 0 
5582.23 3 
5754.93 3 
9527.59 9 
5517.28 8 
9340.63 3 
4506.32 2 
8665.39 9 
6696.30 0 

11746.29 9 

m=100K K 
10246.77 7 
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15142.74 4 
14137.45 5 
12037.78 8 
19467.08 8 
12364.45 5 
19685.86 6 
11007.89 9 
19195.53 3 
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25652.54 4 

m=500K K 
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95546.60 0 

132399.20 0 

Figuree 5.9: Benchmarking results obtained on DAS (in fis). 
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thee intrusiveness of the measurements to a minimum. All P-3PC estimations are 
obtainedd as in Listing 5.1. Also, in all situations we compare our results with those 
obtainedd with LogGP. To avoid using a particularly bad value for the 'G' parameter, 
wee assume a piece-wise linear dependence on message size in the LogGP model as well. 
Inn addition, to be able to use the measured values of Figure 5.9, we have reduced the 
P-3PCC model into LogGP in the following manner: g = tcs, L = tcf, and G = taf,cc-
Ass indicated in Section 5.2.2, this reduction makes P-3PC identical to LogGP. Still, 
too overcome any problem the reader may have with this interpretation of the model, 
inn the remainder we wil l refer to it as LogGP*. 

Inn Figure 5.10(a) results are presented for a 5122 floating point image, which is 
mappedd onto a 1 x 16 logical CPU grid. The graph shows results for the two available 
implementationss of the scatter and gather routines, as well as for the border exchange 
(forr all a € {1,3,5}). For such data decomposition all messages involve contiguous 
blockss only. This is even the case for the border exchange, as no node has a neighbor 
too its left or right. The graph shows that P-3PC and LogGP* are both quite accurate 
forr this type of data decomposition. As was to be expected, the estimations obtained 
fromm the two models are comparable, although P-3PC seems to do marginally better. 
Apparently,, introduction of the three communication paths indeed produces a slightly 
moree accurate model. Here, the differences are marginal, however, and provide no 
justificationn for P-3PC's added complexity. 

Ass can be seen in Figure 5.10(b), for a 16x1 data decomposition P-3PC outper-
formss LogGP* by far. This is because for such decomposition all messages involve 
noncontiguouss data at the sender side. Figure 5.10(c) and Figure 5.10(d) show sim-
ilarr results for 8x1 and 32x1 decompositions. A comparison for larger image data 
structuress is shown in Figure 5.10(e) and Figure 5.10(f). Although most P-3PC esti-
mationss are highly accurate, deviations from actual measurements are usually due to 
smalll  inaccuracies in the performance values obtained by benchmarking. Sometimes, 
algorithmm performance is also slightly degraded by contention in the network — an 
effectt not accounted for by P-3PC. However, the impact of memory layout on perfor-
mancee is always more significant than that of contention. Note that this matches the 
resultss of [124, 125]. 

Figuree 5.10(g) and Figure 5.10(h) show that the P-3PC model indeed allows the 
schedulerr of Section 5.1 to make correct optimization decisions. According to the 
LogGP**  model, scattering or gathering a 2562 floating point image is about as ex-
pensivee for each communication tree and data decomposition. In practice this is not 
true,, however, and P-3PC gives much more accurate estimations at all times. 

Figuree 5.11 gives results for the communication algorithms applied to all possible 
decompositionss involving 16 nodes. Again, P-3PC outperforms LogGP* in almost 
alll  situations. It is interesting to see in Figure 5.11(a-d) that, while for all but the 
1x166 decomposition P-3PC is somewhat pessimistic, the estimations get better for 
decompositionss that are 'closer' to 16x1. This is explained by the fact that in the 
benchmarkingg phase noncontiguous communication is measured using blocks that 
havee quite a significant distance from one another in memory. Thus, caching can 
becomee a significant factor, which is indeed expected to be most prominent in a 16 x 1 
decompositionn (again, see also [124, 125]). 
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Figuree 5.10: Measurements (DAS) versus P-3PC & LogGP* estimations (1). 
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Figuree 5.11: Measurements (DAS) versus P-3PC & LogGP* estimations (2). 

Figuree 5.11(e) and Figure 5.11(e) and (f) show that P-3PC gives accurate estimates 
forr the border exchange algorithm for all data decompositions as well. Whereas 
LogGP**  indicates that a 4x4 decomposition is always optimal (which is explained by 
thee fact that the amount of border data is smallest when each partial image is square), 
P-3PCC correctly prefers the 2x8 decomposition. Because the exchange of border data 
mayy be performed hundreds of times in a realistic application (for example, see [55] for 
suchh application that even applies values of a > 5), these results are important indeed. 
Forr additional results obtained on the DAS (also including sequential computation) 
wee refer to [147]. 
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5.4.22 Beowulf at SARA 

Thee second set of tests was performed on the 40-node Beowulf-cluster located at 
SARA.. Amsterdam. On this machine, measurements and benchmarking were per-
formedd using MPICH-1.2.0 [61]. The 700 Mhz AMD Athlon nodes (with 256 MByte 
off  RAM) are connected by a 100 Mbit/sec switched Ethernet network, and run De-
biann Linux 2.2.17. 

Becausee the cluster is heavily used for other research projects as well, we have been 
ablee to use only 8 nodes at a time. Figure 5.12 presents results for all algorithms, using 
aa 5122 floating point image which is mapped onto a 1x8 grid as well as a 8x1 grid. 
Thee graphs show that the two models are both quite good in all cases, but P-3PC 
againn provides more accurate estimations. It is clear that the MPICH implementation 
iss much better than the MPI-LFC implementation used on the DAS. Any additional 
overheadd due to non-unit-stride memory access is not caused by buffer copying, but 
cann be attributed to caching alone. Although less significant on the cluster at SARA, 
thiss is exactly the effect Prieto et al. have shown to be important on other parallel 
machiness [124, 125]. 
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Figuree 5.12: Measurements (Beowulf at SARA) versus P-3PC and LogGP* estima-
tions. tions. 

5.55 Conclusions 

Inn this chapter we have presented the new P-3PC model for predicting the execution 
timee of communication algorithms implemented using MPI's standard point-to-point 
operations.. P-3PC incorporates the notion of the 'three paths of communication', 
andd accounts for differences in performance at the sender, the receiver, and the full 
communicationn path. In addition, P-3PC models the impact of memory layout on 
communicationn costs, and accounts for costs that are not linearly dependent on mes-
sagee size. Compared to similar models, P-3PC has the potential for higher predictive 
accuracyy due to its close match with the capabilities and possible behavior of MPI's 
point-to-pointt operations. 
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P-3PC'ss predictive power is essential to perform the important task of automatic 
andd optimal decomposition of regular domain problems. Although designed for this 
specificc task, we expect the model to be relevant in other research areas as well. It 
iss important to note, however, that P-3PC suffers from the same problem as other 
modelss that abstract from the actual network topology (see also [38]). The model can 
nott discriminate between algorithms that cause severe network contention, and those 
thatt do not. In our research this is not a problem, as we only apply communication 
patternss that are expected to perform well on most network topologies used today. 
Still,, because P-3PC is similar to the LogGP model, it can easily be extended to 
accountt for contention, in the same manner as described in [3]. 

Itt should also be noted that we do not claim the P-3PC model to give a precise 
characterizationn of all types of memory access. Any cost factors other than those 
relatedd to contiguous and noncontiguous memory access are implicit (such as specific 
cachee behavior, differences between programmed I/O and DMA transfer, etcetera), 
butt are still captured due to the semi-empirical modeling approach described in Sec-
tionn 4.2. In this respect, an extension to the P-3PC model that would give a more 
detailedd characterization of non-unit-stride memory access, would be to incorporate a 
stridestride parameter that captures the actual distances between contiguous blocks trans-
mittedd in a single communication step. We have not included such parameter as the 
resultss obtained with the current model were shown to be sufficiently accurate. 

Ass the P-3PC model stresses the importance of benchmarking to obtain accurate 
valuess for the model parameters, one may argue that the predictive power of the 
modell  is limited. However, the model does not specifically enforce a large number 
off  measurements to be performed. As for models that incorporate a similar level 
off  abstraction, a set of three or four measurements for each communication path 
mayy already be sufficient to obtain accurate predictions. The P-3PC model merely 
acknowledgess that nonlinearities in communication costs may be significant (as shown 
inn Section 5.1.1) and should be accounted for. 

Wee are aware of the fact that an evaluation of P-3PC is never complete. However, 
thee evaluation as presented in this chapter — incorporating two fundamentally differ-
entt interconnection networks, and two different MPI implementations — has shown 
thee model to be highly accurate in estimating the communication costs related to any 
typee of domain decomposition used in a realistic image processing application. As 
such,, we have shown P-3PC to be useful as a basis for automatic and optimal de-
compositionn within the extensive application area of regular domain problems. Also, 
becausee P-3PC is capable of modeling behavior that was shown to be problematic 
inn [124, 125], we expect the model to be applicable to the very same machines and 
MPII  implementations as well. 





Chapterr 6 

AA Finite State Machine for 
Globall  Optimization of 
Applicationn Performance* 

"Speed"Speed is good only when wisdom leads the way." 

Jamess Poe (1921-1980) 

Inn the previous chapters we have shown how to implement parallel versions of many 
commonn image processing operations in a sustainable manner. Also, we have shown 
howw to accurately model the run time performance of such operations. To obtain 
highh performance for complete applications, however, it is not sufficient to consider 
parallelizationn and optimization of the operations in isolation. This is because paral-
lell  code consisting of a sequence of optimized parallel routines often contains many 
redundantt communication steps. Also, in many situations it is possible to further 
reducee communication overhead by combining multiple messages in a single transfer. 

Automaticc optimization of communication overhead is not easy. First, this is 
becausee the applied optimization strategy must be able to determine which com-
municationn steps are essential, and which can be safely combined or removed. In 
addition,, the approach must guarantee that the resulting parallel code is: 

•• efficient, preferably comparable to an optimal hand-coded implementation, 

•• legal, in the sense that the program is deterministic (i.e., always produces the 
samee result) and can never end in deadlock, and 

•• correct, such that it produces output identical to that of the original program. 

*Thiss chapter is an extended version of our paper published in the 17th International Parallel & 
DistributedDistributed Processing Symposium (IPDPS 2003) [145]. 
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Inn this chapter we propose a new, and surprisingly simple strategy for global 
performancee optimization that adheres to the stated list of requirements. In the 
approach,, a fully sequential program is parallelized automatically by inserting com-
municationn operations whenever necessary. The approach, which is referred to as lazy 
parallelization,parallelization, is based on a simple finite state machine (fsm) specification. One of 
twoo essential fsm ingredients is a set of states, each corresponding to a valid internal 
representationn of a distributed data structure at run time. The other essential ingre-
dientt is a set of state transition functions, each of which defines how a valid internal 
dataa structure representation is transformed into another valid representation. 

Althoughh it is shown that lazy parallelization works well in many situations, the 
approachh does not guarantee to always produce the fastest possible version of a pro-
gram.. First, this is because the approach always applies the fastest communication 
stepp whenever message transfer is mandatory. This is a form of local performance op-
timization,, however, as it may be better to insert a combined message transfer to avoid 
additionall  communication at a later stage. Also, the approach does not incorporate 
knowledgee obtained from our APIPM-based performance models (see Chapter 4). 

Too overcome these problems, this chapter also proposes an extended technique, 
whichh requires an application state transition graph (ASTG) to be generated for the 
programm under consideration. An ASTG incorporates all optimization decisions that 
cann possibly be made at run time. Each decision is annotated with a cost estimation, 
suchh that the fastest program is represented by the 'cheapest' branch in the graph. A 
drawbackk of this approach, however, is that it is often costly to obtain the cheapest 
branch.. This is because the ASTG is generally large, even for applications of moderate 
size.. Therefore we also define additional heuristics for search space reduction. 

Hence,, the primary research issue addressed in this chapter is formulated as fol-
lows:: How to automatically convert a legal sequential image processing application 
intoo a legal, correct, and efficient (preferably even time-optimal) parallel version of 
thee same program? As this issue is the central, most essential problem our software 
architecturee for user transparent parallel image processing is confronted with, the 
proposedd solution incorporates all results obtained in Chapters 3, 4, and 5. 

Thiss chapter is organized as follows. Section 6.1 describes the optimization prob-
lem.. Section 6.2 introduces the finite state machine (fsm) definition. The fsm-based 
optimizationn strategy of lazy parallelization is described in Section 6.3. Section 6.4 
presentss a short description of the ASTG, and some heuristics for search space reduc-
tion.. In Section 6.5 related work is discussed. Conclusions are given in Section 6.6. 

6.11 The Performance Optimization Problem 

Inn Chapter 3 we have defined a default parallelization strategy for each library routine. 
Forr operations executed in isolation, this default strategy is optimal. This is because 
communicationn overhead is minimized, while — for the given parallelization granu-
larityy — the available parallelism is fully exploited. When several optimized parallel 
routiness are executed in sequence, however, communication overhead is generally far 
fromm optimal. This section explains the problem in more detail. 
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6.1.11 Abstract Function Specifications 
Ass described in Section 4.3, each application implemented using our software archi-
tecturee is composed of a sequence of instructions from the APIPM instruction set. 
Forr global performance optimization it is not necessary to individually consider each 
off  the instructions in such a sequence. Specific combinations of APIPM instructions 
oftenn appear together, and are identical for sequential operation as well as for parallel 
execution.. For such 'unbreakable' APIPM instruction sequences relating to sequential 
processing,, we have introduced a shorthand notation, presented in Table 6.1. 

Notationn for unbreakable instruction streams relating to interprocess communica-
tionn is given in Table 6.2. It contains abstractions similar to operations in MPI [104]. 
Thee additional CreatLocalPart /Full and DelLocal functions constitute creators 
andd destructors for partial data structures (see Section 3.3.2). The BorderExchange 
functionn is as described in Section 5.3. Finally, the Red is t r ibu te function is included 
forr completeness only, and implements a remapping of a distributed data structure 
ontoo a newly defined logical processor grid. 

Partiall  structures are referred to as local in Table 6.2 ( locsrc and locdst ). The 
originall  data structure from which the partial data structures are obtained is referred 
too as global (globsrc and globdst). As an example, the Scat ter operation requires 
aa global source data structure as input, and produces the local (partial) destination 
structuress as output, each of which is transferred to the node with the appropriate 
responsibilityy (see also Section 3.2). 

Forr any application implemented using our software architecture it is possible to 
derivee an abstract operation stream comprising of functions from Tables 6.1 and 6.2 
alone.. Consequently, in the remainder of this chapter we restrict our attention to 
abstractt operation streams, and ignore the lower level APIPM instructions altogether. 

