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Galois modular invariants of WZW models 
J. Fuchs 1, A.N. Schellekens, C. Schweigert 

NIKHEF-H / FOM. Postbus 41882, 1009 DB Amsterdam. The Netherlands 

Abstract 

The set of modular invariants that can be obtained from Galois transformations is investigated 
systematically for WZW models. It is shown that a large subset of Galois modular invariants 
coincides with simple current invariants. For algebras of type B and D infinite series of previously 
unknown exceptional automorphism invariants are found. 

1. Introduction 

The problem of finding all modular invariant partition functions of rational conformal 
field theories (RCFT's) remains to a large extent unsolved. This problem is part of the 
programme of classifying all rational conformal field theories, which in turn is part of 
the even more ambitious programme of classifying all string theories. 

The aim is to find a matrix P that commutes with the generators S and T of the 
modular group, and that furthermore is integer-valued, non-negative and has P00 = 1, 
where 0 represents the identity primary field. The partition function of the theory has 
then the form ~--~/j ,gdiPijr~';, where A'i are the characters of the left chiral algebra and 
,-~'j those of the right one (the left and right algebras need not necessarily coincide). 

At present the classification is complete only for the simplest RCFT's, whose chiral 
algebra consists only of the Virasoro algebra [ 1,2]. The next simplest case is that of 
WZW models, whose chiral algebra has in addition to the Virasoro algebra further 
currents of spin 1. In general such a theory can be "heterotic" (i.e. it may have different 
left and right Kac-Moody algebras) and both the left and right chiral algebra may 
have more than one affine factor, but even in the simplest case--equal left and right 
simple affine algebras--the classification is complete at arbitrary level only for the cases 
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Al [2] and A2 [3]. Several other partial classification results have been presented, see 
for example Refs. [4-6].  

Although there is no complete classification, many methods are known for finding 
at least a substantial number of solutions, for example simple currents [7] (see also 
Refs. [8-12] ), conformal embeddings [ 13], rank-level duality [ 14-19], supersymmet- 
ric index arguments [20], selfdual lattice methods [21], orbifold constructions using 
discrete subgroups of Lie groups [22], and the elliptic genus [23]. In a previous paper 
[24], we introduced an additional method based on Galois symmetry of the matrix S 
of a RCFT, a symmetry that was discovered by de Boer and Goeree [25] and further 
investigated by Coste and Gannon [26]. This work will be reviewed briefly in the next 
section. The main purpose of this paper is to study in more detail the application of this 
new method to WZW models. 

Galois symmetry organizes the fields of a CFT into orbits, and along these orbits the 
matrix elements of S are algebraically conjugate numbers. Based on this knowledge we 
are able to write down a number of integer-valued matrices P that commute with S, 
but do not necessarily commute with T and are not necessarily positive. These matrices 
span what we call the "Galois-commutant" of S. This commutant can be constructed 
in a straightforward manner from the Galois orbits, which in turn can be obtained by 
scaling vectors in weight space by certain integers, and mapping them back into the 
fundamental affine Weyl chamber (for a more precise formulation we refer to Section 
2 and Appendix A). This is a simple algorithm that can be carried out easily with the 
help of a computer. The time required for this computation increases linearly with the 
number of primary fields, and for each primary the number of calculational steps is 
bounded from above by the order of the Weyl group. This should be compared with 
the computation of the modular matrix S, which grows quadratically with the number 
of primaries, and which requires a sum over the full Weyl group (although several 
shortcuts exist, for example simple currents and of course Galois symmetry). 

Our second task is then to find the positive T-invariants within the Galois commutant. 
In some cases this can be done analytically. This class, which contains only simple 
current invariants, is discussed in Section 3. In general however one has to solve a set 
of equations for a number of integer coefficients. The number of unknowns can grow 
rather rapidly with increasing level of the underlying affine Kac-Moody allgebra--Galois 
symmetry is a huge and very powerful symmetry--which is another limitation on the 
scope of our investigations. 

In practice we have considered algebras with rank ~< 8 and up to 2500 primary fields, 
but this range was extended when there was reason to expect something interesting. 
Although a lot of exploratory work has already been done on the classification of 
modular invariants, only fairly recently new invariants were found [23] for E6 and 
E7 at rather low levels (namely 4 and 3), showing that there are still chances for 
finding something new. Indeed, we did find new invariants, namely an infinite series of 
exceptional automorphism invariants for algebras of type B at level 2, starting at rank 
7, as well as for algebras of type D at level 2. In addition we find for the same algebras 
some clearly unphysical extensions by spin-1 currents. This is explained in Section 4. 
Other exceptional invariants that can be explained in terms of Galois symmetry are 
presented in Section 5. 
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We have also considered the possibility of combining Galois orbits with simple current 
orbits. In Section 6 we discuss two ways of doing that, one of which is to apply Galois 
symmetry to simple current extensions of the chiral algebra. 

To conclude this introduction we fix some notations. If Poi -- Pm= 0 for all i ~ 0, the 
matrix P defines a permutation of the fields in the theory that leaves the fusion rules 
invariant. We will refer to this as an automorphism invariant. Under multiplication such 
matrices form a group which is a subgroup of the group of fusion rule automorphisms. 
These are all permutations of the fields that leave the fusion rules invariant, but which do 
not necessarily commute with S or T. Finally there is a third group of automorphisms 
we will encounter, namely that of Galois automorphisms. They act as a permutation 
combined with sign flips, and may act non-trivially on the identity. It is important not 
to confuse these three kinds of automorphisms. 

If a matrix P does not have the form of an automorphism invariant, and if the partition 
function is a sum of squares of linear combinations of characters, we will refer to it 
as a (chiral algebra) extension. If it is not a sum of squares it can be viewed as an 
automorphism invariant of an extended algebra [27,28] (at least if an associated CFT 
exists). 

A matrix P corresponding to a chiral algebra extension may contain squared terms 
appearing with a multiplicity higher than 1. Such terms will be referred to as "fixed 
points", a terminology which up to now was appropriate only for extensions by simple 
currents. Galois automorphisms provide us with a second rationale for using this name. 
Usually such fixed points correspond to more than one field in the extended CFT, and 
they have to be "resolved". The procedure for doing this is available only in some cases, 
and then only for S, T, the fusion rules and in a few cases also the characters [29]. 

2. Galois symmetry in conformal field theory 

As is well known, a rational conformal field theory gives rise to a finite-dimensional 
unitary representation of SL2 (Z) ,  the double cover of the modular group. Namely, given 
a rational fusion ring with generators ~bi, i E I ( I  some finite index set), and relations 

Oi X Oj = E J~fiJ kOk ' 
kEl 

there is a unitary and symmetric matrix S that diagonalizes the fusion matrices, i.e. 
the matrices ~ with entries (.M/) k := A/'ij k. S and the matrix T with entries Tij := 

e2"~(h'-c/24)Sij (with hi the conformal weights and c the conformal central charge), 
generate a representation of SL2(Z). In particular, S 2 = C = (57") 3 where C, the charge 
conjugation matrix, is a permutation of order two, which we write as Cij = 8i,j+. By the 
Verlinde formula 

,El  
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the eigenvalues of the fusion matrices ~ are the generalized quantum dimensions 
Sij/Soy; the label 0 refers to the identity primary field; it satisfies 0 = 0 + and corresponds 
to the unit of the fusion ring. The quantum dimensions realize all inequivalent irreducible 
representations of  the fusion ring (which are one-dimensional), i.e. we have 

s :  = 

Sot Sot SO--;e (2.1) kEl 
for all g E I. 

The quantum dimensions are the roots of the characteristic polynomial 

det(A1 - .~/) .  

This polynomial has integral coefficients and is normalized, i.e. its leading coefficient is 
equal to 1. As a consequence, the quantum dimensions are algebraically integer numbers 
in some algebraic number field L over the rational numbers Q. The extension L / Q  is 
normal [25]; since the field Q has characteristic zero, this implies that it is a Galois 
extension; its Galois group, denoted by Gal (L /Q) ,  is abdian. Invoking the theorem of 
Kronecker and Weber, this shows that L is contained in some cyclotomic field Q((n) ,  
where Srn is a primitive nth root of unity. 

By applying an element o- L E Ga l (L /Q)  on equation (2.1) it follows that the 
numbers o- L (Sij/S0j), i E I,  again realize a one-dimensional representation of the fusion 
ring. As the (generalized) quantum dimensions exhaust all inequivalent one-dimensional 
representations of the fusion ring, it follows that there exists some permutation o" of  the 
index set I such that 

O'L ( ~ ) ~- So,o.jSi'°J " 

To obtain an action of a Galois group on the entries Sij of the S-matrix, rather 
than just on the quantum dimensions, one has to consider also the field M which is 
the extension of Q that is generated by all S-matrix dements. M extends L as well, 
and the extension M / Q  is again normal and has abelian Galois group. It follows that 
GaI(M/L)  is a normal subgroup of Ga l (M/Q)  and that the sequence 0 ~ GaI(M/L)  --+ 
Gal (M/Q)  ~ GaI (L /Q)  ---+ 0,  where the second map is the canonical inclusion and 
the third one the restriction map, is exact. Therefore 

Ga I (L /Q)  ~ Ga l (M/Q)  / G a l ( M / L ) .  

In particular, upon restriction from M to L any or M E GaI (M/Q)  maps L onto itself 
and coincides with some element o- L E Ga l (L /Q) ,  and conversely, any tr L E Ga l (L /Q)  
can be obtained this way. Correspondingly, as in Ref. [24] we will frequently use the 
abbreviation o- for both o- M and its restriction tr L. 

