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As a first step towards constructing chiral models on the lattice with staggered fermions, we
study a U(1) model with axial-vector coupling to an external gauge field in two dimensions . In
our approach gauge invariance is broken, but it is restored in the classical continuum limit. We
find that the continuum divergence relations for the vector and axial-vector currents are
reproduced, up to contact terms, which we determine analytically . The current divergence
relations are also studied numerically for smooth external gauge fields with topological charge
zero. We furthermore investigate the effect of fluctuating gauge transformations and of gauge
configurations with non-trivial topological charge .

1. Introduction

A consistent non-perturbative formulation of a chiral gauge theory is much
desired. Within perturbation theory the quantization of chiral gauge theories has
been studied and it is claimed to be solved satisfactorily [1], although a gauge
invariant regulator does not appear to exist. Various proposals have been made for
a non-perturbative formulation of chiral gauge theories on the lattice . A problem
is the doubling phenomenon : a gauge invariant model on a regular lattice is
necessarily non-chiral in the sense that each fermion is accompanied by extra
degrees of freedom, the so-called species doublers, which couple with opposite
chiral charge to the gauge fields and render the theory vector-like . Most of the
currently existing lattice proposals try to eliminate the unwanted species doublers
either by making them very heavy or by tuning their interactions to zero (for an
overview see ref. [2]) . One can also use the doublers as physical degrees of
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freedom, with the staggered fermion method [3-5], which is the strategy followed
in this paper.

As in perturbation theory in the continuum, the regulated lattice model violates
gauge invariance, but it is restored in the classical continuum limit . The question is
how to restore it in the quantum theory . One can mimic the continuum methods
closely, by attempting non-perturbative gauge fixing and adding counterterms to
restore gauge invariance [6]. An alternative approach focuses on a possible
dynamical restoration of gauge invariance [3,5] . The question of dynamical gauge
symmetry restoration will be investigated in an other publication [7]. In this paper
we shall test the staggered method in a two-dimensional axial-vector model, where
the staggered fermion fields are coupled to external gauge fields . A preliminary
account of this work has already been presented in ref. [8].

2. The target model

Our continuum target model is given by the following euclidean action in two
dimensions :

S = - fd2x [ ~yjaw + iy5Aw)O + m~01,

	

(2.1)

where AW is an external gauge field and y5 = -iy ly 2 . For the purpose of
numerical simulations and also for the use in tests we have added a bare mass term
for the fermions with mass parameter m. In two dimensions the axial-vector model
(2.1) can be rewritten in vector form with a Majorana mass term, e.g . by a charge
conjugation transformation on the right-handed fermion fields . So it is not really a
chiral gauge theory, and for m = 0 it is equivalent to the Schwinger model.
However, the technical aspects of "y5" in its lattice version are very similar to truly
chiral gauge theories . The reason for choosing this target model and not e.g . a
left-handed model, is that the staggered fermion version of the axial model has a
larger lattice symmetry group.

For m = 0 the action (2.1) is invariant under the local gauge transformations
A,,,(x) -AA(x) + in(x)ô,l *(x),

	

4(x) -4 [f2(x)PL + .(2*(x)PR]q(x),

	

~(x)
+'(x)[0(x)PL+ d2*(x)PR ],with PL,R = 2(1 + y5) and ,f2(x) E U(1) . The action is
furthermore invariant under the global vector symmetry q(x) -f2sG(x), ~(x) -~
q(x),f2* . The vector and axial-vector currents, J,v = i~y,Lqj and J,, =i~y/y5

	

,
satisfy the classical divergence equations

ô,~Jv = 0,

	

(2.2)

J,A = 2rnJ P,

	

(2.3)

where J P =i~y50 is the pseudoscalar density .



As is well known these classical relations (2 .2), (2 .3) may be invalidated by
quantum effects. Requiring gauge invariance for m = 0, eq. (2.3) has to remain
valid but (2.2) becomes anomalous and takes the form

where F12(X) =a 1A2(x) - d2A 1(x) is the field strength and q(x) is the topological
charge density. The topological charge Q is defined by Q = fd2x q(x). Our aim is
to study the divergence equations (2.2) and (2.4) in the lattice version of the model.

Let us briefly review the anomaly structure of the current divergences in the
quantum theory . We evaluate (aJW,A) and (J p ) in perturbation theory, by
expansion in A., which leads to a series of diagrams in which external AA-lines
are attached to a fermion loop. We concentrate on the diagrams shown in fig. 1a,
since diagrams with one external line vanish and diagrams with more than two
external lines are convergent by power counting . We shall evaluate these diagrams
using a spherical cutoff in momentum space, because this regularization has
analogies to our staggered fermion formulation introduced later. Such a cutoff
violates gauge invariance, but the desired result is easily obtained by adding
suitable contact terms. For a discussion (including e.g . the gauge invariant point
splitting method, which gives rise to the additional diagrams in fig. 1b) see ref. [9] .

