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Control by enzymes, coenzymes and conserved moieties 
A generalisation of the connectivity theorem of metabolic control analysis 
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The control and regulation of metabolic systems are determined by their responses to changes 
in the internal metabolites (the internal state) and parameters of the system. In many cases, the 
concentrations of the intermediates are constrained by moiety conservations, for example those 
requiring that all intermediate forms of any enzyme sum to the conserved total concentration of that 
enzyme. In this study, we show how responses to changes in the internal state are related to re- 
sponses to changes in the total amounts of conserved moieties. The relationship between these two 
different measures of control leads to a generalisation of the connectivity theorems. The results have 
important implications for the study of a variety of phenomena such as metabolite (coenzyme) 
sequestration, group-transfer and channelling. The relationships we derive make it possible to deter- 
mine the control features of these pathways. As an illustration, two examples are chosen. The first 
shows the effect of sequestration of substrate moiety while the second deals with the sequestration 
of the enzyme moieties and enzyme/enzyme interactions. 

Moiety-conserved cycles play a special role in metabo- 
lism. Coenzymes involved in redox metabolism (such as the 
NADNADH couple) or free energy metabolism (such as 
ATP, ADP and AMP) are important examples (Reich and 
Selkov, 1981 ; Westerhoff and Van Dam, 1987). These coen- 
zymes shuttle redox or free-energy equivalents between met- 
abolic pathways. Over short time scales, the total amount of 
adenine nucleotide remains essentially constant, although 
over the long term there will inevitably be the slow turnover 
of the coenzymes by other metabolic processes. A coenzyme 
such as NADNADH carries a common chemical group 
whose amount is conserved during its interconversions ; such 
a chemical group is termed a conserved moiety. The pathway 
of conversions between the different moiety forms is termed 
a moiety-conserved cycle. In such cases, the total amount of 
moiety in a cycle can be considered a parameter of the sys- 
tem. Thus, a pertinent question in the analysis of moiety- 
conserved cycles is how a steady-state pathway flux or me- 
tabolite concentration is affected by changes in the total 
amount of moiety. 

In metabolic control analysis, the question of how moi- 
ety-conserved cycles relate to the control properties of path- 
ways was first investigated by Westerhoff (1983), Fell and 
Sauro (1985) and in much more detail by Hofmeyr et al. 
(1986). These initial studies were largely confined to path- 
ways with a single conserved moiety. In later studies, Sauro 
et al. (1987), Meiske and Reich (1987), and, in more detail, 
Kholodenko (1988) and Reder (1988), examined the more 
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general case of pathways with multiple moiety-conserved cy- 
cles that could be linked to other conserved cycles via a com- 
mon metabolite. 

A conserved moiety that is often considered implicit in 
studies of metabolism is the enzyme moiety. The enzyme 
moiety forms include the free unbound enzyme, the enzyme/ 
substrate complexes and the complexes formed by the associ- 
ation of two or more different enzymes. The enzyme moiety 
can be considered conserved because the turnover of enzyme 
by net synthesis and breakdown is slow compared to the 
pathway interconversions in which it takes part. 

It is common in metabolic control analysis to neglect the 
existence of the internal enzyme cycles when analysing path- 
ways. The usual reason for this is that the concentration of 
any enzyme metabolite complex is assumed to be small com- 
pared to the bulk-phase concentration of the corresponding 
metabolite. This assumption has the useful consequence that 
each enzyme cycle in a pathway can be treated as a single 
block reaction which simplifies the control analysis. Potential 
problems can arise however, if the pathway under study con- 
tains a conserved cycle rather than just a linear or branched 
system. In such a case, the pathway contains n + 1 conserved 
cycles where n is the number of enzymes, each enzyme con- 
tributing a single internal enzyme cycle. Ignoring the enzyme 
cycles in such cases becomes unacceptable if a significant 
proportion of the pathway mass exists bound (i.e. seques- 
tered) as enzyme/substrate complex. Such a situation can oc- 
cur if the concentrations of enzyme are high relative to the 
free metabolite concentrations and their affinities for metabo- 
lites allow a significant fraction of the conserved moiety to 
be bound to enzymes. The analysis of conserved cycles 
where the catalysing enzymes are at high concentrations has 
been the recent focus of interest in the analysis of conserved 
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cycles (Fell and Sauro, 1990; Kholodenko et al., 1992; 
Sauro, 1994). 

