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Externally Induced Changes in Chaotic Behaviour: 
a Phase Transition 

R. EUUIVING and H. W. CAPEL 

lnstituut voor Theoretische Fysica. Universiteit ‘I:an Amsterdam. Valckenjerstraat 65, 1018 XE Amcterdam. 
The Netherlands 

R. A. PASMLIANTER 

Koninklijk Nederlands Meteorologisch Tnstituut Posthus 201. 3730 AE De Bilr. The Netherlands 

Abstract-We present a particular, control-variable-tuned chaotic map which shows discontinuities in 
macroscopic observables. Thus phenomenon can be mapped on an exactly soi\:able phase transition m 
a one-dimensional Ising model. 

1, INTRODUCTION 

In this contribution we report on an exactly solvable phase transition in one dimension 
arising in a chaotic iterated map. Details about this phase transition have been published 
by use elsewhere [l. 2,3,5], but here we want to highlight the main results with emphasis 
on the physical aspects rather than on the mathematical subtleties. The main objective is to 
make clear that we discovered a genuine phase transition in one dimension within the 
framework of the statistical mechanics of many-body systems. Here we want to stress that 
this phase transition is of a different nature from those usually discussed in the dynamical 
systems Iitcrature [4,6-91 where discontinuities in the spectrum of generalized dimensions 
and generalized entropies [lo] are studied. 

The model presented by us depends on an external control variable which tunes the 
shape of the map. For a number of critical values of this control parameter, discontinuities 
in what can be regarded as macroscopic characteristics appear. We focus attention on one 
of those critical values and show that the discontinuity is triggered by the occurrence of 
long laminar intervals which disappear as the control variable is tuned past the critical 
value. We show that the height of the discontinuity can be exactly calculated. An exact 
calculation of the correlation function on both sides of the critical value can be performed. 
if one moves to a special. tailor-cut reduced symbolic description of the dynamical process. 
This choice for the reduced description is crucial, and illustrates at the same time that the 
usual type of symbolic description is not always well suited to describe a particular 
phenomenon. We show that there is long-range order on the critical value from below, 
which is absent on the critical value from above. Moreover, we can indicate quantitatively 
that there is critical slowing down in the correlation function, if the critical value is 
approached from below. 

‘13 
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The model can be mapped on an Ising chain. The Hamittonian of this Ising chain is not 
explicitly known, but the probability of each chain configuration is. This makes it possible 
to develop the equivalence between the correlation function in terms of the reduced 
symbolic description and the spin-pair correlation function. 

2. THE BUNGALOW-TENT MAP 

An iterated map on the interval 

xv+1 = f(G). XEI Cl? 

is called fully developed chaotic (FDC) [ll] if the map is chaotic (i.e. shows sensitive 
dependence on the starting point x,,> and ergodic (i.e. the chaotic trajectory xl), xl. x2. . 
densely fills the entire interval I). For these iterated maps the probability density p(x) is 
almost nowhere zero on I. A well-known example of such a map is the iterated (classical) 
tent map 

x’,,- 1 = 1 - 21X,,,; 

on the interval J = [-1, l], see Fig. 1. This iterated map has a probability density 

p(x) = 4, 

i.e. it is ergodic, and a Lyapunov exponent 

(2) 

l,3) 

I 
I /i= $*)logif’(x)l d.r = log2 > 0, 14) 

i.e. the system is chaotic. 
Of special interest are FDC maps for which the degree of chaos is tuned by an external 

control parameter. An example is ihe z-map [ll] - 

Fig. 1. The classical tent map 
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with 

f,(x) = 1 - 2(x(z (6) 

on the interval I = [- 1, 11, see Fig. 2. This iterated map is FDC for I z f. It was shown 
[II] that the Lyapunov exponent is a continuous function of Z. Other examples of 
parameter-controlled FDC maps, e.g. the asymmetric tent map [3], show the same 
behaviour: a continuous Lyapunov spectrum reflecting the fact that the chaoticity of the 
map changes smoothly if the control parameter is varied. However, this is not true for any 
parameter-controlled FDC map. An exciting example of this is provided by the so-called 
bungalow-tent map [l]. This map is defined on the interval [-1, l] as follows: 

I g1(x) = 1 -I- 2a + 2(a + 1)x for -1 SX d -i 

L(x) = 1 g&) = 1 + 2(1 - a)x for --$ S x S 0 

g3(x) = 1 + 2(a - 1)x for OSXGf + 
(7) 

I g4(x) = 1 + 2a - 2(a + 1)x for +x61. 