Although the diagrams in fig. la seem to be logarithmically divergent, the
momentum cutoff gives a finite answer when it is removed. Fig. la leads to

TvA(p) --_
J
d4x exp( -ix .P)(Jw(x)J

A
(0) )a=o

where C" is a contact term to be determined shortly. From this expression we get
the two Ward identities

where the amplitude
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1
TJw = 2iq,

	

q = -F277-

	

121

1
lp,T'A(p)

	

2?f Evapa
+ ipWCWA ,

l
- iPv

TVA(p)
- 2mTvr( P) - 2?r E,£aPa - ipvCg

A

(2.4)

f1dz
m2Emv-z(1-z)(EwaPaPv+EvaPapw)

+C

	

25VA
27r o

	

m2+z(l-z)P2

(2 .6)

1 1

	

me_ /'

	

pa
11

	

0
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giving

For (JA ) fig . la gives

With the choice

1
tpla TvA(p) _ -Euapa,7r

a)

	

b)
Fig . 1 . Feynman diagrams for T,A(p), T,,v P(p), TX(p), and T,^P(p) .

results from the evaluation of the JV-JP correlation function at AA = 0 (see fig .
la). These relations show anomalous terms in both the vector and axial-vector
Ward identities . By choosing the contact terms CWA = ±(i/2-rr)e,� one may shift
the anomaly either to the vector (+) or to the axial-vector Ward identity
Since we insist on axial gauge invariance the contact term is determined as

CVA= +-eAV

	

27r wv,

TAA(p) = fd4x exp( - ix . p)(JW(x)JA(0))a=o

we get from this relation the desired Ward identity

(2.8)

- ip�TvA(p) = 2mTvp (p) .

	

(2.9)

1 1

	

(S p2 -p pv)z(1- z)+m2S

	

1
- --f dz

	

"

	

+-SAP + C AA . (2.10)
7r p

	

m2+z(1-z)p2

	

27r
-SAP

	

wv

ip�TA~(p) = 2mTAP(p),

	

T~(p) _ -- fo
ldzm2 + (~~-z)p2' (2 .12)

with TAP(p) the JA-J p correlation function at AA = 0. From the above results for
the current correlation functions one can derive the divergence equations (2.3) and
(2.4) .



We shall show in the following that the symmetry properties of the model, as
they manifest themselves in the current divergence relations (2.3) and (2.4), can be
recovered in a staggered fermion version of the model on the lattice .

We generalize our target model to two flavors, which makes it somewhat
simpler to describe in the staggered fermion formalism . We introduce 2 X 2 matrix
fermion fields 1YX " and W,,` on a two-dimensional square lattice, where a and tc
are Dirac and flavor indices, respectively . Using these matrix fields we find after
the naive lattice transcription of the two-flavor version of the target model in eq .
(2.1) the following action :

S = -

	

z
(U L

	

IfTr[ 1yxY,,

	

PL + URPR) x+~ - 1yx+wYw(Ux*pL + UR*pR)

- mE Tr(iFx1Yx),

	

(3.1)
x

= exp(-iaA,.x),

	

UR = exp(taA ,,x),

	

(3.2)

with a the lattice spacing . We shall use lattice units, a = 1 . The action above would
be gauge invariant if IYx" and 1Yx" would be independent degrees of freedom, and
this would lead to fermion doublers with opposite chiralities .
The fermion doublers are situated at the boundary of the Brillouin zone in

momentum space, i .e . at momenta p, = + r . Consider restricting the momenta of
the matrix fields such that - zar < pw < + zvr . Then we loose the fermion doublers
of the matrix fields, but also gauge invariance . It is clear, however, that in the
classical continuum limit, where the field momenta go to zero (in lattice units), eq .
(3 .1) goes over into eq . (2.1) with two flavors . Hence gauge invariance gets restored
in this limit . One might think that the cutoff in momentum space has to result in a
non-local action . However, it is possible to express the action in a form that is
local, using staggered fermions .

Staggered fermion fields on the lattice, denoted by the one-component fields Xx
and Xx, do not carry explicit flavor and Dirac labels . These labels are supplied
through the doubling phenomenon . In the classical continuum limit one recovers
the usual Dirac and flavor structure . We make the connection with the_ 1Yx" and
1FX~ by writing [3,5]

W. Bock et al. / Staggered fermions for chiral gauge theories
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3. The staggered fermion model

1
2,~

I: Yx+bXx+bl 1 x+b t_
2~,

	

(,y) Xx+b>Lr l
b

(3.3)
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where yx --- yi ly22 and the sum runs over the corners of an elementary lattice
square, b, = 0, 1 . In momentum space we have the relation [4]

',fax( p) =Z(p)ETaK,bX(p+7rb),

	

-17F<p < 17r2 2
b

(3 .4)

where Taic,b = Fc â exp(ibc7r)yc, is a unitary matrix and z(p) is a non-vanishing
function in the restricted momentum interval . This shows clearly that in this
restricted interval the Fourier components of the matrix fields are independent.