There is also an additional interest in the general problem 
of dealing with multiple linked enzyme cycles owing to the 
close association with the problem of metabolic channelling 
and group transfer. In channelled pathways, an enzyme cycle 
can no longer be treated as a single block reaction inside the 
metabolic pathway, instead one should consider the whole 
network of elemental processes (steps) where the enzyme- 
enzyme complexes form ‘bridges’ between the different en- 
zyme cycles. The steps in which two or more enzyme moi- 
eties participate each make a contribution to the control 
exerted by each of the moiety totals (Kholodenko and 
Westerhoff, 1993; Van Dam et al., 1993; Sauro, 1994). 

The aim of this study is to develop further the general 
analysis of complex linked moiety-conserved cycles, espe- 
cially those related to linked enzyme cycles. Such an analysis 
allows us to establish the relationship between the response 
of the system to a change in internal metabolites and the 
response of the system to changes in the conservation totals. 
This theoretical work forms part of the analytical machinery 
necessary for treating a whole range of biochemical prob- 
lems, such as the effect of sequestration, group transfer and 
channelling (Kholodenko et al., 1993; Sauro, 1994) which 
up to now have been difficult to treat. In addition, the theory 
makes certain predictions which are particular to these sys- 
tems and so can be used to test experimentally whether such 
systems occur or do not occur in vivo. Finally, we illustrate 
our results by considering problems in metabolite sequestra- 
tion and group transfer. 

DEFINITION OF TERMS 

Conservation constraints 

Given a simple conserved cycle (Fig. 1) with m metabo- 
lites, S,, S,, ..., S,,, and assuming that the stoichiometry at 
each reaction is unity, the total amount, T, of moiety in the 
cycle is given by the simple sum: 

S, = T .  
, = 1  

We assume in this case that each of the metabolites, S,, is 
present in the same volume space. In the more general case, 
where a pathway may contain any number of conserved cy- 
cles and removing the restriction of unit stoichiometry, the 
total amount of each moiety, T,, is given by: 

m 

C y,, S, = T,, I = I, 2, ... m-m,, . (1) 
k =  1 

There will be (m -mO) values of these equations, correspond- 
ing to the number of different types of moiety in the system. 
This number can be obtained from the rank, m,, of the stoi- 
chiometry matrix N and corresponds to the number of depen- 
dent rows of N .  The sum, T,, is the amount of moiety in 
the lth moiety conserved cycle and y,, can in most cases be 
interpreted as the number of moieties of type 1 in the metabo- 
lite, S,. In matrix form, Y,, are the coefficients from the 
row of the (m - mo) rows by m columns of the conservation 
matrix, y .  

If we let S, be the P element of the m dimensional vector 
S of metabolite concentrations and T,, the Zrh element of the 

Fig. 1. A conserved cycle with rn metabolites, S,, S,, ..., S,. 

(m - m,) dimensional vector T of conservation total, then 
Eqn (1) can be written more compactly as follows: 

yS = T .  
The problem of determining y is briefly discussed in the Ap- 
pendix. 

Metabolic control analysis 
For a general metabolic pathway, there will be n reaction 

steps, their rates being designated by v,, i = 1, . . ., n. In terms 
of system properties, the rates 0, at steady-state are referred 
to as the steady state fluxes 1,. 

In the context of metabolic control analysis one question 
that is of interest is how perturbations to the internal state 
affect the system variables such as the flux and metabolite 
concentrations. To answer this, we define the flux response 
coefficient to an initial perturbation in S, as follows 
(Westerhoff and van Dam, 1987; Reder, 1988; Sauro, 1994): 

where J is any steady-state flux. Similarly, the response of a 
metabolite, S,, to an initial change in S, is defined as: 

( 3 )  

These response coefficients measure the steady-state re- 
sponse of the system (i.e. as t--r w) to a transient perturbation 
in one of the metabolites (Westerhoff and Chen, 1984; West- 
erhoff and Van Dam, 1987; Sauro, 1994). The operational 
meaning of the definitions given in Eqn (2) and Eqn (3) cor- 
responds to the definition in terms of the eventual response 
of an intensive thermodynamic variable to a fluctuation of 
another variable (Westerhoff and Van Dam, 1987). In the 
case of Eqn (3) ,  the movements in S, and S, are not indepen- 
dent but linked by moiety consei-vation [from Eqn (l) ,  6sk 
implies a change in r]. If the perturbed metabolite, Sk, is not 
part of a conserved cycle then the perturbation will decay 
to zero, i.e. the starting steady-state concentration is restored. 
This assumes of course that the steady-state is stable 
(Westerhoff and Van Dam, 1987). If, however, the metabolite 
is a member of a conserved cycle, then a change in the total 
amount of moiety will be affected by the perturbation and, 
as Hofmeyr et al. (1986) have shown the system will evolve 
to a different but nearby steady-state. 

