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The method of classical trajectories is used to model indirect reactive collisions of three collinear
atoms. A very simple yet representative potential is considered: two kinematically coupled Morse
potentials. The collision process displays chaotic scattering in the whole range of energy of interest.
This transient chaos is studied in detail through a hierarchic analysis of the singularities of the
time delay function. A ternary organization is found in the set of scattering trajectories built on
a similar structure of the nonattracting chaotic set of bounded orbits. The origin of the ternary
structure is explained in terms of simple periodic orbits and their invariant manifolds. Tools of
the thermodynamical formalism are used to extract global quantities characterizing the scattering
process. The implications of our findings from the point of view of chemical reactivity studies are

also discussed.

PACS number(s): 05.45.+b, 34.10.+x

I. INTRODUCTION

We shall analyze in this paper a chemically reactive
collision from the standpoint of classical chaotic scat-
tering theory. It has been known for a long time that
classical models for chemical reactions exhibit chaos, in
its dynamical sense [1]. It has also been suspected for a
long time that the mixing properties of chaotic dynamics
might explain some statistical laws observed in unimolec-
ular reactions (half collisions) [2]. In this paper, we do
not want to elaborate on general schemes but rather fo-
cus on a very simple yet representative example in order
to show that chemical reaction models may be analyzed
thoroughly by means of chaotic scattering. Consequently
it will be possible to give a quantitative description of
the particular chaos observed as well as justifications for
the study of the role of chaotic scattering in the quan-
tum description of chemically relevant systems. We thus
find it useful to introduce the subject from two points of
view: the standpoints of chemical physics and classical
mechanics.

While the classical approach has been pursued earlier
by a number of authors, it has been somewhat dormant
more recently. Nowadays, owing to the formalization of
chaotic scattering theory (for a recent review, see Ref. [3]
and references therein), classical trajectory models of re-
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activity rest on firmer ground and are actively studied
again from this point of view [4-8].

A. Chemical physics standpoint

Many models have been proposed and examined in
great detail in order to study reactive collisions like the
one we will investigate here: A+BC < ABC < AB+C,
where A, B, and C are symbols for single atoms. It is
not our purpose to review those models critically in any
way [9]; we just describe here cursorily the approxima-
tions that may lead to a model as simple as the one we
will use.

Nearly all attempts to analyze reaction probabili-
ties are based on the Born-Oppenheimer approxima-
tion (apart from some exceptional configurations such
as Jahn-Teller effects or potential surface crossings; see
Refs. [10,11])). Separating the rapid motion of the elec-
trons from the slower motion of the nuclei or of the atom
as a whole, it leads to eigenenergies U;(R) depending first
on the nuclear coordinates, denoted here collectively by
R, and second on the quantized electronic states indexed
by i. These energy sheets serve as potential energies in
the nuclear Schrodinger equation; the model potential we
will use in our classical approach is thought to represent
one of them.

These potential surfaces exist in a configuration space
of dimension 3N — 6 for a general molecule of N atoms
(N > 2). For N = 3 or 4 already, solving the nuclear
Schrédinger equation is a formidable numerical problem.
Consequently, for many years, the semiclassical or classi-
cal formalisms have seemed to be very attractive in order
to calculate reaction probabilities more easily because of
the enormous difference, in practice, between the partial
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differential equations of quantum mechanics and the ordi-
nary differential equations of classical mechanics [12-14].

Chaotic scattering has been discovered experimentally
in the Ericson fluctuations of nuclear physics [15]. Several
kinds of experiments on waves have demonstrated the
validity of the ideas of quantum chaotic scattering [16,17].
Another justification for studying classical models, which
is our main point, is the existence of matrix elements
Syo' 770 (E) wildly oscillating with E [7]. The reaction
particularly studied in this respect was collinear: C +
NO & CNO ¢« CN + O, a reaction of importance in
combustion after-processes.

From an experimental point of view, it makes sense to
consider a collinear model with a two-dimensional config-
uration space [18,19]. The potential used for the analysis
was of the type called PQLEPS [18], showing a deep hole
in the CNO region. Indications of quantum chaotic scat-
tering are latent in these calculations. Also, preliminary
studies have shown that classical chaos occurs, although
no characterization was attempted. These results on a
potential of no prominent specificity are the main in-
centives that lead us to the study presented here. We
have chosen to simplify the problem at hand by using
two coupled Morse potentials (see Sec. II). These poten-
tials retain enough features of the more flexible PQLEPS
potentials to show effectively chaotic classical scattering
and yet are simple enough to allow for large scale classical
calculations.

B. Classical mechanics standpoint

Although classical chaos is now a well established
branch of dynamics, its analysis has long been restrained
to bound systems where a representative point stays for-
ever on the chaotic invariant set. Nowadays, however, un-
bound systems with transient chaotic behavior are well
understood too [20] and show, in our opinion, notable
simplifications with respect to their bound counterparts,
as almost all trajectories spend a finite amount of time
inside the system. Simple models such as the three-disk
system—the equivalent of the famous billiards for closed
systems—have been completely analyzed [21-23]; they
demonstrated the existence of transient chaos for Hamil-
tonian dynamics.

Chaotic dynamics occurs as soon as homoclinic or het-
eroclinic intersections generate an overcountable infinite
array of unstable periodic and quasiperiodic orbits. In
a well-chosen Poincaré section, each of the periodic or-
bits is represented by an invariant set of points and the
linearized neighborhood of each such points shows two
eigendirections: the direction of the stable manifold, with
a Lyapunov exponent A, < 1, and that of the unstable
manifold, with A, > 1. The Liouville theorem enforces
AsAy = 1. In order for chaotic scattering to occur, it is
sufficient that the stable and the unstable invariant man-
ifolds extend into the asymptotic regions defined by one
or more coordinates increasing to infinity.

The closure of the set of all the unstable periodic or-
bits is the invariant set—the nonattracting chaotic set
[24], as it is also called—of the chaotic scattering dy-
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namics. This set has the properties of a fractal Cantor
set and is characterized by exponential scaling laws, pro-
vided no islands of stable orbits are present [there are
no Kol’mogorov-Arnol’d-Moser (KAM) tori]. This situa-
tion is called hard chaos, as opposed to soft chaos where
stable islands coexist with unstable orbits. In the latter
case, the invariant set has a different fractal character
with nonexpontential scaling laws near KAM barriers.

It is the invariant set that determines the general prop-
erties of the particular dynamics at hand; hence it will be
one of the main subjects of the present study. The bundle
of stable manifolds emerging from the invariant set inter-
sects the plane of possible initial conditions at infinity in
an overcountable set of points. Each of these points rep-
resents the initial asymptotic conditions of a trajectory
running eventually into a trapped orbit in an infinitely
long time. (Similarly, the intersections of this plane with
the unstable manifolds correspond to final asymptotic
motions of trajectories emerging from the orbits of the
nonattracting chaotic set.) As this set of intersections is
connected to the invariant set by the Hamiltonian flow,
it also displays a fractal structure closely related to that
of the invariant set [24-26].

Chaotic scattering has thus the distinctive feature that
the invariant set of the dynamics projects itself smoothly
towards infinity through the Hamiltonian flow; therefore,
it is represented “faithfully” in the asymptotic plane.
As a consequence, we have access to the intricacies of
the nonattracting chaotic set through several observables:
the deflection function and the time delay function [23,24]
as well as the cross sections [27]. We are thus able to an-
alyze the structures that exist in the chaotic motion. In
this paper, we will explore in details the hierarchic or-
ganization of the invariant set through the fractal set of
singularities in the time delay function and perform a
quantitative analysis of the chaos at hand using tools of
the thermodynamic formalism [28-30].

In simple examples such as the three-disk problem and
other systems, the validity of the above ideas have been
shown [24,23]. Also, problems of relevance in atomic
physics have been tackled, both time independent [31]
and time dependent [32]. As soon as the potentials be-
come more realistic, soft chaos seems to be the rule, even
if islands of stability need not occupy a large portion of
the phase space.

The rest of the paper is organized as follows. In Sec. II
we derive the Hamiltonian most useful for our study. Sec-
tion III describes the chaotic behavior in details, while
in Sec. IV we analyze the fractal properties of the set
of singularities by exploring its hierarchic organization.
Section V discusses the structure of the invariant set and
its manifolds, explaining the key features of the hierarchy
observed. Section VI presents a global quantitative de-
scription based on the knowledge of the hierarchic struc-
ture using thermodynamic formalism. In Sec. VII we
present conclusions and perspectives.

II. COLLISION HAMILTONIANS

In this section we sketch the derivation of the Hamil-
tonian one uses to couple the motion of the three atoms.
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We restrict our treatment to a collinear configuration
(Fig. 1) and consider only potential interactions of the
central atom B with its two neighbors A and C, neglect-
ing any interaction between A and C. Then a general
Hamiltonian is of the form

2 2 2
’}-[:pA+pB+pC

2ma 2mpg 2me

+Vag (Ira—rs|) +Ves (Irc —rsl). (1)
By changing to relative coordinates r;; = |1'A — rp| and
T12 = |rc — rB|, called local coordinates here, and their

conjugate momenta p;1,p;2 and by eliminating center-
of-mass motion, we obtain the usual Hamiltonian with
kinetic coupling of the two oscillators AB and BC"

2 2
P + Piz

1
= _— Vilr) + Va(r
smap | 2men mBPuPzz + Vi(rin) 2(ri2)

(2)

with map and mcp being reduced masses [mr; =
mrmy / (my+my)]. We note that sometimes a potential
coupling of the type V3(r;1,72) is used together with the
kinetic coupling; we shall not proceed in that direction
here.