In Fig. 3 this map is visualized. One sees that it consists of four straight lines, which are 
connected in such a way that the impression of a symmetric bungalow-tent is made. The 
tent has three kinks, one at the centre, one at the location x = i and one at the location 
x = -i. The kink at the centre has a fixed height. The two outer kinks have the same 
height, but this height is adjustable. This adjustable height is equal to a, the control 
parameter. The iterated system 

Xn+l = f&n) (8) 
is FDC for --i < a < 1, while for -1 < a < -i the fixed point x^ = -1 is stable. (For a = -5 
the trajectory falls on a point of the subinterval [-1, -il.) 

Fig. 2. The z-map for three values of the control parameter z, 
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Fig. 3. The bungalow-tent map. 

For 640 values of al equally distributed over the range -A < u < I, we have numerically 
determined the Lyapunoe exponent A(a) using the formula: 

with N = 1Oh, the probability density pa(x) not being known as a function of CI E t-f, 11. In 
Fig. 4 h(n) is depicted as a function of 0. An unusual phenomenon is visible in this picture: 
one observes many discontinuities in the Lyapunov spectrum. indicating abrups changes in 
the chaotic behaviour of the orbit x0, x1. x2. . . when the control parameter is tuned past 
some critical values of CI. In the next section we will look more closely- at the different 
chaotic phenomena on both sides of such a critical a-value. 

3. PHENOMENOLOGY 

From Fig. 4 one sees that the first discontinuity appears at a = 4. In order to get an 
impression of the two different chaotic states. we have plotted a part of the chaotic 
trajectory for a = 0.495 (Fig. 5(a)) and for a = f (Fig. 5(b)). For a = 0.495 an interesting 
phenomenon is observed. The trajectory shows an intermittent hopping between order and 
chaos: periods of regular behaviour (‘laminar intervals’) alternate with periods of irregular 
behaviour (‘chaotic bursts’). From numerical experiments it became clear that the closer cc 
is set near 7 from below, the longer is the mean duration of the laminar intervals as well as 
the duration of the chaotic bursts. In fact, in the limit that a has reached i from below, the 
mean duration of Iaminar intervals and chaotic bursts has become infinite. But if a is set 
exactly on tlze value i, the intermittent phenomenon has suddenly disappeared, and we have 
only chaos. This is also the case for a-values slightly larger than i. 
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0 1 I 

-0.5 -> a 0 0.5 I 

Fig. 4. The Lyapunov spectrum of the bungalow-tent map. 

A qualitative explanation for the occurrence of long laminar intervals can be given as 
follows. In Fig. 6 we have zoomed in on the (unstable) right-hand fixed point xF for 
a = i - E. For this value of a the slope of the line connecting the top of the tent with the 
kink at the right is -1 - 2~. Since for 0 < E << 1 this slope is only a fraction smaller than 
- 1, it will take a considerable amount of iterations before an iterate, which has landed in 
the neighbourhood of the fixed point, will have spiralled away. This spiralling behaviour is 
a laminar interval. The trajectory is ‘trapped’ in the subinterval [xL, xR] (see Fig. 6), which 
has a size of order E. Eventually, the trajectory will spiral out of this interval and will 
explore chaotically other parts of the interval [-1, 11. But since the iterated system is 
FDC, and hence ergodic, the trajectory will certainly ‘hit’ the interval [xL, xR] again, i.e. 
the chaotic burst will end and a new laminar interval will be started up. 

