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Modeling Domain Knowledge 
Ushg Explicit 
Coneepfualiza#ion 

Ameen Abu=Hanna and Wouter Jansweiier, University of Amsterdam 

AP PLICATIONS ARE CHARACTER- 
ized by the tasks and domains involved. For 
example, we can talk about a planning ap- 
plication for an elevator system, or the task of 
diagnosing digital devices in general. 
Knowledge modeling can therefore be di- 
vided into two conceptual subactivities: mod- 
eling the task and modeling the domain 
knowledge. If properly designed, the sepa- 
rate parts can be reused: Considerable parts 
of a task model can use different domain 
models, and vice versa. However, this does 
not always happen. Commonly, domain 
knowledge is reentered for every new knowl- 
edge-based system, making system con- 
struction expensive. 

Parts of the domain knowledge partake in 
many tasks and can be reused if properly 
specified and organized. Moreover, this or- 
ganization can be designed to support flexi- 
ble reasoning. In this article we discuss an 
explicit conceptualization of the domain 
knowledge, at the heart of its organization. 
A conceptualization is the objects presumed 
to exist and the relationships and functions 
among them.’ We augment the conceptual- 
ization with reusable annotations to form the- 
ories about the domain knowledge. The an- 
notations and the conceptualization guide the 
construction of applications and support flex- 
ible reasoning during problem solving. 

A FRAMEWORK BASED ON EXPLXZT 
CONCEZ’TVALIZATZONS COMPLEMENTS THE TASK- 

MODELING APPROACH. IT SUPPORTS FLEXIBLE 
REASONING DVRlNG PROBLEM SOLUNG, ANZI LETS 

DOMAZN MVOWLEDGE BE REUSED. 

Task-oriented approaches and the con- 
ceptualization. Most approaches to the mod- 
eling of problem-solving knowledge are 
task-oriented and usually provide a task- 
method specification in which tasks are real- 
ized by problem-solving methods. They 
focus on analyzing and modeling the tasks 
where the domain knowledge is implied by 
the way it will be used. For example, the Tark 
Structure view prescribes a way to structure 
task knowledge, specify control knowledge, 
and access domain knowledge.* A task- 
method specification such as the Task Struc- 
ture View is a recursive decomposition of 
tasks into problem-solving methods that can 
be decomposed into subtasks. A problem- 
solving method points to the domain knowl- 
edge needed to perform the task to which the 
method belongs. This view virtually struc- 
tures, albeit implicitly, the domain knowl- 

edge. From a domain viewpoint, two impor- 
tant issues related to the task-oriented ap- 
proaches are the reusability of domain 
knowledge and the flexibility of reasoning. 

Reusability. Can domain knowledge be mod- 
eled without a task in mind? On the other 
hand, can problem solvers be specified with- 
out an idea of the domain knowledge avail- 
able? These questions show the two extremes 
of the interaction hypothesis problem (the in- 
teraction being between the task and the ap- 
plication domain).3 

We take the view, consistent with the rel- 
ative interaction principle of CommonKads,4 
that although modeling domain knowledge 
should consider its use, a considerable body 
of the knowledge is useful for a broad fam- 
ily of tasks. This knowledge can be reused, 
possibly after its customization. For exam- 
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Figure 5. Part of a model-type theory including mainly 
annotations of model types. 

annotations, we might find relevant knowl- 
edge that can give rise to the execution of 
new problem-solving methods. This is espe- 
cially useful when a problem-solving method 
is stuck because the knowledge it needs is 
not available; the navigation of the graph 
may discover new paths of reasoning. 

The conceptualization, which underlies 
the ontology, provides general classes of do- 
main knowledge that together with their an- 
notations form a convenient medium that the 
task and its methods can use. The conceptu- 
alization and ontology are task-independent 
in the sense that they serve a variety of tasks 
without specifically committing to one. The- 
oretically, the problem-solving methods that 
use the conceptualization are not different 
from other problem-solving methods. 

Framework for modeling 
domain knowledge 

Using the idea of explicit conceptualiza- 
tion, we developed a framework for model- 
ing the domain knowledge, that comple- 
ments the task-modeling viewpoint. Like the 

task-model approach, our framework makes 
relevant metaknowledge explicit, and it ab- 
stracts from implementational detail to pro- 
vide a knowledge-level description. 

This framework must meet five knowl- 
edge-engineering requirements: 

l Robustness of reasoning. 
l Reusability across tasks. 
l Reusability across applications. 
l Modifiability and maintainability. 
l Support for knowledge acquisition. 

We use five key techniques to meet these 
requirements. First, our framework supports 
different model types. Second, the conceptu- 
alization links the models with each other. 
Third, we augment conceptualization terms 
with reusable annotations that are meaningful 
to the task. Fourth, the framework explicitly 
maps knowledge to its role in reasoning. 
Fifth, we distinguish different generality lev- 
els of domain knowledge. Although we focus 
mainly on technical device models, our 
framework is more general-its components 
have no inherent device dependency. 

We’ll now describe our framework in 
more detail and show how these techniques 
meet the requirements. 

Representing model types. Tasks reuse 
knowledge that can be preelicited and orga- 
nized in a lump unit called a model. A model 
is a description of a world that might be the 
real world or an abstract world (such as an- 
other model). It consists of statements in 
some language that follows a defined syntax. 

Models can view the world from different 
viewpoints, implying different types of mod- 
els of the same world. The different view- 
points can reflect, for example, the structural 
view (such as components and connections, 
as in Figure 2), the predictive view (such as 
behavior and function of structural compo- 
nents), or the physical view (such as me- 
chanical or electrical). In this article we focus 
on the structure and predictive models be- 
cause they are widely used in many tasks in 
model-based reasoning, and are often avail- 
able from the design process. 