In the picture of local coordinates the motion of a rep-
resentative point is not that of a point moving freely in
potential hills and valleys, precisely because of the ki-
netic coupling. In order to restore the image of a pure
potential motion, one changes from kinetic to potential
couplings [33]. In the simpler case when the atoms A and
C are identical (called the ABA or symmetric case), the
kinetic coupling can be removed by introducing two new
kinematic parameters

1
cos = —— | (3)
1+mp/ma
m (ma +mp)

m= ——=_ =/, (4)

2my4 +mp
Oblique coordinates are then defined as
To1 = 711 + 712 COS 0, (5)
To2 = T2 8in 0 (6)

and the conjugate momenta p,; and p,» follow easily.
The Hamiltonian in oblique coordinates, with potential
coupling, becomes

1
H=5— (P51 +P22) + Vi (To1,702) + Va (102) . (7)

Now we go further towards a tractable Hamiltonian
by specifying the potential V. As mentioned earlier, we

A B C

i T2 T

FIG. 1. Local coordinates r;; and r;2 in a collinear config-
uration.

choose the most common model potential that has an
acceptable asymptotic behavior, namely, the Morse po-
tential,
2
: (8)
This has been used for a long time to model inter-
atomic interactions leading eventually to the formation of
molecules. A large number of works have dealt with the
classical and the quantum properties of coupled Morse
Hamiltonians from various aspects [34-42]. In particu-
lar, several studies of the unbounded dynamics have dis-
cussed the role of unstable periodic orbits [43,44] and
the invariant set [1,45-47]. The transition from regular
to chaotic scattering has been treated analytically [48].
Most recent investigations use the complete theory of dy-
namical systems and chaotic scattering [4-6,8]; however,
none of them gave a full-fledged hierarchic analysis of the
system that will be presented here.

Let us now define reduced—dimensionless—quantities
for the classical dynamics [49]. The following set of trans-
formations introduces the relevant scaled quantities (dis-
tinguished by tildes from the unscaled ones):

VMorse(T) = D (1 - e—a(r—R=)>

1

ar, (9)
ﬁ = p/ V 2mABD) (10)
t=ay/2D/mapt, (11)

H =H/2D. (12)

Since in the following we will use reduced oblique coordi-
nates only, obtained from r,; and r,;, we apply the sim-
ple notation ¢;,92 and p;,ps for these new coordinates
and their conjugate momenta, respectively. In these vari-
ables, the reduced Hamiltonian for the ABA case is

.2

00w+ 3)

+% {1 — exp [— (q1 — gpcot 6 — Re)] }2

+% {l—exp [— (qz/sinH—Re)]}z- (13)

We will use the above form of the Hamiltonian in the
whole subsequent study. It contains only two indepen-
dent parameters, namely, the mass ratio mp/m 4 and the
quantity E = E /D, which is the energy measured in the
units of the dissociation energy D of the ABA complex.
(In other words, E is just twice the total reduced energy
E /2D of the system.) They determine the overall topol-
ogy of the flow in phase space. In these units, the motion
is bounded for 0 < E < 1 and unbounded otherwise. For
E > 2, each of the separate AB oscillators is unbounded
and the problem becomes meaningless.

’;:l:

III. CHAOS IN THE ABA SYSTEM

In this section we first summarize how_permanent
chaotic behavior appears at low energies (E < 1) and
evolves into chaotic scattering (transient chaos) for E >
1. We discuss then how chaotic scattering trajectories
may be analyzed and grouped into a hierarchic organi-
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FIG. 2. Equipotentials, in reduced oblique coordinates of
two coupled Morse potentials. Contour levels are in units
of E = E/D. The equilibrium distance is R. = 1.46. The
symmetry axis of the figure [q1 = g2 tan(6/2)] is shown as
a mixed line. The radial line corresponding to an angle 6 is
also drawn. S marks the symmetric stretch unstable periodic
orbit (£ = 1.2). I™ and I* suggest the infinitely distant
periodic orbits with a freely oscillating AB diatom and a free
fixed A atom at infinity. The labels OW and IW denote the
outer and the inner walls of the potential, respectively (see
Sec. IVB). The two arrows indicate the incoming and the
outgoing channels for a reactive collision.

zation. We fix the mass ratio at mp/my4 = 2 for the
analysis; later, we will comment on to what extent our
findings depend on that quantity. The shape of the po-
tential surface for this mass ratio is shown in Fig. 2.

A. Bounded chaos

For E < 1 the phase space of the system is bounded
since none of the coordinates can exceed a certain limit
value. This bounded phase space is conveniently repre-
sented through an appropriate Poincaré section, e.g., by
observing q; and p; at g2 = R.sinf and p, > 0. In
this representation, each periodic orbit of the system ap-
pears as a finite set of discrete points, while quasiperiodic
motion corresponds to closed curves (KAM tori). The
chaotic orbits fill certain regions of the Poincaré surface.

At low energies (E 2 0), the behavior of the system
is determined by two basic periodic orbits: the symmet-
ric and the antisymmetric stretch of the ABA complex,
just as in the case of two coupled harmonic oscillators.
A generic orbit of the system is a quasiperiodic motion
around one or both of the basic orbits [Fig. 3(a)]. Raising
the energy, some of the tori break up, through bifurca-
tions of periodic orbits, into smaller ones. Chaotic mo-
tion appears in their neighborhood and occupies larger
and larger portions of the phase space with increasing

energy [Fig. 3(b)]. At E ~ 0.5 the symmetric stretch

5479

becomes unstable and for E close to 1, the phase por-
trait of the system consists of a stable island—Ilocated
around the antisymmetric stretch orbit and surrounded
by a KAM torus—immersed in a sea of chaotic motion
[Fig. 3(c)]. Many studies have already described this sce-
nario [35,37,47].

0.6
05
0.4 -
03
02|
0.1 -
00 |
01
-02
-03
-04
-05
-0.6

P1

(o]

P1

Pt

FIG. 3. Phase space portrait of the bounded ABA case
(E < 1) for the potential of Fig. 2 at different energies in the
Poincaré section g2 = R.sinf. The cross and the triangle
denote the two primary period-one orbits, the symmetric and
the antisymmetric stretch, respectively. The energy values
are E = 0.2 (a), 0.5 (b), and 0.8 (c). Please note the change

of scale between the different phase space portraits.
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B. Scattering orbits and transient chaos

The structure of the phase space changes drastically
when passing through £ = 1. At this energy, one of
the A atoms may go arbitrarily far away from the re-
maining AB pair. Two new periodic orbits appear, char-
acterized by the independent oscillatory behavior of the
pair and the asymptotically free translation of the sin-
gle atom. These orbits are located at an infinitely long
distance from the center of the potential at (g1,¢2) =
[Re(1 + cos ), R, sinf]; for this reason we call them in-
finitely distant orbits. Becoming part of the phase space,
they expand it to infinity along the lines ¢, = R.sin@
and q; = R, + gz cot 6.

For E > 1 the unboundedness of the phase space re-
sults in the possibility of scattering orbits starting from
an asymptotic free motion of an A atom toward the os-
cillating AB molecule (incoming part) and ending in the
same or the other A atom running away from the remain-
ing AB pair to infinity (outgoing part). If the outgoing
part also runs along the incoming channel, then the col-
lision is nonreactive (the two A atoms do not change
roles), while an escape through the other channel means
that the reaction has happened. The asymptotic parts
are connected via an irregular behavior around the cen-
ter of the potential. These scattering orbits are born
from the bounded chaotic motion outside the stable is-
land. Nevertheless, initial conditions located inside the
island will result in bounded motion even for £ > 1 as
long as the island exists. This means that the new type
of scattering orbits still coexist in phase space with the
old bounded behavior inside the island. The island in-
terior is not accessible for the unbounded orbits as they
cannot cross the KAM barrier around the stable part of
the phase space. '

The new type of unbounded motion is an appearance
of transient chaos, i.e., chaotic motion observed on a fi-
nite time scale. These scattering orbits show an extreme
sensitivity to initial conditions due to the chaotic parts in
them. The sensitivity is manifested in the fact that dif-
ferent quantities characterizing the scattering can vary
very irregularly as a function of a (continuous) parame-
ter in the initial conditions. For example, the time that
a trajectory spends close to the center of the potential
(scattering time or time delay) as a function of the ini-
tial condition parameter shows infinitely many singular-
ities sitting on a fractal set characterized by self-similar
properties. A study of the time delay function [23,50]
allows one to obtain important quantities characterizing
the chaotic set. We can also say that the singularities of
the time delay function are a “fingerprint” of the chaotic
set on the parameter axis.

