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LQ analysis/Bromodeoxyuridine (BrdUrd)/Hyperthermia/Radiosensitization/Human tumor cells.
Sensitization by bromodeoxyuridine (BrdUrd) and hyperthermia (HT) on cell reproductive death

induced by ionizing radiation was analyzed using the linear-quadratic [S(D)/S(0)=exp{-(αD+βD2)}]
model. Plateau-phase human lung tumor cells (SW-1573) and human colorectal carcinonoma cells
(RKO) were treated with BrdUrd, radiation and HT. LQ-analysis was performed at iso-incubation dose
and at iso-incorporation level of BrdUrd, and at iso-HT doses and iso-survival levels after HT.
Clonogenic assays were performed 24 h after treatment to allow repair of potentially lethal damage
(PLD). In SW cells BrdUrd, HT or the combination significantly increased the α-parameter (factor 2.0-
5.7), without altering the β-parameter. In RKO cells sensitization with BrdUrd increased both α (factor
1.4) and β (factor 1.3) while HT only influenced β (factor 2.1–4.0). The combination did not further
increase the α and β. The results indicate that BrdUrd has its main effect on the parameter α, dominant at
clinically relevant radiation doses but that HT can affect both α and β. The addition of BrdUrd and HT
provides a method to enhance the efficacy of radiotherapy.

INTRODUCTION

The incorporation of halogenated pyrimidines (HP’s) into the DNA is known to increase
the radiosensitivity of mammalian cells in vitro and in vivo. The HP’s bromo-deoxyuridine
(BrdUrd) and iodo-deoxyuridine (IdUrd) are already applied clinically to enhance loco-
regional effectiveness of radiotherapy1–3). The level of radiosensitization by HP’s has been
shown to correlate with the degree of thymidine-replacement4–6). Cells that have incorporated
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HP’s demonstrate an increase in the amount of radiation-induced DNA double-strand
breaks7,8) and chromosomal aberrations9,10).

Hyperthermia (HT) is also known to sensitize cells to radiation and clinical studies have
demonstrated that it is beneficial in combination with radiotherapy11–13). It has been reported
that HT inhibits repair of DNA double-strand breaks14,15) that are suggested to be the lesions
by which radiation kills cells16).

The combination of HP’s and HT might increase the effectiveness of radiotherapy. Cells
that have not incorporated HP’s might be located in poorly vascularized tumor areas where
cells are more sensitive to HT. Moreover the inhibitory effect of HT on DNA DSB repair
could be extra beneficial on BrdUrd sensitized cells. However, previous studies have not dem-
onstrated a synergististic effect of HP-incorporation and HT4,17).

The influence of modifying agents on radiation survival curves of mammalian cells is
analyzed increasingly in terms of changes in the parameters derived from the description of
the shapes of these curves according to the linear-quadratic (LQ) model18–21). The LQ-model
leads to a description of survival curves by the formula: S(D)/S(0) = exp{–(αD + βD2)}22–25).
The parameters, α and β, are assumed to reflect specific mechanisms of cell killing by radia-
tion. The linear term dominates the response at low doses and the quadratic term plays a
major role at high doses. An increase of α has been suggested to be due to enhanced expres-
sion of potentially lethal damage (PLD). An increase of β suggests an enhanced contribution
due to interaction of sublethal damage (SLD)24). Independent of suggestions about biological
mechanisms, using the LQ-model more insight can be obtained into the quantitative aspects of
the sensitization of tumors and their constituent cells by a combination of HT and incorpora-
tion of HP’s, especially in the dose range of 1 to 3 Gy as commonly applied in fractionated
radiotherapy.