If E is made smaller (i.e. if a approaches 5 from below), the size of the interval [xL, xR] 
will also become smaller. Therefore, the probability that the chaotic trajectory will hit this 
interval will also become smaller. This explains why the mean duration of the chaotic 
bursts becomes larger when a is set closer to i from below. On the other hand, for 
decreasing values of E, the slope of the line connecting the top of the tent with the 
right-hand kink will be closer to -1, as a consequence of which it takes longer before the 
trajectory has spiralled out of the interval [x L, xR]. This explains why the mean duration of 
the laminar intervals increases when a is set closer to l from below. In the same spirit it 
can be argued why the mean duration of the chaotic bursts as well as the laminar intervals 
goes to infinity in the limit that a has reached i from below. 

But if a is exactly equal to i, the size of the interval [xL, xa] is zero and the right-hand 
kink is exactly on the location of the fixed point (see Fig. 7). Laminar intervals cannot exist 
anymore, and there remains only an ‘eternal’ chaotic ‘burst’ on the entire interval [- 1, 11. 

The qualitative arguments presented above make clear that the chaotic behaviour of the 
iterated bungalow-tent for u = i differs from the chaotic behaviour for a = lim,,,; - E. The 
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0 Pi 640 

* 0 hi 640 

Fig. 5. Iterates x, = f$(x~) uf the bung&w-tent map for u = 0.495 (a] and D = + (h). 

insight provided by this pictorial treatment can be put on a more rigorous basis using an 
analysis in terms of the probability density p,(x): solving the Frobenius-Perron equation 
[ 1] associated with the bungalow-tent map for a = i and ra = i - E yields the following 
expressions for the probability density: 

and 

see Fig. 8. 



Externally induced changes in chaotic hehaviour 

Fig. 6. Magnification of the region near the right-hand fixed point xF for a = $ - E. The trajectory slowly spirals 
away from the fixed point (laminar interval). Once the trajectory is out of the interval [xL, xR], the laminar 

interval has ended, and a chaotic burst begins. (fa(xL) = 4, f(xR) = xL). 
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Fig. 7. If a = i the kink has merged with the fixed point. Laminar intervals are absent. 

One sees that for a = i the probability density consists of two plateaux. But for a = i - F 
the two plateaux are separated from each other by a third plateau with a height of order 
l/~. This third, high plateau extends over a tiny interval [t - E, $1 and suggests the 
occurrence of long laminar intervals in this tiny interval. (One can show that [z - E, i] is 
equal to [xL, xR] up to order c2.) In the limit E -+ 0 equation (11) becomes: 
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Fig. 8. The probability density of the iterated bungalow-tent map for (a) a = f and (b) a = 

a> 
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jinp,&) = ;q; - x) + $0(x - 5) + &3(x - ;), (12) 

which differs from ~i,~(x) as given by (10). This difference provides the analytic explana- 
tion for the jump in the Lyapunov spectrum at a = i. In fact, it is easily shown that 

and 

= ilog = 0.5493061 . . ., (13) 

A,, = (I p&)log If;&)/ dx = flog3 = 0.6591673 . 
J-l 

The results (13) and (14) are in excellent agreement with Fig. 4, especially when one takes 
into account that for a = i - E the Lyapunov exponent shows anomalously large fluctu- 
ations. In fact, any spectrum 

A,= ’ 
I ,dxMx)dx -1 (15) 

with A(x) an arbitrary (but integrable) function of x, shows a discontinuity at a = i due 
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to the shockwise change of the probability density at the transition (a t l) -+ (a = i). 
The value a = i is the first of an infinite series of critical values which lay in the interval 
[i, 11, see Fig. 4. These critical values can be evaluated using an exact renormalization 
procedure [ 11. 

4. CORRELATION FUNCTIONS AND THE PHASE TRANSITION 

4.1. Introduction 

The analysis in terms of the probability density exposed in the previous section is 
incomplete. Though the occurrence of jumps in a spectrum A, is quantitatively explained, 
other aspects of the jump phenomenon are waiting for a more profound understanding. For 
example, one would like to know with which power the mean length of the laminar 
intervals goes to infinity as a function of E. But more importantly, since the jump 
phenomenon is caused by the variation of an external control parameter, one would like to 
know to which extent this phenomenon resembles a phase transition within the context of 
statistical mechanics. In concrete, we would like to know if there is long-range order at one 
side of the critical value a = i which is absent at the other side. Therefore, we would like 
to derive exact expressions for the correlation functions at both sides of the critical value, 
rather than drawing conclusions on the basis of numerical studies. 