Creat ee ( 

Delet ee ( 

MemCopyy  ( 

UnPixOpp ( 

BinPixOp VV < 

BinPixOp II  ( 

ReduceOpp ( 
NeighO pp ( 

GenConvOpp ( 

GeoMatt  ( 

GeoRoii  ( 

Impor tt  ( 

Expor tt  ( 

;;  OUT 

:: OUT 

:: I N 

:: IN 

:: IN 
:: IN 
:: IN 
:: IN 
:: IN 
;; IN 
:: IN 

;; OUT 

:: IN 

dst t 
dst t 
src , , 

src , , 

src , , 

src , , 

src , , 
src , , 

src , , 

src , , 

src , , 

dst t 
sr c c 

) ; ; 
) ; ; 
OUT T 

OUT T 
OUT T 
OUT T 
OUT T 
OUT T 
OUT T 
OUT T 
OUT T 

) ; ; 
) ; ; 

dst t 

dst t 
dst , , 
dst , , 

dst t 
dst , , 

dst , , 

dst t 
dst t 

) ; ; 

) ; ; 
I N N 
I N N 

) ; ; 
I N N 
I N N 

) ; ; 
) ; ; 

ar g g 
ar g g 

ker r 
ker r 

) ; ; 
) ; ; 

) ; ; 
) ; ; 

Tablee 6.1: Abstract function specifications for sequential operation (see Tables 4A.1 
andand 4A.2 for comparison). 
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C r e a t L o c a l P a rtt ( 
C r e a t L o c a l F u lll  ( 
DelLocall  ( 

B roadcastt ( 
S c a t t err ( 
Gatherr ( 
Ga the rA lll  ( 
ReduceOnee ( 
ReduceAlll  ( 

BorderExchangee ( 
R e d i s t r i b u tee ( 

OUT T 
'' OUT 
;; OUT 

;; IN 
:: IN 
;;  IN 
;; INOUT 
:: INOUT 
;; INOUT 

;; INOUT 
;; INOUT 

l o c d st t 
l o c d st t 
l o c d st t 

g l o b s r c, , 
g l o b s r c, , 
l o c s r c, , 
l o c s r c, , 
l o c s r c, , 
l o c s r c, , 

l o c s rc c 
l o c s rc c 

) ; ; 
>; ; 
) ; ; 

OUT T 
OUT T 
OUT T 
INOUT T 
OUT T 
INOUT T 

) ; ; 
) ; ; 

l o c d st t 
l o c d st t 
g l o b d st t 
g l o b d st t 
g l o b d st t 
g l o b d st t 

Tablee 6.2: Additional abstract function specifications for parallel operation. 

6.1.22 Default Algor i thm Expansion 

Inn Section 3.4.2 we have indicated that all data structures applied in our library 
operationss have a predefined data access pattern type. Each such type determines how 
accessess to non-local partial data structures are resolved with minimal communication 
overhead.. From this information, a default approach for parallel execution directly 
followss for each library operation. The availability of a default parallelization strategy 
forr each individual operation makes for a straightforward conversion of a complete 
sequentiall  image processing application into an equivalent parallel program. 

Thee conversion process, referred to as default algorithm expansion, is illustrated 
byy the simple example code of Listing 6.1. The abstract sequential program, shown 

Import< < 
UriPixO) ) 
R inP ixO O 
ExporU U 
D.'l.-tr-(( I 
Di'l«'tr(( I 
Del.-tr(( I 

inn A ); 
(( ImA. ImB ): 
,I(( ImB. ImC. ImA ): 
mCC ): 
11AA ): 

nnn ): 
nCC ): 

Importt ( ImA ): 
S ra t t t r(( ImA. locImA ): 

UnPixOp(( locImA. lucImB ): 
Gather)) kic-IiiiB . ImB ): 
Ds-lL.K-aKK locImA ); 
DelLoral(( l o d mB ); 
Sc,ittfT(( ImA. lodraA ); 
Srat t r rff  ImB. loclmli ): 

BinPixOpI(( lor lmB. locImC. 
Gather(( locImC. ImC ): 
DclLocal(( locImA ); 
Di-lLoc:al(( lucImB ): 
DclLocaKK locImC ): 

Exportt ( ImC )-. 
Dele?te(( ImA ): 
Dcl<»t(-{{  ImB ): 
Dcloteff  ImC ): 

locImAA ); 

(a)) Sequential. (b) Parallel (default). 

Listingg 6.1: Abstract sequential application (a) and equivalent parallel program after 
defaultdefault algorithm expansion (b): additional operations in parallel code are indented. 
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onn the left, first imports image ImA, which is used as input to a unary pixel opera-
tion.. Subsequently, the resulting output image ImB is used as input to a binary pixel 
operation.. Finally, the resulting image ImC is exported, and all images are destroyed. 

Thee equivalent parallel program, obtained after default algorithm expansion, is 
shownn on the right of Listing 6.1. Because any data structure passed as input to 
aa unary pixel operation is defined to have a one-to-one data access pattern type, 
aa Scat ter operation is inserted before the UnPixOp call. After the operation has 
finished,finished, the resulting partial outputs are gathered to the single root node and all 
temporaryy partial data structures are destroyed. Subsequently, the images that are 
passedd as source and argument to the binary pixel operation are spread throughout the 
parallell  system in a Scat ter operation. The partial outputs resulting from BinPixOp 
aree gathered to the root, after which all partial structures are deleted. From this 
pointt onward, the program is identical to the original sequential version. 

Defaultt algorithm expansion in this manner is guaranteed to produce a legal and 
correctt parallel version of any legal sequential program implemented using our soft-
waree architecture. This is simply because each abstract function call in the sequential 
codee is replaced by an equivalent sequence of one or more (parallel) operations. The 
resultingg program is not guaranteed to be time-optimal, however. In fact, in most 
situationss the expansion process wil l not even produce the fastest parallel implemen-
tationn at all. Worse even, the resulting parallel code often can be expected to be 
slowerslower than the original sequential program. Although other parallelization tools 
mayy be implemented differently, all library-based tools suffer from the very same 
problemm — and for improved performance a solution is essential. 

6.1.33 Inefficiencies from Default Algori thm Expansion 

Whenn considering the parallel code of Listing 6.1(b), it is clear that it contains sev-
erall  function calls that could be removed without violating the program's correctness 
orr legality. First, image structure locImA, which is used as source structure for the 
unaryy pixel operation, is removed by DelLocal and subsequently recreated in the sec-
ondd occurrence of the Scat ter (ImA, locImA) call. For improved performance, both 
operationss simply could be removed. The same holds for the sequence of instructions 
appliedd to the locImB structure preceding the BinPixOpI call (i.e., Gather followed 
byy DelLocal and Scat ter ). Listing 6.2(b) presents the optimized program obtained 
afterr removing the redundant communication steps from the parallel code. 

AA second source of inefficiencies is due to the fact that each individual commu-
nicationn step is performed irrespective of other message transfers in the program. 
Consequently,, removal of redundant communication operations is a form of local per-
formancee optimization only, as it may be better to combine multiple messages in a 
singlee transfer. As an example, a Scat ter operation followed by a Broadcast per-
formedd on the same data structure at a later stage in a program, could be replaced by 
aa single Broadcast at the first essential point of message transfer, possibly followed 
byy a MemCopy operation to extract the partial data structures on each processing unit. 

AA third category of performance inefficiencies is due to the fact that default al-
gorithmm expansion ignores the performance characteristics of the parallel machine at 
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Impor t)) ImA ); 
UnPixOp)) ImA. ImB ); 
B inPixOpI(( ImB. ImC. ImA ): 
Expor t(( ImC ); 
Delete(( ImA ): 
Delete(( ImB ); 
Delete)) ImC ); 

Import)) ImA ): 
Scat ter)) ImA. locImA ): 

UnPixOp)) locImA. locImB ); ; 
BinPixOpI)) locImB. locImC. locImA ); 

Gather)) locImC, ImC ). 
DelLocal)) locImA ): 
DelLocal)) locImB ): 
DelLocal)) locImC ); 

Expor t)) ImC ): 
Delete)) ImA ): 
Delete)) ImB ): 
Delete)) ImC ): 

(a)) Sequential. (b) Parallel (optimized). 

Listingg 6.2: Abstract sequential application (a) and equivalent parallel program after 
inter-operationinter-operation optimization (b). 

hand.. As indicated in Chapters 4 and 5, communication overhead also depends on 
thee specifications of the underlying interconnection network, and the implementation 
off  the applied message passing primitives. As a consequence, it is essential for the 
APIPM-basedd performance models of Chapters 4 and 5 to be incorporated in the 
optimizationn process as well. 

Fromm these types of inefficiencies, the first (i.e., the presence of redundancy) is 
byy far the most important to be resolved. This is because redundant operations 
aree responsible for the bulk of all unnecessary communication overhead. In fact, a 
programm which is stripped of all redundant communication is generally quite efficient, 
andd is often comparable to hand-optimized code. Redundancy avoidance is therefore 
thee focal point of the optimization strategy proposed in the next sections. The latter 
twoo types of inefficiencies are still important, however, as these may have a significant 
impactt on execution time as well. This is especially true for large clusters, as the 
relativee impact of communication on performance increases with every node added 
too the system. Consequently, the remainder also proposes an extended optimization 
strategyy that takes into account the latter two types of inefficiencies. 

6.22 Finite State Machine Definition 

Too guide the process of operation removal, we have defined a finite state machine (fsm) 
whichh is used for operation redundancy detection, the monitoring of the life-span of 
(distributed)) data structures, and the resolution of data structure inconsistencies. In 
thiss chapter, we restrict ourselves to so-called deterministic finite acceptors, which 
havee no temporary storage and which can not produce strings of output. A deter-
ministicc finite acceptor (or dfa) is defined by the quintuple 

MM = (Q, E, 6, q0, F), 

where e 
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QQ is a finite set of internal states, 

££ is a finite set of symbols called the input alphabet, 

öö : Q x T, —> Q is a transition function, 

qoqo E Q is the initial state, 

FF C Q is a set of final states. 

Initially ,, a dfa is assumed to be in the initial state qo, with its input mechanism on the 
leftmostt symbol of the input string. During each move of the automaton, one input 
symboll  is consumed. When the end of the string is reached, the string is accepted if 
thee automaton is in one of the final states. Otherwise, the string is rejected. 

Deterministicc finite acceptors as described here have been applied successfully in 
manyy fields of computer science, e.g. digital design, programming languages, and 
compilerss [70, 96]. The following presents a specification of the finite state machine 
forr global application optimization as applied in our software architecture. 

6.2.11 States and Lifespan of (Distributed) Data Structures 

Ass described in Section 3.3.2, for parallel execution two types of data structure repre-
sentationss are used in our software architecture: global structures and local (or partial) 
structures.. A global structure always resides at a single processing unit (the root), 
andd contains all data for the complete domain of the structure it represents. Local 
structures,, on the other hand, are the result of a collective communication operation 
performedd on a global structure. 

Theree is a strong relationship between a global structure and the set of derived 
locall  structures (a set which is referred to as a distributed data structure). Clearly, at 
anyy time during the execution of a parallel program either the global structure itself 
orr the distributed structure derived from that global structure must contain up-to-
datee values for all structure elements. An abstract representation of the relationship 
betweenn these data structures is given by the three-tuple 

qq = (g, d, t), 

where e 

gg E G is the state of the global structure, 

dd E D 'is the state of the derived distributed structure, 

tt E T is the distributed structure's distribution type. 

and d 

GG = { none, created, va l id, inva l id } , 

D={none,D={none, va l id, i n v a l i d } , 

TT = {  none, p a r t i a l, f u l l , not-reduced } . 

Inn set G, none indicates that no space has been allocated for the global data 
structuree in the main memory of the root. Furthermore, created indicates that 
spacee for the global structure has been allocated by way of the Create function. In 
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thiss state, the elements of the global structure do not contain values resulting from 
anyy calculation (yet). Finally, val id indicates that the global structure contains 
up-to-datee values for all structure elements, and inva l id indicates that at least one 
off  the global structure's elements may contain an incorrect value. For distributed 
structures,, the elements in set D are defined in a similar manner. The value created 
iss not present in set D, however, simply because we do not need it. 

Inn set T, none indicates that no distribution type information is available for the 
distributedd structure. In addition, pa r t i al indicates that the set of constituent local 
structuress is the result of a non-overlapping Scat ter operation, while f u l l indicates 
thatt the structures are obtained in a Broadcast operation. Finally, not-reduced 
indicatess that all elements of the constituent, fully overlapping, local structures yet 
havee to be subjected to an element-wise ReduceOne or ReduceAll operation. 

Thee set R = G x D x T contains all possible representations of the relationship 
betweenn a global structure and its derived distributed structure. However, at appli-
cationn run time many of these possible representations can not (or should not) occur. 
Ass an example, a representation given by q — ( inva l id, inva l id, f u l l ) should 
nott be present in a program, as neither the global structure nor the distributed struc-
turee contains all correct and up-to-date values. In addition, the representation given 
byy q = (none, none, f u l l ) is not useful, as it contains as much information as the 
moree accurate representation q = (none, none, none). 

Forr the finite state machine, we have specified a restricted set of valid internal 
states,states, based on the presented relationship between global and distributed structures. 
Thee selected set of valid internal fsm states is defined by 

QQ = { Qo, <7i,"- , <7s j c G x D x T , 

with h 

qq00 = (none, none, none), q5 = (va l id, va l id, f u l l ) , 

q\q\ — (c reated, none, none), QQ — ( i nva l id, va l id, p a r t i a l ), 

<722 — (va l id, none, none), q-j = ( inva l id, va l i d, f u l l ) , 

g33 — ( inva l id, none, none), q% — ( i nva l id, inva l id, not-reduced). 
#44 = (va l id, va l i d, p a r t i a l ), 

Statee qo is the empty state, and represents the state of the global-distributed structure 
combinationn before its initial creation and after its final destruction. State q\ repre-
sentss the state immediately after creation of the global structure. This is a special 
casee of state 92, as the global structure also could be designated as val id. State q\ is 
requiredd to avoid communication in case a distributed structure is to be derived from 
aa global structure in this state. State 2̂ simply indicates that a global structure's ele-
mentss contain all correct and up-to-date values, while a derived distributed structure 
iss nonexistent. At first glance, (73 seems to be a state that should never appear in a le-
gall  parallel program. However, this is the state obtained after performing a DelLocal 
operationn in case the global-distributed structure combination is represented by states 
g>6,, <?7, or q8. In states ^4,95,^6, a nd 97, the distributed structure contains all cor-
rectt values, while the related global structure is either consistent or inconsistent with 
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thesee values. Finally, state q$ occurs in parallel reduction operations. As long as 
thee required reduction has not yet been performed on the distributed structure, all 
constituentt local structures as well as the related global structure remain invalid. 

Att run time each global-distributed structure combination starts in the empty state 
qq00.. From this point onward each state can be reached, depending on the operations 
performedd on the structure combination. Also, certain states can be reached multiple 
times.. The lifespan of a global-distributed structure combination ends in case it 
returnss to the empty state q$. As such, state qo serves as the initial state of our finite 
statee machine definition, as well as the single element in the set of final states. 

6.2.22 State Transition Functions and State Dependencies 

Thee input alphabet for our finite state machine is formed by the abstract functions of 
Tabless 6.1 and 6.2, with a concrete data structure reference for each formal param-
eter.. Also, as the fsm is used to monitor state changes and lifespan of a single data 
structuree only, monitoring the correctness and legality of a complete application in-
volvess multiple finite state machines. The presence of multiple state machines results 
inn a parallel view of the states of all data structures in an application. At any given 
momentt during execution, several data structures are 'alive' and their combined state 
iss captured by their respective finite state machines. 