For any o~ E Ga l (L /Q)  there exist [26] signs e,~(i) E {4-1} such that the relation 

o'( Sij) = e~( i) . S~i,j (2.2) 

holds for all i, j E I.  While the order N of the Galois group element o- and the order/~/ 
of  the permutation o" of the labels that is induced by tr need not necessarily coincide, 
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only an extra factor of 2 can appear, and the elements with N = 2~/turn out to be quite 
uninteresting [ 24]. 

Let us now describe a few elementary facts about Galois theory of cyclotomic fields. 
Denote by Z~ the multiplicative group of all elements of Zn = Z/nZ that are coprime 
with n. Note that precisely these elements have an inverse with respect to multiplication. 
(For example, the group (Z~0, .) ~ ({+1,  ±3}, .  mod 10) is isomorphic to the additive 
group (Z4, + ) . )  The number ~o(n) of elements of Z~ is given by Euler's ~p function, 
which can be computed as follows. If n = I-[i P~' is a decomposition of n into distinct 
primes Pi, then one has 

~0( I'~) -~ ~O(1-I p~ i) = I-K ~o(P~i ) = 1- I  p ~ i - l  (pi  - 1 ) .  
i i i 

The Galois automorphisms (relative to Q) of the cyclotomic field Q((n)  in which 
Gal (L/Q) is contained are in one-to-one correspondence with the elements g E Z n. The 
automorphism associated to each such g simply acts as 

Or(g) : ~"n ~ (~".)g-  

This implies in particular that g = - 1  corresponds to complex conjugation. Thus if the 
fusion ring is self-conjugate in the sense that i + = i for all i E I, so that the S-matrix 
is real, then the automorphism o'(_l) acts trivially. In this case the relevant field L is 
already contained in the maximal real subfield Q((n + (~-l) of the cyclotomic field 
Q( (n) ,  which is the field that is fixed under complex conjugation. 

In the special case where the fusion ring describes the fusion rules of a WZW theory 
based on an affine Lie algebra g at level k, the Galois group is a subgroup of Z~t(k+~ ), 
where g is the dual Coxeter number of the horizontal subalgebra of g and M is the 
smallest positive integer for which the numbers MG O, with Gij the entries of the metric 
on the weight space of the horizontal subalgebra, are all integral. A Galois transformation 
labelled by g E Z~t(k+g ) then induces the permutation 

0-(g) (A) = ~ ( e .  (A + p) - p ) ,  (2.3) 

where A, the horizontal part of an integrable highest weight of g at level k, labels the 
primary fields, p is the Weyl vector of the horizontal subalgebra, and where ff is the 
horizontal projection of a suitable affine Weyl transformation. The sign ~'~(e~ is just given 

by the sign of the Weyl transformation if, up to an overall sign r/ that  only depends on 
Or(g), but not on A. (For more details, see Appendix A.) 

2.1. Fusion rule automorphisms 

As has been shown in Ref. [24], the properties of Galois transformations can be em- 
ployed to construct automorphisms of the fusion rules as well as S-invariants. Consider 
first the case where the permutation o- induced by the Galois group element Or leaves 
the identity fixed, 

&O=O;  
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then o" is an automorphism of the fusion rules, and the sign e~( i )  is the same for all 
i E l ,  

e~(i)  = e¢(0) =: e~ = const. 

The presence of such automorphisms of the fusion rules can be understood as follows. 
The "main" quantum dimensions 

s~ 
s00 

all lie in a real field L(0) that is contained in the field L generated by all (generalized) 
quantum dimensions Sij/Soj. The elements of the group GaI(L/L(o))  leave the main 
quantum dimensions invariant, and hence the associated permutations & are fusion rule 
automorphisms. 

2.2. S-invariants 

To deduce S-invariants from these considerations it is convenient to act on (2.2) with 
o --j ,  and permuting the second label of  S on the right-hand side. Then we obtain the 
relation 

Sij = e~( i)e~-~ ( j )  S#i,O--I j . (2.4) 

Now for any Galois transformation o- we define the orthogonal matrix 

( Uo- ) i j  :=  e~(i)  ~j, dri = EO'-I ( j )  ~i,~r-lj , 

where in the second equality we used the relation 

e,~(d r - l  ( i ) )  = e,r-, (i) 

which is obtained from the identity trcr-lSij = Sij when acting twice on the first label 
of  S. These orthogonal matrices can easily be shown to satisfy the identities 

( / 7 , ~ ) - 2  = / 7 , ~ - ,  = ( / 7 ~ )  r , 

and they implement the Gaiois transformations (2.2) in the following way: 

crS = /7,, . S = S .  H ~  l . 

Now we can write (2.4) in matrix notation as (omitting the subscript or of H~) 

S = / 7 S / 7 ,  (2.5) 

or I I - n S  = SH. Obviously the same identity holds wi th / / r ep laced  by its inverse, and 
by adding these two relations we see that the matrix / / + / 7  -1 = H + H r commutes 
with S. If  17 is equal to its own inverse one can take half this matrix, i.e. H itself. 

The full Galois commutant is obtained by considering all sums and products of these 
matrices. Because the matrices 17 form an abelian group (isomorphic to the Galois 
group G a I ( L / Q ) )  it is easy to see that the product of any two matrices of the form 



J. Fuchs et al./Nuclear Physics B 437 (1995) 667-694 673 

/ / + / / - l  is a linear combination of such matrices with integral coefficients. Hence the 
most general integer-valued S-invariant that can be obtained in this way is 

P =  E f° ' ( l l°" + l I ~ l )  ' (2.6) 
(o-.o--I) EG 

where the sum is over all elements of the Galois group G modulo inversion, and f,~ E Z. 
This result was obtained before in Ref. [24] in a slightly different formulation. 

Note that this derivation of S-invariants goes through for any matrix//that satisfies 
(2.5), even if it did not originate from Galois symmetry. If such a new matrix /7 
commutes with all matrices llo that represent Galois symmetries, one may extend the 
Galois group G to a larger group (~ D G by including all matrices II. llo. The most 
general S-invariant related to G is then obtained by extending the sum in (2.6) to t~. 

As was observed in Ref. [26], Galois symmetry implies a relation that any modular 
invariant P, irrespective of whether it is itself a Galois invadant, should satisfy. Indeed, 
using o'P = P and o-S -I = (o'S) -I, one derives P = crP = o'(SPS -I ) = llo.Pll~, l, i.e. 
P commutes with //. If P is an automorphism of order 2, then we have in addition 
the relation S = PSP, and hence P is a "Galois-like" automorphism that can be used to 
extend the Galois group as described above. If P is an automorphism of higher order 
or corresponds to an extension of the chiral algebra, then it has different commutation 
properties with S, and it cannot be used to extend the Galois group, but one can still 
enlarge the commutant by multiplying all matrices (2.6) with the new invariant P and 
its higher powers. In this case the full commutant is considerably harder to describe, 
however. 

It must be noted that even if the matrix (2.6) contains negative entries, or does 
not commute with T, it can still be relevant for the construction of physical modular 
invariants, because the prescription may be combined with other procedures in such a 
manner that the unwanted contributions cancel out. For example one may use simple 
currents to extend the chiral algebra before employing the Galois transformation. This 
will be discussed in Section 6. 

3. Infinite series of invariants 

In this Section we will discuss an infinite class of WZW modular invariants that can be 
obtained both by a Galois scaling as well as by means of simple currents. Both Galois 
transformations and simple currents organize the fields of a CFT into orbits. In general, 
the respective orbits are not identical. In the special case of WZW models which we 
focus on in this paper, these orbits are in fact never identical, except for a few theories 
with too few primary fields to make the difference noticeable. However, since the orbits 
are used in quite different ways to derive modular invariants, it can nevertheless happen 
that these invariants are the same. 

The Galois scalings we consider are motivated by the following argument. As already 
mentioned, Galois automorphisms of the fusion rules arise if the field L(0) is strictly 
smaller than the field L. In the case of WZW theories L is contained in the cyclotomic 
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field Q(~M(k+g)) where M is the denominator of the metric on weight space, while the 
quantum Weyl formula [30] 

Sa,p i~>o Sin[ ~r a . aV / ( k + g) ] 
Sp---~p = sintTrp. ~ g) ] 

shows that L(0) is already contained in Q(sr2<k+g)). Now as any element of Gal (L/Q)  
can be described by at least one element of GaI(Q((M(k+g))/Q), we do not loose 
anything by working with the latter Galois group. Any Galois automorphism of the 
fusion rules can now be described by at least one element of GaI(Q((Mc~+g~)/L(0)). 
Unfortunately, Lt0) is not explicitly known in practice; therefore we would like to 
replace L<0) by the field Q((2(k+g)) in which it is contained. However, M is not always 
even, and hence we consider instead of Q((2(k+g)) the smaller field Q((k+g) and the 
corresponding Galois group Gal(Q(~Mtk+g))/Q(~k+g)). The elements of this group are 
precisely covered by scalings by a factor m(k + g) + 1. This way we recover at least 
part of the automorphisms, but due to the difference between Q(~'2(k+g)) and Q(~'k+g), 
generically some of these scalings do not describe automorphisms, but rather correspond 
to an extension of the chiral algebra. 