Having expressed the matrix fermion fields in terms of the independent_	X x and
Xx

	

_fields, substitution into the action (3.1) leads to a local action . The indices a
and tc on ~ and T act like Dirac and flavor indices and one can construct
staggered fermion models involving arbitrary spin-flavor couplings to other fields
in a straightforward manner such that the target models are recovered in the
classical continuum limit. For the Standard Model and Grand Unified Theories
like SO(10) and SU(5) this can be done such that the staggered fermion symmetry
group is preserved [5] . This invariance is important for reducing the number of
counterterms needed to get a satisfactory continuum limit [10]. This strategy of
coupling the staggered fermion spin-flavors has recently been successfully applied
to a fermion-Higgs model [11] .

By working out the trace in (3.1) one obtains the action in terms of the
staggered fermion fields,

S = - 2

	

(CAx 4 Lr 77Wx+b(Xx+bXx+b+ß - Xx+b+AXx+b)

1
- SAX' 4

	

E

	

7112x+c( 71gx+cTx+bXx+c+4 - ''1N.x+bXx+b+N.Xx+c)) - MEXxVx,
b+c=n

	

x

(3 .5)

with the abbreviations c,,x = Re UWx , s,,x = Im UWx and n = (1, 1) . The sign factors
711x = 1 and 772x = (-1)x, represent the Dirac matrices y1 and y2 and 7112x =
712x711x+z = (-1)x1 the iy5 = YIy2- In the classical continuum limit this action
describes two flavors of axially coupled Dirac fermions .

For a one-flavor staggered fermion model we would have used only one
Grassmann variable per site (so-called "reduced" or "real" staggered fermions) .
One then defines the Xx fields usually on the even, and the Xx fields on the odd
lattice sites . This would require a one-link mass term instead of the simple one-site
mass term in (3.5) . The continuum interpretation is in this case somewhat more
involved [4,12] .
The couplings in the sWx term in the action (3.5) are not confined within a

plaquette . For example, for c = 0 and b = n we have three-link couplings . The



action is of course not unique . According to standard staggered fermion proper-

ties, the three-link couplings may be replaced by one-link couplings by shifting the
X or X field over two lattice spacings in the same direction (even shifts). Such

actions are equivalent in the sense that they lead to the same classical continuum
limit, and in the quantum theory they are expected to be in the same universality
class. It is instructive to give here a particularly simple alternative to (3 .5),

1

	

_
S= - E [CWx71Wx - 2(XXXx+fî

	

iix+fîXX)
xN

-SgXEWv 7lvx * 2(XXXx+v" +Xx+vXx)] - ErniiXXx'
x

CNx

	

4 Lr Cfcx-b~

	

SWx

	

4 ESN,x-b~
b

	

b

obtained by using c = n - b, the identities 7112x+n71ttx+n = ENv71vx , n + ~ = V + 2A,

and the equivalence of e.g . XxXx+n+v+2w-2b with XxXx+n+v which differ by even

shifts . A further reduction could be achieved by the replacements cAx -), 1 and
s1Lx - sw in the above expression, as the resulting model still has the same classical
continuum limit.
A model with all the couplings confined within a plaquette may be called a

canonical model, as it allows for a canonical construction of the transfer operator
[12,13]. In the following we shall use, however, the original version as written in eq.
(3.5).

For m = 0 the action (3.1) appears to be invariant under the local gauge
transformations,

U,- f2XUN.x'2x+Eî (3 .8)

>(f2xPL +f2xhR)~xI

	

x

	

x(OxPL+,2xp12)

	

(3 .9)
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Xx -exp(iw)Xx,

	

Xx-Xx exp( -iw)

(3.6)

(3.7)

However, this gauge invariance is broken because of the momentum space cutoff
on the matrix fields . The four components of the Wx and Tx matrix fields are not

independent, as is evident from their expression in terms of the independent Xx
and_

	

Xx fields . Therefore we cannot translate the gauge transformations on IP and
T to local transformations on X and X, and the action (3.5) lacks gauge invariance .

The global vector U(1) transformation

(3 .10)

is an exact symmetry of the actions (3.5) and (3 .6). For m = 0 there is furthermore
a second exact global U(1) invariance, the "U(1)E" invariance Xx ~ exp(iWEx)Xx,

Xx -Xx exp(icoEx), Ex = (-1)x'+XZ, which corresponds to a flavor non-singlet chiral
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transformation IPx - cos w 1Yx + i sin 0) y51Yxy 5 , iPx --> cos W Tx + i sin ca y5fxy5 .
These U(1) x U(1) transformations are part of the U(2) x U(2) global invariance of
the classical two-flavor continuum action . In a one-flavor staggered fermion model
UM, would be the only global U(1) symmetry.
We are not concerned here with the full aspects of flavor symmetry restoration,

but concentrate on the flavor singlet vector and axial-vector currents, iv and JWAx.
The latter is the gauge current which should be exactly conserved . The former is
the U(1) vector current which should have the anomaly discussed in the previous
section .