Ass the states of multiple data structures are not always independent, we assume 
thatt each fsm has a complete and up-to-date view of the states of all data structures 
inn an application. Also, by way of the defined set of state transition functions, each 
statee machine incorporates all knowledge regarding data structure state dependencies. 
Too this end, the definition of state transition functions is extended as follows: 

wheree Ed is the input alphabet in which each (abstract) function is annotated with a 
listt of permitted state dependencies for all additonal data structures passed as parame-
terr to that function (i.e., those structures for which the current fsm is not responsible). 
Here,, we represent elements in T,d by a two- or three-tuple, in which the first compo-
nentt is the name of the abstract function, and the remainder represents the (possibly 
empty)) list of state dependencies. For example, S(q0, (BinPix0pV,g4,g5)) = q6 repre-
sentss a state transition function for the output structure produced by the BinPixOpV 
operation.. This transition function changes the state of the output structure from q0 

too q$, while the source and argument structures are expected to be in states qA and q5 

respectively.. It should be noted, that the knowledge obtained with this parallel view 
off  state machines also could have been captured in a single cross-product machine, in 
whichh each deterministic finite automaton simulates, in parallel, the behavior of each 
componentt dfa (e.g., see [101]). For simplicity of notation, however, in the remainder 
off  this chapter we keep to the parallel view of simple state machines. 

Tablee 6.3 presents the state transition functions for the image processing function-
alityy available in our software library. The overview is complete in the sense that our 
implementationss allow no state transitions other than the ones presented here. In all 
cases,, initial state q0 refers to the state of the output structure produced by any of 
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thee operat ions (represented by an OUT parameter in Table 6.1). As can be seen, out-
putt st ructures are the only structures that actually move from one state to another. 
Inputt st ructures and argument structures never change state, as these are accessed 
only,, and never updated. Al l transition functions that cause a structure to be moved 
too s ta te q2 indicate fully sequential execution using global da ta structures only. Al l 
otherr t ransi t ion functions refer to parallel execution using distr ibuted data structures. 

S(qS(q00,, ( C r e a t e , - )) = gi, 
6(q6(q00,, ( Import, - ) ) = q2, 

wit hh i £ { 1 ,2 ,3 } , j £ {1 ,2 ,4 ,5 }, 

<5(go,(op,g2))) = 92, 
<%o,(op,<?4))) = 96, 
£(90,, (op, gs)) = 97, 

5{q5{qtt,, ( D e l e t e , - )) = 90, 
6(qj,6(qj, (Export, —)) = qj, 

(5(9o,, (op, 9e)) = 96, 
(5(9o,, (op, 97)) = 97, 

ó(9i,(°P,9o))) = ft, 

wit hh op £ {Memcopy,UnPixOp},z £ { 2 , 4 , 5 , 6 , 7 }, 

5(9o,, (op, 92, 92)) = 92, 
5(9o,, (op, 94, 9,)) = 9e, 
(5(g0,, (op, 95, qi)) = 97, 
£(9o,, (op, 96, qi)) = 96, 
£(9o,, (op, 97, qi)) = 97, 

^(92,, (op, 90,92)) = 92, 
£(94,, (op, 90, qi)) = 94, 
£(95,, (op, 9o, Qj)) = 9 5, 
^(96,, (op, 9o, qi)) = 96, 
£(97,, (op, 9o, 9j)) = 97, 

wit hh o p E  {BinPixOpV ,  NeighOp ,  GenConvOp} ,  i  £  {5,7}, j  €  {4,5,6,7} , 

%0,(BinPix0pI,9 2,92) ))  =  <?2 , 
<5(g 0,,  (BinPixOpI,g*^) )  =  9 6, 
5(90 ,,  (BinPixOpI ,  qk, qi)) =  g 7, 

wit hh  i,j £  {4,6}, k, I E  {5,7} , 

(5(9o ,,  (ReduceOp ,  g 2) )  =  92 , 
%0 ,,  (ReduceOp ,  q%)) = g 8, 
(5(9o ,,  (ReduceOp ,  gj) )  =  97 , 

wit hh Ï  E  {4,6},j £ {5,7} , 

£(9o ,,  (op ,  92) )  =  92 , 
5(90 ,,  (op ,  q^) =  9e , 

(5(92 ,,  (BinPixOpI ,  90 ,  92) )  =  92 , 

<5(g i55 (BinPixOpI ,  90 ,  9j) )  =  ft, 

S(qS(qkk,, (BinPixOpI ,  90 ,  ft))  =  Qk, 

5(92 ,,  (ReduceOp ,  90) )  =  92 , 

(5(9, ,,  (ReduceOp ,  90) )  =  ft, 

6(qj,6(qj, (ReduceOp ,  90) )  =  9i , 

<5(g 2,,  (op,go) )  =  92 , 

£(ft,(op,9o) ))  =  9i , 

wit hh op € {GeoMat, GeoRoi},i E {5 ,7} . 

Tablee 6.3: State transition functions (including annotated state dependencies) for 

imageimage processing functionality. 
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S(qi,S(qi, (CreatLocalPart ,  -) )  =  q4, 8{qi, (DelLocal ,  —) )  =  q2, 
S(qi,S(qi, (CreatLocalFull ,  -) )  =  g 5,  5(qj, (DelLocal ,  -) )  =  q3, 

wit hh  i e {4,5}, j  6  {6,7,8} , 

S(qS(q22,, (Broadcast ,  -) )  =  <? 5,  6(qg, (ReduceOne ,  -) )  =  q2, 
5(q5(q22,, (Scatter ,  -) )  =  q4, S(q8, (ReduceAll ,  -) )  =  q5, 
6(q6,6(q6, (Gather ,  —) )  =  g 4,  5(qi, (BorderExchange ,  -) )  =  <& 

S(qS(q77,, (Gather ,  -) )  =  qb, 6(qi, (Redistribute ,  -) )  =  q{, 
6(q6(q66,, (GatherAll ,  -) )  =  q5, 

wit hh  i e {4,6} . 

Tablee 6.4: Additional state transition functions for parallel execution. 

Statee transition functions related to the additional communication functionality, 
andd the memory management of local data structures, are presented in Table 6.4. In 
alll  of these transition functions the list of state dependencies is empty, as the functions 
workk on a single data structure only. The importance of the additional transition 
functionss is that these are used to resolve data structure state inconsistencies which 
mayy appear in an application. As an example, consider the first three lines of code 
inn Listing 6.1(b). The first operation (Import) moves structure ImA from q0 to q2 

(seee Table 6.3). In case the third operation (UnPixOp) is to be executed in parallel, the 
inputt data structure is expected to be in one of the states 94,^5,96, or q7. None of these 
statess immediately matches with the output state of structure ImA after the Import 
operation.. This state inconsistency is resolved by executing a Scat ter operation (as 
inn Listing 6.1(b)) or a Broadcast operation immediately after the Import operation. 
Thiss is because these operations change an input structure's state from q2 either to 
g4,, or to <j5 respectively (see Table 6.4). 

Figuree 6.1 presents a reduced state transition graph for our finite state machine 
definition.. For better readability, the graph contains only those operations that actu-
allyy cause a data structure to move from one state to another state. As such, the graph 
incorporatess the complete lifespan of a data structure, and covers any state a data 
structuree can possibly reach at run time. Also, it should be noted that it is exactly 
thesee operations that play an essential role in the process of operation redundancy 
avoidancee as will be presented in Section 6.3. 

6.2.33 Legal Sequential Code and Legal Parallel Code 

AA program is a legal program, if and only if it is accepted by all finite state machines 
relatedd to that program. In other words, a program is legal if (1) it consists of a 
sequencee of abstract function calls from Tables 6.1 and 6.2 only, (2) it contains no 
dataa structure state inconsistencies, and (3) all internal data structures start as well as 
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endd in the empty state qo- In case a user-provided sequential program is accepted as a 
legall  program, the process of default algorithm expansion always generates a legal and 
correctt parallel program as well. This is because each sequence of (parallel) operations 
thatt replaces a sequential call generates exactly the same set of data structure state 
transitionss at all times. The following section shows how the presented finite state 
machinee definition is used to obtain legal and correct parallel code, which is optimized 
inn that the execution of any redundant communication operations is avoided. 

CreatLocalPart t Scatter r 

Create e 

*1,, *2, *3, *4 = creation of datastructure by one of several image operations 

Figuree 6.1: Reduced state transition graph. 



6,3.. Redundancy Avoidance by Lazy Parallelization 105 5 

6.33 Redundancy Avoidance by Lazy Parallelization 
Inn the approach of lazy parallelization it is simply assumed that each communication 
orr memory management operation inserted in the default algorithm expansion process 
iss redundant, unless proven otherwise. Stated differently, lazy parallelization causes 
aa default communication or memory management operation to be executed only, in 
casee its removal would introduce an (immediate) data structure state inconsistency. 
Althoughh lazy parallelization can be applied on the fly at run time, for the moment 
wee will present it as a compile time method. Conceptually, the approach of lazy 
parallelizationn consists of the following parallelization and optimization steps: 

1.. Apply the process of default algorithm expansion to the original sequential code. 

2.. Scan the expanded code, and remove all communication operations, as well as 
allall  operations for the creation and destruction of partial data structures. 

3.. Apply partial loop unrolling by extracting the code for the first iteration of each 
loop,, and placing it in front of the code for the remaining loop iterations. 

4.. Resolve all introduced data structure state inconsistencies by re-inserting oper-
ationss removed in step 2. 

5.. Undo the partial loop unrolling by replacing all separated loops by a single 
combinedd code block. 

Ass stated, the code obtained after the first step consists of legal, but non-optimal 
parallell  code. The operation removal in the second step, however, introduces many 
statee inconsistencies. These are resolved in step four. As will be described below, 
inn this step any illegal parallel code is transformed to legal code by (re-)inserting 
operationss to resolve data structure state inconsistencies. Steps 3 and 5 are present 
onlyy to deal with loop constructs which may be present in the user-provided code. 
Thee extraction of the first iteration of a loop (partial loop unrolling) exposes all 
dataa structure state inconsistencies that can possibly occur in a program. More 
specifically,, loop unrolling makes it possible to compare (1) the data structure states 
reachedd after execution of the pre-loop code with the states required in the first loop 
iteration,, (2) the states reached after execution of the n-th loop iteration with the 
statess required in iteration n + 1, and (3) the states reached after execution of the 
lastt loop iteration with the states required in the post-loop code. 

Listingg 6.3 gives an example of the application of lazy parallelization. The abstract 
codee for a simple example program is shown in Listing 6.3(a). The programs obtained 
inn the first three steps of the optimization process are all straightforward, and will 
nott be explained any further. The re-insertion of code as applied in step 4 (see 
Listingg 6.3(e)) is performed using the state transition functions of Section 6.2.2 (i.e., 
onlyy those incorporated in the reduced state transition graph of Figure 6.1). The 
Broadcastt ( ImA, locImA ) operation in the first loop iteration is inserted because 
thee Import operation causes its output structure to be moved to state q2, while for 
parallell  execution the subsequent GeoMat operation requires its input structure to 
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I m p o r t !!  I m A ); 

L O O PP [1:N] 

G i . . . M a l(( I m A . I m B I: 

G c n C . n v D pll  I m B , I m C, k ): 

E x p o r t!!  I m C ): 

D e l e t e)) I m C ): 

D e l e t e)) I m B ); 

E X D L O O P P 

D e l e t e)) I m A ): 

(a)) example sequential code 

I t , , p o r t!!  I , i ,A ); 
L (( ) O I ' [l:S] 

C n i . M i i l ll  l „ , l m A , l o r l n i B ): 

( ; , - i ,C 'n , i v ( )p(( l o d i n B , l o c I m C. k ): 
E x p o r t!!  I m C ): 
D e l e t e!!  I m C ): 

D e l e t e»» I m B ): 
E N D L O O P P 
[ > l . ' l i ' (( I m A ): 

(c)) after step 2 

I m p . . r t(( I m A ); 
L O O PP [1] 

l l n , » d « a s l(( I m A . l o r l m A ): 

G e o M a t(( l . n l m A , l o c l mB ): 
G e n C o n v O p)) l o r l m B , l o c I m C. k ); 

G a t h e r!!  l o r l m C. I m C ): 

E x p o r t!!  I m C ): 

D e l L o c a l!!  l o r l m C ): 

I W , ' t , ' ll  I m C ): 
n , ' I I ,™- i , l (( b r l m B ): 
D e l e t e!!  I m B |: 

E N D L O O P P 
L O O PP [2:N] 

G c o M a t(( l o d m A , l o r l m B ); 

G e n C o n v O p)) l o r l m B . l o c I m C. k ): 

G a t h e r)) l o c I m C. I m C ): 

E x p o r t!!  I m C ): 
D e l L o c a l!!  l o r l m C ): 
D e l e t e)) I m C ): 

D f l L mm al( l o c l mB ); 

D e l e t e)) I m B ); 
E N D L O O P P 
D e l L o c a l)) l o d mA ); 
Delete)) ImA ); 

(e)) after step 4 

I m p o r t(( I m A ): 
L O O PP [1:N] 

B r o a d c a s t)) I m A , l o c I mA ): 

G e o M a tff  l o c I m A . l o c I mB ): 

G a t h e r!!  l o c l m B. I m B ): 
D e l L o c a l)) l o c I mB ): 

D e l L o c a l)) l o c I mA ): 

S c a t t e r)) I m B . l o c I mB ); 

GcnConvOp(( loclmB, locImC. k ); 
G a t h e r(( l o c I m C, I m C ): 
D e l L o c a l)) l o c I mC ); 

D e l L o c a l)) l o c l mB ); 

E x p o r t!!  I m C ); 

D e l e t e!!  I m C ); 

D e l e t e!!  I m B ); 
E N D L O O P P 
D e l e t e!!  I mA ); 

(b)) after step 1 

I m p o r t!!  I n ,A ): 
L O O PP ; i ] 

G e o M a t(( l o d m A . l o c l mB ): 

C c n C u n v O pll  l o c l m B. l o c I m C. k ): 

E x p o r t!!  I m C ): 

D e l e t e!!  I m C ): 

D e l e t e!!  I m B ): 

E N D L O O P P 
L O O PP [2:N] 

G e o M a t(( l o c I m A . l o c l mB ): 

G e n C o n v O p)) l o c l m B. l o c I m C. k ): 

E x p o r t)) I m C ): 

D e l e t e)) I m C ); 
D e l e t e!!  I m B ): 

E N D L O O P P 
D e l e t e!!  I » i A ); 

(d)) after step 3 

I ' » | ,o r t .(( I mA ); 

L O O PP [1:N] 
I FF [1] B r o a d c a s t) I m A . l o c I m A ) ; 

G e o M a t)) l o c I m A . l o c l mB ); 

G e n C o n v O p!!  l o c l m B. l o c I m C. k ): 

G a t h e r!!  l o c I m C. I m C ): 
E x p o r t)) I m C ): 

D e l L o c a l)) l o c I mC ): 

D e l e t e)) I m C ): 

D e l L o r a l(( l o r l m B ); 
D e l e t e!!  I m B ): 

E N D L O O P P 
DelLocal!!  lot-IniA }: 
D e l e t e!!  I mA ): 

(f)) after step 5 

Listingg 6.3: Example of code optimization by lazy parallelization (compile time): 
(a)(a) original sequential code, (b) code obtained after default algorithm expansion, 
(c)(c) code obtained after removal of 'redundant' communication operations and mem-
oryory management operations, (d) code obtained after partial loop unrolling, (e) code 
obtainedobtained after resolution of state inconsistencies by default operation re-insertion, 
(f)(f) optimized parallel code obtained after loop recombination. 