Several publications have appeared on the use of the LQ model on radiation modifying
agents and results have been somewhat contradictory26–28). Hartson-Eaton et al.26) observed an
effect of HT mainly on the value of α of exponentially growing CHO cells. Holahan et al.27)

observed an increase of both α and β in exponentially growing and G1-phase CHO cells. In
these studies hyperthermia was given before irradiation. Haveman et al.28) studying survival
curves of exponentially growing M8013 murine cells, observed that HT predominantly
increased the value of β. Irradiation was applied halfway during the HT treatment. Van Bree
et al.4) studied the effect of HT (applied after irradiation) and HP’s on survival curves of sev-
eral exponentially growing rodent and human tumor cell lines with different radiosensitivity,
and observed an effect mainly on the value of the α. In studies on the radiosensitization of
exponentially growing human colon cancer cell lines by incorporation of the HP’s only, it has
been shown that the linear term is strongly increased, but that the quadratic term is hardly
affected18 – 21). In most cited studies (except Holahan et al.27)) on HT and/or HP radio-
sensitization, experiments were performed on exponentially growing cells and cells were
plated for clonogenic assay immediately after the last treatment. However, most tumors con-
tain quiescent clonogenic cells and their response must be studied as well. Roy et al.29)

observed repair of PLD after delayed plating as compared with immediate plating of irradiated
non-sensitized G0 human embryo cells (HE60). In delayed plated HP-radiosensitized plateau
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phase V79 cells PLD repair was decreased as evidenced by an increase of α, which in all
treatment groups was observed5). The β increased only if cells were plated immediately after
treatment.

In the present study the effects of BrdUrd, at iso-incubation dose and iso-incorporation
level, and/or HT, at iso dose and iso survival level, are examined on the LQ parameters of the
radiation survival curves with delayed plated plateau-phase human lung carcinoma cells (SW-
1573) and human colon carcinoma cells (RKO). Plateau-phase cells were studied as these cul-
tures have certain characteristics similar to quiescent cells in tumors30). We deduced that
BrdUrd and/or HT treatment differently affected the LQ-parameters of both cell lines.

MATERIAL AND METHODS

Cell culture
The human squamous lung carcinoma cell line SW-1573 is grown at 37°C as monolayers

in 75 cm2 tissue culture flasks (Costar/Corning) in Leibovitz-15 medium (L-15, Gibco-BRL)
supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin and 100
mg/ml streptomycin. The L-15 medium does not require CO2. The doubling time of the cells
during exponential growth is 23 h6).

The human colon cancer cell line RKO is grown at 37°C as monolayers in 25 or 75 cm2

tissue culture flasks (Costar) in McCoy’s 5A medium + 25 mM Hepes (Gibco/BRL) supple-
mented with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml
streptomycin. McCoy’s 5A medium requires 5% CO2. The doubling time of the cells during
exponential growth is 24 h31).

Treatment
For experiments, cells grew for 48 h in the absence or presence of bromodeoxyuridine

(BrdUrd) (Sigma). The SW-1573 cells were incubated with 0, 1 and 4 µM and the RKO cells
with 0 and 4 µM of BrdUrd. The experiments with SW-1573 cells incubated with 1 µM
BrdUrd were carried out in order to obtain similar incorporation levels of BrdUrd in the DNA
as in the RKO cells grown in 4 µM BrdUrd. Cells were grown until plateau-phase and subse-
quently irradiated with different doses up to 8 Gy with a 137Cs-source at a dose-rate of about
0.8 Gy/min.

Hyperthermia (HT) was applied in a thermostatically controlled waterbath positioned in
an incubator. SW cells were treated for 60 min at 41.0°C, and RKO cells were treated for 15
min or 60 min at 41.0°C. The 15 min heat treatment of RKO cells resulted in similar survival
levels as of SW cells treated for 60 min at 41.0°C. During HT treatment of the RKO cells,
CO2 was applied. In case of combined treatment, i.e. irradiation and HT, cells were irradiated
first and directly thereafter placed in the waterbath for HT treatment.

Clonogenic assay
Twenty-four hours after treatment cells were harvested and replated in appropriate dilu-
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Fig. 1. Survival of SW-1573 and RKO cells after treatment with 4 mM BrdUrd, hyperthermia 60 min at 41.0°C and
combined BrdUrd/Hyperthermia. Mean results of three separate experiments ± SEM. (* significantly differ-
ent from control P < 0.05, ** significantly different from HT only P < 0.05)

tions in 6-wells macroplates (Greiner). Ten days after inoculation, the colonies were fixed and
stained in 6% glutaraldehyde with 0.05% crystalviolet. Colonies of 50 cells or more were
scored as originating from a single clonogenic cell. The plating efficiencies of untreated SW-
1573 and RKO cells are about 90% and 40% respectively. Results of three separate experi-
ments were used for analysis of cell survival. Survival curves were fitted to the data according
to the formula S(D)/S(0) = exp{–(αD + βD2)}22).