According to their viewpoints, we label a 
model by a type (structure, for example) that 
is a property of the model. This assumes that 
there are models that are not specific for one 
task only, but that correspond to a body of 
knowledge to which a variety of tasks fre- 
quently refer. So, by labeling this knowledge 
with a model type and including the notion of 
a model type in the explicit conceptualiza- 
tion, we provide a handle so the task can 
compactly refer to the domain knowledge. 
For example, a task that reasons about the ef- 
fects between adjacent physical components 
may require a “topological model” as a con- 
dition for its performance. Alternatively, the 
problem-solving viewpoint could define 
model types that are specifically compiled 
for the task; however, this compilation often 
is not reusable for other tasks. 

Figure 4 shows four types of car models. 
The description of an entity is in italics next 
to its symbol. For example, the bold solid 
arrow connecting the rectangles labeled 

56 BEST COPY AVAILABLE 
IEEE EXPERT 

-- 



Figure 3. lhe task structure’s use of the conteptuolization and annotation: (a) task-method decomposition of diagnosis, (b) graphical specification of the conceptualization (ontology), 
(0 annatatiom of terms from the caoceptualization. 

The ontology in Figure 1 b treats “compo- l Knowledge organization: The ontology would cause enormous proliferation of 
nent” and “engine” as concepts although they can organize knowledge bases so they are checking problem-solving methods. Much 
have different natures; while the concept “en- better accessed, modified, and reused. of the knowledge we are trying to capture is 
gine” appears in the theory about the car, the l Reasoning: The ontology can be used to- not specific to a theory of diagnosis but can 
concept “component” often does not. The lat- gether with the knowledge base as a model be modeled as part of the domain and reused 
ter term has a metacharacter and is more gen- that a task can consider during reasoning. for different tasks. 
eral. If the term “component” appears in the We need a more general theory about the 
knowledge base, then it usually merely points We are most concerned with the last two domain that exempts the problem-solving 
to the ontology. Such distinctions are impor- uses. Generally, the ontology is meaningful methods from overcommitments to the do- 
tant, and we aim to identify and use them to only for the knowledge engineers who adapt main specifics. For example, the theory 
organize knowledge. the tasks and problem-solving methods ac- should know that gasoline, water, and oil are 

An ontology is different from a syntax cordingly, because they share the background all liquids, and that transparent conduits that 
specification. First, an ontology is more ex- theory that lets them interpret the terms’ transport liquid can be seen flowing. Only at 
pressive because it can prescribe the seman- meaning. However, if we “ground” the mean- this point is the fact that something can be 
tics of the terms (for example, the intensional ing of some terms into the problem-solving “seen flowing” (which is reusable knowledge 
definition “primitive components are com- methods, then the conceptualization can be for many tasks) related to its role in diagno- 
ponents without structural-part-of rela- meaningful to the reasoning itself. sis. Such a theory can be based on an ontol- 
tions”). Second, an ontology facilitates porta- ogy that includes such terms as “conduits” 
bility because it describes the knowledge Explicit conceptualization and the task de- and “liquids” as part of the conceptualiza- 
base’s meaningful structure without com- sign. Consider a simple diagnostic task that tion, and that can be enriched with such an- 
mitting to a specific internal representation. operates on a structure model by asking notations as “seen flowing.” 
This means that while systems may vary in about the components and conduits that are Figure 3 shows a possible configuration of 
their syntax, they can still commit to the same “upstream” from a complaint. For example, the simple diagnostic task that operates on 
ontology. Third, as we illustrate in this arti- if the complaint concerns the output of com- an ontology. The ontology in the figure is a 
cle, an ontology can be meaningful not only ponent C in Figure 2a, then the task will 
during knowledge acquisition or verification, 

graphical representation of an abstract spec- 
check component C first, conduit b next, then ification of the conceptualization. The solid 

but also during problem solving. This, how- component B, and so on, until it arrives at a arcs in the ontology denote generalize- 
ever, demands additional knowledge around fault. We can view this method as a subtask specialize relations, and the dashed arcs de- 
the conceptualization. that is decomposed into two methods: sug- note other relations between concepts. The 

gest-hypothesis (component or conduit) and check-by-seeing method in the task structure 
Uses of ontokgies. An ontology can be viewed check-hypothesis. We can further specify the is added as a submethod of the check- 
as an interface between the knowledge base check-hypothesis method when knowledge hypothesis method. The knowledge engineer 
and the external world. It has four major uses: about conduits is available. For example, in should map terms such as “seen flowing” 

Figure 2b, if we know that conduit a is trans- into its diagnostic context. 
l Sharability: Knowledge engineers who parent and transports gasoline, then we can The specification of the conceptualization 

wish to share their knowledge bases (partially) check this conduit by seeing the and its annotation can support flexible rea- 
should commit to the same term defini- gasoline flow or by feeling that the conduit is soning because they can drive the tasks and 
tions, as determined by the ontology.8 damp. One way to add this knowledge is to methods without prespecifying, and some- 

* Knowledge acquisition: Because the on- treat check-hypothesis as a subtask and times overconstraining, their control. For ex- 
tology eventually includes application- decompose it into more specific problem- ample, when reasoning about the concept 
specific terminology, it can be used in solving methods that apply to the features of “conduit” in Figure 3, we know that it is at- 
knowledge-acquisition tools that directly conduits (or components). tached to a port, which in turn can be con- 
interact with domain experts; it effectively This solution is not realistic, and it hinders netted to other ports; that it belongs to a 
avoids errors in the acquired knowledge reuse. In a car domain, for example, there are component that can be part of other compo- 
because the constraints on the form and about 60 different material types, from nickel nents; and so on. While navigating the graph 
contents of the knowledge can be appl&L9 to nylon, each with its own features. This of the ontology and considering the attached 
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annotations, we might find relevant knowl- 
edge that can give rise to the execution of 
new problem-solving methods. This is espe- 
cially useful when a problem-solving method 
is stuck because the knowledge it needs is 
not available; the navigation of the graph 
may discover new paths of reasoning. 

The conceptualization, which underlies 
the ontology, provides general classes of do- 
main knowledge that together with their an- 
notations form a convenient medium that the 
task and its methods can use. The conceptu- 
alization and ontology are task-independent 
in the sense that they serve a variety of tasks 
without specifically committing to one. The- 
oretically, the problem-solving methods that 
use the conceptualization are not different 
from other problem-solving methods. 