4. Divergence equations on the lattice

In this section we determine the contact terms in the divergence equations for
the gauge current JW and a flavor singlet U(1) current JV in our lattice model
(3.5) .

To introduce these currents we generalize (3 .1), (3 .2) to include also an external
vector field VWx, writing

ULWx = exp( -iAWx - iVWx), = exp(+aAW,

Since gauge invariance is broken we expect to have to add counterterms to the
action to restore it in the continuum limit . From sect. 2 we expect these to have the
form

Sct= E(ZC~AAWXA �x +Cv"VAxAvx +'CVV V,,V,x) .

	

(4.2)
x

The coefficients CAA and CvA have to be determined such that in the scaling
region the effective action obtained by integrating out the fermion fields is
invariant for m = 0 under the gauge transformations (3.8) on AA, We have
included a Cvv term which may be determined such that under gauge transforma-
tions on VWZ the effective action in the scaling region suffers only the anomaly and
no further symmetry breaking . There is no reason, of course, for the numerical
values of CAA and CvA to be the same as in sect . 2, where we used the spherical
cutoff as a regulator .

The above counterterms may be extended to periodic functions in Al. and V,, .
E.g . writing C'A = ,r3,, the CAA term may be replaced by the standard lattice
form for a gauge field mass term TExW(1 - cos AWx ). This replacement could help
to reduce the scaling violations . In this paper we shall however stay with the form
(4.2).

The currents J~,A are identified from the total action S + S, by letting
All -AA + SAW , VW -~ VA + SVW, and collecting terms linear in SAW and 8VW. The



current correlation functions are obtained by differentiating the effective action
with respect to A,, and V,,. As we shall study (JV,A) only for zero V,, (but for
arbitrary A,), we give the currents here for U = 0,

where U~,x = U,,Lx = exp(-i,4,, .,). A natural choice for the pseudoscalar density is
given by

The currents in terms of the staggered field X are obtained by inserting the
relations (3.3) into (4.3)-(4.5),
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JW = Zl Tr[ 1PxY,(UNxPl+ UWx PR) ~ffx+il + ~ex+ilYu(UiL*xPL + UgxPR)Ifx1

VA+ CW� Avx,

J; _ - zi Tr[ ipxyli(UkxPL - UûxPR)'Px+i +'Px+wyw(UwxPL - UgxPR)'Px~

+ C;~AA,

	

(4.4)

- St(CNxY7lgx+b(.ix+bXx+b+A+Xx+b+AXx+b)
b

=i Tr(1PxY5IFx)*

	

(4.5)

- SWx

	

E

	

7112x+c(71»x+cXx+bXx+c+A + 71gx+bXx+b+wXx+c)) + CEvAAvx
b+c=n

b+c=n

(4 .3)

The above vector current J, is not directly related to the exact global U(1)
invariance (3.10) which we mentioned in the previous section, because the pre-
scription (4.1) does not make this symmetry an exact local symmetry .

To obtain the divergence relation of the conserved current jw which is
associated with the exact U(1) symmetry (3.10) we replace Xx - exp(icex)Xx and

Xx->Xx exp( -iwx) in the action (3 .5) and collect terms linear in cex. But then the
three-link couplings in (3.5) lead to an awkward looking divergence equation . The

(4.6)

JN,Ax = s1(cwx E 7112x+c( 71Wx+cXx+bXx+c+Fî - 71Nx+bXx+b+NXx+c)
b+c=n

-SAx1: 7lpx+b(Xx+bXx+b+A - Xx+b+AXx+b)) + Cp
AA
v Avx, (4.7)

b

1
xJp- 4 7112x+4x+bXx+c' (4 .8)
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usual form of the divergence equation is obtained in the canonical model (3 .6). We
find

a,, ]v09

Ifz - t

	

[CN.x7ÎWx' 2(XxXx+~î+Xx+wXx) -SvxEfcv~ ;,cx' 2(XxXx+1î - Xx+ÊcXx)]-

(4 .9)

The potential problem of the appearance of additional global symmetries on the
lattice has been emphasized in particular in ref. [14], in the context of fermion
number nonconservation in the Standard Model. We shall assume here the
following resolution, which is, as we believe, in accordance with current lore [15] .
We can construct many currents, each of which reduces in the scaling region to a
linear combination of the gauge invariant Jv and the gauge variant eg�A� . In
particular, the exactly conserved but gauge non-invariant current jw will reduce to
the divergence-free combination Jv - (i/-tr)eg�A, Because this current is not
gauge invariant, the corresponding conserved charge is unphysical . It may have a
physical (gauge invariant) component, but there is no reason why this should be
conserved (for an exposition of the physics of the equivalent Schwinger model, see
for example ref. [16]) .