6.4.. Application State Transition Graph 107 7 

bee in state q$ or q-j (see Table 6.3). The only available operation that provides a 
resolutionn to this state inconsistency is the Broadcast operation, as it moves a data 
structuree from state <?2 to q§. Similarly, Gather( locC, C ) is inserted in the first 
loopp iteration, as it moves C from q§ to 94, which is one of the allowed input states 
forr the subsequent Export operation. The additional operation re-insertions work in 
aa similar manner, and all further interpretation of Listing 6.3 is left to the reader. 

6.3.11 Discussion 

Lazyy parallelization produces legal and correct parallel code at all times. This can 
bee seen by considering the allowed states for all data structures passed as parameters 
too the operations in Table 6.1, and the resulting states for the output structures 
producedd by these operations. As such, each operation has a set of allowed input 
statesstates for each of its parameters, and one of these is moved to a new output state. 
Byy exhaustion, it is easily shown that for each possible output state, a sequence of 
zeroo or more state transition functions exists that moves a data structure from that 
particularr output state to one state in each set of allowed input states. 

Ann important property of the approach is that it can be applied on the fly at 
runn time (hence its name). Because the required data structure states are known for 
eachh operation, it is possible to defer decisions regarding the execution of each default 
communicationn operation or memory management operation to as late as the actual 
momentt of intended execution. Essentially, this means that all five steps as described 
above,, are reduced to a single step. As such, lazy parallelization is unrestrictive and 
highlyy efficient, as no prior knowledge regarding the behavior of loops and branches 
inn the code is required. This knowledge is simply obtained during execution of the 
application,, and is not required any sooner. 

Althoughh lazy parallelization works well in many situations, it does not guarantee 
too always produce the fastest possible version of a program under consideration. First, 
thiss is because the approach always applies the fastest communication step whenever 
messagee transfer is mandatory. This is a form of local performance optimization, 
however,, as it may be better to insert a combined message transfer to avoid further 
communicationn steps to be executed at a later stage. Secondly, the approach does 
nott incorporate any knowledge obtained from our APIPM-based performance models 
describedd in Chapters 4 and 5. To overcome these problems, the next section proposes 
ann extension to the approach of lazy parallelization, such that it is indeed capable of 
producingg the (expected) fastest parallel version of any sequential program. 

6.44 Application State Transition Graph 

Thee process of lazy parallelization always results in the execution of a single pre-
selectedd solution for resolution of data structure state inconsistencies. For each spe-
cificc state inconsistency, each default resolution represents the cheapest operation (or 
sequencee of operations) that is available in the software library. Although this strategy 
generallyy produces parallel code which is quite efficient, the approach is sub-optimal, 
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ass it does not acknowledge that 

1.. the execution of more costly communication steps (e.g., Broadcast instead of 
Scat ter)) may avoid additional communication at a later stage in the program, 

2.. a single straightforward domain decomposition may deliver non-optimal perfor-
mancee (see Chapter 5), 

3.. the optimal routing pattern for the distribution of data partially depends on 
thee characteristics of the interconnection network (again, see Chapter 5), and 

4.. the use of all available processing power is not always time-optimal. 

Optimizationn in the light of these issues is obtained by constructing an application 
statestate transition graph (or ASTG), that characterizes an application's run time behav-
ior,, and incorporates all possible (combinations of) parallelization and optimization 
solutions.. By annotating the vertices in the graph (representing all operations which 
aree possibly performed by the application) with cost estimations obtained from our 
APIPM-basedd performance models described in Chapters 4 and 5, the expected opti-
mall  parallel implementation for an application is represented by the cheapest branch. 

Figuree 6.2 shows a simplified version of the ASTG constructed for the first three 
liness of code in Listing 6.1, assuming that a maximum number of only two processing 
unitss is available. After execution of the Import operation, several different execution 
pathss can be followed. One choice is to execute the UnPixOp in a sequential manner, 
ass is depicted by the uppermost branch in the graph. Parallel solutions involve either 
aa Sca t t er operation or a Broadcast operation performed on the imported data struc-
ture.. As explained in the Chapter 5, multiple versions of these operations exist in our 

A=qA=q0 0 Import(A ) ) AA , 

A = i / 2 2 

A=«2 2 

A=qA=q2 2 

AA  =q2 

A=qA=q2 2 

A=qA=q2 2 

A=qA=q2 2 

dodo nothing 

[= 0 0 

Scatter(A,, oft, 1x2) 

1=8 8 

Scatter(A,, oft, 2x1) 

1 = 1: : 

Scatter(A,, sbt, 1x2) 

!=]<) ) 

Scatter(A,, sbt, 2x1) 

1=15 5 

Broadcast!!  A, oft) 

1=35 5 

Broadcast!!  A, sbt) 

A"lA"l 4 4 

A=qA=q4 4 

A=qA=q55

=1=155--

AA =q2 ,B =q0 UnPixOp(A , B) A =q2 ,B =q 

AA  =q4 ,B =q0 UnPixOp(A , B) A =q4 ,B =q 

.. A =q5 ,B =q0 UnPixOp(A,, B) A=qA=q553=q3=q77 " 

Figuree 6.2: Simplified partial application state transition graph. 
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library,, each having different performance characteristics. For the Scat ter operation, 
itt is required to also choose a logical processor grid onto which the data structure is 
too be mapped (see Section 3.2). All of these choices result in a different expected 
executionn time for the program, as is indicated by the annotated performance esti-
mationss at each vertex in the graph. Although one of the branches in Figure 6.2 is 
cheapestt for this initial part of the program, to obtain optimal performance for the 
completee application a different path may have to be followed. 

Discussion n 

Whilee the expected optimal parallel implementation is always obtained in this manner, 
thee construction of a complete ASTG has several major disadvantages. First, in order 
too find the cheapest branch, the creation of an ASTG needs to be performed at compile 
time.. As such, the approach is restrictive, as it is now required to have prior knowledge 
regardingg the branching behavior of the application at hand. Another drawback is 
thatt it is often costly to actually obtain the cheapest branch in the graph. This is 
becausee an ASTG is generally large, even for applications of moderate size. 

6.4.11 Heuristics for Search Space Reduct ion 

Too overcome the stated problems, we have defined several heuristics to reduce the 
sizee of any application state transition graph. The use of heuristics implies that our 
approachh can no longer guarantee to find the expected optimal parallel implementa-
tionn for any sequential program. However, in almost all situations a close-to-optimal 
programm is still obtained, and application performance is generally still comparable 
too that of optimal hand-crafted parallel code (as will be demonstrated for all example 
applicationss evaluated in Chapter 7). 

First,, to overcome the problem of having to acquire prior knowledge regarding 
thee branching behavior of an application, our optimization approach simply ignores 
unknownn branches. At run time, any code block that has not been evaluated because 
off  undetermined conditional behavior is simply executed according to the default 
lazyy parallelization approach. In such a situation, all current logical data structure 
mappingss are maintained, however, to avoid having to execute costly remapping op-
erations.. Although this approach solves the problem in the simplest possible way, it 
shouldd be noted that we have learned that not many applications implemented using 
ourr software architecture actually contain such unknown branches. 

AA significant reduction of any ASTG is obtained by assuming that a specific data 
mappingg that was found to be optimal for a certain operation, is also optimal for 
otherr operations with similar behavior. In other words, it is simply assumed that each 
parallelizablee pattern entails a single optimal data partitioning strategy, irrespective 
off  the actual operation that is implemented by that pattern. As a consequence, in 
ann ASTG a sequence of operations applied to the same set of data structures is often 
reducedd to a single block of code which is not 'interrupted' by any communication 
operations.. Once a data structure has been partitioned and distributed, its logical 
mappingg is maintained as long as possible. 
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Ann ASTG is also significantly reduced by assuming that data structures that are 
usedd as arguments representing kernel structures (as in the GenConvOp operation) or 
vectorr data (as in the BinPixOpV operation) at any point in a program, are never 
too be partitioned. This is realistic, as such data structures are usually much smaller 
thann regular image data structures. Calculations on such small structures are simply 
assumedd not to gain from parallel execution at all. 

Otherr heuristics, such as evaluating partial execution paths either for a single node 
orr for all available nodes only, and considering only a small number of possible logical 
dataa mappings for the maximum system size, also reduce each ASTG significantly. 
Itt is expected that additional heuristics can reduce each ASTG even further, without 
compromisingg too much on the run time performance of the resulting parallel code. 
This,, however, is research we have left as future work. 

6.55 Related Work 

Althoughh a multitude of library-based environments has been described in the liter-
ature,, the process of optimization across library calls is not explicitly incorporated 
inn many of these. Even in several relatively recent software architectures, perfor-
mancee optimization issues often are considered at the intra-operation level only (e.g., 
seee [80. 81. 86. 87, 93, 111. 154. 159]). Other environments (e.g.. [118]) leave part of 
thee optimization process to a third-party compiler, as these require applications to 
bee implemented in a high-level parallel language such as Compositional C++ [26]. 

Thee environment implemented by Morrow et al. [109] does incorporate a par-
tiall  mechanism for inter-operation optimization. It is based on the concept of a 
self-optimizingself-optimizing class library, which is extended automatically with optimized parallel 
operations.. In case a program is being executed for the first time, a syntax graph is 
constructedd for each statement in the program, which is evaluated when an assignment 
operatorr is met. Any such syntax graph for combinations of primitive instructions 
(i.e.,, those incorporated as a single routine within the library) is written out for later 
considerationn by an off-line optimizer. On subsequent runs of the program, a check 
iss made to decide if an optimized routine is available for a given sequence of library 
calls.. Although optimal performance may be guaranteed for a sequence of library 
routiness in this manner, a drawback of this approach is that time-optimality is often 
nott obtained for complete applications. 

Otherr environments, such as developed by Jamieson et al. [73, 74], Lee et al. [94, 
95],, and Moore et al. [108], do incorporate a method for full inter-operation optimiza-
tion.. In all of these architectures the methods are purely static, however, and can be 
appliedd at compile time only. In this respect, our approach of lazy parallelization is 
moree flexible, as it allows much of the optimization process to be performed at run 
timee without any significant overhead cost. In case run time performance obtained 
fromm the standard lazy parallelization approach is deemed insufficiënt, one can decide 
too incorporate additional compile time results obtained from the ASTG. 

Ass far as we know, the use of a finite state machine specification is new in the 
fieldd of library-based parallel imaging environments. Moreover, to our knowledge the 
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applicationn of an fsm definition has not been considered at all in the field of parallel 
imagee processing. In several related research areas, however, fsm definitions have been 
appliedd before. For example, Chatterjee et al. [27] apply a finite state machine for the 
generationn of optimal communication sets in distributed-memory implementations of 
data-parallell  languages such as High Performance Fortran. As in our case, results 
indicatee that the fsm approach requires very littl e runtime overhead. For ad-hoc 
optimizationn of specific algorithms (e.g., see [31]), or complete applications (e.g., 
seee [106]), finite state machine definitions have been applied successfully as well. 

Interestingly,, our approach to finding optimal performance of operations as well 
ass complete applications is related to several projects in other domains. The SPIRAL 
projectt [99, 152], for example, is aimed at the design of a system to generate efficient 
librariess for digital signal processing algorithms. SPIRAL generates efficient imple-
mentationss of algorithms expressed in a domain-specific language, called SPL, by a 
systematicc search through the space of possible implementations. Other efforts in 
automaticallyy generating efficient implementations of programs include FFTW [51] 
forr adaptively generating time-optimal FFT algorithms, and the ATLA S project [169] 
forr deriving efficient implementations of basic linear algebra routines. 

Finally,, our work shares common goals with that of Baumgartner et. al. [14], in the 
searchh of an optimal data partitioning strategy with minimal communication overhead 
forr applications in the field of quantum chemistry and physics. Similar to our work, 
ann operator tree is generated, in which multiple data partitioning and communication 
strategiess are incorporated. This work goes even one step further, in that memory 
usagee is to be optimized at the same time. This approach is also entirely static, 
however,, and includes no possibility for partial optimization performed at run time. 

6.66 Conclusions 

Inn this chapter we have presented a finite state machine based approach for global 
optimizationn of data parallel image processing applications. The approach, called lazy 
parallelization,, considers a sequential program, which is parallelized automatically by 
insertingg communication operations and local memory management operations when-
everr necessary. The approach generates legal, correct, and efficient parallel programs, 
givenn any sequential program implemented using our software architecture. 

Thee main advantage of the optimization approach is that it can be applied on 
thee fly at run time. As a result, the primary importance of lazy parallelization over 
otherr approaches described in the literature lies in the fact that it requires no a priori 
knowledgee regarding the branching behavior of the application at hand. An additional 
advantagee of lazy parallelization is that it requires very littl e runtime overhead. Also, 
inn our software architecture it proved to be possible to incorporate the approach 
inn an elegant manner — i.e., such that the long-term sustainability of the library 
implementationss is not compromised. 

Althoughh lazy parallelization was shown to work well in many situations, it can 
nott guarantee to always produce the fastest possible version of the program under 
consideration.. To overcome this problem, an extension to the approach of lazy par-
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allelizationn was also presented. The extended technique requires an application state 
transitionn graph (ASTG) to be generated. An ASTG incorporates all optimization 
decisionss which can possibly be made at application run time. As each decision is 
annotatedd with a run time cost estimation (obtained from our APIPM-based perfor-
mancee models), the fastest version of the program is represented by the 'cheapest' 
branchh in the ASTG. 

Ann important drawback of the application state transition graph, however, is that 
itt is often costly to actually obtain the cheapest branch. This is because the ASTG 
iss generally large, even for applications of moderate size. For this reason we have also 
definedd additional heuristics for search space reduction. Another drawback is that 
thee creation and traversal of an ASTG can not be performed at run time. However, 
inn case the default approach of lazy parallelization proves to deliver sufficiently high 
performance,, the creation of an ASTG can be avoided altogether. 

Inn conclusion, lazy parallelization on the basis of a finite state machine specifi-
cationn has proven to constitute a surprisingly simple, yet effective method for global 
optimizationn of data parallel image processing applications. Essentially, the simplic-
ityy stems from the high level abstractions incorporated in the fsm definition. Con-
sequently,, we feel that a similar approach could be applicable in other library-based 
architecturess as well. This is especially true for the many environments for linear 
algebraa operations, which include similar patterns of communication and calculation. 



Chapterr 7 

Efficientt Applications in 
Userr Transparent 
Parallell  Image Processing* 

vvThyThy will  by my performance shall be serv'd: 
SoSo make the choice of thy own time, for I, 

ThyThy resolv'd patient, on thee still rely." 