The detailed properties of chaotic scattering depend on
the mass ratio and the energy of the system. However,
there are wide regions in this parameter space charac-
terized by qualitatively similar scattering behavior. This
can be understood by looking at the shape of the poten-
tial: it consists of two ‘“channels” connected smoothly
around the center of the potential (Fig. 2). The mass
ratio sets the angle between the axes of the channels,
through Eq. (3). This quantity, together with the energy,
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will determine the rules how a trajectory coming in along
one channel can follow its way into the other channel or
return to the same one. These rules can be approximated
by simple geometric arguments [18] or extracted directly
from the behavior of the scattering orbits of the system.
In Sec. IV, we will follow the latter approach in analyzing
chaotic scattering in our model.

C. Time delay function

The hallmark of chaotic scattering in experimental or
numerical data is the presence of singularities arranged
in a fractal structure in the scattering functions [24,26].
To obtain, e.g., the time delay function 7'(b), one takes
a family of initial conditions with a variable parameter b
for scattering (a line or a simple curve in configuration
space or phase space) and measures the time 7' needed
for the particle to leave the scattering region as a func-
tion of that parameter. The irregular behavior of this
T'(b) function is caused by the existence of a nonattrac-
tive chaotic set in phase space. Each singularity of T'(b)
corresponds to a bounded orbit, a member of the chaotic
set: the scattering time is infinite for the exact initial con-
dition with which we “hit” (asymptotically) the bounded
orbit and can be arbitrarily large for nearby initial condi-
tions. Since there is an infinite array of bounded orbits,
there are infinitely many singularities in the time delay
function and the self-similar ordering of the singularities
reflects just the fractal structure of the chaotic set.

Now let us turn to the particular evaluation and anal-
ysis of the time delay function T in the ABA model.
We consider the motion of a representative particle in
the double Morse potential according to the Hamiltonian
(13). The state of the ABA complex is represented by the
position and the momentum of this particle. Our choice
for the set of initial conditions is the following: (i) we fix
the incoming translational momentum p; < 0 of the par-
ticle in the horizontal (g;) channel at g1 = geut > Re (We
choose gyt so that the potential term V; is less than 107°
there so that we can neglect it) and (ii) change the start-
ing phase of the oscillatory motion in ¢ as our parameter
b in the initial conditions. For the sake of simplicity, we
define this phase variable ¢ = b as if the oscillation were
harmonic between the extreme points gmax and gmin al-
lowed by the values of E and p;:

_‘iﬂ_) , (14)

(p = arccos (2
9max — 9min

where ¢ = (gmax + gmin)/2. As long as E is not close

to 2, where the oscillation becomes unbounded, ¢ can be

connected by a smooth transformation to the phase of

a Morse oscillator defined by the appropriate action and

angle variables.

The trajectories started from these initial conditions
will go into the central part of the potential and even-
tually leave it along one of the channels. To obtain the
time delay function T'(¢), we simply measure the time
needed for the trajectory to escape, i.e., to get farther
from the origin ¢; = g2 = 0 than the cutoff value gy in
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one of the channels. Figure 4(a) shows this function for.
E = 1.2 and p; = —0.4. It contains smooth parts and
singular peaks in a self-similar fashion. If we magnify a
small part of the picture between two nearby peaks as
in Fig. 4(b), we can see a picture that is similar to that
in Fig. 4(a), i.e., it shows again smooth regions between
the peaks arranged in a way that is similar to the overall
pattern of peaks.

If we want to analyze this structure in details, a slightly
different, discretized, version of the time delay function
may be more appropriate. This modified function X (¢)
measures time by counting how many instances a given
trajectory crosses a certain Poincaré surface of section.
To obtain meaningful results, the Poincaré section must
have the following property: escaping trajectories can
cross it only a finite number of times and the number of
crossings has to be an increasing function of the time a
trajectory spends in the central region of the potential.
The axes of the channels do not comply with the first
requirement so we cannot use them for the purpose of

1000 — T T

800 r

(o]

o

o
T

time delay

400 r

200 r

initial phase
1000 T T T — —
(b)

800 1

600 r b

time delay

400 r 1

200 1

O 1 L 1 1 1
2.4 2.6 2.8 3 3.2

initial phase

FIG. 4. Time delay function T'(yp) for initial conditions
with (a) E = 1.2 and p;, = —0.4 and (b) the blowup of the
part 2.3 < ¢ < 3.3. The initial phase ¢ is measured in radians
and its range covers a whole cycle; the time delay is given in
dimensionless units [see Eq. (11)].

counting crossings. Instead, we choose as our Poincaré
section the symmetry axis of the potential, which coin-
cides with the symmetric stretch orbit in the configu-
ration space. Indeed, this line is not crossed any more
when a trajectory escapes in a channel, but all nearby
orbits that turn back somewhere in that channel instead
of escaping must cross it at least once more before they
leave. In addition, this line is known to be a periodic or-
bit dividing surface [43], meaning that all other periodic
orbits (except the infinitely distant ones) cross it. This
also implies that scattering trajectories spending more
time following a given periodic orbit will produce more
crossings than other trajectories that escape sooner.

Based on the above considerations, we define the dis-
crete time delay X (p) as the number of crossings of a
trajectory with the symmetry axis [51]. The discrete
time delay function for the previous values of E and p,
is shown in Fig. 5(a). Its similarity to Fig. 4(a) is obvi-
ous with the main difference that the smooth “valleys”
between the singularities in T'(yp) are replaced with flat
plateaus. That means that all trajectories chosen from
the same valley produce the same number of crossings. It
is also worth noting that the parity of this number tells us
which channel the trajectories escape through, so we can
conclude that all the trajectories from a given smooth
valley use the same channel for exit.

In order to illustrate the dependence of the time delay
function on the particular set of initial conditions, we
show plots of the discrete version for two other choices.
For Fig. 5(b), we set p; = —0.05 with the same energy
as before, while Fig. 5(c) was made for £ = 1.4 and
p1 = —0.55. If we compare these new plots and that in
Fig. 5(a) to one another, they look very different globally.
Yet a careful examination of their small-scale structure
shows some basic similarities, as we explain in the next
section.

IV. ANALYSIS OF THE DISCRETE TIME
DELAY FUNCTION X (¢)

A. Hierarchic organization of orbits

The self-similar structure of the time delay function
X () is built on the singularities that reflect the orga-
nization of the closed orbits of the chaotic set. There-
fore, our analysis should concentrate on the irregular re-
gions containing the peaks and disregard the smooth val-
leys between them. However, there are infinitely many
smooth regions appearing on all length scales and, in
addition, the smaller a valley, the larger the number of
all similar-sized valleys in the time delay function. That
means that we cannot get rid of them in one step; instead,
we have to set up a hierarchic schedule of deleting them.
As a first step we erase the widest smooth regions leav-
ing behind a few blocks that we regard as sitting in the
first level of the hierarchy. In a second step we magnify
these blocks one by one and look for the most promi-
nent valleys inside them. Those valleys are the ones to
delete next in order to obtain a set of smaller blocks that
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we put in the second level. In general, to construct one
more level of the hierarchy we have to look into the ele-
ments of the previous level and divide them into smaller
units by erasing the most prominent smooth regions in-
side. As a result of this procedure, we obtain better and
better approximations of the set of the singularities by
climbing higher and higher in the hierarchy. Since these
singularities are connected to the chaotic set of the sys-
tem, we gain important information on the organization
of that object simply by examining the higher levels of
the hierarchy.

At this point, two important questions arise: (i) which
properties of the time delay function justify this hierar-
chic approach and (ii) how can we decide precisely which
valleys to delete at a given level? The answers can be ob-
tained by looking at the trajectories that sit in the main
valleys. As we have noted earlier, trajectories of initial
conditions inside a given valley produce the same num-
ber of crossings with the symmetry axis and consequently
escape along the same channel. Since these orbits start
from a connected part of the set of initial conditions and
also appear as a single smooth part in the time delay
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function, they must be similar in their behaviors around
the center of the potential, i.e., their central parts are
qualitatively the same. In other words, a smooth trans-
formation connects all the orbits of a single valley to one
another and the variation in their (continuous) time de-
lays mainly comes from the outgoing parts: they run
“uphill” when leaving the system and the diverging edges
of the valley in T'(¢) are produced by trajectories with
more of their energy in vibration at the expense of trans-
lation in the asymptotic outgoing part. In contrast, two
trajectories chosen from two different valleys show char-
acteristic differences in their central parts even if they
produce the same number of crossings. A few simple or-
bits chosen from various valleys of the time delay function
are shown in Fig. 6.