There is another way of describing the response of a 
pathway to changes in the internal state and that is by con- 
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sidering a change to T. Since T, the total amount of moiety, 
is related to s k  by Eqn (l), a change in S, will have an effect 
on T. We can therefore define a response coefficient (Hof- 
meyr et al., 1986) with respect to T as follows: 

R j  = (4) 

Note that the effect of 6T is permanent and does not itself 
decay, therefore the measurement of T can be made at any 
time. Similarly, we can define the response of a concentration 
to a perturbation in the moiety-conserved sum as: 

(6 JI4, - 
(6 TIT) 

( 5 )  

ANALYSIS OF FLUX 
AND CONCENTRATION RESPONSE 

We now wish to investigate how changes to the internal 
state, S,, and the total moiety, T,, affect the steady-state flux 
and metabolite concentrations. Given a perturbation SS, to 
Sk, it is possible to calculate the resulting change in flux in 
two ways. The first way is to use the definition of R i  given 
in Eqn ( 2 )  so that the change in flux can be written as: 

The second way of computing the change in flux is from the 
effect of a change in T. Given that the change in TI is 6Tl, 
then from Eqn (4), the change in flux as a result in a change 
in TI is given by: 

(7) 

We must sum over all T, in Eqn(7) because the primary 
event, namely the change in Sk, may connect to a number of 
moiety cycles and thus affect more than one total. If for in- 
stance s, corresponds to ATP and both total phosphate and 
total adenine nucleotide monophosphate are conserved, the 
sum must include both these totals. The linkage between the 
total amount of moiety and a metabolite is given by Eqn (l), 
so that the effect on a particular T, by a single S, is given by 

or in terms of fractional changes 

Substituting Eqn (8) into Eqn (7) gives : 

(9) 

The two flux equations, Eqns (6) and (9), must be equivalent 
since both calculations assume the same primary event as a 
change in Sk. We can therefore equate their right hand sides 
and eliminate the common term, SSJS,, to give finally 

This equation quantifies the relationship between the re- 
sponse to perturbations of the internal state (i.e. the internal 
metabolite concentration) and its response with respect to a 

change in the conservation totals. Eqn (10) is a result of the 
definition in Eqn (1) and the fact that metabolite S, can be 
involved in various moiety-conserved cycles. 

The corresponding relationship for the concentration re- 
sponse coefficients is : 

m-rn" 

1 = 1  

In matrix form, Eqns (10) and (11) can be re-expressed as 
follows (Sauro, 1994): 

Ri = R$ (diag Z'-' y (diag S ) ,  
RS = RS, (diag n-' y (diag S )  , 

where Ri is an n row by m column matrix containing RJs, 
elements with i = 1, ..., n and k = 1, ..., m. R; is an n by 
m-m, matrix, diag T is an m - m, by m - m, square matrix 
with all off-diagonal elements equal to zero, and (diag qtc = 
T,, diag S is an m by m square matrix with all off-diagonal 
elements equal to zero, and (diag S),, = S,; R2 is an m by m 
square matrix, RS, is an m by m - m, matrix. 

Eqns (12) allow one to express the response to pertur- 
bations in the internal state, RJ,, in terms of the response to 
the changes in the conservation totals, R;. Alternatively, the 
response, RJ, can be expressed in terms of the RJ,. In order 
to do this we must be able to form the right inverse of y,  i.e. 
the m by m - m, matrix, yr;ihr. 