In this way the non-gauge invariance of our lattice model provides presumably a
possible way out of the embarrassing exact global U(1) invariance . Another
possibility to avoid difficulties with undesired global invariances is to construct the
lattice models such that additional extra symmetries do not emerge [4,14,17] . The
potential problem of having a larger global symmetry group on the lattice than in
the continuum target model, requires further detailed investigation . However, in
this paper we shall restrict ourselves to a study of the currents J,~ and J,A as given
in the eqs. (4.6) and (4.7) .

With the above definitions of the currents and using the staggered fermion
formalism outlined in refs . [10,12] we derived the lattice analogues of the Ward
identities in sect . 2. Let us first concentrate on the vector current. The diagram in
fig . la gives a non-zero contribution, whereas the contribution from the typical
lattice tadpole diagram in fig . lb happens to vanish . The amplitude then reads

T.VA(p) -i exp[Ii(p � -pW)~

x
f m2E»v + E,,as(ga)S(gv + p.) + Evces(ga +pa)s(gW)

9

	

D(q)D(q +p)

X c(q, + ipN )c(gv + zp �) FI c (zpi) c(gi + zpi),

	

(4 .l0)
l
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where

	

s(qi) = sin qi,

	

c(q) = cos qi,

	

D(q) = Ea sin2ga + m2	and

	

fq =
J±iT~22 d2q/ ,rr 2 . To calculate the continuum limit of (4.10) we let p and m
approach zero, and separate the integration region into a small ball around the
origin, I q I < 5, with radius S << zar and the outer region, I q I > S (see, for example,
ref. [10]). We let S - 0, m/S - 0 and p/S - 0, with p/m fixed. In the inner
region we can replace the integrand by its covariant form, while in the outer region
the integrand is expanded in powers of m, p and only the non-vanishing terms are
kept . For the integral (4.10) the contribution from the outer region vanishes and
only the contribution from the inner region remains, which is exactly a continuum
loop integral with a spherical cutoff S, and coincides with eq . (2 .5), except for a
factor of two corresponding to the two flavors. Consequently, after normalizing to
one flavor we have the same contact term (2.8) as in the cutoff regulated
continuum theory . So we find the following vector current divergence relation on
the lattice :

where the contact term CW`' in the definition (4.6) is given in eq . (2 .8) and FX is a
suitable form for the field strength, cf . eq . (5 .2) below. Here BWfwX --- EA(f,X -f. _w)
is the divergence on the lattice and ( . ix denotes the integration over the X fields
and includes here and in the following also a normalization to one staggered
flavor . The O(a) indicates terms which arise due to the discretization and vanish
when a --> 0.

For the amplitude Tom' we obtained the expression

Tpv'(P) = TAA(a
)
(P) +TAA(b)(P) +CA,

	

(4 .12)

Tpv
AA(

a
)
(P) - -exp[zi(P,-pw)1

I m2&Av+s(gM)s(qv Pv) - EkaEvßs( ga)s( qlo+ Po)

q

	

D(q)D(q +P)

X c(gA + Zpm )c(q� + zP�)~c(qi + zPi) 2,

	

(4.13)
i

s(gw )
2

TAUw(b)(P) ` -SFLvJ D(q)q

aw(Jg
>x =2iFX/2Tr+0(a),

	

(4.l1)

(4 .14)

where Tẁ (
a
)(p) and TXro>(p) denote the contributions from the diagrams in figs .

1a and lb. The amplitude of the tadpole diagram is independent of the external
momentum p. After a normalization to one flavor, we find the lattice divergence
relation for the axial-vector current,

aw~ Jw)x-2m(JP )x+0(a),

	

(4.l5)
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where the contact term coefficient C~ in (4.7) has to be chosen as

C"a~=75"v , Ir=
-(27r

+Il +I2 ) = 0.0625,

	

(4.16)

I _ 1_ [s(gz)2 - s(gi)2Jc( qi)4c( q2)2_

	

0 .0283,
2 q

	

[S(gl)2+s(g2)2~2

	

,

1_

	

s(gi)2

	

1I
2

	

_

2 f [S(q,)2+s(g2)2,2

	

4
.

5. Numerical results

5 .1 . SMOOTH EXTERNAL GAUGE FIELD CONFIGURATIONS

(4.17)

The first two terms, 1/2-rr and I,, in (4.16) come from inner and outer region parts
of the integral (4.13) and 12 from the lattice integral (4.14) .
An alternative form of the staggered fermion action is given by eq. (3.5), but

with non-compact gauge fields, i .e . with the replacements c"x - 1 and sicx -AA,
Of course, this form also reduces in the classical continuum limit to the target
model with two flavors . Using this modified form of the action we would have to
drop the U fields from eq . (4.4). Then the tadpole diagram in fig . 1b would not
have given a contribution and we would instead have obtained C;~A = -0.18755" �
which is larger than the result in (4.16). This shows that the form (3.5) is more
appropriate for restoring gauge invariance . However, unlike with the continuum
point split current [9], a contact term is still needed because the staggered theory
is not gauge invariant .