By comparing trajectories representing different val-
leys, one can observe that, in general, the narrower a
valley, the more complicated the corresponding orbits.
In most cases, the complexity of orbits is reflected in
the number of crossings characterizing the valley, i.e.,
the time delay is higher in narrower valleys. (There are,
however, exceptions to this tendency, for a reason to be

30
25
&
£ 20
(73
w
Q
o
s 15
@
el
E 10
c
5
0 i 1 i i
-3 -2 -1 0 1 2 3
initial phase
30 T . . . T T T
(d)
25 1
[22]
g 20r
3
o
(5]
- 15 l
I
fe)
E 10t «
c
5 |- L o -
— h e cfd g
0 1 i 1 L 1 L 1 1
-04 -0.2 0 02 04 06 08 1 12 14

initial phase

_FIG. 5. Discrete time delay functions X (y) for initial conditions with (a) E =12 p = —04; (b) E=1.2 p; = —0.05; (c)
E = 1.4, p1 = —0.55; and (d) the blowup of the block on the left of Fig. 5(c). The labels a—h under the graphs in Figs. 5(c)
and (d) identify the valleys that are represented by the corresponding typical trajectories in Figs. 6(a)—6(h), respectively.
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A CJ\-I
B

FIG. 6. Scattering trajectories representing various valleys
of the time delay function in Figs. 5(c) and 5(d). All the
windows show ¢; horizontally and g2 vertically in the ranges
1 < q1 < 8and 0.5 < g2 < 6; the dashed lines represent the
edges of the constant energy surface at-E = 1.4. The tra-
jectories come in from the right along the horizontal channel
starting at g1 = gcut With p; = —0.55 and with the follow-
ing initial phases: @, = 5.4, pp = 1.6, p. = 0.5, pg = 0.62,
pe = 0.22, o5 = 0.577, g = 0.732, and ¢, = —0.06. The or-
bits are characterized by the number of loops n performed in
the central region. From those shown here (a) and (b) corre-
spond ton =1, (c) and (d) ton = 2, (e) and (f) ton = 3, and
(g) and (h) to n = 4. Only the orbits (e)—(h) contain further
loops between the entrance and exit ones; they are denoted
by the labels S, I, and A according to their types (see text)
next to their locations in the plots (the entrance and the exit
loops are not marked). In some sense, the orbits (f)—(h) can
be obtained from orbit (¢) by inserting an S loop and loop
sequences IA and II into its central part, respectively. Note
that the discrete time delay is the same (X = 5) for orbits (c)
and (h), although their central parts are different.

explained later.) The increasing complexity of the orbits
in smaller valleys suggests that we should use this prop-
erty in our analysis. For example, the widest valleys in
Fig. 5(c) represent trajectories that perform just one sim-
ple loop in their central part with two or three crossings
[Figs. 6(a) and 6(b)]. They are our natural candidates
for deletion in the first step of our analyzing procedure.
Indeed, they represent the simplest possible orbits in the
system; the largest valleys from inside the two blocks con-
tain trajectories performing at least one more loop and
two more crossings before they exit [cf. Fig. 5(d) with
Figs. 6(c)-6(h)].

In other words, all the trajectories from the blocks be-
tween the valleys just deleted at a certain level are longer
and more complicated than those from the omitted val-
leys. Obviously, the simplest ones of these longer orbits
sit in the most prominent valleys inside the blocks, so
that these can identify the valleys to be deleted next.

That also means that the orbits of these newly selected
valleys are just one “step” more complicated than the
ones in the valleys deleted at the previous level. Look-
ing at Fig. 6, one can see that the complexity of orbits
grows in units of “loops”: to obtain more complicated or-
bits from simpler ones, we can insert short self-crossing
pieces into their central parts [compare, e.g., the orbits
in Figs. 6(f)-6(h) to that in Fig. 6(c)]. In the sense used
here, the term “loop” always refers to well-localized el-
ements in the structure of an orbit with characteristic
shapes, to be defined in the next paragraph, that can
easily be identified in the graph of the orbit.

To be specific, the first or entrance loop is defined by
the first self-crossing point when drawing the graph of a
scattering trajectory; the last or exit loop can be found in
a similar way as the first loop of the time-reversed orbit.
These loops separate the central part of the trajectory
from the incoming and the outgoing asymptotic motions.
A careful examination of the orbits shows that the central
part itself can be decomposed into loops by considering
three different loop types.

(i) The S loop is a narrow orbit piece close to the
symmetry axis like the one in the middle of the orbit
in Fig. 6(f).

(ii) The I loops are located in the channels of the po-
tential; a whole string of such loops is formed when the
particle runs into a channel and turns back somewhere
instead of escaping. The central part of the trajectory in
Fig. 6(h) contains a string of two I loops.

(iii) The A loop runs across the symmetry axis and
connects the two sides of the angle formed by the outer
wall of the potential. The narrow loop in the orbit of
Fig. 6(g), running parallel to the entrance loop and in-
tercepting an I loop, is an example.

It is worth noting that, in a sense, these loops imitate the
basic periodic orbits of the system. In fact, we chose the
labels S, I, and A to underline the similarity of these loops
to the symmetric stretch, the infinitely distant orbit, and
the antisymmetric stretch, respectively.

The above definitions of loops also imply that some
of the self-crossings in a trajectory are more important
than others in the sense that they finish the creation of
new loops of the types just described, while the other
self-crossings are merely the results of overlaps between
separate orbit pieces in the configuration space. For ex-
ample, in the two-loop orbit of Fig. 6(c) the first and the
last self-crossing give rise to the entrance and the exit
loop, respectively, but in between there are four addi-
tional self-crossing points created by the overlap of these
loops. In addition, there may also be self-crossings out-
side the central part involving the incoming or the out-
going asymptotic motion [see Fig. 6(c) with the outgoing
part running over the two I loops or the nonreactive or-
bits of Figs. 6(b), 6(d), and 6(e) with an infinite number
of self-crossings between the incoming and the outgoing
asymptotic motions|; however, we never take these self-
crossings into account when counting loops in a trajec-
tory.

Using the loop types described above, a scattering tra-
jectory can be considered as a sequence of loops con-
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nected by simple orbit parts and the number of loops in
the central part is a characteristics of the complexity of
the trajectory [52]. Our detailed studies show that this
tendency of orbit complexity increasing in terms of loops
is general in the hierarchy of our system: the trajecto-
ries of the valleys at the next level of the hierarchy may
be obtained from the trajectories deleted at the previ-
ous level by adding one more loop to their central parts.
Since there are more than one type of loop to add, the
number of all the valleys to be omitted at a certain level
increases fast as we progress in the construction. It is pre-
cisely this hierarchic property of the orbits representing
the valleys of X (¢) that justifies the hierarchic approach
in our analysis. In addition, it gives us a clue of how to
identify the valleys to be deleted at the next level.

B. Ternary hiearchy

We performed the above analysis for the time delay
functions shown in Figs. 5(a)-5(c). In Fig. 5(c), the two
main blocks between the largest valleys (one-loop orbits
with X = 2 or 3) form the first level of the hierarchy.
One can observe that these blocks apparently have sim-
ilar inner structures, which means that we can continue
the refinement with just one of them (the reason for this
similarity will be explained in Sec. V). The blowup of the
block on the left [Fig. 5(d)] reveals many narrower valleys
with four or five crossings; we have to choose those with
the simplest orbits. It turns out that there are two valleys
with two-loop orbits [see Figs. 6(c) and 6(d)], sitting on
the two sides of the narrow spikelike part in the middle of
the block, with time delays 4 and 5. By deleting them we
create three smaller blocks for the second level of the hi-
erarchy: the central “spike” and two larger regions. If we
look into these new blocks, we again see similar patterns:
many valleys with low numbers of crossings, but there
are just two with the simplest orbits on the two sides
of a central narrow spike with time delays ny + 2 and
ng + 3, where ng denotes the height of the lower plateau
next to the block outside. This rule for the division of
blocks seems to apply at all levels available to our anal-
ysis yielding always three times as many new blocks at
the new level as we had at the previous one. This proce-
dure thus provides us with the successive refinements of
a ternary hierarchy. Figure 7 shows the location (along
the ¢ axis) of the blocks found at the first few levels.

The analysis revealed the same ternary structure in the
cases of Figs. 5(a) and 5(b) in spite of the fact that they
differ substantially at a first glance from Fig. 5(c). The
most striking difference is that the valley with two cross-
ings, together with a certain part of its neighborhood, is
missing from both graphs; it looks as if the remaining
parts were merged smoothly [the merging points being
around ¢ = 4.15 and 0.6 in Figs. 5(a) and 5(b), respec-
tively]. Actually, the missing part is smaller for Fig. 5(b),
where the initial translational momentum is smaller; the
reason for this will be clear in Sec. V. However, in spite
of the differences at the basic level, these data apparently
exhibit the same ternary organization as that of Fig. 5(c)
up from the second level of the hierarchy: the refinement
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initial phase

FIG. 7. The first three levels of the hierarchy for £ = 1.4
and p; = —0.55 [cf. Fig. 5(c)]. The intervals at level n corre-
spond to initial conditions that lead to trajectories perform-
ing at least n loops before their final exit loops. Each interval
splits into three parts one level higher in accordance with the
ternary hierarchy (the splitting of the smallest intervals at
level 2 is invisible at this printing resolution). The lengths
of these intervals will be used in Sec. VI as the basis of a
quantitative description.

process splits every block into three at each new level.