Williamm Shakespeare - All's Well That Ends Well (1623) 

Inn the previous chapters we have described the essential and most innovative as-
pectss of our software architecture for user transparent parallel image processing. 
First,, in Chapter 2 we have discussed the need for the availability of such architec-
ture,, and we have presented a bird's eye view of all of the architecture's constituent 
components.. In Chapter 3 we have presented some of the implementation details 
off  the architecture's core — which is a sustainable software library consisting of an 
extensivee set of operations commonly applied in state-of-the-art image processing 
research.. In Chapter 4 we have introduced a performance model, derived from a high 
levell  abstract parallel image processing machine definition, which is used for obtaining 
accuratee run time cost estimations for all operations available in our architecture. In 
addition,, in Chapter 5 we have presented an extended model for accurate prediction 
off  the cost of the basic point-to-point communication operations applied in the library 
implementations.. As discussed in Chapter 6, performance estimations obtained from 
thesee models are essential for generating the fastest possible parallel version of any 

*Thi ss chapter is based on our paper as appeared in Proceedings of the 16th International Parallel 
&&  Distributed Processing Symposium (IPDPS 2002) [150]. An extended version of this chapter is to 
appearr in Concurrency and Computation: Practice and Experience [146]. 
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sequentiall  program implemented using our software architecture. In relation to this, 
inn Chapter 6 we have also presented a finite state machine specification, which is used 
forr the automatic conversion of a legal sequential image processing application into a 
legal,, correct, and time-optimal parallel version of the same program. 

Forr each of the research issues presented in the previous chapters, we have dis-
cussedd the advantages and drawbacks of the solutions incorporated in our software 
architecture.. Where possible, we have also presented results for each of the solutions 
appliedd in isolation. To validate all of the results of this research, however, the single 
remainingg issue that has yet to be discussed in this thesis is the overall efficiency 
obtainedd in case the architecture components are applied in combination. 

Too this end. in this chapter we give an assessment of the software architecture's 
effectivenesss in providing significant performance gains. In particular, we describe the 
implementationn and automatic parallelization of three well-known example applica-
tionss that contain many operations commonly applied in image processing research: 
(1)) template matching, (2) multi-baseline stereo vision, and (3) line detection. For all 
threee applications we determine whether the performance obtained with the parallel 
versionss generated by our software architecture indeed adheres to requirement 1.2 put 
forwardd in Section 2.3 which states that the obtained efficiency generally should 
comparee well to that of reasonable hand-coded parallel implementations. 

Thiss chapter is organized as follows. First, in Section 7.1 we give a short de-
scriptionn of the hardware architecture that we have used for all evaluation purposes. 
Next,, in each of the Sections 7.2, 7.3, and 7.4, one of the example applications is 
describedd and evaluated in extensive detail. Information regarding the parallelization 
andd optimization issues of each application is presented, in combination with obtained 
performancee results and speedup characteristics. Where available, measurement data 
presentedd in the literature are compared with performance results obtained with our 
softwaree architecture. Finally, concluding remarks are given in Section 7.5. 

7.11 Hardware Environment 

Al ll  of the applications described in this chapter have been implemented and tested on 
thee 128-node homogeneous Distributed ASCI Supercomputer (DAS) cluster located 
att the Vrij e Universiteit in Amsterdam [7]. This is a typical example of a machine 
fromm the class of homogeneous commodity clusters as described in Section 2.1. All 
nodess in the cluster contain a 200 Mhz Pentium Pro with 128 MByte of EDO-RAM, 
andd are connected by a 1.2 Gbit/sec full-duplex Myrinet SAN network. At the time 
off  measurement, the nodes ran the RedHat Linux 6.2 operating system. The software 
architecturee was compiled using gec 3.0 (at highest level of optimization) and linked 
withh MPI-LFC [16]. an implementation of MPI which is partially optimized for the 
DAS.. The required set of benchmarking operations (see Section 4.4) was run on a total 
off  three DAS nodes, under identical circumstances as the complete software architec-
turee itself. At the time of measurement, 8 nodes in the DAS cluster were unusable 
duee to a malfunction in the related network cards. As a consequence, performance 
resultss are presented for a system of up to 120 nodes only. 
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7.22 Template Matching 
Templatee matching is one of the most fundamental tasks in many image processing 
applications.. It is a simple method for locating specific objects within an image, where 
thee template (which is, in fact, an image itself) contains the object one is searching 
for.. For each possible position in the image the template is compared with the actual 
imagee data in order to find subimages that match the template. To reduce the impact 
off  possible noise and distortion in the image, a similarity or error measure is used to 
determinee how well the template compares with the image data. A match occurs 
whenn the error measure is below a certain predefined threshold. 

Inn the example application described here, a large set of electrical engineering 
drawingss is matched against a set of templates representing electrical components, 
suchh as transistors, diodes, etc. Although more post-processing tasks may be required 
forr a truly realistic application (such as obtaining the actual positions where a match 
hass occurred), we focus on the template matching task, as it is by far the most time-
consuming.. This is especially so because, in this example, for each input image ƒ error 
imagee s is obtained by using an additional weight template w to put more emphasis 
onn the characteristic details of each 'symbol' template g: 

e(i,j)e(i,j) = Em£n( ( / (z + m J + n) - g{m,n))2 -w{m,v)). (7.1) 

Whenn ignoring constant term g2w, this can be rewritten as: 

ee = f®w-2-{f®wg). (7.2) 

withh g) the convolution operation. The error image is normalized such that an error 
off  zero indicates a perfect match and an error of one a complete mismatch. Although 
thee same result can be obtained using the Fast Fourier Transform (which has a better 
theoreticall  run time complexity, and also provides immediate localization of the best 
matchh and all of its resembling competitors), this brute force method is fastest for 
ourr particular data set. 

7.2.11 Sequential Implementation 

Listingg 7.1 is a sequential pseudo code representation of Equation (7.2). The library 
callss are as described in Chapter 3. Essentially, each input image is read from file, 
squaredd (to obtain / 2 ) , and matched against all symbol and weight templates, which 
aree also obtained from file. In the inner loop the two convolution operations are 
performed,, and the error image is calculated and written out to file. 

7.2.22 Parallel Execution 

Ass all parallelization issues are shielded from the user, the pseudo code of Listing 7.1 
directlyy constitutes a program that can be executed in parallel as well. Efficiency 
off  parallel execution depends on the optimizations performed by the architecture's 
schedulingg component. For this particular sequential implementation, the optimiza-
tionn process (as described in Chapter 6) has generated a schedule that requires only 
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FORR i=0:NrImages-l DO 
Inputlmm = ReadFile(...); 
Sqrdlnputlmm — BinPixOp(InputIm. "mul" . Inputlm): 
FORR j=0:NrSymbols-l DO 

IFF ( i==0) THEN 
weightsp]]  = ReadFile(...); 
symbolss [j] — ReadFile(...): 
symbols[j]]  = BinPixOp(symbols[j], "mul", weights[j]): 

FI I 
Fi l t lm ll  = GenConvOp(SqrdInputIm, "mult" , "add", weights [j]) ; 
Filtlm22 — GenConvOp(lnPutIm. "mult" , "add", symbols [j]) : 
Filtlm22 = BinPixOp(FiltIm2. "mult". 2): 
Errorlmm = UnPixOp(Fi l t Iml, "sub". Filtlm2): 
\VriteFilt'(( Error Im); 

OD D 
OD D 

Listingg 7.1: Pseudo code for template matching. 

fourr different communication steps to be executed. First, each input, image read from 
fil ee is scattered throughout the parallel system (generally applying a logical CPU grid 
off  2 X ( P T 2) or 4 x (P 4- 4). depending on the available number of nodes P). Next, 
inn the inner loop all templates are broadcast, to all processing units. Also, in order for 
thee convolution operations to perform correctly, image borders (or shadow regions) 
aree exchanged among neighboring nodes in the logical CPU grid. In all cases, the 
extentt of the border in each dimension is half the size of the template minus one 
pixel.. Finally, before each error image is written out to file it is gathered to a single 
processingg unit. Apart from these communication operations all processing units can 
runn independently, in a fully data parallel manner. As such, the program executes in 
exactlyy the same way as would have been the case for a hand-coded parallel version. 

7.2.33 Performance Evaluation 

Becausee template matching is such an important task in image processing, it is es-
sentiall  for our software architecture to perform well for this application. The results 
obtainedd for the automatically optimized parallel version of the program, presented 
inn the first six columns of Figure 7.1(a). show that this is indeed the case. For these 
results,, the graph of Figure 7.1(b) shows that even for a large number of processing 
units,, speedup is close to linear. As was to be expected, the speedup characteristics 
aree identical when the same number of templates is used in the matching process, 
irrespectivee of the number of input images. 

Itt should be noted that the '1 template' case represents a lower bound on the 
obtainablee speedup (which is slightly over 80 for 120 nodes). This is because in this 
situationn the communication versus computation ratio is highest for the presented 
parallell  system sizes. Additional measurements have indicated that the '10 template' 
casee is a representative upper bound (with a speedup of more than 96 for 120 nodes). 
Evenn when up to 50 templates are being used in the matching process, the speedup 
characteristicss were found to be almost identical to this upper bound. 
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#CPUs s 

1 1 
2 2 
4 4 
8 8 
16 6 
24 4 
32 2 
48 8 
64 4 
80 0 
96 6 
120 0 

time-- optimized parallel program 

11 input image 

11 template 
(s) ) 

25.439 9 
12.774 4 
6.449 9 
3.287 7 
1.703 3 
1.176 6 
0.902 2 
0.642 2 
0.503 3 
0.424 4 
0.375 5 
0.317 7 

55 templates 
(s) ) 
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63.410 0 
31.895 5 
16.138 8 
8.254 4 
5.618 8 
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2.956 6 
2.280 0 
1.865 5 
1.627 7 
1.340 0 

100 templates 
(s) ) 

253.165 5 
126.694 4 
63.707 7 
32.212 2 
16.459 9 
11.207 7 
8.473 3 
5.875 5 
4.493 3 
3.708 8 
3.189 9 
2.619 9 

55 input images 

11 template 
(s) ) 

127.158 8 
63.819 9 
32.237 7 
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3.218 8 
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2.115 5 
1.871 1 
1.581 1 
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9.340 0 
8.088 8 
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(5) ) 
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633.083 3 
318.559 9 
161.303 3 
82.259 9 
55.838 8 
42.414 4 
29.367 7 
22.409 9 
18.546 6 
16.146 6 
13.299 9 

defaultt  parallel program 

11 input image 

11 template 
(s) ) 

25.526 6 
13.466 6 
7.126 6 
3.972 2 
2.399 9 
1.876 6 
1.581 1 
1.337 7 
1.224 4 
1.093 3 
1.056 6 
0.960 0 

100 templates 
(s) ) 
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133.443 3 
69.924 4 
37.975 5 
21.960 0 
16.539 9 
14.128 8 
11.330 0 
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9.119 9 
8.493 3 
7.668 8 
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Figuree 7.1: Performance and speedup characteristics for template matching using 
inputinput images of 1093x649 (4-byte) pixels and templates of size 41x35. (a) Execution 
timestimes in seconds for multiple combinations of templates and images. Results in first 
sixsix columns obtained for optimized parallel version. Results in last two columns (gray) 
obtainedobtained for non-optimized parallel version generated by default algorithm expansion, 
(b)(b) Speedup graph for all measurements. Four uppermost lines for optimized program 
calculatingcalculating matches for 5 and 10 templates; two lower lines for matching with a single 
template.template. Bottom two lines for non-optimized (default) parallel program. 
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Thee additional values in the gray columns of Figure 7.1(a) represent measurement 
resultss obtained for a non-optimized parallel version of the program (i.e., the parallel 
programm which is obtained in the process of default algorithm expansion, without 
applyingg a redundancy avoidance strategy or any other optimization steps, see Sec-
tionn 6.1.2). These measurements, as well as the related speedup characteristics shown 
inn Figure 7.1(b), clearly indicate the importance of the optimization process presented 
inn Chapter 6. Most importantly, the dramatic results are due to the fact that the 
defaultt parallel program executes many redundant communication steps. For evalua-
tionn of the efficiency of our software architecture, these non-optimized results simply 
shouldd be ignored. In the remainder of this chapter we will therefore only present 
resultss for time-optimized parallel programs. 

7.33 Multi-Baseline Stereo Vision 

Ass indicated in [82, 110], depth maps obtained by conventional stereo ranging, which 
usess correspondences between images obtained from two cameras placed at a small 
distancee from each other, are generally not very accurate. In part, this is due to the 
fundamentall  difficulty of the stereo correspondence problem: finding corresponding 
pointss between left and right images is locally ambiguous. Several solutions to this 
problemm have been proposed in the literature, ranging from a hierarchical smooth-
ingg or coarse-to-fine strategy to a global optimization technique based on surface 
coherencee assumptions. These techniques, however, tend to be heuristic or result in 
computationallyy expensive algorithms. 

Inn [117], Okutomi and Kanade propose an efficient multi-baseline stereo vision 
method,, which is more accurate for depth estimation than more conventional ap-
proaches.. Whereas, in ordinary stereo, depth is estimated by calculating the error 
betweenn two images, multi-baseline stereo requires more than two equally spaced 

(a)) (b) 

Figuree 7.2: Example of typical input scene (a) and extracted depth map (b). Courtesy 
ofof Professor H. Yang, University of Alberta, Canada. 
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camerass along a single baseline to obtain redundant information. In comparison with 
two-cameraa methods, multi-baseline stereo was shown to significantly reduce the num-
berr of false matches, thus making depth estimation much more robust. 

Inn the algorithm discussed here, input consists of images acquired from three 
cameras.. One image is the reference image, the other two are match images. For 
eachh of 16 disparities, d = 0, • • • ,15, the first match image is shifted by d pixels, the 
secondd image is shifted by 2d pixels. First, a difference image is formed by computing 
thee sum of squared differences between the corresponding pixels of the reference image 
andd the shifted match images. Next, an error image is formed by replacing each pixel 
withh the sum of the pixels in a surrounding 13 x 13 window. The resulting disparity 
imagee is then formed by finding, for each pixel, the disparity that minimizes the error. 
Thee depth of each pixel then can be displayed as a simple function of its disparity. A 
typicall example of a depth map extracted in this manner is given in Figure 7.2. 

7.3.11 Sequential Implementations 

Thee sequential implementation used in this evaluation is based on a previous im­
plementationn written in a specialized parallel image processing language, called 
Adaptt [166] (see also Section 2.2.2). As shown in Listing 7.2, for each displace­
mentt two disparity images are obtained by first shifting the two match images, and 
calculatingg the squared difference with the reference image. Next, the two disparity 
imagess are added to form the difference image. Finally, in the example code, the 
resultt image is obtained by performing a convolution with a 13 x 13 uniform filter 
andd minimizing over results obtained previously. 

Withh our software architecture we have implemented two versions of the algorithm 
thatt differ only in the manner in which the pixels in the 13 x 13 window are summed. 
Thee pseudo code of Listing 7.2 shows the version that performs a full 2-dimensional 
convolution,, which we refer to as VisSlow. As explained in detail in [43], a faster 
sequentiall implementation is obtained when partial sums in the image's y-direction 
aree buffered while sliding the window over the image. We refer to this optimized 
versionn of the algorithm as VisFast. 