An obvious way to try to attain the goals mentioned in the previous paragraph is to give 
a description in terms of the chaotic trajectory 

2 = [x0, x1, x2, . . . I. (W 
Of course mean values along this trajectory depend on the control variable a. A correlation 
function C(n) can be defined by 

C(n) = imrn +“$‘(Xi - (X))(Xi+n - (4) 1-o (17) 

Unfortunately, even though we have the analytical expressions (10) and (11) for the 
probability density p,(x) at a = i and a = i - E, it is extremely complicated if not 
impossible to derive closed analytical expressions for C(n) for these a-values for general n 
This approach does not work in practice. 

Another way of attacking the problem is to use a symbolic description of the chaotic 
process. An obvious choice [12] for such a symbolic description is the following: if a point 
of the trajectory is on the left of x = 0 (which is the location of the top of the 
bungalow-tent map), the symbol L is attributed to it, and if a point of the trajectory is on 
the right of x = 0, the symbol R is attributed to it. So instead of the trajectory 2 we 
consider the half-infinite sequence 

with 

1 = [to, t1, fz, . . .I, (19) 

/ 

L 
t, = 

ifx, < 0 

r ifx, > 0 
cw 

The sequence 1 describes the chaotic process in terms of locations left (L) or right (R) of 
the point x = 0, see Fig. 9. One can show [3] that there is a one-to-one correspondence 
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Fig. 9. The ,%-partition of the bungalow-tent map 

between 2 and 1. Again, using this symbolic description, one can define [2] four correlation 
function yr,r( n), yr,a( n), ya,r( n), ~a,~(n) measuring the correlation between two symbols 
over a distance n. And again, it turns out that it is extremely difficult if not impossible to 
find closed analytical expressions or an (exact) asymptotic approximation for these 
correlation functions at both sides of the critical value, i.e. for a = 5 - E and a = i. So 
this approach also fails. 

The reason why the two previous approaches are not successful is roughly the following: 
the origin of the jump phenomenon lies in the occurrence of infinitely long laminar 
intervals in the close neighbourhood of the (unstable) right-hand fixed point xF for 
a = lim, 1 0 f - E, which are absent for a = 5. Since the 2 description as well as the symbolic 
1 description do not specify the point xF, the point around which it all happens, these two 
descriptions are unsuitable for an exact statistical analysis of the phenomenon. In fact, as 
we will see, a description which uses a partition of the interval [-1, l] into regions left and 
right of the fixed point XF is extremely successful in obtaining exact results: 

If 

2 = x0, Xl, x2, . . . (21) 

is the trajectory of the iterated bungalow-tent map, then the half-infinite (+-)-sequence 3’ 
is defined as follows 

3 = [Sl, s2, . . .], s; = 
i 

+ if X, > xi-1 
(22) - if X, < x,-~. 

An equivalent way of forming 3 is: 

3! = [Sl, s2, . . .], 
+ if x,-l < XF 

s, = - if x,-l > XF, 
(23) 

where x, is the extreme right fixed point of the one-hump map, see Fig. 10. The symbol 
sequence ? gives a description of the trajectory 2 in terms of the ascending and descending 
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Fig. 10. The (+-)-partition of tht hungalon-tent map. 

character of the trajectory 2. There is no one-to-one correspondence between 3 and 2: the 
2 description is a local descriptiorz which only says whether the trajectory is lefr (+) or right 
(-) of the fixed point xF. In spite of the loss of dynamical information in going from the ? 
description to the f description, one achieves a better understanding of the jump 
phenomenon in the bungalow-tent map from the point of view of statistical mechanics. For 
an analysis of local and global aspects of iterated one-dimensional piecewise linear maps in 
terms of generalized Markov partitions and spectral decomposition of rhe Frobenius- 
Perron operator, we refer to 1131. 