Consider now the Kac-Peterson [ 31 ] formula 

w(a) ;b.1 
Sat, = . N ' Z e ( w )  exp -27ri k + g  (3.1) J 

W 

for the modular matrix S. Here .Af is a normalization factor which follows by the unitarity 
of S and is irrelevant for our purposes, and the summation is over the Weyl group of the 
horizontal subalgebra of the relevant affine Lie algebra; a and b are integrable weights, 
shifted by adding the Weyl vector p. In the following we will denote such shifted weights 
by roman characters a, b . . . . .  while for the Lie algebra weights a - p, b - p . . . .  we 
will use Greek characters. 

The scaling by a factor g = m(k +g)  + 1 is an allowed Galois scaling if the following 
condition is fulfilled (note that m is defined modulo M): 

(a) m(k + g) + 1 is prime relative to M(k  + g).  

We will return to this condition later. (Let us mention that even if condition (a) is not 
met, the scaling by g can still be used to define an S-invariant. We will describe the 
implications of such "quasi-Galois" scalings elsewhere.) 

Under such a scaling one has 

Sab ~-~ O'Sab ~'J~f Z e ( W )  exp --2qri ~ ( m ( g +  g) + 1) 
W 

= e-2~ma'bSab , (3.2) 

where the last equality holds if row(a), b = ma. b mod 1 for all Weyl group elements w. 
To analyze when this condition is fulfilled, first note that any Weyl transformation can 
be written as a product of reflections with respect to the planes orthogonal to the simple 
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roots. For a Weyl reflection r i with respect to a simple root a i (i E {1,2 . . . . .  rank}) 
one has in general 

r~(a) b = a . b  ( ~ )  • - -  Ol i • a Oti • b 

1 
= a .  b - ~ t r i .  a i  a i b i  , (3.3) 

where ai and bi are Dynkin labels. Thus r i (a)  • b equals a -  b modulo integers if and 
only if all simple roots have norm 2 (which is for all algebras our normalization of the 
longest root), i.e. iff the algebra is simply laced. However, the derivation depends on 
this relation with an extra factor m. This yields one more non-trivial solution, namely 
m = 2 for Bn, n odd. Note that for Bn with n even, one has M = 2 so that the only 
allowed scaling, m = 2, yields a trivial solution. This is also true for all other non-simply 
laced algebras. 

As is easily checked, the quantity a .  b rood 1 is closely related to the product of the 
simple current charges; we find 

An: a . b  
Bn : 2a .  b 
Dn (n odd) : a .  b 
Dn (neven)  : a . b  
E6: a . b  
ET: a . b  

= - ( n +  1 ) Q ( a ) Q ( b )  
= 2 n Q ( a ) Q ( b )  
= 4 n Q ( a ) Q ( b )  
= 2Q~(a)Q~(b)  + 2 Q c ( a ) Q c ( a )  + ( n -  2)Q~(a)Qv(b)  (3.4) 
= 3 Q ( a ) Q ( b )  
= 2 Q ( a ) Q ( b )  . 

Here Q ( a )  is the monodromy charge with respect to the simple current J of a WZW 
representation with highest weight a (which is at level k + g). This should not be 
confused with the simple current charge of the field labelled by a, which we denote by 
Q ( a ) .  The relation between these two quantities is 

Q ( a )  = Q ( a -  p) = Q(a )  - Q(p )  , (3.5) 

since the field labelled by a has highest weight a - p (which is at level k). The charge 
Q (as well as Q) depends only on the conjugacy class of the weight• The WZW theory 
with algebra Dn, n even, has a center Z2 × Z2 and simple currents Js, Jv and Jv = J~. x ,Is. 
It has thus two independent charges, for which one may take Qo and Qs. 

If  p is on the root lattice, then Q(p )  = 0 and the shift in (3.5) is irrelevant, i.e. 
Q --- Q mod 1. In general, either p is a vector on the root lattice, or it is a weight with 
the property that 2p is on the root lattice. In the cases of interest here, p is on the root 
lattice for An, n even, Dn with n = 0 mod 4 or 1 mod 4, and for E6. In all other cases 
Q = Q + ½ mod 1 (if  the algebra is Dn, n = 2 mod 4, the charges affected by this shift 
are Qs and Qc). 

Note that the left-hand sides of (3.4) are always of the form I N Q ( a ) Q ( b )  or a 
sum of such terms, where N is the order of the simple current and l is an integer. The 
relation for Bn has an essential factor of 2 in the left-hand side. Since the relations are 
defined modulo integers we cannot simply divide this factor out. The most convenient 
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way to deal with it is to rewrite m in this case as m = 2th (we have already seen above 
that m has to be even for Bn). After substituting (3.4) into (3.2) we get generically 

orSab = e -2~lmN~2(a)  ¢2(b)Sab • (3.6) 

This formula holds for Bn if one replaces m by rh, and for Dn, n even, if one replaces 
the exponent by the appropriate sum, as in (3.4). We will postpone the discussion of 
the latter case until later, and consider for the moment only theories with a center Z~. 

Now we wish to make use of the simple current relation 

Sj~a, b = e2~nQ(b)  Sab . 

This is simplest if we can replace Q by Q, and this is the case we consider first. This 
replacement is allowed if p is on the root lattice, but this is not a necessary condition 
because of the extra factor lmN. Suppose Q = Q + ½. Then we see from the foregoing 
that N is even and l odd. Replacing Q by Q in the exponent of (3.6) yields the extra 
terms 

½lmNQ(a) + ½lmNQ(b) + ¼ l m N ,  (3.7) 

which should be an integer. Now NQ(a)  (or N Q ( b ) )  is an integer, which as a function 
of a (or b) takes all values modulo N. Hence each of the three terms must separately 
be an integer. The first two terms are integers if and only if m is even. Then the last 
one is an integer as well, since N is even. Thus the condition that Q can be replaced 
by Q is equivalent to 

(b) mp is an element of the root lattice. 

We remind the reader that for B~ this is valid with m replaced by ~ = ½m. Hence 
condition (b) is in fact not satisfied for Bn for any non-trivial value of m. In all 
remaining algebras M (the denominator of the inverse symmetrized Cartan matrix) is 
equal to N. 

If  conditions (a) and (b) hold we can derive 

Or Sab = S j-,INQ(a) a, b = Sa,J-.aNO,b, b . (3 .8 )  

On the other hand according to (2.2) Galois invariance implies 

trS~b = e~( a ) Saa.b = e~( b ) S~.ab • (3.9) 

Furthermore if mp is an element of the root lattice, it is easy to see that the scale 
transformation fixes the identity field: the identity is labelled by p, and transforms into 
pt = p + m(k + g)p. The second term is a Weyl translation if mp is on the root lattice. 
In these cases p~ is mapped to p by the transformations described in Appendix A, which 
implies that the identity primary field is fixed. Then, according to Ref. [24], it follows 
that • - 1, and hence we find 

SJ-'nl~Q(a~a, b = Sira,b , 
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o r  

Sa,b = STa,b , 

where r a  = Jmma(a) ira. Then unitarity of  S implies ~a,ra = E b  S~'a,bS~a = E b  SabS;a = 1, 
SO that a = ~-a, and hence 6-a = j-mlNQ(a)a. 

As described in Section 2, any Galois transform that fixes the identity generates an 
automorphism of  the fusion rules, and in this case we see that it connects fields on the 
same simple current orbit. It is a positive S-invariant, but so far it was not required to 
respect T-invariance. Thus the last condition we will now impose is 

(c)  T-invariance. 

In general for simple currents of  order N one has 

h( Jna) = h(a) + h( J n) - nQ(a) mod 1 

and 

rn(N - n) 
h ( J  n) = mod 1 , 

2N  

where r is the monodromy parameter, which is equal to k for An at level k, to 3nk mod 8 
for Dn, n odd, to 2k for E6, and to 3k for E7. Condition (c) amounts to the requirement 
that the difference h(J-mlNQ(a)a) - h(a) of  conformal weights be an integer. We have 

h(  J-mlNQ(a) a)  = h( a) + h(  J -mlNQ(a) ) q- mlNQ( a)Q(  a) 
r / r  \ 

=h(a)  - ~mlNQ(a)  - ~ ( m / )  2 -  m l ) N Q ( a ) Q ( a )  . (3.10) 

For algebras of  type A or E, the second term on the fight-hand side is always an integer, 
or can be chosen integer: if N is odd, r is defined modulo N and hence can always be 
chosen even (provided one makes the same choice also in the third term), whereas if 
N is even by inspection one sees that m must be even as well in order for mp to be an 
element of  the root lattice, and hence mr/2 E Z. Then the only threat to T-invariance 
is the last term, ( ½ r m l -  1 )mlNQ(a)Q(a) .  This is an integer for any a if and only if 

( ½rml - 1)ml = 0 mod N. 
Now we will determine the solutions to the three conditions (a),  (b) and (c) for- 

mulated above. Any solution to these conditions will be a positive modular invariant of  
automorphism type, that can be obtained both from Galois symmetry as well as from 
simple currents. 

Consider first E6. Condition (b) is trivial, so that m has to satisfy (a) m ( k +  12) + 1 
0 mod 3, i.e. km + 1 ~ 0 rood 3, and (c) (kin - 1)m = 0 mod 3. We may assume that 
m ~ 0 to avoid the trivial Galois scaling. Then both conditions are satisfied if and only 
if km = 1 mod 3. There is always a solution for m, namely m = k rood 3, unless k is a 
multiple of  3. 

Next consider E7. Now m has to be even in order that mp is a root, and this only 
allows the trivial solution m = 0. 