BrdUrd-incorporation
Percentage of thymidine-replacement was measured by the technique described by

Belanger et al.32) and Franken et al.5,6). With flow cytometry the labeling index of the cells
was checked.

RESULTS

Effects on cell growth and percentage of thymidine replacement by BrdUrd.
The incorporation of BrdUrd did neither result in any growth delay nor was the plating

efficiency affected. After incubation with 1 or 4 µM BrdUrd the percentage of thymidine-
replacement in the DNA of SW-1573 at the time of irradiation was 6.7 ± 0.5% and 19.5 ± 0.5%
respectively. In RKO cells the percentage of thymidine replacement after incubation with 4
µM of BrdUrd was 7.1 ± 0.8%. Flowcytometric analysis demonstrated that at time of irradiation
all cells were labeled either after incubation with 1 µM and after incubation with 4 µM BrdUrd.
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Fig. 2. Radiation dose-survival curves of SW-1573 cells: no radiosensitization (■); after radiosensitization with 1 µM
BrdUrd (▲); after radiosensitization with hyperthermia (60 min at 41.0°C) (◆); after sensitization with 1 µM
BrdUrd and hyperthermia (60 min at 41.0°C) (●). Mean results of three separate experiments ± SEM.

Clonogenic survival of SW-1573 cells and RKO cells after BrdUrd and HT treatment without
irradiation

The clonogenic capacity of SW-1573 cells after treatment with 4 µM BrdUrd alone, HT
(41.0°C for 60 min) alone, and combined 4 µM BrdUrd/HT (41.0°C for 60 min) decreased to
respectively 84%, 70% and 55% of controls (Fig. 1). The clonogenic capacity of the SW-1573
cells after treatment with 1 µM BrdUrd alone and combined 1 µM BrdUrd/HT respectively,
did not differ significantly from controls and HT alone respectively (data not shown). The
clonogenic capacity of RKO cells after treatment with BrdUrd only, HT (41.0°C for 60 min)
only and combined BrdUrd/HT (41.0°C for 60 min) decreased to respectively 65%, 31% and
19% of controls. The clonogenic capacity of RKO cells HT treated for 15 min at 41.0°C and
combined 4 µM BrdUrd/HT (41.0°C for 15 min), decreased to about 70% and 52%
respectively. As is shown in Fig. 1, HT (41.0°C for 60 min) alone resulted in a significantly
reduced cell survival compared to controls and the combined 4 µM BrdUrd/HT (41.0°C for 60
min) treatment resulted in a significantly reduced cell survival as compared to HT (41.0°C for
60 min) alone treatment. Surviving fractions after irradiation were corrected for the decrease
in plating efficiency.

Clonogenic survival of SW-1573 cells after irradiation and treatment with BrdUrd and HT
Survival curves of the human SW-1573 cells are shown in Fig. 2. (For clarity the sur-
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Fig. 3. α and β enhancement factors of SW 1573 cells. 1BrdU: 1 µM BrdUrd; 4BrdU: 4 µM BrdUrd; HT60: HT 60
min at 41.0°C; 1Br/HT: 1 µM BrdUrd combined with HT 60 min at 41.0°C; 4Br/HT: 4 µM BrdUrd com-
bined with HT 60 min at 41.0°C. Mean results of three separate experiments ± SEM. (* significantly differ-
ent from control level P < 0.05).

Table 1. LQ parameters α and β for clonogenic survival after sensitization of SW-
1573 cells with BrdUrd, HT or BrdUrd+HT.