In this section we numerically compute the current divergence relations (4.11)
and (4.15) for smooth external gauge field configurations with variable amplitude .
A similar test [18] has been recently applied to a proposal using domain wall
fermions [19] . Since gauge invariance is violated in the staggered model it is
interesting to investigate the effect of fluctuating gauge transformations on the
divergence relations . As in an earlier work [20] we shall also investigate the effects
of external gauge fields with Q :f- 1 .

To test the relation (4.11) for the vector current, we use the same external fields
as in ref. [18] which are spatially constant,

Aix =A, sin(27rt/T ),

	

A2x = 0,

	

(5 .1)
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with t =x2 . We shall use here and in the following a lattice, with extents T and L

in the time and spatial directions . The gauge fields UWx are close to one every-
where provided the amplitude Ao is sufficiently small. The topological charge Q is
equal to zero for this class of configurations .

To reduce the discretization error, which arises naturally when transcribing a
continuum gauge field configuration to the lattice, we use for Fx in (4.11) the
average over the four lattice plaquettes adjoined to the point x:

f
Fx = â 1: F12x-b ,

b

= 0,

	

A2x =A o sin(2-trt/T),

	

(5 .3)

which in contrast to the previous case is longitudinal, i.e .

	

E, �awA, = 0 and
a~',AW 0 0. In fig. 2b, aA(JW )X is represented by the various symbols, which as in fig.
2a correspond to different values of the amplitude A0 * The quantity 2m(JP )X is
represented by the solid lines which were obtained by connecting the data points at
t = 1, . . . , T by cubic splines. The plot shows that the relation (4.15) holds nicely
within the given range of Ao values . The relative error is smaller than 6%. The
complicated looking Aôdependence of a'(J' )X shows that for m 0 0 the effective
action Seff(A), which results after carrying out the X integration in the path
integral, and thereto also (JA)=SSeff(A)/SAwx, are non-linear functionals of
the vector potential AA,

5 .2. FLUCTUATING GAUGE DEGREES OF FREEDOM

(5.2)

with Flex =a1A2x -a2AIx the plaquette field strength (aWfx --- fx ' -fx). Fig. 2a
shows the divergence -iaW(Jû )X as a function of t for various values of A0 . The
quantity Fx/-tr is represented in this plot by the full lines which were obtained by
connecting the points at t = 1, . . . , T by a cubic spline . We use a lattice with
T = L = 64 and periodic boundary conditions for the X fields . To regulate the near
zero mode we used a small non-zero mass m= 0.01 . In fig . 2a and in the following
graphs we have multiplied the currents and the anomaly by the lattice volume
L X T. For the smaller amplitudes the agreement between the anomaly and the
current divergence is almost perfect, showing that the O(a) effects in eq . (4.11) are
very small. We find the maximal relative error to increase from 0.1% to 5% when
Ao is raised from 0.1 to 0.25.

To test the divergence relation (4.15) for the axial-vector current we use the
field

Since the model lacks gauge invariance it is instructive to investigate how
relation (4.11) changes if we perform gauge transformations

UN.x - nxu', f,	x+Êc

	

(5 .4)
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v
w~ AX

642
m=0 .01

X :A o=0 .25
o:A o=0.20
o:A o=0.15
o :A o=0.10

642
m=0.01

X :Ao=0.25
o :A,)=0.20
[] :A O= 0 .15
o :A o=0.10
X:A o=0.05

Fig . 2 . (a) The divergence - iô~'~~ Jn)x as a function of t for several values of Ap and m = 0.01 . The
anomaly F /-rr is given by the full lines. (b) 8,(Jû)X as a function of t for several values of AO and
m=0.01 . The numerical results for 2m(JP>X are represented by the full lines which were obtained by

connecting the data points at various t by cubic splines.

on a smooth link configuration. To investigate the effect of ,f2 field fluctuations, we
can again compute the current divergence, but now averaged over an d2 field
ensemble,

( agJJ~n - Z f Dd2 d (Jw ).

	

es(n),

	

Z=fD,0 es(fz) ,

	

(5 .5)

with Boltzmann weight exp S(f2). We will generate here the configurations of the
gauge degrees of freedom in two different ways, depending on which formulation
of the full model with dynamical gauge fields we are aiming for.
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S(d2) _ - 2S Lr (	Wx)Z
'

nx = exp(itox),

322
A o=0.15
m=0.1

Fig. 3 . The divergence - i(a,',J,)n as a function of t with the gauge degrees of freedom d2 generated
by the gauge fixing action (5 .6) at ~ = 10 (crosses) and by the XY-model action (5 .7) at K=1 .0 (circles).

The anomaly Fx /a is represented by the full line . The dashed curve is obtained by a fit .