For A,  the problem is a bit more complicated. As T-invariance must hold for any 
charge Q(a)  it is clearly sufficient to consider Q(a) = 1/N. Several cases have to 
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be distinguished. We start with odd N = n + 1. Then condition (b)  is automatically 
satisfied. For  even level k = 2 j  the other two conditions read 

(a)  G C D ( 2 j m  + 1 ,N)  = 1, 

(c)  ( j m ÷  l ) m = O m o d  N.  (3.11) 

The solution of  the second equation depends crucially on the common factors of  j and 
N. It is easy to see that if  j and N have a common factor p ,  then m is divisible by p 
as many times as N. In particular, if  N = pe and j contains a factor p,  then the only 
solution is the trivial one. To remove common factors, write j = j'qa, m = m'qb and 
N = N'qb, where qa is the greatest common divisor of  j and N, and qb consists of  all 
the prime factors of  qa to the power with which they appear in N. Now the second 
equation becomes 

(fqamlqb + 1)m / = 0 mod N I . (3.12) 

Now we know that N ~ has no factors in common with j ' ,  qa or qb, and hence we can 
find a m ~ for which the first factor vanishes mod N ~. This solution m' is non-trivial 
provided N t v~ I; i f  N ~ = 1 the solution is m ~ = 1 (or  0) ,  i.e. m = 0  mod N. 

The solution m' has no factors in common with N t. Hence we may write 2jm + I = 
jm + ( jm + 1) = jm mod N ~ = f qarnt qb mod N t, so that we see that 2jm + 1 and N ~ 
have no common factors. Furthermore 2jm ÷ 1 and qb have no common factors, since 
m has a factor qb. Hence 2jm + 1 has no common factors with N = Ntqb, and therefore 
the first equation is also satisfied. 

In addition to the solution described here, (3.12) may have additional solutions with 
m' and N ~ having a common factor. It is again easy to see that i f  m t contains any such 
prime factor, it must contain it with the same power with which it occurs in N' .  Let us 
denote the total common factor as Pb, which is in general a product of  several prime 
factors. Then the second equation reads 

(jtqamtlpbqb + 1)m" = 0 mod N" , (3.13) 

where m ~ = mttpb and N ~ = Nt'pb. We now look for solutions where m" and N" have 
no further common factors. Such a solution does indeed exist, since the coefficient of  
m" has no factors in common with N". To show that the first condition is also satisfied 
one proceeds exactly as in the foregoing paragraph. 

When N is odd and k is also odd, we choose the even monodromy parameter r = k+N, 
and define j = (k + N) /2 .  The rest of  the discussion is then exactly as before. 

I f  N is even condit ion (b)  implies that m must be even as well, and condition (c)  
becomes (kin~2 + 1)m = 0 mod N, or, writing m = 2t, N = 2p, (kt  + l ) t  = 0 mod p.  
Condit ion (a)  reads G C D ( k m +  1, N) = l ,  which is equivalent to G C D ( 2 k t +  1 ,p )  = 1. 
Now we have succeeded in bringing the conditions in exactly the same form as (3.11 ), 
and we can read off the solutions almost directly. The only slight difference is that 
above N was odd, whereas here p can be odd or even. However, the value of  N did 
not play any r61e anywhere in the discussion following (3.11) ( i t  was used to derive 
(3.11 ), though),  and hence everything does indeed go through. 
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I f  the algebra is Dn, n odd, then we have to distinguish two cases. I f  n = 1 mod 4, 
then condition (b) is trivially satisfied, and condition (a) reads 

(a) G C D ( m ( k + 2 n - 2 ) + l , 4 ) = l  , 

from which we conclude that mk (and hence mr = 3mk) must be even, so that just as 
for An and En the second term on the right-hand side of  (3.10) plays no r61e. Condition 
(c) thus reduces to 

(c)  - ( 2  (mn)Z - mn)  =O mod 4 , 

with k satisfying 3nk = r mod 8, or what is the same, nk = 3r mod 8. To substitute 
this we multiply the first argument of  (a) with n, which does not affect this condition. 
Afterwards we use that n = 1 mod 4, and then the conditions simplify to 

(a) G C D ( 3 m r +  1,4)  = 1 , 

(c) - ( 2 m Z - m )  = 0 m o d  4 .  (3.14) 

I f  r is even, r = 2j,  condition (c) then reduces to jm  2 - m = 0 mod 4. This clearly has 
a non-trivial solution if j is odd (then m is odd),  but only trivial solutions if j is even. 
If  r is odd the only solution to both equations is m = 2. 

If  n = 3 mod 4 this argument goes through in much the same way, but now solutions 
for odd m are eliminated by condition (b).  

3.1. Automorphisms from fractional spin simple currents 

Nearly all these results can be summarized as follows. Define N = N if N is odd, 
~1 = N / 2  if N is even. Decompose N into prime factors, ~ /=  p~  . . .pT ' .  Then the set 

.. 11N _ kl kt of  solutions m consists of  all integers of  the form m = m ~/'1 " "  Pl , where ki  = ni 
if the monodromy parameter r is divisible by Pi, and ki  = 0 o r  ki  = ni otherwise. The 
solutions are thus labelled by all combinations of  distinct prime factors of  D that are 
not factors of  r. The parameter m" for each solution in this set is the unique solution 
of  the equation 

l r l m l ' ( p ~ ' . . . p ~ ' )  = 1 mod N '1 , 

where N"  = ~/p~l  . . .  p~t, and r chosen even if N is odd. These automorphism invari- 
ants have both a Galois interpretation and a simple current interpretation: they can be 
generated by the Galois scaling m ( k  + g) + 1 or alternatively by the fractional spin 
simple current jm. 

These are precisely all the pure automorphisms generated by single simple currents 
K = jm of  fractional spin which have a "square root", i.e. for which there exists a simple 
current K I such that (KI) 2 = K. Such a square root exists always if K has odd order, 
but if K has even order it must be an even power m of  the basic simple current J. The 
condition on the common factors of  r and N has a simple interpretation in terms of  
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simple currents: If  it is not satisfied, then there are integral spin currents on the orbit of  
J. If  one constructs the simple current invariant associated with J these currents extend 
the chiral algebra, so that one does not get a pure automorphism invariant. 

The condition that K must have a square root is a familiar one: in Ref. [7] the same 
condition appeared as a requirement that an invariant can be obtained by a simple left- 
right symmetric orbifold-like construction with "twist operator" LL c. If  K does not have 
a square root and r is even, then there are additional invariants, which were described 
in Ref. [7] and derived in Ref. [32]. Recently in Ref. [33] it was observed that these 
invariants could be described as orbifolds with discrete torsion. It is quite interesting that 
precisely these discrete torsion invariants are missing from the list of Galois invariants. 

There is one exception, namely the automorphism invariants of O4l+l at level 2j, 
which are Galois invariants even though they violate the foregoing empirical rule: In 
this case N = 2, which is a factor of r. Indeed, they are generated by the current J~ 
(or Jc) which does not have a square root. Technically the reason for the existence of 
this extra solution is that this is the only simply laced algebra with p lying on the root 
lattice but N even. 

3.2. Automorphisms from integer spin simple currents 

Finally, we have to return to the case Dn, n even. Since M = 2 in this case, the only 
potentially interesting solution is m = 1. Hence Q is equivalent to Q if and only if p 
is on the root lattice, which is true if and only if n = 0 mod 4. It is straightforward to 
derive the analogue of (3.8): 

o~ s o b  = S j ~ , , o ,  j ~ Q c , o ,  j ~ . -  2,.~o ,o, o , b • 

(Since the three currents and charges are dependent this is a somewhat redundant 
notation.) The solution m = 1 satisfies condition (a) if and only if the level is even. 
This implies immediately that all three currents J~, J.  and Jc have integer spin, and we 
can write the transformation of S in the following symmetric way: 

OrSab = Sjs~s,o) j ~ , a ,  jv2Qv,a) a, b . 

Since Q~+Qc+Q, = 0 mod 1 for any weight a, at least one of the charges, say Q,, must 
vanish. Then Qs = Qc mod 1, and the field a is transformed to fls Q'(a) J2cQ'(a)a = J2Q'~a)a. 
Since Jv has integral spin and Qv(a) = 0, this field has the same conformal weight as 
a, and hence T-invariance is respected. Due to the symmetry in s, c and v the same is 
true for any other field as well. Thus we do find an infinite series of modular invariant 
partition functions. These are automorphism invariants, again with both a Galois and 
a simple current interpretation, although this time they are due to simple currents of  
integer spin. Invariants of this type have been described before in Ref. [34]. 

3.3. Chiral algebra extensions 

Now we will examine what happens if we relax condition (b),  i.e. we will consider 
the case that the replacement of  Q by Q leads to a different answer. This obviously 
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requires that p is not on the root lattice, and that the extra terms (3.7) are non-integral 
for some values of  Q. The latter is true if m is odd, or if the algebra is Bn, n odd, and 
m = 2 (~h = 1). Now we can write (omitting for the moment the case Dn,n even) 

o'Sab = e-2mlmN[ Q (a) + 1/2] [ Q (b) + 1/2] Sa b 

=e--~lmN[Q(a)+l/2] Sj-tr~NIQ~,)+l/21a,b (3.15) 

instead of (3.6). As before, a similar formula holds also for Bn, n odd, with m replaced 
by r~= ½m. 