When refining a block, we have to choose the right val-
leys to delete from a large (in principle, infinite) number
of valleys with the same time delay value. The complex-
ity of some orbits is apparently not reflected faithfully
by their discrete time delays X. It turns out that all
these orbits create additional I loops inside a channel by
running into them but being unable to climb uphill high
enough to escape: after a few vibrational cycles, they
turn back toward the center [see Fig. 6(h)]. Actually,
this is a consequence of the fact that the infinitely dis-
tant orbit sitting at the end of the channel does not cross
the symmetry axis; thus the I loops approaching it do not
produce crossings with the Poincaré section either. This
represents a certain drawback of our choice of the sym-
metry axis as our Poincaré section. However, this choice,
as we have seen, separates correctly along the ¢ axis the
orbits with characteristically different central parts and
does not mix them together even if they are given the
same discrete time delay X (¢). A comparison with the
continuous time delay function T'(¢) can convince us in
that respect. The distortion caused by this choice for the
discretization remains just a small inconvenience.

The explanation of the ternary hierarchy can also be
found by looking at the scattering orbits in details. To
simplify our treatment, we will loosely talk about the
“walls” of the potential (see Fig. 2) as if we had a hard-
wall billiard system to describe some qualitative features
of the orbits: we will refer to the inner wall inside the
angle formed by the channel axes and to the two parts of
the outer wall divided by the symmetry axis. Using these
terms, we observe that all the trajectories start their cen-
tral parts in qualitatively the same way (see Fig. 6): dur-
ing the entrance loop, they run up to the part of the outer
wall opposite the incoming channel and then they turn to
the other part where they are deflected toward the inner
potential wall that can send the orbits into either of the
channels. Because of time reversal symmetry, the orbits
exhibit the same pattern reversed in the exit loop. Con-
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FIG. 8. Schematic plot illustrating the orbit patterns found
when refining a block. The orbit parts shown here belong
to five different trajectories taken from the same sixth-level
block around ¢ = 0.805 in Fig. 5(d). We show the orbits
after their sixth loops finished when they are still close to one
another and all heading toward the inner potential wall. The
separation occurs in the seventh loop: two of the trajectories
start their exit loops (solid lines), while the other three can
continue without escaping at this point (dashed lines). The
two exit patterns correspond to the two valleys splitting the
block into three. The dashed orbit parts represent the three
possible continuation patterns (see text) and the three new
blocks found at the seventh level of the hierarchy.

sequently, there are just two ways for an orbit heading
towards the inner wall to escape: it can be deflected to
either of the two parts of the outer wall because of the
convex shape of the inner wall. Then the only possibility
to leave as soon as possible is turning to the other part of
the outer wall and finally run into the channel opposite
that side (Fig. 8).

With these two simple routes for exit, the family of all
orbits from a block at a given level of the hierarchy is
divided into three smaller blocks containing trajectories
that continue their wandering around the center. The
orbits that do not escape at this point can therefore con-
tinue their course in the three ways sketched in Fig. 8:
they either start an S loop around the symmetry axis
or the inner wall deflects them towards one of the chan-
nels where they can perform further I and A loops. The
role of the inner wall and its convex shape explains why
the orbits can be thought of as organized in loops: the
loops send the surviving trajectories back towards the in-
ner wall where they again face the “choice” between the
exit and the continuation patterns just described above.
We can also see that the three ways of continuing an or-
bit are closely related to the three loop types introduced
earlier and this fact can be used to construct a symbolic
dynamics for the scattering orbits [53].

V. THE INVARIANT SET AND ITS MANIFOLDS

So far, we have based our analysis on some impor-
tant characteristics of the scattering orbits. The origin
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of these features can be best understood by looking at
the properties of the nonattracting chaotic set respon-
sible for the chaotic features of the scattering and the
behavior of the stable and the unstable manifolds of the
orbits belonging to the set. In particular, we will focus
on the invariant manifolds of the two infinitely distant
orbits since they are, in a sense, on the border between
bounded and unbounded motion. The topological prop-
erties of these manifolds will help explain the organiza-
tion of scattering orbits and the dependence of the time
delay function on the choice of initial conditions.

We look at the above objects in the Poincaré surface
of section, spanned by the coordinate g, along the sym-
metry axis of the potential and the parallel momentum
Ps when a trajectory crosses it. To avoid ambiguities, we
should also require that the normal momentum be posi-
tive, but the symmetry of the potential allows us not to
do so: starting two trajectories from a given point of the
Poincaré section with opposite normal momenta yields a
pair of orbits where one is just the mirror symetric image
of the other. Since all the “right” crossings (i.e., with pos-
itive normal momenta) of the one orbit coincide on the
section with all the “wrong” crossings of the other, our
choice of registering all the crossings in a trajectory also
yields the points representing its mirror symmetric pair.
In other words, this choice identifies in the Poincaré sec-
tion the orbits that are mirror symmetric images of each
other.

A. Invariant set

The periodic orbits consist of discrete points in the sec-
tion, so the invariant set appears as a set of points too,
while the cross section of their invariant manifolds with
this surface form smooth, but rather complicated, curves.
There are two anomalously represented periodic orbits:
the symmetric stretch orbit, which coincides in configura-
tion space with the symmetry axis, is represented by the
border of the constant energy surface, while the infinitely
distant orbit does not produce crossings at all with the
section. However, this does not cause any difficulty in our
studies since all other trajectories approaching these or-
bits and their invariant manifolds are correctly registered
in the Poincaré section.

First, we visualize the invariant set in the Poincaré
section. It consists of all bounded orbits (i.e., those es-
caping neither forward nor backward in time) that are
accessible for scattering trajectories. The invariant set
can be best represented by plotting the points of a very
long chaotic trajectory that does not escape. Although
it is practically impossible to find an actual trajectory
with this property because of the global instability of the
nonattracting chaotic set, one can construct a so-called
saddle straddle trajectory: a long sequence of tiny in-
tervals, so that they cannot be distinguished from true
points on a plot, sitting on the points of a true trajec-
tory of the invariant set. The procedure is known as the
proper interior maximum (PIM) triple method [54]. We
start by choosing a sufficiently short segment I in the
Poincaré section that crosses (straddles) the stable mani-
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fold of a bounded orbit and then we iterate it by following
the trajectories of its end points in the section. The dy-
namics will bring the iterates I (k =1, 2, 3,...) of the
segment closer and closer to the invariant set along the
stable manifold while expanding them in the unstable di-
rection (the curvature of the iterates can be neglected if
the starting segment is short enough). When the length
of a certain iterate, say I,,, exceeds a preset limit value
8, then we stop to refine it. We do this by starting trajec-
tories from a few points distributed in I,,, and recording
their escape times. If we find a triple of starting points
with the property that the escape time is longer for the
middle point than for its neighbours (the fact that I
crosses a stable manifold ensures this), then we consider
this subsegment as the refined iterate I,,, and follow its
images in the Poincaré section. The sequence of these
small intervals follows a true trajectory of the invariant
set, so by plotting it we obtain a good approximation of
that set.

With this method, we plotted in Fig. 9 the chaotic sets
for E = 1.2 and 1.4. One can clearly see the self-similar,
fractal structure of the sets. Globally, they consist of
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FIG. 9._Chaotic set in the Poincaré section for (a) E=1.2
and (b) F = 1.4 as approximated by long trajectories ob-
tained through the PIM triple method.
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a large central part and a narrow border region, the for-
mer related to the channels with the infinitely distant or-
bits and the latter representing trajectory parts close to
the symmetric stretch orbit. In fact, this structure is re-
lated to the ternary organization: the central part can be
thought of as two identical parts, belonging to the two in-
finitely distant orbits, exactly coinciding in the Poincaré
section because of the symmetry of the potential. Glob-
ally, the ternary structure rests on these “three” parts
and its repetition in smaller and smaller scales can be
clearly observed in the central part. The border region
is very thin due to the strongly unstable nature of the
symmetric stretch, so the details of the structure are not
visible there.

For both energy values, there is a stable island around
the antisymmetric stretch orbit that appears in the plot
as an empty region with a triangular shape inside the
large domain. It looks empty because scattering trajec-
tories cannot enter this region. The triangular shape is
due to a nearby hyperbolic period-three orbit whose in-
variant manifolds, together with the remnants of broken
tori around the island, form a “cage” containing the is-
land as well as a very thin layer of chaotic trajectories
around it. This fact clearly illustrates the delicate inter-
play known as squeezing between a stable island around
a fixed point and a nearby period-three resonance [55]
found in generic Hamiltonian systems with a quadratic
nonlinearity. The presence of a stable island also im-
plies that there are some restrictions, called pruning [56]
in modern parlance, in ternary hierarchy due to the spe-
cial universal hierarchy of periodic orbits near KAM tori.
This means that certain scattering trajectories that were
otherwise allowed by the rules of the ternary organization
are forbidden; the cage that makes it difficult for scatter-
ing orbits to enter the immediate vicinity of the island
also makes it difficult to leave it once they are inside, so
there are no orbits spending just a short time close to
the island. Correspondingly, the ternary organization of
blocks in the time delay function breaks down in very
small regions containing trajectories that enter the cage.
In these regions, some blocks cannot be split into three
smaller blocks by the rules given in Sec. IV. This type
of pruning will remain as long as the stable island exists.
These flaws, however, are rather minor and affect only
the very high levels of the hierarchy, due to the “screen-
ing” effect produced by the nearby period-three orbit.
We checked for £ = 1.2 that the first signs of this prun-
ing appear well above the n = 50 level, so the restrictions
are very subtle indeed.