Framework for modeling 
domain knowledge 

Using the idea of explicit conceptualiza- 
tion, we developed a framework for model- 
ing the domain knowledge, that comple- 
ments the task-modeling viewpoint. Like the 

task-model approach, our framework makes 
relevant metaknowledge explicit, and it ab- 
stracts from implementational detail to pro- 
vide a knowledge-level description. 

This framework must meet five knowl- 
edge-engineering requirements: 

l Robustness of reasoning. 
l Reusability across tasks. 
l Reusability across applications. 
l Modifiability and maintainability. 
l Support for knowledge acquisition. 

We use five key techniques to meet these 
requirements. Fist, our framework supports 
different model types. Second, the conceptu- 
alization links the models with each other. 
Third, we augment conceptualization terms 
with reusable annotations that are meaningful 
to the task. Fourth, the framework explicitly 
maps knowledge to its role in reasoning. 
Fifth, we distinguish different generality lev- 
els of domain knowledge. Although we focus 
mainly on technical device models, our 
framework is more general-its components 
have no inherent device dependency. 

We’ll now describe our framework in 
more detail and show how these techniques 
meet the requirements. 

Representing model types. Tasks reuse 
knowledge that can be preelicited and orga- 
nized in a lump unit called a model. A model 
is a description of a world that might be the 
real world or an abstract world (such as an- 
other model). It consists of statements in 
some language that follows a defined syntax. 

Models can view the world from different 
viewpoints, implying different types of mod- 
9s of the same world. The different view- 
Joints can reflect, for example, the structural 
view (such as components and connections, 
1s in Figure 2), the predictive view (such as 
pehavior and function of structural compo- 
nents), or the physical view (such as me- 
:hanical or electrical). In this article we focus 
an the structure and predictive models be- 
:ause they are widely used in many tasks in 
model-based reasoning, and are often avail- 
able from the design process. 

According to their viewpoints, we label a 
model by a type (structure, for example) that 
is a property of the model. This assumes that 
there are models that are not specific for one 
task only, but that correspond to a body of 
knowledge to which a variety of tasks fre- 
quently refer. So, by labeling this knowledge 
with a model type and including the notion of 
a model type in the explicit conceptualiza- 
tion, we provide a handle so the task can 
compactly refer to the domain knowledge. 
For example, a task that reasons about the ef- 
fects between adjacent physical components 
may require a “topological model” as a con- 
dition for its performance. Alternatively, the 
problem-solving viewpoint could define 
model types that are specifically compiled 
for the task; however, this compilation often 
is not reusable for other tasks. 

Figure 4 shows four types of car models. 
The description of an entity is in italics next 
to its symbol. For example, the bold solid 
arrow connecting the rectangles labeled 
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“starter” and “engine” in Figure 4d is anno- 
tated with “mechanical conduit.” These de- 
scriptions belong to the conceptualization 
and will be organized and used in reasoning. 
Relations (such as “causes” in Figure 4b) 
may have the same name in the model and 
the conceptualization (just like the relation 
“structural-part-of’ in Figure 1). 

In Figure 4a, the exhaust component’s be- 
havior model says that the expected substance 
at the exhaust’s output port is the same as the 
substance that goes into the exhaust through 
the input port. (Substances are part of a mate- 
rial model type that we have omitted from this 
description.) Figure 4b shows the state model, 
which depicts the effects of initial states on 
the car’s condition. In this case it reflects 
(fault) states of structural components. The 
other states concern behavior and function. 
Figure 4c shows part of a car’s function model, 
which exhibits the relations between the pa- 
rameters of the functions “start” and “fire,” 
and those of “fuel-supply,” “rotation,” and “ig- 
nition,” which constitute the decomposition 
of the “fire” function. Figure 4d shows part of 
a structure model whose components are dis- 
tinguished according to the substance or ma- 
terial that they process or transport. 

Relations between model types also exist. 
Figure 4 shows only one such relation: “re- 
alized-at,” which connects the functional pa- 
rameter “sparks” of the “ignition” function 
with the port “spark plugs” of the component 
“distributor.” 

Supportfor reasoning. Multiple models ben- 
efit the robustness, performance, and expla- 
nation of the reasoning system. First, multi- 
ple model types, such as structure and 
predictive models, make it possible to escape 
to alternative models once reasoning gets 
stuck in one model. Second, partial models of 
different types can compensate for the in- 
completeness of the individual models. 
Third, provided that the “right” model can 
be selected, multiple models provide effr- 
ciency because of either their contents (a 
function model is usually more efficient than 
a behavior model) or form (a certain form 
might compile better to the specific tasklo). 
Finally, because each model type reflects a 
specific understanding of reality, multiple 
models are attractive for explaining from dif- 
ferent viewpoints. 

It is also useful to represent statements 
about model types (for example, their defin- 
ition) and their characteristics (for example, 
that the behavior-model submits to the “no- 

Figure 7. The integration architecture at the knowledge level, for the models in Figure 4. 

function-in-structure” principle). In other 
words, these statements denote a model-type 
ontology and model-type annotations. These 
statements form theories about model types. 
Figure 5 shows part of a model-type theory 
that describes mainly model-type annota- 
tions. Model-type theories help the reasoner 
select the appropriate model types because 
they help assess the merits, application con- 
ditions, and efficiency of models. 

The representation of model types and 
their characteristics only partially fulfills the 
requirement of robustness and efficiency of 
reasoning. A satisfying solution will not al- 
ways be obtained after selecting one model, 
so we need to interrelate models to dynami- 
cally allow overstepping of their borders dur- 
ing problem solving. This opportunistic 
switching between models requires liis be- 
tween elements of different model types. 