The probability of finding a particular word or subsequence 

iZk = [WI. w, . . ., wk], wi = + or -. k= 1,2,... 

of k successive symbols w,. uj2r . . ., M-‘~ in 3 is given by 

(24) 

Due to the nature of a one-hump map, a minus in the (+-)-sequence s’ is always 
followed by a plus, or, equivalently, one cannot find words Gk in ; which possess me OT 
more pairs of neighbouring minuses. 

The four symbolic correlation functions y+,+ (a), r+,-(n), y-.+(n) and r--(n) of two 
symbols at distance n of a sequence ; are defined in the Following way [Z]. If n = 0 then 

ur,.w,@> = ~,~,,&;(bd) - f%bJ~wM~* (26) 

and if II 3 1 then 

rwi.,&d = MLw17 --1 n - 1 w-21) - PS(~W,])~,([~~J,, (27) 

where the underbrace denotes the summation over the intermediate n - I symbols: 

PdlWlT tz - I, wz]) = x . * x F;([w,. VI, iI,, . ., Vn-l, w,]). (2% -- VI=+,- 1’,! ]=+,- 
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In [Z] it was shown that 
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r+,+(n) = r-,-(n) = -r+,-(n) = -r-.+(n), (29) 

i.e. one needs only one of the four correlation functions between two symbols over a 
distance II. 

4.2. The case a = 4 (the critical value from above) 

For a = i it is not very difficult to find an analytical expression for the probabilities (25), 
expressing these probabilities in terms of integrals over the exactly known probability 
density (10). One finds the recursion relation [5] 

M[WlJ w2, . . *> 
2”-,-, 

%I) = (1 - Lo&&-- 3s+#: M[w2, w3, . . .? %I). (30) 

This means that the symbol sequence 2 is order-l Markovian [2,3] for this value of a. 
From equation (30) one derives an explicit formula for P;(gk). Insertion of this expression 
in equation (27) leads to a simple formula for the correlation between two pluses over a 
distance n : 

r+,+(n) = (-1)“&($“+‘, (31) 

see Fig. 11. (The other three correlation functions follow using equation (29).) Notice that 
the correlations die out exponentially. There is no long-range order. 

4.3. The case a = f - E (just before the critical value) 

For a = i - F one can derive the recursion relation [5]: 

P;([wl. w2, . . .) WJ) = (1 - SLJ_,,~J (2 - 2E)h-.svt I$([ w2, W3) . . . , WJ, 
[ (3 - 24*+,? 

36(1 +lZr)*’ 1, (32) 
J o’3 J’- -- 1 v&d 

0 _.__ 
;i 
_ - - - c !\I’- P-+++----- - - = = = =; - - - 

-0.3 
0 20 

) n 

Fig. 11. The correlation function y++(“) of the (+-)-sequence ? associated with the (u = +)-bungalow-tent map. 
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apart from quadratic terms in F. The first term in the r.h.s. of equation (32) goes over in 
the r.h.s. of equation (30) for t: 4 0. The second term is due to the laminar intervals. As a 
consequence the symbol sequence 2 has an infinite memory [2] just before the critical 
value. From this formula we were able to prove: 

(3.3) 

for the average length of the laminar intervals. Using the recursion relation (32) in 
combination with equation (27), one obtains 151: 

and 

y+,+(O) = g + O(E). (34) 

(see Fig. 12). The third term in the formulae (34) and (35) is of order (5)” and therefore 
decays rapidly and independently of the value of E. In contradistinction, the second term is 
of order exp (-2~n) and will have decreased considerably only for values of n greater than 
the average length of the laminar intervals {n,,,) = l/k. In the limit n 4 33 we obtain: 

0.2 

Y,fJ=d 

, 

0 

-0.2 

lim y+.+(n) = k + D(F). (37) n-.x 

I 111i73.l 

-.- -“,,I. -. . 7/720 

-------- -------... _ ----- 29/720 

Fjg. 12. The correlation function y+,-(!l) just befo rc the critical value, L.C. for u = t - c with F = O.WI 
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Thus the correlations do not die out, indicating the existence of long-range ordering just 
before the critical value, see Fig. 12. Also notice that the slowly decaying term in equations 
(34) and (35) is of order 

y+,,.(n) - e -+ (38) 

where 

1 Z= 
log(1 + 2F-, 

(3% 

goes to infinity if ~3 0, i.e. if the critical value is approached from below. This 
phenomenon is called critical slowing down. 