Another interesting detail appears in the plot for E =
1.2 [Fig. 9(a)]: the central and the border regions are con-
nected by two thin filaments. As we will discuss later in
connection with the properties of the invariant manifolds,
they signal the presence of another source of pruning in
the system. In fact, the filaments are better considered
as the results of “collisions” of certain corners of the cen-
tral and the border regions, which makes certain types
of trajectories disappear. The fact that the filaments are
thin suggests that these restrictions are subtle too, i.e.,
the forbidden orbits are long and thus the pruning affects
the higher levels of the hierarchy only. For larger energies
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such as E = 1.4, the filaments disappear together with
the restrictions they represent.

B. Stable and unstable manifolds

Now we explain the large scale structures of the invari-
ant set and the time delay function by concentrating on
the invariant manifolds of the infinitely distant orbits.
The unstable manifold of a periodic orbit is generated
by trajectories started slightly off the orbit in the un-
stable eigendirection of the linearized local dynamics. In
the case of the infinitely distant orbits, that means we
start trajectories in a channel far away from the origin
with different vibration phases, as described in connec-
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FIG. 10. (a) The first two branches of the stable and
the unstable manifolds of the infinitely distant orbit in the
Poincaré section for £ = 1.2. (b) The unstable branch Us
with S;: it winds around U; many times due to trajectories
that can almost escape after their second crossings with the
symmetry axis. The stable branch S3 (not shown to keep the
figure clear) is the mirror image of U3 with respect to the g;
axis. Together with S;, Sz, U1, and U, these curves set the
frame for the invariant set in Fig. 9(a).

tion with the time delay function, but with almost van-
ishing incoming translational momentum. One such or-
bit produces discrete points in the section; when plotting
the whole family of such orbits, these points draw up the
unstable manifold as a set of curves. Since this family
is parametrized by a phase variable, they yield a closed
curve at the first crossing with the section that we call
the principal or first branch U;. Subsequent crossings of
the trajectories yield the iterates Uy, Us,... of the prin-
cipal branch; we will refer to them as the second, third,
etc., branches or iterates of the unstable manifold.

Figure 10 shows for £ = 1.2 the first three branches
of the unstable manifold of the infinitely distant orbit
together with the branches S; and S of its stable man-
ifold. These latter branches were obtained by making
use of the symmetry of the system: in reverse time the
unstable manifolds turn into stable ones, which, com-
bined with the mirror symmetry of the potential, means
that the stable branches S are just the mirror symmet-
ric images with respect to the g, axis of the unstable
branches Uy in the Poincaré section. We may observe
that these curves—together with S3, which is the mir-
ror image of Us—set a frame for the invariant set: the
outer edges of the central and border parts of Fig. 9(a)
coincide with pieces of these basic manifold curves and
the corner points of the set are just the crossing points
of the manifolds. It is also worth noticing that the first
and the second branches are simple closed curves, but
from the third iterates on, the curves become extremely
complicated.

It can be checked that the scattering trajectories reach
the Poincaré section inside the first unstable branch U;,
which also implies that they escape by entering into the
domain of the stable branch S;. Our initial conditions
used in the construction of the time delay function can
be represented by the locations of the first crossings of
their trajectories: they form, therefore, a closed curve
inside U;. In order to understand the effect of the choice
of initial conditions on the global structure of the time
delay function, we present in Fig. 11 our initial condi-
tions for £ = 1.2 with the two choices p; = —0.4 and
—0.05 and a few branches of the stable manifolds going
through the first unstable branch. We realize that a small
initial translational momentum leads to a curve close to
the first unstable branch, as expected; in fact, U; prac-
tically coincides in Fig. 11 with the outer curve of initial
conditions. Larger initial momenta cause this curve to
shrink since large incoming speeds allow little vibration
and thus variation in the initial condition by the phase
variable.

Since the singularities of the time delay function ap-
pear at the crossings of the initial condition curve with
the stable manifold branches, we can explain some of our
earlier findings on the global appearance of this func-
tion. The “double” structure [see, e.g., the two blocks in
Fig. 5(c) with similar inner properties] is simply caused
by the fact that we used initial conditions that lie along
the topological equivalent of a circle: they cross the sta-
ble branches twice. Indeed, we can see that the sequence
of the corresponding valleys in the two main blocks of
Fig. 5(c) are reversed as a consequence of this circular
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FIG. 11. Initial conditions used for Figs. 5(a) and 5(b), as
represented in the Poincaré section by the first crossings of
the trajectories (solid lines), together with branches S2—Sg of
the stable manifold (dotted lines). The leftmost and right-
most stable manifold curves are pieces of Sz and Ss, respec-
tively. The inner closed curve corresponds to trajectories
started with p; = —0.4, while the outer curve, practically
coinciding with the principal unstable branch U,, represents
initial conditions with a small incoming translational momen-
tum p; = —0.05.

topology. The shrinking of the initial condition curve
with increasing initial translational momentum implies
that for large incoming speed the curve cannot cross
all the stable branches going through the first unsta-
ble branch, therefore some singularities will disappear
from the time delay function. This gives the explanation
for the “missing part” mentioned earlier and answers the
question why it is larger in Fig. 5(a) than in Fig. 5(b).
Looking at the stable and the unstable branches can
also be helpful in understanding particular properties of
the scattering orbits. One can observe in Fig. 10(a) that
the first stable and unstable branches do not cross, which
means that there can be no scattering trajectory in the
system having only one crossing with the symmetry axis
of the potential. That explains why the scattering or-
bits start (and finish) their central parts with the loop
described in Sec. IV. The branches U; and S, how-
ever, intersect each other, leading in turn to intersec-
tions between Us and S; (the dynamics maps U and Sk
to Ugy1 and Sk_1, respectively). This implies the ex-
istence of simple trajectories escaping after their third
crossings [Fig. 6(a)]. The intersection points belong to
heteroclinic one-loop orbits connecting the two infinitely
distant orbits to each other (by “connecting” we mean
that these orbits start their courses in one channel and
finish it in the other with vanishing translational mo-
mentum). Similarly, crossings between U, and S; would
imply that there exist one-loop homoclinic orbits, con-
necting an infinitely distant orbit to itself, and nearby
scattering orbits with X = 2 [Fig. 6(b)]. In fact, as one
can notice in Fig. 10(a), this is not the case for £ = 1.2:
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the first unstable branch does not cross the second stable
branch. (This is the reason why we cannot see a plateau
with X = 2 in the time delay function at this energy even
for small incoming speeds.) They are, however, very close
to that situation; thus a slight increase in the energy or
the mass ratio can create crossings between these two
branches (see, e.g., Fig. 3 in Ref. [46] for a mass ratio 2.5
at the same energy).

These observations can also shed light on the origin of
the ternary organization. The basic homoclinic and het-
eroclinic trajectories between the infinitely distant orbits
make it possible for a trajectory to leave along any of the
two channels, no matter which channel it is in at a certain
moment, thus creating the possibility for scattering tra-
jectories to “choose” between the two exit patterns drawn
in Fig. 8. This means that the ternary hierarchy is a con-
sequence of the existence of both the one-loop homoclinic
and heteroclinic connections between the infinitely dis-
tant orbits. The fact that the one-loop homoclinic orbits
are missing for £ = 1.2 also means the ternary hierarchy
at this energy is slightly distorted: There must be blocks
at higher levels that cannot be split into three because
one of the exit loop possibilities is not allowed, so we
encounter pruning again. The forbidden orbits turn out
to be those that contain a long string of I loops. Since
the source of this pruning is the missing homoclinic orbit
(i-e., the missing crossings between S; and U; and simi-
larly between S; and Uz), the forbidden scattering orbits
are closely related to the thin filaments in Fig. 10(a): the
filaments run between these manifold branches, so they
can exist only as long as the homoclinic orbit does not.
Thus we explained the nature of the pruning mentioned
in Sec. VA in connection with the filaments. We also
checked in the time delay function that the pruning is
weak indeed: one has to look at higher levels (n > 10
in this case) to see its effect. This is a slightly stronger
pruning than the one related to the stable island; how-
ever, since the branches U; and S; are close and will
cross at higher energies, this form of pruning can disap-
pear completely. This shows that the ternary hierarchy
provides a very good approximate description of the or-
ganization of orbits in our cases.

VI. SCALING PROPERTIES AND THE FREE
ENERGY FUNCTION

A. General formalism

The hierarchic analysis of the time delay function has
provided us with successive approximations covering the
fractal set of the singularities. These data can be used to
extract important quantities characterizing the chaotic
scattering process and the self-similar, or scaling, prop-
erties of its chaotic set. For this purpose, a quantity of
central interest reflecting the hierarchic organization of
chaotic scattering is the free energy F(3). This func-
tion reflects the scaling behavior observed by following
trajectories with increasing complexity around the scat-
tering center [23], i.e., it is just based on the information
obtained in our construction of the hierarchy. )
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The free energy is introduced in the spirit of the ther-
modynamic formalism of dynamical systems [28-30] via
the relation

3 @) ~ et (15)

where (3 is an arbitrary real number and n > 1. lg")

denote the lengths of parameter intervals Ii(") along the
initial condition axis that cover the blocks sitting in the
nth level of the hierarchy. It is an essential part of the
definition of the intervals at level n that trajectories start-
ing in the interior of a given interval should perform the
same qualitative behavior for up to n steps, i.e., loops
in our case, in the system. As we have seen, the nth-
level blocks are defined by just this property. Figure 7
shows the intervals of the first few levels for the initial
conditions used for Fig. 5(c).