Since mlNQ(a)  is always integral and N is even, the exponential prefactor is in fact 
a sign, and the result may be written as 

crSab = ~7( a) Sj-~,mQ~,~+~/2~a,b • (3.16) 

Comparing this with (3.9) we find now that Sa,b = oJ(a)S,a,b, where ¢o is the product 
of the overall signs 77 and e, and ~'a = j - l m N [ Q ( a ) + l / 2 l o ' a .  Unitarity of S now gives 
8a,ra = ~"~b Sra,bS~a = ~'-~b ¢°(a)SabS~a = ~o(a), which implies that ~o = 1, i.e. ~/= e, and 
that ~- is the trivial map. 

Also in this case the Galois transformation generates an automorphism that lies within 
simple current orbits, and hence if it generates a positive modular invariant, it must be a 
simple current invariant. The identity is not fixed in this case: it must thus be mapped to 
a simple current. The candidate modular invariant has the form P = 1 + 7/(0)H, where 
/ / i s  the matrix representing the transformation (3.16). 

Galois automorphisms of this type always have orbits with positive and negative signs. 
A positive invariant can only be obtained if the negative sign orbits are in fact fixed 
points of  the Galois automorphism (these should not be confused with fixed points of  
the simple current[). One sees immediately from (3.15) that the sign ~/(a) is opposite 
for fields of charge Q(a)  = 0 and Q(a)  = 1/N. Since the former includes the identity 
we fix that sign to be positive. Hence the orbits of charge 1/N must be fixed points. 
This leads to the condition 

- l m N  [ l + 1] = 0 m o d N ,  

or, writing N = 2N ~, lm(N'  + 1) = 0 mod 2Nq From this we conclude that N ~ must be 
odd and lm must be a multiple of N ~ = N/2. 

We are now in the familiar situation of an extension by a simple current of order 2, 
and clearly T-invariance will then require this current to have integral spin. The solutions 
can now easily be listed: 

A4/+I, level 4j  ( l , j  C Z ) ,  
B2t+l, level 2j ( l , j  C Z ) ,  
ET, level 4j  ( j  E Z ) .  

Now consider Dn for even n. Then p is not an dement of  the root lattice, but a vector 
weight if n = 2 mod 4. Hence Q~(p) = Qc(p) = ½ and Qo(p) = O. The transformation 
of S is now 

OrSab = e2~'i[Q'(a)+Q~(a) l sj~to~(a~+l/21j~t~(o~+l/.q a ,b  , 
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where we set m = 1, the only acceptable value. It is not hard to see that the resulting 
S-invariant cannot be a positive one, since there do exist wrong-sign Galois orbits that 
are not fixed points. 

There are several simple current extensions that cannot be obtained from Galois 
symmetry, at least not in the way described here. Since we considered here only a 
single Galois scaling, only Galois automorphisms of order 2 can give us a positive 
modular invariant [24] (this is also true for the automorphism invariants discussed 
earlier in this Section, as one may verify explicitly). Hence there is a priori no chance 
to obtain extensions by more than one simple current. However, some simple currents 
of order 2 are missing as well, namely those generated by the current f i t  of A4I-i ,  the 
current J of Bt, l even, and the currents Jv of Dt and Js, Jc of D21, with levels chosen 
so that these currents have integer spin. Note that the existence of a modular invariant 
of order two implies the existence of a "Galois-like" automorphism. This may suggest 
the existence of some generalization of Galois symmetry that would also explain those 
invariants. 

4. New infinite series 

In this Section we will describe several infinite series of exceptional invariants that 
we obtained from Galois symmetry. They occur for algebras of type B and D at level 2 
and certain values of the rank. Let us start the discussion with type B, which is slightly 
simpler. 

The new invariants occur for the algebras B7, B10, BI6, BI7, BI9, B22 etc., always at 
level 2. The pattern of the relevant ranks n becomes clear when we consider the number 
2n+  1, corresponding to the identity Bn = so(2n+ 1); namely, 2 n +  1 must have at least 
two distinct prime factors. For example, for so(15) at level 2 we find the following 
three non-diagonal modular invariants: 

2 ( 12"412 + [Xs[ 2 + [X6I 2 + [XTI 2 + IxsI 2 + [X9l 2 + IXl0l 2 ) , 

+ IX21 = + 12'312 + txs[ 2 + [X6l 2 + IxsI 2 + (x4x~ + XTXlCo + c.c.) , 

IX4 + Xgl 2 + I V7 + X ol 2 + 2 ( IXsI 2 + IX612 + IX812 ) .  

1 , 2 . . .  I0 of Xi denote the following representations: Here the la~ls  i = 

0 :  (0 ,0 ,0 ,  
1: (2 ,0 ,0 ,  
2 :  (0 ,0 ,0 ,  
3:  (1 ,0 ,0 ,  
4 :  (0 ,0 ,0 ,  
5 :  (0 ,0 ,0 ,  

0 ,0 ,0 ,0 )  6 :  ( 0 , 0 , 0 , 0 , 1 , 0 , 0 )  
0 ,0 ,0 ,0 )  7 :  ( 0 , 0 , 0 , 1 , 0 , 0 ,0 )  
0 ,0 ,0 ,1 )  8:  ( 0 , 0 , 1 , 0 , 0 , 0 ,0 )  
0 ,0 ,0 ,1 )  9 :  ( 0 , 1 , 0 , 0 , 0 , 0 , 0 )  
0 ,0 ,0 ,2 )  10: ( 1 , 0 , 0 , 0 , 0 ,0 ,0 )  
0 ,0 ,1 ,0 )  

The first of these invariants is not new: it corresponds to the conformal embedding 
so(15) c su(15). The fields i = 4 . . .  10 are fixed points, each of which is resolved into 
two distinct complex conjugate fields in the extended algebra. In su(15) the two fields 
originating from the so(15) field i are the antisymmetric tensor representations [4 + i] 
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and [ 1 1 - i]. The invariant ~ol is in fact an integer spin simple current invariant. The 
other two B7 invariants are manifestly not simple current invariants. 

The second B7 invariant is new, as far as we know, and can be explained in the 
following way. The algebra Al4 at level 1 has three distinct automorphism invariants 
which are generated by the simple currents J, j3 and js.  They read 

14 14 14 

E Xitg~* i , E ~.i,9~*__lli, E ~ie'~*4i, 
i=O i=O i=O 

respectively, where the labels are defined modulo 15. The first one is equal to the 
charge conjugation invariant, and the last one is the "product" of the first two. The 
existence of an Ai4,1 automorphism implies relations among the matrix elements of the 
modular matrix S of that algebra. Owing to the existence of the conformal embedding 
B7,2 C AI4,1, these matrix elements are related to those of B7,2. The precise relation is 

Soo[Ai4,1 ] 

50,4+i[A14,1 ] 

S4+i,4+j[Al4,1] 

= 2S00[B7,2] , 

= S0,11-i[AI4,1]  -- S0,i[B7,2] , 

=Sll- i ,  ll-j[Al4,1] 

= S~+i, II_j[AI4,1 ] = S~I_i,4+j[AI4,1] = Isij[n7,2] + i~ij . 

Here Z denotes the fixed point resolution matrix. The first automorphism, charge con- 
jugation, just sends i to - i  and hence acts trivially on the B7,2 fields. The other two 
su(15) automorphisms interchange the B7,2 fields (4,9)  and (7, 10), leaving 5, 6 and 8 
fixed (in addition one gets relations from the imaginary part on the matrix elements of 
,Y). This implies relations like S0,4 = S0,9 and $4,7 = $9,10 for the B7,2 matrix elements. 
All these relations hold also if the label 0 is replaced by 1, but we do not get any 
relations for matrix elements involving the fields that are projected out, i.e. the fields 2 
and 3. In the general case, the absence of relations involving fields that get projected 
out implies that the automorphisms of an algebra g do not lead to automorphims for a 
conformal subalgebra h C g. The present case is an exception, since all the fields on 
which the automorphism acts (and in fact all the fields with labels 4 . . . . .  10) are fixed 
points of the B7,2 simple current that extends the algebra. Then the matrix elements S2,i 
and S3,i vanish for i -- 4 . . . . .  10 and we need no further relations among them. 

This explains the presence of the second invariant listed above. The third one is a 
linear combination of the foregoing ones and the diagonal invariant: 793 = 791 + 792 - 1. 
This is a remarkable invariant: it looks like a normal extension by a spin 1 current, but 
it does not follow from any conformal embedding. The only conformal embedding of 
B7 at level 2 is in su(15), and the corresponding invariant is 791, not 793- This implies 
in particular that there cannot exist any conformal field theory corresponding to the 
modular invariant 793! In fact, it is not even possible to write down a fusion algebra for 
this invariant, because there does not exist a fixed point resolution matrix. In Ref. [29] 
another example of this kind was described, although that theory was unphysical for a 
somewhat different reason. 
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The existence of 793 can also be seen as a consequence of the closure of the set 
of Galois automorphims. Each Galois modular invariant, automorphism invariants as 
well as chiral algebra extensions, originates from a Galois symmetry of S, which acts 
on the fields as a permutation accompanied by sign flips. For the "chiral extension" 
793 this Galois automorphism is represented by the matrix 793 - 1. This set of Galois 
automorphisms will always close as a group. Indeed, the automorphism underlying 793 
is simply the product of that of 79! and 792. 