Treatment α, Gy–1 β, Gy–2

control 0.09 ± 0.05 0.05 ± 0.01
1 µM BrdUrd 0.18 ± 0.03 0.06 ± 0.01
4 µM BrdUrd 0.29 ± 0.08 0.06 ± 0.02
HT (60 min 41.0°C) 0.24 ± 0.04 0.06 ± 0.01
1 µM BrdUrd/HT (60 min 41.0°C) 0.20 ± 0.05 0.07 ± 0.01
4 µM BrdUrd/HT (60 min 41.0°C) 0.51 ± 0.07 0.04 ± 0.02

The values are mean results of three independent experiments ± S.D.

vival curves after treatment with 4 µM BrdUrd alone and combination 4 µM BrdUrd/HT are
omitted from the graph). The values of α, the parameter of the linear term determining the ini-
tial slope, and the value of β, the parameter of the quadratic term determining the continu-
ously curving high dose region, of the survival curves of this cell line are presented in Table 1.
BrdUrd and/or HT induced α- and β-enhancement factors are presented in Fig. 3. The
parameter a increased by a factor 2.0 and 3.2 when cells were radiosensitized with 1 and 4
µM BrdUrd. The a increased by a factor respectively 2.7 when radiation was followed by HT,
and by a factor 2.2 and 5.7 respectively, when radiosensitization with 1 or 4 µM BrdUrd was
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Table 2. LQ parameters α and β for clonogenic survival after sensitization of
RKO cells with BrdUrd, HT or BrdUrd+HT.

Treatment α, Gy-1 β, Gy-2

Control 0.60 ± 0.04 0.011 ± 0.007
4 µM BrdUrd 0.85 ± 0.09 0.014 ± 0.009
HT (15 min 41.0°C) 0.48 ± 0.09 0.044 ± 0.022
HT (60 min 41.0°C) 0.58 ± 0.09 0.023 ± 0.010
4 µM BrdUrd/HT (15 min 41.0°C) 0.70 ± 0.09 0.031 ± 0.022
4 µM BrdUrd/HT (60 min 41.0°C) 0.96 ± 0.09 0.040 ± 0.019

The values are mean results of three independent experiments ± S.D.

Fig. 4. Radiation dose-survival curves of RKO cells: no radiosensitization (■); after radiosensitization with 4 µM
BrdUrd (▲); after radiosensitization with hyperthermia (15 min at 41.0°C) (◆); after sensitization with 4
µM BrdUrd and hyperthermia (15 min at 41.0°C) (●). Mean results of three separate experiments ± SEM.

followed by HT. The parameter β was not significantly affected by the sensitizing treatments.

Clonogenic survival of RKO cells after irradiation and treatment with BrdUrd and HT
Survival curves of the human RKO cell line are shown in Fig. 4, (survival curves after

treatment with HT for 60 min at 41.0°C and combination 4 µM BrdUrd/HT 60 min at 41.0°C
are omitted for clarity). The values obtained for the parameters α and β after analysis of the
survival curves using the LQ model are shown in Table 2. The enhancement factors are pre-
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sented in Fig. 5. The increase of α after sensitization with BrdUrd only, BrdUrd/HT 15 min
41.0°C and BrdUrd/HT 60 min 41.0°C is a factor 1.4, 1.2 and 1.6, respectively. HT only did
not increase the α parameter. No significant difference was observed after HT at 41.0°C for 15
min or for 60 min in the LQ parameters of RKO cells with or without BrdUrd incorporation.
The quadratic parameter, β, is influenced by sensitization with BrdUrd and/or HT in RKO
cells. The increase of β after BrdUrd only, HT60, BrdUrd/HT 15 min 41.0°C and BrdUrd/HT
60 min 41.0°C was not significant. The value of β after treatment of cells with 4 µM BrdUrd
increased by a factor of 1.3. After HT treatment only the β increased by a factor 2.1–4.0. The
combination of BrdUrd and HT did not further increase this value.

DISCUSSION

After incubation with equal concentrations of BrdUrd (4 µM) the SW-1573 cells incorpo-
rated higher levels of BrdUrd into the DNA than the RKO cells. High levels of HP incorpora-
tion might be due to a deficiency in the mismatch repair pathway33). But the status of this
repair pathway in the studied cell lines is not known. However, additional experiments with
the SW-1573 cells were carried out with 1 µM BrdUrd. This concentration resulted in
approximately similar incorporation levels as the RKO cells after 4 µM BrdUrd. The increase

