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Abstract 

A novel approach to the quantification of overlapping chromatographic peaks is introduced. The sum of the models for the 
individual overlapping peaks is taken as the signal model in a matched filter. Thus, the signal intensities being the objective of 
the quantification procedure become parameters in an overall signal model. These and, if necessary, other parameters are adapted 
by a modified simplex algorithm optimizing the maximum in the output of the matched filter. A prediction of the results can be 
made on the basis of a noiseless response surface that can be calculated from the models. When shapes and positions of the 
peaks are known and only their intensities need to be estimated, a quantitative theoretical error estimation is possible. The results 
thus predicted are considered optimal and are used as a reference in the evaluation of the results of a range of experiments using 
simulated data containing two overlapping Gaussians and first-order band-limited noise. The proposed procedure works well, 
the quality of the results usually being on or just little below the theoretical optimum. Under conditions of high overlap or a low 
signal to noise ratio, the experimental results no longer follow a normal distribution and their quality is lower. 

1. Introduction 

A novel approach to the quantification of overlap- 
ping chromatographic peaks is introduced. It is based 
on the MFX, a recently introduced extension to the 
matched filter [ 11, the operation of which is described 
below. The procedure has been tested on simulated 
data. The results are compared to a theoretical refer- 
ence, not to existing methods such as non-linear regres- 
sion [ 21, Kalman fltering [ 3,4], deconvolution [ 51 or 
integration [ 6,7]. 

The matched filter (MF) is an optimal linear filter 
for data consisting of a signal and additive stationary 
noise. It is based on exact models of both the signal 
and the noise component in the data [&lo]. The opti- 
mality of the MF concerns the signal to noise ratio (S/ 
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N) in the output, if defined as the maximum of the 
signal component divided by the standard deviation of 
the noise. In other words, true optimality can be 
achieved only when the position of this maximum is 
known. Otherwise, its estimation is a source of error 
that is not accounted for by the MF theory. Neverthe- 
less, it is sometimes assumed that a MF followed by a 
maximum searcher represents the optimal estimator for 
both the amplitude and the position of a signal [ 111. 

A MF is rigid, being optimized for the particular 
signal whose model it contains, e.g. one peak in a chro- 
matogram. The MFX has been introduced to add flex- 
ibility to the MF by inverting the principle of the MF: 
the best estimation of the signal model is the one for 
which the output is optimal. Rather than being a 
matched filter, it is a filter being matched. This has been 
implemented as a modified simplex optimization of the 



298 B. van den Bogaert et al. / Chemometrics andlnteUigent Laboratory Systems 25 (1994) 297-311 

output SIN of a MF that is equipped with a parameter- 
ized signal model. The simplex adapts the values of the 
parameters in the model. The SIN is approximated as 
the ratio of the output at the true or estimated position 
of the maximum in the signal component to the theo- 
retical standard deviation of the output noise. The cal- 
culation of this standard deviation, and dividing by it, 
has been made part of the MF. This can be regarded a 
normalization of the filter, restricting the amplitude 
effect of signal model changes to the signal component 
in the output. 

This paper deals with signals that consist of overlap- 
ping peaks. When the positions and the shapes of the 
peaks are known, normal matched tilters will suffice, 
one filter for each shape. In the simplest situation of 
overlapping peaks of identical shape only one filter is 
required. The output is measured at the positions of the 
maxima of the individual peaks. From these values 
disturbed by overlap, undisturbed values can be cal- 
culated by means of the models used. However, when 
the exact position or shape of one or more peaks is not 
known, this approach will fail. Using a fixed though 
incorrect position results in both systematic errors and 
higher relative standard deviations in the individual 
peak intensity estimations. Estimating the position 
from an ensemble of data results in the transfer of part 
of the systematic error to the random error. Incomplete 
information on the shape of the peaks has analogous 
effects. The MFX will be hindered by the overlap, since 
the contributions from the overlapping peaks are 
described by neither the peak shape model nor the noise 
model. 

An answer to these problems is found in using one 
multi-peak MFX instead of several single-peak filters. 
A normal, rigid MF is no longer realistic with such a 
model, because not only the positions and the shapes 
would need to be known, but also the intensity ratios 
of the peaks. Such a MF would only be able to quantify 
the entire cluster, not its constituents. In the MFX how- 
ever, intensity ratios, position differences and, if nec- 
essary, other parameters in the multi-peak signal model 
can be estimated by the normal procedure of optimizing 
the output SIN. The intensities of the individual peaks 
can be calculated from the output S/N and the estima- 
tions for the model parameters that have arisen from 
the optimization. In this paper it is assumed that the 
signal model is correct except for the values of the 
parameters in the model. 