Linking multiple models through concep 
tualization. There are three basic architec- 
tures for integrating multiple models. Figure 
6a shows the common knowledge represen- 
tation language architecture, which defines 
one language that acts as the communication 
medium for representing all the models. Put 
in programming terminology, the models in- 
teract through global variables. Figure 6b 
shows the translation architecture, in which 
a syntactical translation mechanism between 
the models enables different languages for the 
various model types. This requires that when 
a model type is changed or added, all other 
model types must be changed or translated. 
Figure 6c shows a metalanguage integration 
architecture like that used in the ontology 

knowledge base in Ontolinguas ‘Ibis allows 
the models to be independent from each other 
but communicate by a different language-a 
metalanguage of these models. A combina- 
tion of these basic architectures can be used. 

Choice of the metalanguage architecture. 
Our framework uses the metalanguage inte- 
gration architecture that includes the “se- 
mantics” of models, because it allows the 
models to be loosely coupled and lets us add 
or modify models without much concern 
about the other models. 

A model can be characterized by a set of on- 
tological terms used in its conceptualization; 
this forms a good basis for an underlying meta- 
language. For example, in Figure 4c the terms 
“electrical-function” and “function-parameter’ 
belong to the function model. This metalan- 
guage is at the knowledge level because it de- 
scribes the models without specifying the ac- 
tual formalism in which they are represented. 

Figure 7 shows a part of the ontology of the 
structure, function, and state models from Fig- 
ure 4. Each model type is represented explic- 
itly and points to a set of underlying concepts 
and relations, shown as a rounded box. These 
concepts are meta-domain concepts; they type 
the underlying domain concepts. For example, 
the metadomain concepts “component” and 
‘Yimction” type the domain terms “engine” and 
“fuel-supply” that appear in device models. 

The meta-domain relations link meta- 
domain concepts, including those that belong to 
different model types. For example, the rela- 
tion “realized-at” in Figure 7 associates “func- 
tion” with “port,” which belong to the function 
and structure model types, respectively. 
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First, we explicitly map task roles onto meta- 
domain vocabulary. In other words, meta- 
domain concepts and relations are the main 
“entries” to the framework. This offers ad- 
vantages over approaches that do not distin- 
guish between task roles and application- 
domain terms, because we can reuse some 
domain knowledge in different roles. Sec- 
ond, because of the OSN’s general charac- 
ter, it can capture a great amount of domain 
knowledge that is reusable across many 
tasks. The OSN provides a basis for multiple 
tasks, but it can be extended or customized 
with terms to facilitate a special family of 
tasks, without hindering its generality. For 
example, the addition of a me&domain con- 
cept such as “observable” can be considered 
as oriented toward tasks that require human 
intervention for obtaining observables. 

Representing knowledge at different gen- 
erality levels. The genera& level indicates 
the scope that the domain knowledge covers. 
Four basic levels--case, domain,field, and 

1. Fails-abruptly(Electrical-function). “field,” and which we’ll describe later. Fig- nodeE-type-correspond to important land- 

2. Cheap-to-observe(External-port). ure 9 shows a field theory of seven statements marks on the generality spectrum. Each gen- 
3,Observable(Smell). about the terms in the OSN in Figure 8. For erality level has two defined knowledge con- 
4. Observable(Color). structs: The tirst organizes the vocabulary at 
5. Causes(A, B) a Occurs-before(A, B). 

example, the first statement says that an elec- 

6. Can-be-seen(Physical-object). 
trical-function fails abruptly, and the fifth that level (for example, the OSN), and the sec- 

7. Arguments-type-of(Has-port, statement says that if A (a function or state, ond is the theory formed by statements about 
Component, Port). for example) causes B, then A occurs before the vocabulary (for example, the field theory). 

B. The seventh statement specifies the argu- In Figure 10, each shell denotes a general- 
Figure 9. A part of a field theory. ment types of the relation “has-port” and ity level and shows parts of the two knowledge 

hence is part of the ontology. constructs at that level (rectangles denote the- 
Specialized concepts in the OSN inherit ories). For example, the hierarchy on the left 

The organization of the meta-domain vo- their parent’s annotations. For example, in the model-type shell denotes the organiza- 
cubulary. In our framework, an ontological “component” and “port” will inherit the state- tion of the model types, while the rectangle on 
semantic network (OSN) organizes the meta- ment that a “physical object” can be seen. the right denotes the model-type theory. 
domain concepts in a generalize-specialize Ideally, me&domain concepts and rela- Case-level knowledge describes specific de- 
hierarchy and maintains meta-domain rela- tions do not include task roles. For example, vices (or systems in general). The knowledge 
tions between these concepts; this forms the the term “hypothesis” does not appear in the constructs are the set of case-level vocabulary 
heart of the integration. OSN, but it is explicitly mapped onto a con- terms (such as “~38” in Figure lo), andthe the- 

Figure 8 depicts a part of an OSN. The cept in the OSN, such as “component.” ories about the systems or devices, which are 
node labels (such as “component”) and dot- expressed by statements about the vocabulary 
ted arcs (such as “has-port”) belong to the The OSN supports reusability and robust- (for example, that porta an1 and pl of compo- 
me&t-domain vocabulary (concepts and re- ness. The meta-domain relations glue the nents zdll and c23 are connected). The vo- 
lations). The solid arcs in the OSN denote the meta-domain concepts and serve as the com- cab&-y is formed by instantiations of the do- 
generalize-specialize relations. These rela- munication means between the model types: main vocabulary. A case theory is the actual 
tions imply a directed graph in the OSN that Switching between models is achieved by system model, such as the ones in Figure 4 if 
includes all nodes. The hierarchy is not nec- navigating through the OSN, beginning with one treats the names of the entities as instanti- 
essarily a tree, because a node may special- a concept that belongs to some model type, ations of entities from the domain level. Be- 
ize more than one concept. and ending with a concept that belongs to an- cause the names in the figure are unique, we 

Statements that define and annotate the other. The OSN’s connectivity and the anno- prefer names such as “fuel-filter” on “fuel-fil- 
meta-domain vocabulary, just like with tations of the concepts and relations in the terl .“This level is reusable only across differ- 
model types, can be represented in a theory. field theory let the domain knowledge flexi- ent devices that share the same model. 
We call this afield theory because the OSN bly drive the tasks, and therefore support the Domain-level knowledge describes classes 
and this theory are classified at the same gen- robustness of the reasoning. of devices. The knowledge constructs are the 
erality level of knowledge, which we call The OSN supports reusability across tasks. organization of the domain-level vocabulary, 
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such as “diode” (this organization resembles 
the OSN except that the scope of the terms 
here is less general), and the domain theories, 
which contain statements about this vocabu- 
lary (for example, that diodes are sensitive to 
polarity or that a diode has a port called 
“anode”). Figure 11 shows part of a domain 
theory for the car domain. This level provides 
reusability across a family of devices sharing 
the same domain (cars, for example). 