4.4. The case lim, 10 k - E (the critical value from below) 

Taking the limit E--, 0 in equations (34)-(36), one finds the following expressions for the 
correlation function y +,+(n): 
For n = 0: 

r+,+(O) = g$. (40) 

For 12 is odd: 

and for 12 = 2, 4, 6, . . .: 

y+,+(n) = -& - g;y, (41) 

(42) 

see Fig. 13. One sees that the correlation function, after a short ‘set-in’ time, remains 
oscillating for ever between the values 31/720 and -29/720. This indicates a very strong 
communication over large distances since the difference between odd and even is always 
felt, in contradistinction with the case of finite E, see Fig. 12. 

Fig. 13. The correlation function y+,+(n) in the limit o 1 i. 
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In summary, the following behaviour of the correlation functions occurs if the control 
parameter a is raised from i - E to i: For a = i - E, the correlation function y+,+(n j shows 
a critical slowing down. The characteristic critical-slowing-down time T is equal to the mean 
length of the laminar intervals ( nIarn) - l/2&. Notice that the correlation function does not 
go to zero, but to the value 71720. So, even for finite E there is a (weak) long-range order. 
In the limit E J 0 or, equivalently, a t i, the characteristic critical-slowing-down time has 
become infinite, and the correlation function keeps oscillating between 31/720 and 
-29/‘720. But if E 1s exactly equal to zero (a = k). long-range order is absent: the 
correlation function falls off exponentially. 

Thus the iterated bungalow-tent map shows a discontinuity in the correlation function, 
with long-range order on the critical value from below being absent on the critical value 
from above. 

5. RELATION WITH ISING CHAINS AND CONCLUDING REMARKS 

The symbolic (+-)-description of the jump phenomenon in the iterated bungalow-tent 
map can be regarded as a phase transition [14] of a one-dimensional Ising model in which 
the probabilities of the various configurations are specified rather than the interactions 
between groups of spins. The transition between the one description to the other can be 
achieved by applying a generalized Legendre transformation. It would be of interest to 
investigate this feature in more detail and to find out what kind of interactions would 
produce the phase transition. Here we have no definitive answer. but we would anticipate 
that the transition would yield an Ising model with rather complicated many-body 
interactions. The non-occurrence of successive minuses in the symbolic description (cf. the 
remark just after equation (25)) suggests a relation to antiferromagnetic systems rlose to 
paramagnetic behaviour. 

Formally, we can link the (+-)-description of the bungalow-tent map (but also. more 
generally. of any one-hump FDC map) to an Ising model using the relation: 

flE(iG’;) = -log P&i;‘“> - log zi, (43) 

where /3 is the inverse temperature and E($“) is the energy of a configuration Y?‘. ZL is 
the canonical partition function of an Ising chain with Ic spins. Spins are associated with the 
symbols )t’i in the usual manner: spin up corresponds to a plus and spin down to a minus. 
The pair correlation function r(n) between two spins on a distance n < k is then linked to 
the symbolic correlation functions as follows: 

exp (- fiE(zk)) 

= 4lf+.+(n). (45) 

as follows after a straightforward calculation [IS]. So the long-range order as well as the 
discontinuity in the symbolic correlation function of the bungalow-tent map at the 
transition (a t k) + (a = i) is translated to the spin-pair correlation function (k -+ m), 
indicating a real phase transition in the one-dimensional Ising chain. This phase transition 
appears to be different from the phase transitions of the Dyson type [16] in the case of 
long-range interactions. 
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