The rank of the conservation matrix, y,  is equal to (m - 
m,), or in other words it has full rank and all its rows are 
independent. As a result, we can form a right inverse, y;& 
of y, defined by: 

If we assume the standard form for y ,  i.e. [ -Lo I,-,,,] (see 
Appendix), then the simplest right inverse is : 

(1 2 )  

y yiihht = 1-m - -10.  

r -l 

where 0 is the m, by (m - m,) zero matrix. 
However, for the most general case where y can be any 

form, and not necessarily the standard form, the following 
strategy can be used. Post-multiplying both sides of y Y i i h t  = 

by y yT where y' signifies the transpose, and rearrang- 
ing yields a second form for the right inverse: 

Eqns (12) can be rearranged by post-multiplying both sides 

(diag S)-' y& diag T ,  

Yciht = YT (7 f - ' .  

by 

so that 
R+ = RJ, (diag S)-' y;& diag T ,  
R; = Ri (diag s)-' y;& diag T .  

(13) 
(14) 

We have now described in some detail the relationship 
between the response to changes in the total amount of moi- 
ety and the response to perturbations of the internal state. To 
complete this analysis we now consider the relationship of 
the R ,  coefficients to the theorems of metabolic control 
analysis and hence the control coefficients and elasticities. 

GENERALISED CONNECTIVITY THEOREMS 
Flux connectivity theorem 

The following will apply to networks of enzyme reac- 
tions which are traditionally treated by metabolic control 
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analysis but also to networks which consist of elemental 
chemical conversions. A consideration of metabolic systems 
in terms of their elemental chemical transformation is impor- 
tant in those cases which involve high enzyme concentra- 
tions, multiple moiety conservations, group transfer or meta- 
bolic channelling. In order that the results will be appli- 
cable to this more general case we define n parameters t,, 
i = 1, ..., n each modulating the activity of only the ith ele- 
mental process (Kholodenko et al., 1993): 

0, (S ,  t,) = tt 0, (S ) .  (1 5 )  
In relation to the classical pathways, the parameter tL is 
equivalent to the activity or concentration of an enzyme. 

According to the definition given by Eqn (15), the flux 
and concentration control coefficients of any process v, can 
be defined in the following way: 

In the case where ti is chosen as the concentration of enzyme 
i ,  the control coefficient C;, is equivalent to the 'classical' 
enzyme control coefficient C$ In the initial steady-state of 
the system, the concentration Sk is perturbed by an amount 
6S,. If no additional perturbations are made, the system will 
relax to a different steady-state (since the parameters T are 
changed according to Eqn (1) and we assume the system to 
have structurally stable steady-states), and the initial value of 
S + 6S, will evolve to the final steady-state value. Following 
the procedure described by Kacser and Burns (1973), let us 
suppose that after a perturbation in Sk we simultaneously 
change the parameters t, of all reactions (or the elemental 
processes) which depend on s k ,  to such an extent that all the 
rates are returned to their initial non-perturbed values, i.e. 

u, 
The newly attained state is again steady and notwithstanding 
the perturbed parameters values TI and t,, all the fluxes will 
be the same as in the initial steady-state, i.e. there is no 
change in flux. Since the fluxes, J,  are functions of Tl and tz 
one can write: 

It follows from Eqns (8) and (16) that (Kholodenko, 1988), 
m - m n  

The right side of Eqn (18) will be recognised as half of the 
flux-control connectivity theorem, i.e. as the sum of all the 
connectivities between S, and J .  If we replace the left side of 
Eqn (18) with the left side of Eqn (10) we obtain 

(19) 
n 

RJ, = 2 C;E E:;. 
r = l  

This is the same equation as presented by Westerhoff and 
Van Dam (1987), and Reder (1988). Noting that for any truly 
independent variable S, (e.g. not restrained by moiety con- 
servations), R &  must equal zero, Westerhoff and Van Dam 
(1 987) rederived the flux-control connectivity theorem from 
this equation. It should be noted that because C", can be 
expressed in terms of elasticity coefficients and the network 
structure, the above equation also allows one to express the 

responses to metabolite concentrations perturbations with 
these terms. Consequently, Eqn (19) and Eqn (18) may be 
considered a generalisation of the flux connectivity theorem. 