Field-level knowledge describes meta- 
domain knowledge. The knowledge constructs 
are the semantic network (the OSN) and the 
field theories (see Figure 9), which include 
statements about this vocabulary (for exam- 
ple, that components am replaceable). Because 
the field theories not only annotate the vocab- 
ulary terms but also include part of the ontol- 
ogy, they provide the meaningful structure of 
the domain and case theories underneath. For 
example, the fact that an1 may be co~ected 

to pl is implied by the relation “connected-to,” 
which is denoted by the arrow that originates 
from and points to the concept “port” in the 
OSN. The field theory should define this mla- 
tion (not shown for simplicity). The field level 
provides reusability across classes of domains 

-of(Structure-model, 
[Str-object, Connection, . ..I). 

(for example, the car and electrical domains 
1 I 

share the same OSN). Unlike the domain level, 
Fyure 10. Partitioning the domain knowledge according to generolii levels. 

instantiations of the field-level vocabulary do 
not appear in case models. 

Model-type-level knowledge describes 
model types. Like the field level, it has a 
meta-domain nature. The first knowledge 
construct is the classification of model 
types. I1 For example, a behavior model is a 
kernel model. Roughly speaking, a kernel 
model describes a predefined set of structural 
elements and each element’s local behavior. 
Kernel models are compositional; for each 
device there exists a specific configuration 
of the elements whose behavior in the small 
explains the behavior of the device in the 
large. The second construct is the model-type 
theories (see Figure 5), with their statements 
(for example, a structure model has high con- 
nectivity among its constituents). This level 
may be reused with different classes of fields, 
domains, and case models. 

Figure 10 shows only a selection of con- 
cepts, relations, and statements. For example, 
to keep the figure simple, we do not show the 
“is-a” relation between “anode” in the domain 
shell and “port” in the field shell, nor the map- 
ping between the relation “has-port” in the 
field shell and the relation with the same name 
in the domain shell. The organization of a 
vocabulary is an abstract view of the theories. 

For example, the arrow labeled “has-port” 
connecting the “component” to the “port” 
nodes in the OSN corresponds to a statement 

1. Results-in-noise(Rotation-function). 
2. Usually-accessible(Spark plugs). 
3. Smells-like(Gasoline, Gasoline-odor). 
4. Smells-IiketMixture. Gasoline-odor). 

in the field theory that specifies the “has-port” 5. Smells-like(Burnt-rhture, Burnt-odor). 
relation. The theory can also state whether 
each component must have at least one port. Figure 11. A pari of a domain theory. All statements re- 

flect onnotations. 
Types of statements. The theories at the 
model-type, field, and domain levels may 
have three types of statements: definitions, 1 task. The problem-solving methods them- 
conditions, and annotations. Stating that a selves ought to handle the annotations (such 
“primitive componenl” is a “component” as “replaceable”), as we described earlier. 
with no “part-of’ relations, at the field level, 1 The above examples are all from the field 
is a definition of the term “primitive compo- level, but the situation in the model-type and 
nent.” This intensional definition lets us de- domain theories is similar. For example, to 
rive the primitive components in the domain say that the constituents of a structure model 
and eventually the case models. Stating that 1 are structural objects and connections is part 
each port must belong to a component is a of a structure-model definition; to say that 
(necessary) condition; if the condition does diodes are polarity-sensitive is a domain- 
not hold for an object, then that object can- level annotation. 
not be a port. Finally, stating that a “compo- 
nent” is replaceable, without further defin- Support for reusability, knowledge acquisi- 
ing “replaceable,” is an annotation. tion, and modifiability and maintainability. 

While definitions and conditions mainly 1 Representing knowledge at generality levels 
allow sharing between knowledge bases that / directly affects not only reusability across 
commit to them, annotations are mainly applications, but also knowledge acquisition, 
bridges between the knowledge base and the because the knowledge-acquisition sources 
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Figure 12. Reasoning models and domain models in perspective. 

at the different generality levels can be iden- 
tified: the user of the device or domain ex- 
pert at the case level, the domain expert at 
the domain level, and the knowledge engi- 
neer at the field and model-type levels. More- 
over, acquisition of knowledge at a general- 
ity level can be guided and constrained by 
the theories relevant to that knowledge. 

The generality levels are inherently parsi- 
monious: An operation performed on one level 
(such as consistency checking) will automat- 
ically hold for the levels underneath. This as- 
sists modifiability and maintainability. 

The generality levels also support modu- 
larity, which is maximal cohesion and mini- 
mal interaction between knowledge chunks. 
This supports modifiability because it helps 
identify the knowledge chunks that need to 
be updated because of a change in the knowl- 
edge base. Cohesion appears in the frame- 
work in two forms: breadth and depth. 
Breadth corresponds to the generality level: 
The knowledge at each level shares the same 
scope. Depth reflects the membership to a 
model type, cutting through the shell struc- 
ture in Figure 10. For example, structural 
knowledge crosses all generality levels. 

The explicit mapping between the gener- 
ality levels (shown as arrows between the 
shells in Figure lo), and the use of the OSN 
as the integration medium, explicitly repre- 
sent the interaction between the knowledge 
chunks. This supports maintainability be- 
cause, when a change occurs in one knowl- 
edge chunk, the channels of interaction be- 
tween the chunks can be directed to control 
(and sometimes minimize) the amount of 

change in other chunks. For example, a 
knowledge engineer who decides to add the 
node “primitive component” at the field 
level, can define it intensionally as a compo- 
nent with no internal structure. At the domain 
level, only the domain terms classified as 
“component” should be checked to see if 
they do not have a “structural-part-of’ rela- 
tion. More important, the explicit mappings 
allow the knowledge engineer to redefine the 
mappings. For example, the relation “has- 
port” at the field level can be mapped on a 
relation with a different name or even differ- 
ent scheme at the domain level. Because of 
the ability to redefine mappings, the frame- 
work allows the reuse of the same field-level 
knowledge with different idiosyncratic rep- 
resentations of domain and case models. 