As we mentioned in sect . 1, one possibility is to use non-perturbative gauge
fixing and add counterterms to restore gauge invariance [6]. With non-compact
U(1) gauge fields (but still coupled compactly to the fermions), we may use a gauge
fixing action - 2S Ex(dWAW,)Z . The corresponding Faddeev-Popov determinant is
independent of A,, . Since AAx transforms into Apx + a~Wx under a gauge transfor-
mation, this suggests to use the gauge fixing action

(5 .6)

to generate the gauge degrees of freedom. Here o denotes the lattice laplacian
operator and ~ is the gauge fixing parameter (~ = w corresponds to the
Landau gauge). The non-compact phases Wx are coupled through flx = exp(ioux)
and the replacement (5.4) to the fermions . In fig. 3 the crosses represent the
results for -i(al,',JW )n after averaging over 1400 independent fl configurations at
= 10 . The numerical result lies slightly below the solid line which represents here

again the anomaly Fx17T for the given external gauge field configuration (5.1) . This
shows that the anomaly relation remains valid after multiplying the vector current
by a factor which is slightly larger than one. Such a current renormalization is
expected because there is no protection by symmetry. This result shows that a
further numerical investigation of the gauge fixing approach may be technically
feasible, at least for U(1) with non-compact gauge potentials where one has not to
worry about the Faddeev-Popov factor .
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We find that at smaller values of ~ the statistical fluctuations increase tremen-
dously . Recall, however, that in the convention we are using the gauge coupling g

is absorbed in A l, implying that l'a 1/g2 ; e.g . ~= 1/g 2 corresponds to the
Feynman gauge. Since g2 -, 0 in lattice units, large ~'s are not unnatural .
An alternative approach to regain a gauge invariant quantum model aims at a

dynamical restoration of gauge invariance, by integration over all gauge transfor-
mations [3,5] . In this approach the expected mass counterterm for the gauge field
2KExA Re U,x, which transforms into 2KEx ,, Re(nxUWx nx+~,), suggests to use the
action

S(n) = KE (nXnx+,û +'-x*+~,'Lx),

	

(5.7)

xN

to generate the ,2 configurations in (5.5) . This action is identical to the action for
the XY-model in two dimensions with hopping parameter K . The most ambitious
scenario [3,5] corresponds to choosing K in the vortex phase of the XY-model (in
ref . [5] denoted as "scenario C") . In other scenarios the models would have to
allow an interpretation of .(l x as a (radially frozen) Higgs field, for which K would
have to be close to the Kosterlitz-Thouless phase transition at KC = 0.5 .

For large values of K, deep in the spin wave phase, the fluctuations of ,(2 are
small and we expect that -i(ô~Jv )n=Fx/7r within statistical errors . This is
confirmed by a simulation at K = 2. For smaller values of K, when approaching the
phase transition at KC 0.5, the fluctuations increase dramatically . The result at
K = 1.0 (indicated by circles in fig . 3) shows that the values for -i(a~Jv )n now lie
significantly below Fx/7r (solid line) . This result was obtained after averaging over
6400 independent f2 configurations . The dashed line was obtained by fitting the
numerical data to the ansatz -c(A027r/T) cos(27rt/T) with free parameter c .
The good quality of the fit shows that the relation (4.11) remains valid after
renormalizing the vector current by a factor 1/c = 1 .20 . In the vortex phase the
fluctuations of -iVv were so strong that even after an excessive increase of the
statistics we were not able to get a meaningful estimate of the average current
divergence . The danger is that the nice scaling behavior of the staggered fermions,
which we could demonstrate for smooth external fields, is washed out when the
gauge degrees of freedom fluctuate too strongly.
An interesting difference between the actions (5.6) and (5.7) is that in the latter

case the small fluctuations in the spin wave phase were weighted by exp(KCo 13 ce),
whereas in the former case a D 2 appears instead of the o, which leads to much
smoother W configurations .

5 .3 . CONFIGURATIONS WITH Q * 0

One would like to promote the divergence equation (2.4) to gauge fields with
arbitrary topological charge . At first sight this leads to an apparent contradiction :
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On a torus with periodic boundary conditions for gauge invariant quantities,
integration over the left-hand side of eq . (2 .4) gives zero, while the right-hand side
gives 2iQ =0 0. This paradox makes it interesting to see if the local divergence
equation (2.4) is valid also for topologically non-trivial gauge fields .

In the massive Schwinger model the divergence equation for the axial-vector
current reads a~jW = 2ndp + 2iq. After integration over the torus with periodic
boundary conditions we find Q = m Tr[ys0 + m) - '] and the Atiyah-Singer index
theorem is effectively valid [20] . A paradox is therefore avoided by the fermion
mass term in the massive Schwinger model. The paradox in the axial-vector model
would not emerge if we would replace the usual mass term in eq . (2 .1) by a
Majorana mass term which makes the model equivalent to the massive Schwinger
model.

However, it is not as easy to deal with Q 0 0 in the axial-vector model as
previously in the Schwinger model (see ref. [20]) . The reason is that we recover
gauge invariance only if the gauge potentials are smooth (and, of course, m = 0) .
For example, the perturbative derivation of the divergence relations is valid only
when the momenta of the external gauge field AW are negligible compared to the
cutoff. On a periodic lattice a typical lattice gauge field with non-zero topological
charge is not smooth . As an example we investigate the effect of configurations
with constant F12x used in the vector case in ref. [20] .
We consider a configuration with a constant field strength F --- F12X = 27TQ/TL .