(sub)optimally 

filtered signal 

Fig. 1. Flow chart of the MFX. Ellipses and rectangles represent 
operators and data respectively. 

The present research on the multi-peak MFX is lim- 
ited to signals containing two peaks: two Gaussians of 
equal width in the presence of first-order band-limited 
noise with a zero baseline. The working of a double- 
peak MFX is illustrated in Figs. 1 and 2. A mathemat- 
ical description will be given in the next section, 
followed by a discussion of the expected quality of the 
results. 

It is realized more readily than in the single-peak 
situation, that the MFX is a fitting procedure in which 
the goodness-of-fit is measured by a S/N. A fitting 
procedure, moreover, that is able to deal with correlated 
noise. The comparison with other fitting procedures and 
quantification methods will not be elaborated in this 
paper, though a tentative comparison with non-linear 
regression is made in the discussion. It is clear that 
overlap poses a serious problem to quantification based 
on integration, the most popular approach. Most of the 
integration methods are not documented sufficiently to 
allow a thorough statistical comparison, the required 
information usually being proprietary [ 7,121. Further- 
more, the number of available techniques and the num- 



B, van den Bogaert et al. I Chemometrics and Intelligent Laboratory Systems 25 (1994) 297-311 299 

detector signal 

matched filter output 

I reconstruction 

Fig. 2. Input and output of a MF being part of an MFX, for correlated 
noise. 

ber of parameters for each technique are so large that 
every comparison is in fact arbitrary. A solution to the 
problem of comparison might be a large public domain 
data set representing the problems that may be encoun- 
tered in practice, or the software needed to generate 
such a data set. Every researcher and supplier could 
then assess the capabilities of his approach with regard 
to this data set. Recently, a general chemometrics ref- 
erence data base was initiated [ 131. The first entries 
are multivariate data sets, but hopefully univariate data 
will also be added. 

2. Mathematical description of a double-peak 

A mathematical description will be given of a dou- 
ble-peak MFX without making further assumptions 
regarding noise or peak models. A signal x(t) consist- 
ing of two peaks can be written as: 

x(r) =&l(t) +&z(t) (1) 

where the xi(t) represent the shapes of the peaks and 
the Ai their amplitudes. The model m(t) is defined 
analogously: 

m(r) =mi(t) +A,m,(t) (2) 

where A,,, is the amplitude ratio of the model peaks. 
The complex frequency response of the normalized 
filter being matched in the MFX procedure is: 

M*(jj) 
H&j-) =- 

%“JW 
(3) 

where MCif) is the Fourier transform (FT) of the signal 
model m(t) , aout is the standard deviation of the output 
noise, SU, is the power spectral density of the input 
noise and the asterisk denotes the complex conjugate. 
The output of the filter is: 

u.(O =~-l[M.KWSl 

WY..ifKO =- 
,“I IT-’ out w 1 

A 
+A io:, Fr - 1 

+ A- 
FT - uout 1 

(4) 

where X(jJ) and Xi($) are the ITS of the signal x(t) 
and the individual peaks xi(t), and FYI- ’ denotes the 
inverse FT. The maximum of this function will be 
found at t = 0 when the signal model is correct. In 
general, the signal model is correct when it differs from 
the true signal only by some multiplication factor. The 
size of that factor is irrelevant, because it amplifies both 
signal and noise and does not affect the output S/N. 
Therefore, the model being correct can be expressed as 
x(t) =A,m(t). In that case, the inverse FIs of Eq. 4 
can be written as: 

(5) 

where i E { 1,2} and k~ {1,2}. RI2 and Rzl are single 
points in the cross-correlations of the peaks that have 
been transformed by the division by S(J). The division 
by the square root of SW is often referred to as whit- 
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erring, because it whitens the input noise prior to the 
cross-correlation [ 11. RI2 and Rzl are equal for any 
combination of peak shapes; the output of the filter with 
correct signal model, being an auto-correlation, will 
always be symmetrical. RI1 and R,, are the powers of 
the peak models, transformed by S(J). Using these 
definitions, the maximum in the output can be written 
as: 

Y n.- =-+,, +24nRn +&%I (6) 

The term between square brackets represents the 
power of the entire cluster model transformed by S(f, . 
A property of the MF is that this power is equal to the 
variance of the noise in the output of the filter without 
normalization, being the square of the normalization 
factor a,,,. When the optimization comes to an end, it 
is assumed that the current signal model is correct, and 
therefore the current normalization factor can be used 
to estimate the amplitude A, from the current yn,_: 