Applying our framework in 
Musarela to diclgnostic 
reasoning 

We have implemented our framework in 
Musarela,‘* a system that acquires multiple 
models according to the knowledge struc- 
tures at the four generality levels. Musarela 
can be used for systematically documenting 
domain knowledge, for guiding the con- 
struction of problem solvers, and during rea- 
soning. For knowledge acquisition, Musarela 
is meant to be used by a knowledge engineer, 
a domain expert, and a device user. We have 
used it to construct a model of a car that we 
used in a diagnostic application. 

The framework in perspective. Musarela is 
meant to operate in a broader framework that 
models the reasoning as a task-method de- 
composition of the problem-solving behav- 
ior.* The task-method construct is governed 
by strategic knowledge that can be imple- 
mented by special problem-solving methods. 
Figure 12 illustrates this broad framework and 
shows how the reasoning (diagnosis in this 
case6) relates to our modeling framework. The 
diagnostic task is realized by the prime diag- 
nostic method, which in turn consists of three 
subtasks: symptom detection, hypothesis gen- 
eration, and hypothesis discrimination. The 
last can be realized by the “probing method” 
(and possibly other methods). Each task is as- 
sociated with roles that the domain knowledge 
eventually plays. For example, the hypothe- 
sis generation subtask is associated with the 
role “hypothesis,” which is mapped to the 
“component” concept at the field level. In Fig- 
ure 12, the strategic knowledge is illustrated 
by the statement that a structure model is to 
be used when executing the probing method. 

Reasoning. A strategic module (see Figure 
12), which we’ll call “strategy,” controls and 
manipulates symptom detection, hypothesis 
generation, and hypothesis discrimination. 
The strategy achieves the task goals and re- 
covers from possible failures. The strategy 
also includes the problem-solving methods 
that use the conceptualization when new av- 
enues of reasoning are sought. 

Many strategic decisions are based on the 
contents of the various theories, particularly the 
field theory. Interpreting the theories is straight- 
forward if a human performs the strategic com- 
ponent of reasoning. However, automating the 
interpretation is not trivial. The theories include 
knowledge about certain concepts, but this does 
not mean that the reasoner can “understand” 
them. During system construction the knowl- 
edge engineer should specify how the problem- 
solving methods and the strategy must deal 
with the terms (such as “cheapto-observe”) in- 
troduced in the theories. 

Whenever the strategy requires knowledge 
regarding a concept C (such as a node in the 
OSN), it follows this line of reasoning: If the 
strategy requires knowledge about C itself, the 
strategy looks into the relevant field statements 
that annotate C (for example, annotating 
“electrical-function” as “fails-abruptly”). 
However, if the strategy is evaluating altema- 
tive knowledge sources that are related to C, 
it proceeds differently. It forms a set of con- 
cepts that, according to the OSN, are related 
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Related work 
Our framework is similar to other work on 

ontologies, task-oriented approaches, and 
model integration methodologies. 

Work on ontologies has been quite popular 
(for example, Ontolingua’ and Common- 
KAlW). There is a proposal for a Knowledge 
Interchange Format,3 which is used in Ontolin- 
gua, a tool for portable ontology specification. 
A number of projects use Ontolingua, such as 
Games, which focuses on ontologies in the 
medical domain.4 Ontolingua seems to be an 
attractive option for expressing Musarela’s 
statements in the domain, field, and model- 
type theories. The fundamental difference be- 
tween our framework and these approaches is 
that we want to augment the conceptualization 
with annotations and use it during problem 
solving, instead of mainly in an “off-line” 
manner that enables knowledge reuse and 
guidance in knowledge acquisition. Moreover, 
our framework introduces model types and 
generality levels, which define important crite- 
ria for cohesion of knowledge and contribute, 
respectively, to a content theory about ontolo- 
gies, and reusability across applications. 

The goals of such task-oriented approaches 
as the Task Structure~e~,~ KADS6, Common- 
KADS, and Commet’ are beyond domain 
knowledge. Our framework, on the other hand, 
focuses on structuring domain knowledge, mak- 
ing only general assumptions about the task. 
Therefore, the framework is meant to comple- 
ment and be used in symbiosis with tasks that 
have an explicit conceptual model. Our frame- 
work would need to work with the Task Struc- 
ture View, enrich the “domain knowledge layer’ 
in KADS and CommonKADS, and constitute 
Commet’s “model component.“As with the 
work on ontologies, another major difference 
between our way of structuring domain knowl- 
edge and the task-oriented approaches is that we 
explicitly represent model types and generality 
levels, which supports knowledge reusability 
and robustness of reasoning. 

Various approaches to model integration 
share some of our aims. Model graphs have 