Errorlmm = UnPixOp(ErrorIm, "set", MAXVAL); 
FORR all displacements d DO 

Disparityy Iml 
Disparitylm2 2 
Disparitylml l 
Disparitylm2 2 
Disparitylml l 
Disparitylm2 2 
Differencelmm -
Differencelmm = 

== BinPixOp(MatchIml. "horshift' 
== BinPixOp(MatchIm2, "horshift' 
—— BinPixOp(DisparityIml, 
== BinPixOp(DisparityIm2, 
== BinPixOp(DisparityIml, 
== BinPixOp(DisparityIm2, 
== BinPixOp( Disparitylml, 
== GenConvOp(DifferenceIm 

"sub", , 
"sub", , 
"" pow" 
"pow" " 
'add", , 

\ d ) ; ; 
,, 2 x d); 
Referencelm); ; 
Referencelm): : 
2); ; 
2); ; 

Disparitylm2); ; 
,, "mult", "add", unitKer): 

Errorlmm = BinPixOp(ErrorIm, "min", Differencelm); 
OD D 

Listingg 7.2: Pseudo code for multi-baseline stereo vision. 
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7.3.22 Parallel Execution 

Thee generated optimal schedule for either version of the program of Section 7.3.1 re-
quiress not more than five communication steps. In the first loop iteration — and only 
thenn — the three input images Matchlml , Matchlm2, and ReferenceIm are scattered 
too all processing units. The decompositions of these images are all identical (and 
performedd in a row-wise fashion only i.e.. using a 1 x P logical CPU grid mapping) 
too avoid a domain mismatch and unnecessary communication. Also, in each loop 
iterationn border communication is performed in either version of the program. Again, 
thee extent of the border in each dimension is half the size of the kernel minus one pixel 
(i.e.,, six pixels in total). Finally, at the end of the last loop iteration the result image 
(Errorlm)) is gathered to one processor. As in the example of Section 7.2. the opti-
mizedd parallel programs obtained with our software architecture execute in exactly the 
samee way as would have been the case for reasonable hand-coded implementations. 

7.3.33 Performance Evaluation 

Resultss obtained for the two implementations, given input images of size 240 x 256 
pixelss (as used most often in the literature) are shown in Figure 7.3(a). Given the fact 
thatt we only allow border exchange among neighboring nodes in a logical CPU grid, 
thee maximum number of nodes that can be used for such image size is 40. In case 
moree CPUs are being used, several nodes will have partial image structures with an 
extentt of less than 6 pixels in one dimension (due to the one-dimensional partitioning 
off  the input images). As the size of the shadow region for a 13 x 13 kernel is 6 pixels 
inn both dimensions, nodes would have to obtain data from its neighbor's neighbors as 
welll  or even further away. The communication pattern for this behavior is costly 
(i.e... the communication versus computation ratio is high), and therefore we have not 
incorporatedd it in our architecture. 

Ass expected, Figure 7.3(a) shows that the performance of the VisFast version 
off  the algorithm is significantly better than that of VisSlow. Also, the graph of 
Figuree 7.3(b) shows that the speedup obtained for both applications is close to linear 
upp to 24 CPUs. When more than 24 nodes are being used, the speedup graphs flatten 
outt due to the relatively short execution times. Because the generated schedule for this 
programm is identical to what an expert programmer would have implemented by hand, 
thiss is to be considered optimal. This also can be derived from the fact that superlinear 
speedupss are obtained for up to 12 processing units. Figure 7.4 shows similar speedup 
characteristicss obtained for a system of up to 80 nodes, and using input images of size 
5122 x 528 pixels. For up to 40 nodes these results are almost identical to Figure 7.3. 
indicatingg a similar impact of communication on overall performance. 

Inn Figures 7.3 and 7.4 we have also made a comparison with results obtained for 
thee same application implemented in a task parallel manner — writtenn in a special-
izedd parallel programming language (SPAR [129]). and executed on the same parallel 
machine.. In this implementation, referred to as VisTask, each iteration is desig-
natedd as an independent task, thus exploiting 16 processing units at maximum. For 
thiss comparison, the code generated by the SPAR front-end was compiled in a iden-
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#CPUs s 

l l 
2 2 
4 4 
8 8 
12 2 
16 6 
20 0 
24 4 
28 8 
32 2 
36 6 
40 0 

Softwaree Architectur e 

VisFast t 
(s) ) 

1.998 8 
0.969 9 
0.458 8 
0.232 2 
0.167 7 
0.135 5 
0.118 8 
0.106 6 
0.100 0 
0.095 5 
0.089 9 
0.084 4 

VisSlow w 
(s) ) 

5.554 4 
2.759 9 
1.354 4 
0.674 4 
0.461 1 
0.357 7 
0.296 6 
0.253 3 
0.232 2 
0.212 2 
0.192 2 
0.172 2 

SPAR R 

VisTask k 
(s) ) 

8.680 0 
4.372 2 
2.214 4 
1.135 5 
1.135 5 
0.598 8 

(a) ) 

(b) ) 

Figuree 7.3: Performance and speedup characteristics for multi-baseline stereo vision 
usingusing input images of 240x256 (4-byte) pixels, (a) Execution times in seconds for 
thethe optimized parallel programs obtained with our architecture for both algorithms. 
ResultsResults in gray obtained for the task parallel implementation in the SPAR parallel 
programmingprogramming language, (b) Speedup graph for all measurements. 
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#CPUs s 
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Figuree 7.4: Performance and speedup characteristics for multi-baseline stereo vision 
usingusing input images of 512x528 (4-byte) pixels, (a) Execution times in seconds for 
thethe optimized parallel programs obtained with our architecture for both algorithms. 
ResultsResults in gray obtained for the task parallel implementation in the SPAR parallel 
programmingprogramming language, (b) Speedup graph for all measurements. 
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ticall  manner to the previous case. Although the communication characteristics of 
thee SPAR implementation are significantly different, measurements on a single node 
indicatee that the overhead by our software architecture is much smaller than that 
off  the SPAR runtime system. Nevertheless, the speedup obtained for the VisTask 
implementationn indicates that SPAR successfully exploits all available parallelism for 
thiss particular application. From this comparison we conclude that our software ar-
chitecturee provides fast sequential code, as well as high parallelization efficiency. 

Interestingly,, our results are comparable to the performance obtained for a Vis-
Fast-likeFast-like implementation in the Adapt parallel image processing language reported 
byy Webb [166] (see Figure 7.5). A comparison is difficult, however, as results were 
obtainedd on a significantly different machine (i.e., a collection of iWarp processors, 
withh a better potential for obtaining high speedup than the DAS cluster), and for an 
implementationn optimized for 2X nodes. Comparison with the speedup characteris-
ticss of the Adapt implementation is even more difficult, as the results in Figure 7.6 
indicatee that they fluctuate substantially. Yet, our results on the DAS (which was 
installedd less than 5 years later) make a strong case for our general purpose approach. 

VisTask-SPARR (task parallel) 
VisSloww (data parallel; slow) 

Adaptt (machine-specific; optimized) 
VisFastt (data parallel; fast) 

Figuree 7.5: Comparison of execution times for the VisSlow and VisFast programs 
implementedimplemented with our software architecture, the Vis Task program implemented using 
thethe SPAR parallel language, and the results obtained for the Adapt implementation 
reportedreported in [166] (all for 240x256 (4-byte) input images). 
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££ 20 -

Figuree 7.6: Comparison of speedup for the VisSlow and VisFast programs imple-
mentedmented with our software architecture, and the Adapt implementation reported in [166] 
(all(all  for 240x256 (4-byte) input images). 

200 25 
Nr,, of CPUs 

300 35 40 

Figuree 7.7: Comparison of speedup for the VisSlow and VisFast programs imple-
mentedmented with our software architecture, and the two Easy-PIPE implementations re-
portedported in [111] (all for 240x256 (4-byte) input images). 
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Moree relevant is a comparison with Easy-PIPE [111, 112], a library-based software 
environmentt for parallel image processing similar to ours. Easy-PIPE mainly differs 
fromm our architecture in that it incorporates a mechanism for combining data and 
taskk parallelism. Also, Easy-PIPE does not shield all parallelism from the application 
programmer.. As a consequence, Easy-PIPE has the potential of outperforming our 
architecture,, which is fully user transparent, and strictly data parallel. Results for the 
multi-baselinee stereo application obtained on the same DAS cluster (see Figure 7.7) 
indicatee that our architecture performs better nonetheless. Part of the difference is 
accountedd to the fact that the two Easy-PIPE implementations do not fully exploit 
alll  parallelism available in the program. Also, in contrast to our library implementa-
tions,, the communication routines applied in Easy-PIPE rely on the costly creation of 
separatee send and receive buffers in user-space. The bulk of the difference, however, 
iss due to the absence in the Easy-PIPE architecture of an inter-operation optimiza-
tionn mechanism for removal of redundant communication overhead, such as our lazy 
parallelizationn approach of Chapter 6. As a result, the parallelization overhead of the 
Easy-PIPEEasy-PIPE implementations is much higher than that of our software architecture. 

7.44 Detection of Linear Structures 

Ass discussed in [55], the important problem of detecting lines and linear structures in 
imagess is solved by considering the second order directional derivative in the gradient 
direction,, for each possible line direction. This is achieved by applying anisotropic 
Gaussiann filters, parameterized by orientation 6, smoothing scale au in the line direc-
tion,, and differentiation scale av perpendicular to the line, given by 

r"(x,y,ar"(x,y,auu,a,avv,6),6) = auav | ƒ£•"«•• | T ^ ^ , (7.3) 

withh b the line brightness. When the filter is correctly aligned with a line in the image, 
andd au,av are optimally tuned to capture the line, filter response is maximal. Hence, 
thee per pixel maximum line contrast over the filter parameters yields line detection: 

R(x,y)R(x,y) = &Tg max r"(x,y,au,av,6). (7.4) 
<7<7uu,a,avv,9 ,9 

Figuree 7.8(a) gives a typical example of an image used as input to this algorithm. Re­
sultss obtained for a reasonably large subspace of (au, av,9) are shown in Figure 7.8(b). 

(a)) (b) 

Figuree 7.8: Detection of C Elegans worms (Janssen Pharmaceuticals, Belgium). 
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FORR all orientations 0 DO 
Rotatedlmm = GeometricOp(OriginalIm. "rotate". 9): 
Contrastimm = UnPixOp(ContrastIm, "set". 0): 
FORR all smoothing scales au DO 

FORR all differentiation scales av DO 
Fi l t lm ll  = GenConvOp(Rotatedlm. "gaussXY", au, °v • 2, 0); 
Filtlm22 = GenConvOp(RotatedIm. "gaussXY". au, av , 0, 0); 
Detectedlmm = BinPixOp(FiltIml. "absdiv". Filtlm2): 
Detectedlmm = BinPixOp(Detectedlm, "mul", au x av)\ 
Contrastimm = BinPixOp(ContrastIm. "max". Detectedlm): 

OD D 
OD D 
BackRotatedlmm = GeometricOp(ContrastIm. "rotate". — 0); 
Resulthnn = BinPixOp(ResultIm. "max", BackRotatedlm); 

OD D 

Listingg 7.3: Pseudo code for the ConvRot algorithm. 

7.4.11 Sequential Implementations 

Thee anisotropic Gaussian filtering problem can be implemented sequentially in many 
differentt ways. In the remainder of this section we will consider three possible ap­
proaches.. First, for each orientation 6 it is possible to create a new filter based on au 

andd av. In effect, this yields a rotation of the filters, while the orientation of the in­
putt image remains fixed. Hence, a sequential implementation based on this approach 
(whichh we refer to as Conv2D) implies full 2-dimensional convolution for each filter. 

Thee second approach (referred to as ConvUV) is to decompose the anisotropic 
Gaussiann filter along the perpendicular axes u, v, and use bilinear interpolation to 
approximatee the image intensity at the filter coordinates. Although comparable to 
thee Conv2D approach, ConvUV is expected to be faster due to a reduced number 
off accesses to the image pixels. A third possibility (called ConvRot) is to keep the 
orientationn of the filters fixed, and to rotate the input image instead. The filtering 
noww proceeds in a two-stage separable Gaussian, applied along the x- and y-direction. 

Pseudoo code for the ConvRot algorithm is given in Listing 7.3. The program 
startss by rotating the original input image for a given orientation 9. In addition, for 
alll (au.av) combinations the filtering is performed by xy-separable Gaussian filters. 

FORR all orientations 0 DO 
FORR all smoothing scales au DO 

FORR all differentiation scales av DO 
Fi l t lmll = GenConvOp(OriginalIm, 
Filtlm22 = GenConvOp(OriginalIm, 
Contrastimm = BinPixOp(Fil tIml, 

"" func" 
"func" " 
absdiv" " 

Contrastimm = BinPixOp(ContrastIm, " m a 
Resultimm = BinPixOp(ResultIm, "i 

C u .. Ov i 2, 

(J(Juu,, Ov , 0, 

,, Filtlm2); 
",, au x Ov) 

Tiax",, Contrastim); 

0): : 
0); ; 

Listingg 7.4: Pseudo code for the Conv2D and ConvUV algorithms, with "func " 
eithereither "gauss2D"  or "gaussUV". 
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Forr each orientation step the maximum response is combined in a single contrast 
imagee structure. Finally, the temporary contrast image is rotated back to match the 
orientationn of the input image, and the maximum response image is obtained. 

Forr the Conv2D and ConvUV algorithms, the pseudo code is identical and 
givenn in Listing 7.4. Filtering is performed in the inner loop by either a full two-
dimensionall  convolution (Conv2D) or by a separable filter in the principle axes 
directionss [ConvUV). On a state-of-the-art sequential machine either program may 
takee from a few minutes up to several hours to complete, depending on the size of the 
inputt image and the extent of the chosen parameter subspace. Consequently, for the 
directionall  filtering problem parallel execution is highly desired. 

7.4.22 Parallel Execution 

Automaticc optimization of the ConvRot program has resulted in an optimal schedule, 
ass described in more detail Section 4.5.2. In this schedule, the full Originallm struc-
turee is broadcast to all nodes before each calculates its respective partial Rotatedlm 
structure.. This broadcast needs to be performed only once, as Originallm is not 
updatedd in any operation. Subsequently, all operations in the innermost loop are 
executedd locally on partial image data structures. The only need for communication 
iss in the exchange of image borders in the two Gaussian convolution operations. 

Thee two final operations in the outermost loop are executed in a data parallel 
mannerr as well. As this requires the distributed image Contrastim to be available in 
fulll  at each node (see Section 4.5.2), a gather-to-all operation is performed. Finally, a 
partiall  maximum response image Resultim is calculated on each node, which requires 
aa final gather operation to be executed just before termination of the program. 

Thee schedule generated for either the Conv2D program or the ConvUV pro-
gramm is straightforward, and similar to that of the template matching application of 
Sectionn 7.2. First, the Originallm structure is scattered such that each node obtains 
ann equal-sized non-overlapping slice of the image's domain. Next, all operations are 
performedd in parallel, with a border exchange required in the convolution operations. 
Finally,, before termination of the program ResultIm is gathered to a single node. 