A, =Yn,max 
(7) CT out 

The amplitude of the second peak is calculated from 
this result simply by using the ratio A,,, that was arrived 
at by the optimization: 

A2 =A,AI (8) 

3. Error estimation for a double-peak MF’X 

It is expected that the method will work, though not 
equally well under all conditions. How well it works 
will, for the moment, be associated with the standard 
deviations of the results. The factors that determine its 
success may be expected to be the degree of overlap, 
the size of the peaks relative to the noise and the amount 
of a priori information that is supplied to the detector 
and the simplex optimization. The success will 
decrease when the peaks are brought closer together 
and when the size of one or both of the peaks is 
decreased at a constant noise level. In Fig. 3, an array 
of noiseless input data consisting of two Gaussians of 
varying position difference and amplitude ratio is dis- 
played. Resolution is identified with the ratio of peak 
position difference (t,) to peak width (a,). It may be 

A, 0.1 0.3 0.5 0.7 0.9 

Fig. 3. Signal component in the data in the experiments with the 
double-peak MFX. 

expected that the situations with the lowest resolutions, 
&la, s 2, and those with the smallest second peak, 
A, = 0.1, will be problematic, as will, to a lesser extent, 
the combination of A, = 0.3 and r,l a, = 3. In all of these 
cases, the difference between the peaks is so small that 
it will be easily obscured by noise. Especially when the 
procedure is allowed to adapt the width parameter of 
the peaks, the clusters with the lowest resolutions may 
be fitted by a single wider peak. 

The key issue is the response surface on which the 
optimization has to find its way, i.e. the response as a 
function of the parameters in the signal model. A prac- 
tical response surface will consist of contributions from 
both the signal and the noise component in the input 
data. Here, the signal contribution is used to calculate 
the distribution of the results. For instance, when opti- 
mixing two parameters in an otherwise correct signal 
model, the response surface is a three-dimensional 
entity, some mountainous area. The signal contribution 
will have a global optimum at the location of the correct 
parameter values. A series of superimposed practical 
response surfaces can be thought to create a haze over 
the noiseless surface. The top of the mountain will be 
hidden in the clouds and a certain area around the top 
will be indistinguishable. 

The cloud around the top is the three-dimensional 
distribution of the maxima. Each maximum is 
described by three coordinates, being the two parame- 
ters and the amplitude of the cluster output. The esti- 
mations of the amplitudes of the individual peaks are 
calculated from these coordinates. Projection of the 
cloud on the ground plane gives the two-dimensional 
distribution of the parameter estimations. Iso-probabil- 
ity contours of this distribution are assumed to coincide 
with contours of the signal contribution to the response 
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Fig. 4. Amplitude (drawn) and position (dotted) of response of 
double-peak white noise MFX. X axis: r,,, [ 0; 201; Y axis: A,,, [ 0; 11. 

surface. In other words, when one cuts through the 
noiseless response surface at some level below the top, 
one obtains a contour of the distribution of the param- 
eter estimates. This is similar to one of the approaches 
to error estimation in non-linear regression [ 14,151. 

When specific models are substituted in Eq. 4, the 
signal contribution to the response surface can be inves- 
tigated mathematically. For two overlapping Gaussians 
of equal width in the presence of first-order band-lim- 
ited white noise, the formula is given in the Appendix. 
No closed analytical solution to the problem of finding 
the maximum in the output has been found, due to the 
fact that the output consists essentially of four cross- 
correlations. The position of the absolute maximum of 
their envelope depends on the positions and amplitude 
ratios of the individual peaks. The maximum is found 
numerically, by scanning the record. 

In Fig. 4, contour plots are given for a range of values 
for the signal parameters t, and A,. The noise time 
constant T= 1, the width of the peaks CT,= 4 and the 
amplitude of the first peak is always one. The units of 
time in which ox, tn t,,, and rare expressed are arbitrary. 
The contours are located 0.003 and 0.03 below the 
maximum of the response surface. Fig. 4 also presents 
the respective positions of the maximum in the output 
of the filter, as the contours of the position surface at 

discrete point positions. The time constant T= 1 cor- 
responds with approximately white noise. In theory, 
the time constant can be made smaller than unity, but 
such noise cannot be represented by discrete data with 
a reasonable sampling frequency [ 11. 