been suggested where abstraction and simplifi- 
cation relations interconnect models.8 Our 
framework types models and provides the 
model-type theories for representing such rela- 
tionships. In our earlier work9 and in other re- 
search,‘“~ii as in much of the later work on 
Functional Repmsentation,‘2 various models are 
used in an efficient but basically prespecified 
order to solve problems. The Task Structure , 
View, as specified in Generic Task Problem 
Spaces (GTPS)i3 and implemented in Soar,i4 
can model problem solving with Functional 
Representation to allow flexible reasoning. Our 
framework extends this by letting one or more 
GTPS work with Musarcla’s knowledge con- 
structs. A GTPS, or a problem-solving method 
in general, that uses the model-type theories, the 
OSN’s infrastructure, and the field theory 
allows flexible guidance of problem solving, 
and opportunistic switching between models. 
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to C (for example, ‘*function-pammete? is re- vant knowledge, and at what cost this search l The structure, behavior, function, state, 
lated to “function” by “has-parameter’). For should proceed. Moreover, the user needs to and material case models (Figure 4 shows 
each element E in this set, the strategy evalu- specify the heuristics for evaluating the po- the first four). Recall that the entities in 
ates the corresponding model type (for exam- tential lines of reasoning. The current prob- the case models (“fuel-filter,” for exam- 
ple, “function-modeI”) by intetpretmg the rel- lem solver that uses Musarela is not fully au- ple) are to be treated as instantiations of 
evant statements in the model-type theory (for tomated; it is the user that actually chooses the vocabulary at the domain level. 
instance, “computationaIly-efficient” anno- how to proceed from possible alternatives l The samples of model-type, field, and do- 
tat& “function-model”). The strategy then provided by the system. main theories in Figures $9, and 11. Ob- 
chooses the most promising E and reasons serve that statements 3 and 4 in the field 
about its corresponding model type using the A diaguo&c &on. To show how our knowl- theory, and statements 3,4, and 5 in the 
appropriate problem-solving method. edge-modeling framework is used, we’ll pre- domain theory, relate to the material 

There is much room for specifying how sent a diagnostic session in the car domain, model type. 
broadly the strategy should search for rele- using the following knowledge constructs: l The OSN in Figure 8. 
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General modeling prindples 
Our framework follows these general mod- 

eling principles, some of which are shared by 
task-oriented approaches: 

l Making relevant metaknowledge explicit. 
The explicit conceptualization and the 
model types comprise knowledge about ’ 
the underlying knowledge at the domain 
and case levels. Task-oriented approaches 
apply this principle by explicitly represent- 
ing knowledge about the problem-solving 
behavior in terms of tasks and methods. 

l ~ Linking multiple models using a common 
knowledge-level theory. The integration of 
models using the met&domain terms at the 
field level is at the knowledge level because 
it abstracts from implementational detail. 
The modeling of task knowledge in the task- 
oriented approaches also provides a knowl- l 

edge-level description of problem solving. 
l Decoupling the knowledgefrom its role in 

reasoning. We realize this by explicitly 
mapping the task or problem-solving roles . 
onto their counterparts in the framework. 

Most other approaches (CommonKADS,’ 
for example) also use this principle, which 
such approaches as Protege-II* extend to 
suggest ontologies of mapping relations 
between tasks and domains. 
Relative interaction. This means that a good 
mode&g methodology can span the contin- 
uum of coupling between task and domain 
knowledge from weak to strong. We achieve 
this by modeling the domain knowledge 
without strong assumptions about the task 
but letting the organization of the knowledge 
be extensible to accommodate task-oriented 
knowledge. This principle is borrowed from 
CommonRADS and provides a compromise 
between the two extremes of the interaction 
hypothesis problem. 
Explicitly distinguishing knowledge of dif- 
ferent generalities. We follow this principle 
by representing knowledge at different lev- 
els of scope of applicability (generality). 
Maximum cohesion and explicit interac- 
tion. Cohesion appears in the framework 

in two forms, breadth and depth. Breadth 
corresponds to the generality level. Depth 
reflects the membership to a model type.. 
The explicit mapping between the gener- 
ality levels, and the use of the OSN as the 
integration medium, explicitly represent 
the interaction between the knowledge 
chunks. This principle resembles the well- 
known moduhuity principle in software 
engineering. 

1. B.J. Wiehnga et al., ‘Towards a Unification 
of Knowledge-Modeling Approaches,” in 
Second-Generation Expert Systems, J.-M. 
David, J.-R Krivine, and R. Simmons, eds., 
Springer-Verlag, New York, 1993, pp. 
299-335. 

2. J.H. Gennari et al., “Mapping Domains to 
Methods in Support of Reuse,” Proc. 
Knowledge Acquisition Workshop (RAW 
‘94), SRDG Publications, Dept. of Com- 
puter Science, Univ. of Calgary, Alberta, 
Canada, 1994, pp. 24-l-24-20. 

The symptom in this example is “while 
starting, engine makes normal noise but does 
not fire.” Suppose there are various problem- 
solving methods for hypothesis generation 
that can work with different model types. The 
first step is to examine the symptom to get a 
handle to the framework’s models, and to 
register observables that might help during 
reasoning. The symptom is characterized, 
possibly by the user, as “abrupt,” which 
means that the failure is severe, not just a 
slight degradation of the car’s performance. 
The system also records the observation of 
“normal noise.” 

We need an entry into a model type that is 
related to the symptom. Using symptom de- 
tection, the diagnostic system determines that 
the term “fire” belongs at the domain level 
and is a function at the field level. A function 
belongs to the function model (this follows 
from the specification of the function model 
in the model-type theory). The function 
model is our starting point in the reasoning. 
We have just used the mapping mechanisms 
to arrive at the model-type level. 

The second step is to generate hypotheses 
by using the function model at the level 
where the “fire” function appears. The hy- 
pothesis-generation step results in suspect- 
ing the functions “fire” and “start” (Figure 
4c). Now we turn to hypothesis discrimina- 
tion. We find that the “rotate” parameter of 
the “start” function causes the initiation of 
the rotation in the “fire” function. From the 

field theory (fifth statement) we know that 
the “rotate” parameter gets its value before 
the initiation of the rotation of the engine. 
This information, coupled with the fact that 
normal noise was heard and that rotation re- 
sults in noise (according to the domain the- 
ory), indicates that the “rotate” parameter is 
probably not the problem. This kind of in- 
ference is called corroboration, which means 
the abduction of a premise based on observ- 
ing the implicant. This kind of reasoning is 
not always sound; it strongly depends on the 
domain and the device at hand. 

The “fire” function remains in focus. The 
OSN indicates that the concept “function” is, 
in principle, decomposable, and the strategy 
stays with the function model type because 
the model-type theory indicates that function 
models are efficient. 

