

UvA-DARE (Digital Academic Repository)

Palladium-Catalyzed Cyclization Reractions of Allene Palladium-Catalyzed Cyclization - and Acetylene-Substituted Lactams.

Karstens, W.F.J.

Publication date 2000

Link to publication

Citation for published version (APA):

Karstens, W. F. J. (2000). Palladium-Catalyzed Cyclization Reractions of Allene Palladium-Catalyzed Cyclization - and Acetylene-Substituted Lactams.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

CONTENTS

CHAPTER 1 CHEMISTRY OF ALLENES

1.1	History	1
1.2	General Properties of Allenes	1
1.3	Naturally Occurring Allenes	2
1.4	Synthetic Application of Allenes	3
1.5	Palladium Mediated Additions to Allenes	5
1.6	Purpose and Outline of this Investigation	8
1.7	References and Notes	10

CHAPTER 2 PALLADIUM CATALYZED CYCLIZATION REACTIONS OF ALLENYLLACTAMS

2.1	Introduction	13
2.2	Preparation of Allenyllactams: N-Acyliminium Ion Chemistry	14
2.3	Cyclization Reactions with Allylating Agents	17
2.4	Mechanistic Aspects of the Cyclizations with Allylating Agents	20
2.5	Attempted Cyclization Reactions with Aryl Halides	21
2.6	Conclusions	23
2.7	Acknowledgments	23
2.8	Experimental Section	23
2.9	References and Notes	24

CHAPTER 3 PALLADIUM CATALYZED CYCLIZATION REACTIONS OF ω -2,3-BUTADIENYLLACTAMS

3.1	Introduction	31
3.2	Racemic Homoallenyllactams: N-Acyliminiumion Chemistry and	
	Crabbé Homologation	32
3.3	Novel Regiochemistry and Structural Proof	35
3.4	Optimization of Cyclization Conditions	37
3.5	Cyclizations with Several Organic Halides and Allenic Lactams	39
3.6	Mechanistic Aspects	42
3.7	Cyclic vs Acyclic Nucleophiles	43
3.8	Conclusions	44
3.9	Acknowledgments	45

3.10	Experimental Section	45
3.11	References and Notes	59

CHAPTER 4 CYCLIZATION OF ENANTIOPURE ALLENIC LACTAMS OBTAINED FROM A PYROGLUTAMIC ACID DERIVED ORGANOZINC REAGENT

4.1	Introduction	61
4.2	Preparation of the Organozinc Reagent	63
4.3	Preparation and Cyclization of Substituted Enantiopure Allenes	64
4.4	Combination of Allene, Nucleophile and Aryliodide in one Molecule:	
	Attempted Formation of Tetracyclic Enamides	68
4.5	1,3-Diene Formation	70
4.6	Mechanistic Investigation by Using Intrinsically Chiral Allenes	72
4.7	Conclusions	77
4.8	Acknowledgments	77
4.9	Experimental Section	77
4.10	References and Notes	92

5.1	Introduction	95
5.2	Preparation of π -Allylpalladium Complexes	96
5.3	Transmetallation and Ènamide Formation	99
5.4	Reactions with Soft Nucleophiles	100
5.5	Catalytic 1,2-Oxidation with Other Nucleophiles	101
5.6	Conclusions	103
5.7	Acknowledgments	104
5.8	Experimental Section	104
5.9	References and Notes	110

CHAPTER 6 PALLADIUM CATALYZED CYCLIZATION REACTIONS OF ACETYLENIC LACTAMS

6.1	Introduction	113
6.2	Preparation of Racemic Acetylenic Precursors: Reductive Alkylation	
	of Imides	114

6.3	Preparation of Enantiopure Acetylenic Precursors: Organozinc	
	Chemistry	117
6.4	Optimization of the Cyclization Conditions	118
6.5	Cyclizations with Several Organic Halides and Acetylenic Lactams	120
6.6	Structural Proof and Mechanistic Aspects	123
6.7	Conclusions	127
6.8	Acknowledgments	127
6.9	Experimental Section	128
6.10	References and Notes	138

CHAPTER 7 A FORMAL SYNTHESIS OF (-)-EPIBATIDINE VIA AN (5)-PYROGLUTAMIC ACID DERIVED ORGANOZINC REAGENT

7.1	Introduction	141
7.2	Retrosynthetic Analysis of the Enantiopure Azabicyclo[2.2.1]-	
	heptanone	142
7.3	Preparation of the N-Acyl- and N-Tosyliminium Ion Precursors	143
7.4	Construction of the Bicyclic Framework and Ozonolysis	144
7.5	Conclusions	145
7.6	Acknowledgments	146
7.7	Experimental Section	146
7.8	References and Notes	153

SUMMARY

155

SAMENVATTING

158