In case of a model that is linear in its parameters, the 
parameter estimations are normally distributed and the 
contours of the response surface are elliptical. The qual- 
ity of the estimations, when measured by the standard 
deviation, is visible as the relative size of the ellipse. 
Following the 0.03 contour in Fig. 4, it is observed that 
the distributions of the parameter estimations are nearly 
elliptical, except for the situations in which the second 
peak is only very small (A, = 0.1) or the overlap is high 
(r, = 4). The shape and size of the contours depend on 
the noise level, a lower level corresponds with higher 
contours and vice versa. For instance at A, = 0.1 and 
t,= 12, the higher contour is elliptical, whereas the 
lower one is not. It seems that a linear approximation 
is appropriate under all but the most adverse conditions. 
The non-normality can be understood as follows: if 
t,,, = 0 then A,,, may have any value and vice versa. For 
t, = 4 and A, = 0:l the probability that this happens is 
large. When A, is increased, A, = 0 becomes less prob- 
able and when t, is increased t,,, = 0 becomes less prob- 
able, though at A, = 0.1 the peaks have to be rather well 
separated in order to cut off the t, = 0 path. When a 
time constant T= 40 is used in the calculations, which 
corresponds with highly correlated noise, slightly less 
separation is required. This inlhrence on the f,,, scale of 
the contours is visible in all plots: the correlated con- 
tours are always narrower than the white ones. For the 
rest, the response surfaces for white and correlated 
noise are very similar. 

In the situations where the parameters may escape 
from the simple ellipse the maximum in the filter output 
may be found on several positions. On the parameter 
domains that have been plotted the number of different 
positions ranges from 5 to 10 for the 0.01 contour. In 
the elliptical situations the maximum is consistently 
found at one location, being that of the maximum of 
the noiseless output. A lower noise level will corre- 
spond with higher contours and more different posi- 
tions may be found. In case of correlated noise there 
are sharp ridges in the position surfaces far from the 
optimum, caused by jumps from one maximum to 
another. 
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A, -Al); wlute noise, A, = 0.5. 

The ultimate goal of the MFX is not to estimate the 
parameters, but the individual amplitudes of the peaks 
that are calculated from the parameter estimates and 
the response itself using Eqs. 7 and 8. The distribution 
of the amplitudes of the maximum responses is not 
known, and therefore, in order to obtain an impression 
of the distributions of the amplitudes, the distribution 
of the parameters is mapped onto the surface spanned 
by the individual peak amplitudes by assuming that the 
response always has the value of the theoretical noise- 
less maximum. In that way, every parameter combi- 
nation corresponds with a single amplitude pair. In 
reality it will correspond with some distribution along 
the line through the origin and the above amplitude 
pair, i.e. every point in the mapping of the parameter 
estimations will be drawn out to form a line. In Fig. 5 
the mapping is displayed for white noise, one amplitude 
ratio and several position differences. The response 
surface has been scanned to give a grid of points. Only 
those points that are above the 0.01 contour under the 
top have been mapped. All features of the contours of 
the response surface are visible in the mapping. The 

path along the A, axis in the response surface translates 
into smearing of the distribution to form a broad stroke. 
The path along the t, axis has little effect, because, with 
A,,, = 0, it cannot get off the A, axis. It is assumed that 
the smearing will cause the distribution of the ampli- 
tudes to deviate from normality. The cloud of mapped 
points is smaller when the peaks are further apart, indi- 
cating an increasing quality of the results. When the 
mapping is performed for correlated noise, the same 
observations can be made. 

4. Error estimation for two single-peak MFs 

In the presence of complete and accurate a priori 
information on the data, one or two normal single-peak 
MFs can be used for the quantification of the individual 
peaks, and it is possible to make a theoretical estimation 
of the error, the standard deviation, in the amplitude 
estimations. These estimations will be used as a refer- 
ence for the experimental results that are obtained with 
the double-peak MFX in more demanding situations. 
It is expected that this reference sets a lower limit to 
the experimental error. It is assumed that the input noise 
follows a Gaussian distribution, and so does, therefore, 
the output noise. 

For the signal defined by Eq. 1, two filters are defined 
instead of one: , 

(9) 

Mi* m is the complex conjugate of the FT of mi( t) 
and i E { 1,2}. The models are correct, i.e. mi( t) =xi( t). 
Since they are fixed filters, they do not need to be 
normalized. The output of each filter is measured at the 
position where the respective filtered peak has its max- 
imum. With the filters defined as they are, this is at t = 0 
in both outputs: 

Again i E 2). With Eq. 5, this becomes: 

YI =A,&, +&Rn 

~z=A812+A2R22 (11) 
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Fig. 6. Error estimation for two single-peak MFs for white (drawn) 

and correlated (dotted) noise. 