Another cycle of hypothesis generation 
occurs, this time at a finer level of the func- 
tion model. The diagnostic system decom- 
poses the “tire” function (Figure 4c) and gen- 
erates the subfunctions “fuel-supply,’ 
“rotation,” and “ignition” as suspects. In hy- 
pothesis discrimination, the field theory tells 
us that electrical functions tend to fail 
abruptly. This information, together with the 
fact that the symptom is classified as abrupt, 
focuses attention on the “ignition” function. 

The diagnostic strategy selects the struc- 
ture model because there is no further de- 
composition of the ignition function, because 
a function has a parameter that can be real- 

ized at a structural port (according to the 
OSN), and because the model-type theory 
says that structure models describe the phys- 
ical world (which makes them applicable for 
probing). If we apply this line of reasoning to 
the “ignition” function, we arrive at the 
“sparks” functional parameter and end up 
with the “spark plugs” port of the “distribu- 
tor” component (see Figure 4d). 

The diagnostic system may ask to probe 
the car at any point starting from “spark 
plugs” or upstream from it. It selects a mea- 
suring point at the spark plugs based on test- 
cost considerations (not shown here), which 
would include the fact that spark plugs are 
usually accessible, according to the domain 
theory. If we assume that the user cannot ob- 
serve whether there are sparks (for example, 
because the spark plugs in this car-contrary 
to what the domain theory suggests-are dif- 
ficult to access), the diagnostic system con- 
sults the OSN to see what additional knowl- 
edge it has about ports. The “port” concept 
in the OSN in Figure 8 is related to other 
meta-domain concepts. 

In this case the generalize-specialize rela- 
tions concerning “port” do not help because 
they do not provide knowledge about the 
spark plugs (they are not annotated in the 
field theory). The terms “component,” “func- 
tional-parameter,” and “port” do not help 
either, because “component” has no annota- 
tions in the field theory, “functional parame- 
ter” was where we started, and there are no 
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other ports to observe that are connected to 
the plugs (we could have considered other 
ports upstream, but they were costly to ob- 
serve). So, “behavior at port-state,” which is 
connected to “port” via the relation “de- 
scribed-by,” is the most attractive alternative. 
We have landed in the state model to which 
“behavior at port-state” belongs. The exact 
entry in the state model is the state “no sparks 
at spark plugs” (see Figure 4b). 

The diagnostic system applies hypothesis 
discrimination again. According to the state 
model, the initial state “tllthy distributor-cap” 
may cause the assumption of no sparks at the 
plugs. It also means that there will be no 
burnt mixture out of the engine and no firing 
of the engine. The latter covers (and hence is 
consistent with) the observations. The diag- 
nostic strategy might still need more evi- 
dence for the hypothesis. We must verify the 
expectation that there is no burnt mixture out 
of the engine. We need more expectations to 
match with observations. The system looks 
for a model that can predict results of abnor- 
mal behavior. The strategy uses the model- 
type theory to determine that the behavior 
model is suitable because it is in accordance 
with the no-function-in-structure principle. 

Another round of hypothesis discrimina- 
tion takes place. The exhaust’s behavior 
model (see Figure 4a) predicts that “no burnt 
mixture” that enters the exhaust out of the 
engine causes “no burnt mixture” out of the 
exhaust. The exhaust output is an external 
port that the field theory suggests is usually 
cheap to probe. The OSN states that materi- 
als have “smell” and “color” attributes that 
can be observed, according to the field the- 
ory. The domain theory says that unburnt 
mixture smells like fuel. The system asks the 
user to perform the test. The test result 
matches the expectation. The system con- 
siders this as enough evidence to believe that 
there are no sparks at the spark plugs. 

In this stage, the diagnostic strategy aims 
to verity the reason for the absence of sparks. 
Hypothesis discrimination operates on the 
structure model and suggests probing the 
coil’s output. The user reports that the out- 
put is correct. This singles out the distribu- 
tor component, which is presented as the di- 
agnosis. The system might suggest the 
distributor cap is filthy as a possibility it 
knows about (see Figure 4b). 

In summary, the diagnostic task employed 
multiple models in a cooperative manner to 
arrive at a solution. In symptom detection, 
the diagnosis system classified the symptom 

as functional, which led to selecting the func- 
tion model. The system used field and do- 
main knowledge to filter and focus the hy- 
pothesis set in hypothesis generation. It used 
the OSN to integrate the model types and find 
alternative reasoning avenues. The altema- 
tives corresponded to model types whose 
merits were evaluated using the model-type 
theory. 

0 UR ARTICLE FOCUSED ON 
structure and predictive model types. How- 
ever, there is also a need to investigate and 
introduce other model types and to study 
their characteristics, which will be captured 
in statements of the model-type theories. 

It would also be useful to represent unify- 
ing modeling theories such as the Bond- 
Graph theory, which views the behavior in 
the world in terms of generalized variables 
and equations, and hence is attractive for 
modeling devices and processes.13 These 
general theories, which contribute to a con- 
tent theory of conceptualizations, will mainly 
be reflected at the field level. The importance 
of these theories stems from their wide scope 
of applicability, which supports the neutral- 
ity of the models from a task viewpoint. Such 
“neutral” theories could be a widely reusable 
core of knowledge that can be augmented 
with more specific knowledge. For example, 
the generalized variables in the Bond-Graph 
theory (generalized flow, for example) could 
be reflected in high-level nodes in the OSN’s 
hierarchy, which could then be refined. 

We used Musarela in guiding the selection 
of the problem-solving methods of Faulty-II 
during the configuration of its task-method 
decomposition. Faulty-II is a Common- 
KADS model of the task, inference, and 
strategic reasoning.6 We then used Faulty-II 
as a problem solver with Musarela. Although 
the integration of the two resulted in flexible 
reasoning (because of the use of the multiple 
models), the integration is not yet fully ex- 
ploited. The current problem-solving meth- 
ods do not take full advantage of the specifi- 
cation of the conceptualization and its 
annotations. There is much room for encod- 
ing the general problem-solving methods that 
can reason about the conceptualization and 
also for experimenting with different strate- 
gies for using the framework. Although we 
have not fully evaluated our approach, it is a 
good starting point with respect to our re- 
quirements and goals. 
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