Concentration connectivity theorem 
To derive the response of the metabolite concentration 

changes in moiety-conserved totals, we will use the same 
approach as was used for the flux response. After making a 
perturbation in S,, we simultaneously change the parameters 
ti of all reactions which depend on S, so that all the reaction 
rates are undisturbed. This means that all the metabolites 
other than S, will also be undisturbed under these conditions. 
This last observation can be stated formally as: 

Here dJkZ  1 if k = j and 6,= 0 if k # j .  
Using the same approach as before, that is considering 

the steady-state concentrations as the functions of TI and & 
one obtains (Kholodenko, 1988): 

m - m 0  

(20) 

clearly analogous to Eqn (18). The right side of this equation 
will be recognised as half the concentration-control connec- 
tivity theorem. Replacing the left side of Eqn (20) by the left 
side of Eqn (11) one obtains: 

Y l k  s k  2 R$, ~ = S,, + 
/ = I  TI , = I  

CS,: EO,  

R$A = 61, + 2 C2, E?k.  

r = l  

Noting that for truly independent variables S, and S,, Rqk must 
equal zero, Westerhoff and Chen (1984) derived the concen- 
tration-control connectivity theorem from this equation. 

Relationship between the connectivities and responses 
Expressing the above relationships, Eqns (18) and (20), 

in matrix form and combining them with Eqns (12) we obtain 
the main result of this study: 

Ri = RJ, (diag T)-' y (diag S) = C; E: ,  (21) 
RZ = R; (diag T)-' y (diag S )  = C; E: + I , .  (22) 

In addition, Eqns (21) and (22) can be rearranged in the man- 
ner described previously to yield: 

(23) 
RS, = (CS, E: + I,) (diag S)-l y;& (diag T ) .  (24) 

Equating the first and third expressions from Eqns (21) and 
(22) gives Reders' equations [compare Eqn (19)] of re- 
sponses to changes in the internal state. These equations, 
which have been obtained by a formal mathematical method, 
have an interpretable meaning by equating the terms which 
enter the connectivity theorem to the response to changes of 
all moiety conserved cycles which a particular metabolite 
links. Again, when S is an independent metabolic variable, 
the responses are 0 or -1 and Eqns (21) and (22) reduce to 
the standard connectivity theorems (Burns, 1971 ; Westerhoff 
and Chen, 1984). 

RJT = Ci E% (diag S)-l y;& (diag T )  , 

SPECIFIC APPLICATIONS 
Linked enzymelsubstrate moiety-conserved cycles 

Fig. 1 illustrated the simplest possible conserved cycle 
where each reaction step of the cycle was assumed to be 
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Fig. 2. Metabolic cycle with internal enzyme cycles. Each enzyme 
cycle is shown in the form of the Michaelian mechanism, i.e. only 
enzyme states E, and S,E, are present. 

Fig. 3. The pathway of two enzyme cycles involving enzymes, El 
and E,, linked via the coenzyme couple, S, and S,. 

catalysed by an individual enzyme. In Fig. 2 we represent 
the same cycle but with the internal enzyme cycles shown 
(for simplicity) in the form of Michaelian mechanisms; this 
model is clearly much more realistic. In the first example we 
will analyse this model, but without loss of generality, we 
will reduce the cycle to just two enzymes, as shown in Fig. 3. 
The pathway in Fig. 3 is composed of two enzyme cycles 
involving enzymes, E, and E,, linked via the coenzyme cou- 
ple, S ,  and S,. For such a system, the traditional approach 
would be to condense the two enzyme cycles into two single 
reactions for each. In such an approximation, the fact that 
each enzyme is capable of sequestering free substrate from 
the bulk phase pools is ignored. Condensing the enzyme cy- 
cles into a single reaction is quite valid when the degree of 
sequestration is small compared to the total substrate mass 
in the system or when S, and S, are not part of a single 
moiety-conserved cycle. However, we wish to consider the 
case when there is significant sequestration, and for this 
reason an explicit recognition of the enzyme cycles is neces- 
sary, Further comment and an analysis of such pathways will 
be found in Fell and Sauro (1990), Kholodenko et al. (1992) 
and Sauro (1994). We begin by writing down the mass con- 
servation relationships : 

(25) 
E, + ES, = T,, ,  E2 i- ES, = T,,, 

S, + ES, + ES, + S, = Ts. 
To simplify the notation we will designate the enzyme totals, 
T,, and T,, as el and e, so that the response coefficients with 

respect to the total amounts of E, and E2 moiety are written 
as Re, and Re2. The aim of the following analysis is to com- 
pute the form of the classical flux summation theorem, i.e. 
the sum Cil + C&. The response coefficients, R:, and Ri2 are 
operationally equivalent to C:l and C:2 so that we must con- 
centrate on computing R:, and R&. To do this we will treat 
the individual enzyme reactions at the level of the elemental 
steps which involve the turnover of free and complexed en- 
zyme forms. 