It is worth briefly summarizing some basic features of
the free energy function [23]. The graph BF(8) vs g is
monotonic increasing with a nonpositive second deriva-
tive. The values of SF(3) taken at 1 and 0 immediately
yield two basic characteristics of the scattering process:
the escape rate and the topological entropy, respectively.
The escape rate x describes the exponential decay of
the probability P, for a scattering trajectory to survive
through n loops in the scattering center: P, ~ e™*" (for
large n). This probability is proportional to the sum of
the lengths of all intervals at the nth level, thus « also de-
scribes the exponential decay of the total interval length

3,1 with n. Thus
k= F(1). (16)

In the presence of nonexponential scalings (power law
decays), this definition forces k = 0. The topological en-
tropy Ko can be defined as the quantity characterizing
the exponential growth of the number N(n) of intervals

Ii(") with the level index n. Since the total number N(n)
of intervals is obtained from Eq. (15) at 8 = 0, we con-
clude that

Ko = —(BF(B))|s=o0- 17)

Note that K, also appears as the exponential growth rate
of the number of smooth pieces (valleys) in the time delay
function. For an unrestricted ternary hierarchy Ko = 1n3
and pruning makes it decrease due to the fact that some
intervals disappear.

We will concentrate on other quantities as well that
are, in our view, equally important characteristics of the
scattering process. These are the average Lyapunov ex-
ponent A of the dynamics on the chaotic invariant set
and the fractal dimension Dg of the set of singularities
in the time delay function. They can be obtained as the
derivative of BF((3) taken at 8 = 1 and as the particular
(3 value where the free energy vanishes, respectively, i.e.,
as

X = [BF(B)'|g=1 (18)

and
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F(Dg) = 0. (19)

It is worth noting that the fractal dimension of the nonat-
tracting chaotic set itself is just 2Dy due to the Hamil-
tonian nature of the dynamics.

B. Results

We calculated the free energy from the discrete time
delay functions shown in Figs. 5(a) and 5(c) by compar-
ing the sums in Eq. (15) for two adjacent levels (4 and
5) of the hierarchy. The results are shown in Fig. 12; the
most important quantities extracted from them are pre-
sented in Table I. We obtained In3 for the topological
entropy in both cases, suggesting a complete ternary hi-
erarchy since the pruning effects mentioned earlier would
only show up at n large enough. The value of k can be
used to estimate the average number 7 of loops that scat-
tering trajectories taken from inside the two main blocks

BF(B)

BF(B)

FIG. 12. Free energy function BF(8) for (a) E = 1.2 and
(b) E = 1.4 as calculated from the first five levels of the hier-
archy (solid line). The dashed lines show the results obtained
from the first four levels only; for 3 > 1 they differ substan-
tially from the solid lines due to nonexponential scalings in
the system. )
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TABLE 1. Global quantitative characteristics of chaotic
scattering in the double Morse potential. Values given below
are those extracted from the data of Fig. 12. Uncertainties
are of the order of 10%. See Sec. VI for further details and
explanations.

Quantity Value for
E=12 E=14
Ko In3 In3
Do 0.85 0.77
Y 0.83 0.88
K 0.12 0.22
T 6.91 4.00

of the first level perform before the exit loop. Assuming
a pure exponential distribution

n=1/(1-e ") ~1/k (20)

for small k. This yields @ =~ 9 and 5 for £ = 1.2 and
1.4, respectively. The high values of X signal strongly
sensitive chaotic dynamics in the central part of the po-
tential, while the fact that the fractal dimension Dy is
rather large in both cases is in complete agreement with
the apparently dense structure of the chaotic sets.

The above quantities can also be combined to measure
the global importance of chaos in the scattering process.
The value A > 0 describes how far two typical nearby or-
bits will be repelled from each other during one loop. We
can combine it with the average number of loops 1/ a
trajectory spends in the chaotic region to form the aver-
age repelling exponent 7 that scattering orbits will “feel”:

F=AK (21)

(see Table I). Large values of this quantity imply a dom-
inant role of chaotic dynamics in the system as nearby
incoming scattering trajectories are in general separated
very far from one another during their lifetimes in the
central region of the potential. This is in accordance
with the fact that the difference A — k is equal to the
Kol’'mogorov-Sinai entropy K; [57] measuring the av-
erage loss rate of information in the system due to its
chaoticity. On the other hand, the lack of chaos corre-
sponds to the limit 7 2 1 (since K1 > 0). This is the case,
for example, when there is just one unstable bounded or-
bit in the system: then both X and k are equal to the
logarithm of the unstable eigenvalue of that orbit.

It is worth noting that 7 is also related to the infor-
mation dimension D; of the set of singularities by the
formula 7 = 1/(1 — D;). In general, D is close to the
fractal dimension Dy, so this connection supports our
argument on the role of ¥ as strong and weak chaotic
features in scattering correspond to Dg close to 1 (very
irregular scattering functions) and 0 (smooth behavior),
respectively. In addition, the approximate relationship
7 = 1/(1 — Do) can be used to check the internal con-
sistency of our results in Table I. One can see that the
values listed there fulfill this condition within their nu-
merical accuracy.

The convergence of this method, and thus the accuracy
of our numerical results, can also be checked by evaluat-
ing the free energy from two lower levels (e.g., levels 3 and
4) of the hierarchy; if the new curve does not differ sub-
stantially from the previous one, then we are in the region
of fast convergence and our quantitative results are reli-
able. Performing the comparison, the convergence seems
clearly good for 8 < 1, but becomes increasingly worse
for B > 1 (see Fig. 12). The reason for this is that there
are parts in the chaotic set, and thus in the time delay
function too, where the local scaling is not exponential.
There are two sources for this anomalous scaling in our
system: the long-distance tail of the Morse potential and
the presence of KAM tori.

The Morse potential saturates exponentially [see
Eq. (8)] to its “hilltop” value D for r — co. One can show
that the time period T}, of a single Morse oscillator with a
total energy E < D diverges as Tp(E) ~ (D — E)™1/2 as
opposed to the usual logarithmic divergence found for ap-
proaching a quadratic hilltop located at a finite distance
from the equilibrium. This implies that the infinitely dis-
tant orbits of the double Morse potential are marginally
stable and nearby orbits diverge from them slower than
exponentially. Consequently, the size of the blocks con-
taining orbits with more and more additional loops in
one channel eventually decay according to a power law
as we go higher in the hierarchy, indicating that the es-
cape time distribution in the system has a power law tail.
The scaling behavior found in Refs. [5] and [6] for similar
situations also show this power law dependence.

This anomalous scaling behavior is, however, the con-
sequence of our choice of the particular shape of the po-
tential. There are more realistic potentials without this
property (e.g., the already mentioned PQLEPS poten-
tials) and choosing one of them eliminates this source of
nonexponential scaling. On the other hand, the anoma-
lous scalings caused by KAM tori are inherent in any
generic smooth potential. Trajectories getting close to
the edge of a stable island can stay for extremely long
times in that neighborhood due to so-called cantori, i.e.,
the remnants of already broken former KAM curves.
This implies a power law decay in the distribution of long
escape times in the system [58,50]. Numerical experience
also shows [50] that the “stickiness” of the islands leads
to a (locally) distorted fractal structure of the chaotic
set, which causes the fractal dimension Dy of the set of
singularities in the time delay function to be 1.

The presence of nonexponential scalings affects the val-
ues of the quantities we calculated earlier to character-
ize the system. Since the escape time distribution has
a power law tail and the long time behavior is domi-
nated by scattering trajectories exhibiting quasiperiodic
motion in the vicinity of KAM tori for a long time, both
the escape rate k and the average Lyapunov exponent \
are expected to be zero, while the fractal dimension Dy
should approach 1, in the asymptotic limit n — oo. This
implies that the free energy reaches the horizontal axis at
B = 1 with zero slope. From its monotonic increase with
never a positive second derivative it follows that 8F(3)
has to be identically zero for any value 8 > 1. The ten-
dency toward this behavior can be seen in Fig. 12 for
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larger positive 3 values. Nevertheless, the results shown
in Table I differ significantly from their asymptotic val-
ues. This may well be due to the fact that the anomalous
scalings are connected to long orbits, so the free energy as
approximated from the lower levels of the hierarchy avail-
able to our analysis is dominated by the contribution of
shorter hyperbolic orbits with exponential scalings. Thus
one expects a crossover at higher levels in the thermody-
namic analysis from the hyperbolic type behavior to the
asymptotic form of the free energy caused by the nonhy-
perbolic orbits.

This also implies that our results as presented here
are still relevant, being the contributions of the hyper-
bolic part of the chaotic set. They describe the statisti-
cal properties of the system correctly as long as only not
too long orbits are taken into account. Since in our case
the effect of the stable island is largely screened by the
nearby hyperbolic period-three orbit, the dominant non-
hyperbolic contribution comes from the exponential tail
of the Morse potential. This means that the time range
in which our results are meaningful could be expanded
considerably by choosing a more realistic form for the
interatomic potential.