7.4.33 Performance Evaluation 

Fromm the description above it is clear that the ConvRot algorithm is most difficult 
too parallelize efficiently. Note that this is due to the data dependencies present in 
thee algorithm (i.e., the repeated image rotations), and not in any way related to the 
capabilitiess of our software architecture. In other words, even when implemented 
byy hand the ConvRot algorithm is expected to have speedup characteristics that 
aree not as good as those of the other two algorithms. Furthermore, Conv2D is 
expectedd to be the slowest sequential implementation, due to the excessive accessing 
off  image pixels in the 2-dimensional convolution operations. In general, ConvUV 
andd ConvRot will be competing for the best sequential performance, depending on 
thee amount of filtering performed for each orientation. 
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#CPUs s 

1 1 
2 2 

4 4 
8 8 
16 6 
32 2 
48 8 
64 4 
80 0 
96 6 
112 2 
120 0 

ConvRot t 
(s) ) 

666.720 0 
337.877 7 
176.194 4 
97,162 2 
56.320 0 
36.497 7 
31.399 9 
27.745 5 
27.950 0 
27.449 9 
26.284 4 
25.837 7 

Conv2D D 
(s) ) 

2085.985 5 
1046.115 5 
525.856 6 
264.051 1 
132.872 2 
67.524 4 
45.849 9 
35.415 5 
29.234 4 
24.741 1 
21.046 6 
20.017 7 

ConvUV V 
(s) ) 

437.641 1 
220.532 2 
113.526 6 
56.774 4 
28.966 6 
14.494 4 
10.631 1 
8.147 7 
7.310 0 
5.697 7 
5.014 4 
4.813 3 

120 0 

100 0 

600 80 100 120 
Nr.. of CPUs 

(b) ) 

Figuree 7.9: (a) Performance and (b) speedup characteristics for computing a typical 
orientationorientation scale-space at 5° angular resolution (i.e., 36 orientations) and 8 (cru,av) 
combinations.combinations. Scales computed are au £ {3,5,7}  and av e {1,2,3} , ignoring the 
isotropicisotropic case au%v = {3,3} . Image size is 512x512 (4-byte) pixels. 

Figuree 7.9 shows that these expectations are indeed correct. On one processor 
ConvUVConvUV is about 1.5 times faster than ConvRot, and about 4.8 times faster than 
Conv2D.Conv2D. For 120 nodes these factors have become 5.4 and 4.1 respectively. Because 
off  the relatively poor speedup characteristics, ConvRot even becomes slower than 
Conv2DConv2D when the number of nodes becomes large. Although Conv2D has better 
speedupp characteristics, the ConvUV implementation always is fastest, either se-
quentiallyy or in parallel. Figure 7.10 presents similar results for a minimal parameter 
subspace,, thus indicating a lower bound on the obtainable speedup. 
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#CPUs s 

1 1 
2 2 
4 4 
8 8 
16 6 
32 2 
48 8 
64 4 
80 0 
96 6 
112 2 
120 0 

ConvRot t 
(s) ) 

110.127 7 
56.993 3 
30.783 3 
17.969 9 
11.874 4 
9.102 2 
8.617 7 
8.222 2 
8.487 7 
8.729 9 
8.551 1 
8.391 1 

Conv2D D 
(s) ) 

325.259 9 
162.913 3 
82.092 2 
41.318 8 
20.842 2 
10.660 0 
7.323 3 
5.589 9 
4.922 2 
4.567 7 
4.096 6 
3.836 6 

ConvUV V 
(s) ) 

56.229 9 
28.512 2 
14.623 3 
7.510 0 
3.809 9 
2.071 1 
1.578 8 
1.250 0 
1.076 6 
0.938 8 
0.863 3 
0.844 4 

(a) ) 

120 0 

1000 -

120 0 

(b) ) 

Figuree 7.10: (a) Performance and (b) speedup characteristics for computing a minimal 
orientationorientation scale-space at 15° angular resolution (i.e., 12 orientations) and 2 (cru,av) 
combinations.combinations. Scales computed are aUjV = {1,3}  and au^v = {3,7} . 

Thee generated schedules for both the Conv2D program and the ConvUV pro-
gramm are identical to what an expert would have implemented by hand. Speedup 
valuess obtained on 120 nodes for a typical parameter subspace (Figure 7.9) are 104.2 
andd 90.9 for Conv2D and ConvUV respectively. As a result we can conclude that 
ourr software architecture behaves well for these implementations. In contrast, the 
usagee of algorithmic patterns (see Chapter 3) has caused the sequential implemen-
tationn of image rotation to be non-optimal for certain special cases. As an example, 
rotationn over 90° can be implemented much more efficiently than rotation over any 
arbitraryy angle. In our architecture we have decided not to do so, mainly for reasons 
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off  software maintainability (see Chapter 2). As a result, we expect a hand-coded and 
hand-optimizedd version of the same algorithm to be faster, but only marginally so. 

7.55 Conclusions and Future Work 

Inn this chapter we have given an assessment of the effectiveness of our software archi-
tecturee in providing significant performance gains. To this end, we have described the 
sequentiall  implementation, as well as the automatic parallelization, of three different 
examplee applications. The applications are relevant for this evaluation, as all are well-
knownn from the literature, and all contain many fundamental operations required in 
manyy other image processing research areas as well. 

Thee results presented in this chapter have shown our software architecture to serve 
welll  in obtaining highly efficient parallel applications. Moreover, in almost all situa-
tionss handcrafted code would not have produced significantly better results. As such, 
wee have shown that our architecture adheres to requirement 1.2 put forward in Sec-
tionn 2.3 which states that the obtained efficiency generally should compare well to 
thatt of reasonable hand-coded parallel implementations. As indicated in Section 7.4.3. 
however,, for certain specific operations we have decided that code maintainability is 
moree important than highest performance. Consequently, in comparison with optimal 
handcraftedd parallel code, any application that makes extensive use of such operations 
mayy suffer from reduced efficiency (but often only marginally so). 

Ass an important note we should state that, although all parallelism is hidden inside 
thee architecture itself, much of the efficiency of parallel execution is still in the hands 
off  the application programmer. As we have shown in Section 7.4.3, if a sequential im-
plementationn is provided that requires costly communication steps when executed in 
parallel,, program efficiency may be disappointing. Thus, for highest performance the 
applicationn programmer still should be aware of the fact that usage of such operations 
iss expensive, and should be avoided whenever possible. Any programmer knows that 
thiss requirement is not new, however, as a similar requirement holds for sequential 
executionn as well. In other words, this is not a drawback that results from any of 
thee design choices incorporated in our software architecture. The problem can not be 
avoided,, as it stems directly from the fact that all parallelization and optimization 
issuess are shielded from the application programmer entirely. 

Inn conclusion: although we are aware of the fact that a much more extensive evalu-
ationn is required to obtain more insight in the specific strengths and weaknesses of our 
architecture,, the presented results clearly indicate that our architecture constitutes 
aa powerful and user-friendly tool for obtaining high performance in many important 
imagee processing research areas. For future evaluation, we will continue implementing 
examplee applications to investigate the implication of parallelization of typical image 
processingg problems, especially in the area of real-time image processing. 



Chapterr 8 

Summaryy and Discussion 

"From"From a word to a word I was led to a word, 
FromFrom a deed to another deed. " 

Excerptt from The Poetic Edda (Iceland, ca. 1280) 

8.11 Summary 

Too satisfy the performance requirements of current and future applications in image-, 
video-,, and multimedia processing, the image processing community at large exhibits 
ann overwhelming desire to employ the speed potential of high performance computer 
architectures.. Unfortunately, there is a major discrepancy between the need for easily 
obtainableobtainable speed in imaging, and the potential of current high performance computers 
too fulfil l this need. Primarily, we ascribe this problem to the fact that no programming 
tooll  is available that serves as an effective aid in the development of image processing 
applicationss for parallel and distributed systems. Existing tools generally require the 
userr to have a thorough insight in the complexities of parallelization, often at a level 
off  detail far beyond that of non-dedicated parallel programmers. As it is unrealistic to 
expectt researchers in imaging to become experts in high performance computing, it is 
essentiall  to provide a tool that shields its users from all intricacies of parallelization. 

Thee work described in this thesis is an endeavor to bridge the gap between the ex-
pertisee of researchers in image processing, and the particular skills required for efficient 
employmentt of high performance hardware architectures. To this end, we describe 
thee design and implementation of an innovative software architecture that allows its 
userss to develop parallel image processing applications in a user transparent (i.e., fully 
sequential)) manner. We explore the requirements such architecture must adhere to 
forr it to serve as a long-term solution for the image processing community. Also, we 
providee a detailed discussion of each of the architecture's constituent components, and 
thee research issues associated with each of these. Finally, we evaluate the provided 
performancee gains, to see how these compare to reasonable hand-coded applications. 

131 1 
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Inn Chapter 2. we investigate the applicability of existing high performance hard-
waree architectures and associated parallelization tools in the field of image process-
ing.. Based on a set of requirements we conclude that homogeneous Beowulf-type 
commodityy clusters constitute the most appropriate class of target platforms — most 
importantlyy due to the emphasis on price-performance. The evaluation of associated 
softwaree tools shows library-based environments to offer a solution that is most likely 
too be acceptable to the image processing community. Primarily, this is because these 
aree most easily provided with a programming model that offers full user transparency. 
However,, due to insufficient sustainability levels, no user transparent tool is found to 
providee an acceptable long-term solution. Based on these observations we propose a 
neww library-based software architecture for parallel image processing on homogeneous 
Beowulf-typee commodity clusters. Due to its innovative design and implementation 
thee architecture fully adheres to the requirements of user transparency and long term 
sustainability.. Consequently, the architecture constitutes a solution that is likely to 
bee acceptable as a long-term solution for the image processing community at large. 

Inn Chapter 3, we present the design philosophy behind the parallel image pro-
cessingg library, which is the core component of the developed software architecture. 
Primarily,, we focus on the problem of implementing the library such that code redun-
dancyy is avoided as much as possible, whilst ensuring efficiency of parallel execution. 
Too this end, we introduce the notion of parallelizable patterns, and discuss how paral-
lell  implementations are easily obtained by sequential concatenation of operations that 
aree separately available in the library. More specifically, on the basis of a set of fcmr 
datadata access pattern types, we define a default parallelization strategy for any operation 
thatt maps onto one of two parallelizable pattern types. For each parallel operation 
thiss default strategy is optimal, as it fully exploits the available parallelism with min-
imall  communication overhead. As such, we demonstrate that the presented design 
philosophyy allows for long-term architecture sustainability, as well as high efficiency. 

Inn Chapter 4, we indicate how to apply a simple analytical performance model 
inn the process of automatic parallelization and optimization of complete image pro-
cessingg applications. Existing approaches generally incorporate a direct relationship 
betweenn the estimation accuracy and the model's complexity (and thus: efficiency of 
evaluation).. To deal with this problem, we propose a semi-empirical modeling tech-
nique.. While being simple and portable, the approach also provides a sufficiently high 
estimationn accuracy. The approach is based on a high level abstract parallel image 
processingg machine (or APIPM) definition, which is designed to capture typical run 
timee behavior of parallel low level image operations. From the related APIPM in-
structionn set, a high level model is obtained that is applicable to all machines in the 
classs of target platforms. The essence of the semi-empirical modeling approach is that 
anyy behavior or cost factor that can not be assumed identical for all target platforms 
(suchh as interprocess communication, or caching) is abstracted from in the definition 
off  the model parameters. To still bind each abstract model parameter to an accurate 
performancee estimation for a parallel machine at hand, benchmarking is performed 
onn a small set of sample data to capture all such essential, but implicit cost factors. 
AA comparison of model estimations and experimental measurements indicates that, 
forr realistic applications, the APIPM-based performance models are highly accurate. 
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Chapterr 5 extends the APIPM-based performance models for more accurate esti-
mationn of the MPI message passing primitives used in the library implementations. 
Existingg communication models (such as LogP) do not incorporate all capabilities of 
MPI'ss send and receive operations. So far, the (often significant) effect of memory 
layoutt on communication costs has been ignored completely. In our software architec-
ture,, a higher predictive power is essential to perform the important task of automatic 
andd optimal distribution of image data structures. To this end, we define a new model 
(calledd P-3PC), that closely matches the behavior of MPI's standard point-to-point 
operations.. First, the model accounts for differences in performance at the sender, 
thee receiver, and the full communication path. Also, it models the impact of memory 
layout,, and accounts for communication costs that are not linearly dependent on mes-
sagee size. Experiments performed on two significantly different cluster architectures 
indicatee that, in comparison with related models, P-3PC is capable of more accurate 
estimationn of the communication overhead of typical image processing applications. 

Chapterr 6 discusses the automatic conversion of any sequential image processing 
applicationn into a legal, correct, and efficient parallel version. To this end, we define 
aa finite state machine (fsm) specification that guarantees the process to be performed 
correctlyy at all times. First, the fsm is shown to bring about a surprisingly simple and 
efficientt approach (called lazy parallelization) for communication cost minimization. 
Forr further optimization, the fsm is used in the construction of an application state 
transitionn graph (ASTG), that characterizes an application's run time behavior, and 
alsoo incorporates all possible (combinations of) parallelization and optimization de-
cisions.. As each decision is annotated with a run time cost estimation obtained from 
thee APIPM-based performance models, the fastest version of the program is repre-
sentedd by the cheapest branch in the ASTG. As the issue of automatic optimization of 
completee applications is the central, most essential problem our software architecture 
forr user transparent parallel image processing is confronted with, the applied solution 
combiness all of the results obtained in Chapters 3, 4, and 5. 

Inn Chapter 7, we give an assessment of our architecture's effectiveness in providing 
significantt performance gains. We describe the implementation and automatic par-
allelizationn of three well-known example applications that contain many operations 
commonlyy applied in image processing research. From the evaluation, we conclude 
thatt the performance obtained with the parallel versions generated by our software 
architecturee compares well to that of reasonable hand-coded parallel implementations. 

8.22 Discussion 

Inn this thesis we have aimed at the development of an effective programming tool 
thatt provides sustainable support in the implementation of parallel image processing 
softwaree by non-experts in high-performance computing. We believe that we have 
succeededd in that mission. In the very first place because the architecture shields the 
userr from all parallelization and optimization issues. As such, the architecture can 
bee used immediately, without requiring additional knowledge from the application 
programmer.. In the second place because the architecture allows its developers to 
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respondd to changing demands and environments quickly and elegantly. The applied 
designn philosophy has largely inherited this property from the sequential image library 
(Horns)) the architecture is based on (see Chapter 3). Finally, because the obtained 
efficiencyy was shown to be comparable to that of reasonable hand-optimized code. 
Thiss implies that the parallelization overhead induced by the architecture is marginal. 
Forr these reasons we conclude that the software architecture fully adheres to the 
requirementss of user transparency and sustainability as put forward in Section 2.3.1. 