We begin by describing the responses of the fluxes to 
perturbations to the internal states of the free and complexed 
forms of both enzymes. Thus using Eqns (18) and (19) we 
obtain a relation for R& and R&: 

R” - E ’ R : , ~ - C C : , = C I , E ~ : + C ; , E ~ ,  El (26) 
Ei - 

el el 

= c;, &&, + cg &a5,. (27) 
Note that we have replaced the notation, R:,, with the equiva- 
lent, C:l as this will make further interpretation clearer. It is 
also worth mentioning that the additional term in the second 
equation, namely, R&, reflects the fact that ES, occurs in two 
conservation relationships, the totals for T,, and T9 

Noting that the rates of the elemental steps with respect 
to the enzyme forms are first-order, it is straightforward to 
show that the internal elasticities are related by the simple 
relations : 

e z  + e& = 1 and c z  + &a5, = 1 .  (28) 
Combining Eqns (26) and (27) and using Eqn (28) yields: 

R L .  (29) 
ESI CiI = c;, + Ci2 - - 
TS 

Using the same reasoning as was used above, the equation 
for the second enzyme cycle can also be found: 

In contrast to the classical expectation where the sum of the 
microscopic control coefficients is expected to equal the en- 
zyme control coefficient, in the case of the linked substrate 
cycles the sum of the microscopic control coefficients is re- 

duced as a result of sequestration by the amount of 

~ R&).  These equations show that the microscopic con- 

trol coefficients do not sum to the enzyme control coeffi- 
cients but an additional term indicates that titration with en- 
zyme would underestimate the true value provided the en- 
zyme concentration is sufficiently high and comparable to 
the free substrate concentrations. 

The summation theorem can be obtained by simply sum- 
ming Eqns (29) and (30), 

( 
ESz 
TS 

Tb 
Ts 

C:, + C” = 1 - - R$s, e2 

where Tb is equal to the sum of the complexed forms, ES, + 
ES,. Once again, we see that the value of the Summation 
theorem is reduced by the sequestration term, RJ, (TJT,). 
Operationally this means that titrating with both enzymes 
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2 3 2i-1 2i+2 2r 2r+l 

Qfl Q1 Q r-1 Qr QI.1 Qi 
. . .  . . .  

1 4 2i 2i+l 2r-1 2r+2 
Fig. 4. Group-transfer pathway. A group P is transferred between r enzymes from the donor SP to the ultimate acceptor W. The enzyme/ 
enzyme complexes are designated by Qc. The numbers of the elemental steps are shown. 

will result in a non-proportional attenuated response. This 
analysis is not limited to two enzymes, but can be easily 
extended in the same manner with cycles having an arbitrary 
number of enzymes. For n enzymes, the equation is (Kholo- 
denko et al., 1992): 

(31) 
Tb c C;) = 1 - - R&. 

r = l  T S  

Group-transfer pathway 

This second example deals with pathways involving the 
transfer of a chemical group through a series of proteins, i.e. 
group-transfer pathways (or relay pathways). Examples are 
the bacterial phosphotransferase system transferring a phos- 
phate group from phosphoenolpyruvate to a sugar molecule 
whilst transporting the latter across the membrane (Postma 
et al., 1993), and the electron transport chain in mito- 
chondrial and bacterial membranes transferring an electron 
from, e.g. NADH to oxygen. Such a group transfer pathway 
can be considered as a perfect, dynamic channel in which the 
transferred group is not released into the bulk aqueous phase 
until it reaches the end of the reaction sequence. 

Fig. 4 shows a group-transfer pathway where a group P 
is transferred between r enzymes from the donor SP to the 
ultimate acceptor W. The enzyme-enzyme complexes are 
designated by Qt = E,PE,+ 1, where i and i + 1 are the num- 
bers of adjacent enzymes (for i = 0 and i = r, Qo = SPE,, 
Qr = E,PW). There are r moiety-conserved cycles which cor- 
respond to the conservation of the total concentration (eJ of 
any enzyme i: 

E, + E,P + Qz-l + Qt = e,, i = 1, 2, ..., r .  (32) 
Note, that these cycles are linked since the enzyme-enzyme 
complexes Qt enter i - 1 and i moiety conservation totals 
simultaneously. The four elemental steps (processes) in 
which enzyme i forms participate will be called the reaction 
cycle of the enzyme i (Fig. 4). 