Finally, it is worth mentioning that other parts of the
free energy can provide us with useful information too.
For large negative (3 values the slope of the graph of
BF(B) tends to a constant, namely, the decay rate of the
fastest shrinking blocks in the hierarchy. Similarly, the
asymptotic slope of BF(B) for B > 1 gives the slowest
rate of shrinking in the system. In our case, the fastest
decay is produced by refining the central narrow spike in-
side a block in each step of the hierarchic analysis. The
spikes contain trajectories that approach the symmetric
stretch orbit. Indeed, our numerical results show that
the asymptotic slope of the graph for 8 <« —1 coincides
with the Lyapunov exponent of the symmetric stretch,
telling us that this orbit is the most unstable one. For
large positive 3 the asymptotic slope cannot be measured
directly due to the lack of convergence there, but its ten-
dency to move toward O is in complete agreement with
the fact that marginally stable orbits are present in the
system.

VII. DISCUSSION AND CONCLUSIONS

We have presented in this paper a thorough description
of the chaotic scattering in two coupled Morse oscillators.
Our central result is a hierarchic procedure to analyze the
structure of the nonattractive chaotic set through look-
ing at the singularity pattern of the time delay function
and the organization of scattering orbits. We found that
the set of scattering orbits is organized according to a
ternary hierarchy, at least at the lower levels, for the par-
ticular parameter values taken in the study. This follows
from a similar structure in the nonattracting chaotic set.
This hierarchy is based on the number of loops trajec-
tories perform in their central parts. By using the tools
of the thermodynamic formalism, the hierarchic analysis
also allowed a quantitative characterization of the most
prominent global features of the scattering process.

Since the actual results may well depend on the values
of the energy and the mass ratio considered as well as on
the particular form of the potential, it is worth discussing
to what extent these details may affect our findings. The
basic characteristics of the hierarchy, the approximate
ternary organization, rest on the topological properties of
the double Morse potential—mamely, two channels con-
nected smoothly to a potential well—that are common in
a large number of model potentials describing collinear
A+BC < ABC < AB+C type reactions. The origin of
the ternary nature for the symmetric Morse case can be
found in the three basic periodic orbits: the symmetric
stretch in the center and the two infinitely distant orbits
at the “end” of the channels.

The analogs of these orbits are present in other po-
tentials, possibly modified in form, but playing the same
roles in the dynamics. In a different potential with a sim-
ilar topology, the infinitely distant orbits may be replaced
by true hyperbolic orbits located at a finite distance from
the center, but their main feature, “closing” the channels
for bounded orbits, remains unchanged. Similarly, the
symmetric stretch may be deformed to a smooth curve
in asymmetric configurations without ceasing to be a pe-
riodic orbit dividing surface that can be used in counting
crossings for scattering trajectories. Therefore, we expect
that our hierarchic analysis, with appropriate modifica-
tions, could be carried out in the cases of more realis-
tic model potentials and the ternary organization itself
would show up in those systems for suitable choices of
their parameters. Indeed, the analysis of the collinear
Hgl, system in Ref. [8] showed a ternary organization in
the fully chaotic regime. However, it is clear that effects
of endo- or exo-energicity are not taken into account in
these studies, although they might drastically modify the
influence of the one or the other infinitely distant periodic
orbit. This work is still entirely to be done.

The global properties of the dynamics strongly depend
on the mass ratio through the angle 6 formed by the
channels of the potential surface. In a symmetric ABA
configuration, 6 is the only relevant parameter in addi-
tion to the energy [59]. Geometric arguments [18] as
well as other considerations [45] show that for § = 7 /k
(k = 2,3,4,...) the scattering process is dominated by
onesimple orbit pattern with just k crossings thus leaving
little room for chaotic behavior. In these cases the unsta-
ble branch Ui runs close to the principal stable branch
S1 (see Fig. 4 in Ref. [46] for k = 3). In other words, for
these special angles one has either the homoclinic or the
heteroclinic connection (for k even and odd, respectively)
between the infinitely distant orbits, but not both, so the
ternary structure cannot build up.

On the other hand, if the channel angle is in the mid-
dle of the range [n/k,w/(k — 1)], then both types of
connection exist, with ¥ and k& — 1 crossings, allowing
a larger share of chaos and a ternary organization in
the scattering. One can easily check that the mass ra-
tio mp/ma = 2 considered in this paper is somewhere
halfway between the £ = 2 and 3 cases, so that the two
basic one-loop orbits of Fig. 6 can appear. A notice-
able consequence of this feature is that one can expect
an important role played by chaos for such light-heavy-
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light type reactions when the different masses are still of
comparable size, since we are then between the £ = 2
and 3 cases. This is also a robust region in the sense
that a slight change in the mass ratio would not lead to
a completely different behavior. In contrast, for heavy-
light-heavy reactions, the larger the difference between
the masses is, the more sensitive the dynamics becomes
to even small changes in the mass ratio.

For a given mass ratio, the energy dependence of the
global phase space structure is expected to be less dra-
matic, since the energy affects only the size of the do-
mains of U,, and S,, around the locations prescribed by
the mass ratio. If these locations allow the intersections
needed for the ternary hierarchy (i.e., 6 is not close to
the specific angles mentioned above), then there exists a
critical energy E., dependent on the mass ratio, so that
above this value the basic homoclinic and heteroclinic
connections are present. Then the ternary organization
is complete (at least as far as KAM tori allow at the
lower levels of the hierarchy) and raising the energy fur-
ther changes only the structure of the immediate vicinity
of the stable island. (From Fig. 9 it is clear that for a
mass ratio of 2, at F = 1.4 we are definitely above the
critical energy, while at F = 1.2 we are slightly below it.)

Above E_ there can be no drastic changes in the
ternary hierarchy as long as the principal stable and
unstable branches do not intersect—a situation that
is closely connected to the presence of a stable island
around the antisymmetric stretch orbit. For a Morse po-
tential, the stable island remains for energies up to the
total dissociation limit £ = 2 [36,46]; for other poten-
tials, it might disappear at higher energies, leaving the
question about the range of validity of the ternary hier-
archy open. Below E., we can consider the phase space
structure as one with a pruned ternary organization; the
closer we are to the bounded case F = 1, the stronger the
pruning becomes. The above considerations indicate that
the ternary hierarchy plays a central role in the classical
models of such reactions.

It is also worth discussing the implications of our find-
ings on the hierarchic structure from the point of view
of chemical reactivity studies. Although the precise val-
ues of the scattering functions, such as T'(¢) and X (¢),
have no physical significance for an actual experimental
situation, there are various average quantities of interest
that can be computed from these functions. As we have
seen, the quantity 7 = 1/, extracted from X (p), gives
the average lifetime of scattering orbits in the central
region of the potential in terms of the number of loops
perfomed there. This number 7 can also be regarded
as an estimate of the average intermediate complex life-
time for the reaction in the appropriate natural time unit
(27/a)+/(map/2D), which is the duration of one vibra-
tion cycle in a Morse potential at low energies.

Another common subject in chemical kinetics is the
repartition of reaction products in vibrational channels
(or, equivalently, in translational energy) [60]. In order to
handle this problem in our classical treatment, one could
construct a different scattering function S(¢), in an anal-
ogous way to T'(¢), measuring the outgoing asymptotic
vibrational action S as a function of the initial phase

. This function would have exactly the same structure
as that of T'(p) with the obvious difference that at the
singularities S remains finite (taking its maximum value
allowed by the total energy) instead of diverging. One
could then use this function to calculate global quanti-
ties such as the average action S. In regular scattering
cases that would mean evaluating an integral; e.g., for
S it would read (1/27) foh S(p)dep.

For chaotic scattering, because of the overcountable
set of singularities, this is not possible unless we use the
hierarchic information. Then we can calculate the in-
tegrals within each smooth part (valley) separately and
sum them up in the order that they appear in the hierar-
chy, starting from the lowest level. Having included the
contribution of the first n levels, the terms still missing
are those of the blocks of level n+1 and higher. Since the
total length of these boxes is proportional to e™"*", our
procedure would converge exponentially fast, assuming
hyperbolic contributions only. The convergence is driven
just by the escape rate « that we learned from our analy-
sis of the time delay function. Other important quantities
can also be calculated along similar lines: as an example,
to obtain reaction probabilities one just has to add up
the lengths of all valleys with an odd discrete time delay
X, in the order prescribed by the hierarchy [61].

This shows that the knowledge of the hierarchy makes
extracting important average quantities possible. There-
fore the hierarchic analysis could play a vital role in the
study of other reaction types such as unimolecular decays
when the system can be modeled by a two-dimensional
potential. We expect that a similar analysis could be car-
ried out in those cases: all one has to do is to choose a
Poincaré section that unambiguously defines the level of
complexity of a given trajectory and then rearrange the
orbits into a hierarchy according to their complexities.
However, this approach cannot be applied in its present
form to more complicated problems, e.g., to two- or three-
dimensional reaction models, while the phenomenon of
chaotic scattering in itself is still expected to be useful
in the understanding of their properties. So far, it is
an open question how this analysis of chaotic scattering
could be extended to systems with more than two degrees
of freedom.
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