Despitee this result, certain properties of the software architecture as described in 
thiss thesis are not always desirable. A first problem is due to the extensive use of 
abstractionss incorporated in the architecture. As pointed out in Chapter 3, among 
thee advantages of the use of abstraction and (parallelizable) patterns are a huge re-
ductionn in human software engineering effort, and enhanced software maintainability, 
extensibility,, reusability, and portability. However, there is a trade-off between the 
usee of specific and abstract libraries in terms of (sequential) processing speed. Also, 
abstractt libraries may have a long compilation time and large footprints due to the 
automaticc expansion of function instantiations. One way to overcome these disad-
vantagess is to build a tool that can automatically generate specific (even tailor-made) 
imagee processing libraries from the existing abstract implementations. 

AA second issue that was not discussed in this thesis, is the question of how to deal 
withh enormous amounts of input data. Applications working on video-sequences, or 
completee image databases, may suffer from a significant I/O performance bottleneck. 
Therefore,, it is essential to re-evaluate data I/O in our architecture, and to incorporate 
optimizationss accordingly. One solution may be to use data compression techniques 
inn software. However, research related to this issue may also lead to the conclusion 
thatt hardware extensions (e.g., MPEG-encoders and -decoders) are essential. 

AA problem with any library-based environment is that it can never provide a com-
pleteplete coverage of all desired functionality. As stated in Chapter 3, we estimate that 
thee algorithmic patterns available in our library cover over 90% of all low level imaging 
operations.. Additional patterns, such as for recursive neighborhood operations, and 
queue-basedd algorithms are currently under construction. Other algorithms (a.o., data 
dependentt operation) may not map onto one of the standard patterns, and also may 
nott parallelize well, because of irregular data access. In spite of this, we do not expect 
aa large amount of patterns to be added still, as one can compute only a limited variety. 

Inn conclusion: the work described in this thesis indicates that it is possible to 
providee an effective long-term solution to a difficult problem, basically by incorporat-
ingg a set of relevant high-level abstractions, and applying relatively simple methods 
forr resolution of each constituent sub-problem. We believe that a similar approach 
couldd be applicable in other fields of research as well, especially in areas where the set 
off  typical operations is limited — as is the case in low level image processing. How-
ever,, only time wil l tell whether our software architecture for user transparent parallel 
imagee processing indeed is the effective long-term solution we consider it to be. 
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Samenvatting* * 

'Alle'Alle intellectuele beroepen bestaan uit het continu verrichten 
vanvan dingen die, apart genomen, heel eenvoudig zijn." 

Willemm Frederik Hermans - Nooit Meer Slapen (1966) 

Omm te kunnen voldoen aan de specifieke prestatie-eisen van huidige en toekomstige 
beeldverwerkingsapplicaties,, toont de beeldverwerkingsgemeenschap een grote wens 
dee rekenkracht van parallelle en gedistribueerde computersystemen aan te wenden. 
Helaass bestaat er vooralsnog een enorme discrepantie tussen de vraag naar eenvoudig 
tete verkrijgen rekenkracht, en de wijze waarop de aanwezige rekenkracht ook daad-
werkelijkk wordt aangeboden. De kern van dit probleem bestaat eruit, dat voor beeld-
verwerkingsonderzoekerss geen effectief en laagdrempelig hulpmiddel voor handen is 
voorr het ontwikkelen van parallelle applicaties. Bestaande hulpmiddelen vereisen van 
dee gebruiker een inzicht in de complexiteit, van parallellisme dat verder gaat dan van 
beginnendee parallelle programmeurs verwacht mag worden. Omdat het niet reëel is 
tee eisen dat experts op het gebied van beeldverwerking tevens experts op het gebied 
vann parallel programmeren worden, is het noodzakelijk dat een hulpmiddel wordt 
ontwikkeldd dat gebruikers afschermt van alle parallellisatieproblematiek. 

Hett in dit proefschrift beschreven onderzoek poogt de kloof te dichten tussen de 
specifiekee expertise van beeldverwerkingsonderzoekers, en de additionele kennis die 
vereistt is voor het efficiënt aanwenden van parallelle computers. Daartoe behandelt 
hett proefschrift het ontwerp en de implementatie van een softwarearchitectuur die 
beeldverwerkingsonderzoekerss in staat stelt parallelle applicaties te ontwikkelen op een 
voorvoor de gebruiker volledig transparante wijze (dat wil zeggen: volledig sequentieel). 
Hett proefschrift onderzoekt de specifieke eisen die aan een dergelijke architectuur 
gesteldd moeten worden, zodat het dienst kan doen als een voor beeld verwerkers accep-
tabelee langetermijnoplossing. Daarnaast geeft het proefschrift een gedetailleerde ver-
handelingg van de verschillende componenten van de ontwikkelde architectuur, alsmede 
vann de daaraan gerelateerde onderzoeksvragen. Eveneens geeft het proefschrift een 
uitgebreidee evaluatie van de door de architectuur geleverde snelheidswinsten, gecom-
bineerdd met een vergelijking met handgeoptimaliseerde applicaties. 

**  Summary in Dutch 
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Hoofdstukk 2 onderzoekt de mate waarin bestaande hardwarearchitecturen, en 
daaraann gerelateerde programmeerhulpmiddelen, geschikt zijn voor toepasssing in 
beeldverwerkingsonderzoek.. Aan de hand van een lijst van specifieke eisen wordt 
geconcludeerdd dat de klasse van Beowulf-clusters het meest geschikt is. voornamelijk 
vanwegee de positieve prijs-prestatieverhouding. De evaluatie van programmeerhulp-
middelenn toont aan dat bibliotheekgebaseerde architecturen een oplossing bieden die 
hett meest aansluit bij de specifieke wensen van de beeldverwerkingsgemeenschap. 
Ditt komt voornamelijk doordat dergelijke architecturen op een redelijk eenvoudige 
wijzee geleverd kunnen worden met een programmeermodel dat de gebruiker volledige 
transparantiee biedt. Echter, vanwege gebrekkige onderhoudbaarheid bestaat er op 
ditt moment geen architectuur die ook daadwerkelijk beschouwd kan worden als een 
acceptabelee langetermijnoplossing. Op basis van deze observaties wordt een nieuwe bi-
bliotheekgebaseerdee architectuur voor parallel beeldverwerking geïntroduceerd. Door 
hett innovatieve ontwerp voldoet de architectuur zowel aan de eis van onderhoud-
baarheid,, als aan de eis van gebruikerstransparantie. 

Hoofdstukk 3 beschrijft de ontwerpfllosofie van de bibliotheek, die de kern vormt 
vann de ontwikkelde architectuur. Centraal staat de vraag hoe de bibliotheek zodanig 
geïmplementeerdd kan worden dat coderedundantie zoveel mogelijk wordt vermeden, 
mett behoud van efficiëntie. Daartoe wordt het begrip parallelliseerbare patronen 
geïntroduceerd,, en getoond hoe parallelle implementaties eenvoudig verkregen kunnen 
wordenn door concatenate van operaties die alle apart aanwezig zijn in de bibliotheek. 
Opp basis van vier verschillende typen van gegevensbenadering wordt een standaard 
parallellisatiestrategiee gedefinieerd voor elke operatie die overeenkomt met een van 
dee parallelliseerbare patronen. De standaard parallellisatiestrategie is te allen tijde 
optimaal,, omdat het al het aanwezige parallellisme volledig benut met een minimum 
aann communicatiekosten. De kenmerken van de gepresenteerde ontwerpfllosofie verze-
kerenn langetermijnonderhoudbaarheid van de architectuur, alsook efficiëntie. 

Hoofdstukk 4 geeft aan hoe een eenvoudig analytisch prestatiemodel toegepast 
wordtt in het proces van automatische parallellisatie en optimalisatie van beeld-
verwerkingsapplicaties.. Bestaande modellen bevatten in het algemeen een directe 
complexiteit-namvkeurigheidrelatie,, en zijn daarom voor de gewenste accuratesse 
niett efficiënt genoeg. Om dit probleem het hoofd te bieden wordt een semi-empirische 
modelleertechniekk geïntroduceerd, die naast eenvoud en overdraagbaarheid tevens vol-
doendee nauwkeurigheid biedt voor de gegeven doelstelling. De techniek is gebaseerd 
opp de definitie van een abstracte machine (APIPM), die de typische gedragingen 
vann parallelle beeldverwerkingsoperaties beschrijft. Op basis van de gerelateerde 
APIPM-instructiesett wordt een prestatiemodel verkregen dat algemeen toepasbaar 
iss op Beowulf-clusters. De essentie van de modelleertechniek bestaat eruit, dat van 
bepalendee kostenfactoren die Beowulf-clusters niet alle gemeen hebben geabstraheerd 
wordtt in de definitie van de modelparameters. Om elke abstracte modelparameter 
alsnogg te verbinden met een prestatieschatting voor een concrete parallelle machine, 
wordtt een klein aantal tijdmetingen uitgevoerd die alle impliciete, doch essentiële, 
kostenfactorenn ondervangen. Een vergelijking van gegenereerde schattingen met 
experimentelee resultaten toont de hoge nauwkeurigheid van de APIPM-gebaseerde 
modellenn voor realistische applicaties. 
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Hoofdstukk 5 breidt de APIPM-gebaseerde modellen uit om nauwkeuriger schattin-
genn te verkrijgen voor de MPI-primitieven die in de bibliotheek worden toegepast. 
Bestaandee communicatiemodellen (zoals LogP) ondervangen niet alle mogelijke ge-
dragingenn van de MPI-operaties. Tot nu toe is het (vaak zeer significante) effect 
vann de schikking van gegevens in het geheugen op de communicatiekosten volledig 
genegeerd.. In de ontwikkelde architectuur is een hogere nauwkeurigheid essentieel 
omm de automatische distributie van beeldgegevensstructuren optimaal uit te voeren. 
Daaromm wordt het nieuwe P-3PC-model geïntroduceerd, dat het typische gedrag van 
dee MPI-primitieven juist representeert. Ten eerste ondervangt het de verschillen in 
communicatiekostenn voor de zender, de ontvanger, alsook het volledige communi-
catiepad.. Daarnaast modelleert het het effect van geheugenschikking, en ondervangt 
hett kosten die niet-lineair afhankelijk zijn van de berichtgrootte. Experimenten die 
zijnn uitgevoerd op twee verschillende Beowulf-clusters tonen aan dat, in vergelijking 
mett gerelateerde modellen, P-3PC in staat is nauwkeuriger schattingen te leveren voor 
dee communicatiekosten zoals die bestaan in typische beeldverwerkingsapplicaties. 

Hoofdstukk 6 behandelt de automatische conversie van elke sequentiële beeld-
verwerkingsapplicatiee naar een correcte en efficiënte parallelle versie. Daartoe wordt 
eenn eindige automaat gedefinieerd, die garandeert dat dit proces te allen tijde cor-
rectt wordt uitgevoerd. Ten eerste wordt aangetoond dat de automaat leidt tot een 
opvallendd eenvoudige methode voor minimalisatie van de communicatiekosten. Voor 
verderee prestatieoptimalisaties wordt de automaat toegepast in de constructie van 
eenn graaf, die alle mogelijke toestandsveranderingen en parallellisatiestrategieën van 
eenn draaiende applicatie weergeeft. Omdat voor elke mogelijke strategie een APIPM-
gebaseerdee kostenschatting voor handen is, wordt de snelste versie van een applicatie 
weergegevenn door het goedkoopste pad in de graaf. Vanwege het feit dat de automa-
tischee optimalisatie van volledige applicaties het centrale, meest essentiële, probleem 
vormtt waarmee de ontwikkelde softwarearchitectuur wordt geconfronteerd, combi-
neertt de toegepaste oplossing alle resultaten zoals bereikt in de Hoofstukken 3, 4, en 5. 

Hoofdstukk 7 geeft een inschatting van de effectiviteit van de softwarearchitectuur 
inn het behalen van significante prestatieverbeteringen. Daartoe wordt een beschrij-
vingg gegeven van de sequentiële implementatie en automatische parallellisatie van 
driee voorbeeldapplicaties, die alle veelvoorkomende beeldverwerkingsoperaties bevat-
ten.. Op basis van de evaluatie wordt geconcludeerd dat de snelheidswinsten die 
behaaldd worden door de parallelle applicaties zoals gegenereerd door de ontwikkelde 
softwarearchitectuurr vergelijkbaar zijn met handgeoptimaliseerde implementaties. 

Conclusie:: de resultaten bereikt met de ontwikkelde softwarearchitectuur tonen 
aann dat het mogelijk is een oplossing te ontwikkelen voor een ingewikkeld probleem, 
voornamelijkk door het combineren van relevante abstracties, en toepassing van relatief 
eenvoudigee methoden voor de oplossing van elk deelprobleem. Bijgevolg lijk t het er 
sterkk op dat een vergelijkbare strategie toepasbaar is op andere onderzoeksterreinen, 
voornamelijkk daar waar het aantal typische operaties gelimiteerd is — net zoals dat het 
gevall  is in beeld verwerkingsonder zoek. Desalniettemin kan alleen de tijd leren of de 
ontwikkeldee softwarearchitectuur ook daadwerkelijk de door ons vermoedde effectieve 
langetermijnoplossingg zal zijn. 



--
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Stellingen n 

behorendd bij het proefschrift 
"Userr Transparent Parallel Image Processing" 

doorr Frank J. Seinstra 

1.. An automatic parallelization tool constitutes a long-term solution for the image 
processingg research community only, if it is sustainable and fully user trans-
parent,, (chapter 2 of this thesis) 

2.2. Parallelizable patterns are the design strategy of choice for lazy parallel pro-
grammers,, (chapter 3 of this thesis) 

3.. Application of semi-empirical modeling in a library-based software architecture 
removess the need for auxiliary benchmarking kernels, (chapter 4 of this thesis) 

4.. The effect of memory layout on communication costs often is more substantial 
thann the effect of network contention. (chapter 5 of this thesis) 

5.. For a library-based parallelization tool to obtain competitive performance, op-
timizationn across library calls is essential. (chapter 6 of this thesis) 

6.. Even in case of full user transparency, part of the efficiency of parallel execution 
inherentlyy remains in the hands of the application programmer. 

(chapter(chapter 7 of this thesis) 

7.7. Het moeilijkste van het schrijven van een proefschrift is het aan buitenstaanders 
uitleggenn wat dat precies inhoudt. 

8.. Het toevoegen van een motto aan elk hoofdstuk heeft als effect dat de meerder-
heidd van de lezers een langere tij d uittrekt voor het doornemen van het proef-
schrift;; immers, de tijd die de modale lezer spendeert aan het bekijken van de 
stellingenn en het dankwoord wordt nu uitgebreid met de tijd die besteed wordt 
aann het lezen van de motto's. 

9.. Professoren drukken zich vaak slecht uit, maar AiO's moeten daar beter naar 
luisteren. . 
(vrij(vrij  naar het leermoment "Mannen drukken zich slecht uit, maar vrouwen 
moetenmoeten daar beter naar luisteren" uit de RVU-serie "Mannen voor Vrouwen".) 

10.. Door 'publish or perish' komt uiteindelijk iedereen om in het papier. 

11.. Het idealiseren van succes gaat voorbij aan het feit dat de essentie van ieders 
individuu mede wordt bepaald door hetgeen men niet bereikt heeft, en door dat 
watt men is kwijtgeraakt. 
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