Taking into account that the free enzyme form E, and its 
‘loaded’ form E,P enter the single moiety-conserved cycle, 
one can calculate the control coefficient of any enzyme i as 
a response either to a change in free enzyme or ‘loaded’ 
enzyme concentration. Using Eqns (10) and (19) one obtains: 

r .  (34) 

Since only two rates depend on the concentrations E, or E,P 
(Fig. 4), only two non-zero terms enter the right hand sides 
of these equations. 

For the response coefficients to a change in the concen- 
trations Q, - and Qt of enzyme-enzyme complexes one may 
write using Eqns (10) and (19): 

For the responses to a change in Qu and Qr only a single 
term is present in the left-hand side of Eqns (35), i.e. the 
term with C;, or with C:, respectively. Summing the four 
equations describing the responses to change in the concen- 
trations of all the forms of the enzyme i [see Eqn (32)] one 
obtains (after slight rearrangement) : 

ez-t e,+1 

= ~ C ~ J ( ~ 2 , + ~ ; j p + ~ ~ , ~ ,  + ~ & ) , i = 2  ,..., r - 1 .  (36) 

The step rates are first-order functions with respect to any 
enzyme form. Consequently for any reaction j participating 
in the reaction cycle of the enzyme i, 

I 

&z f E z p  + &&, + E a ,  = 1, 

and for any reaction j outside the reaction cycle of the en- 
zyme i, 

= c c:,,,i=2 ,..., r - I .  (37) 
rates inside 
l h e  enzyme 

I cycle 

For the enzymes at the ends of the chain, i.e. for i = 1 and 
i = r, the terms with C;, and with C,l,+, disappear from 
Eqn (37). 

The sum of C ,  control coefficients over all the steps of 
the enzyme cycle has been termed the ‘impact’ control coef- 
ficient of the enzyme i by Kholodenko and Westerhoff 
(1993). In classical pathways, the impact control coefficient 
is equivalent to the classical control coefficient measured 
with respect to enzyme concentration. In relation to various 
non-ideal pathways (Kholodenko et al., 1993) the impact 
control coefficient is an analogue of the control coefficient 



185 

measured with respect to the enzyme rate (compare Sauro 
and Fell, 1990; Sauro and Kacser, 1990; Schuster and Hein- 
rich, 1992). 

We will designate the control exerted by the ‘boundary’ 
metabolites S ,  SP and W, WP, i.e. the sum of the correspond- 
ing response coefficients, by C& and C:,+, as follows: 

C$ = R: + RJ,, C:r+l = RJ, + RJ,,. (38) 
Expressing response coefficients in Eqn (38) via the control 
coefficients of the steps times their elasticities with respect 
to the boundary metabolites and combining with responses 
to a change in the concentrations QO and Qr one obtains: 

QO 

el 

Qr 

e, 

(39) 

(40) 

Summing Eqns (37) over all the enzymes in a group transfer 
pathway and adding Eqns (39) and (40) one finally obtains 
the new summation theory that is valid for any relay path- 
way : 

CJ e0 + c:, ~ = C”, 4- c;,, 

C L ,  + c:, ~ = c;,,,, + c2,+,, 

C& + 2 Ci, (1 + + Q i )  + C;,+] = 2. (41) 
ei 

Hence, the sum of the enzyme control coefficients always 
exceeds unity in the system of group transfer (perfect dy- 
namic channel). However, in the general case of channelling 
it can be less than unity (Sauro and Kacser, 1990; Kholo- 
denko and Westerhoff, 1993; Sauro, 1994). 

DISCUSSION 

This study describes in detail the general approach that 
elucidates principles of regulation and control in systems 
with complex linked moiety-conserved cycles. Such cycles 
appear frequently in real metabolic pathways and may give 
these pathways special regulatory properties (Hofmeyr et al., 
1986). Moreover, one should recognize that inside any reac- 
tion cycle, through which some (substrate) chemical moiety 
is conserved, there are internal (enzyme) moiety conserved 
cycles. The latter cannot be ignored if an appreciable amount 
of pathway metabolites is bound to enzymes, i.e. exists inside 
these internal cycles. As shown in this study, group transfer, 
metabolite sequestration and metabolic channelling are all 
examples of important biological phenomena that depend on 
linked moiety-conserved cycles. Traditional metabolic con- 
trol analysis (Fell, 1992) has not dealt with the analysis of 
such systems. We have treated such pathways by examining 
their responses to perturbations in the concentration of any 
internal metabolite (R, coefficient) and the responses to 
changes in the total sum of any conserved moiety (R, coeffi- 
cient). 