Note that RI2 and Rzl are identical here as well as in 
their original context. The equations can be solved for 
the individual amplitudes: 

A, = (~1R22 -yzR,2) ID 

A2 = ( -YIR,, +~zR,t)lD 

D=RIIRZ2 -RT2 (12) 

The variances of these estimators, and their correlation, 
can be calculated using simple error propagation for a 
linear combination of two stochastic variables. It is 
easily derived that RI1 en Ru are the variances of the 
output noises of the two filters [ 11. Analogously, RI2 

Fig. 7. MF impulse responses for Gaussians with ux = 4 and corre- The experiments have been carried out with simu- 
lated noise, for t, = 9. lated data, 1000 different records each. In each record 

is the covariance between these noises. In formula: 

R,, = a;, ; R,, = a$; RI2 = COV~,~ (13) 

which leads to 

R 2 -22. 
aA, - 

2 _Rll 

D’ 
u& --_; 

D 
(14) 

Even without substituting specific peak models, a trend 
in the quality of the peak amplitude estimations as a 
function of overlap can be observed. RI2 will approach 
zero when the peaks are far apart, leading to minimal 
variances: 

a;, = R;‘; a;, = R,’ (15) 

When the peaks are closer together, R,, is larger, D will 
become smaller and the variances will be larger. R,, 
and p can serve as measures of overlap or resolution. 
The former depends on the scale of the models, the 
latter does not. 

For two Gaussians of equal width in the presence of 
first-order band-limited noise, the effect of overlap on 
the estimated error is plotted in Fig. 6. The calculation 
has been performed for correlated and approximately 
white noise. The curves agree with the trend described 
above. The quality of the estimation decreases signifi- 
cantly only when the peaks are less than about loapart. 
In case of correlated noise, the standard deviation 
shows a little bump where the correlation coefficient 
changes sign. This can be explained by examining the 
impulse responses of the MF for correlated noise, dis- 
played in Fig. 7. The impulse responses have negative 
side lobes that can coincide with each others maximum. 
The presence of the side lobes causes a second overlap 
and therefore a second increase of the estimation error. 
The sign of the lobes causes the correlation to become 
positive instead of negative. 

5. Experimental 

The overall structure of the experimental setup is: 
two types of noise (white and correlated), two levels 
of a priori information, two noise levels, and a range 
of position differences and amplitude ratios. Details are 
given below. 
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the signal component is the same, but it is disturbed by 
a different noise realization. The noise has been gen- 
erated using a software pseudo-random generator and 
shaping filter as described previously [ 11. 

The vertices of the initial simplex were calculated 
according to literature [ 171. The initial and bounding 
values for the parameters were: 

The width of the peaks, a,, was 4 points, fulfilling 
the demands of the sampling theorem [ 161. The noise 
had zero mean, so the amplitude of the output of the 
filter could be measured simply from zero. As in earlier 
work [ 161, two values for the noise time constant have 
been used: r= 0.01 points (coded WI-I), defines noise 
that is virtually white, 7= 40 points (coded CL), 
defines very correlated noise. 

start step min max 

&I Ax-q,, 2q,, 0 2 

tm t,-a, 2ux 0 loo 

&I 0,-l 3 0 40 

The experiments are characterized by the S/N for 
the largest peak, always the first peak in the cluster, and 
the amplitude ratio of the peaks (A,=A,IA,). SINwas 
set at 10 and 100, A, was set at 0.1, 0.3, 0.5, 0.7 and 
0.9. For each combination, the position difference in 
the input, t,., ranged from one to six times the sigma of 
the Gaussian, i.e. from 4 to 24 points with increment 
4. The data deflned by the different A, and f, values are 
plotted in Fig. 3. Note that these data are theoretical. 
When the different resolutions would correspond to 
separation conditions for some sample, the peaks would 
also differ in width and height, which they do not. The 
amplitude of the first peak was always unity, the SIN 
was controlled via the variance of the noise. The seeds 
for the pseudo-random generator at SIN= 10 where 
identical to those at S/N= 100, so that only the ampli- 
tude of the noise contribution was changed between 
those series. 

where ai, is the standard deviation of the input noise. 
Part of the function of the selected boundaries is to 
prevent a complete symmetry in the response surface. 
The combination of boundaries reflects a preference 
towards making the first peak the largest. The robust- 
ness of the simplex may be checked by restarting it, but 
any system for automatic generation of alternative ini- 
tial values will be as arbitrary as the existing single set. 

6. Results 

The input records contain 1024 points, with the peak 
cluster positioned in the centre. The position difference 
in the signal model is a continuous variable, but the 
peaks in the input are always located on discrete point 
positions. One of the peaks in the model is always on 
a discrete point position too. A filter length of 128 
points allows the filter operation to be performed as a 
linear convolution in the time domain. The principle of 
detection was simply to choose the maximum in the 
entire record. 