Fig. 5. α and β enhancement factors of RKO cells. 4BrdU: 4 µM BrdUrd; HT15: HT 15 min at 41.0°C; HT60: HT
60 min at 41.0°C; Br/HT15: 4 µM BrdUrd combined with HT 60 min at 41.0°C; Br/HT60: 4 µM BrdUrd
combined with HT 60 min at 41.0°C. Mean results of three separate experiments ± SEM. (* significantly
different from control level P < 0.05)
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of α after BrdUrd-induced radiosensitization, even at iso-incorporation levels, in the relatively
radioresistant SW-1573 cells is more pronounced than in the radiosensitive RKO cells (Table
1 and 2). In the RKO cells also an effect on β is observed although it should be noted that the
value of β has large uncertainties. Results of earlier studies by Van Bree et al.4), Franken et
al.5,6) and Miller et al.20,21) indicated that HP incorporation increases the value of α and that
radioresistant cell lines are more sensitized by HP’s than radiosensitive cell lines.

It is also shown that in different types of cell lines derived from human tumours mild HT
(15 min-60 min at 41.0°C) enhances the radiation effects differently. At iso-survival level
after HT in the SW-1573 cells (60 min at 41.0°C) the α increased while in the RKO cells after
HT (15 min at 41.0°C) the β increased. Different mechanisms of action have been described
to account for HT induced radiosensitization15). The increase of α suggests inhibition of repair
of PLD and the increase of β suggests inhibition of repair of SLD.

Incorporation of BrdUrd does not increase the thermal sensitivity of unirradiated cells.
The combination of HT (41.0°C for 60 min) with 1 or 4 µM BrdUrd resulted in lower surviv-
ing fractions than of both treatments alone, but the effect was merely additive. An additive
effect of BrdUrd and HT (45.5°C) was also reported by Dewey et al.34) for synchronized ham-
ster cells. HP-induced thermal sensitization was found by Van Bree et al.4) in different expo-
nentially growing cell lines after hyperthermia treatment at 42.0°C for 1 hour. In contrast with
these data are results of Raaphorst et al.17), who did not observe a significant effect on thermal
sensitivity at 42.0 or at 45.5°C after BrdUrd or IdUrd incorporation in synchronized V79
cells.

Our data show that HT can further increase radiation damage of BrdUrd-sensitized cells
and this is observed even in quiescent clonogenic cells. Of the somewhat radioresistant SW-
1573 the value of α and of the more radiosensitive RKO cells the value of β increased after
combined sensitization. In the study by Van Bree et al.4) in several different exponentially
growing cell lines including the SW cells, after hyperthermic treatment at 42.0°C for 1 hour
only an effect on the value of α was observed. However, in otherwise untreated M8010 cells
Haveman et al.28) showed a clear effect on the value of β. It can be argued that HT modifies
the radiation response of the various cell lines via different mechanisms or pathways. HT
inhibits all kinds of DNA repair processes like repair of radiation-induced single and double
strand breaks and base excision repair and also DNA polymerase activity.

The description of combined effects of radiation and other agents such as hyperthermia
may require considerations of complex interactions. A theoretical model for describing the
effect of multiple types of radiation applied simultaneously has been developed by Susuki35).
In this model q(t) is included as an extra parameter for the time of irradiation. For very long
treatment times this reduction factor is 0. In our studies treatments were applied sequentially.
Moreover, in our experiments survival was studied at 24 hours after the last treatment in order
to allow repair of PLD. As HT affects repair processes, this repair time should be included in
the treatment time and this ads to the complexity of responses. Therefore the value of q(t) is
unknown. The LQ-model in which survival curves are described by the two parameters α and
β 23), as used in our study, seems appropriate as a first approximation. HT can influence both
parameters. Inhibition of repair of potentially lethal lesions mainly causes an increase of the
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linear parameter, α. Inhibition of repair of sublethal lesions (possibly associated with DNA
double strand breaks) causes an increase of the quadratic parameter, β.

With regard to clinical implications, it is of interest that the more radioresistant cell line,
even in quiescent phase, is sensitized in the low dose region. It can also be suggested that
when HT is combined with low dose or fractionated radiotherapy, a substantial enhancement
of the effectiveness of irradiation may be expected in case the α parameter is increased. In
case the β parameter is increased, HT may not be very effective in modifying radioresponse
after irradiation with low doses per fraction. Incorporation of halogenated pyrimidines in com-
bination with HT further increases radiosensitivity. Therefore this combination offers a useful
perspective for clinical application.
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