By the same arguments there will be pure automorphism invariants for Bn,2 whenever 
2n+ 1 contains at least two different prime factors. The spin-I extension always involves 
an identity block plus n fixed points that yield each two su(2n+ 1 ) level 1 fields (this is 
true since all non-trivial representations of su(2n + 1 ) are complex). If there is only one 
prime factor the only automorphism is charge conjugation, which acts trivially. When 
there are K different prime factors there are 2 K distinct pure Galois automorphisms for 
su(2n + 1) at level 1, including the identity and the charge conjugation invafiant. When 
"projected down" to Bn.2 these are related in pairs by charge conjugation, and we expect 
therefore 2 K-l distinct Bn,2 modular invadants of automorphism type. In addition there 
is of course the invariant corresponding to the conformal embedding in su(2n+ 1 ) itself. 
In combination with the 2 K-I _ 1 non-trivial automorphisms this extension gives rise 
to as many other invariants that look like conformal embeddings, but actually do not 
correspond to a consistent conformal field theory. 

How does this come out in terms of Galois symmetry? First of all the spin-I extension 
of the conformal embedding is in fact a simple current extension, and we have seen in 
the previous Section that it follows from Galois symmetry only for Bn with n odd. If 
n is odd the Galois periodicity is 4(2n + 1) for Bn.2 and 2(n + 1)(2n + 1) for A2~,l. 
Hence the cyclotomic field of the former is contained in that of the latter, so that all 
Galois transformations of A2~,1 have a well-defined action on the modular matrix S of 
B~,2. In this case we may thus expect 2 K distinct Galois modular invariants, including 
the identity and the unphysical invariants described above. If n is even the Galois 
periodicities are respectively 2(2n + 1 ) and 2(n + 1)(2n + 1), so that also in this case 
all Galois transformations are well-defined on Bn. But due to the fact that the simple 
current invariant is not a Galois invariant, we get only half the number of invariants 
now, namely 2 x-~. 

For n odd the su(2n+l  ) simple current automorphisms are mapped to two Bn modular 
invariants: one physical automorphism and one chiral extension, which (except for the 
one originating from the diagonal invariant, i.e. the conformal embedding invariant) is 
unphysical. For n even each su(2n+ 1 ) automorphism is mapped to just one B~ invariant. 
The diagonal invariant is mapped to the diagonal one of Bn, but it turns out that the 
non-trivial automorphisms are mapped to either a pure automorphism or an unphysical 
chiral extension, in such a way that the closure of the set of Galois automorphisms is 
respected. 

Now consider algebras of type D. Again the crucial ingredient is the conformal 
embedding so(2n)2 C su(2n)l.  In terms of Dn fields the su(2n) characters are built as 
follows: The identity character is the combination ,'Y0 + Pgv and the antisymmetric tensor 
[n] has a character equal to Xs + ,'Yc. All other su(2n) representations are complex, 
and each pair of complex conjugate representations arises from a resolved fixed point of 
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the vector current of Dn. Even though Dn has complex representations itself for n odd, 
these get projected out, and all the non-real contributions to the su(n) modular matrix 
S arise from fixed point resolution. 

The center of the su(2n) WZW theory is Z2n, but the "effective center" (in the 
terminology of Ref. [35] ) is Zn. This means that only the simple current j2 of the 
su(2n) theory yields non-trivial modular invariants, and that the order 2n current J may 
be ignored. It is easy to see that the field [n] has zero charge with respect to ,/2, so that 
it is mapped onto itself by any automorphism generated by powers of j2. This implies 
that, just as before, all su(2n) simple current automorphisms act non-trivially only on 
resolved fixed points, and hence can be "projected down" to Dn. If n is prime, then 
the only automorphism is equivalent to charge conjugation, and hence it projects down 
to the trivial invariant. Hence just as before we will get non-trivial Dn automorphisms 
whenever n contains at least two distinct prime factors, where the prime is now allowed 
to be two. The counting of invariants is the same as for B(n-l)/2 above. Again they 
come in pairs: an automorphism and an unphysical extension by a spin-1 current. 

All these invariants exist, but not all of them follow from Galois theory. Just as for 
Bn, the automorphism invariants do, but the conformal embedding invariant does not 
always follow. In fact, it never comes out as a result of the scalings discussed in the 
previous Section. However, if n = 3 mod 4 the simple current extension by the current 
Jv is an exceptional Galois invariant only at level 2 (see Table 1). In that case all 
the expected invariants are Galois invariants. For all other values of n only half of the 
expected invariants are Galois invariants, and from each pair only one member appears, 
either the automorphism or the unphysical extension. 

There is still one interesting observation to be made here. If there are just two distinct 
prime factors, and n = 6 mod 8, then the extra invariant is an unphysicai extension. 
Remarkably, however, that extension is a simple current invariant. It is equal to the 
extension by Jr, but it has additional terms of the form [Xa + &'hi 2, where a and b are 
fields that appear diagonally, as fixed points of order 2, in the normal simple current 
invariant. The fields a and b are however on the same orbit with respect to the current 
Js, which makes this a simple current invariant by definition. Nevertheless, it is not 
part of the classification presented in Ref. [35], because that classification was obtained 
under a specific regularity condition on the matrix S that is not satisfied here (indeed, 
D2n at level 2 was explicitly mentioned as an exception in the appendix of Ref. [35]; 
the reason for it being an exception is that all orbits except for the identity field are fixed 
points of one or all currents). It also follows that this simple current invariant cannot 
be obtained using orbifolds with discrete torsion, unlike the simple current invariants 
within the classification [33]. Hence the fact that it is unphysical is not in contradiction 
with the expectation that simple current invariants should normally be physical. 

In the previous case the automorphism would be obtained by subtracting the normal 
spin-1 extension, and adding the identity matrix. Clearly the resulting automorphism is 
not really exceptional, but is simply the automorphism generated by the spinor simple 
current Js (or Jc, which at level 2 gives the same result). The same happens if the 
rank is 2 rood 8, except that in that case the automorphism comes out directly as a 
Galois invariant. It is listed in Table 2. To get really new automorphisms that are not 
simple current invariants for n = 2 mod 8 or n = 6 mod 8 one has to consider cases 
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where n contains three or more distinct prime factors. Finally, if the rank is divisible 
by 4 the spinor currents have integer spin, and do not interfere with the exceptional 
automorphisms discussed in this section. 

5. Pure Galois invariants 

In Table 1 we list all the remaining Galois invariants of simple WZW models, i.e. not 
including those described in the previous Sections. All these invariants are positive and 
result directly from a single Galois automorphism of order 2. Although the full Galois 
commutant was investigated, in all but one case there is only a single non-trivial orbit 
contributing (in terms of the formula (2.6) this means that f0 is used to get P00 = 1, 
and apart from f0 only one other coefficient f,~ is non-zero.) The exception is the 
E8-type invariant of AI at level 28, which can also be interpreted as a combined simple 
current/Galois invariant, and which is therefore included in Table 2 in Section 6. The 
results are listed in Table 1. The notation is as follows: 

CE: Conformal embedding. 

S (J ) :  Simple current invariant. The argument of S is the simple current responsible 
for the invariant. 

RLD: Rank-Level Dual. The S-matrices of su(N)k, so(N)k and Cn,i are related to 
those of respectively su(k)N, so(k)iv and Ck,n by rank-level duality. One might expect 
that Galois transformations of one matrix are mapped to similar transformations of the 
other. The relation is not quite that straightforward however, and we will not examine 
the details here. The results clearly respect this duality. 

EA: Exceptional Automorphism. These are modular invariants of pure automorphism 
type that are not due to simple currents. The only invariants of this type known so far 
were found in Ref. [18], and appear also in Table 1. 

HSE: Higher Spin Extension, an extension of the chiral algebra by currents of spin 
larger than 1 that are not simple currents. Some of these invariants can be predicted 
using rank-level duality; all other known ones are related to meromorphic c = 24 theories 
[23]. 

Note that there are some simple current invariants in this list. This is not in conflict 
with the results of Section 3, as we did not claim that the list given there was complete. 
The scales of the Galois transformations for which these simple current invariants are 
obtained are interesting. For A4m-! and D4m+3 these scales are equal respectively to 
(2m + 1)(k  + g) - 1 and 3(k + g) - 1. If  the contribution - 1  were replaced by +1, 
they would be of the kind discussed in Section 3. In fact we can write these scales as 
( - 1 ) [ ( 2 m -  1 ) ( k + g )  + 1] mod 4 m ( k + g )  and ( - l ) [ ( k + g )  + 1] mod 4 ( k + g ) ,  
respectively, which shows that these Galois automorphisms are nothing but the product 
of a scaling of the type discussed in Section 3 and charge conjugation. It can be checked 
that without the charge conjugation one does not get a positive invariant: certain fields 
are transformed to their charge conjugate with a sign flip. After multiplying with the 
charge conjugation automorphism these fields become fixed points. The scale factor for 
Cam, 4m + 3, is of the form (k + g) + 1, but for Cn the arguments of Section 3 break 
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Table 1 

Algebra Level Galois scaling Type Interpretation 

A2 5 19 Extension CE C A5 
A4m-I 2 8m 2 + 8m + 1 Extension S(J~an) ; RLD of AI,4m 

A4 3 11 Extension CE C A9 
A 9 2 31 Extension RLD of A 1,10 

C4m 1 4m + 3 Extension S(J); RLD of C1.4m = Al.4wn 
DSm+2 2 8m + 1 Automorphism S(.Is) 
D4m+3 2 24m + 17 Extension S(J,)  

D7 3 49 Extension HSE; RLD of so(3) 14 = At,2s 
G2 3 8 Extension CE C E6 
G2 4 5 Automorphism EA 
G2 4 11 Extension CE C D7 
F4 3 5 Extension CE C DI3 
F4 3 11 Automorphism EA 
E6 4 7 Extension HSE 
E7 3 13 Extension HSE 

down right from the start, so that no conclusions can be drawn for this case. For the 
other s imple current invariants the scale factor does not have the right form, and hence 
the arguments of  Section 3 s imply do not apply. 