U1_, = exp(iFt),

	

t=1, . . ., T,

U2x = 1,

	

t =1- ., T - 1,

U2x = exp(iFTx 1),

	

t = T.

	

(5 .8)

For small Q the link field UWx is close to one and smooth everywhere except for
t = T where U2 contains a transition function [20] . When shifting t from T- 1 to T
and then to T + 1 = 1 (mod T) U2 makes a jump as a function of t (e .g . for Q = 1
and x1 = 2L U2 jumps from + 1 to -1 and then to + 1 again) . Also, U1 jumps
when shifting t from T to t = T+ 1 = 1 (mod T) . In gauge invariant models these
transition functions are invisible.
We expect the divergence equation to hold with small O(a) corrections in the

region of the lattice where the gauge fields are sufficiently smooth, but expect
deviations in the region near the transition function . As in fig. 2 we have plotted in
fig. 4 the divergence -iall'(Jg ix (squares) for the space slice x 1 = zL as a function
of t/T with L = T = 64 (diamonds) and L = T = 32 (crosses), but now for the
gauge field configuration (5 .8). We used here antiperiodic boundary conditions for
the X fields and m = 0. For other space slices we got similar plots. The solid line
represents again Fx/ar, which is now independent of x. Far way from the time
slice which carries the transition function the agreement of -iaW(J, ix with Fx/rr
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v-iô;(J"X) x

0.2 0 .4 0.6 0 .8

6. Discussion

1 t/T
Fig. 4. The divergence - id,'(JW )x as a function of t/T for a configuration with Q = 1 on two different
lattices (T = L= 32, 64). We have used m = 0, and antiperiodic boundary conditions for the X field.

The solid line represents the anomaly Fx /-rr .

is satisfactory, however in the vicinity of this time slice the deviations become huge
(the values at t = 31, 32 (T = 32) and t = 62, 63, 64 (T = 64) were dropped from
the graph since they are much larger than 20). The figure indicates also that the
region of disturbance shrinks for increasing lattice size . The strong deviations
induced by the transition function is analogous to the enormous fluctuations we
observed in -id

'
',(Jû )n when lowering K in the action (5.7) . The increase of the

vorticity renders the effective gauge field configuration f2 xU,,X Qx+ ,j very rough,
similar to the above gauge field at t = T.
The above results for the Q = 1 configuration are not entirely satisfactory . To

avoid the large errors with topological non-trivial gauge fields we will have to
follow the mathematicians and introduce charts in which the gauge potentials are
smooth, such that the Dirac operator has negligible discretization errors in any
open region (see e.g . ref. [21]) . A proper treatment of this will have to be done in
the future .

We have showed that the staggered fermion model (3.5) can reproduce contin-
uum Ward identities after incorporating the appropriate counterterms . The coeffi-
cients of these counterterms have been computed in this paper within lattice
perturbation theory . Using smooth external gauge fields with zero topological
charge we have numerically verified the validity of the divergence relations for the
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vector and axial-vector currents and found good accuracy, for gauge field configu-
rations with IUWX - 11 < 0.2 .
We tested the sensitivity of the divergence relation for the vector current to

fluctuating gauge degrees of freedom which were generated either with the gauge
fixing action (5.6) or the scalar field action (5.7) . After renormalizing the currents
with a finite factor > 1, the divergence relation remains valid in both cases,
provided that the fluctuations of the gauge modes nX are not too strong . This is an
encouraging result for the gauge fixing approach to chiral theories . When the
gauge modes becomes less constrained, the induced fluctuations are very severe
and might wash out the anomaly signal completely .

The disconcerting effect of rough gauge transformations is also seen when the
current divergence is measured for a non-smooth gauge field with topological
charge one, used in earlier tests in QEDZ. We found the divergence relation for
the vector current to be strongly violated near the region of the lattice where the
gauge potentials lack smoothness . This means that in a description which violates
gauge invariance at the cutoff level, topologically non-trivial gauge fields have
presumably to be dealt with using the full apparatus of charts and transition
functions that are smooth in space and time .

The results of this paper show that our staggered fermion approach passes a
first test in reproducing the current divergence relations. It is not clear yet at this
stage whether it is possible to obtain a valid quantum model after the integration
over all gauge field configurations has been carried out in the path integral . This
question shall be addressed in a separate publication [7]. Further clarification is
also needed of the question how (if indeed) the additional global U(1) invariance
on the lattice does not give rise to a local conservation law.

The numerical computations were performed on the CRAY Y-MP4/464 at
SARA, Amsterdam. This research was supported by the "Stichting voor Funda-
menteel Onderzoek der Materie (FOM)", by the "Stichting Nationale Computer
Faciliteiten (NCF)" and by the DOE under contract DE-FG03-91ER40546.
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