When transiently changed concentrations are freely 
variable, the system will return to its previous steady state 
(Westerhoff and Chen, 1984; Westerhoff and Van Dam, 
1987). However, when imposed changes in metabolite con- 
centrations imply a change in the moiety conservation totals, 
the system will relax to a different steady state. Using such 
a reasoning, we developed the relationship between the re- 
sponse of the system to perturbations in the internal state and 
the response of the system to changes in the total sum of 
moiety [Eqns (1 2- 14)]. 

We showed in this study, that the response of the flux (,I) 
to a change in the concentration of the internal metabolite 
(S,) coincides with the sum of all the connectivities between 
(S,) and (J) that is the right-hand side of the connectivity 
theorem (compare Reder, 1988). As a consequence, compar- 
ing the responses to changes in internal metabolites and con- 
servation totals this paper derives generalised connectivity 
theorems [Eqns (21 -24), compare ‘classical’ connectivity 
theorems (Kacser and Burns, 1973; Westerhoff and Chen, 
1984)]. 

For non-ideal systems (Kholodenko et al., 1993) where 
the classical assumptions of additivity and independence do 
not apply (Sauro and Kacser, 1990), the results obtained in 
this study allow one to understand the effects of variations 
in the enzyme concentrations. For these systems, the theo- 
rems of traditional metabolic control analysis (Kacser and 
Bums, 1973; Heinrich and Rapoport, 1974) cannot be ap- 
plied to understand the control exerted by the enzymes. This 
study shows, however, the advantages of considering those 
systems as networks of elemental chemical conversions (a 
‘microdescription’ of the system; Kholodenko and Wester- 
hoff, 1993). Different forms of any enzyme play the role of 
the metabolites of such a network, and the control coefficient 
of an enzyme is the response coefficient to a change in the 
corresponding moiety conserved total, i.e. in the total con- 
centration of that enzyme. Such an approach allowed us to 
calculate the control coefficients and the summation theorem 
for systems, for example, with metabolic sequestration and 
for group transfer reactions. We show that in contrast to the 
classical expectation, the sum of the enzyme control coeffi- 
cients is reduced by the sequestration of metabolites 
[Eqn (31), compare Fell and Sauro, 1990, Kholodenko et al., 
1992) and of the enzymes [Eqn (41), Kholodenko et al., 
19931. However, in group transfer pathways the direct en- 
zyme/enzyme interactions tend to increase that sum 
[Eqn (37), compare Van Dam et al., 19931. 

APPENDIX 
One of the problems in representing the m-mO conserva- 

tion constraints of a pathway is determining the entries to y. 
The task is made more difficult by the fact that more than one 
solution is possible. Following Reder (1988), we partition the 
S vector of metabolites into m, independent metabolites, SI ,  
and m - m, dependent metabolites, SD, thus, S = [ S ,  S D l r .  
The stoichiometry matrix, N ,  is also partitioned (and reor- 
dered if necessary) to match the ordering in the S vector. 
Given that u is the vector of reaction rates, u,, then following 
Reder : 

The rows of N: are formed from linear combinations of the 
independent rows in N,. As a result, we are able to define a 
link matrix (Reder, 1988), Lo, that will transform one into 
the other: 

N: = Lo N , .  
We can therefore write 

N,u = s,, 
L O N ,  v = S, ,  

from which S,-  Lo$, = 0 and in integrated form S , -  
L,SI = T. 
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Thus finally 

[-L,Z] ls.1 = T 
LSDI 

Comparing this last equation with Eqn (1) from the main text 
shows that the term [- L,Zl is equal to the conservation ma- 
trix, y. It is important to appreciate that other row orderings 
of the stoichiometry matrix are possible which would yield 
alternative forms for y and by necessity alternative physical 
interpretations to T. The interpretation problems of different 
y and T forms in relation to computer algorithms for deter- 
mining y are briefly discussed in Sauro and Fell (1991). 
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