6. Combination of Galois and simple current symmetries 

In Section 3 we have discussed a large set of  invariants for which the Galois  and 
simple current methods overlap. I f  they do not overlap, it may be fruitful to combine 
them. To do so we first have to understand how the orbit  structures of  both symmetries 
are interfering with each other. This can be seen by computing o'Sja,b. On the one hand, 
this is equal to 

o'SJa,b = eo.( J a )  So-Ja,b • 

On the other hand, it is equal to 

o ' [e  2~Q(b) Sab ] = e2~lQ(b) ~o-( a )  So-a,b 

= Co,(a) Sj,o-a,b • (6.1) 

Here l is the power to which o- raises the generator of  the cyclotomic field. In the first 
step we used that the simple current phase factor is contained in the field M, which 
follows from e 2"~o(b) = SJa,b/Sab 6 M .  Using unitarity of  S we then find that 

eo.(Ja) = e ~ ( a ) ,  
O'J = f l  ir . (6.2) 

Here J denotes the permutation of  the fields that is generated by the simple current J. 
Since l is pr ime with respect to the order of  the cyclotomic field, it i s - - a t  least in the 
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case of WZW models--also prime wih respect to the order N of the simple current. 
I f  N = 2 this means that 1 must be odd so that j l  = j ,  and hence we conclude that b- 
and J commute. For all other values of N they do not commute unless I = 1 mod N, 
but at least it is true that o" maps simple current orbits to simple current orbits, and 
furthermore it respects the orbit length. 

If  N = 2 the simple currents yield the relation 

SJa,Jb = e2m(Q(a)+Q(b)+r/2) Sab 

among matrix elements of S, where r is the monodromy parameter. If  r is even (which 
is the case for simple currents of integer or half-integer spin) this relation takes the 
form 

Sab = e ( a ) e ( b ) S j a . J b  , 

since the phase factors are in fact signs. This is precisely the form of a Galois symmetry, 
as expressed in (2.4). We can represent this symmetry in matrix notation as 

I I j S H j  = S , 

where / / j  = ( / / j ) - l  is an orthogonal matrix that commutes with the analogous ma- 
trices representing the Galois group. Hence we can extend the Galois group by this 
transformation as explained in Section 2. Furthermore if r = 2 mod 4 the simple current 
invariant produced by J is a fusion rule automorphism that can also be used to extend 
the Galois group. 

We have not examined these extended Galois-like symmetries systematically, but we 
will illustrate that new invariants can be found by giving one example. Consider A1 at 
level 10. One of the Galois invariants (invariant under S as well as T) is 

Pl  = IXo + X6l 2 + [k'4 + Xlo[ 2 + IX1 - ,%12 + 2lX3l 2 + 21,~'712 , 

where the indices are the highest weights (in the Dynkin basis). The only problem with 
this invariant is that it is not positive. However, at level 10 we also have the D-type 
invariant 

~2 = Ix0l 2 + (X, X9* + X3XT* -4- c.c.) + IX212 + IX412 + IXsI 2 

+IX612 + IXsI 2 + [xl012 , 

which is a simple current automorphism. If  we now take the linear combination 

Pl + P 2 - -  1, 

we get a positive modular invariant which is in fact the well-known E6-type invariant. 
There is a second way of combining simple currents and Galois symmetries. One 

can extend the chiral algebra of the WZW model by integer spin simple currents. This 
projects out some of the fields, so that the negative sign Galois orbits of some Galois 
invariants are removed. It is essential that the Galois automorphisms respect the simple 
current orbits, and that the matrix elements of S are constant on these orbits for the 
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fields that are not projected out. The simple current extension has its own S-matrix 
which can be derived partly from that of the original theory. If N is prime this matrix 
has tile form [29,36] 

Sa,,bj = - ~  SabEij -I- ,~abFij , (6.3) 

where S is the new modular matrix and S the original one, Na is the orbit length of 
the field a (it is a divisor of the simple current order N, and hence either 1 or N), and 
i labels the resolved fixed points for those orbits with Na < N (i.e. i = 1 . . . . .  N/Na), 
and analogously for b and j.  The matrix Eij is equal to 1 independent of i and j,  and 
Fij = ~ij - (1/N)Eij .  Finally, the matrix Xab is non-vanishing only for fixed point fields 
and cannot be expressed in terms of S, or at least not in any known way, but it is subject 
to severe constraints from the requirement of modular invariance. 

All general considerations regarding Galois transformations can be applied directly 
to this new S-matrix. Clearly the matrix elements Sab which correspond to the primary 
fields of the original theory that are not projected out belong to a number field M ~ 
which is contained in the number field M of the original theory. While Eij, Fij and 
NaNb/N are all rational and hence transform trivially under Gal (M' /Q) ,  the presence 
of the matrix Xab in (6.3) may require this number field to be extended to a field 
At' D M ~ (a simple example is provided by the AI,4 WZW theory, which has a real 
matrix S, whereas the S-matrix of the extended algebra A2,1 is complex). Now because 
of the projections/17F does not necessarily contain the original number field M; however, 
at the possible price of redundancies we can consider an even larger number field h4 
that contains both hTF and M. When working with AT/, we do not loose any of the 
Galois transformations that act non-trivially on the surviving matrix elements Sab. Note 
that any element of Gal(AT//M) acts trivially on Sat, and hence induces a permutation 
which leaves non-fixed points invariant and acts completely within the set of primary 
fields into which a fixed point gets resolved. Further, for any element of Gal(/17//Q) the 
associated permutation must act on the labels a, b in the same way in both terms on the 
right-hand side of (6.3). In particular, for any matrix element involving only non-fixed 
points the action of a Galois transformation on S already determines its action on S, 
since the two matrix elements are equal up to a rational factor. The same is true for all 
matrix elements between fixed points and full orbits, since in that case X is absent, too. 
This is often already enough information to determine the Galois orbits of the extended 
theory completely. The transformations of the fixed point-fixed point elements of S are 
more subtle, and in principle would require knowledge of the matrix X. However, as 
already pointed out any element of the Galois group must act on ,~ exactly as it does 
on S. Although this still leaves undetermined the action within the set of primary fields 
into which the relevant fixed point is resolved, this limited information nevertheless can 
provide useful additional information on the matrix X, whose determination in general 
is a problem that is far from being solved. 

Fortunately, as long as we are only interested in modular invariants of the original 
theory, we may in fact ignore fixed point resolution completely. By definition that issue 
is determined solely by S (and T), and the precise form of X should not matter. 
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Table 2 
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Algebra level Galois scaling Simple current Type Interpretation 

Ai 10 7 j a Extension CE C B2 
AI 28 11 J Extension CE C G2 
A2 9 17 J Extension CE C E6 
A2 21 35 x 53 t~ J Extension CE C E7 
A3 8 7 J Extension CE C D10 
A7 4 7 j2 Extension HSE; RLD of A3,8 
A7 4 m + 2  4 m +  11 j4 Ant x Ext S(J  2) 

A27 2 71 j14 Extension HSE; RLD of AI.28 
C3 4 7 J Extension CE C Blo 
C4 3 7 J Extension RLD of C3,4 

D4m+2 41 8m + 41 + 3 Js Extension S( Jv) x S(Js) 
l)4 6 5 Js, Jv Extension CE C D14 

a This is a simple current of half-integer spin; see the main text for details. 
b Invariant originating from a non-cyclic subgroup Z~ x Z 2 of the Galois group. 

We have performed a computer search for invariants of the type described above, and 
obtained the results as shown in Table 2. 

Note that this table contains a few infinite series of simple current invariants. Since 
they were inferred from a finite computer scan, the statement that the series continues is 
a conjecture. Presumably these series can also be derived by arguments similar to those 
in Section 3, but we have not pursued this. 

We have in principle just looked for invariants originating from single orbits, but 
there is one exception, namely the modular invariant of A2 at level 21. This invariant 
is obtained as a sum over a Z2 x Z2 subgroup of the Galois group that is generated by 
the two scalings indicated in Table 2. Separately each of these scalings yields an S, T 
invariant with a few minus signs. 

7. Conclusions 

To conclude, let us make a rough comparison between the various methods for con- 
structing modular invariants that were mentioned in the introduction. We will compare 
them on the basis of the following aspects. 

Generality. A common property of simple currents and Galois symmetry is that 
neither is a priori restricted to WZW models, unlike all other methods. (In practice this 
is less important than it may seem, since essentially all RCFT's we know are WZW 
models or WZW-related coset theories.) 

Positivity. Most methods do not directly imply the existence of positive modular 
invariants, but rather they yield generating dements of the commutant of S and T that 
have to be linearly combined to get a positive invariant; the exceptions are simple cur- 
rents, conformal embeddings and rank-level duality. 
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Existence o f  a CFZ. It should be emphasized that a positive modular invariant 
partition function is only a necessary condition for a consistent conformal field theory. 
Most methods do not guarantee that a conformal field theory exists. Exceptions are 
conformal embeddings (the new CFT is itself a WZW model) and probably simple 
current invariants, since the construction of the new theory can be rephrased in orbifold 
language. Clearly any construction that may yield negative invariants cannot guarantee 
existence of the theory, and this includes Galois invariants. Indeed, we found examples 
of positive Galois modular invariants that cannot correspond to any sensible CFT. 