The ultimate result of each simulation is a pair of 
amplitude estimates that are part of a two-dimensional 
distribution. Normally it is assumed that a description 
of that distribution by all 1000 points is redundant and 
that statistics can reduce it to a set of five values: two 
means, two variances and one covariance. This reduc- 
tion is possible only when the assumption is valid that 
the distribution is Gaussian. However, when the ampli- 
tude estimations are plotted against each other as scatter 
plots as in Figs. 8 and 9, it is observed that the assump- 
tion of a two-dimensional Gaussian distribution is not 
always valid, especially at low SIN, when there is a 
high degree of overlap and the amplitude ratio is low. 
The non-normality hinders the data reduction necessary 
for the presentation and the evaluation of the results, 
but it also represents information on the quality of the 
results. The non-normality has been tested using the 
modified Anderson-Darling statistic, with a 2.5% level 
of significance for each dimension [ 181. 

Two runs of the experiments have been made. In the The results of the Anderson-Darling test are col- 
first, the simplex optimization had to adapt the ampli- lected in Table 1, together with the test results for the 
tude ratio and the position difference of the peaks. In means, standard deviations and correlation coefficients. 
the second run, the parameter controlling the width of When a test fails, the magnitude of the test statistic 
both peaks was adapted as well. The expectation was serves as an indication of the degree of failure. The 
that the second run would meet more problems than logarithm of the Anderson-Darling statistic is used, 
the first. because the statistic spans orders of magnitude. The 
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Fig. 8. Amplitude estimations in WH run 1 at S/N= 10. X axis: A,; Y axis: AZ Graphs ordered as in Fig. 4. 

0.76 

critical value for the statistic at a 2.5% level of signif- 
icance is 0.873. The means are tested as the difference 
with the true value, divided by the estimated standard 
deviation of the mean. The critical value at a 5% sig- 
nificance level in a two-sided test is 1.96. The standard 
deviations are tested as the ratio of the experimental 
value to the value calculated for two single-peak MFs. 
The hypothesis tested is that this ratio equals unity, 
with critical values 0.955 and 1.043. Table 1 gives the 
difference between unity and the empirical ratio as a 
percentage of unity. The correlation coefficient is made 
to follow a normal distribution by performing the 
Fisher transformation and the test statistic is the same 
as for the means. The statistic spans orders of magni- 

tude and can have both positive and negative values. 
Therefore the logarithm of its absolute value is printed. 

7. Discussion 

In view of the large number of simulations that has 
been performed for each experiment, there is a remark- 
able amount of diversity in the results in Table 1. The 
expected trends cannot be verified or falsified unam- 
biguously. Nevertheless, the general picture is that the 
results are in accordance with the expectations: the 
proposed procedure works, though not equally well 
under all circumstances, and the distributions of the 
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Fig. 9. Amplitude estimations in WH run 2 at SIN = 10. X axis: A,; Y axis: A,. Graphs ordered as in Fig. 4. 

amplitude estimations deviate from normality in diffi- 
cult situations. A situation is called difficult when the 
resolution is low, t,l ux I 2, or the second peak is small, 
A,=O.l. Those are the conditions for which the 
response surfaces’ indicated that deviations could be 
expected. Although the abnormalities complicate the 
quantification of the quality of the results, the conclu- 
sion must be that they make the results of lower quality. 

The deviations from normality present themselves 
as distributions that are drawn out in the direction of 
underestimation of A, and overestimation of AZ, as in 
Fig. 8. The deformation is blocked by the upper limit 
that has been set to the simplex optimization, being 
A, = 2. In run 1 the escapes tend to be on this limit, 

0.86 1.15 

whereas in run 2, they mark the path rather than being 
on the limit. The results for correlated noise are slightly 
better than for white noise and the splitting up as in the 
WH run 2 does not occur. 

For the simple situations, the results of run 1 are in 
agreement with the estimations for two separate single- 
peak MFs. Table 1 shows that neither the means, nor 
the standard deviations nor the correlation coefficients 
differ significantly. In other words, the difference 
between the more complex, essentially non-linear 
approach and the simple linear approach is in the occur- 
rence of abnormalities in the difficult situations. Asso- 
ciating an elliptical contour of the response surface with 
normally distributed results appears to be appropriate 
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Statistical testing of the experimental results. (.) success; ( *) failure coinciding with failure of normality test; numbers: magnitude of test 
statistics; ( + ) infinite normality statistic. All numbers are rounded to the nearest integer, coding described in text 
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here. Comparing the standard deviation columns of 
Table 1 with Fig. 6, it is observed that the increase of 
the error in the amplitude estimations as predicted for 
low resolutions is often obscured by the abnormalities. 
It would be interesting to check if this failure of the 
linear approximation is also valid in case of non-linear 
regression. In that case, error estimations for the results 
of fitting overlapping peaks by means of non-linear 
regression [ 191 should be reconsidered. 