Explicit construction. Simple current invariants can be constructed easily and straight- 
forwardly. On the other hand, the explicit construction of an invariant corresponding to a 
conformal embedding is usually extremely tedious. Indeed, many of these invariants are 
not known explicitly. The other methods fall somewhere between these two extremes. 
The explicit construction of a Galois invariant is straightforward but requires long ex- 
cursions through the Weyl group, as explained in Appendix A. 

Classification. All simple current invariants have been classified in Refs. [37,35,33], 
under a mild regularity assumption for S, which, as we have seen in Section 4, is not 
always satisfied. The simple currents of WZW models were classified in Ref. [38]. All 
conformal embeddings have been classified in Refs. [39,40]. All cases of rank-level 
duality are presumably known, but all other methods mentioned in the introduction have 
only been applied to a limited number of cases, without claims of completeness. Our 
results on Galois invariants are based partly on computer searches (inevitably restricted 
to low levels) and partly on rigorous derivations (Section 3). For the pure Galois in- 
variants we expect our results to be complete, but we have no proof. 

To summarize, we find that the Galois construction does not yield all solutions, but 
also that it is not contained in any of the previously known methods. It generates 
invariants of all known types. Most of the partition functions we found were already 
known in the literature, but we did find several new infinite series of pure automorphism 
invariants not due to simple currents. 

In the course of this investigation we realized that the restriction that the scaling be 
prime with respect to M ( k  + g) can in fact be dropped, at least for WZW models. This 
yields even more relations among elements of S, which take the form of sum rules, and 
hence even more information about modular invariants. These transformations, which 
we call "Quasi-Galois" symmetries, will be discussed in a forthcoming paper. 

Appendix A 

Here we describe in detail how Galois scalings are implemented when the conformal 
field theory in question is a WZW theory based on an untwisted affine Lie algebra g at 
integral level k. Then the Galois group is a subgroup of Z~k+g ), where g is the dual 
Coxeter number of the horizontal subalgebra g of g (i.e. the subalgebra generated by 
the zero modes of g) and M is the denominator of the metric on the weight space of ~. 

We label the primary fields by the shifted highest weight a with respect to the 
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horizontal subalgebra g, which differs from the ordinary highest weight by addition of 
the Weyl vector p of g. Thus a is an integrable highest weight of g at level k + g, i.e. 
the components a i of a in the Dynkin basis satisfy 

a i E Z~>o for i = 0, 1 . . . . .  rank(~),  

_ ~--,rank(~) O.ai with 0i the dual Coxeter labels of g. However, because where a ° - k + g L..~i=I t 

of the shift not all such integrable weights belong to primary fields, but only the 
strictly dominant integral weights, i.e. the primary fields of the WZW theory correspond 
precisely to those weights a which obey 

a i E 7/,>0 for i = 0 ,  1 . . . . .  rank(~).  (A.1) 

A Galois transformation labelled by g E Z~(k+g ) acts as the permutation [26] 

0~)  (a)  = ~(ga)  . (A.2) 

If we label the fields by the weights a - p which are at level k, this is rewritten as in 
(2.3). That it is the shifted weight a rather than a - p  that is scaled is immediately 
clear from the formula (3.1) for the modular matrix S. In fact, it is possible to derive 
the formula (2.4) directly by scaling the row and column labels of S by g and t - l ,  
respectively, using (A.2). Galois symmetry is thus not required to derive this formula, 
nor is it required to show that (2.6) commutes with S. Galois symmetry has however a 
general validity and is not restricted to WZW models. 

Substituting (A.2) into the formula for WZW conformal weights one easily obtains 
a condition for T-invariance, namely (gZ _ 1) = 0 rood 2 M ( k  + g) (or rood M ( k  + g) 
if all integers M a .  a are even). Since g has an inverse mod M ( k  + g),  it follows that 
g = g - - I  mod M ( k  + g),  i.e. the order of the transformation must be 2, as is also true 
[24] for arbitrary conformal field theories. 

Let us explain the prescription (A.2) in more detail. First one performs a dilatation of 
the shifted weight a = ( a l , a  2 . . . .  ) by the factor g E Z*M(k+g ). Now the weight ga does 
not necessarily satisfy (A.1), i.e. does not necessarily correspond to a primary field. 
If it does not, then the dilatation has to be supplemented by the horizontal projection 
~' -- ~e;a) of a suitable affine Weyl transformation. More precisely, to any arbitrary 
integral weight b one can associate an affine Weyl transformation ~ such that either 
~ (b)  satisfies (A.1), and in this case ~, is in fact unique, or else such that i f(b)  obeys 
(Ca(b)) i = 0 for some i E {0, 1 . . . . .  rank(g)} (in the latter case if(b) lies on the 
boundary of the horizontal projection of the fundamental Weyl chamber of g at level 
k + g ) .  To construct the relevant Weyl group element ~, for a given weight b as a product 
of fundamental Weyl reflections w(t) (i.e. reflections with respect to the/th simple root 
of g), one may use the following algorithm. Denote by jl E {0, 1 . . . . .  rank(g)} the 
smallest integer such that b al < 0, and consider instead of b the Weyl-transformed weight 
ffl (b) with ffl := ~'(jl); next denote by j2 the smallest integer such that (~q (b))j2 < 0, 
and consider instead of ~l (b) the weight ~2ffl (b) with ~'2 := if(h), and so on, until one 
ends up with a weight fin . . .  ff'2ffl (b) obeying (A.1), and then ~, = f in. . . ff2ffl  is the 
unique Weyl group element which does the job. (The presentation of an element ff E 
as a product of fundamental reflections is however not unique; the present algorithm 
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provides one specific presentation of this type, which is not necessarily reduced in the 
sense that the number of fundamental reflections is minimal.) 

It is worth noting that there is no guarantee that starting from an integral weight b 
one gets this way a weight satisfying (A.1), but in the case where b is of the form 
b = ga with a integrable and g coprime with r(k  + g), the algorithm does work. Here 
r denotes the maximal absolute value of the off-diagonal matrix elements of the Cat'tan 
matrix of fg, i.e. r = 1 if [g is simply laced, r = 2 for the algebras of type B and C and 
for F4, and r = 3 for ~ -- G2. (The property that g is coprime with r ( k + g )  in particular 
holds whenever (A.2) corresponds to an element of the Galois group, and hence for 
Galois transformations the algorithm works simultaneously for all primary fields of the 
theory.) Namely, assume that for some choice of a there is no choice of ~, E if" such 
that ff(ga) obeys (A.1). This means that any ~,(ga) lies on the boundary of some affine 
Weyl chamber, and hence the same is already true for the weight ga. Then there must 
exist some non-trivial ~ E I~' which leaves ga fixed, 0(ga) -- ga. Decomposing ~ into its 
finite Weyl group part v E W and its translation part ( k + g ) t  (with t an element of the 
coroot lattice of fg), this means that we have go(a) + ( k + g ) t  = ga, or in other words, 

g ( a -  v(a)  ) = (k + g) t .  (A.3) 

Now assume that g is coprime with r ( k + g ) .  This implies that there exists integers m, n 
such that me = nr(k  + g) + 1. Multiplying (A.3) with m then yields 

a = v(a)  + (k + g) [mt - nr (a - v(a)  ) ] .  (A.4) 

Since for any integral weight a the weight r(a - o(a) )  is an element of the coroot 
lattice, the same is also true for the expression in square brackets, and hence (A.4) 
states that the weight a stays fixed under some affine Weyl transformation. But a 
satisfies (A.1), and hence the fact that I~" acts freely on such weights implies that this 
Weyl transformation must be the identity. This implies that 0 must be the identity as 
well. Thus for g coprime with r(k  + g) the assumption that ¢v(ga) is not integrable 
leads to a contradiction. 

In the general case where b is not of the form ga with a subject to (A.1) and g 
coprime with r(k  + g), the algorithm described above still works unless at one of the 
intermediate steps one of the Dynkin labels becomes zero, which means that the weight 
lies on the boundary of the fundamental affine Weyl chamber. In the latter case any 
Weyl image of this weight lies on the boundary of some affine Weyl chamber as well, 
and hence we can never end up with a weight that satisfies (A.1), i.e. in the interior of 
the fundamental affine Weyl chamber. It may also be remarked that one can speed up 
the algorithm considerably using not the weight b itself as a starting point, but rather 
the weight b = b + (k + g) t that is obtained from b by such a Weyl translation (k + g) t 
for which the length of b becomes minimal. 

Finally, there is a general formula for the sign e,~e ~, namely 

e~e, ( a) = ~e sign( w(e;a) ) ,  

i.e. the sign is just given by that of the Weyl transformation k,  up to an overall sign ~7~ 
that only depends on o-(o [26], but not on the individual highest weight a. (Actually the 
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cyclotomic field Q(~'M~k+8)) whose Galois group is Z~k+g ) does not yet always contain 
the overall normalization A/" that appears in the formula (3.1) for S, but rather sometimes 
a slightly larger cyclotomic field must be used [26].  However, the permutation o- of the 
primary fields that is induced by a Galois scaling can already be read off the generalized 
quantum dimensions, which do not depend on the normalization of S. The correct Galois 
treatment of the normalization of S just amounts to the overall sign factor r/t, which is 
irrelevant for our purposes.) 
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