Estimation of an additional parameter, the peak 
width, as in run 2, increases both the standard devia- 
tions and the occurrence of deviations from normality. 
The agreement with the theoretical reference as found 

in the simple situations of run 1 is absent here. Fur- 
thermore, in the white noise experiments of run 2 there 
are some remarkable deviations in the results when the 
peaks are 2a apart even at S/N= 100. In that case, the 
distributions are not smeared out in the upper left direc- 
tion as in the expected problem areas of run 1, but drawn 
out to form several clusters (Fig. 9). A similar devia- 
tion occurs at S/N= 100 when the peaks are further 
apart and A, = 0.9: a small group of points is separated 
from the main cloud. 

The increase in the standard deviations of the ampli- 
tude estimates observed in the normal regions of run 2 
is independent of the SIN, but larger for A, than for A> 
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Table 2 
Statistical testing of results of run 2 experiments at S/N= 10 with different start-up of the simplex. Coding as in Table 1 
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For CL, it rises to a small maximum at t, = 16. For the 
mean the picture is erratic. The effects visible in the 
standard deviation and the normality statistic are not 
consistently reflected by the means. It should be noted 
that a test on the mean of 1000 observations is rather 
sensitive. The distributions of the individual observa- 
tions are 30 times wider, and there are no observations 
that significantly deviate from the true value, apart from 
the outliers that occur in case of abnormalities. When 
the S/N= 10 and A,=O.l, the means of A2 generally 
have a positive bias. The source of this error is found 
to be the estimation of A,, which is not correlated with 
any of the other parameters and has a positive bias that 
is passed on to AZ. The probable explanation of this 
bias is noise fitting. Its sign is the result of the maxi- 
mization inherent to the MFX. Noise fitting can also 
explain the low standard deviations in the estimations 
of the second peak: maxima in the noise have a smaller 
standard deviation than the noise, and A*, being dom- 
inated by a maximized noise contribution, will have 
relatively little random error. 

The splitting-up of some of the distributions in run 
2 is one of the most striking features of the results, 
especially since they are also observed at S/N= 100. 
Visualization of the four-dimensional response surface 
of run 2 by making contour plots of cross-sections did 
not reveal local maxima, so the effect must be due to 
the presence of noise. Detection and noise fitting are 
not expected to be strong enough to have this effect by 
themselves when the SIN= 100, but a lack of robust- 
ness of the optimization is a likely candidate for causing 
the trouble. Therefore, run 2 at SIN= 100 has been 
repeated with a change in the initial values of the peak- 
width parameter: the initial step size of a,,, was 
increased from 3 to 6. The peak-width parameter was 
selected for variation, because its estimation is the only 

difference with run 1, where the non-normalities in 
simple situations are not as strong. The initial step was 
increased, because this makes the search more global. 
The changed start-up has many effects, it removes some 
split-ups, but introduces others, also in the CL experi- 
ments. The test results of the experiments are listed in 
Table 2. The non-normalities that gave rise to the exper- 
iments have disappeared all but one. The structure of 
the standard deviations and the correlation coefficients 
is unchanged. The means of the WH experiments have 
been cleaned up. For CL the means are worse at t, = 4 
and for higher t, there has been merely a change of the 
pattern. It is concluded that the method is not robust 
with respect to the starting values. What ultimately 
causes this lack of robustness is not elucidated by the 
experiment, since the optimization cannot be isolated 
from detection and noise fitting. Yet the simplex, being 
a local search, may well be a source of error in itself. 
An interesting experiment therefore, would be to 
replace it by a very robust global search, e.g. a genetic 
algorithm [ 201. 

Scatter plots of the parameters in run 1 at S/N= 10 
as in Fig. 10, show deviations from the expected 
response contours as in Fig. 4, within the difficult areas 
for both white and correlated noise. In the simple sit- 
uations all points are situated within the 0.03 contour, 
whereas in the difficult situations, the shapes of the 
clouds do not conform with any of the contours, though 
the points are also roughly within that 0.03 contour. 
The clouds are not in one piece, but tend to loose points 
to a region below. It is concluded that the approach of 
cutting through the noiseless response in order to obtain 
the distributions of the parameters fails in detail in the 
difficult situations, though it does have a crude predic- 
tive power. 
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at S/N= 10. X axis: r,[O, 201; Y axis: A,[@, 11. Graphs ordered as in Fig. 4. Fig. 10. Parameter estimations in WH NII 

Projection of the scatter plots of the parameters (Fig. 
10) onto the positions of the maxima in the absence of 
noise (Fig. 4), leads to the expectation that the MFX 
would end up with a dozen different positions in the 
difficult situations. In the simple situations it is 
expected to find just one position, being the position of 
the maximum in the absence of noise, further referred 
to as the true position. The experimental results prove 
differently. The run 1 WH experiments all end up with 
three different positions at S/N= 10, being the true 
position and the points on either side of it. The true 
position is the most frequent in all experiments. In the 
CL equivalent the number of positions varies from one 
to three. The true position is always one of them. At S/ 

N= 100 the MFX always finds the true position in run 
1. Position estimates that do differ from the true value 
correspond with A,,, - f,,, pairs outside the theoretical 
contours as described in the previous paragraph. The 
picture that is formed on the basis of these observations 
is that noise dominates the detection directly, and the 
optimization indirectly. The detector finds a maximum 
that consists of a noise maximum close to the top of the 
noiseless output. Once the procedure has got hold of 
such a maximum it will be difficult to let it go. The 
noise contribution rides on top of the noiseless response 
that is being optimized. Within the bounds that have 
been set to the parameters in the experiments, and for 
the noise levels that have been investigated, noise fit- 
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ting is not expected to be strong enough to remove the 
noise contribution that pins down the detector. In this 
view it is remarkable that the detector finds the true 
optimum so often in the difficult situations. 

The question that remains is whether the occurrence 
of deviations in the difficult situations is due to the 
double-peak MFX, or inherent to the specific combi- 
nation of data and a priori information. The expectation 
is this, the entire set of experiments could be repeated 
with non-linear regression (NLIN) instead of the 
MFX. In that case, NLIN should be made capable of 
dealing with noise that is not white. Although such 
procedures are described in literature [ 14,151, they 
have not found application in chemistry. The gain of 
using a correct noise model should be evaluated for the 
double-peak MFX (and NLIN) as it has been done for 
the single-peak MFX [ 161. 

NLIN and the MFX are related, but differ in details. 
The response being optimized by NLIN is the sum of 
squares of the residuals. This is the square of the dis- 
tance between the data and the orthogonal projection 
of the data onto the current realization of the model. In 
MFX, the response being optimized is the length of that 
orthogonal projection. In other words, the responses of 
NLIN and MFX are orthogonal. The usual optimization 
technique in NLIN is the Marquardt-Levenberg algo- 
rithm, which is a steepest descent far from the optimum, 
changing into a linear approximation, i.e. assuming a 
parabolical shape of the response surface, close to the 
optimum. In NLIN, the position of the peaks is a param- 
eter just as the other peak parameters, whereas in the 
MFX, the position is estimated by a separate detector. 
Probably the most important difference is that the MFX 
allows the optimization to be bounded. It may be 
expected that these bounds provide greater robustness 
and a higher speed of convergence. 

8. Conclusions 

Under most conditions, the proposed procedure 
works well for two overlapping Gaussians of equal 
width in the presence of first-order band-limited noise, 
the quality of the results being on or little below the 
theoretical optimum. When the peaks differ less than 
twice the peak width in position, i.e. the resolution t,l 
a, 5 2, or when the height of one of the peaks is less 
than 10% of the height of the other, the experimental 

results may no longer follow a normal distribution and 
their quality is lower. [ 211 

Appendix: Output of a double-peak normalized 
MF for two Gaussians and first-order band- 
limited noise 

The PSD of first-order band-limited noise, normal- 
ized to have unit total power is: 

s(j)= 
27 

1+ 4?r*7*f2 

where T is the time constant of the noise. The Gaussian 
peaks of equal width can be defined relative to a central 
position: 

x,(t) =exp[ -i(Fr] (17) 

where k=l for i=l and k= -1 for i=2, t, is the 
position difference and a, the standard deviation, the 
width of the peaks. The models m,(t) and m2( t) are 
defined analogously, with subscripts m instead of x. 
Using these definitions and assuming A, = 1, Eq. 4 is 
solved to give: 

with the constants 

ai=1; b,=2t-tm+tx 

a2 =A*; b,=2t-t,,,-t, 

a3 =A m; b3 =2t+t,,, +t, 

a4 =A&,,; b,=2t+t,-t, (1% 

The maximum of this function is found at t =0 when 
the model is correct, i.e. when cr,= a,,,, A,=A, and 
t, = t,. When oout = 1 in this expression for the maxi- 
mum, the maximum equals a,,,*, the square of the 
normalization factor. 
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